VIRGINIA ELECTRIC AND POWER COMPANY RICHMOND, VIRGINIA 23261

February 13, 1981

Mr. Harold R. Denton, Director Office of Nuclear Reactor Regulation Attn: Mr. Robert A. Clark, Chief Operating Reactors Branch No. 3 Division of Licensing U. S. Nuclear Regulatory Commission Washington, D. C. 20555

Serial No. 084 NO/RMT:ms Docket No. 50-339 License No. NPF-7

Gentlemen:

٠

Specification 4.0.5 of the Technical Specifications for North Anna Unit 2, requires ASME Code Class 1, 2 and 3 pumps and values to be tested in accordance with Section XI of the ASME Boiler and Pressure Code (1974 Edition with Addenda through the summer 1975) except where specific written relief has been granted by the Nuclear Regulatory Commission. North Anna Unit 2 was not, however, designed to meet the detailed inservice testing requirements of subsections IWP and IWV of ASME Code, Section XI. Therefore, pursuant to 10 CFR 50.55a, (g)(6)(i), we request the specific exceptions for the testing of pumps and values as outlined in Attachments A and B.

On September 9-10, 1980 representatives from the Nuclear Regulatory Commission, EG&G and Virginia Electric and Power Company discussed the resubmittal of the Unit 2 IWV and IWP Programs for North Anna. The attached program incorporates all of the changes discussed and includes the following changes and additions.

Changes:

8102190435

SO 6 MM 61 833 M66

2-QS-11, 22/2-RS-20, 30 will be exercised each refueling rather than each cold shutdown and refueling. These valves are not accessible except during refueling outages.

2-RS-103, 118 will be ASME III Cat., B/C rather than A/C. These valves are not subject to Type "C" testing by the North Anna Unit 2 Technical Specifications.

Category E valves are covered by Station Administrative Procedures, specifically the Administrative Lock Log.

VIRGINIA ELECTRIC AND POWER COMPANY TO

Mr. Harold R. Denton

Additions:

.

TV-IA-201A, B - Cat. A.

2-IA-250 is a check value in series with TV-IA-202A and B. This check value is a Category A value with TV-IA-202A, and TV-IA-202B will be a Cat. B value.

MOV-SW-215A, B - Cat. B.

MOV-SW-102A, B - Cat. B.

MOV-SW-106A, B - Cat. B.

2-WT-437, 438, 439 - Cat. A.

2-WT-446, 447, 448 - Cat. A.

2-DA-48 - Cat. A, C.

TV-DA-203A - Cat. A.

TV-DA-203B - Cat. B.

Very truly yours,

ode R. Svlvia

Manager - Nuclear Operations and Maintenance

Attachments

- A. Requested Exceptions to the Inservice Testing Requirements for Pumps as Set Forth In Subsection IWP to Section XI of the ASME Code, 1974 Edition with Addenda through the summer of 1975, North Anna Unit 2.
- B. Requested Exceptions to the Inservice Testing Requirements for Valves as Set Forth In Subsection IWV to Section XI of the ASME Code, 1974 Edition with Addenda through the summer of 1975, North Anna Unit 2.

5

.

REQUESTED EXCEPTIONS TO THE INSERVICE TESTING REQUIREMENTS FOR PUMPS AS SET FORTH IN SUBSECTION IWP TO SECTION XI OF THE ASME CODE 1974 EDITION WITH ADDENDA THROUGH THE SUMMER 1975 NORTH ANNA UNIT 2

PAGE 1____ OF ____

 \mathbf{x}

MARK	PUMP NAME	CLASS	SYSTEM RESISTANCE F - FIXED V - VARIABLE	RELIEF REQUESTED	Pi	ΔP	Q	۷	PROPER LUBE LEVEL OR PRESSURE	т _b	REMARKS
2-CC-P-1A	Component Cooling Pump	3	V	Yes	M *	Rel. *,**	Rel. *,**	М	M	A	Exception 1
2-CC-P-18 *	Component Cooling Pump	3	V	Yes	M *	Rel. *,**	Re1. *,**	М	М	A	Exception 1
2-CH-P-1A	Charging Pump	2	Note 1,2	Yes	Rel.	Rel.	M **	М	м	A	Exception 2
2-CH-P-1B	Charging Pump	2	Note 1,2	Yes	Rel.	Rel.	M **	М	M	A	Exception 2
2-CH-P-1C	Charging Pump	2	Note 1,2	Yes	Rel.	Rel.	M **	М	М	A	Exception 2
1-CH-P-2C	Boric Acid Trans- fer Pump	2	F	Yes	Rel. *	Rel.	Note 1	Re1	. Rel.	Rel.	Exception 3
1-CH-P-2D	Boric Acid Trans- fer Pump	2	F	Yes	Rel.	Rel.	Note 1	Re1	. Rel.	Rel.	Exception 3
2-CW-P-2A	Screenwash Pump (Circulating Water)	3	F	Yes	Rel. *	Rel. *	Note 1	M	Rel.	Note3	Exception 4

PAGE _2_ OF _4_

MARK NUMBER	PUMP NAME	CLASS	SYSTEM RESISTANCE F - FIXED V - VARIABLE	RELIEF REQUESTED	Pi	ΔP	Q	V	PROPER LUBE LEVEL OR PRESSURE	т _b	REMARKS
1-FC-P-1B	Spent Fuel Pit Pump	3	F	Yes	M *	M *	Note 1, 4	М	M	A	NA
2-FW-P-2 .	Turbine Driven Auxiliary Feed Pump	3	F	Yes	M *	M *	Note 1	М	М	А	NA
2-FW-P-3A	Motor Driven Auxiliary Feed Pump	3	F	Yes	M *	M *	Note 1	М	М	A	NA
2-FW-P-3B	Motor Driven Auxiliary Feed Pump	3	F	Yes	M *	M *	Note 1	М	М	A	NA
2-QS-P-1A	Quench Spray Pump	3	F	Yes	M *	M *	Note 1	м	М	A	NA
2-QS-P-1B	Quench Spray Pump	3	F	Yes	M *	M *	Note 1	м	м	A	NA
2-RH-P-1A	Residual Heat Removal Pump	2	F	Yes			Reliet *,**				Exception 5 ·
2-RH-P-1B	Residual Heat Removal Pump	2	F	Yes			Reliet				- Exception 5

. . .

