### WESTINGHOUSE PROPRIETARY CLASS 3

MCAP 9788 CLASS 3

> TENSILE AND TOUGHNESS PROPERTIES OF PRIMARY PIPING WELD METAL FOR USE IN MECHANISTIC FRACTURE EVALUATION

S. S. Palusamy Structural Materials Engineering

June 1981

APPROVED:

M.RQ

J. N. Chirigos, Manager Structural Materials Engineering

WESTINGHOUSE ELECTRIC CORPORATION NUCLEAR ENERGY SYSTEMS P.O. Box 355 PITTSBURGH, PENNSYLVANIA 15230

8107010416

## TABLE OF CONTENTS

|                                                 | PAGE NO. |
|-------------------------------------------------|----------|
| ACKNOWLEDGMENT                                  | ix       |
| EXECUTIVE SUMMARY                               | xi       |
| 1. INTRODUCTION                                 | 1        |
| 2. WELD DATA SURVEY                             | 3        |
| 3. TEST PROGRAM                                 | 36       |
| 4. FABRICATION OF FULL PENETRATION WELD SAMPLES | 38       |
| 5. TEST RESULTS                                 | 40       |
| 6. DISCUSSION & RESULTS                         | 44       |
| 7. SUMMARY & CONCLUSION                         | 45       |
| APPENDIX A                                      | A-1      |

LIST OF TABLES

New Contraction of a line of the line of t

| TABLE      | TITLE                                            | PAGE NO. |
|------------|--------------------------------------------------|----------|
| 1-1        | Plants Covered in this Report                    | 2        |
| 2-1        | Summary of Reactor Vessel Safe End Weld Details  | 16       |
| 2-2        | Summary of Pipe Weld Details for AEP and AMP     | 19       |
| 2-3        | Summary of Pipe Weld Details for CPL             | 21       |
| 2-4        | Summary of Pipe Weld Details for CWE and COM     | 22       |
| 2-5        | Summary of Pip? Weld Details for CYW             | 23       |
| 2-6        | Summary of Pipe Wald Details for FLA AND FPL     | 24       |
| 2-7        | Summary of Pipe Weld Details for RGE             | 26       |
| 2-8        | Summary of Pipe Weld Details for SCE             | 27       |
| 2-9        | Summary of Pipe Weld Details for VPA and VIR     | 29       |
| 2-10       | Summary of Pipe Weld Details for WEP and WIS     | 31       |
| 2-11       | Summary of Pipe Weld Details for SSP             | 32       |
| 2-12       | Summary of Pipe Weld Details for YR              | 33       |
| 2-13       | Summary of Pipe Weld Details for OPPD            | 34       |
| 3-1        | Weld Sample Characteristics                      | 37       |
| 5-1        | Tensile Properties of Weld Samples at 600°F      | 41       |
| 5-2        | 2T Compact Tension Specimen Test Results at 600° | F 42     |
| APPENDIX A |                                                  | A-8      |
| 1          | Tensile Results for Weldments (600°F)            | A-9      |
| 2          | J and $\Delta a$ Values for Weldments (600°F)    |          |

### LIST OF FIGURES

1.

| FIGURES    | TITLE                                                                      | PAGE NO. |
|------------|----------------------------------------------------------------------------|----------|
| 2-1        | Weld Location for Donald C. Cook Units 1 and 2                             | 4        |
| 2-2        | Weld Location for Robinson Unit 2                                          | 5        |
| 2-3        | Weld Location for Zion Units 1 and 2                                       | 6        |
| 2-4        | Weld Location for Haddam Neck Unit                                         | 7        |
| 2-5        | Weld Location for Turkey Point Units 3 and 4                               | 8        |
| 2-6        | Weld Location for R. E. Ginna Unit                                         | 9        |
| 2-7        | Weld Location for San Onofre Unit                                          | 10       |
| 2-8        | Weld Location for Surry Units 1 and 2                                      | 11       |
| 2-9        | Weld Location for Point Beach Units 1 and 2                                | 12       |
| 2-10       | Weld Location for Ringhals Unit 2                                          | 13       |
| 2-11       | Weld Location for Yankee Rowe Unit                                         | 14       |
| 2-12       | Weld Location for FortCalhoun Unit 1                                       | 15       |
| 4-1        | Weldment Configuration Showing the<br>Orientation of Specimens             | 39       |
| 5-1        | J-Resistance Curve for Primary Piping<br>Base and Weld Metal               | 43       |
| APPENDIX A |                                                                            |          |
| 1          | Tensile properties of the Stainless Steel and Inconel weldments at 600°F   | A-10     |
| 2          | J vs Da for the Stainless Steel weldment SP1 at 600°F                      | A-11     |
| 3          | J vs $\ensuremath{\Delta a}$ for the Stainless Steel weldment SP2 at 600°F | H-12     |
| 4          | J vs da for the Stainless Steel weldment ^93 at 600°F                      | A-13     |
| 5          | J vs da for the Stainless Steel weldment SP4 at 600°F                      | A-14     |

## LIST OF FIGURES (cont'd)

Accession in such that

| FIGURE | TITLE                                                                                                                   | PAGE NO.      |
|--------|-------------------------------------------------------------------------------------------------------------------------|---------------|
| 6      | J vs Aa for the Inconel weldment SP5<br>at 600°F                                                                        | A-15          |
| 7      | J vs da for the Stainless Steel weldment SP6 at 600°F                                                                   | A-16          |
| 8      | J vs &a for the Stainless Steel (SP1-SP4, SP6)<br>and Inconel (SP5) weldments at 600°F, all heats                       | A-17          |
| 9      | Best fit linear curves to the three points on J vs<br>& curves for each Stainless Steel weldment                        | A-18          |
| 10     | Load vs displacement of three specimens of<br>Stainless Steel (SP1-1, SP1-2) and Inconel (SP5-3)<br>weldment at (600°F) | ^ <b>-</b> 19 |
| 11     | Fracture surfaces for two specimens of Stainless<br>Steel (SP6-2) and Inconel (SP5-3) weldments                         | A-20          |
|        |                                                                                                                         |               |

#### ACKNOWLEDGMENT

This report is the result of contributions made by several individuals to whom the author wishes to express his thanks:

- Mr. R. C. Little for preparing the weld sample specifications and for providing consultation in the selection and fabrication of weld samples
- Mr. R. D. Rishel for reviewing and summarizing pipe weld data
- Mr. J. S. Caplan for reviewing and summarizing the safe-end weld data
- Mr. J. Petsche for following the machining and testing of specimens
- Dr. J. Landes and Mr. A. Bush of Westinghouse R&D Laboratories for performing the tests.

## TENSILE AND TOUGHNESS PROPERTIES OF PRIMARY PIPING WELD METAL FOR USE IN MECHANISTIC FRACTURE EVALUATION

#### Executive Summary

Presently, the Loss of Coolant Accident (LOCA) evaluation of Pressurized Water Reactor (PWR) primary coolant system is carried out by postulating nonmechanistic circumferential (guillotine) breaks in which the pipe is assumed to rupture along the full circumference of the pipe. This results in overly-conservative loading conditions for the primary coolant system. Such a nonmechanistically derived conservative loading not only increase. the cost of design, fabrication and maintenance, but also causes fictitious problems for the reactor coolant supports in existing plants. It is, therefore, desirable to be conservative but more realistic in the postulation of breaks for primary system design.

The following group of utilities have therefore sponsored a Mechanistic Fracture Evaluation Investigation of Reactor Coolant Pipe Materials:

American Electric Power Carolina Power & Light Commonwealth Edison Connecticut Yankee Florida Power & Light Rochester Gas & Elec. Co. Southern California Edison Virginia Electric Power Co. Wisconsin Electric Power Swedish State Power Yankee Atomic Electric Co. Omaha Public Power District Donald C. Cook 1 & 2 Robinson 2 Zion 1 and 2 Haddam Neck Turkey Point 3 & 4 R. E. Ginna San Onofre Surry 1 & 2 Point Beach 1 & 2 Ringhals 2 Yankee Rowe Fort Calhoun 1 The objective of this investigation is to examine mechanistically, under realistic and yet conservative assumptions, whether a crack assumed to appear instantaneously in these plants will become unstable and lead to a full circumferential break when subjected to the worst possible combination of plant loadings.

