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ABSTRACT

A three-dimensional fluid finite element compatible with the
solid elements in the ADINA finite element program has been developed
for the analysis of wave propagation in fluid and fluid-structural systems.
The fluid element can model inviscid compressible fluids with constant

bulk modulus. Although the final discretized equations of motion are

valid for general loading and displacement conditions, the numerical com-
putations only admit relatively small fluid displacements unless mesh

rezoning would be used.
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The following paper documents the theory used in the

formulation of the fluid element.
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ON TRANSIENT ANALYSIS OF FLUID-STRUCTURE SYSTEMS
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Abstract—Finite element procedures for the dynamic analysis of flusd-structure systems are presented and
evajuated. The flud is assumed to be imviscid and compressible and 15 described using an updated Lagrangan
formulation. Vanable-number-nodes isoparametr two- and three-dimensional clements with lumped or consistent
mass idealizztion are employed i the fimte clement discretization, and the incremental dvnamic equiibrium
equations are solved using exphait or implicit Ume integration. The solution procedures are applied o the analysis
of a pumber of fuid-structure problems inciuding the nonlinear transient analysis of a pipe test. .

1. INTRODUCTION

The accurate and efficient transient analysis of flud-
structure problems has duning recent years altracted
much research effort[1-5]. Fluid-structure problems need
to be considered in various engineering disciplines, and
1o a great deal in reactor safety deliberations|1]. In this
paper we consider the response of fluid-structure
systems in which the fluid can be idealized as being
mviscid and compressible, and we focus particular
attention on the analysis of problems in which the fluid
transmits a significant amount of energy in a relatively
short time duration (such as might occur under accident
conditions).

An obvious approximate procedure to analyze a fluid-
structure problem is to perform the complete analysis in
two steps: first, the fluid respoase is calculated assuming
that the structure is ngid. and then the structural
response is predicted that is due to the calculated fluid
pressures. In most cases this analysis approach wall
(pmhably)ylddaconmmnumleofmcswcw

deformations. Thus, a drawback of this decouphing of the
fluid and the structural analysis is that a substantial
overdesign may be reached. On the other hand, this
procedure of znalysts may ywld an unsound design f
significant resonance between the flurd and the structure
occurs.

A decoupled analysis of the flusd and the structural
response is somewhat a natural engineening sclution,
because, historically, finite difference analysis proce-
dures are employed for analysis of fluid response and
finite element procedures are used for structural analysis.
Thus, it is natural to employ 2 finite difference-based
computer program to perform the fuid analysis and a
finite element program to predict the structural response.

Recognizing the sercus deficiency of a decoupled
analysis, emphasis has heen directed in recent years
towards the development of solutiun algorithms that can
be employed to directly anziyze the coupled response of
flusd-structure systems. In the search for effective solu-
tion procedures the versatility and generality of the finite
clement method for structural analysis and the close
relationship between finite difference and fimite element
procedures suggest that it be very effective to include
fund eloments in the finite element programs. These
elements can then be directly employed together with
structural elements to model fluid-structure systems. At
present, some solution capabilities are available, but the
programs use only lower-order fluid elements, are

restriicted to two-dimensional analysis, and, in general,
lack versatility with regard to explicit and implicit time
miegration and lumped and consistent mass
wdealhizations {1).

The objective of this paper is to report on our recent
developments of solution capabdities for fluid-structure
interaction problems. In the paper, first the Lagrangian
formulation of the inviscid and compressible vanable-
mbernodes 3-8 two-dimensional and 4-2. three-
dimensional ic fluid elements s bnefly
summarized [6]. These elements have been implemented
in the computer program ADINA[7]. The eiements can
undergo large displacements. they can be employed with
implicit (Newmark or Wilson-8 methods) or explicit
{central difference method) time integration schemes,
and lumped or consistent mass idealizations. Next. the
¢clements, time integration schemes and modeling consi-
derations that lead to either a lumped or consistent mass
idealization are discussed. Finally, a number of demon-
sis of a fluid pressure pulse propagating in a pipe section
and leading to elastic-plastic structural response is dis-
cussed in detal with regard to the finite element mode-
ling and the time integration scheme employed.

