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Summary
C,

A number of approaches to the problem of forming '8 .f'

a consensus based on individual assessors' judgments 5 pj
have been prg osed. This paper discusses and provides
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examples of several of these approaches, including the
weighted average approach, the Bayesian approach and Q
the performance criterion approach. i In, 2 *in
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l. Introduction H .N
Y $ '")w

Suppose that a group of n assessors e.ch provides
an assessment of a subjective probability distribution,

denoted by f , i = 1, , n. Winkler discussesg

three approaches to the problem of forming a consensus
assessment f which, in some sense, best represents the
group assessment. These are the weighted average
approach, the controlled feedback approach and the
Bayesian approach.

In the weighted average approach, the consensus f
is usu'.lly expressed as a linear combination of the
f 's, although non 5.inear cochinations are sometimes

1

used (e.g., median, geometric mean, harmonic mean).
The weights are either equal or proportional to some
raaking of the assessors which reflects their exper-
.ise, e.g., self-ratings. Some studies have shown
that equal weights work about as well as other methods
of assigning weights. The approach can be a one-step
procedure or can be iterative. If iteratise, the
weights can be constant or change at each step.

In the controlled feedback approach, the consen-
sus f is developed by several rounds of feedback and
reassessment. The reassessment 'can be either group
(face-to-face) or individual (Delphi). While this
approach is widely used, the resultant consensus may
be overly influenced by group dynamics. Experimenta-
tion by psychologists has shown that when group inter-
actien involves open discussion, group positions tend
toward uniformity and established norms. This can be
induced by the influence of discussion leaders as well

as the desire to reach agreement. Even with anonymity,
feedback can induce pressure towards a consensus.

In the Bayesian approach, the f 's are viewed as

sample information which is then combined with the
decision-maker's prior through Bayes' theorem. While
this approach has the virtue of directly involving the
decision-maker, the results may be difficult to inter-
pret. Furthermore, the f 's are often chosen forg

mathematical convenience rather than as an uncon-
strained expression of the assessors' judgments.

In [3], Dalkey proves that no group decision rule
exists which is consistent with all of the postulates
of probability theory. For example, the average of a
set of probabilities fulfills the requirement that
probabilities of er.clusive events add; however, it does
not fulfill the requirement that the probability of the
conjunction of two independent events is the product.
The converse is true for the product (or the geometric
mean) as an aggregation rule; it does not sum to one
for exclusive and exhaustive events but it is multi-
plicative for conjunctions.
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As a solution to this dilemma, Dalkey espouses
what he terms the Emerson Principle *: Perforinance is
at least as important a criterion for aggregation as
consistency ([4], page 10) . The Emerson Principle is
a rationale for the use of performance criteria, i.e.,
probabilistic scoring rules which reward the assessors
dependina on the accuracy of their assessments.

This paper discusses some selected examples of j
'

the consensus approathes introduced above. No attempt
at completeness is made; the purpose is to illustrate,

some of the ways in which the consensus problem has
been approached.

2. Weighted Averages

An Axiomatic Approach

in [1], Abramsor. uses an axiomatic ap . roa:h .to
the problem of combining subjective probat tlity dis-
tributions into a group consensus. A smaAl numbe' of
plausible properties which a consensus dist 'Ne a

should satisfy are specified and it is t! th st
there is only one function of the individt 1-

butions which satisfies these properties.

Assume that each of a group of n assessors pro-
vides a subjective probability distribution on a
common set of a mutually exclu*ive and exhaustive
events, as indicated in the table belos.

Event

2 E) E, I* **
Assessor E E

11 0
** P,P)p2 ***

1133 1

1i ;g P,p2 P*** ***

i1 ij

.

.