PAGE 3 OF 4

MARK NUMBER	PUMP NAME	CLASS	SYSTEM RESISTANCE F - FIXED V - VARIABLE	RELIEF REQUESTED	Pi	۵P	Q	۷	LUBE LUBE LEVEL OR PRESSURE	т _b	REMARKS
2-RS-P-1A	Inside Recircula- tion Spray Pump	2	V	Yes			-Relief			Note 3	Exception 6
2-RS-P-1B	Inside Recircula- tion Spray Pump	2	V	Yes			-Relief			Note 3	Exception 6
2-RS-P-2A	Dutside Recircula- tion Spray Pump	2	F	Yes			-Relief			Note 3	Exception 7
2-RS-P-2B	Outside Recircula- tion Spray Pump	2	F	Yes			-Relief			Note 3	Exception 7
2-SI-P-1A	Low Head Safety Injection Pump	2	F	Yes	Rel. *	Rel. *	Note 1	М	Rel.	Note 3	Exception 8
2-SI-P-1B	Low Head Safety Injection Pump	2	F	Yes	Rel. *	Rel. *	Note 1	м	Rel.	Note 3	Exception 8
2-SW-P-1A	Service Water Pump	3	v	Yes	Re1.	Rel. *	Rel.	м	Rel.	Note 3	Exception 9
2-SW-P-1B	Service Water Pump	3	V	Yes	Re1. *	Rel. *	Rel.	М	Rel.	Note 3	Exception 9

PAGE 4 OF 4

MARK	PUMP NAME	CLASS	SYSTEM RESISTANCE F - FIXED V - VARIABLE	RELIEF REQUESTED	Pi	۵P	Q	v	PROPER LUBE LEVEL OR PRESSURE	т _b	REMARKS
2-SW-P-2	Screenwash Pump (Service Water)	3	F	Yes	Rel. *	Rel.	Note 1	М	Rel.	Note 3	Exception 10
2-SW-P-4 •	Auxiliary Service Water Pump	3	V	Yes	Re1 *	. Rel.	Rel.	м	Rel.	Note 3	Exception 4
2-SW-P-5	Radiation Monitor- ing Sample Pump	3	F	Yes			Relief				Exception 11
2-SW-P-6	Radiation Monitor- ing Sample Pump	3	F	Yes			Relief				Exception 11
2-SW-P-7	Radiation Monitor- ing Sample Pump	3	F	Yes			Relief				Exception 11
2-SW-P-8	Radiation Monitor- ing Sample Pump	3	F	Yes			Relief				Exception 11
2-RS-P-3A	Casing Cooling Pump	3	F	Yes	M *	M *	Note 1	м	Rel.	A	Exception 12
2-RS-P-3B	Casing Cooling Pump	3	F	Yes	M *	M *	Note 1	M	Rel.	A	Exception 12

EXCEPTIONS

* An exception is required to IWP-4210. Gage lines have not been provided with a suitable means to assure or determine the presence or absence of liquid when the presence or absence could produce a difference of more than 0.25% in the indicated value of the measured pressure. Reference values and subsequent test values will all be taken with the gage lines as designed. Therefore, any error would be common to all values recorded and not affect the evaluation of the data.

** An exception is required to IWP-4110. Instrumentation included under this exception is only + 4% accurate.

1. The accuracy of flow instrumentation at normal operating flows is about $\pm 8\%$. This accuracy does not lend itself to satisfying the requirements of Table IWP-2100-2 where the acceptable range is $\pm 2\% - 6\%$. In addition, varying flow rates interfere with normal plant operation since flows have been balanced to meet heat load requirements. Therefore, the ΔP and Q for each of these pumps will be recorded but not compared to reference values for head curve verification. Additionally, motor current will be recorded for comparison purposes.

2. Suction pressure instrumentation is not installed or required. These pumps are capable of producing greater than 2400 psig discharge pressure, while the suction pressure would nominally be 15 to 20 psig. The Volume Control Tank pressure will be recorded using Control Room indication to establish initial conditions for testing. This indication is about 4% accurate.

3. Monitoring discharge pressure monthly is considered sufficient since these pumps provide the driving force to deliver boric acid to the charging pump suction and operator observation of boration and chemical analysis of boron concentration will indicate whether desired results have been achieved. The Boric Acid Tanks serve as the head for these pumps. Tank level will be observed from the Control Room to establish initial conditions for testing. This indication is about 4% accurate. The pump is totally encased in insulation making Tb, V and Lubricant level or pressure impossible to measure or observe.

4. This pump takes suction from Lake Anna. The reservoir has a minimum level required by Technical Specifications. This indication, which is about 4% accurate, will be observed from the Control Room to establish initial conditions for testing. Proper lubricant pressure or level cannot be observed since the bearings are in the main flow path.

Attachment A.1 Page 2 of 3

5. In accordance with Technical Specification 4.7.9.1, measured quantities will be obtained at least every 18 months. These pumps are not Engineered Safety Features pumps. Operability during extended use can be determined by monitoring reactor coolant system temperature. Due to location of Pi instrumentation, meaningful data can only be obtained with the pump in operation.

x

6. These pumps are run dry to verify operational readiness; therefore Pi ΔP , Q and Proper Lubricant Level or Pressure cannot be measured. Each pump is equipped with a sensor to detect pump rotation. In addition, a vibration alarm associated with each pump will alert Control Room personnel to excessive pump vibration.

7. These pumps will be run dry or wet to verify operational readiness. Each will be observed to verify rotation. At least once per 18 months, each will be tested on its recirculation path when flow and discharge pressure will be observed. A vibration alarm associated with each pump will alert Control Room personnel to excessive pump vibration. Due to pump design, it is not possible to measure a suction pressure. Proper lubricant level or pressure is not required since bearings are in the main flow path.

8. These pumps take suction from the RWST for pump performance testing. This tank has a minimum level required by Technical Specifications, which will be observed from the Control Room. This indication is about 4% accurate. Proper lubricant level or pressure cannot be observed since bearings are in the main flow path.

9. The accuracy of flow instrumentation at normal operating flows is about <u>+</u> 8%. This accuracy does not lend itself to satisfying the requirements of Table IWP-2100-2 where the acceptable range is + 2% - 6%. In addition, varying flow rates interfere with normal plant operation since flows have been balanced to meet heat load requirements. Therefore, the discharge pressure and Q for each pump will be recorded but not compared to reference values for head curve verification. These pumps take suction from the Service Water Reservoir, which has a minimum level required by Technical Specifications. This level indication, which is about 4% accurate, will be observed from the Control Room to establish initial conditions for testing. Proper lubricant level or pressure cannot be observed since bearings are in the main flow path. Motor current will be recorded for comparison purposes.

