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ABSTRACT

A three-dimensional fluid finite element compatible with the

solid elements in the ADINA finite element program has been developed

for the analysis of wave propagation in fluid and . fluid-structural systems.

The fluid element can model inviscid compressible fluids with constant

bulk modulus. Although the final discretized equations of motion are

valid for general loading and displacement conditions, the numerical 'com-

putations only admit relatively small fluid displacements unless mesh

rezoning would be used.
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The following paper documents the theory used in the

formulation of the fluid element.
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ON TRANSIENT ANALYSIS OF FLUID-STRUCTURE SYSTEMS j

K. J. B ATHE and W. F. He !

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139. U.S.A.

Mercited 12 Afay 19'8)

Abstract-Finite element procedures for the dynamic analysis of Buid-structure systems are presented and
evaluated The fuid is assumed to be imiscid and compressible and is described using an updated Lagrangua
formulation. Vanable-number-nodes iseparametric two- and threc4imensional elements mith lumped or consistent
mass idealization are employed in the finite c!cment discretuation, and the incremental dynamic equditvium
equatsons are $ sed usi g esphett er imp'icit ume integration. De solution procedures are applied to the analysis
cf a cuer of f.,4-uructure prcblems mebdtrg the nonlinear transient anal) sis of a pipe test.

s. twowtio% restricted to twodimensional analysis, and, in general.
He accurate and ef'icient transient analysis of fluid- lack versatility with regard to cuplicit and implicit time
.tructure problems has during recent years attracted integration and lumped and consistent mass
much research effortfl-5}. Fluid-structure problems need idealizations [1).
to be considered in ~va:ious engineering disciplines, and he objective of this paper is to report on our recent
to a great deal in reactor safety dehterations[1]. In this developments of solution capabilities for Guid-structure
paper we consider the response of fluid-structure interaction problems In the paper, first the Lagrangian
systems in which the fluid can be idealized as being formulation of the inviscid and compressible sariable-
insiscid and compressible, and we focus particular number-nodes 3-8 twodimensional and 4-2' three-
attention on the analysis of problems in which the fluid dimensional isoparametric fluid elements is brief!y
transmits a significant amount of energy in a relatively summarized [6]. Rese elements have been implemented
short time duration (such as might occur under accident in the computer program ADINA[7]. He elements can
conditions). undergo large displacements, they can be employed with

An obvious approximate procedure to analyze a fluid- implicit (Newmark or Wilson-8 methods) or explicit
structure problem is to perform the complete analysis in (central difference method) time integation schemes,
two steps: first, the f!uid response is calculated assuming and lumped or consistent mass idealizations. Next, the
that the structure is rigid; and then the structural elements, time integation schemes and modeling consi-
response is predicted that is due to the calculated fluid derations that lead to either a lumped or consistent mass
pressures. In most cases this analysis approach will idealization are discussed. Finally, a number of decion-
(probably) yield a conservative estimate of the structural strative sample solutions are presented. Here, the analy-
deformations.nus,a drawback of this decoupling of the sis of a fluid pressure pulse propagating in a pipe section
f!uid and the structural analysis is that a substantial and leading to clastic-plastic structural response is dis-
overdesign may be reached. On the other hand, this cussed in detail with ngard to the finite element mode-
procedure of analysis may yield an unsound design if ling and the time integration scheme employed.
significant resonance between the fluid and the structure
occurs. 2. CAlethT10N OF RL1D INrE ELDtDTS

A decoupled analysis of the f!uid and the structural De objective in this work was to desclop a fluid-
re<ponse is somewhat a natural engineering solution, structure analysis capability that can be employed in the
because, historically, finite difference analysis proce- analysis of problems in which no gross fluid motion
dures are employed for analysis of fluid response and occurs. For these types of problems a bgangian
finite element procedures are u<ed for structural analysis. formulation is effective. He fluid elements can then be
Dus, it is natural to employ a finite difference-based employed in conjunction with structural elements that
computer program to perform the !'uid analysis and a are also based on bgrangian descriptions. De following
finite element progam to predkt the structural response. tu o basic assumptions have been used in the formulation

