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ABSTRACT

Analytical and experimental studies of the dynamic resconse f a
system with a geometric nonlinearity that is encounterez in many  al-
tical engineering apolications are described. An exact solution for
the steady-state motion of a viscously cdamped SBerngulli-Euler team with
an unsymmetric ceowetric nonlinearity, under the action of harmonic ex-
citation, is derived. Experimental measurements witn a mechanical moce]
verify the analytical findings. The effect of various parameters or the

system response is determined. Major conclusions based on *his invasti-

gation are presented.
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NOMENCLATURE

amplification ratio for the ith mode and jth solution region

a linear operator of L* and M

harmonically varying load, Flx,t)=F(x) cos Ot
the ith mode generalized stiffness for the jth
spring stiffness of striker and target, respectively
stiffness ratio of target to striker beam

length of beam

a linear differential operator

1th th

the mode generalized mass for the j solution region

uniform mass density of striker beam

h th

the 1t mode forcing function for the j~ solution region
amplitude of base motion

base excitation, S(t) = S, cos at

dimensionless contact time = 1 - 12/(2w)

striker beam displacement

striker beam velocity

striker beam second derivative with respect to x
gap size

gap location along beam

time

coefficients of proportional damping

phase angle between excitation and response

fractior of excitatior period during which w(l)(h.t) <d

strain of striker and target beams, respectively, at specified locations

the ith mode of critical damping for the jth solution region of

the striker beam
the 1th frequency of the striker beam for the jth
frequency of harmonic excitation

xiii

solution region

solution region
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Chapter 1
INTRODUCTION

1.1 Background
The problem of forced vibration of a dynumic system with motion

limiting stops is cf great importance in many practical engineering
applications. Some cases in which this problem is encountered

are (1) the effect of gapped supports on the response of nuclear piping
subjected to postulated rupture conditions, (2) the vibration of me-
chanical equipment possessing deadspace nonlinearities, and (3) the
vibration isolation of dynamic systems mounted on resilient supports
with motion-1imiting stops.

Several investigators have conducted analytical, numerical, and
experimental studies of dynamic systems with geometric nonlinearities
(present, in some cases, together with material nonlinearities).
These studies may be classified into two main categories based on
the method of investigation.

1.1.1 Analytical Studies

Investigators performing analytical studies have, in many cases,
resorted to numerical techniques. For example, Anderson and Singh (1976
and Moreadith, et al. (1973) performed analytical studies on nuclear
steam piping subjected to impulsive rupture loads. Anderson used a
discretization technique to mode! the piping system with the applica-

tion of a numerical procedure on finite element concepts.

1-1
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Masri (1978) reported the results of an extensive analytical/
experimental study of a system having a geometric nonlinearity. He
developed an exact c.osed-form solution for the steady-state motion
of a simplified mathematical model of a cantilever (striker) beam
carrying a concentrated mass whos2 motion i3 limited on one side by
a stop (target) beam and that is subjecte to harmonic excitation.

Anderson and Masri (1979) recently eported the results of analy-
tical and experimental studies of the d/namic response of a system
consisting of a cantilever beam with a gapped suppo~t at the free end.
The system, represented as a single-degree-of-freedom system having
generalized properties, was subjected to a dynamic excitation of sinu-
soiaal and impulsive base accelerations. Their study extended asri's
eariier work (1978) .o systems having both material and geometric non-
linearity.

Jen Hartog and Heiles (1936) presented an exact thenry for the
solutic: of some types of couplings having springs with an initial
set. Quantitative results were obtained by performing numerical cal-
culations. Iwan (1968) discussed the steady-state response of a system
constrained by a Timiting slip joint and excited by a trigonometrically
varying external load.

Recently, Onesto (1973) evaluated the resoonse sensitivity to
various snubber parameters and established ranges for those parameters
that will bound system response to acceptable limits. In his study,
Onesto first used simple models with simple loadings to establish dimen-
sionless response parameters permitting insight into the basic problem,

after which he went on to study more sophisticated models and loading

1-2
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(multi-degree-of-freedom Tumped mass models).

Kotwicki, Chang, and Johnson (1873) recently performed studies
aimed at the demonstration of the effects cf varying support parameters
on the dynamic response of piping systems. The parameters evaluated
were the stiffness of the supports, gap size, and single-acting versus
double-acting supports. The dynamic loadings considered were seismic
response spectra. relief-valve hydraulic thrust, and postulated pipe
rupture. They concluded that varying these parameters changed the
system r:sponse significantly for the cases considered.

In all of the previcusly mentioned studies, the system has usually
been considerad a single- or multiple-degree-of-freedom system but
not a continuous system. For the vibration problem in a piping system,
however, the piping shculd be treated as a beam -- that is, as a contin-
uous system. Watanabe (1978) presented an approximate analytical solu-
tion for the problem of a cantilever beam with symmetric elastic stops
on both sides of the beam by considering the Leam a continuous system
and neglecting the damping effects.

1.1.2 Experimental Studies

In addition to the amalytical studies mentioned, some experimental
work has been done on the problem of dynamic systems with gaps. AIll cf
the experimental studies were mainly designed to gain insight into the
unknown, basic dynamic behavior. of the type of systems mentioned and to
verify the validity of the analytical models proposed. In the analyti-
cal/experimental work conducted by Masri (1976), the effects of various
system parameters and model sizes were presented and the simplified

analytical single-degree-of-freedom system proposed was found to satis-
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factorily agree with the experimental findings. Anderson and Masri (1979)
investigated systems having both geometric and material nonlinearity,
and they made critical comparisons between calculated and measured
responses.

Although the investigations have added considerable k..owledge to
the subject, no results are available in the published literature
regarding the exact response of continuous systems with inherent energy
dissipation and a gecmetiric nonlinearity under the action of an arbi-
trary dynamic environment.

1.2 Scope of Study

To better determine the dynamic response of realistic nonlinear
structural systems, this study concerns the exact solution for the
steady-state motion of a viscously damped Bernoulli-Euler beam with an

symmetric geometric nonlinearity, which is subjected to harmonic
excitation. The elastic beam is assumed to have uniform properties
and arbitrary boundary conditions. The geometric noanlinearity is an
elastic spring placed at some arbitrary location within the span of the
beam and separated from the beam by a certain gap.