10. This pump takes suction from the Service Water Reservoir, which has a minimum required level by Technical Specifications. This level indication, which is about 4% accurate, will be observed from the Control Room to establish initial conditions for testings. Proper lubricant level or pressure cannot be observed since bearings are in the main flow path. 11. The flow paths of these pumps are normally dry. At least once per 18 months, each pump will be automatically started in conjunction with a test signal for Containment Depressurization Actuation. These pumps will be run dry monthly.

12. The bearing lubrication for these pumps is grease instead of oil. The grease will be checked annually.

.

.

Attachment A.2 Page 1 of 1

NOTES

1

- In a fixed resistance system, it is required to measure △P or Q, not both (IWP Table 3100-1).
- When these pumps are operated on recirculation flow, the system is fixed resistance. When they are tested as the operating pump, the system is variable resistance.
- 3. Reference is made to IWP 4310, which establishes exception to $\rm T_{\rm b}$ for bearings within the main flow path.
- 4. Pump will be tested only when there is water in the spent fuel pit.
- 5. Symbols and abbreviations from Attachment A.O are as follows:

M - Monthly
A - Annually
Rel - Relief Requested

.

.

REQUESTED EXCEPTIONS TO THE INSERVICE TESTING REQUIREMENTS FOR VALVES AS SET FORTH IN SUBSECTION IWV TO SECTION XI OF THE ASME CODE 1974 EDITION WITH ADDENDA THROUGH SUMMER 1975 NORTH ANNA UNIT 2

Attachment B.O Page 1 of 2

STATEMENT OF PARTICULARS

A review of ASME Class 1, 2, 3 valves has been completed for the North Anna Unit 2 Systems. Attachment B.1 provides a tal lation of the valves that are subject to the testing requirements of ASME Boiler and Pressure Vessel Code, 1974 edition, subsection IWV with addenda through summer 1975. The table identifies the valves to be tested, valve code classes, and valve category per IWV-2000. Relief from the testing requirements of ASME XI is requested when they are determined to be impractical. Specific information regarding the Code requirement determined to be impractical and alternate testing programs are noted in Attachment B.2.

Leak testing of containment isolation valves shall be performed in accordance with Appendix J of 10CFR50 in lieu of ASME XI subsection IWV.

There are no testable Category D valves in North Anna Unit 2 Systems. All Category E valves shall be tested in accordance with IWV-3700.

Any inspection requirements identified as impractical during the course of the inspection period will be noted and included in the inspection program at the time of the next revision.

When one valve in a redundant safety related system is found inoperable during testing, non-redundant valves in the remaining train will not be cycled as procedures require but will be cycled after the first inoperable valve in the system is returned to service.

This valve testing program addresses all valves determined to be essential in the mitigation of the consequences of an accident. The program has been reviewed to assure that testing the valves at the intervals specified will not place the plant in an unsafe condition. Where practical, valves will be cycled at 3 month test intervals.

Attachment B.O Page 2 of 2

System Name Steam Generato: Blowdown BD Component Cooling CC Chemical and Volume Control System CVCS Containment Vacuum CV Containment Sump Drains DA Primary Drains DG FW Feedwater Habitability and Ventilation HV Instrument Air IA Leakage Monitoring LM Main Steam MS Quench Spray QS Reactor Coolant RC Residual Heat Removal RH Radiation Monitoring RM RS Recirculation Spray Safety Injection SI SS Sampling Service Water SW Vent Gas VG Steam Generator Wet Layup WT

System Abbreviation

×

PAGE 1 OF 19

SYSTEM: BD, CC		ASME	ASME	RELIEF	TEST FR	EEQUENCY	DEMADUS	PT
VALVE	FUNCTION	CAT.	CAT.	REQUESTED	EXERCISE	LEAKAGE	REPARKS	
TV-BD-200 A,B,C,D,E,F	Containment Steam Generator Blowdown Isolation Valves	II	В	No	Every 3 Months	Each Refuel- ing	NA	
MOV-CC-200A MOV-CC-200B .	CCW Throttling Valve of RHR Heat Exchangers	III	В	No	Every 3 Months	NA	NA	
TV-CC-200A,B,C 205A,B,C	Containment Air Recirculation Coils Isolation Valves	-	A	Yes	Cold Shutdown	Each Refueling	Note 1	
TV-CC-201A, B	RCP's Thermal Barrier Containment Isolation Valves	III	A	Yes	Cold Shutdown	Each Refueling	Note 2	
TV-CC-202A, B C, D, E, F	RCP's, UBLO, LBLO and Stator Cooler Containment Isolation Valves	III	A	Yes	Cold Shutdown	Each Refueling	Note 2	
TV-CC-203A, B	RHR HX Return Line Containment Isolation Valves	III	A	No	Every 3 Months	Each Refueling	NA	
ТV-СС-204А, В, С	RCP's UBLO, LBLO and Stator Cooler Containment Isolation Valves	III	A	Yes	Cold Shutdown	Each Refueling	Note 2	
RV-CC-228A, B	RHR HX Relief Valve	111	с	No	Note 3	NA	Note 3	

I

PAGE 2 OF 19

SYSTEM: CC, CVCS		ASME	ASME	RELIEF	TEST FR	EEQUENCY	DEMADKS	PT
VALVE	FUNCTION	CAT.	CAT.	REQUESTED	EXERCISE	LEAKAGE	REPARKS	
2-CC-10, 27	CC Pump Discharge Check Valves	III	С	No	Every 3 Months	NA	NA	
2-CC-37	·Unit 1/Unit 2 Common Header Check Valve	III	С	No	Each Re- fueling	NA	NA -	
2-CC-78, 115, 152	RCP's UBLO, LBLO and Stator Cooler Inlet Check Valves	III	AC	Yes	Each Refueling	Each Refueling	Note 4	
2-CC-194, 199	RHR HX Inlet Check Valves	III	AC	Yes	Each Refueling	Each Refueling	Note 4	
2-CC-276 2-CC-289 2-CC-302	Containment Recirc Air Cooler Isolation Check Valves	II	AC	Yes	Each Refueling	Each Refueling	Note 4	
FCV-2160	Aux RCS Charging Control Valve	-	A	Yes	Every Refueling	Each Refueling	Note 27	
HCV-2200A, B, C	Hand Control Letdown Valves	II	A	No	Every 3 Months	Each Refueling	NA	
HCV-2142	Letdown from RHR	II	A	No	Every 3 Months	Each Refueling	NA	