Recognizing the serios defiacrxy of a decoupled of the fluid elements:
analysis, emphasis has been directed in recent years I. He f!uid is compressible and inviscid.
towards the developtr.cnt of solution algorithms that can 2. Interaction betseen mechanical and thermal pro-
be employed to directly analyie the coupled response of cesses is negligible; thus only the mechanical equations
f'uid-structure systems. In the search for effective solu- are needed to desente the fluid respor -

tion procedures the versatility and generality of the finite Using a bgrangian formulation, in principle, a total or
element method for structural analysis and the close updated bgangian formulation can be employed, but
relationship between finite difference and finite e!cment considering the numerical operations required for fluid
procedures :uggest that it be sery effective to include systems, an updated Lagrangian (U.L) formulation h
f;uid ekments in the finite element programs. Rese more effective [81
elements can then be directly employed together with
structural elements to model fluid. structure systems. At 2.1 Continuum mechanics forrnulation
present, some solution capabilities are available, but the Consider a body of fluid undergoing large defor-
progams use only lower-order f!uid elements, are mations and assume that the solutions are known at a!!
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384 K. L Barus and W. F. Hans

discrete time points 0, At,2At . . t. 'ne basic aim of the TaNe I. Updated Lagrangian formulation of Ruid elements
formulation is to establish an equation of virtual work
from which the unknown static and kinematic variables 1. Equation o/ motion
in the configuration at time t + At can be solved. Since

f
the displacement-based finite element procedure shall be J"''' "*'p 4../."''dv = "*'at
employed for numerical solution, we use the principle of
virtual displacements to express the equilibrium of the or

,

fluid body, in explicit time integration equilibrium is f

considered at time t[6] } "''S,4"''e,'de = "''A,

f 'p3,e 'ds: = '3 *
(1)

4,y

"'X = %, nJA, "''p,.Jr ,:
whereas in implicit time integration equilibrium is consi-
dered at time t + At, 4"'',g a f(#v + st, + eu e ), u

e

"''p5,.asa'**dc='**'R. (2) 2. lacrementaldecompositionse-

"+*v (a) Stresses

in eqn (1)'p is the pressure a,t time, t,3,e. is a virtual "*'S, - 'p h + ,Sg 4 = Kronecker delta.,

vanation of the volumetnc stram at time t,
(b) Strains

3,c,, m 8 (sum on i) (3) na',, . gg g . gg

i I
'V is the volume at time t and 'M is the external ''* " i('"4 + '"J '% " i,su ,s.#
virtual work corresponding to time t, and includes the
cffcct of body, surface and ine:itial forcesl8). The quan- 3 Equation of motion with incrementaldec.>mpositions
tities in eqn (2) are defined analogously. Substituting from (a) and (b) into the equation of motion we

Equations (1) and (2) contain the momentum balance btain

and continuity equations used in analytical fluid

f* ,S,se,'de -f* 'pa,3,,'de = "''s , [ ' pag,'d,.mechanics [9]. In addition we also use the constitutive
relation ^'

'p = 'a AVIVe (4) 4. Linearization of equation of motion
Using the approximations ,S, = 'n e,3,,. 3,e, = se, we obtain an

where AV is the total volume change of a differential Approximate cquation of motion
volume V and 'a is a variable that may be pressure
dependent. Using eqn (4) we can directly employ eqn (1) f 'n,c,se,'de 'p a,n.'de = "'' tit + f= 'ps,e,'de.
in transient analysis. For static analysis or implicit time -

integration we linearize eqn (2) as summarized in Table I
and obtainl8,9]

2.2 Finite element discretization
Using isoparametric finite element discretization, the- r

'

.

'n,c,8,e.,'do- 'p 3,na'd e = "''A + 'p s,c.'d o basic assumptions for an element are[6]
J ,y J'Y fW

(5) y

where 'p is evaluated using eqn (4) and 'n is the tangent 'A=2h.'d
fluid bulk modulus. *-' i = 1,2,3 depending on

The linearization used to arrive at eqn (5) introduces
,"' " .{. h. ,u,a

one,two or three-
dimensionalanalysis, G)crrors in the solution which may be large if the time step

is relatively large. In order to reduce solution errors and respectivelyu
in some cases instabilities (see sample problem 4.4) Au,=1h.Au,*
equilibrium iterations are used. In this case, we employ *-'

the following equation to solve for the incremental
displacements [10] where N is the number of nodes of the elemtat consi-

dered, the h. are the element interpolation functions, and
the 'd,'s,* and Au,* are the coordinates, displacementsr -

'n A,ey'6,eu'do - 'p 3 A,q '.* "da and incremental displacements of nodal point & at time t.
''' ""

Substituting the relations in eqn (7) into eqns (1) and
*

" ,.mS + ""p" - "3r + ane'd* -"" *d o" -"
(6) and including the effect of inertia forces, we obtain -

, .,,, n the governing finite element equations in explicit time
mtegration,

k = 1,2, . . . (6)
where M'i = 'R -|F (8)

,++.gu , n ega -n # 3ga' and in implicit time integration

and eqn (6) reduces to eqn (5) when & = 1. M"''s"' + (|Kr. + |Km.)Au" = "''R -|''|F'-" (9).