.

p1 Pn2 '' P P l*n n nj nm

c IcConsensus C C ''*'*
y 2 j m

Here p ) is the probability assigned by assessorg

i to event E) and C is the consensus probability for
E) . For the case of equally weighted assessors, it is
assumed that the consensus distribution (if it exists)
must satisfy the following three properties:

(l's The consensus probabilities sum to 1.
(2) The consensus probabiliry for any event

depends only on the set of probabilitiet

*"A foolish consistency is the hobrohlin of littis

minds. . . " - Ralph Waldo Emersen
.
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for thst avsnt, cnd not on the probabilities
for the othir syrnts os on which car assor

a2 signs which probtbility.
(3) If all assessors agree on the probability of

an event, then the consensus probability is
their connnon probability.

It is then proven that the only consensus distri-
bution which satisfies properties (1), (2) and (3) is
the average of the assessors' subje:ctive probability
distributions, i.e.,

n
=1 I p for j=1, ===, m ,C

4j n g,g

These results are genstalized to the case where
the assessors have arbitrary known weights. Let
w = weight cf sssessor 1, where wg >_ 0 andg

g + *** + w,= 1. Properties (1) and (3) remainw

unchanged and property (2) is generalized to allow the
consensus probability for an event to depend on both
the probabilities and weights for that event. Two
additional properties are assumed:

(4) If two assessors assign the same probability
to an event, they can be replaced by a
single assessor with weight equal to the sum
of their weights.

(3) n e consensus probability for any event is a
continuous function of the assessors'
weights.

It is then proven that the only consensus distri-
butlon which satisfies properties (1) - (5) is the
weighted aeerage of the assessors' subjective proba-
bility distributions, i.e.,

n
I w p for j=l,'**,m.C =

i=1

Dalkey ([4), p.228) prove ( essentially the same
result with a very similar approach. One difference
between the approaches is that Abramson assumed that
the assessors are assigned weights independently of
their subjective assessments and that the significance'

of these weights is expressed by preperty (4), while
in Dalkey's derivation the weights are implied by the
consensus distribution. (ne implied weight for each
assessor is the consensus probability of an event to
which that assessor assigns probability one and to
which all other assessors assign probability zero.)

Iterative Weighting

Constant weights. DeGroot considers the follow-
ing problem.

8 = parameter to be estimated (may be a vector)
F = subjective probability distribution assignedg

by assessor i to parameter 8 (i=1, * * *, k)
p = veight that assessor i assigns to the

distribution of assessor j, where
k

P 1 0 and p)=1U,j=1, ,O.gj g

The F are revised by each assessor using the weights
Thus,the first revision of F by assessor i isp . g

2 ,
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gg I Gg), h phe h h mmd hF =
j-1

matrix notation,

ll) . P Fy

F(") = P F("~1} = P" F, n=2, 3, ***

By definition, a consensus is resched if the re-
vised subjective distributions all approach s'ome limit-
ing distribution F*. A necessary and suf ficient con-'

dition for a consensus to be reached is that there, s ) such thatexists a vector n = (wg, ***
k,

Den+ w) f or i, j =1, * * . , k.p

k
F* = I s F and sP=s.g g

i=1

A sufficient conditic. for a consensus to be reached
is that for some n, every element in at least one
column of the matrix P is positive. In other words,
for some iteration, there is at least one assessor
to whom all of the other assessors give positive
weight.

In a validation experiment conducted by Moskowitz
8and Bajgier, subjects, participating either as a mem-

ber of a panel discussion or Delphi group, made iter-
ative subjective probability distTibution (SPD) assess-
ments using the fractile method on various unknown
quantities. Examples included the percentage of Purdue
students on academic probation and the number of miles
driven per automobils accident fatality. De DeGroot
model with constant weights did not appear to predict
or describe the panel discussion or Delphi group con-
sensus process, Opinion weights were not stable and
appeared to vary inversely with the dispersion of a
group member's SPD. These, however tended to stabilize
after several iterations. Models in which the weights
were inversely proportional to the variance or the .01
to .99 f ractile range of each group member's SPD gave
considerably better predictions than did the DeGroot
modal.

Variable weights. Chatterjee and Seneta gener-
6

alized the Decroot mode 1 to the case of variable
weights. 14e

p )(n) weight assigned by individual i to the=
g distribution of individual j af ter n

iterations.

Then a sufficient condition for a consensus to be
reached is that

.

