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Sll-ln

A number of approaches to the problem of forming
a consensus based on individual assessors' judgments
have been pr.;osed. This paper discusses and provides
exanples of several of these approaches, including the
weighted average approach, the Bayesian arproach and
the performance criterion approach.
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1. Introduction

Suppose that a group of n assessors ewch provides
an assessment of a subjective probability distribution,

denoted by .‘.1. i1e], **, 0 Hinklorn discusses

three approaches to the problem of forming a consensus
assessment f which, in some sense, best represents the
group assessment., These are the weighted average
approach, the controlled feedback approach and the
Rayvesian approach.

In the weighted average approach, the consensus f
is usv .lly exyressed as a linear combination of the
fi"' aithough non-linear combinations are sometimes

used (e.g., median, geometric mean, harmonic mean).
The weights are either equal or proportional to some
ranking of the assessors which reflects their exper-
«ise, e.8., self-ratings. Some studies have shown
that equal weights work about as well as other methods
of assigning weights, The approach can be a one-step
procedure or can be iterative. If iterative, the
weights can be constant or change at each step.

In the contrclled feedback approach, the consen-
sus f is developed by several rounds of feedback and
reassessment, Thée reassessment can be either group
(face-to~face) or individual (Delphi). While this
approach is widely used, the resultant consensus may
be overly influenced by group dynamics. Experimenta-
tion by psychoclogists has shown that when group inter-
acticn involves open discussion, group positions tend
toward uniformity and established norms. This can be
induced by the influence of discussion leaders as well
as the desire to reach agreement, Even with anonymity,
feedback can induce pressure towards a consensus.

In the Bayesian epproach, the fi's are viewed as

sample information which is then combined with the
decision-maker's prior through Bayes' theorem. While
this approach has the virtue of directly involving the
decision-maker, the results may de difficult to inter-
pret. Furthermore, the fi" are often chosen for

mathematical convenience rather than as an uncon-
strained expression of the assessors' judgments.

In [3], Dalkey proves that no group decision rule
exists which is consistent with all of the postulates
of probability theory. For example, the average of a
set of probabilities fulfills the requirement that
rrobabilities of exclusive events add; however, it does
pot fulfill the requirement that the probability of the
conjunction of two independent events is the product.
The converse is trve for the product (or the geometric
mean) as an aggregation rule; it does not sum to one
for exclusive and exhaustive events but it is multi-~
plicative for conjunctions,
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As a solution to this dilemma, Dalkey espouses
what he terms the Emerson Principle*: Performance is
at least as important a criterion for aggregation as
consistency (l4], page 10). The Emerson Principle is
a rationale for the use of performance criteria, i.e.,
probabilistic scoring rules which reward the assessors
dependin 1 on the accuracy of their assessments.

This paper discusses some selected examples of
the consensus approaches introduced above. No attempt
at completeness is made; the purpose is to illustrate
some of the ways in which the consensus problem has
heen approached.

2. Weighted Averages

An Axiomatic Approach

In [1]), Abramson uses an axiomatic ap roa:h to
the problem of combining subjective probarility dis~
tributions into a group consensus. A sma.il number of
plausible properties which a consensus disr w a
should satisfy are specified and it is t! that
there is only one function of the individ i
butions which satisfies these properties.

Assume -~hat each of a group of n assessors pro-
vides a subjective probability distribution on a
common set of m mutually exclus.ve and exhaustive
events, as indicated in the table below.
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Here Py 3 is the probability assigned by assessor
i to event :j and Gj is the consensus probability for
Ej. For the case of equally weighted assessors, it is
assumed that the consensus distribution (1f it exists)
pust satisfy the following three properties:

(1) The consensus probabilities sum te 1.

(2) The consensus probability for any event
depends only on the set of probabilitics

®"a foolish consistency is the hobpollin of 1itt
minds, ..." ~ Ralph Waldo Emerser
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for that event, and not on the probabilities
for the other events oy on which as: essor
assigns which probability.