,D**0 D'9~ |
*

e w A. ~ o , Jl . N 2,
3
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On treesient analysis of fluid-structure systems 385

where the first iteration, i = 1, corresponds to the solo- Table 3. tinear and nonlinear strain-displacement trans-
tion of eqn (5). formatioc matrices

in eqns (8) and (9) we have
Two-dimensional analysis

M = time independent lumped or consistent mass Dilatation-displacement transformation vector:

' matrix -

|K ,|Kyt= linear, nonlinear strain (tangent) stiffness IV = f hu + ,h .ha (,Au + h . -(,hn3 + h hu2t
matnx m the con 5guration at tune t

,

'G,"''6 = vector of nodal point accelerations in the where
configuration at time t, t + At ,,

au = vector of incremental nodal point displace- 's, = y, h,'a,8
"'ments

'R "''R = vector of external, loads at time t, t + At Nonlinear strain 41isplacement transformation matrix:
|F,|**'F= vector of nodal pomt forces at time I, t + At

and "Au O ,hu Ana 0-.

the superscript (i) indicates Ith iteration. .h u o Au .hu2 0
|But = 0 .hu 0 0 .hua

ne matrices in eqns (8) and (9) are defined in Table 2 0 .h u 0 0 A=2
h ha hw- for a single element using the following notation: i o o

,, 's, 'i, 's,
_

*

H = displacement transformation matrix
H = surface chplacement transformation matrix is included only in axisymmetric analysis)

S

|V = dilatation-displacement transformation .
**''5'

. Three-dimensional analysis
, Bus.= nonlinear stram-displacement trans. Ddatation<lisplacement transformation vector,

formation matrix
"*!t,"*;f = traction and body force vectors. |V = l.hu,hu.hu,hu. . hwa.hua hn21

The displacement transformation matrices and force Nonlinear strain-displacement transformation matris:

vectors are defined as usual [6,10], and Table 3 gives the .

matrices 'V and | Bug for the two and three dimensional ja t ,e e.
.

on

fluid elements. ' ' ' " ' I8"E -0 t0= 0

Using the above formulation, the 4-8 and 8-21 vari- - 8 ' |8NL., ..

able-number nodes elements (shown in Fig.1[6]) with
,

rhu o 0 .hu 0 0 . ,hn2lumped or consistent mass assumptions have been tm- |syt =
- AufAu 0 0 .hu o 0

plemented in ADINA for two- and three-dimensional - .hu 0 0 .hu o0 .hy3
analysis, respectively. He lumped mass matrix of an
element is calculated by simply allocating 1/N times the
total element mass (where N = number of nodes) to the
nodal degrees of freedom, displacements reduce the accuracy of a finite element

We may note that the continuum mechanics equations solution. In order to preserve solution accuracy rezoning
of motion (eqns I and 2) are valid for general displace- would have to be used which is not considered in this study.
ments. However, considering the finite element equations
of motion severe mesh distortions that are due to large

2.3 Analysis of fluid finite elements
ne variable-number-nodes fluid elements shown in

Table 2. Finite element matrices . Fig. I are compatible with the solid elements available in
ADINA. This compatibility is important because higher-

Integral Matrix evaluation order isoparametric solid elements have proven to be
signincantly more effective than lower-order elements in

M"''ii = 's H H'de)"''m analysis of problems with significant bending responsef**'p"*'s.su.*de
T

and would naturally be employed with high-order fluid'v
(a,nsistent mass)

elements. However, to model the complete fluid domain
appropriately, the basic characteristics of the fluid ele-

"'9t = f*"*st.on.*da" '' R = Hrrna;g da ments need to be known.
e

*
He basic characteristics of a fluid elemer.t are dis-

played h & element eigendes W cigenvedon%
+ f.,'p"84f,tu 'da vpJ,,n oa,gede Figure 2 summarizes the eigensystem of a Anode two-

I r
*

dimensional element. He figure shows that, as reported

f,,'n,e,,3,e,'d e ''K a =(f,,'n|V |V'de)u
earlier, using reduced Gauss integration (1 point in-f

' t - tegration) for the & node element the hourglass patterns
.

correspond to zero eigenvalues. Various attempts have

f* -' 'F A'de~ |Kut a = a'p|Bh|Byt'de e been made to remove the instability of the hourglass3

deformation modes without increasing the computationc!,,

expense significantly, but it is believed to be best to use
f*'p6,e'de. |F = f'.-p'V''de 2 x 2 Gauss integration. Indeed, the formulation-consis-'

tent removal of the hourglass instability using 2x2

pq 5
q @4 O;p *

.
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Fig. 2. Eigensystems of two and three<!imensional fluid
Gauss quadrature is an advantage of a finite element elements.

formulation over a finite difference analysis.
Figure 2 also gives the number of zero eigenvalues of stresses calculated in axisymmetric plane strain fluid-

the 8-node two-dimensional and 8 and 20 node three- solid models with a varying bulk modulus in the fluid and
dimensional elements. As for the 4-node two-dimensional compares the results with theoretical values.
element, reduced integration introduces additional zero 'the use of higher-order fluid and solid elements in
eigenvalues that can result in solution instabilities in the transient analysis requires that a distinct choice be made
analysis of a fluid-structure system. on the use of a lumped or consistent mass idealization. If