A detailed mechanistic evaluation, presented in WCAP-9558, for base metal has shown that double ended breaks of reactor coolant pipes are unrealistic and, as a result, large LOCA loads on primary system components will not occur.

This report presents the results of an investigation undertaken to determine the tensile and fracture toughness of representative reactor coolant system weld samples. The results of the tensile and fracture toughness tests are summarized and the weld metal properties are compared with the same properties of the base metal. It is found that the weld metal properties fall within or above the scatter band of the properties of the base metal. Therefore the conclusions reached in WCAP-9558 for base metal are equally applicable to weld metal. this report is to present the tensile and fracture toughness properties for the weld metal and to show that the conclusions reached for the base metal are equally applicable to the weld metal.

. 2

3.0

The weld metal test program, which was undertaken to obtain the tensile and fracture toughness properties for weldments representative of those found in the plants listed in Table 1-1 consisted of several steps. First, a survey was conducted to identify the various welds in the primary coolant system of each of the affected plants. The weld procedures were reviewed and summarized. Second, a test program was formulated to represent the conditions identified in the weld data survey. Third, the various weld specimens were fabricated to the applicable specifications. Fourth, tensile and compact tension specimens were machined and tested to obtain the required material properties for comparison with the base metal properties.

Each of the above steps are briefly discussed in the following sections. The results of the tensile and fracture toughness tests are summarized a.c.

 Palusony, S. S. and Hartmann, A. J., Mechanistic Fracture Evaluation of Rea tor Coolant Pipe Containing a Postulated Circumferential Through-Wall Crack, WCAP 9558 - Rev. 2, Proprietary Class 2, May 1981.

## TABLE 1-1

# PLANTS COVERED IN THIS REPORT

| PLANT                | IDENTIFICATION<br>Acronyms | OWNER UTILITY               |
|----------------------|----------------------------|-----------------------------|
| Donald C. Cook 1 & 2 | AEP, AMP                   | American Electric Power     |
| Robinson 2           | CPL                        | Carolina Power & Light      |
| Zion 1 and 2         | CWE, COM                   | Commonwealth Edison         |
| Haddam Neck          | CYW                        | Connecticut Yankee          |
| Turkey Point 3 & 4   | FPL, FLA                   | Florida Power & Light       |
| R. E. Ginna          | RGE                        | Rochester Gas & Elec. Co.   |
| San Onofre           | SCE                        | Southern California Edison  |
| Surry 1 & 2          | VPA, VIR                   | Virginia Electric Power Co. |
| Point Beach 1 & 2    | WEP, WIS                   | Wisconsin Electric Power    |
| Ringhals 2           | SSP                        | Swedish State Power         |
| Yankee Rowe          | YR                         | Yankee Atomic Electric Co.  |
| Fort Calhoun 1       | OPPD                       | Omaha Public Power District |

•••••





FIGURE 2-2 Weld location for Robinson Unit 2





FIGURE 2-3 Weld location for Zion Units 1 and 2





FIGURE 2-4 Weld Location for Haddam Neck Unit





÷.,

2-5 Weld location for Turkey Point Units 3 and 4





The states of the

FIGURE 2-6 Weld location for R.E. Ginna Unit





FIGURE 2-7 Weld location for San Onofre Unit





Land Contraction of the

# FIGURE 2-8 Weld location for Surry Units 1 and 2





FIGURE 2-9 Weld location for Point Beach Units1 and 2







A more a Print The 132





FIGURE 2-11 Weld location for Yankee Rowe Unit

-----



FIGURE 2-12 Weld location for Fort Calhoun Unit 1

### TABLE 2-1 SUMMARY OF REACTOR VESSEL SAFE END WELD DETAILS

| Plant | Vendor<br>and<br>Contract # | Safe        | End Desig    | 'n           |          | Nozzle | Dwg. No.   | Heid No.  | Weld<br>Proc. No. | Weld<br>Process | Weld<br>Metal |     | Overlay<br>Weld<br>Metal | Weld<br>Process<br>for<br>Overlay | Exposed<br>Sensitized<br>S.S. Weld<br>Notal | Exposed<br>Heat<br>Treated<br>Inconel<br>Weld |
|-------|-----------------------------|-------------|--------------|--------------|----------|--------|------------|-----------|-------------------|-----------------|---------------|-----|--------------------------|-----------------------------------|---------------------------------------------|-----------------------------------------------|
| _     |                             |             | 1 X          |              |          | 1      |            |           |                   | a,c             |               | a,c | a,c                      | a.c                               | a.c                                         | a.c                                           |
| AEP   | C.E.                        | S.S. Safe   | end attached | d prior to t | nal PWHT | A11    | E-233-445  | 3-445     | WC-23366-         |                 |               |     |                          | F- 7-                             |                                             | + +                                           |
|       | 23366                       | Overlay wi  | th S.S. & [] | conel in sh  | iop.     | 1      | 1          |           | 445               | + +             | ŧ             | -   |                          | +                                 | ++ ++                                       | + +                                           |
|       |                             | After fina  | PWHT,        |              |          |        |            |           |                   |                 | t             |     | f i                      |                                   | H H                                         | ++                                            |
| -     | CB & I                      | S.S. Safe   | end attached | prior to P   | WHT      | A11    | 68-3262-55 | Buttering | 1103-4-F5         |                 |               |     |                          |                                   | $\square$ $\square$                         | 1-1-                                          |
|       | 68-3262                     | Overlayed   | with S.S. in | shop prior   | to PWHT  |        | 68-3262-24 | Weld      | 1305-6-F5         | 1 11            |               |     | 1 1                      |                                   |                                             | +-+                                           |
| Y-N   | 88W                         | Nozzle end  | s buttered . | ith stainle  | \$5      |        | 34971E     |           |                   |                 |               |     |                          |                                   | $\square$ $\square$                         | 1-1                                           |
|       |                             | steel prio  | r to PWHT    |              |          |        |            |           | 1                 |                 | 1             | -   | 1 1                      | ++                                | ++ ++                                       | + +                                           |
| 0     |                             |             |              |              |          |        |            |           |                   | 1 11            |               | 1   | 1 1                      | ++-                               | ++ ++                                       | ++                                            |
| CARE  | 88₩                         | Nozzle en.j | s buttered w | ith stainle  | \$5      | Inlet  | 133325E    | WR-19     | WR-19 Rev.D       | t H             |               | 1   | 1 1                      | ++-                               | ++ ++                                       | ++-                                           |
|       | 610-0144                    | steel prio  | r ') PWHT    |              |          | Outlet | 133322E    | WR-23     | WR-23 Rev.0       | T               |               |     | 1 1                      |                                   | H H                                         | +-+                                           |
| COM   | BAN                         | Nozzle end  | s buttered w | ith stainle  | s        | Inlet  | 139749E    | WR-19     | WR-19 Rev.0       | + ++            |               |     | + +                      |                                   | $\square$ $\square$                         |                                               |
|       | 610-0152                    | steel prio  | r to PWHT    |              |          | Outlet | 139747E    | WR-23     | WR-23 Rev.O       | 1               |               |     | i i                      | + +                               |                                             | 1                                             |
| m     | BEN                         | Nozzle ends | s buttered w | ith stainle  | \$5      | Outlet | 1178876    | ¥R-27     | WR 2783           | ++              |               | -   | +                        |                                   | $\Box$ $\Box$                               |                                               |
|       | 610-0116                    | steel prior | r to PWHT    |              |          | Inlet  | 117886E    | WR-3      | 1                 | t ++            | 1.00          | 1   | +                        | ++-                               | ++ ++                                       | ++                                            |
|       |                             |             |              |              |          |        |            |           | ¥8.2783           | + ++            |               |     | +                        | 1 1                               | ++ ++                                       | ++                                            |
|       |                             |             |              |              |          |        |            |           | AN: 2733          |                 |               |     | 1 1                      |                                   |                                             | $\pm$                                         |
| FLA   | B&w                         | Nozzle ends | buttered w   | ith stainles | s        | Outlet | 117887E    | WR-27 )   | Same as FPL       |                 |               |     | -                        | 1 1                               | 4 4                                         | 1-1                                           |
|       | 610-0116                    | steel prior | to PWHT      |              |          | Inlet  | 1178866    | WR-3      |                   |                 |               |     |                          |                                   | + +                                         | +++                                           |
|       |                             |             |              |              |          |        |            |           |                   |                 |               |     |                          |                                   |                                             | he                                            |