(3) 1f all assessors agree on the probabjlity of
an event, then the consensus probability is
their common probability.

It is then proven that the only consensus distri-
bution which satisfies properties (1), (2) and (3) is
the average of the assessors’ subjective probability
distributions, i.e.,

¢, =4

P for j=1, ***, m,
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These results are gen=ralized to the case where
the assessors have arbitrary known weights. Let
- weight -7 <ssessor i, where v, 2 0 and
R S A vroperties (1) and (3) remain
unchanged and property (2) is generalized to allow the
consensus prebability for an event to depend on both
the probdabilities and weights for that event. Two
additional properties are assumed:

(4) 1{f two assessors assign the same prubability
to an event, they can be replaced by a
single assesscr with weight equal to the sum
of their weights.

(5! The consensus probability for any event is a
continuous function of the assessors'
weights.

It is then proven that the only consensus distri-
.ution which satisfies properties (1) - (5) is the
weighted average of the assessors' subjective proba-
bility distributions, i.e.,

n
GJ 151 '_1 PU for 3=1, « B,

palkey (l4], p.228) proved essentially the same
result with a very similar apprecach. One difference
between the approaches is that Abramson assumed that
the assessors are assigned weights independently of
their subjective assessments and that the significance
of these weights is expressed by preperty (4), while
in Dalkey's derivation the weights are implied by the
consensus distribution, (The implied weight for each
assessor is the consensus probability of an event to
witich that assessor assigns probability one and to
which all other assessors assign probability zero.)

Iterative Weighting

Constant weights, l)c(.‘vmo:6 considers the follow-
ing problem,

8 = parameter to be estimated (may be a vector)

'1 = subjective probability distribution assigned
by assessor i to parameter 8 (i=1, +++, k)

= weight that assessor { assigns to the
distribution of assessor j, where
3
0808 -k T, Y oy K)
g=1

’13

The r‘ are revised by each assessor using the weights

Pyye Thus,the first revision of F, by assessor 1 is

.
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n” o gsfsy This procsdure 1a then iterated. In

matrix notationm,

e
'(n) - P f(.-l) - Pn ¥, o=2, 35 SN

By definition, a consensus is reached if the re-
vised subjective distributions all approach some limit-
ing distribution P*, A pecessary and sufficient con-
dition for a consensus to be reached is that there
exists a vector m = (vl. ey wk) such that

p™ Lo for 1, ye1, +++, k. Then
i3 b

w, F, and P =17,

A sufficient conditic.i for a consensus to be reached
is that for some n, every element in at least one
column of the matrix P is positive. In other words,
for some iteration, there is at least one assessor
to whor all of the other assessors give positive
weight,

in a validation experiment conducted by Moskowitz

and lajgiu? subjects, participating either as a mem~
ber of a panel discussion or pelphi group, made iter-
ative subjective probability dist-ibution (SPD) assess-
ments using the fractile method on various unknown
quantities. Examples included the percentage of Purdue
students on academic probation and the number of miles
driven per automobil~ accident fatality. The DeGroot
model with constant weights did not appear to predict
or describe the panel discussion or Delphi group con-
sensus process, Opinion weights were not stable and
appeared to vary inversely with the dispersion of a
group member's SPD. These, however tended to stabilize
after several iterations. Models in which the weights
were inversely proporticnal to the variance or the .01
to .99 fractile range of each group member's SPD gave
considerably better predictions than did the DeGroot
'6310

Variable weights. Chatterjee and Seneuz gener-

alized the DeGroot -odel" to the case of variable
weights, Let

(n) = weight assigned by individual i to the
distribution of individual j after n
iterations,

Then a sufficient condition for a consensus to be
reached is that

I max (min pu(:-.)) ==, )
o=l 3 i

Three examples where consensus is reached are as
follows.

