

RELEASE

- REACTOR PRESSURE VESSEL
- VESSEL AND INTERNALS HEAT TRANSFER
- BLOWDOWN FLOW RATE
- TOTAL DECAY POWER

JSP-1 5/31

.

MASS AND ENERGY RELEASE

INTRODUCTION

- MODEL DESCRIPTION
- APPLIED TO MARK II LONG TERM POOL TEMPERATURE ANALYSIS
- SAME MODEL AS USED BY
 - FSAR's
 - MARK I

.

- MARK III

JSP-2 5/31

REACTOR PRESSURE VESSEL

- SINGLE THERMODYNAMIC NODE
- COLLAPSED LIQUID LEVEL
- SATURATED FLUID

٠

.

MASS AND ENERGY BOOK KEEPING

STANDARD MODEL FOR CONTAINMENT ANALYSIS ٠

REACTOR PRESSURE VESSEL

MASS CONSERVATION

.

 $\Sigma W_{OUT} - \Sigma W_{IN} + \frac{DM}{DT} = 0$

ENERGY CONSERVATION

 $\Sigma(HW)_{OUT} - \Sigma(HW)_{IN} - \Sigma Q + \frac{DU}{DT} = 0$

• EQUATION OF STATE

 $P = F(V,U) \quad (1967 \text{ ASME})$ $U = U_F + XU_{FG}$

 $v = v_F + xv_{FG}$

JSP-4 5/81

NOMENCLATURE

W = MASS FLOW RATE, 1BM/SEC

M = MASS, 1BM

_D = DERIVATIVE WITH RESPECT TO TIME, sec⁻¹ DT

H = ENTHALPY, BTU/1BM

Q = ENERGY ADDITION RATE, BTU/SEC

U = INTERNAL ENERGY, BTU

P = PRESSURE, PSIA

- U = SPECIFIC INTERNAL ENERGY, BTU/1BM
- V = SPECIFIC VOLUME, FT³/1BM

X = QUALITY

JSP-5 5/81

.

REACTOR PRESSURE VESSEL

• . • • •

JSP-6 4/81

VESSEL AND INTERNALS HEAT TRANSFER

- GENERALIZED HEAT TRANSFER MODEL
 - AREA, HEAT CAPACITY, ELEVATION, AND INTERNAL RESISTANCE DESCRIBE EACH HEAT CAPACITANCE NODE
 - . CONVECTIVE HEAT TRANSFER COEFFICIENT DEPENDANT UPON FLUID STATE
 - SATURATED STEAM
 - SATURATED LIQUID
 - ENERGY BOOK KEEPING FOR EACH HEAT CAPACITANCE NODE

STANDARD MODEL FOR CONTAINMENT ANALYSIS

> JSP-7 4/81

VESSEL AND INTERNALS HEAT TRANSFER

TYPICAL HEAT CAPACITANCE NODES

JSP-8 5/81

BLOWDOWN FLOW RATE

- USED TO CALCULATE SRV OR BREAK FLOW
- MOODY SLIP FLOW MODEL USED
- BREAK FLOW ENTHALPY SET BY EXIT ELEVATION AND COLLAPSED LIQUID LEVEL
 - SATURATED STEAM
 - TWO-PHASE MIXTURE
 - SATURATED LIQUID

PREVIOUSLY DOCUMENTED IN NEDO-20533, "MARK III PRESSURE SUPPRESSION CONTAINMENT SYSTEM ANALYTIC MODEL," JUNE 1974

> JSP-9 5/81

DETERMINED FROM

.

- INITIAL REACTOR POWER
- NORMALIZED POWER DECAY CURVE
- COMPONENTS OF NORMALIZED POWER DECAY
 - 1. ANS5 20/10 POWER DECAY
 - FISSION PRODUCT POWER
 - HEAVY ELEMENT POWER
 - 2. FUEL RELAXATION (SENSIBLE HEAT)
 - 3. PRE-SHUTDOWN/DELAYED NEUTRON FISSION
- NO METAL-WATER REACTION FOR "WHITE PAPER" EVENTS

JSP-10 5/81

FISSION PRODUCT AND HEAVY ELEMENT POWER COMPONENT

- FROM ANS STANDARD OCT '73 (ANS5 20/10)
- INFINITE IRRADIATION AT MAX POWER
- FISSION PRODUCT POWER MULTIPLIER

1.2 FOR FIRST 10³ SEC 1.1 FOR 10³ TO 10⁹ SEC

SAME AS USED BY ECCS

JSP-11 5/81

FUEL RELAXATION ENERGY COMPONENT

- FULL POWER TO COLD SHUTDOWN
- EQUIVALENT TO 3 FULL POWER SECONDS
- ECCS CORE HEATUP CALCULATION BASIS
 - INITIAL VALUE ZERO
 - PEAKS AT~10 SEC
 - FALLS TO ZERO IN~60 SEC

JSP-12 5/81

PRE-SHUTDOWN/DELAYED NEUTRON FISSION COMPONENT

- ACCOUNTS FOR
 - FINITE SCRAM TIME
 - DELAYED NEUTRONS
- FROM GESSAR CURVE FOR ISOLATION
 - GESSAR 1976, FIGURE 15.1.4-1

JSP-13 5/81

COMPONENTS

TIME	ANS5 20/10	FUEL RELAXATION	PRE-SHUTDOWN	TOTAL
C	.0839	0	1.0	1.084
0.1	.0839	.0231	1.0	1.107
1.	.0779	.1943	.60	. 8727
2.	.0737	.3233	.10	.5025
4.	.0692	.4631	.07	.6073
10.	.0629	. 4222	.04	,5251
20	.0569	.1544	.02	.2313
40	.0504	.0103	.01	.0707
100	.0426	0	0	.0426
200	.0358	0	0	.0358
400	.0309	0	0	.0309
103	.0245	0	0	.0245
104	.0120	0	0	.0120
105	.00624	0	0	.00624

.

JSP-14 5/81

SUMMARY

- VESSEL CONDITIONS FROM MASS AND ENERGY CONSERVATION
- VESSEL AND INTERVALS HEAT TRANSFER
- BREAK AND SRV FLOWS FROM MOODY SLIP MODEL
- TOTAL POWER DECAY INCLUDING ANSS 20/10
- MODELS USED FOR POOL TEMPERATURE ANALYSIS ARE STANDARD CONTAINMENT ANALYSIS MODELS

JSP-15 5/81