Of particular interest is the analysis of fluid-filled 4-node two-dimensional elements (and 8-node three-
pipes. If the geometry and loading are axisymmetric, dimensional elements) are employed it is probably most
these fluid-structure systems can be modeled using the effective to use a lumped mass model. Not only is the
axisymmetric elements, and the question is whether computational expense less when using a lumped mass
higher or lower. order elements should be employed. It is matrix but the similarity between the finite element
well-known that in axisymmetric analysis of solids, equations and the finite difference equations (in some
higher-order isoparametric elements need be employed cases these are the equations used in the method of
for accurate prediction of stresses. The same conclusion characteristics) requires the use of a lumped mass
is reached for the fluid elements. Figure 3 shows the matrix for best solution accuracy [Ill. On the other hand.
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C;i transient enalpis of fluid +tructure systems M7

considering the use of higlier-order elements, a lumped step pressure applied at its free end.1. umped and j
mass characterization leads to spurious oscillations that consistent mass idealizations were employed in this
arise because a lumped mass distribution does not analysis, and the objective was to study the accuracy
represent a consistent loading en the clernents. Since it is with which the response of the water column is pre-

j the objective to employ as few higher-order elements as dicted. ,

possible to model the fluid-structure domain, a consistent Figure 4 shows the calculated longitudinal displace-
mass idealization is in most cases desirab!c. ments at the free end of the column and compares these

displacements with the analytical solution. It is seen that
i nME lmGRADON using implicit timC integration (Newmark method) the

In ADINA, the central difference method is employed free-end displacements in the consistent mass analysis
in explicit time integration and the Newmark method or were predicted accurately for a time period that included
the Wuson-e method can be used in implicit time 6 wave reflections, whescas the lumped mass analpis
intecration[6). Using implicit time integration a lumped . results are inaccurate.
or censistent mass matrix can be employed, but in Because of the simplicity of the problem the method
explic | time integration only a lumped mass idealization of characteristics shows that in this analysis the exact

*
can be specified. Table I in [7] summarizes the complete solution can be calculated using the central difference
solution higorithm employed. explicit solution method [lI). To obtain the exact solution ,

ne stability and accuracy characteristics and the the pressure and lumped mass idealizations must be scch
computational details of using these techniques in linear that the displacements are uniform over the column
analysis have been summarized in [f,]. Considering cross section and at = alJc, where c is the wave velo-
general nonlinear analysis the main difficulty is to assure city and AL is the length of an element.

'

the stability of a time integration solution. In explicit
' time integration the solution is simply marched forward, 4.2 Static analysis of an assemblage of concentric guid-

and it may be difficult to identify an instability that filed cylinders
manifests itself only as a significant error accumulation Five concentric fluid filled cylinders were analyzed for
over a few time steps. On the other hand, using an a load applied on a stiff cap. His same problem was
implicit time integration method, in each time step the sWed by Munro and Pickarski[12]. Figure 5 shows the
incremental equihbrium equations are solved and equili. Nnite element raodel employed and the predicted fluid
brium iterations can be performed on the solution quan- pressures. He finite element solution is compared with
tities. These equilibrium iterations are equivalent to an the approximate analysis results of Munro and Pickarski.4

energy balance check and can be very important to
assure a stable and accurate solution (see sample prob- 4.3 Transient analysis of a water-filed copper tube

4 lem 4.4). De dynamic response of a water-fi!!cd copper tube
subjected to an impact loading was analyzed. De struc-;

4, $3tPI.E SOIETIoNS ture, the loading and the finite element model employed'

"
The sample analyses presented in this section have are shown in Fig. 6. His prob'em was also analyzed by

| been performed using the computer program ADINA in Walker and Phillipr[I3], who established governing
! which the fluid elements discussed in this paper base differential equations based on a number of assumptions
,

been implemented. and solved these equations using the method of charac-
teristics.'