(a) There are an infinite number of occasions
when there is at least one assessor to
whose opinion everyone attaches a weight of
at least & > 0 (generalizes constant weight
criterion).



(b) Open-minded assessors. As the iterations
proceed, information is exchanged and the
assessors’ {nitial specialized information
tends to become group knowledge, i.e., the
assessors tend to give equal weight to all
opinions. Then pu(n) - 1/k, Eq.(1) is

satisfixd and consensus will be reached.

(¢) Slow hardening of positions. Suppose that
the information exchange process causes the
assessors to put more weight on their own
opinions and less on those of others, with a
tendency in the limit to put all the weight
on their own cpinions. If the hardening of
positions is sufficiently siow, even this
situation can lead to a consensus. For
example, suppose that

1
Pgg(® =1 -3 .
Pyy(®) = TEETE » 1% -

Then Eq.(1) is satisfied and consensus will
be reached.

3. Qualitative Controlled Feedback

A controlled feedback procedure can be character-
ized as follows:

(1) Each member of a group of respondents inde-
pendently answers a battery of related ques-~
tions. Sometimes, reascns for their answers
are also solicited.

({i) Summary information is presented to each
group member, and step (i) is repeated.

(iii) The questioning and feedback process is re-
peated until it stabilizes (little change
from round to round). The stabilization can
either be in the form of a group consensus
or judgment nuclei, i.e., a8 hung jury.

The commonly used Delphi procedure is a quantita-
tive controlled feedback procedure, whereby the sum-
mary information in s ep (ii) is in the form of group
medians, Quantiles and the like. In [9], Press pre-
sents a qualitative controlled feedback procudure
whereby panelists supply answers and justifying
reasons as in step (i) but only a composite of the
reasons is fed back in step (ii).

If cne question only is asked, Press proposes the
following model:

r
2o Eoxp Rtu,

k=1
wvhere
Z " first-stage response of respondent i
»

X" "cue" variables (demographic and
attitudinal characteristics of
respondent as well as variables
related to the question)

‘k = unknown regression coefficient

Yy = random disturbance with zero mean and
constant variance.

——
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n>2,
R
n=]
(n=1)
all jz‘ c‘jll 611 ]pjn ‘g
= n-stage response of respol. =ut i

= total number of reasons pres ited at
stage n

= unknown weight coefficients

1 if respondent { gives reason j at
= [(Stage n

0 othervise

= prebability of response j at stage n

= random disturbance with zero mean,

variance a: and E(u ) = Agr b A

1nujn

The first-stage model is a conventional mul-
tiple regression model which assumes inde-
pendent responses, but the model for the sub-
sequent stages is an anutoregreseive model
vhich accounts for the dependencies induced
by the feedback process.

The model for n > 2 can be interpreted as
saying that panelist i's response from

stage (n-1) to stage n is proportional to

the "importance" of the reasons given by the
panel in stage (n-1) which panelist i did not
give. (The Pyq 578 208 fed back to the

panelists.)

The assumed error structure expresses the re-
quirement that the same information is fed
back to each panelist on each round and
assumes the panel is homogeneous.

The model can be used to predict response on
a given round from responses on earlier
rounds. This capability could be used in
situations where it is inconvenient, costly
or impossible to carry out the next round of
questioning.

The expected group mean response after n
rounds of .usalitative controlled feedback is
proposed as an estimate of the group judg-
ment ,

The model can be extended to the case where
there is quantitative feedback (e.g., the
mean response), either with or without
qualitative feedback,

In [10], Press generalizes the model to the
multivariate case where there are many re-
lated questions of simultaneous interest,

The generalization consists of the assumption
of an arbitrary covariance matrix for any
individual's responses. There is no other
assumed interaction among the different
questions. Panelists are still assumed to
respond independently.
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8., Many questions remain to be addressed by
empirical research,

(a)

(b)

(e)

(d)

Should an analyst edit the panelists’
reasons which appear to be duplicates
or paraphrases of other reasons or
should he not tamper with the semantic
issues which might arise?