1. CALCULATION OF FLUID FINITE ELEMENTS

The objective in this work was to develop a fluid-
structure analysis capability that can be employed in the
analysis of problems in which no gross fluid motion
occurs. For these types of problems a Lagrangian
fomuhmnneﬂecuve The fluid eiements can then be
ewbydmmmcmﬂhmddemﬂu
are also based on Lagrangian . The fi
two basic assumptions have been used in the formulation
of the fluid elements:

1. The fluid is compressible and inviscxd.

2. Interaction between mechanical and thermal pro-
cesses is negligible; thus only the mechanical equations
are needed to describe the fluid respor .

Umah.rmtomuhmu.mmqﬂe a total or

systems. an updated Lagrangian (U L) formulation s
more effective (8]

2.1 Continuum mechanics formulation
Consider a body of flud undergoing large defor-
mations and assume that the solutions are known at all
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discrete time points 0, A¢, 241, . .. 1. The basic aim of the
formulation is to establish an equation of virtual work
from which the unknown static and kinemalic variables
in the configuration at time ¢ + At can be solved. Since
the displacement-based finite element procedure shall be
employed for numerical solution, we use the principle of
virtual displacements to express the equiibniuem of the
fluid body. In explicit time miegration equilibrium is
considered at time 1 [6)

f ";‘)5,«’,'\];‘ :l? (1

iy

whereas in imphicit time integration equilibrium s consi-
dered at time ¢ + 4¢,

] ".A‘p&.,\,e’u'."dl’3“"3- (2)
t+lny

In eqn (1) ‘p is the pressure at time 1, 8,e, is a virtual
variation of the volumelric strain at time 1,

d.e, 365,9—- (sumoni) (3)

‘V is the volume at time t and '® is the external
virtual work corresponding to time t, and includes the
effect of body, surface and ineitial forces[8). The quan-
tities in eqn (2) are defined analogously.

Equations (1) and (2) contain the momentum balance
and continuity equations used in analytical fluid
mechanics[9). In addition we also use the constitutive
relation

p=-"aAVIV, (4)

where AV is the total volume change of a differential
volume V, and “a is a variable that may be pressure
dependent. Using egn (4) we can directly employ egn (1)
in transient analysis. For static analysis or implicit time
integration we linearize egn (2) as summarized in Table 1
and obtain[8,9],

] '«.e.&e.’do—f ‘péimi'do ="".«R+I ‘péey'do
W v ty
5

where ‘p is evaluated using eqn (4) and 'x is the tangent
fluid bulk modulus.

The linearization used to arrive at eqn (5) introduces
errors in the solution which may be large if the time step
is relatively large. In order to reduce solution errors and
in some csses instabilities (see sample problem 4.4)
equilibrium iterations are used. In this case, we employ
the following equation to solve for the incremental
displacements [ 10]

[ xAel’ be,'do - I ‘p8AMY dv
W

3""*’] nn’(l—ll&‘u‘(:—lnoud'(l— n
Tedayik-1)

k=12,... (6)
where
rebe ) Ih‘l.'(l "’A L)

y
and eqn (6) reduces to eqn (5) when k = 1,

Table | Updated L-gangua formulation ol flurd ekmenls

'l. Eguction of motion

[ "”‘ID‘..”‘"'MdU="“.’
LA T

I l'&'s.slou‘qu' & uu’
iy

where

v-‘fs‘ - ';rfn‘:‘u - NM’“‘;‘"_.

vo !
) ‘:‘.. . 55(4‘;;‘:‘;.. * oy )

2. Incremental decompositions
(a) Stresses

NSy =~ 'p8y+ .Sy, & = Kronecker delta.
(b) Strains
e ety
I 1
o= i("“' + M)y = 2 Vs