\*\*\*\* All weld is 308L

NUSTRACTION RECTARATION CALS 2

TABLE 2-1 (cont'd)

| a de de                                 | a, c | +     | +                | $\ $   | +      | H      | +       | ++    | +      | ٦ |
|-----------------------------------------|------|-------|------------------|--------|--------|--------|---------|-------|--------|---|
| Trea<br>Inco                            | 4    | -     | 4                |        | -      | 1      | _       |       | _      | 1 |
|                                         | 0    | 1     | 1                |        | 1      | 1      | +       |       |        | , |
| posed<br>sitiz<br>S. We<br>etal         | 0    |       |                  |        |        |        |         |       | 2      |   |
| Sen |      | _     | +                | -      | -      | H      | +       | H     | -      | - |
| Weld                                    |      |       |                  |        |        |        |         |       |        |   |
| Overlay<br>Weld<br>Metal                | a,c  |       | +                | + +    |        | • •    | +       |       |        | 1 |
|                                         |      |       |                  |        |        |        |         |       |        |   |
|                                         | UT.  |       |                  |        | -      | 1      |         |       |        | i |
| Weld                                    | ø    |       |                  |        |        |        |         |       |        |   |
|                                         | 1    | -     | -                | -      |        | -      | -       | -     |        | 1 |
| ld<br>cess                              | a,c  | -     |                  | -      |        | 1      |         |       | -      | 7 |
| Pro                                     | L    |       | -                | -      |        | 1.3    | _       | 11    | -      | 1 |
| .0                                      |      | 3(7)  | 3(4)             |        |        | 1.1    |         |       |        |   |
| Weld<br>Proc. 1                         |      | A-8.4 | A-3.4            | 400    |        | -27 A  | -3 A1   | ~     | -      |   |
|                                         | +-   | x     | x                | let    | tlet   | a a    | 3       | +-    | -      | - |
| d No                                    |      | -276  | -276             | 34 In  | 38 Ou  | 52     | -       | 12    | -      |   |
|                                         | -    | -     | 20               | 10.M   | WR-    | WR-    | -88     | WR-   | WR-    |   |
| . No.                                   | 1.   | -276  |                  |        |        | 855    | 84E     | 85E   |        |   |
| ž                                       | 1    | E232  |                  | 1      | 4      | 1311   | 1311    | 1311  |        |   |
| zle                                     |      | ring  | eld              |        |        | Ð      |         | Ð     |        |   |
| Noz                                     |      | Butte | A11-W            | All    | All    | Inlet  | Outle   | Inlet | Outle  |   |
|                                         |      |       |                  |        |        |        |         |       |        |   |
|                                         |      |       |                  |        |        | 5      |         | -     |        |   |
|                                         | T    | hed   | Ħ                | fule   | Ħ      | al al  | T       | ini   |        | T |
|                                         |      | attac | 1                | h sta  |        | h sta  |         | n 5ta | -      |   |
|                                         | +    | 541   | $\left  \right $ | wit .  | HMA    | 14     | H.M.    | w) [] | HMA    | + |
| Se                                      |      | forg  | THW              | Lered  | Fina   | tered  | final   | tered | fina!  |   |
| End                                     |      | steel | inal             | s but  | r to   | s but  | 1 20    | s but | r 19   |   |
| ate                                     |      | less  | to               | end a  | prio   | end    | prio    | end   | priq   | T |
|                                         | 1    | Stain | prior            | N02.21 | steel  | Nozz 1 | steel   | N0221 | steel  | - |
|                                         |      | 1     |                  |        | 01     | -      | es)     | -     | es )   | + |
| Vendo<br>and<br>Contra                  |      | C.E.  | 6866             | 121    | 611-01 | BSW    | (11022) | 6 5 M | (Noza) | - |
| tut                                     |      | 10    |                  | 3      |        | A      |         | a     |        | T |
| 1. *                                    |      | 0     |                  | 17     |        | A      |         | ×     | 1      |   |

TABLE 2-1 (cont'd)

| Heat<br>Treated<br>inconel<br>Wetal         | 9.6 H | +                            | +                   | +       | +-+                           | 1                   | -F"+                            | -                                 |                                 | -                                 | + + + + + + + + + + + + + + + + + + + + |                     |                                                 |
|---------------------------------------------|-------|------------------------------|---------------------|---------|-------------------------------|---------------------|---------------------------------|-----------------------------------|---------------------------------|-----------------------------------|-----------------------------------------|---------------------|-------------------------------------------------|
| Exposed<br>Sensitized<br>5.5. Weld<br>Metal | a,c   |                              | + ++                | +       |                               | +                   |                                 | +                                 |                                 | +                                 |                                         |                     |                                                 |
| Weld<br>Process                             |       |                              |                     | -       |                               | -                   |                                 |                                   |                                 |                                   |                                         |                     |                                                 |
| Overlay<br>Weid<br>Metal                    | a,c   |                              | +                   | +       |                               | =                   | ++                              | +                                 |                                 | +                                 |                                         | ++-                 |                                                 |
| Weld<br>Metal                               | bre   |                              | -                   | -       |                               |                     |                                 | _                                 |                                 | _                                 |                                         |                     |                                                 |
| Weld                                        | a c   | Ħ                            |                     | Ŧ       | 1                             | =                   | + 1                             | +                                 | 1-1                             |                                   |                                         | -+.+-               | <u>₽</u> ₽₽₽₽₽₽₽₽                               |
| weld<br>Proc. No                            |       | WR-34                        | WR-38               |         | E055AA-                       | B&M- *              | MA-3.43E(4)                     | MA-8.43C(7)                       | MA-3.43E(4)                     | MA-8.43C(7)                       | RDM 36.09                               | RDM 36.09           | WA-711<br>66-412-<br>0                          |
| Weld No.                                    |       | WR-34                        | WR-38               |         |                               |                     | 1-863                           | 3~853                             | 4-376                           | 2-376                             | let                                     | Outlet              | 8 1-412<br>A-F                                  |
| Dwg. No.                                    |       | Inlet<br>117820E             | Outlet              | 117825E |                               | -233-68             | E-201-863                       |                                   | £-231-376                       |                                   | 3066351266                              | 3066321267          | E232-41                                         |
| Safe End Design                             |       | ends buttered with stainless | pridr to final PwHT |         | , and buttered with stainless | prigr to final PWHT | is buttered prior to final PMHT | forging attached after final PWHT | es buttered prior to final PWHT | forging attached after final PWHT | e ends buttered with stainless          | pridr to final PuHT | nless steel forging<br>ched prior to final PWHT |
| . 2                                         |       | Nozzle                       | 5 steel             |         | c l Novela                    | s) steel            | Nozzle                          | 5.5.                              | Nozzle                          | 5.5.1                             | Nozzle                                  | steel               | Stair<br>attao                                  |
| Vendor<br>and<br>Contract                   | -     | 868                          | 610-011             |         | -11 IC                        | (Nozzle             | C.E.                            | 2461                              | C.E.                            | 263                               | RDM                                     | 30663               | D_C.E.                                          |
| Plan                                        |       | 438                          |                     |         |                               |                     | SCE                             | 9                                 | CYN                             |                                   | 455                                     |                     | OPPI                                            |