Chapter 2 fescribes the analytical studies, including the formula-
tion of the prob.em and the solution algorithm. The experimental
studies that were conducted are presented in Chapter 3. in Chapter 4
the analysis is applied to an example problem and th2 effects of system
parameters are investigated. Major conclusions Lased on this investiga-

tion and recommendations for future work are presented in Chapter 5.
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Chapter 2

ANALYTICAL STUDIES

2.1 Description of the Problem

The mode! under consideration consists of a continuous beam with
an elastic stop placed at a specified distance h from its left end,
as shown in Figure 2.1. Although the figure shows a propped beam with
an elastic stop at a distance h from the support, the solution tech-
nique also applies to beams with arbitrary boundary conditions. The
striker beam is modeled as a continous Bernoulli beam with viscous
damping, and the target beam as a spring.

The exact closed-form solution for the steady-state motion of the

system was based on the assumption that when the system is harmonically
excited, the predominant resporse is one in which the beam contacts
the elastic stop once per cycle, and the conditions of the system are
repeated once per axcitation cycle. This assumed motion reflects the
motion found by investigators to dominate in most erperimental studies
of such systenms.
2.2 Formulation

The system consists of a viscously damped beam of mass M(x) and
stiffness EI, which is separated by a gap d from an elastic stop (spring)
placed at a distance h from its support and having a stiffness Kt' The

s/stem is excited through harmonic base motion.

2-1
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The system is governed by tne partial dif<erential eguation

s o 40
-~ \ O % 1 o .‘X t = : 5\ / \'
L'[‘d(x,t}}+§% Cralx,t)] +M{x) —-—3?-4 Flx,t) (2.1

over the length L of the beam, where

L* = A linear, homogeneous, self-adjoint differential ogerator of
order 2p with respect to spatial coordinate x that specifies
the stiffness distribution of the beam.

C = An operator that is a linear combiration af ogerator L* and
function M, viZ.,

C=aM+aL" (2.2)

in which o and 3 are constant coefficients.

2=

M = A function that specifies the mass distribution of the bezxn.

F(x,t) is a harmonically varying load equal to

o
.
(3N

F{x) cos Qt (
with
F(x) = 285 M(x) (2.3)

for base excitation.

2.3 Steady-State Solut’an

From the experi ental studies of previous investigators (e.g.,
Masri, 1976) as well as from the experimental observations of Section 3,
it has been found that the predominant type of response is that in which
the beam contacts the elastic stop, and the conditions of the system

are repeated once per cycle of the excitation.
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The steady-state solution of tne system shown in Figure 2.1 is
developed using the normal-mode approach. The salution consists of two
segments corresponding to w(])(h,t) < d, 1.e., when there is no contact
between the beam and the elastic stop (the scring), and u(z)(h,t) > d,
f.e., the solution regicn in which the beam and the elastic stop are in
contact (see Figure 2.2). The solution sio.ld satisfy certain condi-
tions of continuity of the displacement and velocity of the system at
times of release and contact for one cycle. These conditions may be
stated as foilows:

(a) Everywhere along the beam, the displacement w{])(x.;z) and
velocity %(])(x.az) at the end of the first region of solu-
tion (the no-contac. solution region) should be equal to tne
corresponding displacement and velocity at the beginning of
the second solution region.

(b} Everywhere along the beam, the displacament w(])(x.:1) and
velocity ﬁ(])(x.a1) at the beginning of the first solution
region should equal the displacement w(z)(x,a3) and velocity

Q(Z)(x,aa) at the end of the second solution region (contact

region).

(c) At the point of contact between the beam ard the alastic stop,
the displacements H(])(h,a‘). w(7)(h,a2). H(Z)(h.uz). and
N(Z)(h.a3} “* the beginning and the end of both solution
reqions s... - equal to the gap d. All of these condi-
tions are stated mathematically in Equations 2.15 to 2.20 of
Section 2,3.2. Details of =he solution are in the following

sections.

2-4
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2.3.1 Frequencies and Mode Shapes

[a order to use the normal-mode method of analysis of the response
of continuous systems, it is first necessary to determine the natural
frequencies and modal configurations. Two types of frequencies and
eigenfunctions are used in the solution of the problem (Figure 2.2a):
(1) the frequencies and mode shapes of the elastic beam alone, which
represents the system when there is no elastic stop (Figure 2.2b), and
(2) those of the beam with the spring, i.e., the constrained beam (Fig-
ure 2.2c), which represents the case where the elastic stop is attached
to the beam at all times.

Procedures for the derivation of the frequencies and modai shapes
of beams such as those in Figure 2.2 may vary considerably depending on
the type of system under consideration. Details on this subject are
available in numerous publications (see, for example, Gorman (1975),
Clough and Penzien (1975), Young (1948), McBride (1943), and Lee and
Saibel (1952)). In the present work, the frequencies and mode shapes
are derived through the solution of the homogeneous beam differential
equation that expresses equilibrium between inertic forces and elastic
restoring forces, subject to prescribed boundary conditions. A summary
of the analysis is presented in Appendix A.

2.3.2 Solution Procedure

th

Referring to Figure 2.3, let @i(j)(x) be the i~ eigenfunction

associated with the homogeneous equation of the undamped system for the
jth solution region and assume that the eigenfunctions satisfy the

orthogonality condition.
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FIGURE 2.3 RANGES OF MOTION OF THE STEADY-STATE SOLUTION



k000 Mx) 0 arax = 5y 1Y) (2.5)
and
R R O R AL T I TEEUALY (2.6)

: ( i
wanere 3. _ is the Kronecker delta, and Mij)and K#J)are. respectively, the

13
generalized mass and generalized stiffness of the {*

mode for solution
region j.
Using the normal-mode approach, the solution for region j can be

written as

O PERUBERLT (2.7)

where j=1 or 2, depending on the solution region.

. (3 . —_
Then substituting for w")(x.t) inte Equation 2.1 leads to

w805 Wiy + ¢ 903 Wey « x g M) (y; w0 19)(e)

" [ft @i(j)(x)fi(j)(x)dx] cos (3t + ay) (2.8)

where o is a phase angie related to the origin % by i " nto.

The solution of Equation 2.8 is
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(1) . 2 L3)
. | i
+ q; " (=) ~ 5in - (2t = u.)
) ST T T j
(4) Ai(j) (1) . (3)
¢ ald J 1 fout o
+ 51n ch) —nTJq r1. smr—K-ﬂ (Ot _.J)
i i
) ;
ald) l_ | (9)
+ COS 61-(‘]) ) JJ) ;1(‘“ sin -—i,-W) (ot - "j)
gt I ri\J
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whera

f1(J) - fgi(.]) (x) f(J)(x) dx
0

() . . _,(.(j)

i “e i :
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subject to the conditions 1, «

g
where
()
3y © 0 § 91
and
13 . :tj ’ 22 2
3 0" 2=

The velocity of the systam is given Dv

ynknown t2 be Zetermined,



B e am e e

+

+

(i), (8), (3 (3)
SPERNTE L LT e ol s T O "
i 5 1] o i i
i § i
vl ‘
MY cos (et - a.) 1 2
i o3 v
)
NN + (3)

(] i i o0 R ,
cos 51- __r,TJT 31n ‘;;(ﬂ (.-t ‘1;.)
1

oAl sin (ae + 4

subject to the condition

.1J_ <

-~

< )‘t < Qj+] .