3. Equation of motion with incremental decompositions

Substituting from (a) and (b) into the equation of motion we
obtain

[ steiao-[ vanias=rvas [ i
v v v

4. Linearization of equaiion of motion

Using the approximations ,S, = ‘« 8, 8¢, = 8,¢, we obtain an
approximate equation of moticn

] "witybes'dv - I ‘plin,do =" R+ ] ‘phe.de
vy v v

2.2 Finite element discretization
Using isoparametric finite element discretization, the

basic assumptions for an element are (6]

l“ - h.!x‘l
&= i = 1,2,3 depending on

W= i B one, two or three-
o dimensional analysis, M
M respectively

Au, =; by Aut
-1

where N is the number of nodes of the elemcat consi-
duedthehmllndemcmmrpohmnfumnons.and
the 'x*, ‘" and Aw' are the coordinates, displacements
Mmmuhldapheememofmddpomknuanr
Substituting the relations in eqn (7) into eqns (1) and
(6) and including the cffect of inertia forces, we obtain
the governing finite element equations in explicit time

integration,
M'a="R-F (8)

“lou.(l)"’(:l'. *:KNLM.“,“ OOM._::::FI—I) (9)
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where the first iteration, i = 1, corresponds to the solu-
tion of eqn (5).
In eqns (8) and (9) we have

M = time independent lumped or consistent mass
matrix
K., K. = linear, nonlinear strain (tangent) stiffness
matrix in the configuration at time ¢
'@, "** & = vector of nodal point accelerations in the
configuration at time 1, t + At
Au = vector of incremental nodal point displace-
ments
‘R,"**R = vector of external loads at time ¢, t + At
'F, |+3iF = vector of nodal point forces at time ¢, f + At
and
the superscript (i) indicates ith iteration.

The matrices in egns (8) and (9) are defined in Table 2
for a single element using the following notation:

H = displacement transformation matrix
H® = surface cisplacement transformation matrix

1V = dilatation-displacement transformation
matrix
{Bng = nonlinear  strain-displacement  trans-

formation matrix
t+arg r+4Lt = traction and body force vectors.

The displacement transformation matrices and force
vectors are defined as usual[6, 10], and Table 3 gives the
matrices ;V and By for the two and three dimensional
fluid elements.

Using the above formulation, the 4-8 and 8-21 vari-
able-number nodes elements (shown in Fig. 1{6]) with
lumped or consistent mass assumptions have been im-
plemented in ADINA for two- and three-dimensional
analysis, respectively. The lumped mass matrix of an
element is calculated by simply allocating 1/N times the
total element mass (where N = number of nodes) to the
nodal degrees of freedom.

We may note that the continuum mechanics equations
of motion (eqns 1 and 2) are valid for general displace-
ments. However, considering the finite element equations
of motion severe mesh distortions that are due to large

Table 2. Fimite element matrices

Integral

Matrix evaluation

f visutde M- ([ B H) v
Oy oy

fcontistent mass)

e n"““t‘dn
Oa

r-u’ ,I 10&“.6‘.06.
0a

+ L e A ¢°pI AT 4%y
LY

L e eu it dv Kow= (j eIV ’dv) u

:‘NL. - (I - 'P1’LL:.~l'dU).

I ~'pbn.'dv

[ psecas w= [ <pivria
v v

Table 3. Lincar and nonhincar straindisplacement trans-
formatio. matnces

Two-dimensional analysis
Dilatation-displacement transformation vector:

[ ) (e ) - (o ) ]

where

N
'i. - EI h'"l‘
Nonlhinear strain-displacement transformation matrix
hy 0 Ay, he, 0
a2 0 by, Ay 0
By = 0 LI 0 . 0 Ay,
0 &y O 0
L) h by
% g 5 7

(,% ia incheded ouly i asisymmetric mmis)
1

Three-dimensional analysis
Dilatation-displacement transformation vector
V=lkohiahoha . by dwsl

Nonlinear strain-displacement transformation matrix:

By 00 0
Bu=| 0 By @ ; =10
] s B 0

) Ay 0 0 o 00 Ay
Bar=] th: 0 0 hy; 0 O Jva
,h|_| 0 0 ,.)J 0 0 r.N_!

displacements reduce the accuracy of a finite element
solution. In order to preserve solution accuracy rezoning
would have to be used which is not considered in this study.