						PAGE	3 0F 19	
YSTEM: CVCS		ASME	ASME	RELIEF	TEST FREE	EQUENCY	DEMADVC	DT
VALVE	FUNCTION	CAT.	XI CAT.	REQUESTED	EXERCISE	LEAKAGE	ИСНИНИЗ	
MOV-21158, D, C, E	Charging Pump Suction Isolation Valves	11	8	Yes	Cold Shut- down	NA	Note 5	
MOV-2267A, B	2-CH-P-1A Suction Valves	11	B	NO	Every 3 Months	NA	NA	
MOV-2269A, B	2-CH-P-1B Suction Valves	11	ß	No	Every 3 Months	NA	NA	
MOV-2270A, B	2-CH-P-IC Suction Valves	11	8	No	Every 3 Months	NA	NA	
MOV-2275A, B, C	Charginy Pump Recirculation Valves	II	В	No	Every 3 Months	NA	NA	
MOV-2286A, B, C MOV-2287A, B, C	Charging Pump Discharge Valves	11	В	No	Every 3 Months	NA	NA	
MOV-2289A	Normal Charging Header Isola- tion Valve	11	A	Yes	Each Refueling	Each Refueling	Note 6	
MOV-2289B	Normal Charging Header Isola- tion Valve	II	В	Yes	Each Refueling	NA	Note 6	

ATTACHMENT B.1

PAGE 4 OF 19

PT

SYSTEM: CVCS		ASME	ASME	RELIEF	TEST FRE	EQUENCY	DEMADYS	
VALVE	FUNCTION	CAT.	CAT.	REQUESTED	EXERCISE	LEAKAGE	REPARKS	
MOV-2350	Emergency Boration Valve	II	В	Yes	Cold Shutdown	NA	Note 7	
MOV-2373	Charging Pump Recirculation Header Isolation Valve	τı	В	Yes	Each Refueling	NA	Note 24	
MOV-2380 2381	Reactor Coolant Pump Seal Wtr. Return Containment Isolation Valves	II	A	Yes	Each Refueling	Each Refueling	Note 8	
RV-2203	Letdown Header Relief Valve	II	AC	No	Note 3	Each Refueling	Note 3	
RV-2209	Letdown Header Relief Valve	II	с	No	Note 3	NA	Note 3	
RV-2257	Volume Control Tank Relief Valve	П	с	No	Note 3	NA	Note 3	
TV-2204	Letdown Header Containment Isolation Valve	II	A	Yes	Each Refueling	Each Refueling	Note 9	
1-CH-118, 113	Boric Acid Transfer Pump Discharge Check Valve	II	С	No	Every 3 Months	NA	NA	

1

L

1

ŧ

I

SYSTEM: CVCS, CV, DA	THE LEGAL CARE	ASME	ASME	RELIEF	TEST FRE	EQUENCY	REMARKS	PT
VALVE	FUNCTION	CAT.	CAT.	REQUESTED	EXERCISE	LEAKAGE		
2-CH-157, 159	Emergency Boration Path Check Valve	11	U	Yes	Cold Shutdown	NA	Note 7	
2-CH-178 193 208 401	Charging Pump Discharge Check Valves	11	0	NO	Every 3 Months	NA	NA	
2-CH-331 332 335	RCS Charging Containment Isolation Valves	II	AC	Yes	Each Refueling	Each Refueling	Note 28	
2-CH-308 284 260	RCS Charging Containment Isolation Valves	II	AC	Yes	Each Refueling	Each Refueling	Note 28	
TV-CV-200	Containment Vacuum Trip Valve	1	A	Yes	Each Refueling	Each Refueling	Note 29	
TV-CV-250A, B, C, D	Containment Vacuum Pump Suction Isolation Valves	1	A	No	Every 3 Months	Each Refueling	MA	
2-CV-4	Containment Vacuum Ejector Isolation Valve	i	AE	Yes	NA	Each Refueling	Note 38	
TV-DA-200A, B	Reactor Containment Sump Pump Discharge Containment Isolation Valve		A	No	Every 3 Months	Each Refueling	MA	

ATTACHMENT B.1

4.

PAGE 6 OF 19

SYSTEM: DA, DG, FW		ASME	ASME	RELIEF	TEST FR	EEQUENCY	DEMADYS	DT
VALVE	FUNCTION	CAT.	CAT.	REQUESTED	EXERCISE	LEAKAGE	REMARKS	
TV-DA-203A	Post Accident Sample System Return Line Isolation Valve	-	A	No	Every 3 Months	Each Refueling	NA	
TV-DA-203B ·	Post Accident Sample System Return Line Trip Valve	-	В	No	Every 3 Months	NA	NA	
2-DA-7, 9	Primary Drain Transfer Line Isolation Valve	II	AE	Yes	NA	Each Refueling	Note 30	
2-DA-49	Post Accident Sample System Return Line Check Valve	-	A,C	Yes	Each Refueling	Each Refueling	Note 28	
TV-DG-200A, B	Primary Drains Transfer Pump Containment Isolation Trip Valves	-	A	No	Every 3 Months	Each Refueling	NA	
HCV-FW-200C	Auxiliary Feedwater Pump Admission Valve to Steam Generator	III	В	Yes	Each Refueling	NA	Note 10	
MOV-FW-200B, D	Auxiliary Feedwater Pump Admission Valves to Steam Generators	III	В	Yes	Each Refueling	NA	Note 10	
PCV-FW-259A, B	AFW Control Valve	III	В	Yes	Every 3 Months	NA	Note 31	