Evaluating Equations 2.9 and 2.10 at ot = i4] yields

3¢

1

Qs

j+l

) =

+Ss.(j)s.'n9<.]) +55(J) cos ;:(J)
i i i i
+ S7§j) Cos(zi‘] - tﬁj)}
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(3). (J)
$3;77 9y

! 2
+59i‘3)cos

where all the undefined symbols are as given in Appendix B.

The solution for j = 1 is subject to the cendition

G]S::tflz

and the solution for j = 2 is subject %o the congition

12$:2t‘:23.

The proolem solution should satisfy the following conditions:

(23
(xolz) - N(z'
ey

(x,a3) A
«(1)

I3\
+51a,.‘3's*.n E3

"

1

(2.14)
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W
-

wil)

8 nap) Loy v upln) « @ (2.20)

|
“'32) ,lx'h

Equations 2..5 through 2.20 provide six equations to solve for the

unknowns W (x), Nalx), ‘.31(x). i-?z(x), 1, and .

(%)
Multiplying both sides of fquations 2.11 and 2.12 by :,.‘J’(x)

and summing over 1 with j =1, 2 yields the following:

(1 (1) (1) » & {1} in o L1)
Z;,z,- {(x) S]i 957 * S?.,i 47 * S:i sin 2,
+ 561-(”cos 1(” + S?i(” cos (12 + 71‘”)) }
. . (2)
14 ‘. 4
Z ;1(”’x) 531.(”q” + ‘541.”’ Ay * Sai“)sm 5 (1)
i
(! (1), (1) cinfn o (1)
+ 59i cos S’CJi 5"’(‘2 i '>}
o e Y L (2)p 4
2(x) ;1 (x)a5, (2.22)

N
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ORI PERIL LR (2.24)
where
ap * 45 ey (2.252)
Ay = 4520 (3y) (2.25b)
G = 4" ey (2.25¢)
Gy = 4% (ay) (2.254)

Using Equations 2.7, 2.11, and 2,12 together with Equations 2.19 and

2.20 yields



T

T T ——
\

o
o

2 (2) A
’ 571( } eos (;3 sz )l . 4 (2.

, (1) (1) ()
sy '(h) {S11 Mgy #8204,

v 55,1 gin o1 4 56,1 coq 5. ()

(1) o - t1) _ i
+ 371 cos (12 # )} d (2.27)

Using Equation 2.22, together with the orthogonality condition of

Equations 2.5 and 2.6, yields

. a“ ] . = . -(1) -
9,2 ;_CTT :;; [C]unqml - CZlmqm1 + y33“51n 6 - CAUnco::m
1

\
+ 05, sin (32 . :m“")] (2.29)

Similarly, Equation 2.21 yields

= ! -~ * ‘o & (])
W Z,' [csﬁq” * Gy + C8yy sin 8,
"
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+(9,, co 9(1) + Cl10,; cos {a, + = ()

Substituting for &22 and q,, from Equations 2.28 and 2.29 into

Equations 2.23 through 2.26 yields

d > (1) 4
:?: [hquj] - hzjqj] + h3j sin ej + h j cos ej

-’-

th cos(az - Tj(])) - h6j Sin(:f.z - T}”)

+

o o £2) (2) . (2)
h7J sin aj + h8j cos 2. + h9j cos(u3 + 7 )

i
]
. ? 31'( )(X)q” " W](x) (2.30)
3 |m0,a,, + h11 G, + 12, sin s (T« p13 cos 8 (1)
= ppl ppl p P p P

+ hld_ cosia +r(1)>+h15 sinfx +r(1)
P 2 'p p 27 'p

i { (2) 5(2) - 1 /.w &v(])
+ h16p sin 3p - hl?a cos 9 h18p 51nkd3 5

};: ¢;1)(x)&p] = G](x) (2.31)

and

{1)
ot

n20,G,; + 2T, sin 3\ + n22, cos

po 2
—t
e
-
L0
>
ple
4
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+ h23k cos(ﬁz + ?é])> - h24k sin(—;2 + :é1)>

+ h25k sin 9&2) - hzsk cos eéz)

- h27k cos(:3 + TQZ)) J = (2.32)

Also, Equation 2.25 can be written as:

. ¢ -(]) 1 (1\’
:;: [nzaiqi] + h29iqi, + h301 sin 3, + “?‘i cos 2,

+ 'n321. cos<32 + Ti(]))} = d (2.33)

n\ »
From the definition of tJJ’ and 953).

. 3 i)
91(‘]) = :O - <O.J > ‘!i(J':’ . (2.34)

Making use of trigoncmetric identities to express sin and cos of
(3)

ei in terms of a, and c¢., then Equations 2.30 through 2.33

J’
become

:%: [hquj]+ hzjqj] + n:oj sina, + h:lj cos ag]

(1)
. %: 55 Xy, (2.35)

- ,’ - -
:%: [hlopqp] + h]]pqp] + hsbp sin 3, + h:>30 cos 1:}
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: (1) ¥ -~ -5

= 3 (x)q (2.3¢
};: ol ol

3 i - = { \

h19kpk.‘ +h20qu.' + h60] sinag+ holk cos d (2.37)

* - - : , X

h?.’Siqﬂ + h291.qﬂ - hGZ’. sin o + h631. cos =, d (2.33)

Note that Fgyuations 2.35 through 2.38 provide four eguations througn
which the unknowns a., &ﬂ. x,» and 3, can be determined.
The orthogonality conditions of Equations 2.5 and 2.6 can be fur-

ther used with Equations 2.35 and £.36 to yield
s It 3 siny + M ~ { bi
N ;ﬁquj]+i-i21jqj] +H3z_j‘"‘ 2 %1413. cos Jo} {2.359)
& hod i N . N 5 1 ! g
e z;'): [Hsmpqp] + hempqpl + H7np sin 2 * 18mo cos ) (2.40)