2.3 Analysis of fluid finite elements

The vanable number-nodes fluid elements shown in
Fig. 1 are compatible with the solid elements available in
ADINA. This compatibility is important because higher-
order isoparametric solid elements have proven to be
significantly more effective than lower-order elements
analysis of problems with significant bending response
and would naturally be employed with high-order fluid
elements. However, to model the complete fluid domain
appropniately, the basic characteristics of the fluid cle-
ments need to be known.

The basic charactenistics of a flid element are dis-
played by the element eigenvalues and eigenvectors{6].
Figure 2 summanzes the eigensystem of a 4-node two-
dimensional element. The figure shows that, as reported
earlier, using reduced Gauss integration (1 point in-
tegration) for the 4-node element the hourglass patterns
correspond to zero eigenvalues. Various attempts have
been made to remove the instability of the hourglass
deformation modes without increasing the computation:!
expense significantly, but it 1s believed to be best to u.e
2x 2 Gauss integration. Indeed, the formulation-consis-
tent removal of the hourglass instability using 2x2
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Fig. I. Fluid elements in ADINA,

Gauss quadrature is an advantage of a finite element
formulation over a finite difference analysis.

Figure 2 also gives the number of zero eigenvalues of
the 8-node two-dimensional and 8 and 20-node three-
dimensional elements. As for the 4-node two-dimensional
element, reduced integration introduces additional zero
eigenvalues that can result in solution instabilities in the
analysis of a fluid-structure system.

Of particular interest is the analysis of fuid-filled
pipes. If the geometry and loading are amymmemc
these fluid-structure systems can be modeled using the
axisymmetric clements, and the question is whether
higher or lower-order elements should be employed. It is
well-known that in axisymmetric analysis of solids,
higher-order isoparametric elements need be employed
for accurate prediction of stresses. The same conclusion
is reached for the fluid elements. Figure 3 shows the
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Fig. 2 Eigensystems of two and three-dimensional fluid
clements.

stresses calculated in axisymmetric plane strain fluid-
solid models with a varying bulk modulus in the fluid and
compares the results with theoretical values.

The use of higher-order fluid and solid elements in
transient analysis requires that a distinct choice be made
on the use of a lumped or consistent mass idealization. If
4-node two-dimensional elements (and 8-node three-
dimensional elements) are employed it is probably most
effective to use a lumped mass model. Not only is the
computational expense less when using a lumped mass
matrix but the similarity between the finite element
equations and the finite difference equations (in some
cases these are the equations used in the method of
characteristics) requires the use of a lumped mass
matrix for best solution accuracy[11] On the other hand.
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considering the use of higher-order elements, a lumped
mass characterization leads to spurious oscillations that
arise because a lumped mass distribution does not
represent a consistent loading on the elements. Since 1t 1s
the objective to employ as few higher-order elements as
possible 10 model the fluid-suructure domain, a consistent
mass idealization 15 in most cases desirable.

1 TIME INTEGRATION

In ADINA, the central difference method is employed
n explicit ime ntegration and the Newmark method or
th> Wilson-# method can be used in implicit time
inte, ration[6]. Using implicit time integration a lumped
or cunsistent mass matrix can be employed, but in
exphicr. tisne integration only a lumped mass idealization
can be s»ecified. Table | in [7) summarizes the complete
solution algonthm emploved.