L

PAGE 7 OF 19

SYSTEM: FW, HV, IA		ASME	ASME	RELIEF	TEST FRE	EQUENCY	DEMADYS	PT
VALVE	FUNCTION	CAT.	CAT.	REQUESTED	EXERCISE	LEAKAGE	REPARKS	
RV-FW-200	Turbine Auxiliary Feedwater Pump Discharge Relief Valve	III	С	No	Note 3	NA	Note 3	
2-FW-62, 94, 126 .	Main Feedwater Check Valve at Penetration	11	С	No	Each Refueling	NA	Note 11	
2-FW-70, 102 134	Auxiliary Feedwater Header Check Valves at Main Feedwater Header	II	С	No	Every 3 Months	NA	Note 12	
2-FW-150, 156, 167, 172, 185, 192	Auxiliary Feedwater Pumps Discharge and Recirculation Check Valves	III	С	No	Every 3 Months	NA	Note 12	
2-FW-95, 129, 279	Auxiliary Feedwater Header Check Valves	III	С	No	Every 3 Months	NA	Note 12	
MOV-HV-200A, B, C, D MOV-Hv-201, 202	Containment Purge and Exhaust Isolation Valves	-	A	Yes	Cold Shutdown	Each Refueling	Note 17	
TV-IA-201A, B	Containment Instrument Air Supply	II	A	No	Every 3 Months	Each Refueling	NA	
TV-IA-202A 2-IA-250	Containment Instrument Air Return	II	A	No	Every 3 Months	Each Refueling	NA	

Ł

.

						ATTACE PAGE	HMENT B.1 8 OF 19	
SYSTEM: IA, LM, MS		ASME	ASME	RELIEF	TEST FRE	EQUENCY	REMARKS	PT
VALVE	FUNCTION	CAT.	CAT.	REQUESTED	EXERCISE	LEAKAGE		
TV-IA-202B	Containment Instrument Air Return	11	В	No	Every 3 Months	NA	ИА	
2-IA-428	Air Radiation Monitor Return		AC	Yes	Each Refueling	Each Refueling	Note 28	
TV-LM-200A, B C, D, E, F G, H	Leakage Monitoring Containment Isolation Valves	1	A	NO	Every 3 Months	Each Refueling	NA	
TV-LM-201A, B, C, D	Leakage Monitoring Reference Containment Isolation Valves	1	A	NO	Every 3 Months	Each Refueling	NA	
NRV-MS-201A, 2018, 201C	Main Steam NRV's	111	ш	Yes	Cold Shutdown	NA	Note 13	
SV-MS-201A,B,C 202A,B,C 204A,B,C 205A,B,C	Main Steam Safety Valves	II	c	No	Note 3	ΨN	Note 3	
Terry Turbine Trip Valve	Turbine Driven Auxiliary Feed Pump Trip Valve		в	Yes	Every 18 Months	NA	Note 33	
TV-MS-201A, B, C	Main Steam Trip Isolation Valves	11	в	Yes	Cold Shutdown	NA	Note 13	

								•
SYSTEM: MS, QS		ASMF	ASME	RELIEF	TEST FREE	QUENCY	DEMARKS	pT
VALVE	FUNCTION	CAT.	CAT.	REQUESTED	EXERCISE	LEAKAGE		
TV-MS-211A, B	Main Steam to Auxiliary Feedwater Turbine Pump	111	В	No	Every 3 Months	NA	NA	
2-MS-19, 58,	Main Steam Check Valves		U	Yes	Cold Shutdown	NA	Note 34	
2-MS-117, 119, 121	Main Steam to Auxiliary Feedwater Turbine Pump Check Valves	H	J	Yes	Every 3 Months	NA	Note 32	
TV-2519A	PG Water to Pressurizer Relief Tank Containment Isolation Valve	1	A	NO	Every 3 Months	Each Refueling	NA	
MOV-QS-200A, B	Refueling Water Storage Tank Supply Isolation to Quench Spray Pumps	11	£	No	Every 3 Months	NA	NA	
MOV-QS-201A, B	Quench Spray Pump Discharge and Containment Isolation	II	A	No	Every 3 Months	Each Refueling	NA	
MOV-QS-202A, B	Chemical Addition Tank Discharge Isolation Valve	11	В	No	Every 3 Months	NA	NA	
2-05-11, 22	Quench Spray Pump Containment Isolation Check Valve	11	AC	Yes	Each Refueling	Each Refueling	Note 14	

ATTACHMENT B.1

PAGE 10 OF 19

SYSTEM: RC, RM, RS		ASME	ASME	RELIEF	TEST FRE	EQUENCY	DEMADIZE	DT
VALVE	FUNCTION	CAT.	CAT.	REQUESTED	EXERCISE	LEAKAGE	REMARKS	P1
TV-RM-200A, B, C, D	, Containment Radiation Monitoring Isolation Trip Valves	-	А	No	Every 3 Months	Each Refueling	NA	
MOV-RS-200A, B . 201A, B	Casing Cooling Pump Discharge Valves	II	A	No	Every 3 Months	Each Refueling	NA	
MOV-RS-255A, B	Outside Recirculation Spray Pump Suction Valves	II	В	Yes	Each Refueling	NA	Note 10	
MOV-RS-256A, B	Outside Recirculation Spray Pump Discharge Valves	II	В	Yes	Each Refueling	NA	Note 10	
2-RS-20, 30	Outside Recirculation Spray Pump Discharge and Containment Isolation Check Valves	II	AC	Yes	Each Refueling	Each Refueling	Note 14	
2-RS-103, 118	Casing Cooling Pump Discharge Check Valves to Outside Recirculation Pumps	II	BC	Yes	Each Refueling	NA	Note 15	
2-RC-162	Per Relief Valve PG Water Supply, Containment Isolation Check Valve	I	AC	Yes	Each Refueling	Each Refueling	Note 28	,
SV-2551A, B, C	Pressurizer Safety Valves	I	С	No	Note 3	NA	Note 3	

PAGE 11 OF 16

SYSTEM: RC, RH, SI		ASME	ASME	RELIEF	TEST FF	REEQUENCY	DEMADVS	DT
VALVE	FUNCTION	CAT.	CAT.	REQUESTED	EXERCISE	LEAKAGE	REMARKS	F1
2-RC-143, 145	Containment Isolation Valves for Pressurizer Pressure Dead Weight Tester	I	AE	Yes	NA	Each Refueling	Note 30	
HCV-2758	RHR HX flow Control Valve	II	В	No	Every 3 Months	NA	NA	
FCV-2605	RHR HX Bypass Control Valve	II	В	No	Every 3 Months	NA	NA	
MOV-2700 2701 2720A, B	RHR System Isolation Valves	I	A	Yes	Cold Shutdown	Each Refueling	Note 16	
RV-2721A, B	RHR System Relief Valves	II	С	No	Note 3	АИ	Note 3	
2-RH-7, 15	RHR Pump Discharge Check Valves	II	с	No	Cold Shutdown	NA	Note 16	
2-RH-37, 38	RHR Containment Isolation Valves	11	AE	Yes	NA	Each Refueling	Note 30	
HCV-2936	Accumulator Tank Purge Control Valve	II	A	Yes	Cold Shutdown	Each Refueling	Note 36	