2.3.3 Eguation Solution

The solution for the nknowns a,, 35, 347, and 5i1 in Equations
2.37 throigh 2.40 involvrs expanding each aguation in the number of
modes chosen and forming a matrix of the coefficients of C dil’
sin 2, and cos (i =1,2,..., number of modes). An iteration scheme
that is initiated by assuming a value for 1, Detween reasonable
limits based on physical properties of the problem gives a soiution

of the set of equations, thus determining the values of »,, 2 ., 9,4y, and

0
&ﬂ. The rest of the unknowns can then be “aund by back substitution

2-19
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2.3.4 [teration Scneme

The iteration procedure is started by assuming a range of 15 Se-
tween an initial and a final value. The assumed range is chosen based
on the pnysical properties »f the problem and on experience develooed
by solving different cases. A salue of zn increment Lty is then found
by dividing the assumed solution range by the number of increments
chosen for iteration. At each value of wy in the range (o,); 144.q tO
(32)f1na1’ the set of equations is solved and a test is performed %o

see if the parameter g satisfies the convergenca criterione , where:

-

-
B " Minimum value of [ sin By & ,/1 - cos‘;o (2.41)

At this point a new range for the sclution is determined around the Ao
corresponding to €5 For this new range, the initial value of 3 is
set as the maxirum value of either tne old initial %, Or the minimum
value of (QZ - 3“2)' and the maximum range value is set as the minimum
value of either the 1d inal value of ap Or the minimum of {12 + ;gz).
The iteration is then regeated for the new range and the equations are
again solved and a new test value of €, is found. This procedure is
repeated as many times as needed up to the maximum number of iteration
steps. If the €y value is within the specified tol¢rance limits, con-
vergence is reached and the solution is found. In the case where con-
vergence could not be reached., the iteration p~ _edure is modified to

find an approximate solution. A back substitution for the rest of the

: : ] 1)
unknowns is then carried out using the values of the unknowns qi( "y

Ld { ) & . d &
qi‘]’, Ay and i found from iteration, and the equaiions that deter-
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mine the solution are checked to see whether the solution is accepta-
ble. Figure 2.4 shows the flow chart corresponding to this iteration
scheme.
2.3.5 Stresses

Considering small deformations, the stresses c(x, t) at
any point along the beam can be evaluated using the standard stress-

strain relationships deried in structural analysis bocks:

2. (J)
: = 39, (x) ‘
R TRIRE B piahe NIRRT (2.42)
i=1 =8
where
2. (3)
a 91 Jl(x) u(j)
— = o, (x) (2.43)
X"
denotes the sezond spatial derivative of the ith mode shape function
for the jth solution region.
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Chapter 3
EXPERIMENTAL STUDIES

The cbjectives of the experimental studies reported nerein are
(1) To verify the validity of the amalytical resylts de-
scribed in Section 2, and
(2) To investigate tne effects of system parameters.

3.1 Description of Apparatus

A scale model of a cantilever (striker) beam with a ore-sided mo-
tion-limiting stop (target) was mounted on a vibration exciter and sub-
jected to sinusoidal vibration at several diffarent magnitudes of ex-
citation,

3.1.1 Beam Models

The striker and target beams were made from sheets of miid steel.

Details of the striker and tarcget beams are shown in Figure 3.1.

3.1.2 Test Fixtures

Figure 3.2 shows the lightweight yet ri id fixtures that simuiate
a fixed-free boundary condition for the striker b2am and 2 clamped-
free boundary condition for the target beam.

3.1.3 Instrumentation

In addition to a number of strain gages that were mounted on the
striker and target beam models. several vibratiun pickups were 3tftacnaa
to the test fixtures and the vibration exciter tQ monitar the exciticion
being furnished to the system. A mode! of the sysTtem under consigera-

tion is shown in Figure 3.3.

3-1
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3.2 Test
3.2.1 Vibration Test Setup

Figure 3.4 shows the setup of the test in which the system was
subjected to a base excitation of the form S(t) = So sin Qt.

3.2.2 Description of Vibration Machine

The vibration exciter was an <...‘rodynamic shaker (Figure 3.5)
canable of generating arbitrary motion. [t was used to generate har-

monic excitation in a horizontal plane.

3.2.3 Vibration Test Procedure
In a typical test, the cap clearance d wis set to a specific value,
the shaker base amplitude level So was selected, and the shaker fre-

~

quency was set to a given frequency value 0. The excitation and the
system response were then measured and recorded. Measurements were

made of the following quantities:

w:

—

“r

~—
"

sinusoidal base acceleration = -0 S0 sin Ot

displacement at chosen stations along the beam

=
——
>
-
ot
EN—
"

W(x,t) = velocity at chosen station along the beam

s](x,t) = striker beam strain at the chosen stations

sz(x.t) = target beam strain at a station chosen along the

target beam

Sample records of the measured quantities are shown in later figures.

The excitation frequency I was then increased to some value :] anc
the same response parameters were measured and recorded again. [ue to
the nonlinearity of the system parameters, the respons. s termined
for both increasing and decreasing excitation frequency va'ues that
spanned a range of +50% with respect to S the fundamental frequency

of the striker beam.
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FIGURE 3.3 MODEL CONFIGURATION

3-5



(a) GENERAL VIEW OF THE SETUP (b) OFTICAL DISPLACEMENT FOLLOWER

FIGURE 3.4 VIBRATION TEST SETut
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3.2.4 Vibration Data Gathered

Free vibration (logarithmic decremant; see Figure 3.6) and steady-
state [half-power method) tests were conducted on the striker beam
model in order to determine its natural frequency and ratio of critical
damping. A summary of the beam characteristics is aiven in Table 3.1.

The beam was tested with two different gaps at a specific level
So and frequency 3. For each value of d, the frequency was varied from
nmin to Qmax and then back to Qmin‘ This was repeated for each of two
different striker- to target-beam ratios, which were produced by either
changing the target beam dimensions or altering its boundary conditions
to simulate a certain elastic-stop stiffness. The peak values of the

steady-state response were measured and recorded.

3.2.5 Reduced Vibration Data

The data discussed in Section 3.2.4 were reduced to a more meaning-

ful form by introducing the following dimen<’. : ass ratios:

— = excitation frequency ratio

@

R exciting frequency

natural frequency of striker beam

g- = clearance ratio
“o

. 3ize of gap between striker and target beam

amplitude of sinusoidal base motion

K b
i 1 ; 2 g . _target beam stiffness *
Ke * stiffness ratio striker beam stiffness .
A : ; . Dpeak 5-5 amplitude of striker beam
§g * amplification ratig = amplitude of sinusoidal base motion
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TABLE 3.1

S8EAM DIMENSIONS AND WEIGHT

Striker Beams

Dimension, in.

Length 8.0

Thickness 0.057

Width 0.533
Target Beams

Length 3.72

Thickness 0.087 - 0.025

Width 0.535 - 0.585
Striker Beam Concentrated Weight

(with accelerometer) 32.0 gm
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Sampole reduced data are plotted in Figures 3.7 and 3.8 1 the form of
amplification ratio versus excitation frequency ratio for various
excitation levels, and for clearance ratios, including the case where
d/S° is very large.