Should panelists penerate all of the
reasons themselves or should a list be
provided?

Should panelists be questioned by mail,
telephone, personal interview, or by
on-line computer?

should models account for round-to-round
changes in responses on a relative or
sbsolute basis?

Does group polarization disappear under
qualitative contrclled feedback?

Most important, how well do the models
predict?

4, Bayesian Calibration

In [7], Morris proposes a model whereby a decision
maker's prior state of ianformation is modified by ex-
pert opinion in a Bayesian framework to produce the
decision maker's posterior., The key to the model is
the decision maker's subjective calibratior of the
expert’s). For a single ex ert, the model takes the
following form:

{x|f, d) = k * C(x) * f(x) « {x|d}

where

(x|d} =
{x|f, 4} =
f=

C(x) =

fc(x) S

k=

=k - Ic(x) ¢ (xld] ,

decision maker's prior state of infor-
mation

decision maker's prior
decision maker's posterior
f(x) = expert's prior

Calibration Function (decision maker's
subjective calibration o. the expert)

C(x) * f£(x)
expe:t's subjectively calibrated prior

nermalizing constant,

For several experts, the model becomes:

{xlf, 4}

vhere

Cix)
f.(x)

=k L0 ¢ £ ¢ e o £ 00 - (x]d)

ko« £f(x) * {x|d} ,

(f,, ***, £ ) = set of expert priors
1 n

Joint Calibration Function

Ll » fl(x) > iy R LD

= surrogate prior.
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In principle, in the aingle-expert case, the
Calibration Function can be "measur d" by
"obtaining a frequency distributio. of per-
formance measures on a large set of variables
(including the variable of ,nterest), over
which the expert's as<essmeat performance is
indistinguishable" ([7], p.14).

"in the dependent, multi-expert case,
measurement [of the Calibration Function]
becomes much more difficult. A set of
variables must be found, over which, in
rough terms, all experts share the same de~-
gree of dependence" ([7], p,14). According-
1y, the consensus problem of combining the
experts' priors been replaced by the
decision r's specification of a Joint

Calibration Function.

1f the experts are "independent", then

n
Cix) = «» C‘(x). "0f course, situations
i=1

where the experts are independent are rare.
The experts need not assoclate with each
other to be dependent in the probabilistic
case" ([7], p.11).

"The model may also be extended to the sit-
uation in which the exp -ts provide event
probabilities as opposed to probability
densities on continuous variables. ....In
the event case, the expert probabilities are
combined using a normalized additive rule,
as contrasted to the continuous variable
case presented here in which the probabili-
ties are combined using a normalized mul-
tiplicative formula" ([7], p.15).

These results hold under rather general
assumptions, In the paper, the results are
proved for nermal priors, but Morris asserts
that they hold for many other priors., 1Iwo
further assumptions are also made:

"Invariance to Scale: The variance of the

expert’'s prior alone provides no information
about the uncertain quantity, In other
words, the expert's stated confidence in his
own prediction ability gives no information
independent of his actual prediction. For
example, if the only information we have
from an expert is a statement that he feels
quite knowledgeable about the height of the
Eiffel Tower, we have no reason to change ocur
own beliefs about the height unless he fur-
ther provides his actual assessment."

"Invariance to Shift: The assessment of the
location (i.e., the mean) of the expert's

- prior is directly related to the revealed

value ~f the uncertain quantity, If the
reveale value is shifted by some amount,
the ass. 1smenu ot the lncation of the
exiert's prior must sh’ft by that amount,”

Both of these assumptions ca~ be relaxed without

affecting the form of the result, "If the urcertain
quantity depends upon the variance of the expert's
prior alone, then the assessment of this dependence
adds another multiplicative term to the likelihood
functio~" ([7], p.15). 1If the .nvariance to shift
umption is relaxed. tie Calihy n Function b

t e game form but 4s pore diffle ¢ 2IHUSY.
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As a performance criteria, probabilistic scoring
rules are defined ae follows (e.g., cf, [4]):

E= £ ) = a set of mutuvally exclusive and
] exhaustive events for which
probabilities are desired.