PAGE 12 OF 19

SYSTEM: SI		ASME	ASME	RELIEF	TEST FRE	EQUENCY	DEMADUS	PT
VALVE	FUNCTION	CAT.	CAT.	REQUESTED	EXERCISE	LEAKAGE	REMARKS	F1
MOV-2860A, B	Low Head Safety Injection Pump Suction From Containment Sump	II	В	No	Every 3 Months	NA	NA	
MOV-286ŻA, B .	Low Head Safety Injection Pump Suction From the Refueling Water Storage Tank	II	В	No	Every 3 Months	NA	NA	
MOV-2863A	Low Head Safety Injection to Charging Pump Suction	II	В	No	Every 3 Months	NA	NA	
MOV-2863B	Low Head Safety Injection to Charging Pump Suction	II	В	Yes	Cold Shutdown	NA	Note 5	
MOV-2864A, B	LHSI Pump Cold Leg Discharge Stop Valves	II	В	Yes	Cold Shutdown	NA	Note 10	
MOV-2865A, B, C	Accumulator Outlet Valves	II	В	Yes	Cold Shutdown	NA	Note 19	
MOV-2867A, B	Boron Injection Tank Inlet Valves	II	В	No	Every 3 Months	NA	NA	
MOV-2867C, D	Boron Injection Tank Outlet Valves	II	A	No	Every 3 Months	Each Refueling	NA	

PAGE 13 OF 19

SYSTEM: SI		ASME	ASMF	RELIEF	TEST FR	EQUENCY	DEMARKS	DT
VALVE	FUNCTION	CAT.	CAT.	REQUESTED	EXERCISE	LEAKAGE	REMARKS	FI
MOV-2836 MOV-2869A, B	High Head Safety Injection Off Charging Header	II	AE	Yes	Cold Shutdown	Each Refueling	Note 18	
MOV-2885Å, B, C,. D	LHSI Pump Recirc. Stop Valves	II	В	No	Every 3 Months	NA	NA	
MOV-2890A, B	Low Head Safety Injection to Hot Legs	II	AE	Yes	Cold Shutdown	Each Refueling	Note 20	
MOV-2890C, D	Low Head Safety Injection to Cold Legs	II	A	Yes	Cold Shutdown	Each Refueling	Note 20	
RV-2845A, B, C	Low Head Safety Injection Pump Discharge Relief Valves	II	с	No	Note 3	NA	Note 3	
RV-2857B	Boron Injection Tank Relief Valve	II	с	No	Note 3	NA	Note 3	
TV-2842 2859	Accumulator Test Line Contain- ment Isolation Trip Valves	-	A	No	Every 3 Months	Each Refueling	NA	
TV-SI-200	Accumulator Nitorgen Purge Con- ment Isolation Trip Valve	-	А	No	Every 3 Months	Each Refueling	NA	

1

1

PAGE 14 OF 19

SYSTEM: SI		ASME	ASME	RELIEF	TEST FRE	EQUENCY	DEMADVS	DT
VALVE	FUNCTION	CAT.	CAT.	REQUESTED	EXERCISE	LEAKAGE	KEMARKS	
TV-SI-201	Accumulator to Waste Gas System Containment Isolation Valves	-	A	No	Every 3 Months	Each Refueling	NA	
TV-2884A, B, C	Boron Injection Tank Recirc. Trip Valves	II	В	No	Every 3 Months	NA	NA	
2-SI-1, 21	Low Head Safety Injection Pump Check Valves From Containment Sump	II	с	Yes	Each Refueling	NA	Note 21	
2-SI-9, 32	Low Head Safety Injection Pump Discharge Check Valves	II	с	Yes	Each Refueling	NA	Note 35	
2-SI-18	Refueling Water Storage Tank To Charging Pump Suction Check Valve	II	с	Yes	Cold Shutdown	NA	Note 7	
2-SI-19	Low Head Safety Injection Pump Check Value From Refueling Water Storage Tank	II	с	Yes	Each Refueling	NA	Note 35	
2-SI-6, 29	Low Head Safety Injection Pump Seal Water Supply Check Valve	II	С	No	Every 3 Months	NA	NA	
2-SI-12, 35	Low Head Safety Injection Pump Recirculation Check Valves	II	C	No	Every 3 Months	NA	NA	

PAGE 15 OF 19

SYSTEM: SI		ASME	ASME	RELISE	TEST FRE	EQUENCY	DEMARKS	DT
VALVE	FUNCTION	CAT.	CAT.	REQUESTED	EXERCISE	LEAKAGE	REMARKS	FI
2-SI-47	Accumulator Make Up Manual Isolation Valve	II	AE	Yes	NA	Each Refueling	Note 30	
2-SI-70 .	Boron Injection Tank Recircu- lation Check Valve	II	С	No	Every 3 Months	NA	NA	
2-SI-85, 93, 107, 119	High Head Safety Injection Cold Legs Containment Iso. Check Valves		AC	Yes	Each Refueling	Each Refueling	Note 22	
2-SI-90, 98, 104	High Head Safety Injection to Cold Legs	I	с	Yes	Each Refueling	NA	Note 22	
2-SI-91, 105, 99	Low Head Safety Injection to Cold Legs Containment Isolation Check Valves	I	AC	Yes	Each Refueling	Each Refueling	Note 23	
2-SI-92, 100, 106	Cold Leg Safety Injection Admission Check Valves	I	AC	Yes	Each Refueling	Each Refueling	Note 22	
2-SI-113, 118, 125	Hot Leg Safety Injection Admission Check Valves	I	С	Yes	Each Refueling	NA	Note 22	
2-SI-112, 117, 124	Low Head Safety Injection to Hot Legs	Ι	С	Yes	Each Refueling	NA	Note 23	