3.2.6 Discussion of Vibration Results

Figures 3.9 to 3.16 represent sample time histories of the vibra-
tion response of the system for certain chosen parameter combinations.
These figuras show the displacement and the velocity at the tip of the
striker beam, in addit n to the base acceleration S and the strain ¢,
at three-fourths of the striker beam length, and the strain €5 at the
middle of the target beam for different levels of excitation .

The electronic instrumentation used to measure and record the ana-

log signals introduced extraneous phase shifts that tended to distort the

actual phase relationships between the recorded dynamic measurements.
Consequently, the time histories shown in Figures 3.9 to 3.12 do not
show accurate phase reiationships.

Figure 3.9 shows the response for the case of an excitation level
S = §]. for which the maximum peak displacement is such that the maxi-
mum relative deflection at the contact point is less than the gap d.
This results in a simple harmonic response of the system at a frequency
0 corresponding to the exciting frequency of the base motion, S(t) =
So sin ot. The response shown in Figure 3.10 with a base excitation
S = §2 > §1 corresponds to the limiting case where the maximum relative
deflection is equal to the Jap d (note the effect that hitting makes on

the curves for velocity and strains ¢, and 52).
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Increasing the excitation level further to S = §3 > §2 causes the
two beams to impact periodically, once per cycle of the excitation
(Figures 3.11, 3.12). These impacts result in a significant contribu-
tion to the response from the higher modes of vibration of the beams,
as can be seen by comparing the records of the strains €, and € shown
in the figures, with increasing excitation levels.

The results obtained from the experiments conductcd indicate the
presence of nonlinear phenomena, such as the multivalued response.
This particular phenomenon is evident from the fact that the st.iker
beam maintains impact with the target even if the increasing freguency
Q resilts in a linear (unconstrained) response less than the gap d
(i.e., inadequate causing contact between the two beams). Or the other
hand, for decreasing frequency values, impacts will not be sustained
until Q<0 for which A(2') < d. Note that this multivalued response
behavior is characteristic of systems with hardening nonlinearities

(Stoker, 1950), which is the type of system under consideration.
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Chapter 4

NUMERICAL RESULTS

4.1 Application to an Example Problem

Based on the analysis presented in Section 2, a comouter program
wes developed for the construction of a typical steady-state solution
of an arbitrary example problem. The system chosen for this example is
shown in Figure 4.1. It consists of a uniform cantilever beam with an
elastic stop (spring) placed at its end with a clearance (gap) d. The
beam is assumed to have a constant stiffness EI, a uniform Cross sec-
tional area AS, ar ass density m. Tne computer program was designed
t0 solve for the unknowns of the problem discussed in Chapter 2, using
the iteration scheme presented in Section 2.3.4. A brief description
of tne program is presented in Appendix C.

For the derivation of the damping ratio ;1(j). the damping para-
meters a and = can be related to the frequencies and ratios of critical

damping of two modes i and j (see, for example, Timoshenko, et i .

1¢74) by
a = (27, = Bw) w, (4.1)

and

- ;1“’1) (C..‘jz - wz\ (4.2)

For tne present work, the values of 2 and 2 were determined from Equa-

tions 4.1 and 4.2 so as to make the damping ratios of the first two

4-]
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modes of vibration of the unconstrained region of solution Sy * Ca® 3

4 *0
: 3 R . " :
= constant. The damping ratio ;i(J' for each mcde of both solution

regions is then determined by using the following equation:

ACLIRY | P NP (4.3)

4.1.1 Present Theory

Typical steady-state solutions for different arbitrary sets of
parameters are illustrated in Figures 4.2 through 4.3, where the dis-
placement W(x,t), the velocity W(x,t), and the curvature W"(x,t) at
different stations along the striker-beam length are shown for one
perid of the excitation. The contribution of the higher modes to the re-
sponse is clear in all of the figures, as was the case in the experi-
mental data discussed in Section 3.2.6.

Furthermore, it can be seen that the amount of penetration (W(L,t)
- d), the durat‘on of contact, and the maximum positive peak displace-
ment depend largely on K* (the stiffness ratio of the target to the
striker beam), as well as on the damping of the striker beam ard the
gap size. A complete discussion of the effects of the various para-
meters is presentec in Section 4.2.

4.1.2 Comoarison between Theory and Experiment

Figure 4.10 presents a typical comparisct of the theoretical and
experimental results. In this figure the stitfness ratio K* is about
25 and the damping of the striker beam is about 4%. [t is clear from
this figure that the agreement between the trzoretical and experimental
results is fairly good, even though only two modes were used in the

in the theoretical analysis.
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4.2 Effect of System Parameters

The effects of the system parameters were studied by varying one
parameter at a time while keeping the rest constant. The graphs shown
in the figures clarify the various effects. Figures 4.11 through 4,26
represent the dimensionless positive peak response wmax/so versus the
dimensionless frequency ratio Q/w] for the chosen parameters, whereas
Figures 4.27 throuch 4,38 represent the dimensionless no-contact time
ratio 2,/m versus the dimensionless frequency ratio Q/w]. The effect
of each parameter is discussed in the following separate sections.

4.2.1 Excitation Frequency Effe:t

[t can be seen from Figures 4.11 throuah 4,14 that the peak re-
sponse ratio Hm"/so is a nonlinear function of the excitation fre-
quency Q/w1. The maximum peak response occurs at different excitation
frequencies, depending on the beam-to-spring stiffness ratio K*,

4.2.2 Damping Effect

It is found that the amount of damping 54 oresent in the primary
system has a significant effect on the peak response of the system with a
gap, as would be the case for the system without a gap. Generally, the
peak response is reduced by increasing the amount of damping of the
primary system. The amount of reduction depends on the values of the
stiffness ratio K*, clearance ratio d/So, and excitation frequency ratio
Q/w,. Figures 4,15 through 4.20 show the effect of the change in the
value of the damping ratio for stiffness ratios K* equal to 5, 10, and
20 and clearance ratios d/So equal to 1.5 and 2.5. It is clear from

these figures that the maximum reduction occurs at the peak values of

the response. Figure 4.16 illustrates this for the case of stiffness

4-13
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ratio K* equal to 5 and for a gap size u/So equal to 2.5. An increase
in the value of damping ratio 25 from 0.05 to 0.10 would reduce the

maximum positive peak response W /So by 38.5% at an excitation fre-

max
quency ratio of Q/u] = 1,2, whereas the reduction is very small, if
any, at the frequency ratio of 0.8.