TABLE 2-2 SUMMARY OF PIPE WELD DETAILS FOR AEP AND AMP

| TYPE OF<br>WELD                  | Weld Process** | Electrode or<br>Filler Metal<br>Specification | Electrode Size | Electrode Type | Current (amps)<br>Polarity | Voltage (volts) | Number of Heats | Inspection<br>Requirements | Manufacturer<br>or Fubricator<br>of Welds              | Identification<br>of Key Documents |
|----------------------------------|----------------|-----------------------------------------------|----------------|----------------|----------------------------|-----------------|-----------------|----------------------------|--------------------------------------------------------|------------------------------------|
| Field Welds<br>layers:           | a,c            | _ a.c                                         | a,c            | a,c            |                            |                 |                 |                            |                                                        |                                    |
| root pass                        |                |                                               |                |                | 75/125<br>SP               | 17/22           | -               | -                          | Unit 1: Livesy<br>Co.<br>Unit 2: Power<br>Systems Inc. | Pro 8-2<br>rev. IV                 |
| 2 & 3 root<br>pass<br>(1f req'd) |                |                                               |                |                | 45/90<br>SP                | 14/20           | -               | -                          |                                                        |                                    |
| cover or<br>cap pass*            |                |                                               |                |                | 75/125<br>SP               | 17/22           | -               | -                          |                                                        |                                    |
| lst layer<br>after root          |                |                                               |                |                | 65/115<br>RP               | 17/22           | -               | -                          |                                                        |                                    |
| 2nd                              |                |                                               |                |                | 65/115                     | 17/22           | -               | -                          | 1                                                      | Ţ                                  |

\*Livesy Co. Did not complete cover pass by GTAW. \*\*Argon shield and internal purge.

WESTINGHOUSE PROPRIETARY CLASS 2

TABLE 2-2 SUMMARY OF PIPE WELD DETAILS FOR AEP AND AMP (cont'd)

| TYPE OF<br>WELD                                         | Weld Process | Electrode or<br>Filler Metal<br>Specification | Electrode Size | Electrode Type | Current (amps) •<br>Polarity        | Voltage (volts)         | Number of Heats | Inspection<br>Requirements | Manufacturer<br>or Fabricator<br>of Welds              | Identification<br>of Key Documents |
|---------------------------------------------------------|--------------|-----------------------------------------------|----------------|----------------|-------------------------------------|-------------------------|-----------------|----------------------------|--------------------------------------------------------|------------------------------------|
| <u>Field Welds</u><br>layers:<br>As many as<br>required | a,c          | a,c                                           | a              |                | 7/125 RP<br>110/150RP               | 19/25<br>20/28          | % 8<br>Total    | RT of<br>final<br>weld     | Unit 1: Livesy<br>Co.<br>Unit 2: Power<br>Systems Inc. | Pro 8-2<br>rev. IV                 |
| Shop Welds<br>layers:<br>root pass<br>2nd<br>3rd        | *            |                                               |                |                | 75/100 SP<br>80/120 RP<br>200/3008P | 13/15<br>14/16<br>28/30 | ~8<br>~8<br>~8  | ***                        | Southwest<br>Fabricating                               | р-8-НА-1                           |
| As many as<br>required                                  |              |                                               |                |                | 275/350RP                           | 29/32                   | ~8              | ***                        | ↓ ↓                                                    |                                    |

\*Argon Shield

\*\*Argon Shield and Internal Purge

\*\* Radiographic, dipenetrant and ultrasonic procedures as applicable at various locations; inspection records for Unit 1 on file.

20

WESTIME CLASS 2

------

TABLE 2-3 SUMMARY OF PIPE WELD DETAILS FOR CPL

WESTING TOUS PROPRIETARY COM

| TYPE OF<br>WELD               | Weld Process* | Electrode or<br>Filler Metal<br>Specification | Electrode Size |     | Electrode Type | Current (amps)<br>Polarity | Voltage (volts) | Number of Heats | Inspection<br>Requirements | Nanufacturer<br>or Fabricator<br>of Welds | Identification<br>of Key Documents |
|-------------------------------|---------------|-----------------------------------------------|----------------|-----|----------------|----------------------------|-----------------|-----------------|----------------------------|-------------------------------------------|------------------------------------|
| Field Welds                   |               |                                               |                |     |                |                            |                 |                 |                            |                                           |                                    |
| layers:<br>lst                | a,c           | - a,c                                         | Γ              | a,c | r 1            | 95/105 SP                  | 9/12            | ***             | **                         | Ebasco<br>Combustion Eng.                 | WP-6                               |
| 2nd                           |               |                                               |                |     | 1              | 70/80 RP                   | 20/23           | ***             | **                         |                                           |                                    |
| or                            |               |                                               |                |     |                |                            |                 |                 |                            |                                           |                                    |
| 2nd (alt.)                    |               |                                               |                | 1   |                | 95/105 SP                  | 9/12            | ***             | **                         |                                           |                                    |
| As many as required           |               |                                               |                |     |                | 100/150RP                  | 21/24           | ***             | **                         |                                           |                                    |
| Final (alt.)<br>(may be used) |               |                                               |                | 1   |                | 100/130SP                  | 9/12            | ***             | **                         | $\downarrow$                              | ¥                                  |

\*Argon shield and internal purge. \*\*PT of weld root, RT of 1/3 wall, RT & PT after final pass. \*\*\*Not Available.

21

Braindiver Photaillinit where

TABLE 2.4 Summary of Pipe Weld Details for CWE and COM

| TYPE OF<br>WELD                                 | Weld Process *                  | Electrode or<br>Filler Metal<br>Specification | Electrode Size    | Electrode Type     | Current (amps)<br>Polarity   | Voltage (volts) | Number of Heats | Inspection<br>Requirements | Manufacturer<br>or Fabricator<br>of Welds | Identification<br>of Key Documen |
|-------------------------------------------------|---------------------------------|-----------------------------------------------|-------------------|--------------------|------------------------------|-----------------|-----------------|----------------------------|-------------------------------------------|----------------------------------|
| Field Welds<br>beads**:<br>l                    | ,<br>a,                         | ea,c                                          | г <sup>а</sup> ,  | a,                 | 90/120SP                     | 16/24           | ***             | PT                         | Pope-Morrison                             | 73<br>rev. 2                     |
| 2                                               |                                 |                                               |                   |                    | 90/120SP                     | 16/24           | ***             | -                          |                                           |                                  |
| 3-6                                             |                                 |                                               |                   |                    | 90/120RP                     | 16/24           | ***             | -                          |                                           |                                  |
| As many as<br>required                          |                                 |                                               | L                 |                    | 100/160RP                    | 22/25           | ***             | PT & 100% RT               |                                           |                                  |
| Shop Welds                                      | SI                              | HOP WELDS                                     | BY SOUTH          | NEST FABR          | ICATING & WE<br>CATS AND THE | LDING CO        | D., SHOI        | WELDS AR                   | E THE SAME AS AE<br>ARE UNAVAILABLE       | P<br>•                           |
| *Argon shield<br>**Number of b<br>***Two bare f | and int<br>eads var<br>iller wi | ernal pur<br>ies with<br>re and th            | ge.<br>weld posit | tion.<br>mable ins | ert heats pe                 | r react         | or.             |                            |                                           |                                  |

22

-----

1 min

TABLE 2-5 SUMMARY OF PIPE WELD DETAILS FOR CYW

| TYPE OF<br>WELD                     | Weld Process*  | Electrode or<br>Filler Metal<br>Specification | Electrode Size | Electrode Type | Current (amps)<br>Polarity | Voltage (volts) | Number of Heats | Inspection<br>Requirements | Manufacturer<br>or Fabricator<br>of Welds | Identification<br>of Key Documents |
|-------------------------------------|----------------|-----------------------------------------------|----------------|----------------|----------------------------|-----------------|-----------------|----------------------------|-------------------------------------------|------------------------------------|
| Field Welds<br>layers:<br>root pass | a,c            | a,c                                           | - a.c          | a,c            | 90/125 SP                  | 14/16           | **              | PT                         | Stone & Webster                           | W-10899-2                          |
| As many as<br>required              |                |                                               |                |                | 80/110/<br>135 RP          | 18/22/<br>24    | **              | PT & RT                    |                                           |                                    |
| Shop Welds                          | SAME           | AS FIELD                                      | WELDS          |                |                            |                 |                 |                            |                                           |                                    |
| *Argon shield<br>**Not availabl     | and inter<br>e | al purge                                      |                |                |                            |                 |                 |                            |                                           |                                    |