4.1 Analysis of rigidly-contained water column Two finite element analyses were performed; a lumped
A simple axisymmetric watcr column idealized using mass and a consistent mass idealization was used. The

!- 4-node elements as shown in Fig. 4 was analyzed for a mass allocation employed in the lumped mass analysis is
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shown in Fig. 6. His distribution of mass corresponds to compare somewhat better with the response predicted in
the assumption used by Walker and Phillips. It should be [13].
noted that a thin layer of elements was used at the tube
wall in order to " release" the axial displacements of the 4.4 Nonlinear transient analysis of a pipe rest
fluid. De experience gained in the above analysis was used

In both finite element analyses the Newmark method to analyze the water-filled straight piping configuration
was craployed with a time step 1 psec,i.e. 65 time steps show in Fig. 9 subjected to a pressure pulse at its end.
correspond to the pulse length. He length of the ele- De c!astic-plastic response of this pipe was experi-
ments (axial direction) was about I/10th of the pulse menta!!y assessed as reported in [14). Figure 9 shows
length. He aspect ratio of the elements was very high also the finite element model employed in the analysis.
(1 :34). In this analysis, a consistent mass matrix was

Figures 7 and 8 show the response of the system at employed and the time integration was carried out using
Z = 5in (see Fig. 6) as predicted in this study and by the Newmark method.He time step was chtnged to half
Walker and Phillips. It is seen that for t < 100psec the its size at the time the pulse entered the nickel pipe so
finite element solutions correspond reasonably well with that the pulse front would pass through a solid element in
the results of Walker and Phillips, but relatively large about three time steps. He effective stiffness matrix
solution discrepancies are observed at larger times. used in this analysis was reformed only at time t = 1.905,
Rese solution discrepancies are due to the different 2.302, and 3.435 msec. However, to take into account the
assumptions employed in the analyses. Since no clastic-plastic response of the pipe, equilibrium iterations
experimental or " exact analytical" results are available, were used at each time step once the pulse reached the
it is difficult to assess the actual accuracy of the different nickel pipe. Ec equilibrium iterations (energy balance
models. How ever, considerir:g the finite element solution check) were found to be necessary for a stab'e solution
results it is seen that the consistent mass model predicts although an average of only I to 2 iterations per timt
a somewhat smoother response for the hoop strain than step were carried out.
does the lumped mass model and gives also results that Figure 10 shows the calculated pressures and hoo
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Fig. 9. Finite element model of straight pipe test.

strains at various locations along the pipe-as a function tions are solved using explicit or imr!icit time in-
of time and compares the ADINA results with the tegration. De solution capabilities have been implemen-
experimental data. It is noted that in general the cal- ted in the ADINA computer program, and the solution
culated response compares well with the experimentally results of various sample analyses are presented.
observed response. De study performed here indicates that higher-order

isoparamatric finite elements can be effective in the
s. covLles representation of the nuid. Depending on the dis-

De transient Pnalysis of Huid-structure systems - cretization used, the elements may hase to be employed
presents a great deal of difficulties because an ~ap- with a consistent mass idealization and implicit time
propriate structural and Huid representation together integration.
with effective numerical procedures must be employed.. Considering innlinear analysis, it can be important
In this paper, the nuid is assumed to be inviscid and that equilibrium iterations be performed in order to
compressible, an updated lagrangian formulation is used prevent solution instability. In some analyses or.ly very
to describe the Auid motion,isoparametric finite element few iterations are needed to greatly improve the solution
discretization is employed with lumped or consistent accuracy (see Section 4.4). .
mass idealizations and the incremental equilibrium equa- Since there does not exist a single analysis approach
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XXII. 3/D FLUID ELEMENTS>

3/D FLUID elements are 8- to 21-node isoparametric or subparametric
curvilinear hexahedra. Typical elements are illustrated in Fig.
XXII.1.

The following input is require , for each element group consisting
of 3/D FLUID elements:

Section XXII.1: Element Group Control Card
This card defines the type of 3/D elements in this
group, i.e. , whether the elements are linear or
nonlinear elements.

Section XXII.2: Material Property Data Cards
The stress-strain relations of all elements in
this element group must be described by a material
model. However, input any number of material
property sets (each one defining different
material constants) for the specific material
model of this group.

Section XXII.3: Element Data Cards 1

In this section the elements of this group are
defined by input of their nodal points, etc.

4

A specific element group defined by the above input cards is y
followed by the input cards of another element group (use a 3/D !
fluid element group, if 3/D fluid elements are still to be input). j
After all element groups have been defined, proceed to Section XXXI. |

|
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XXII. 3/D FLUID ELEMENTS (continued)

1. Elenent Group Control Card (20I4)

note columns variable entry

1- 4 NPAR(1) Enter the number "l?"

(1) 5- 8 NPAR(2) Number of 3/D FLUID elements in
this group;
GE.1

(2) 9 - 12 NPAR(3) Flag indicating type of nonlinear
analysis ;

EQ.0; linear analysis
EQ.1 ; updated Lagrangian

(3) 13 - 16 NPAR(4) Element birth and death option;

EQ.0; elements are active throughout
solution

EQ.1; elements become only active at
the time of birth

EQ.2; elements become inactive at the
time of death

(4) 21 - 24 NPAR(6) Skew coordinate system reference
indicator;

EQ.0; all element nodes use the global
system only

EQ.1; some element node degrees-of-
freedom are referred to a skew
coordinate system

(5) 25 - 28 NPAR(7) Maximum number of nodes used to
describe any one element;
EQ.0 ; default set to "21"

.