.

I max (min p (n)) = = . (1)
n=1 j i

nree ezemples where consensus is reached are as
follows.

(a) Were are an infinite number of occasions
when there is at least one assessor to
whose opinion everyone attaches a weight of
at least 6 > 0 (generalizes constant weight
criterion).

!
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(b) Open-windid reasseors. As the iterations
procesd,~infor=ztion is exchengsd end the
esssssors' initial spacialized information
tends to become group knowledge, i.e., the
assessors tend to give equal weight to all
opinions. Then p (n) -* 1/k, Eq. (1) is

satisfied and consensus will be reached.
(c) Slow hardening of positions. Suppose that

the information exchange process causes the
assessors to put more weight on their own
opinions and less on those of others, with a
tendency in the limit to put all the weight
on their own opinions. If the hardening of
positions is sufficiently slow, even this
situation can lead to a consensus. For
example, suppose that

pgg(n) = 1 - .

1

gj (n) = 2(i-1)2. ' I'd *P

Ihen Eq.(1) is satisfied and consensus will
be reached.

3. Qualitative controlled Feedback

A controlled feedback procedure can be character-
ized as follows:

(1) Each member of a group of respondents inde-
pendently answers a battery of related ques-
tions. Sometimes, reascus for their answers
are also solicited.

(ii) Summary information is presented to each
group member, and step (i) is repeated.

(iii) The questioning and feedback process is re-
peated until it stabilizes (little change

from round to round). The stabilization can
either be in the form of a group consensus
or judgment nuclei, i.e. , a hung jury.

The commonly used Delphi procedure is a quantita-
tive controlled feedback procedure, whereby the sum-
mary information in aLep (ii) is in the form of group
medians, quantiles and the like. In [9], Press pre-
sents a qualitative controlled feedback procedure
whereby panelists supply answers and justifying
reasons as in step (i) but only a composite of the
reasons is fed back in step (ii).

If one question only is asked, Press proposes the
following model:

r

* i ,1 *ik 0
*

1 "il *k=1
where

z = first-stage response of respondent i
g ,y

= " cue" variables (demographic andx
ik

attitudinal characteristics of
respondent as well as variables
related to the question)

B = unknown regression coefficientk

u = random disturbance with zero mean andgg
constant variance.

1,
1
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R,
"

ij(1 - 6(n-1)]p*i,n * ion-1 + 4 u* # h

where
n-stage response of respon ut iz =

R total number of reasons pres ited at=

stage n ,

i
unknown weight coefficients !e oq

f,g) = I 1 if respondent i gives reason j at
6g , stage n

'O otherwise

p = ptchability of response j at stage n

u = random disturbance with zero mean,g

variance o and E(uh"b}"X'i 3*n

Remarks

1. D e first-stage model is a conventional mul-
tiple regression model which assumes inde-
pendent responses, but the model for the sub-
sequent stages is an autoregressive model
which accounts for the dependencies induced
by the feedback process.

' 2. We model for n 12 can be interpreted as
saying that panelist i's response from
stage (n-1) to stage n is proportional to
the "importance" of the reasons given by the
panel in stage (n-1) which panelist i did n_ot,t
give. (ne p are not fed back to theo

panelists.)

3. ne assumed error structure expresses the re-
quirement that the same information is fed
back to each panelist on each round and
assumes the panel is homogeneous.

i

4 n e model can be used to predict response on
a given round from responses on earlier i
rounds. This capability could be used in !

situations where it is inconvenient, costly I

or impossible to carry out the next round of '

questioning.

5. ne expected group mean response after n
rounds of raalitative controlled feedback ise
proposed as an estimate of the group judg-
ment.

6. L e model can be extended to the case where
there is quantitative feedback (e.g., the
mean response), either with or without
qualitative feedback.

7. In [10), Press generalizes the model to the
multivariate case where there are many re-
lated questions of simultaneous interest.

n e generalization consists of the assumption
of an arbitrary covariance matrix for any
individual's responses. There is no other
assumed interaction among the different
questions. Panelists are still assumed to
respond independently.