23

WESTINGHO USE PROPRIETARY CLASS 2

and the state of the second states

. \*

TABLE 2-6 SUMMARY OF PIPE WELD DETAILS FOR FLA AND FPL



24

Restance of the manual Co

TABLE 2-6 (cont'd)

1.1332

Hennis we are in the to and

| Identification<br>of Key Document                   |             | SW-043<br>W-020 | Rev. 2            |          |               |        |                                               |
|-----------------------------------------------------|-------------|-----------------|-------------------|----------|---------------|--------|-----------------------------------------------|
| no nerutacturem<br>Fo notestrutef<br>sbfew<br>sbfew | NAVCO       |                 |                   |          |               |        |                                               |
| īnspection<br>stnemeriupeЯ                          |             | PT              | 1                 | PT after | PT, RT        |        |                                               |
| Number of Heats                                     |             | ***             | ***               | ***      | :             |        |                                               |
| (sifov) seeifov                                     |             | *               | *                 | *        | 27-1/2        | 29-1/2 | 4"                                            |
| (sqms) tnerru)<br>Vjirsfoq                          |             | •               | ٠                 | •        | 400 RP        | 500 RP | int is 3/                                     |
| Electrode Type                                      | a lo        |                 |                   |          |               |        | f weld jo                                     |
| Siectrode Size                                      | arc         |                 |                   |          |               | - 1    | . 2<br>e width o                              |
| Electrode or<br>Filler Metal<br>Specification       | a,c         |                 |                   |          |               |        | W-020 Rev<br>until th<br>nown                 |
| Weld Process                                        | arc         |                 |                   |          |               |        | fication<br>continued<br>Heats Unk            |
| Type of<br>Weld                                     | Shop Welds: | Root Pass       | 2nd & erd<br>Pass | :        | To completion |        | * NAVCO Speci<br>**Passes are<br>***Number of |

WESTINGHOUSE FOOPPICTARY CLASS 2

TABLE 2-7 SUMMARY OF PIPE WELD DETAILS FOR RGE

| TYPE OF                                                                | Weld Process* | Electrode or<br>Filler Metal<br>Specification | Electrode Size |      | Electrode Type | Current (amps)<br>Polarity                                          | Voltage (volts)                          | Number of Heats | Inspection<br>Requirements                   | Manufacturer<br>or Fabricator<br>of Welds | dentification<br>of Key Documents |
|------------------------------------------------------------------------|---------------|-----------------------------------------------|----------------|------|----------------|---------------------------------------------------------------------|------------------------------------------|-----------------|----------------------------------------------|-------------------------------------------|-----------------------------------|
| <u>Field Welds</u><br>layers:<br>root<br>2nd<br>As many as<br>required | _ a_d         | a,c                                           |                | a ,c |                | 70/150 6P<br>70/100 RP<br>70/100 RP<br>70/100 RP<br>0r<br>10/130 RP | 16/20<br>23/25<br>23/25<br>cr<br>24/26** | ***<br>***      | PT<br>-<br>PT & RT<br>after<br>final<br>pass | Bechtel Corp.                             | P8-AT-g                           |
| op Welds<br>rgon shield an<br>Different amps<br>Not Available          | SHOP WEL      | DS BY NAV                                     | upon e         | SEE  | ABLE 2-6.      |                                                                     |                                          |                 |                                              |                                           |                                   |

26

WESTINGFOUSE PROPRIETARY CLASS 2

TABLE 2-8 SUMMARY OF PIPE WELD DETAILS FOR SCE



27

WESTINGHOUSE PROTPHETARY CLASS 2

| (p    |  |
|-------|--|
| ont'  |  |
| 8 (c  |  |
| 2-2   |  |
| TABLE |  |

| Documents<br>of Key<br>sinents                     | WE-AH6-<br>12                      |                     |              |
|----------------------------------------------------|------------------------------------|---------------------|--------------|
| verver or<br>Fabricator of<br>Veicator of<br>Veids | DRAVO Corp.                        |                     |              |
| Inspection<br>Sequirements                         | ΡŢ                                 | RT &<br>PT<br>Final |              |
| Number of Heats                                    | *                                  | *                   |              |
| (sifov) egetfov                                    | 23                                 | 30                  | -            |
| Current (amps)<br>Polarity                         | 60/80 RP                           | 400 RP              |              |
| Electrode Type                                     | e<br>I                             |                     |              |
| esic ebortoe[3                                     | 일<br>일<br>[]                       |                     |              |
| Electrode or<br>Filler Metal<br>Specification      |                                    |                     |              |
| Weld Process                                       | of e                               | 1                   | e            |
| bf9W io 9q⊻T                                       | Shop Welds:<br>1st & 2nd<br>Passes | To completion       | *Not Availab |

WESTINGHOUSE PROPRIETARY CLASS 2

| VIR     |
|---------|
| AND     |
| VPA     |
| FOR     |
| DETAILS |
| MELD    |
| PIPE    |
| OF      |
| SUMMARY |
| 2-9     |
| TABLE   |

| Identification<br>of Key Documents            |                        | W-100<br>rev. 1    |                        | ->        |   |                 |
|-----------------------------------------------|------------------------|--------------------|------------------------|-----------|---|-----------------|
| Manufacturer<br>or Fabricator<br>of Welds     |                        | Stone & Webster    |                        | ->        |   |                 |
| Inspection<br>Requision                       |                        | •                  | ٠                      |           |   |                 |
| Number of Heats                               |                        | *                  | :                      |           |   |                 |
| (stfov) sectov                                |                        | 12 ± 2             | 22 ± 2                 |           |   |                 |
| Current (amps)<br>Polarity                    |                        | 60/100 SP          | 50/80 RP               | 70/100 RP |   |                 |
| Electrode Type                                | 9°                     |                    |                        |           |   |                 |
| esic ebontce[]                                | a, c                   |                    |                        |           | X |                 |
| Electrode or<br>Filler Metal<br>Specification | d, s                   |                    |                        |           |   | final weld      |
| Weld Process                                  | ی<br>و<br>ل            |                    |                        |           |   | bot and         |
| MELD<br>TYPE OF                               | Field Welds<br>layers: | root<br>(2 passes) | As many as<br>required |           |   | *RT and PT of n |

Bhullesdelewen flive ........

TABLE 2-9 (cont'd)

| Type of Weld    | Weld Process | Electrode or<br>Filler Metal<br>Specification | Electrode Size | Electrode Type | Current (amps)<br>Polarity | Voltage (volts) | Number of Heats | Inspection<br>Requirements | Manufacturer<br>pr Fabricator<br>of Welds | Identification<br>of Key Documents |
|-----------------|--------------|-----------------------------------------------|----------------|----------------|----------------------------|-----------------|-----------------|----------------------------|-------------------------------------------|------------------------------------|
| Shop Weld:      | - a.c        | - a.c                                         | - <u>a</u> ,   | a,c            |                            |                 |                 |                            |                                           |                                    |
| Pass No.<br>1-3 |              |                                               |                |                | 100-170<br>SP              | 10-14           | **              | Not<br>Given               | Southwest<br>Fab.                         | P-8-HM-3                           |
|                 |              |                                               |                |                | 140-210<br>SP              | 16-19           | **              |                            |                                           |                                    |
| 4-5             |              |                                               |                |                | 140-210<br>SP              | 16-19           | **              |                            |                                           |                                    |
| Untii Comple-   |              |                                               |                |                | 90-160 RP                  | 22-25           | **              |                            |                                           | 168 35                             |
| tion            |              |                                               |                |                | 140-210                    | 24-28           | **              |                            | 12.00                                     |                                    |
|                 |              |                                               |                |                | RP<br>70-110 RP            | 22-25           | **              |                            |                                           |                                    |