PAGE 16 OF 19

SYSTEM: SI, SS		ASME	ASME	RELIEF	TEST FR	EEQUENCY	DEMADVS	DT
VALVE	FUNCTION	CAT.	CAT.	REQUESTED	EXERCISE	LEAKAGE	KEMARNS	
2-SI-126, 128	Low Head Safety Injection to Hot Legs Containment Isolation Check Valves	II	AC	Yes	Each Refueling	Each Refueling	Note 23	
2-SI-136, 132	Accumulator Makeup and Nitrogen Supply Check Valves	II	AC	Yes	Each Refueling	Each Refueling	Note 28	
2-SI-151, 153, 168, 170, 185, 187	Accumulator Discharge Check Valves	I	AC	Yes	Each Refueling	Each Refueling	Note 25	
RV-2858A, B, C	Accumulator Relief Valves	I	С	No	Note 3	NA	Note 3	
TV-SS-200A, B	Pressurizer Liquid Space Sample Line Containment Isolation Valves	I	A	No	Every 3 Months	Each Refueling	NA	
TV-SS-201A, B	Pressurizer Vapor Space Sample Line Containment Isolation Valves	I	A	No	Every 3 Months	Each Refueling	NA	
TV-SS-202A, B	Primary Coolant Cold Leg Sample Line Containment Isola- tion	Ι	A	No	Every 3 Months	Each Refueling	NA	
TV-SS-203 TV-SS-207, А, Б	RHR System Sample Line Containment Isolation	II	A	No	Every 3 Months	Each Refueling	NA	

PAGE 17 OF 19

SYSTEM: SS, SW		ASME	ASME	RELIEF	TEST FRE	EQUENCY	REMARKS	PT
VALVE	FUNCTION	CAT.	CAT.	REQUESTED	EXERCISE	LEAKAGE	NEARING .	
TV-SS-204A, B	Pressurizer Relief Tank Gas Space Sample Line Containment Isolation	-	A	No	Every 3 Months	Each Refueling	NA	
TV-SS-206A, B	Primary Coolant Hot Leg Sample Line Containment Isolation Valves	I	A	No	Every 3 Months	Each Refueling	NA	
TV-SS-212A, B	Steam Generator Sample Line Containment Isolation Valves	II	A	No	Every 3 Months	Each Refueling	NA	
MOV-SW-201A,B,C,D MOV-SW-205A,B,C,D	Recirculation Spray HX Isolation Valves	III	В	Yes	Each Refueling	NA	Note 26	
MOV-SW-100A, B MOV-SW-200A, B	Service Water to Spray Array Stop Valves		В	No	Every 3 Months	NA	NA	
MOV-SW-115A, B MOV-SW-215A, B MOV-SW-217	Auxiliary Service Water Dump Discharge Stop Valves	III	В	No	Every 3 Months	NA	NA	
MOV-SW-102A, B MOV-SW-106A, B	Unit 1 Recirc. Spray Heat Exchangers Cross Connect Valves		В	No	Every 3 Months	NA	NA	
MOV-SW-202A, B MOV-SW-206A, B	Unit 2 Recirc. Spray Heat Exchangers Cross Connect Valves		В	No	Every 3 Months	NA	NA	

1

PAGE 18 OF 19

SYSTEM: SW		ASME	ASME	RELIEF	TEST FRE	EQUENCY	DEMADKS	PT
VALVE	FUNCTION	CAT.	CAT.	REQUESTED	EXERCISE	LEAKAGE	REMARKS	
MOV-SW-203A,B,C,D MOV-SW-204A,B,C,D	Recirculation Spray HX Containment Isolation Valves	III	A	Yes	Each Refueling	Each Refueling	Note 10	
MOV-SW-208A, B	Component Cooling HX Isolation Valves	III	В	No	Every 3 Months	NA	NA	
RV-SW-200A,B,C,D	Recirculation Spray HX Relief Valves	III	С	No	Note 3	NA	Note 3	
RV-SW-201A, B	Component Cooling HX Relief Valves	III	С	No	Note 3	NA	Note 3	
2-SW-24	Auxiliary Service Water Pump Discharge Check Valve	III	с	No	Every 3 Months	NA	ΝΑ	
2-SW-68, 70	Service Water to Recirculation Spray HX Check Valves	111	с	Yes	Each Refueling	NA	Note 26	
2-SW-74, 84, 94, 104	Recirculation Spray HX Inlet Containment Isolation Check Valves	III	AC	Yes	Each Refueling	Each Refueling	Note 26	

ATTACHMENT B.1 PAGE 19 OF 19 .	ASME ASME RELIEF TEST FREEQUENCY REMARKS PT	UNCTION III AI REQUESTED EXERCISE LEAKAGE	r to Spray Array C No Every 3 NA NA	tainment Isolation - A No Every 3 Each Months Refueling	tor Wet Layup A Yes Each Each Refueling Refueling Aote 37			
	ASME	FUNCTION CAT.	Service Water to Spray Array Check Valves	Vent Gas Containment Isolation - Trip Valve	Steam Generator Wet Layup			
	SYSTEM: SW, VG, WT	VALVE	1-SW-309 311	TV-VG-200A, B	2-WT-437, 438, 439, 446, 447, 448			

Attachment B.2 Page 1 of 5

NOTES

- Closing of these valves during power operations would seriously impair the heat removal capability of the containment ventilation system. These valves are vital for continued power operations. As an alternative, they will be cycled each cold shutdown.
- 2. Component cooling water flow to the reactor coolant pumps is required at all times the pumps are in operation. Failure of one of these valves in a closed position during cycling would result in a loss of the cooling flow to the pump. Power operated valves in these systems will be cycled at each cold shutdown and refueling when the reactor coolant pumps are secured. Verification of check valves operation to the open position will be performed each time coolant flow is reestablished after each refueling.
- The frequency and quantity of relief valves subject to test at each refueling outage will be in accordance with IWV-3500. RV-2203 will be exercised in accordance with the frequency in IWV-3500.
- These check valves remain in a normally open position with component cooling flow. The only method for verifying these valves closed is during the refueling outage leak rate test.
- 5. Exercising this valve during power operation would require the charging pump suctions to be aligned with the refueling water storage tank. This would cause a sudden increase in RCS boron inventory. It will be exercised during cold shutdown when the RCS is borated to shutdown conditions.
- 6. Failure of these valves in a closed position during exercising would cause a loss of charging flow and could result in an inability to maintain reactor coolant inventory. These valves will be exercised when the charging system is not in use during cold shutdown and refueling outages.
- Exercising this valve during operation could cause a sudden increase in RCS boron inventory. It shall be exercised at cold shutdown when the RCS is already borated to shutdown conditions.
- 8. To protect pump seals, flow to them is required at all times during power operation. Exercising of these valves will be performed during cold shutdown and refueling outages when the risk of equipment damage is eliminated by securing the pumps.