!
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8. Many questions remain to be addressed by
empirical research. , e

(a) Should an analyst edit the panelists'
reasons which appear to be duplicates
or paraphrases of other reasons or
should he not tamper with the semantic
issues which might arise?

(b) Should panelists generate all of the
reasons themselves or should a list be
provided?

(c) Should panelists be questioned by mail,
telephone, personal interview, or by
on-line computer?

(d) should models account for round-to-round
changes in responses on a relative or
absolute basis?

(e) Does group polarization disappear under
qualitative controlled feedback?

(f) Most important, how well do the models
predict?

4. Bayesian Calibration

In [7], Morris proposes a n,odel whereby a decision
maker's prior state of information is modified by ex-
pert opinion in a Bayesian framework to produce the
decision maker's posterior. The key to the model is
the decision maker's subjective calibration of the
expert (s). For a single ex;ert, the model takes the
folleving form

{x|f,d}=k*C(x) * f(x) = (x|d)

= k f (x) * (x|d) ,
c

where

d = decision maker's prior state of infor-
mation

(x|d)=decisionmaker'sprior

(x]f,d)=decisionmaker'sposterior

f = f(x) = expert's prior

C(x) = Calibration Function (decision maker's
subjective calibration oi the expert)

f (x) E C(x) * f(x)c

= expert's subjectively calibrated prior

k = normalizing i.onstant.

For several experts, the model bec.emest

(x|f, d) = k * C(x) . f (x) . . . . f (x) *(x|d)

= k f,(x) * (x|d) ,

where

f = (f , ***, f ) = set of expert priorsy
.

C(x) = Joint Calibration Function 1

f,(x) = C(x) f (x) . . . . . f (x)g

= surrogate prior.

/. ,
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| 1. In principle, in the single-expert esse, the
! Calibration Function can be "measur d" by

" obtaining a frequency distributica of per-
formance measures on a large set of variables
(including the variable of interest), over
which the expert's assessmeat performance is
indistinguishable" ((7], p.14).

2. "in the dependent, multi-expert case,
measurement (of the Calibration Function] '

'becomes much more dif ficult. A set of
variables must be found, over which, in
rough terms, all experts share the same de-
gree of dependence" ([7], p.14). According-
ly, the consensus problem of combining the
experts' priors has been replaced by the
decision maker's specification of a Joint

Calibration Function.

I

3. If the experts are " independent", then i

n
C(x) = w C (x). "Of course, situationsg

i=1

where the experts are independent are rare.
The experts need not associate with each '

other to be dependent in the probabilistic
case" ([7], p.11) .

4. "The model may also be extended to the sit-
uation in which the exp. rts provide event
probabilities as opposed to probability
densities on continuous variables. ....In
the event case, the expert probabilities are
combined using a normalized additive rule,
as contrasted to the continuous variable
case presented here in which the probabili-
ties are combined using a normalized mul-
tiplicative formula" ((7], p.15) .

5. These results hold under rather general
as s umptions . In the paper, the results are
proved for normal priors, but Morris asserts
that they hold for many other priors. Two
further assumptions are also made:'

"Invariance to Scale: The variance of the
j expert's prior alone provides no information

about the uncertain quantity. In other
words, the expert's stated confidence in his
own prediction ability gives no information
independent of his actual prediction. For
example, if the only information we have
from an expert is a statement that he feels
quite knowledgeable about the height of the
Eiffel Tower, we have no reason to chance our
own beliefs about the height unless he fur-
ther provides his actual assessment."

"Irivariance to Shift: The assessment of the
location (i.e., the mean) of the expert's

, prior is directly related to the revealed
value af the uncertain quantity. If the
reveale value is shif ted by some amount ,
that asasisment of the Ir, cation of the
ex9ert's prior must shtf t by that amount."

Poth of these assumptions ca3 be relaxed without
affecting the form of the result. "If the ur.certain
quantity depends upon the variance of the expert's
prior alone, then the assessment of this dependence
adds another multiplicative term to the likelihood
f unctio'" ([ 7], p.15) . If the .nvariance to shift,s

/ sssurption is relaxed, the Ca115r.. -n Function ha
t e same form but is tor : dIfficui o u n> cs r .

