PLG-0147

MIDLAND PLANT AUXILIARY FEEDWATER SYSTEM RELIABILITY ANALYSIS

by Dennis C. Bley Carroll L. Cate Daniel W. Stillwell B. John Garrick

Prepared for CONSUMERS POWER COMPANY Jackson, Michigan October, 1980

8102030220

PICKARD, LOWE AND GARRICK, INC. CONSULTANTS - NUCLEAR POWER

IRVINE, CALIFORNIA

.

WASHINGTON, D.C.

ACKNOWLEDGEMENTS

1

ļ

•

1

1

1.1

The Midland Plant Auxiliary Feedwater System Analysis benefited from the expertise of the Consumers Power Company (CPCo) engineering staff, the Midland Plant operations and maintenance staffs, and the Bechtel, Ann Arbor, engineering staff. They reviewed the AFWS model and provided detailed information on the plant hardware and practices.

The authors are especially grateful to Dennis Budzik of CPCo who provided strong overall direction to the project. John Kindinger of CPCo provided frequent guidance and technical information throughout the study. At Midland Plant, Jim Alderink coordinated our plant visit, provided important information about the actual field installation, and reviewed our early work. Many others gave significant help at key points in the study.

TABLE OF CONTENTS

ľ

1

Section			Page
1	STAT	TEMENT OF PURPOSE	1
2	SUMM	ARY	2
3	INTE	RODUCTION AND SCOPE	12
	3.1	Background	12
		Auxiliary Feedwater System Description	17
		3.2.1 System Function	17
		3.2.2 Basic AFW System	17
		3.2.3 Double Crossover Design	21
		3.2.4 Three Pump Design	22
		3.2.5 Electric Power and Other Babcock	23
		and Wilcox Designs	
	3.3	Scope	23
4	METH	IODOLOGY	28
5	SYST	YEM ANALYSIS	32
	5.1	System Models	32
		5.1.1 System Fault Tree	32
		5.1.2 Computer Programs	32
		5.1.3 Data	33
		Random Failures	36
	5.3	Test and Maintenance	36
		5.3.1 Testing	36
		5.3.2 Maintenance	66
	5.4	Human Interaction	69
		5.4.1 Human Interaction/Recoverable Failures	69
		5.4.2 Human Error/Testing	69
	11	5.4.3 Human ErrorCommon Cause	69
	5.5		70
		5.5.1 The First Criterion	71
		5.5.2 The Second Criterion	71
		5.5.3 Results of Common Cause Analysis	77 79
	5.0	Event Tree Analysis	19
6	RESU	LTS	95
		Results of System Analysis	95
	6.2	Results of Event Tree Analysis	115
7	REFE	RENCES	117

TABLE OF CONTENTS (continued)

.

Section						Page
APPENDIX	A:	Midland Auxiliary Feedwater Base Case Design	System	Fault	Tree	A-1
APPENDIX	в:	Midland Auxiliary Feedwater Double Crossover Design	System	Fault	Tree	B-1
APPENDIX	C:	Midland Auxiliary Feedwater Three Pump Design	System	Fault	Tree	C-1
APPENDIX	D:	Midland Auxiliary Feedwater	System			D-1

LIST OF FIGURES AND TABLES

P

ł

B

Figure		Page
1	Auxiliary Feedwater System Conceptual Block Diagram	3
2	Comparison of Reliability (NRC Data) of AFWAS Designs in Plants Using the B&W NSSS	6
3	Block Diagrams of Three Alternative Pump Configuration Designs for the Midland Plant AFW System	9
4	Midland Auxiliary Feedwater System - Base Case	13
5	Midland Auxiliary Feedwater System - Double Crossover	14
6	Midland Auxiliary Feedwater System - Three Pump	15
7	Simplified Core Cooling Event Tree	16
8	Boundary of Analysis	27
9	Simplified Fault Tree	29
10	Cause Tree for the Midland Auxilia y Feedwater System	30
11	Abbreviated Version of Midland Auxiliary Feedwater Event Tree Given an Actuation Sigral	92
12	Midland Auxiliary Feedwater Event Tree Given an Actuation Signal	94
13	Conditional Unavailability of the Midland Plant AFWS	99
Table		
1	Summary of Results - Conditional Unavailabilities of the Midland AFWS - Double Crossover (Plant Specific Data)/Double Crossover (NRC Data)	4
2	Summary of Results - Conditional Unavailabilities of the Midland AFWS - Double Crossover/Base Case	10
3	Summary of Results - Conditional Unavailabilities of the Midland AFWS - Double Crossover/Three Pump	11
4	AFW Power Supplies	24
5	Summary of Major Characteristics of B&W Operating Plant AFW Systems	26
6	NRC Failure Data	34
7	Fault Tree Component List and Failure Mode	37
8	Dominant Random Failure Cutsets	54
9	Pump Train Unavailability Due to Test and Maintenance	68
10	Susceptibility Codes	72
11	Generic Components and Their Sensitivities to Failure	73
12	Physical Barrier Information	74
13	Common Cause Candidates in Physical Location CLCV	78
14	Common Cause Candidates	80
15	Summary cf Results - Conditional Unavailabilities of the Midland AFWS - Double Crossover (Plant Specific	96
	Data)/Double Crossover (NRC Data)	
16	Summary of Results - Conditional Unavailabilities of the Midland AFWS - Double Crossover/Base Case	97
17	Summary of Results - Conditional Unavailabilities of the Midland AFWS - Double Crossover/Three Pump	98