4.2.3 Stiffness Ratio Effect

The stiffness ratio has a significant influence on the response of
the system, as can be seen from Figures 4.11 through 4.14 in which all
the parameters except the stiffness ratio K* are kept constant. Ncte
that in all of these figures, increasing the stiffness ratio alone
would reduce the maximum peak response an amount dependent upon the
damping ratio %5 and the gap size d/So.

The amount of peak response for a certain excitation frequency
ratio Q/»l would be greater or less, depending on the range of the exci-
tation. For example, Figure 4.11 shows that where the constant gap
ratio d/So is equal to 1.5, at an excitation frequency Q/u] equal to
1.2, the peak response is greater for a lower stiffness ratio K*; where-
as for an excitation frequency ratio i/u] equal to 1.4, the peak response
is greater for a nigher stiffness ratio. Thus, it could be concluded
that hardening of the spring does not imply a reduction in the peak
response amplitude in all excitation fregquency ranges. It is also seen
from Figure 4.11 that a 10.5% reduction in the maximum peak response
resulted from a 100% increase in the stiffness ratio K* (from K* = 5 to

K* = 10), although a 28.5% reduction is achieved by a 400% increase in

the stiffness ratio (from K* = 5 to K* = 20).
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4.2.4 Effect of Gap Size

1t is seen from Figures 4.21 through 4.26 that decreasing the gap
size generally reduced the value of the maximum peak response by an
amount that depends on the stiffness ratio K* and the damping ratio Z4d
on “he other hand certain ranges of the frequency of excitation Q/w]
may have an opposite effect on the peak response. For example, decreasing
the gap size ratio d/So by 40% resulted in a 13% reduction in the value
of the maximum peak response for a constant stiffness ratio K* equal to
5.0 and a constant damping ratio &y equal to 0.05. The same stiffness
ratio and same percentage of decreases in the gap size resulted in a 14%
reduction in the maximum peak response for a constant damping ratio of
0.10. Figure 4.24 shows that the peak response is reduced about 36%
at an excitation frequency ratio Q/u] equal to 0.9 for a 40% decrease
in the gap size d/S]; while a 7% reduction in peak response is achieved
at a higher excitation frequency ratio equal to 1.4.

4.2.5 Contact Duration

The study of the time of contact is important in that it shows how
long the primary system (the striker beam) stays in contact with the
elastic ~*op (spring), for then the whole system is considered a con-
strained beam in the solution of the problem. In all of the cases of
parameter permutations studied, the contact time of the primary system
with the elastic stop was noted. Graphs of the variation of the non-
dimensional no-contact time aZ/n versus the excitation frequency ratio
Q/w] are shown in Figures 4.27 through 4.38. In Figures 4.27 through
4.29, all parameters are kept constant except the stiffness ratio K*.
This was done to see the effect of the elastic stop stiffness on the

contact time. Tt is seen in these figures that the maximum contact time
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is reduced by increasing the stiffness ratio K*, depending on the exci-
tation frequency range. For examole, by increasing the stiffness ratio
from 5 to 10, the maximum contact time is reduced 13% at excitation
frequency ratios n/w] = 1.25 and n/w] = 1.35, respectively. This
illustrates that the percentage of decrease is not linear. Figures 4.30
through 4.32 are similar to Figures 4.27 through 4.29 except the damping
is reduced to 0.05. This reduction affects the contact time ratio az/n
by increasing the contact time, the amount of increase depending on the
stiffness ratio and the excitation frequency ratio. Iacreasing the
damping of the primery system from 0.05 to 0.10 causes a decrease in

the maximum contact time of about 5.5% for a stiffness ratio K* equal

to 5.0. Figures 4.33 through 4.38 are similar to those of 4.27 through
4.32 except the clearance ratio d/SO is reduced about 40%. This was done
to see the effect of the gap size on the contact duration. Comparison
between Figures 4.27 and 4.3” shows that a 40% reduction in the gap size
ratio for 2 constant stiffness ratid of =.0 and a 0.10 damping ratio
caused an increase of the contact time by at least 7.6% at an excitation

frequency ratia ﬂ/u] = 1.25 and by at most 21% at Q/w1 = 1.42.
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Chapter 5

SUMMARY ANN CONCLUSIONS

An exact closed-form analytical solution for the steady-state
motion of a viscously damped Bernoulli-Euler beam with an unsymmetric
geometric nonlinearity wat derived using the normal-mode approach. The
slastic beam was assumed to have uniform properties and arbitrary
boundary conditions, and was subjected to a harmonic excitation. The
geometric nonlinearity consists of an elastic spring, placed at some
arbitrary location within the span of the beam and separated from the
beam by a certain gap.

A computer program was developed for the construction or a typical
steady-state solution of an arbitrary example problem based on the
formulation presented. The program was designed to solve for the un-
knowns of the problem using an iteration scheme presented in Section
2.3.4. The program also allowed the use of an arbitrary number of modes.
A typical steady-state solution of an arbitrary example problem was pre-
sented, as well as a study of the etfect of various systam parameters.

Experimental studies with a mechanical model were performed to veri-
fy the validity of the analytical solution and also to investigate the
effect of system parameters. A fairly good agreement between the theo-
retical and experimental results was achieved.

From the analytical/experimental work carried out in this study, it

was found that:
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(a) The analytical solution presented herein provided a model for
the understanding of the dynamic response of realistic nonlinear
structural systems having components that can be modeled as
continuous beams with geometric nonlinearity.

(b) The parametric study performed provided useful information
regarding the amount of penetration, the duration of contact,
and the maximum positive peak displacement.

Additional studies along similar lines are needed. For example,

the effect of other types of loads, such as blast or earthquake loads
shou . pbe co.;idered; and more sophisticated models should be constructed
by adding a mass and a dashpot to the elastic stop, or, better yet, by

considering the elastic stop as a beam.
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APPENDIX A
DERIVATION OF FREQUENCIES Ai.D MODE SHAPES

A.1 The Governing Differential Equa. ~n of Free Vibration

There are two commoniy used methods for obtaining solutions to the
problem of free vibration of beams. The method most frequently used,
where possible, is to solve the beam differential equation that ex-
rresses equilibrium between inertia forces and elastic restoring forces,
subject to prescribed boundary conditions. The second method is an en-
ergy method, which consists essentially of utilizing the fact that in
free vibration the sum of the beam's potential energy, due to its uepar-
ture from a static equilibrium configuration, and the kinetic eneragy,
due to the motion of its particles, is constant.