30

WEST NOHOUSE PROPERTIES 2
# TABLE 2-10 SUMMARY OF PIPE WELD DETAILS FOR WEP AND WIS

| TYPE OF<br>WELD                                   | Weld Process*              | Electrode or<br>Filler Metal<br>Specification | Electrode Size   | Electrode Type | Current (amps)<br>Polarity | Voltage (volts) | Number of Heats | Inspection<br>Requirements | Manufacturer<br>or Fabricator<br>of Welds | Identification<br>of Key Documents |
|---------------------------------------------------|----------------------------|-----------------------------------------------|------------------|----------------|----------------------------|-----------------|-----------------|----------------------------|-------------------------------------------|------------------------------------|
| Field Welds                                       | a,c                        | - a,c                                         | <u>ه</u> و       | a,c            |                            |                 |                 |                            |                                           |                                    |
| root &                                            |                            |                                               |                  |                | 60/110 SP                  | 10/15           | ***             | **                         | Bechtel Corp                              | P8-AT-Ag                           |
| 2nd pass                                          |                            |                                               |                  |                | 70/120 SP                  | 10/15           |                 |                            |                                           | rev. 11                            |
| lst after<br>GTAW                                 |                            |                                               |                  |                | 60/100 RP                  | 22/25           | ***             | **                         |                                           |                                    |
| 2nd & 3rd                                         |                            | 1 1                                           |                  |                | 80/130 RP                  | 23/26           | ***             | **                         |                                           |                                    |
| As many as<br>required                            |                            | LJ                                            |                  |                | 80/130 RP<br>100/170 RP    | 23/26<br>24/27  | ***             | **                         | V                                         | •                                  |
| Shop Welds                                        | SH                         | DP WELDS                                      | BY NAVCO,        | SEE TABL       | E 2-6.                     |                 |                 |                            |                                           |                                    |
| *Argon shield<br>**100% RT, and<br>***Not Availab | and inte<br>PT of ro<br>le | rnal purg<br>bot and f                        | e.<br>Inal passo | 25.            |                            |                 |                 |                            |                                           |                                    |

3]

WLSHE'S ALL COMPLETING CLASS 2

.

# TABLE 2-11 SUMMARY OF PIPE WELD DETAILS FOR SSP

| TYPE OF<br>WELD                                              | Weld Process                           | Electrode or<br>Filler Metal<br>Specification | Electrode Size               | Electrode Type         | Current (amps)<br>Polarity | Voltage (volts)   | Number of Heats   | Inspection<br>Requirements | Manufacturer<br>or Fabricator<br>of Welds | Identification<br>of Key Documents |
|--------------------------------------------------------------|----------------------------------------|-----------------------------------------------|------------------------------|------------------------|----------------------------|-------------------|-------------------|----------------------------|-------------------------------------------|------------------------------------|
| <u>Field Welds</u><br>pass:                                  | - ª.c                                  | _ a.c                                         | Г <sup>а</sup> с             | a,ç                    |                            |                   |                   |                            |                                           |                                    |
| 1                                                            |                                        |                                               |                              |                        | 60/100 SP                  | 18/24             | ***               | **                         | Mannesmann<br>Rohrbau (Garmanan)          | 34                                 |
| 2 & 3                                                        |                                        |                                               |                              |                        | 60/100 SP                  | 18/24             | ***               | **                         |                                           |                                    |
| 4                                                            |                                        |                                               |                              |                        | 70/100 RP                  | 24/30             | ***               | **                         |                                           |                                    |
| 5-8                                                          |                                        |                                               |                              |                        | 80/130 RP                  | 26/32             | ***               | **                         |                                           |                                    |
| As many as required                                          |                                        |                                               |                              |                        | 100/150RP                  | 28/32             | ***               | **                         | J .                                       | J                                  |
| Shop Welds                                                   | SHO                                    | P WELDS B                                     | CREUSOT-                     | _OIRE, WE              | LD PROCEDU                 | E NOT O           | HAND              |                            |                                           |                                    |
| *Argon shield<br>**100% PT on r<br>on inte<br>***Not Availab | and inte<br>bot pass<br>mmediate<br>le | rnal purg<br>, after f<br>passes e            | e<br>irst 3 GTA<br>very 25mm | W passes,<br>and on fi | and on int<br>nal surface  | ermedia<br>, 100% | te pass<br>T on f | each 25m<br>nal sur        | nn of SMAW welding<br>face.               | . 100% RT                          |

32

WESTINGHOUSE PROTATIONY CLASS 2

# TABLE 2-12 SUMMARY OF PIPE WELD DETAILS FOR YR



WESTINGIOUSE PROFILETIONY CLASS 2

# TABLE 2-13 SUMMARY OF PIPE WELD DETAILS FOR OPPD

| TYPE OF<br>WELD                                 | Weld Process * | Electrode or<br>Filler Metal<br>Specification | Electrode Size |            | Electrode Type | Current (amps)<br>Polaríty          | Voltage (volts)         | Number of Heats | Inspection<br>Requirements | Manufacturer<br>or Fabricator<br>of Welds | Identification<br>of Key Documents |
|-------------------------------------------------|----------------|-----------------------------------------------|----------------|------------|----------------|-------------------------------------|-------------------------|-----------------|----------------------------|-------------------------------------------|------------------------------------|
| Field Welds<br>layers:<br>root &                | a,c            | a,c                                           |                | a <u>c</u> | - ª,c          | 60/100SP<br>70/120SP                | 10/15                   | 2               | **                         | Peter Kiewit<br>Son's Co.                 | 16A                                |
| lst SMAW<br>2nd & 3rd<br>As many as<br>required |                |                                               |                |            |                | 60/100 RP<br>80/100 RP<br>80/130 RP | 22/25<br>23/26<br>23/26 | 1               | **                         |                                           |                                    |
| *Argon shield a                                 | h interr       |                                               |                |            |                |                                     |                         |                 |                            |                                           |                                    |

34

WESTINGHOUSE PROPRIETARY CLASS 2

| Identification<br>of Key Documents            | SAA-23<br>rev. 0                  | ->              |                                                |
|-----------------------------------------------|-----------------------------------|-----------------|------------------------------------------------|
| tlanufacturer<br>or Fabricator<br>of Welds    | Combustion<br>Engineering<br>Inc. |                 |                                                |
| Inspection<br>sinemeriupes                    | ŧ                                 | ŧ               |                                                |
| Number of Heats                               | :                                 | :               |                                                |
| (sjlov) sęşjlov                               | 30 + 10%                          | 25 ± 10%        |                                                |
| Current (amps)<br>Polarity                    | 425 <u>+</u> 10%                  | 180 ± 10%<br>RP |                                                |
| Electrode Type                                | e                                 |                 |                                                |
| Electrode Size                                | a.                                |                 |                                                |
| Electrode or<br>Filler Metal<br>Specification | œ                                 |                 | ler metal                                      |
| Meld Process                                  | e <sup>1</sup>                    | 1               | eld fil                                        |
| MERD<br>LABE OF                               | Shop Welds<br>groove              | backgroove      | *Argon shield<br>**34 heats of v<br>***RT & PT |

TABLE 2-13 SUMMARY OF PIPE DETAILS FOR OPPD (cont'd)

36

WESTINGHOUSE PROPRIETARY CLASS 2

#### 3. TEST PROGRAM

Welding process, filler metal specification and heat treatment condition are the three major factors that determine the tensile and fracture toughness properties of welds. Examination of the Tables 2-1 through 2-13 shows that four welding processes, namely, Gas Tungsten Arc Weld (GTAW), Gas Metal Arc Weld (GMAW), Shielded Metal Arc Weld (SMAW) and Submerged Arc Weld (SAW), were used in the fabrication of primary coolant pipes. The welding processes GTAW and GMAW were used either in the deposition of overlay weld metal or in the root pass welding. In either case, the volume of metal deposited by these precesses are small and are less than about ten percent of the total volume of metal contained in any given weld joint. In other words, a large volume of the metal in any given joint was deposited by either the SMAW or SAW processes. For this reason, the SMAW and SAW processes were chosen for test. This choice was agreed to with the US NRC staff prior to the preparation of weld samples.