K= (R, )] = the probabilities which the estimator
: reports.

P (!J\ = the (unknown) objective probabilities.
S(R, }) = a reward function (scoring rule)
wvhich, after the fact, pays the
estigator an amount S, depending
on the report R and the event j
which occurs.

It is crucial that the estimator be motivated to
accurately report his assessment. In other words,
the scoring rule should not reward the estimator for
deliberately distorting his assessment, This re-
quirement can be met by using only scoring rules
wvhose expected value is a maximum when ® = f, Such
rules are called proper scores and satisfy

LP S(R, J) <3 'j s(P, 3’ .
i b

Some examples of proper scores are as follows:
b 8 logarithmic Score.

S(R, 1) = leg lj
The logarithmic score has a number of
unique properties.

(a) It is the only rule which depends
solely on the probability reported
for the event that occurs.

(b)Y It is the only rule which is additive
over successive estimates,

(¢) It is the only rule which is invariant
over logically equivalent estimates
(e.,g., estimates expressed in terms of
conditional probabilities, disjunctive
combinations, and the like).

2, Quadratic Score.

S(R, 1) = 28, -inf

The quadratic score is the only one where
the difference between the expected score
of a perfect forecaster (i.,e., one that
announces P) and one that anncunces R is a
function solely of R - P,

3. "Scientific" Score.

1 1f R, = max {R )}
SR, 3) = Lotbcivuc lk

This score can be interpreted as the usual
gcore in an ~“jective test (1 for each cor-
rect answer and 0 for each incorrect answer)
in which the test-taker checks the answer

)



that he thinks is most likely to be correct,
Some properties of a proper score are as follows:

Ls A proper score is operational, i,e., it can
be assigned on the basis of a single in~
stance.

2. A proper score rewards the forecaster for
accuracy, i.e., the expected score increases
as the report R gets closer to the actual
probability,

3. A proper score rewards a forecaster for
honesty. I1f the forecaster believes Q
and reports R, %Y“en his subjective expecta-
tion is a maximum when R = Q.

4. A proper score rewards the estimator for
increasing his information concerning the
events before formulating his report.

1f there are several estimators, *hen an "n-heads"
rule should be used, An n~heads rule is a scoring rule
such that a group of est- itors performs better than
the individual members of the group.

1f the group estimate is the average, then an
n-heads rule requires that the expected score of the
group be greater than or equal to the average expected
score of the individual estimators:

i i
p, SR, ) 23

’ PSR, 1),

o
kK3 *©

Lo

where k=1, +++, n i the index for individual estima-
tors,

R " ’.lkj': = get of probabilities
Teported by k

A necessary and sufficient condition for S(K, #) to be
an n-heads rule is that S(R, i) be concave in k.
Examples are the logarithmic score and the quadratic
score,

An improved n-heads rule can be derived if the
method of aggregation is taflored to tie form of
scoring rule. For example, the geometric mean "fits"
the logarithmic score better than the mean. The
expected group score using the geomerri: mean is equal
te the average expected ind‘vidual score plus a term
which is an increasing function of the 4ispersion of
the individual estimates but is independent of the
objective probabilities P. If the quadratic score is
used and the mean is the aggregation function, the
group advantage is the sum of the variances of the
individual reports.

In gener:z., individual assessments tend to be
correlated be-:use they are often based on the same
background exp~rience. This is, perhaps, especially
true for groups of experts. In [5], Dalkey considers
the problem of aggregating expert assessments without
knowing ar vthing about the dependency structure among
the experts. Dalkey models the experts rs inquiry
systems and shows that, if a proper scoring rule is
uw ‘. it is possible to aggregate the individual
ass. sments so that the gRroup assessment is better than
any individual assessment,
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