The differential equation governing the free vibration of uniform

beams is
62H 3 El 347 t
___ﬁfi_l + - s __Lifi_L = 0 (A.1)

where W(x,t) is the transverse displacement of the beam; E, I, A, and o
are the modulus of elasticity, moment of inertia, cross-sectional area
and density of the beam, respectively; and t is the time.

In Equation A.1, the effect of shear strain and rotary inertia are
neglected. Using the first methoc mentioned above, Equation A.1 can be
solved by means of separation of variables. This can be done by ex-

pressing the displacement W(x,t) as
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Wix,t) = X(x)«T(t) (A.2)
where X(x) is a function of x only and T(t) is a function of t only.
Substitution of Equation A.2 into Equation A.1 yields the following two

ordinary cifferential equations:

2
Q.I%El & ot Tle)-% B (A.3)

dt
and
2:-’%11 - g xx) = 0 (A.4)
X
where
- pAT (8.5)

and w is the circular frequency of the beam vibration.

The scluticns for these equations are

X(x) = A sin 8x + B cos 8x + C sinh 3x + D cosh ax  (A.6)

and

T(t) = cos (wt + a) (A.7)

where « is a phase angle depending on the initial conditions.
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The four constants A, 8, C, and D in Equation A.6 define the shape
and amplitude of the beam vibration. These constants must be evaluated
by consideration of the boundary conditions at the ends of the beam
segment. Two conditions expressing the displacement, slope, moment, cr
shear force will be defined at each end of the beam segment. These may
be used to express three of the four constants in terms of the fourth
and wiil also provide the frequency eguation from which the frequency
parameter 3, and hence the vaiue of w, can be evaluated. The Fourth
constant cannot be evaluated directly in a free vibration analysis.
This constant defines the amplitude of motion, which depends on the
initial conditions.

A.2 Boundary Conditions

2eams may be subjected to two types of bouncary conditions:
c¢lassical and nonclassical.

A.2.1 C(lassical 8oundary Conditions

These types of boundary conditions involve only the shape of the
beam deflection curve at its boundaries. They consist of the following:
1. Free Boundary Conditions
These conditions specify that the moment as well as tne

shear force at the beam boundary are equal to zero, i.e.,

- B 3 }
d &X) = d X(X) { = "‘\
- 0 (A.8)

2 |
e o boundary

2. Clamped Boundary Conditions
Clamped boundary conditions specify that the displacement

as well as the slope of the beam should egqual zero, i.e.,
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R

I — TN, e~

.
Rx) = B (A.9)
!boundary

3. Simple Boundary Conditions
This case of boundary conditions states that the displace-

ment as well as the curvature of the beam boundary should equai

zero, i.e.,
dZXx |

Kx) = S (A.10)
dx boundary

A.2.2 Nonclassicial Boundary Conditions

Only one kind of nonclassical boundary conditions will be mentioned
here -- the lateral coil spring. It is the type that may be used for
the solution of the problem of concern. This conditicon states that at
the position of the spring, the shear force on the beam is equal to the

spring restoring force or

3
EIdXx

dx

= KX(x) (A.11)

A.3 Formulation of the Solution

Two cases will be considered here, the clamped-free beam and the
clamped-constrained beam (i.e., the cantilever beam with a coil spring

at its end). Other combinations could be similarly derived.



A.3.1 Clamped-rree Beam

For the case of the clamped-free (cantilever) beam, Figu-2 A.la,
the boundary conditions are as follows. At the end x = 0, the boun-

dary conditions are of *he type 2, i.e., Equation A.9 or

X(x) L . 9§£}l | = 0 (A.12)
=0 x=0

whereas at the end x = L, the boundary conditions are of type 1, i.e.,

Equaticn A.8 or

|
2., + | 3
d°x(x) | . dx(x) ‘ (A.13)
dx f dx i_ :
ix=t x=L

These boundary conditions, when substituted in Equation A.6, yields

sin 3L + sinh 8L cos EL + cosh BL A 0 .
= (A.14)
cos 3L + cosh 8L sinh 3L - sin 3L 8 0

For the coefficients to be nonzero, this equation requires that the
determinant of the square matrix vanish; setting this determinant equal

to zero provides the frequency eguation
1 + cos 3L coshB8L = 0 (A.15)

The solution of this transcendental equation then provides the values
of 3L which represents the freguencies of vibration of the cantilever

beam,

From the two equations in the matrix expression of A.14 and the

relationships from the first two boundary conditions, Equation A.6 can

A-5



bx(g)

7

7

v

Z ) — -
vy

4

A

- L _]
(a) CLAMPED-FREE BEAM

b x(2)

Z

A

A

Z ;
A

2

|

(b) CLAMPED-CONSTRAINED BEAM

FIGURE A-1 TwO BEAM CONDITIONS

A-6



be written as

X(x) = A[Sin 3x - sinh 8x + (cosh 8x - cos 3x)] (A.16)

sin 8L + sinh 5L \
cos gL + cosh 8L (A.17)

Then the mode shapes can be found by substituting the value of 3L that
is obtained from the freguency Equation A.15 into the Equation A.16.

A.3.2 Clamped-Constrained Beam

In the case of a cantilever beam supported at its end with a trans-
verse linear coil spring (Figure A.1b), there are three classical boun-

dary conditions to be imposed:

Ko | o= o0 EX R (6 S PR 1Y
| ol
x=0 x=0 x=4
The fourth boundary condition is the nonclassical one:
3
e SXX) o xxix) (A.19)

dx | xsi.

On substituting Equations A.18 and A.1S into Equation A.6, it is found
that A = -C, 8 = -0, ind the solution for the vibration frequencies re-

quires finoing those values of 3 that satisfy the determinant equation
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sin 8L + sinh 2L cos 2L + cosh 8L
cos 2L + soch 3L (sin BL + sinh 2L) =<0
i : pvlar, g
e e (sin 8L - sinh BL) + -3-(cos gL - cosh 3L)
(4.20)
where
-* o K
K T (A.21)

[t can be seen from Equation A.20 that as (o approaches zero the equa-
tion approaches that of the vibration of a clamped-free beam.

Simplifying Equation A.20 yields

K> (sinh 8L cos 8L - sin BL cosh BL) - 53(1 - cos 8L cosh 8L) = 0
(A.22)
The solution of the characteristic Equation A.22 then provides the
values of the frequency of vibration of the system.