- 9. This valve cannot be exercised when the charging and letdown systems are in operation due to the high risk of overpressurization of the RCS. It will be exercised at cold shutdown and refueling outages when the charging and letdown systems are secured.
- 10. These values are in the position required to fulfill their function. Exercising this value will not improve its operational readiness. Exercising this value may actually decrease system reliability if the value fails in a nonconservative position. As an alternate, it will be exercised at cold shutdown and refueling outages.
- 11. Closure of mainsteam or feedwater valves during normal operations would result in turbine and reactor trips. These valves are closed during the process of shutdown and reopened during plant start-up. Operation of these valves will be verified when entering or leaving cold shutdown.
- 2-FW-70, 2-FW-156 and 2-FW-279 cannot be exercised during cold shutdown, because steam is not available to operate the turbine driven auxiliary feedwater pump.
- Closure of these valves during power operation will result in a Reactor Trip. As an alternative, they will be cycled each cold shutdown, but not more than once every 92 days.
- 14. It is not possible to verify that these normally closed check valves open without initiation of spray through the upper containment header or by visual observation inside the containment. These valves shall be exercised during refueling outages as per the technical specification requirements for weight loaded check valves.
- 15. It is impractical to exercise this check valve during power operation per IWV-3520. Opening the test valve would break containment vacuum. The check valves shall be exercised at refueling outages.
- 16. Operation of RHR System Valves during power operations would subject the RHR System to full RCS pressure. Valves in the RHR System will be exercised each time the RHR System is put into operation during the cooldown and shutdown of the reactor coolant system. These valves will be leak tested in accordance with technical specifications.
- 17. Opening their valves during power operation would break containment vacuum and violate containment integrity. Their valves shall be exercised each cold shutdown, but not more than once every 92 hours.

Attachment B.2 Page 3 of 5

- 18. These normally closed valves are directly attached to the charging pump discharge header. During operation or cold shutdown the charging system must be in operation. If these valves were opened during these periods, uncontrolled flow to the reactor coolant system may cause overpressurization. As an alternate, these valves shall be cycled at refueling outages and at cold shutdown when the charging pumps can be secured.
- 19. These normally opened valves are in the required position for an accident and are required by Technical Specifications to remain open during power operations. They are closed in the normal process of shutdown to cold conditions and reopened during subsequent heat up.
- 20. These valves are in their required safety position with power to their operators removed during power operations. As an alternative, they will be cycled every cold shutdown, but not more than once per 92 days.
- 21. These normally closed check valves cannot be exercised during plant operation or cold shutdown. No connections exist downstream of the check valve to input flow or pressure which could promote movement of the disc away from the seat. A test connection is required between the isolation valve and the check valves but cannot be installed. The isolation valve and check valve are butt welded together with no spool piece between them to provide a place for the test connection. As an alternate test, the check valve bonnet shall be removed at refueling outages and the disc shall be exercised mechanically to verify free movement without binding.
- 22. The only way to verify that these normally closed check valves open is by initiating flow, using the charging pumps, into the reactor coolant system hot and cold legs. If charging flow was directed to the reactor coolant system in this manner it could cause overpressurization during cold shutdown or provide a loss in charging flow control during operation. As an alternate, these check valves shall be exercised open during refueling outages.
- 23. The only way to verify that these normally closed check values can open is by initiating flow, using the low head safety injection pumps, into the reactor coolant system hot and cold legs. During operation or cold shutdown, reactor coolant system pressure will be higher than the low head pump discharge pressure precluding flow into the vessel. As an alternate, these values shall be exercised open at refueling outages.
- 24. This valve cannot be exercised without possible damage to the charging pumps. It will be exercised with the charging pumpssecured at cold shutdown and refueling outages.

Attachment B.2 Page 4 of 5

- 25. To exercise this normally closed check valve would require the simulation of a loss of coolant accident, i.e. low RCS pressure. The valve shall be verified operable by initiating accumulator injection to the RCS with the vessel head removed during each refueling outage. 2-SI-170 and 2-SI-187 will be exercised when the RHR System is in service during cold shutdown.
- 26. A commitment has been made to the ACRS prohibiting the introduction of service water into the Recirc. Spray Heat Exchangers without subsequent drying by a compressed air purge through the heat exchanger. Exercising this valve will be accomplished at refueling outages when service water flow will be sent through the heat exchangers and air drying may be accomplished.
- 27. Valves FCV-2160 and 2-CH-332 cannot be exercised during power operation or cold shutdown. FCV-2160 is normally closed and its accident position is closed (containment isolation function). The only method for verifying 2-CH-332 closed is during the refueling leak rate test.
- 28. These values cannot be exercised during power operation or cold shutdown. The only method available to verify that these values close is during the refueling leak rate test.
- TV-CV-200 is normally closed and its accident position is closed. The valve will be exercised during refueling outages when establishing containment vacuum.
- These are manual valves and will not be exercised because they are in their accident position (closed).
- PCV-FW-259A, B will be exercised quarterly but will not be timed. Stroke time is not important because these are modulating valves.
- 32. These valves will be tested during power operation. These valves cannot be tested during cold shutdown or refueling because steam is not available to run the turbine driven auxiliary feedwater pump.
- 33. This is the governor valve for the steam driven auxiliary feed pump. This valve is normally open and will be exercised but not timed every 18 months during the overspeed trip test.

34. 2-MS-19, 58 and 98 are located in a high temperature area that would be hazardous to enter during power operation. These valves will be exercised closed during cold shutdown and refueling outages.

.

- 35. These valves cannot be exercised during power operation because the discharge pressure of the low head S.I. pumps cannot overcome RCS pressure. These valves will be exercised during refueling outages and the reactor vessel head is removed to provide enough volume to accomodate the large flow rate. 2-SI-19 will be partially stroked during the monthly pump test.
- HCV-2936 is in its safety position and will be exercised during cold shutdown and refueling outages.
- 37. These are manual valves and they are in their intended safety position (closed). They will be exercised during refueling when the wet layup system is placed in operation.