4
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5. Probrbilistic Scoring Rules*

As a performancs criteria, probabilistic scoring
rules are defined as follows (e.g., cf. [4]):

E = (E ) = a set of mutually exclusive and
3 exhaustive events for which

probabilities are desired.

R = (R)) = the probabilities which the estimator
reports.

P = (P ) = the (unknown) objective probabilities.

S(R, j) = a reward function (scoring rule)
which, af ter the fact, pays the
estinator an amount S, depending
on the report R and the event j
which occurs.

It is crucial that the estimator be motivated to
accurately report his assessment. In other words.
the scoring rule should not reward the estimator for
deliberately distorting his assessment. This re-
quirement can be met by using only scoring rules
whose expected value is a maximum when R = P. Such
rules are called proper scores and satisfy

I P, S(R. j) S I P) S(P, j; .

J j

Some examples of proper scores are as follows:

1. Logarithmic Score.

S(R, j) = log R

The logarithmic score has a number of
unique properties.

(a) It is the only rule which depends
solely on the probability reported
for the event that occurs.

(b) It is the only rule which is additive
over successive estimates.

(c) It is the only rule which is invariant
over logically equivalent estimates
(e.g., estimates expressed in terus of
conditional probabilities, disjunctive
combinations, and the like).

2 Quadratic Score.

S(R, j) = 2R -IR
k

The quadratic score is the only one where
the dif ference between the expected score

of a perfect forecaster (i.e., one that
announces P) and one that announces R is a
function solely of R - P. j

3. " Scientific" Score.
|

! 1 if R = max (R )
S(R, j) = .0 otherwise

This score can be interpreted as the usual
score in an chjective test (1 for each cor-
rect answer and 0 for each incorrect answer) ,-'

#

in which the test-taker checks the answer
|
.
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that he thinks is most likely to be correct.

I
Some properties of a proper score era es follows:

1. A proper score is operational, i.e., it can
be assigned on the basis of a single in-
stance.

2. A proper score rewards the forecaster for
accuracy, i.e., the expected score increases
as the report R gets closer to the actual
probability.

3. A proper score rewards a forecaster for
honesty. If the forecaster believes Q
and reports R. Sen his subjective expecta-

tion is a maximum when R = Q.

? 4. A proper score rewards the estimator for
increasing his information concerning the
events before formulating his report.

>

If there are several estimators, then an "n-heads"
rule should be used, An n-heads rule is a scoring rule
such that a group of ests stors performs better than
the individual members of the group.

If the group estimate is the average, then an
n-heads rule requires that the expected score of the
group be greater than or equal to the average expected
score of the individual estimators:

I P) S(R j) > f I I P) S(R ' $) 'k
j kj

where k=1, , n is the index for individual estima-
tors,

R = {Rkj) = set of pr babilitiesk
reported by k

R= FIR .

A necessary and sufficient condition for S(R, f) to be
an n-heads rule is that S(R, j) be concave in P..
Examples are the logarithmic score and the quadratic
score.

An improved n-heads rule can be derived if the
method of aggregation is tailored to the form of
scoring rule. For example, the geometric mean " fits"
the logarithmic score better than the mann. The
expected group score using the geometric mean is equal
to the average expected ind!.vidual score plus a term
which is an increasing function of the dispersion of
the individual estimates but is independent of the
objective probabilities P. If the quadratic score is
used and the mean is the aggregation function, the
group advantage is the sum of the variances of the
individual reports.

In general, individual assessments tend to be
correlated be-ause they are of ten based on the same
background expatience. This is, perhaps, especially
true for groups of experts. In [5], Dalkey considers
the problem of aEgregating expert assessments without
knowing arvthing about the dependency structure among
the expert.. Dalkey models the experts es inquiry
systems and shows that, if a proper scoring rule is

'. it is possible to aggregate the individualua
ass; sments so that the group assessment is better than
any individual assessment.
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