LIST OF FIGURES AND TABLES (continued)

3

1

.

1

1

•

9

1

1

Table		Page
18	Dominant Contributors to Conditional Unavailability Loss of Main Feedwater - Double Crossover (NRC Data)	100
19	Dominant Contributors to Conditional Unavailability Loss of Main Feedwater Due to Loss of Offsite Power -	101
20	Double Crossover (NRC Data) Dominant Contributors to Conditional Unavailability Loss of All AC - Double Crossover (NRC Data)	102
21	Dominant Contributors to Conditional Unavailability Loss of Main Feedwater - Double Crossover (Plant- Specific Data)	103
22	Dominant Contributors to Conditional Unavailability Loss of Main Feedwater Due to Loss of Offsite Power - Double Crossover (Plant-Specific Data)	104
23	Dominant Contributors to Conditional Unavailability Loss of All AC - Double Crossover (Plant-Specific Data)	105
24	Dominant Contributors to Conditional Unavailability Loss of Main Feedwater - Base Case (Plant-Specific Data)	106
25	Dominant Contributors to Conditional Unavailability Loss of Main Feedwater Due to Loss of Offsite Power - Base Case (Plant-Specific Data)	107
26	Dominant Contributors to Conditional Unavailability Loss of All AC - Base Case (Plant-Specific Data)	108
27	Dominant Contributors to Conditional Unavailability Loss of Main Feedwater - Three Pump (Plant-Specific Data)	109
28	Dominant Contributors to Conditional Unavailability Loss of Main Feedwater Due to Loss of Offsite Power - Three Pump (Plant-Specific Data)	111
29	Dominant Contributors to Conditional Unavailability Loss of All AC - Three Pump (Plant-Specific Data)	113

1. STATEMENT OF PURPOSE

A study was made of the reliability of the Midland Auxiliary Feedwater System for Consumers Power Company (CPCo) of Jackson, Michigan. The purpose of the study was to

- Provide a thorough and comprehendible assessment of the overall reliability of the system.
- Identify important contributors to unreliability.

1

.