(6) 37 - 40 NPAR(10) Nuaerical integration _ order to be used
in Gauss quadrature formula for r-s
plane;

EQ.0 ; default set to "2"

GE.2 and LE.4

(6) 41 - 44 NPAR(11)' Numerical . integration order to be used
in Gauss quadrature formula for t-direction;

EQ.0 ; default set to "2"
GE.2 and LE.4

14 |
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XXII. 3/D FLUID ELEMENTS (continued)

note columns variable entry

(7) 57 - 60 NPAR(15) Material model number;
EQ.0 ; default set to "1"
EQ.1 ; inviscid compressible f,luid

with constant bulk modulus

(8) 61 - 64 NPAR(16) Number of different sets of material
properties;
GE.1

(3) 65 - 68 NPAR(17) Number of constants per material property
set;

'

EQ.0; if NPAR(15) .EQ.1

| NOTES /
(1) 3/D FLUID element numbers begin with one (1) and end with the

total number of elements in this group,NPAR(2). Data for the
individual elements are input in Section XXII.3.

| (2) NPAR(3) is applicable to linear and nonlinear elenent groups
i and determines the type of nonlinearities to be considered in
L the analysis.

(3) The variable NPAR(4) identifies whether the elements of the
element group are active throughout the solution. The element
birth and death option can only be used in a non-linear element
group, i.e. if NPAR(3).GT.0, NPAR(4) can take three different
modes:

i (1) If NPAR(4).EQ.0, the elements are active throughout the
solution (this is the usual case, in which no material is added
or removed from the physical system).

1

(ii) If NPAR(4).EQ.1, the elements are not active until a speci-
fic solution time. The solution time at which an element becnmes
active (ETIME) is input on the element card .(see Section XXII.3).

It should be noted that prior to the_ time at
| which a specific element becomes active, the nodal points to

which the element is. connected have, in. general, displaced.
In the analysis, th.e stress-free configuration of an element
is defined to be the element configuration at the time at which
the element becomes active. In other words,-the~ nodal dis-
placements -that occurred prior to the time at which the element
becomes active are assumed- to cause no stresses in the element.

'

15
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XXII. 3/D FLUID ELEMENTS

NOTES /

(3) (continued)

(iii) If NPAR(4).EQ.2, the elements are initially active but
become inactive at a specific solution time. The solution time
at which an element becomes inactive (ETIME) is input on the
element card (see Section XXII.3).

It should be noted that the element birth and death options
are only applicable to the element stiffness matrices, i.e. the
removal or addition of an element only .1ters the global stiff-
ness matrix of the complete element asse.ablage. The' mass matrix
is always constructed corresponding to the total and complete
element assemblage, i.e. all elements are assumed to be active.
Since the element birth and death option can only be used in
a nonlinear material description, which can be employed in
conjunction with any of the linear or nonlinear material models.

(4) The variable NPAR(6) indicates whether the degrees-of-freedom
at some of the nodes of the elements defined in this group are referred
to a skew coordinate system (see 'Section V.1 for definition of the
skew coordinate system). If skew coordinate systems are used and a
large finite element system is analyzed, it is most efficient to put
all element that use nodes with skew coordinate systems into one (or '

more) element groups, i.e. , for solution effectiveness all elements in
this element group should have nodes with skew coordinate systems if
NPAR(6).EQ.l.

(5) NPAR(7) is the maximum number of nodes .that can be 'used to
describe any one of the elements in this group, i.e. elements
in this group must have less than or equal to NPAR(7) nodes.
A minimum of 8 and a maximum of 21 nodes are used to describe
3/D FLUID elements as indicatedin Fig. XXII. Constant
strain tetrahedra can be formed from 8-node elements by having |

~

nodes 1, 2, 3, and 4 coincide and nodes 7 and 8 coincide. I

(6) The selection of appropriate integration orders depends on
the element shape and strain state being considered. When
the quantities being integrated vary irregularly a higher order
is needed. An integration order of "2" is sufficient for most
problems. Shell or plate problems often use thin elements in
which, strain varies' more or less linearly through the thickness,
but more irregularly in the plane of the surface of the shell.
In these cases it is advantageous to specify a lower order for
integration through the thickness, i.e., NPAR(11) i NPAR(10).

The' expense of stiffness formation is dependent on the integration
order, i.e.,

n = NPAR(ll) * NPAR(10) * NPAR(10) '

16
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XXII. 3/D FLUID ELEMENTS (continued)

NOTES /

(6) (continued)
where n is the number of points at which B CB must be cal-
culated in order to find the element stifTndis' by Gauss
integration.

The consistent mass matrix is always calculated using an
integration order of three in each direction.