The stability and accuracy charactenstics and the
computational details of using these techniques in linear
analysis have been summanized in (6], Considering
general nonlinear analysis the main difficulty is to assure
the stability of a time integration solution. In explicit
time mtegration the solution is simply marched forward,
and it may be difficult to identify an instability that
manifests itself only as a significant error accumulation
over a few time steps. On the other hand, using an
implicit time integration method, in each time step the
incremental equilibrium equations are soived and equili-
brium iterations can be performed on the solution quan-
tities. These equilibrium iterations are equivalent to an
energy balance check and can be very important to
assure a stable and accurate solution (see sample prob-
lem 4.4).

4 SAMPLE SOLUTIONS
The sample analyses presented in this section have
been performed using the computer program ADINA in
which the fluid elements discussed in this paper have
been implemented.

4.1 Analysis of rigidly-contained water column
A simple axisymmetric water column ideahzed using
4-node elements as shown i Fig 4 was analyzed for a

ne

187

step pressure applied at s free end. Lumped and
consistent mass idealizations were employed in this
analysis, and the objective was to study the sccuracy
with which the response of the water column is pre-
dicted.

Figure 4 shows the calculated longitudinal displace-
ments at the free end of the column and compares these
displacements with the analytical solution. It is seen that
using implicit time integration (Newmark method) the
free-end displacements in the consistent mass analysis
were predicted accurately for a time period that included
6 wave reflections, “vhereas the lumped mass analysis
results are inaccurate.

Because of the simplicity of the problem the method
of characteristics shows that in this analysis the exact
solution can be calculated using the central difference
explicit solution method[11). To obtain the exact solution
the pressure and lumped mass idcalizations must be scch
that the displacements are uniform over the column
cross section and At = AL/c, where ¢ is the wave velo-
city and AL is the length of an element.

4.2 Static analysis of an assemblage of concentric fluid-
filled cylinders

Five concentric fluid filled cylinders were analyzed for
a load applied on a stiff cap. This same problem was
«tufed by Munro and Piekarski[12]. Figure S shows the
‘mite element niodel employed and the predicted fluid
pressures. The finite element solution is compared with
the approximate analysis results of Munro and Piekarski.

4.3 Transient analysis of a water-filled copper tube

The dynamic response of a water-filled copper tube
subjected to an impact loading was analyzed. The struc-
ture, the loading and the finite element model employed
are shown in Fig. 6. This prot'em was also analyzed by
Walker and Phillips[13], who established governing
differential equations based on a number of assumptions
and solved these equations using the method of charac-
teristics.

Two finite element analyses were performed: a lumped
mass and a consistent mass idealization was used. The
mass allocation employed in the lumped mass analysis is

: ,
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strains at various locations along the pipe as a function
of time and compares the ADINA results with the
experimental data. It is noted that in general the cal-
culated response compares well with the experimentally
observed response.

5. CONCLUSIONS

The transient analysis of fluid-structure systems
presents a great deal of difficuitiec because an ap-
propriate structural and fluid representation together
with effective numerical procedures must be employed.
In this paper, the fluid is assumed to be inviscid and
compressible, an updated Lagrangian formulation is used
to describe the fluid motion, isoparametric finite element
discretization is employed with lumped or consistent
mass idealizations and the incremental equilibrium equa-

tions are solved using explicit or implicit time in-
tegration. The solution capabilitics have been implemen-
ted in the ADINA computer program, and the solution
results of various sample analyses are presented.

The study performed here indicates that higher-order
isoparamatric finite elements can be effective in the
representation of the fluid. Depending on the dis-
cretization used, the elements may have to be employed
with a consistent mass idealization and implicit fime
integration.

Considering ponlinear analysis, it can be important
that equilibrium iterations be performed in order to
prevent solution instability. In some analyses only very
few iterations are needed to greatly improve the solution
accuracy (see Section 4.4).

Since there does not exist a single analysis approach
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XXI1. 3/D FLUID ELEMENTS

3/D FLUID elements are 8- to 21-node isoparametric or subparametric
curvilinear hexahedra. Typical elements are illustrated in Fig.
XXII.1.