1

ł

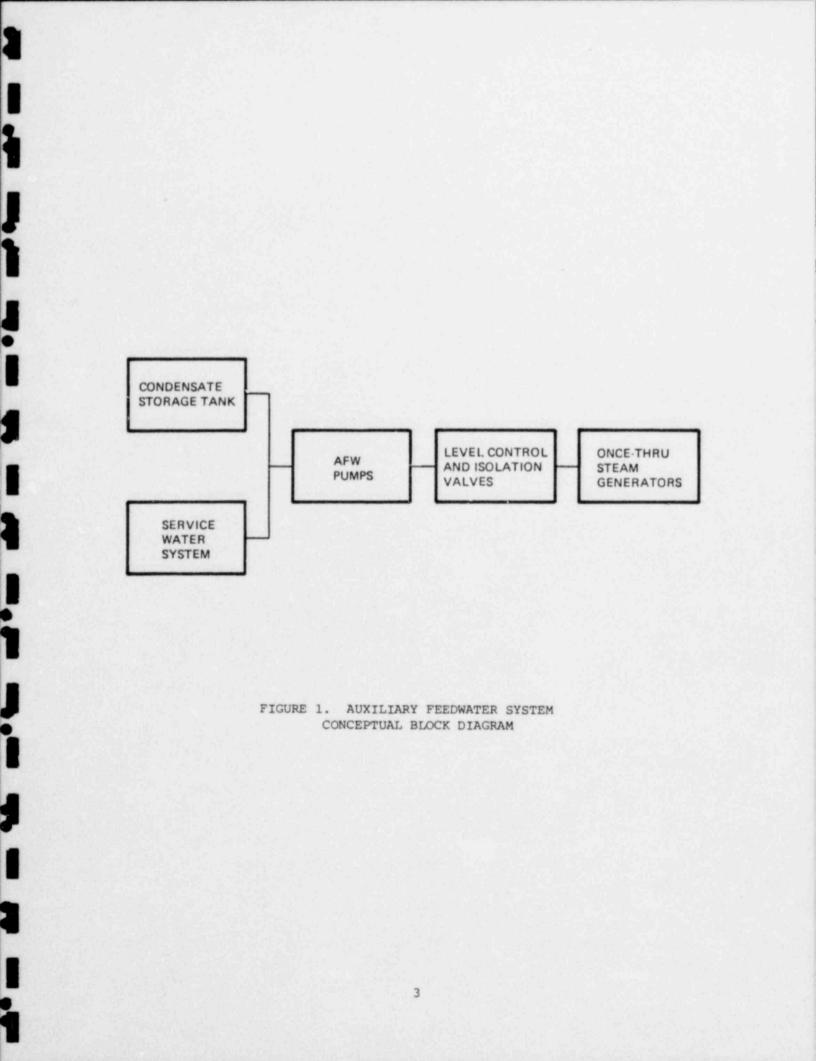
\$

Compare three alternative pump configuration designs.

A principal aim of the study was to use the most applicable data in the analysis with due regard for the true range of uncertainty in this information. In addition, to make comparisons with NRC analyses more directly visible, calculations using the standard NRC data base have been included.

2. SUMMARY

The emergency function of the Auxiliary Feedwater System (AFWS) is to provide heat removal for the primary system when the main feedwater system is not available. A conceptual block diagram of the AFWS is shown in Figure 1. Water is supplied through two pumps to each of two steam generators. The AFWS must provide this function during small Loss of Coolant Accidents (LOCA) as well as following transients that lead to a loss of main feedwater. The AFWS provides initial cooling to prevent overpressurization of the primary system and has sufficient preferred water supply to maintain hot standby conditions for 4 hours followed by a cooldown to 320°F. The system is also used during normal plant startup, shutdown, and hot standby conditions. Requirements for success under emergency conditions are that flow from a least one pump be delivered to at least one steam generator immediately following initial demand.


The fault tree analysis determ. es the system hardware minimal cutsets, i.e., the smallest groups of combined component failure modes that lead to system failure. It further catalogs the causes for specific component failure modes and evaluates their likelihood of occurrence. The causes considered include:

- Random independent failures
- Test and maintenance
- Human error
- Common cause failures

Two sets of data are used in separate quantifications. The NRC point estimate data from NUREG-0611^[1] is identified here as NRC Data. Data most applicable to the Midland AFWS that includes uncertainty has been identified as Plant-Specific Data. The three specific cases described in NUREG-0611 are analyzed:

- LMFW transient initiated by interruption of the main feedwater system (reactor trip occurs) and offsite AC power remains available.
- LMFW/LOOP transient initiated by loss of offsite AC power and reactor trip occurs (main feedwater system is interrupted by the loss of offsite power). Onsite emergency AC power sources are treated probabilistically.
- LMFW/only DC power available transient is initiated as in item 2 above, but onsite emergency AC power sources are unavailable.

Note that these cases lead to conditional unavailability calculations that are coupled with specific states of electric power. Results are displayed in Table 1 for each of the three cases and each data set.

Contributors to	Loss of Main Feedwater		Loss of Main Feedwater Due to Loss of Offsite Power		Loss of Main Feedwater and Loss of All AC Powe	
Unavailability	Double Crossover (Plant Specific Dita)	Double Crossover (NRC Data)	Double Crossover (Plant Specific Data)	Double Crossover (NRC Data)	Double Crossover (Plant Specific Data)	Double Crossover (NRC Data)
Random failures	7.0 E-5* (1.1 E-8)	3.5 E+5	6.6 E-4 (8.4 E-6)	2.5 E-4	1.7 E-2 (5.3 E-4)	6.4 E-3
Test and maintenance and random system failures	1.2 E-4 (3.9 E-8)	6.9 E~5	3.4 E-4 (6.5 E-7)	2.8 E-4	5.9 E-3 (1.9 E-4)	5.9 E-3
Human error (testfailure to close full flow test valve)	6.3 E-6 (1.1 E-10)	3.7 E-6	1.8 E-5 (2.0 E-9)	1.5 E-5	3.1 E-4 (5.3 E-7)	3.1 E-4
Common cause (full flow test valve open after test)	8.4 E-6 (5.9 E-10)	8.4 E-6	8.4 E-6 (5.9 E-10)	8.4 E-6	8.4 E-6 (5.9 E-10)	∂.4 E-6
Other	ε	ε	e	ε	ε	ε
System Total						
Mean	2.0 E-4		1.0 E-3		2.3 8-2	
Variance	4.7 8-8		6.0 E-6		6.7 E-4	
Sth	3.4 E-5		4.1 E-5		3.5 E-3	
95th	5.8 E-4		3.8 E-3	1.6.12	6.8 E-2	
Median	1.4 E-4	1.2 E-4	4.0 E-4	5.5 E-4	1.6 E-2	1.3 E-2