The weld metals used in the various welds are Inconel-182, SS-308, SS-308L, SS-309, SS-309L, SS-136 and SS-316L. Of these SS-308, SS-309, SS-316 and Inconel were chosen for test. The only significant difference between SS-308, SS-309 and SS-316 and SS-308L, SS-309L and SS-316L is in the carbon content. The carbon content of the former materials may be up to 0.08 percent by weight whereas the carbon content of the latter materials is specified to be below 0.03 percent. At the outset it was assumed that the variations in the carbon content would not significantly affect the properties that were sought in this test program. It has subsequently been shown, by an analysts of the carbon content, that this assumption was true. The two heat treatment conditions investigated are as welded and post weld heat treated (PWHT) conditions. Based on a combination of these parameters and prior discussion with the U.S. NRC, six weld samples were chosen for test. Table 3-1 shows the six weld samples, identified by SP-1 through SP-6, and the assoclated welding pricess, filler metal and heat treatment condition. Two tensile and three compact tension specimens were chosen for each weld sample.

The base metal plates for these weld samples was chosen to conform to ASTM-A240-Tp-316. The tensile properties of this material are comparable to those of reactor coolant system pipe base metal. The plate thickness was chosen to be 2r1/2 inches which is equal to the pipe wall thickness. In order to represent the long circumferential welds in the plants the length of the weld samples was chosen to be 48 in. long.

| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| proved in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Second .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 10.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Sec. 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| to and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| the state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Lake?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| parent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| and the second s |  |
| CY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| - and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1.1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| - Labor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Same .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Sig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| SiA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Sigl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| SiA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| N'S O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| D S.M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| D SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| LD S.M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| ILD S.M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| ELD SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| ELD SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| MELD SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| WELD SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| WELD SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| MELD S.M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| MELD SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| MELD SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| MELD SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| . WELD SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| WELD SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 1. WELD SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| T. WELD SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| -1. WELD SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| H-1. WELD SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 3-1. WELD SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| E 3-1. WELD SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| E 3-1. WELD SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| LE 3-1. WELD SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| SIE 3-1. WELD SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| BLE 3-1. WELD SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| BLE 3-1. WELD SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| ABLE 3-1. WELD SAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| ABLE 3-1. WELD SAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| TABLE 3-1. WELD SAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |

a,c

| 5 | Process | Metal  | Condition | Specimens | specimens |
|---|---------|--------|-----------|-----------|-----------|
|   | 7 P.C   | ,<br>T |           | 8         | 3         |
|   |         |        |           | 2         | 3         |
|   |         |        |           | 2         | 3         |
|   |         |        |           | 2         | e         |
|   |         |        |           | 2         | m         |
|   |         |        |           | 2         | e         |

WESTINGHOUSE PE

#### 4. FABRICATION OF FULL PENETRATION WELD SAMPLES

MESTING TOOL TING TO AY CLASS 2

Figure 4-1 illustrates schematically the various parts of the weld sample and the orientation of the tensile and compact tension specimens. The facrication of the weld samples began with the preparation of a detailed welding procedure for each of the samples. Two base metal plates, 18 in. x 48 in. x 2-1/2 in., were cut and a 22-1/2 degree bevel was machined on one end. The plates were set-up such that the two 22-1/2 degree faces faced each other with a separation of 1/2 in. The weld metal was deposited using a backing plate. The welds were radiographically examined. Where applicable, the radiography was carried out after heat treatment.





a,c

#### 5. TEST RESULTS

Three 2 in. thick compact tension (CT) specimens and two standard ASTM 505 tensile specimens were machined from each weld sample. The orientation of specimens is shown in Figure 4-1. All of the specimens were tested at 600°F under static loading conditions following the procedure described in [1]. A chemical analysis of each of the weld samples was performed to determine the carbon content.

# TABLE 5-1 TENSILE PROPERTIES OF WELD SAMP!ES AT 600°F

| Weld<br>Sample<br>Number<br>* | Elastic<br>Modulus<br>KSI | 0.2%<br>Yield<br>Strength<br>KSI | Ultimate<br>Strength<br>KSI | %<br>Elongation | %<br>Reduction<br>in area | % Weight<br>Carbon<br>Content |
|-------------------------------|---------------------------|----------------------------------|-----------------------------|-----------------|---------------------------|-------------------------------|
| SP-1                          | <u>a</u> ,c               | □ a,c                            | a,c                         | a,c             | a,c                       | a,c                           |
| SP-2                          |                           |                                  |                             |                 |                           |                               |
| SP-3                          |                           |                                  |                             |                 |                           |                               |
| SP-4                          |                           |                                  |                             |                 |                           |                               |
| SP-5                          |                           |                                  |                             |                 |                           |                               |
| SP-6                          |                           |                                  |                             |                 |                           |                               |

\* See Table 3-1 for discription of samples.

| Specimen<br>Number | J<br>in-1b/in <sup>2</sup> | ∆a<br>in           |
|--------------------|----------------------------|--------------------|
| SP1-3              | [ ] <sup>a,c</sup>         | [ ] <sup>a,c</sup> |
| SP1-1              |                            |                    |
| SP1-2              |                            |                    |
|                    |                            |                    |
| SP2-3              |                            |                    |
| SP2-1              |                            |                    |
| SP2-2              |                            |                    |
|                    |                            |                    |
| SP3-1              |                            |                    |
| SP3-2              |                            |                    |
| SP3-3              |                            |                    |
|                    |                            |                    |
| SP4-3              |                            |                    |
| SP4-2              |                            |                    |
| SP4-1              |                            |                    |
|                    |                            |                    |
| SP5-2              |                            |                    |
| SP5-1              |                            |                    |
| SP5-3              |                            |                    |
| SP6-3              |                            |                    |
| SP6-1              |                            |                    |
| SP6-2              |                            |                    |
|                    | <u> </u>                   |                    |

# TABLE 5-2 2T Compact Tension Specimen Test Results at 600°F



17,455-2



#### 7. SUMMARY AND CONCLUSION

The material, design and fabrication details of all the full circumferential welds in the reactor coolant piping system of the sponsoring utilities have been reviewed and summarized. Based on a careful examination of all the factors that would influence the tensile and fracture toughness characteristics of the welds in consideration, six different weld samples were tested. A detailed specification was developed for welding each sample. Out of each sample, two tensile and three 2 inch thick compact tension specimens have been machined and tested following the standard or the state-of-the-art procedure under static loading condition at 600°F temperature.

The second real second

a,c

[1] Palusamy, S.S. and Hartman, A.J., Mechanistic Fracture Evaluation of Reactor Coolant Pipe Containing a Postulated Circumferential Through-Wall Crack, WCAP-9558-Rev. 2, Proprietary Class 2, January 1981.

## APPENDIX A

### FRACTURE TOUGHNESS OF STAINLESS STEEL WELDMENTS AT 600°F

J. D. Landes Structural Behavior of Materials Deparment

A. J. Bush and R. B. Stouffer Materials Testing and Evaluation Department

\_ a,c

September 9, 1980

Research Report 80-5D3-SSJRC-R1 Proprietary Class: 2

### FRACTURE TOUGHNESS OF STAINLESS STEEL WELDMENTS AT 600°F

J. D. Landes Structural Behavior of Materials Department

A. J. Bush and R. B. Stouffer Materials Testing and Evaluation Department

#### ABSTRACT

Fracture toughness tests were conducted on five stainless steel weldments and one Incomel weldment at 600°F using the J-R curve format to determine whether the weld fusion zone has equivalent toughness to

#### INTRODUCTION

In a previous study stainless steel piping material was tested at 600°F to determine fracture toughness in a J-R curve format. Tests were conducted both under conventional and dynamic loading rates. The material proved to be of sufficient toughness with dynamically loaded tests exhibiting somewhat higher toughness than those loaded at a conventional rate so conventional rate testing was considered to provide a conservative lower bound. The piping material was both cast and wrought fabrication and constituted a base metal condition. A question was raised as to whether a weld fusion zone would have a toughness level comparable to the base metal. Therefore a testing program was initiated to measure the toughness of weld material.

Six different weldments were prepared. Fracture toughness tests were conducted on three specimens from each heat to compare points on the J-R curve with tests from the base metal. All tests were conducted at a conventional loading rate because the resulting data is considered to be conservative. In this report the results from these tests on weld metal are presented and compared with previous results from base metal.

