ENCLOSURE 1

PROPOSED TECHNICAL SPECIFICATION REVISIONS
BROWNS FERRY NUCLEAR PLANT UNIT 1
(SUPPLEMENT TO TVA BFNP TS 161)

Group	Valve Identification	Number Operate Inboard	of Power ed Valves Outboard	Maximum Operating Time (sec.)	Normal Position	Action on Initiating Signal
,	Reactor water cleanup system supply isolation valves FCV-69-1, & 2	,	1	30	0	cc
3	Reactor water cleanup system return isolation valves PCV-69-12		1	60	0	cc
1 .	FCV 73-81 (Bypass around FCV 73-3)		1 .	10	0	GC
1 4	HPCIS steamline isolation valves	1	1	20	0	GC
5	PCV-73-2 & 3 RCICS steamline isolation valves PCV-71-2 & 3	1	1	15	0	cc .
6	Dryvell nitrogen purge inlet isola- tion valves (PCV-76-18)		1	5	c	sc
6	Suppression chamber nitrogen purge inlet isolation valves (FCV-76-19)		1	5	С	sc
6	Drywell Main Exhaust isolation valves (PCV-64-29 and 30)		2	2.5	С	sc
6	Suppression chamber main exhaust isolation valves (PCV-64-32 and 33)		2	2.5	c .	50
6	Drywell/Suppression Chamber purge fulat (FCV-54-17)		1	2.5	С	sc
6	Drywell Atmosphere purge inlet (FCV-64-18)		1	2.5	c	sc

TABLE 3.7.A (Continued)

Group	Valve Identification		of Power i Valves Outboard	Maximum Operating Time (Sec.)	Normal Position	Action On Initiating Simul
6	Torus Hydrogen Sample Line Valves Analyzer A (FSV-76-55, 56)	1	1	NA	Note 1	SC
6	Torus Oxygen Sample Iine Valves Analyzer A (FSV-76-53, 54)	1	1	NA	Note 1	SC
6	Drywell Hydrogen Sample Line Valves Analyzer A (FSV-76-49, 50)	1	1	NA	Note 1	sc
6	Drywell Oxygen Jample Line Valves Analyzer A (FSV-76-51, 52)	1	1	NA	Note 1	sc
6	Sample Return Valves - Analyzer A (FSV-76-57, 58)	1	1	NA	0	SC
6	Torus Hydrogen Sample Line Valves Analyzer B (FSV-76-65, 66)	1	1	NA	Note 1	SC
6	Torus Oxygen Sample Line Valves-Analyzer B (FSV-76- 63, 64)	1	1	NA	Note 1	sc
6	Drywell Hydrogen Sample Line Valves-Analyzer B (FSV-76-59, 60)	1	1	NA	Note 1	sc
6	Drywell Oxygen Sample Line Valves-Analyzer B (FSV-76- 61, 62)	1	1	NA	Note 1	sc
6	Sample Return Valves- Analyzer B (FSV-76-67, 68)	-1	1	NA	0	sc

Note 1: Analyzers are such that one is sampling drywell hydrogen and oxygen (valves from drywell openvalves from torus closed) while the other is sampling torus hydrogen and oxygen (valves from torus open - valves from drywell closed)

TABLE 3.7.D (Continued)

Valves	Valve Identification	Test Medium	Test Method
69-1	RWCU Supply	Water (2)	Applied between 69-1, 69-500 and 10-505
14-2	RWCU Sepply	Water (2)	Applied between 69-2, 69-500 and 10-505
71-2	RCIC Steam Supply	Air (1)	Applied between 71-2 and 71-3
2 - 81	HPCI Steam Supply Bypass	Air (1)	Applied between 73-2 and 73-3
71-3	RCIC Steam Supply	Air (1)	Applied between 71-2 and 71-3
71-39	RCIC Pump Discharge	Water (2)	A; 11cd between 3-66, 3-568, 69-579, 71-39, and 85-576
7.4+2	HPCJ Steam Supply	Air (1)	Applied between 73-2 and 73-3
73-1	HPCI Steam Supply	Air (1)	Applied between 73-2 and 73-3
73-44	HPCI Pump Discharge	Water (2)	Applied between 3-67, 3-554, and 73-44
22. 1.7	PHR Shutdown Suction	Water (2)	Applied between 74-47, 74-754, 74-49, and 74-661
4-48	RHR Shutdown Suction	Water (2)	Applied between 74-48, 74-661 and 74-49
1-3	KHR LPCI Di charge	Water (2)	Applied between 74-53 and 74-55
	RHR Suppression Chamber Spray	Water (2)	Applied between 74-57, 74-53, and 74-59
24-58	RHR Suppression Chamber Spray	Water (2)	Applied between 74-57, 74-58, and 74-59
3-60	PHR Drywell Spray	Water (2)	Applied between /4-60, 74-61
73-61	RHR Drywell Spray	Water (2)	Applied between 74-60, 74-61
74=67	RHR LPCI Discharge	Water (2)	Applied between 74-67 and 74-69
74-71	RHR Suppression Chamber Spray	Water (2)	Applied between 74-71, 74-72, and 74-73
74-77	RHR Suppression Chamber Spray	Water (2)	Applied between 74-71, 74-72, and 74-73
74-74	RHR Drywell Spray	Water (2)	Applied between 74-74, 74-75

