Industrial Nuclear Company, Inc. Outer Package, Raw Material Shipping Container Model OP-RMSC

A Presentation to the US Nuclear Regulatory Commission

December 4, 2019

- ► Introduction
- Description of OP-RMSC Package
- Materials of Construction
- Payload Description
- Certification Test Plan
- ► Schedule
- ► Summary

Description of OP-RMSC Package

Enclosed, Right Circular Cylinder

- 18" OD x 22-1/4" High Sch 10S Pipe
- Stainless Steel Construction
- Single Payload
 - Raw Material Shipping Container (RMSC)
- ► Gross Weight: Approximately 650 lb

OP-RMSC Materials of Construction

Structural:

- Type 304 stainless steel plate, bar, and pipe
- ASTM A320 L7 or L43 Alloy Steel Closure Lid Bolts
 - Outer Lid
 - Inner Lid
- Body All welded construction
- Polyurethane foam for minimal impact mitigation
- ► Shielding
 - Provided by RMSC payload
 - Tungsten gamma shields

Description of OP-RMSC Package (con't) RMSC Payload

Description of RMSC Payload

Enclosed, Right Circular Cylinder

• 8-5/8" OD x 11-3/8" High Sch 10S Pipe

Welded Stainless Steel Construction

Bolted Stainless Steel Closure Lid

► Gross Weight: Approximately 380 lb

Description of RMSC Payload (con't)

Description of RMSC Payload (con't)

RMSC Materials of Construction

Structural:

- Type 304 or 304L stainless steel plate, bar, and pipe
- ASTM A320 L7 or L43 Alloy Steel Closure Lid Bolts
- All welded construction encasing body gamma shield
- Bolted closure lid securing cavity gamma shield
- Gamma Shielding: Tungsten Heavy Metal

RMSC Contents

Contents:

- Licensed as Special Form
- Iridium 192 (Ir–192) capsules
- Selenium 75 (Se–75) capsules
- Cobalt 60 (Co–60) capsules
- Cesium 137 (Cs–137) capsules

Radioactive Contents Limits (to be verified):

- Ir-192: 16,000 Ci
- Se-75: 16,000 Ci
- Co-60: 3 Ci
- Cs-137: 16,000 Ci

Comply with 10 CFR §71.47(a) radiation levels

- Decay Heat Limit: 115 watts
 - Surface temperature limit of 50 °C (122 °F) per 10 CFR §71.43(g)

OP-RMSC Certification Test Plan

Objectives

- To demonstrate that, after a worst–case sequence of free and puncture drops, no degradation in shielding capability of RMSC payload
- To demonstrate retention of special form capsules within the RMSC gamma shielded cavity

- ► Full–scale, prototypic CTUs
- Demonstration basis: radiation dose rates comply with 10 CFR 71 radiation limits after full series of free and puncture drops
 - No shielding credit for outer OP-RMSC package
 - Use of actual radioactive source capsules in RMSC payload
 - Post-test readings versus pre-test readings
- Normal speed filming of free drops planned
- Tests
 - Free Drops
 - Puncture Drops

Structural evaluations:

- NCT compression and free drop, HAC free & puncture drops, by test
 - Total of one NCT free drop
 - Total of three HAC free and three puncture drops

• All other NCT and HAC load cases by analysis

Thermal NCT & HAC evaluations by analysis

Initial conditions

• For high-impact free drops, temperature will be cold (-20 °F):

• Top down orientation

 For maximum deformation free drops, temperature will be NCT hot condition:

- Side
- CG–over–Top corner

• Puncture tests will be performed at ambient temperature

- ► One NCT, 4–ft free drop
- ► Three HAC 30-ft free drops
 - One focused on impact
 - Two focused on deformation
- Three puncture drops
 - Tentatively the same free drop orientations
 - Final orientations to be determined based on observed free drop damage

Free Drop Test	<u>Purpose</u>
Vertical, Top Down (cold);	<i>Max impact to dislodge RMSC payload, gamma</i>
NCT & HAC	shields, source capsules
Side (hot)	<i>Impact to damage RMSC payload, gamma shields</i>
Top Down, CG–over–Corner (hot)	Max deformation to attempt to damage closure, RMSC payload

¢ | |

//////

8		
-8	··	-
8		

//////

//////

Data collection

Temperature of polyurethane foam & RMSC

Normal speed film

Measurements (pre- and post-test)

Crush distance, puncture damage

Radiation Dose Rates

Photographs

► Acceptance Criteria

Radiation dose rate comply with 10 CFR §71.51(a)(2):

No loss of gamma shielding in RMSC payload

Discussion

Schedule

- ► CTU fabrication completion 4th Quarter 2019
- ► Certification testing 1st Quarter 2020
- Submittal of application to NRC for Type B(U)–96 certification – Late 1st or Early 2nd Quarter 2020
- Planning on approximately 5 months to first round RAIs

► Summary