#### MATERIAL AND PROCEDURE

The material consisted of six different weldments identified by SP-1 through SP-6. Weldments SP-1 through SP-4 and SP-6 were made of stainless steel whereas SP-5 was made of Inconel. Two inch thick compact (2T-CT) specimens were machined and precracked. The tests were conducted at 600°F in a manner similar to the  $J_{Ic}$  test procedure; the loading rate was conventional.<sup>(2)</sup> A detailed description of this procedure wes given in a previous report.<sup>(1)</sup>

Duplicate tensile tests were conducted for each weldment at 600°F using 1/4 inch diameter tensile specimens.

#### RESULTS

The results from the tensile tests are given in Table 1 and Figure 1. The results are fairly uniform with the exception of Inconel weldment SP-5 showing a higher ultimate strength and percent elongation.

The results from the toughness tests are given in Table .' and are plotted in the form of J versus crack extension,  $\Delta a$ , on individual plots for each weldment, Figures 2-7. A best fit straight line for each set of three points was determined by the least squares method and plotted on each figure. These lines are not the same as those used to determine J<sub>IC</sub> by the proposed ASTM procedure because the number of points and  $\Delta a$  values do not conform to this procedure. <sup>(2)</sup> Values of  $\Delta a$ were taken well beyond the limit for J<sub>IC</sub> determination so that a substantial portion of the R curve could be developed.

All of the points for the six weldments are presented on a single plot, Figure 8, where they are compared with the upper and lower bound lines for the base metal specimens tested at a conventional rate. The best fit straight lines are all presented on a single plot, Figure 9, where they are again compared with the conventional rate bounds.

A-4

a.c

Ju

DISCUSSION

a,c

a,c

The objective of this study was to observe the relative position of the points on the R curve rather than to develop complete R

WESTINGING THE CALLSS 2

#### CONCLUSION

11,C -

#### REFERENCES

- J. D. Landes, S. S. Palusamy, A. J. Bush and L. J. Ceschini, "Fracture Toughness of 316 Stainless Steel Piping Material at 600°F," Westinghouse Research Report 79-7D3-PIPRE-R1.
- G. A. Clarke, et al., "A Procedure for the Determination of Ductile Fracture Toughness Values Using J Integral Techniques," <u>Journal of</u> Testing and Evaluation, <u>JTEVA</u>, Vol. 7, No. 1, January 1979, pp. 49-56.

# TABLE 1

# TENSILE RESULTS FOR WELDMENTS (600°F)

| Specimen No. | Yield<br>Strength<br>(ksi) | Ultimate<br>Streagth<br>(ksi) | % Elongation<br>(1 inch) | <u>% RA</u> | Elastic<br>Modulus<br>(ksi)<br>a,c |
|--------------|----------------------------|-------------------------------|--------------------------|-------------|------------------------------------|
| SP1-4        | Г                          |                               |                          |             |                                    |
| SP1-5        | 1.5                        |                               |                          |             |                                    |
| SP2-4        |                            |                               |                          |             |                                    |
| SP2-5        |                            |                               |                          |             |                                    |
| - SP3-4      |                            |                               |                          |             |                                    |
| SP3-5        |                            |                               |                          |             |                                    |
| SP4-4        | 1                          |                               |                          |             |                                    |
| SP4-5        |                            |                               |                          |             |                                    |
| SP5-4        |                            |                               |                          |             |                                    |
| SP5-5        |                            |                               |                          |             | . 36 A.                            |
| SP6-4        | 1000                       |                               |                          |             |                                    |
| SP6-5        |                            |                               |                          |             | _                                  |
|              | Sec. 10                    |                               |                          |             |                                    |

Q = Quarter Break

#### CONCLUSION

u,Cp

#### REFERENCES

- J. D. Landes, S. S. Palusamy, A. J. Bush and L. J. Ceschini, "Fracture Toughness of 316 Stainless Steel Piping Material at 600°F," Westinghouse Research Report 79-7D3-PIPRE-R1.
- G. A. Clarke, et al., "A Procedure for the Determination of Ductile Fracture Toughness Values Using J Integral Techniques," <u>Journal of</u> Testing and Evaluation, <u>JTEVA</u>, Vol. 7, No. 1, January 1979, pp. 49-56.

# TABLE 1

# TENSILE RESULTS FOR WELDMENTS (600°F)

| pecimen No. | Yield<br>Strength<br>(ksi)                                                                                      | Ultimate<br>Strength<br>(ksi) | % Elongation<br>(1 inch) | <u>% RA</u> | Elastic<br>Modulus<br>(ksi)<br>a,c |
|-------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|-------------|------------------------------------|
| SP1-4       | Г                                                                                                               |                               |                          |             | 7                                  |
| SP1-5       |                                                                                                                 |                               |                          |             |                                    |
| SP2-4       |                                                                                                                 |                               |                          |             |                                    |
| SP2-5       |                                                                                                                 |                               |                          |             |                                    |
| - SP3-4     |                                                                                                                 |                               |                          |             |                                    |
| SP3-5       |                                                                                                                 |                               |                          |             |                                    |
| SP4-4       |                                                                                                                 |                               |                          |             |                                    |
| SP4-5       |                                                                                                                 |                               |                          |             |                                    |
| SP5-4       |                                                                                                                 |                               |                          |             |                                    |
| SP5-5       |                                                                                                                 |                               |                          |             |                                    |
| SP6-4       |                                                                                                                 |                               |                          |             |                                    |
| SP6-5       |                                                                                                                 |                               |                          |             | 1                                  |
|             | The second se |                               |                          |             |                                    |

Q = Quarter Break



.

|              | J (11 | -10)   |       |                                                                                                                 |
|--------------|-------|--------|-------|-----------------------------------------------------------------------------------------------------------------|
| Specimen No. | 1     | n.2    | ∆a (1 | <u>n.)</u>                                                                                                      |
| SP1-3        | Г     | a,c    | Г     | P,c                                                                                                             |
| SP1-1        |       |        | 1. 1. |                                                                                                                 |
| SP1-2        |       |        |       |                                                                                                                 |
| SP2-3        |       |        |       |                                                                                                                 |
| SP2-1        |       |        |       |                                                                                                                 |
| SP2-2        |       |        |       |                                                                                                                 |
| SP3-1        |       |        |       |                                                                                                                 |
| SP 3-2       |       |        |       |                                                                                                                 |
| SP3-3        |       |        |       |                                                                                                                 |
| SP4-3        |       |        |       |                                                                                                                 |
| SP4-2        |       |        |       |                                                                                                                 |
| SP4-1        |       |        |       |                                                                                                                 |
| SP5-2        |       |        |       |                                                                                                                 |
| SP5-1        | 1.12  | 감 같이 다 | 1.138 |                                                                                                                 |
| SP5-3        |       |        |       |                                                                                                                 |
|              |       |        |       |                                                                                                                 |
| SP6-3        |       |        |       |                                                                                                                 |
| SP6-1        |       |        |       |                                                                                                                 |
| SP6-2        |       |        |       |                                                                                                                 |
|              |       |        |       | The second se |

Curve 724658-A

•

.



Figure 1. Tensile Properties of the Stainless Steel and Inconel Weldments of 600°F

# J. Landes I.t. - e.s. 10-2-80

# Curve 7 24658





J. Landes I.t. - e.s. 10-2-80

Curve 724659-A



Figure 3. J versus ∆a for the Stainless Steel Weldment SP2 at 600°F

J. Landes 1.t. - e.s. 10-2-80

Curve 7 24657 -1

Curve 724662-A





J. Landes I.t. - e.s. 10-2-80

A-13

Curve 724662-A



Figure 5. J versus ∆a for the Stainless Steel Weldment SP4 at 600°F

J. Landes I.t. - e.s. 10-2-80

Curve 724661-A





.

Curve ? 24656-A

.





J. Landes I.t. - e.s. 10-2-80

Curve 724655-A





J. Landes I.t. - e.s. 10-2-80

à

Curve 724660-A







-

Curve 724653-A


Figure 11. Fracture Surfaces for Two Specimens of Stainless Steel (SP6-2) and Inconei (SP5-3) Weldments Tested at 600°F