(7) Only one material model (defined by the value of NPAR(15)) is
allowed in an olement group. Currently only a material,

with a constant bulk modulus can be assumed.

-18 .
!.-
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XXII. 3/D FLUID ELEMENTS (continued)

i

2. tbterial Property Data Cards

NPAR(16) sets of cards must be input in this section.
I

a. material number card (IS,F10.0) |

note columns variable entry

1- 5 N Material property set number
GE.1 and LE.NPAR(16)

(1) 6 - 15 DEN (N) Mass density of the material used |
in the calculations of the mas'; matrix; .)
GE.0.0 ;

'

NOTES /
(1) The mass density defined is used directly in the calculation

of the element mass matrix, i.e. no acceleration constants
are applied to the varible DEN (N). The mass density is also
employed in the calculation of the gravity load vector (see
Note (3), Section V).

b. material property card (s) (8F10.0)

For MODEL "1" (NPAR(15).EQ.1 + [Inviscid linear elastic]

note columns variable entry

(1) 1 - 10 PROP (1,N) Bulk modulus, K

NOTES /'(1)MODEL 1 is a linear library model defined by one (1) positive
constant (K); i.e. , if NPAR(15).EQ.1, NPAR(17) is set to "1"
by default. MODEL 1 can be used with linear or nonlinear
element groups.

/ 19
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XXII. 3/D FLUID ELEMENTS (continued)
J

,

3. Element Data Cards,

| Three cards must be prepared for each element that appears t

in the input:
4

Card 1 (715,F10.0)

note columns variable entry.

(1) 1-5 M 3/D' FLUID element number;
3GE.1-and LE.NPAR(2)

.

;- (2) 6 - 10 IELD Number of nodes to be used in
.

describing the element's displacement - t

: field;

! EQ.G; default set to NPAR(7). i

LE.NPAR(7) .

1.

' Number of no'es to be used in the i(3) 11 - 15 IELX d
description of the element's geometry; '

3

EQ.0; default set to IELD
GE.8 and LE.IELD
EQ.IELD + isoparametric element

7

EQ.IELD + subparametric element4

,

(4) 16 - 20 IPS Flag for printing pressures;;

EQ.0; no pressure output for this
element 1

; .EQ.1; print pressures at integration i

points |

21 - 25 MTYP Material property set number
assigned to this element;

GE.1 and LE.NPAR(16)
;

(5) 26 - 30 IST Flag indicating that the stiffness
,

and rass matrices for this element!

are the same'as those.for the preceding-
element;

,

EQ.0; no :

EQ.1; yes-

;

,

i'

20
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XXII. 3/0 FLUID ELEftENTS (continued)

note columns variable entry

(6) 31 - 35 KG Node number increment for element
data generation;
EQ.0 default set to "1"

(7) 36 - 45 ETIME Time of element birth or death

I
t

|

|
!

i
l

21
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XXII. 3/D FLUID ELEMENTS (continued)

Card _1 (SIS)

note columns variable entry

(2) 1- 5 N0D(1) Global node nutr.ber of element
nodal point 1

6 - 10 NOD (2) C'',bal node number of element

nodal point 2

11 - 15 N0D(3) ...

16 - 20 N0D(4)

21 - 25 N0D(5)
!
!

26 - 30 N00(6) |

31 - 35 N00(7)

36 - 40 N0D(8) Global node number of element
nodal point 8

4

CARD 3 (13I5)

note columns variable entry

(2) 1- 5 N0D(9) Global node number of element
nodal point 9

6 - 10 N00(10) ...

11 - 15 N0D(11)

16 - 20 N0D(12)

21 - 25 N0D(13)
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XXII. 3/D FLUID ELEMENTS (continued)

note columns variable entry

26 - 30 N0D(14) Global node number of element
nodal point 14

31 - 35 N0D(15) ...

,

36 - 40 N00(16)

41 - 45 N0D(17)

46 - 50 N0D(18)
,

51 - 55 N0D(19)

56 - 60 N0D(20)

61 - 65 N0D(21) Global node number of element
nodal point 21

NOTES /
(1) Element cards must be input in ascending element number

order beginning with one (1) and ending with NPAR(2).. '

Repetition of element numbers is illegal, but element
! cards may be omitted, and missing element data generated
! according to the procedure described in note (6).

(2) IELD is a count of the node numbers actually posted on
Cards 2 and 3 which must immediately follow Card 1. IELD
must be at'least eight (8), but must be less than or
equal t|0 the limit NPAR(7) which was given on the Element
Group Control Card, Section XXII.l. Element displacements
are assigned at the IELD non-zero nodes, and thus'the order
of the element matrices is three (i.e., translations X,Y,
Z) times IELD. The eight corner nodes of the hexahedron
must be input, but nodes 9 to 21 are' optional, and any or
all of these optional nodes may be used to. describe the
element's displacement field. However, all 21 entries for
NOD (1)-are read from element data cards 2 and 3; if IELD.LT.21
the particular node locations not used in _this element must

.
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XXII. 3/D FLUID ELEMENTS (continued)

NOTES / (continued)

be input as zero (0) in N00(I). Figure XXII.2 defines
the input sequence that must be observed for element input.