TABLE 3.7.D (Continued)

	Valve	Test	Test Mechod
Valves	<u>Identification</u>	Medium	Mechod
76-49	Containment Inerting	Air	Applied between inboard block valve and 76-49.
76-50	Containment Inerting	Air	Applied between inboard block valve and 76-50.
76-51	Containment Inerting	Air	Applied between inboard block valve and 76-51.
76-52	Containment Inerting	Air	Applied between inboard block valve and 76-52.
76-53	Containment Inerting	Air	Applied between inboard block valve and 76-53.
76-54	Containment Inerting	Air	Applied between inboard block valve and 76-54.
76-55	Containment Inerting	Air	Applied between inboard block valve and 76-55.
76-56	Containment Inerting	Air	Applied between inboard block valve and 76-56.
76-57	Containment Inerting	Air	Applied between inboard block valve and 76-57.
76-58	Containment Inerting	Air	Applied between inboard block valve and 76-58.
76-59	Containment Inerting	Air	Applied between inboard block valve and 76-59.
76-60	Containment Inerting	Air	Applied between inboard block valve and 76-60.
76-61	Containment Inerting	Air	Applied between inboard block valve and 76-61.
76-62	Containment Inerting	Air	Applied between inboard block valve and 76-62.
76-63	Containment Inerting	Air	Applied between inboard block valve and 76-63.
76-64	Containment Inerting	Air	Applied between inboard block valve and 76-64.
76-65	Containment Inerting	Air	Applied between inboard block valve and 76-65.
76-66	Containment Inerting	Air	Applied between inboard block valve and 76-66.
76-67	Containment Inerting	Air	Applied between inboard block valve and 76-67.
76-68	Containment Inerting	Air	Applied between inboard block valve and 76-68.

TABLE 3.7.D (Continued)

Valves	Valve Identification	Test Nedium	Test Mathod
90-257A	Radiation Monitor Discharge	A1r(1)	Applied between 90-257A and 90-257B
90-2578	Radiation Monitor Discharge	Air (1)	Applied between 90-237A and 90-2578
84-8A	Containment Atmospheric Dilution	Air	Applied between 84-8A and 84-600
84-8B	Containment Atmospheric Dilution	Air	Applied between 84-83 and 84-601
84-8C	Containment Atmospheric Dilution	Air	Applied between 84-8C and 84-603
84-8D	Containment Atmospheric Dilution	Air	Applied between 84-8D and 84-602
84-19	Containment Atmospheric Dilution	Air	Applied between 64-32, 64-33, 64-29, 64-30, and 84-19

Air/nitrogen test to be displacement flow.
 Water test to be injection loss or downstream collection.

	Valve	Test	Test
Valves	Identification	Hedium	liethod

84-20	Main Exhaust to Standby Gas Treatmen	t Air(1)	Applied between 84-20, 64-141,
94 -600	Water Follows to Standby Con Tours	Nitrogen(1)	64-140, and 64-31
	Main Exhaust to Standby Gas Treatment		
84-601	Main Exhaust to Standby Gas Treatment	Erocen	Applied between 84-83 and 84-601
84-602	Main Exhaust to Standby Gas Treatment	Hitrogen	Applied between 84-80 and 84-603
84-603	Main Exhaust to Standby Cas Treatment	Hitrogen	Applied between 84-80 and 84-602
11/1-11/11	Drywell Pressurization, Comp. Bypass	Air (1)	Applied between 64-141, 64-140,
		443	64-30, and 84-20
64-140	Drywell Pressurization, Comp. Disc.	Air(1)	Applied between 64-141, 64-140,
		(1)	64-31, and 84-20
64-139	Drywell Pressurization, Comp. Suction	Air(1)	Applied between 64-139, 64-141,
			and 64-34

¹⁾ Air/nitrogen test to be displacement flow
(2) Water test to be injection loss or downstream collection.

ENCLOSURE 2

DESCRIPTION AND JUSTIFICATION FOR CHANGES

Page No.

251 and 260 (Page 251 to replace that in To 161)

DESCRIPTION/JUSTIFICATION OF CHANGE

During the unit 1 reload 4 refueling outage now in progress FCV 73-81 (System 73-High Pressure Coolant Injection System), a bypass valve around the HPCI steam supply outboard isolation valve (FCV 73-3), will be added to the system. During quarterly surveillance testing on HPCI isolation valve FCV 73-3 in which the valve is closed and reopened, the steamline downstream from FCV 73-3 is subjected to thermal stresses from the closure and subjected to thermal stresses from the closure and subjected to stresses. This is a one-inch valve. It is an isolation group 4 valve with a maximum closing time of 10 seconds.

251A and 261A

During the unit 1 refueling outage now in progress the new Hays-Republic Hydrogen-Oxygen (H_2-O_2) Analyzer System is being installed in. (This system's design has been reviewed and approved previously for units 2 and 3.) All System 76 valves (Containment Inerting System) added to Table 3.7.A and 3.7.D are being installed in the plant as part of the H_2-O_2 Systems. This change is needed to keep the technical specifications consistent with plant configuration.

262

Deletion of System 76 valves (Containment Inerting System) from Table 3.7.D. These valves were removed from service as part of the replacement of the old hydrogen-oxygen analyzer system with the new Hays-Republic H₂-O₂ System. This change updates Table 3.7.D to make it consistent with plant configuration.