The following input is require for each element group consisting
of 3/D FLUID elenents:

Section XXII,1: Element Group Control Card
This card defines the type of 3/D elements in this
group, i.e., whether the elements are linear or
nonlinear elements.

Section XXI1.2: Material Property Data Cards
The stress-strain relations of all elements in
this element group must be described by a material
model. However, input any number of material
property sets (each one defining different
material constants) for the specific material
model of this group.

Section XXII.3: Element Data Cards
In this section the elements of this group are
defined by input of their nodal points, etc.

A specific element group defined by the above input cards is
followed by the input cards of another element group (use a 3/D
fluid element group, if 3/D fluid elements are still to be input).
After all element groups have been defined, proceed to Section XXXI.

12
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XXII.

note

(7)

(8)

(3)

NOTES/

(m

(2)

(3)

3/0 FLUID ELEMENTS (continued)

columns variaple entry

57 - 60 NPAR{15) Material medel number;
£Q.0; default set to "1"
£EQ.1; inviscid compressible fluid
with constant buik modulus

61 - 64 NFAR(18) Number of different sets of material
properties;
GE.1

65 - 68 NPAR(17) Number of constants per material property
set;

£Q.0; if NPAR(15).EQ.1

3/D FLUID element numbers begin with one (1) and end with the
total number of elements in this group, NPAR(2). Data for the
individual elements are input in Section XXII.3.

NPAR(3) is applicable to linear and nonlinear element groups
and determines the type of nonlinearities to be considered in
the analysis.

The variable NPAR(4) identifies whether the elements of the
element group are active throughout the solution. The element
birth and death option can only be used in a non-linear element

group, i.e. if NPAR(3).G7.0, NPAR(4) can take three different
modes :

(i) If NPAR(4).EQ.0, the elements are active throughout the
solution (this is the usual case, in which no material is added
or removed from the physical system).

(ii) If NPAR(4).£Q.1, the elements are not active until a speci-
fic solution time. The solution time at which an element becomes
active (ETIME) is input on the element card {see Section XXII1.3).

It should be noted that prior to the time at

which a specific element becomes active, the nodal points to
which the element is connected have, in general, displaced.

In the analysis, the stress-free configuration of an element

is defined to be the element configuration at the time at which
the element becomes active. In other words, the nodal dis-
placements that occurred prior to the time at which the element
becomes active are assumed to cause no stresses in the element.

15



XXIT.

NOTES/

3/0 FLUID ELEMENTS

(3)

(4)

(6)

(continued)

(iii) If NPAR(4).£Q.2, the elements are initially active but
become inactive at a specific solution time. The solution time
at which an element becomes inactive (ETIME) is input on the
element card (see Section XXII1.3).

It should be noted that the element birth and death options
are only applicable to the element stiffness matrices, i.e. the
removal or addition of an element only .1ters the global stiff-
ness matrix of the cumplete element asseablage. The mass matrix
is always constructed corresponding to the total and complete
alement assemblage, i.e. all elements are assumed to be active.
Since the element birth and death option can only be used in
a nonlinear material description, which can be employed in
conjunction with any of the linear or nonlinear material models.

The variable NPAR(6) indicates whether the degrees-of-freedom

at some of the nodes of the elements defined in this group are referred
to a skew coordinate system (see Section V.1 for definition of the
skew coordinate system). If skew coordinate systems are used and a
large finite element system is analyzed, it is most efficient to put
all element that use nodes with skew coordinate systems into one (or
more) element groups, i.e., for solution effectiveness all elements in
this element group should have nodes with skew coordinate systems if
NPAR(6).EQ.1.

NPAR(7) is the maximum number of nodes that can be used to
describe any one of the elements in this group, i.e. elements
in this group must have less than or equal to NPAR(7) nodes.

A minimum of 8 and a maximum of 21 nodes are used to describe
3/D FLUID elements as indicatedin Fig. XXII.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>