For example, the 10-node element (IELO.EQ.10) shown below
(s2

l
3 I

,

I
)* I

'

/ b5
--

---

- .

7" A

15

8
is defined by

N0D(I) = [X X X X X X X X 0 0 X 0 0 0 X 0 0 0 0 0 0],

where the nonzero entries (X) are~ the global mesh node numbers
(Section V ) of the 10 nodes.

(3) When the element edges are straight it is unnecessary compu-
tationally to include side nodes in the numerical evaluation
of coordinate derivatives, the Jacobian matrix, etc., and
since such element shapes are common, an option has been in-
cluded to use fewer nodes in these geometric calculations than
are used to describe element displacements. The first IELX
nonzero nodes posted on Cards 2 and 3 are used to evaluate
those parameters which pertain to element geometry only. a

IELX must be at least eight (8), and if omitted is re-set
to IELD. A comon application might be a 20 node element
(i.e., IELO.EQ.20).with straight edges in which case IELX
would be entered as "8".

(4) If IPS.EQ.0 no pressure output will be provided and saved on
the porthole element. To print and save the element pressures,
input IPS.EQ.1.

(5) For linear analyses, the flag IST allows the program to by-
pass stiffness and mass matrix. calculations provided the

.
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f XXII. 3/D FLUI9 ELEMENTS (continued)

: NOTES /

(5) (continued)
current element is identical to the preceding element; i.e.,

,

the preceding and current elements are identical except for
a rigid body translation. If ISR.EQ.0, new matrices are com-
puted for the current element. When an out-of-core solution
is required or the element is nonlinear, the program auto-'

; matically calculates stiffness and mass matrices for each
element regardless of the value of IST.

1 (6) When element-cards are omitted, element data are generated
i automatically as follows:

j' a) All data on Card 1 for generated elements is taken to
be the same as that given ca the first elenent card in the'

sequence;

b) Nonzero node numbers (given on Cards 2 and 3 for the first
element) are incremented by the value "KG" (on the first
element's Card 1) as element generation progresses; zero
(or blank) node number entries are generated as zeroes.

The last element cannot be generated.

(7) The time at which the element becomes active (if NPAR(4).EQ.1),
i.e. the time of element birth, or inactive (if NPAR(4).EQ.2),
i.e. the time of element death, must be defined if NPAR(4).GT.0
on the Element Group Control Card (see Section XXII.1).

.

i
'
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ANALYSIS OF A PLATE WITH FLUID LOADIEd

The static and dynamic behavior of a square plate loaded with a

fluid was analyzed.

One quarter of the plate was codelled using nine 16-node 3-D solid 2

elements. The fluid above the plate was modelled using three layers of

3-D fluid elements. The layer immediately above the plate consists of

nine 12-node elements and the two layers above it were each made up of

nine 8-node elements. The dimensions and material properties of the
'

plate and fluid are shown in Figure 1.

(a) Static Analysis

The plate was fully supported at the bottom, and both the plate and the

fluid were constrair.ed from lateral movement at the edges, while the

internal nodes were left free. A uniform pressure applied in the

vertical direction resulted only in vertical displacements of the nodes.

The pressure is transmitted uniformly throughout the fluid while the

plate develops stresses in the x,y,z directions which agree with

theoretical values.
-

(b) Frequency foalysis

The plate was simply supported and free to move in the transverse

direction while the fluid is constrained to move vertically. The

natural frequency of vibration of the plate was determined with and without

the fluid -- and the results for the first three modes are shown in

f
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: Figure 1. It is seen that the presence of the fluid reduces the
I frequency of vibration of the plate by about 15% in these models.

However, a considerably finer mesh would be required to model the
dynamic tiehavior accurately.

.
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YOUNG'S MODULUS : 17.2 x10 P.S.I. BULK MODULUS : 30 x10 P.S.I.

4
POISSON'S RATIO : 0.355 DENSITY:0.936 SLUG FT/IN

#
DENSITY : 0.83|x 10-3 SLUG FT/IN

FREQUENCY IN RADIANS / SECOND

MODE NO. PLATE ALONE PL ATE WITH FLUID

3 3
I 0.58 x 10 0.49 x 10

3 3
2 2.95 x 10 2.46 x 10

3 3
3 2.95 x 10 2.46 x 10

FIG.I FINITE ELEMENT MODEL OFPLATE AND FLUID

i
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