In a way similar to the previous case considered, the mode shapes

can be obtained as
X(x) = sinh 8x - sin 8x + (cosh 3x - cos 8x) (A.23)

where

-{sin 8L + sinh 8L)
cosh 8L + cos 8L

A-8



APPENUIX B

DEFINITION OF SYMBOLS
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APPENDIX C
COMPUTER PROGRAM

The computer program used for the solution of the problem was de-
veloped based on the formulatiun presented in Chapter 2. The program
was designed to solve for the unkncwns of the problem, a,, 24, 49 and
éil’ using the iteration scheme presented in Section 4.3.4 anc admitting
an arbitrary number of modes. The rest of the unknowns, a2 and 612.
are then found by back substitution, and the time variables, qf(t) and
ég(t) are computed. The response, velocity, and curvature 2s finctions
of time are then easily computed using the oroper formulas. A flow
chart showing the steps involved for the solution of the problem is
given in Figure C.1. The flow chart entries are explained as fo.lows:

1. Input data. The data related to the program are explained

below.

E = EE = Young's modulus of elasticity of the
striker beam.

E*I =EI = Striker beam stiffness  (oung's
modulus E multiplied by the moment of
inertia [.)

L=EL= Length of the striker beam.

M(x) = DNSTY = Striker beam mass density per unit
length.

ét . Excitation amplitude level.
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d=0S = Gap size.

z(1) = ZETAI(1) = First mode damping ratio.
z(2) = ZETAI(2) = Second mode damping ratio.
ﬁ% = OMGFAC = Value of the exciting frequency
ratio.
(“2)1n1t1a1 = AINTLP = Initial value of ;2/7 for iteration,
(Gz)final = AFNLP = Final value of ap/m for iteration.
!
Tolerance 3(::) = Tolerance level for az/e.
[teration The number of increments for iter-
INC =
increment ation.
Function
EPFMIN = Iteration tolerance level.
tolerance

Maximum number The maximum number of modes chosen
= MAXNOM =

of modes for the solution.
A(ﬁ%)’ OMGINC = Increment of the exciting frequency
ratio.
éL- = GAPFAC Increment in gap size ratio.
(s
Maximum Tk2 maximum number of iterations
= [TRMAX =
iterations to be used.

2. Frequencies of the free and constrained beams.

Two different subroutines for the evaluation of the frequen-
cies of each beam constitute pait of the program. These sub-
routines evaluate the required number of frequencies stored and
used in other parts of the program, such as the computation of
the mode shapes.

3. Mode shaoes for the free and constrained beam.



A separate function subroutine for each case is provided to

compute the mode shapes where needed.
Second derivatives of the mode shapes of the free and con-

strained beams.

As with the evaluation of the mode shapes, two runction sub-

routines are available for the computation of the second deri-
vatives of the mode shapes for the free and constrained beams.
These second derivatives will be used later in the computation
of the curvatures of the beam under consideration.
Problem parameters.

A subroutine was written to compute the following para-
meters: 2 and =, the damping parameters thal can be related

to the freguencies and ratios of critical damping of two modes

iand § :

s (251" - gugy (c.1)
and

. 26 1h 5 - 54 Mey) c.2i

(ug - :nﬁ)

3% .
rs ::(3’ Frequency ratio.
i

(j) : tan']zci(j)ri(j)

= Phase angle.

b :

Generalized parameters.
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A subroutine for computing the following generalized para-

meters was written:

L
a) Generalized mass = / M(x)[;i(j)(x) ]2 dx = Mi(j)
0 -

b) Generalized stiffness = ij)*[uH(JJ]Z

c) Generalized force = fFo[g.(j)(x)]z dx
0 i

where

Fo = so*af*m(x) (C.3)

\/(] ) ['1(”]2)2*[2¢1“) S

e) The twdo constant coefficients GO and CO where

d) Amplitude ratio = Afj)g

L
G0y foi(z)(x)M(x) o0 ax  (c.0)
0

2
0y = [31(])(X)M(x) ¢j(2)(x) dx  (C.5)
9

A subroutine that utilizes the Simpson rule is avail-
able for the computation of ail the integratiuns in-
volved.

7. At this point, all the quantities that are independent of the

unknowns of the problem, viz., a,, ag» Q47 and di], are comouted
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10.

11.

12.

and an iteration scheme is started by assuming a value for the
unknown S - This iteration scheme was presented in Section
2.3.4.

Using the assumed value of s the coefficients of the un-
knowns a4, 611, $in ag. and cos o, are evaluated using a sub-
routine (COFIM) written for this purpose.

A matrix of the computed coefficients of previously mentioned
urknowns is formed using a subroutine (COFMAT). This sub-
routine also forms the right hand side vector of the eguations
of the problem unknowns (Equations 2.37 through 2.40).

Using matrix inversion (used in this program) or any simulta-
neous equations solution technique, the equations are solved
for the unknowns using the first assumed value of -

At this point, the values of sin G and cos ag found from this

solution is checked for a unique value of % using the formula

Test = sin ay * V[} - cosza0 (C.6)

[f the test value is withi: a certain acceptable range, de-
pending on the accuracy required, then the reguired solution
for the unknowns is already achieved; otherwise, the nex*®
value of a4y, which is equal to (az + Aaz), is to be used and
steps 7, 8, 9 and 10 are repeated again. This iteration
orocedure should be continued until an acceptable solution is
reached.

After solving Equations 2.37 through 2.40 for unknowns
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13,

14.

16.

Qi1 31], 35, and 34, the solution for the unknowns 512’ and

9 is achieved by back substitution into Equations 2.28 and

2.29, respectively, A check of tne eguations at the diffasrent

steps of the solution is then carried out to estimata the accu- |
racy of the computations.

Computation of the time-dependant variables :ij(t)andqijft).
which constitutes the remaining part of the solution, is then
carried out using a subroutine designed for computing tnese
quantities through Equations 3.3 and 3.9.

Computation of the response w~’(x.:L the velocity w( x,t), and
the curvatura <(x,t) is then carried out in a separate sub-

routine utilizing Equation 3.6 and the 2quations

H(‘j (x,t) Z 2 (3) J)( (¢.7)
i=]

and

eawliine « T o

i=]

4 {4)
((x) g ) (e) (c.8)

The peak values of the response are then computed using sub-
routine MINMAX.

Two different plotting routines are used when required to plot
the displacement, the velocity, ind the curvature. One of these
twe routines draws the required curves on computer paper.
This routine shows only specified symbols such as dots or x's

at the points where the response is computed. The second rou-

C-6



17.

18.

tine draws curves and symbols on draft paper, calling a system
routine written for this purpose.

The program is designed to solve the problem for different
values of the excitation frequency ratio fi/w, by adding speci-
fied increments of the exciting freguency ratio if desired.
This is achieved by snecifyiry a starting value, an increment,
and a maximum value of the excitation frequency ratio 2/w,.

At this step an increment a(d/So) of the clearance ratio d/So

may be added and the program is repeated again for the new value

of the gap size.
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