TABLE 1. SUMMARY OF RESULTS CONDITIONAL* UNAVAILABILITIES** OF THE MIDLAND AFWS

*The total unavailabilities as well as the individual contributions given in this table are not actual system unavailabilities but are system characteristics conditional on specific states of electric power as follows: LMFW: Offsite AC power is continuously available. ľ

l

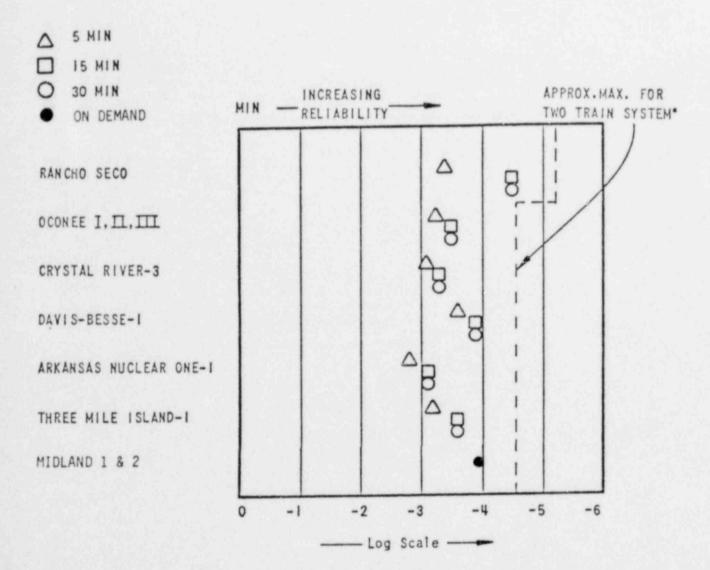
LMFW/LOOP: Offsite AC power is unavailable--diesel generators may or may not accept load. LMFW/Loss of All AC: All AC power is unavailable; DC power is available.

**Unavailability is the fraction of times the system will not perform its function when required.

*7.0 E-5 read 7.0 x 10-5.

() Variance - describes the spread of the results about the mean.

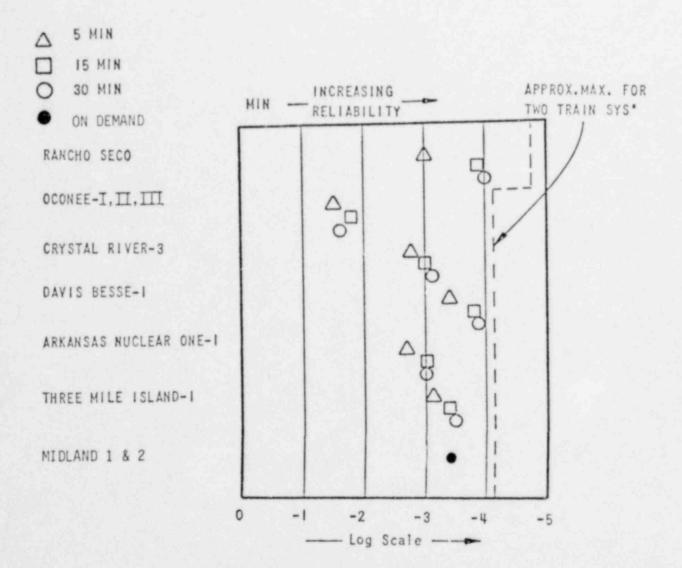
Results using the NRC Data for each of the three cases are plotted in Figure 2 along with similar results^[2] for other Babcock and Wilcox (B&W) plants. Midland appears to be one of the better performing (B&W) auxiliary feedwater systems.


Three alternative pump configuration designs are analyzed. Their block diagrams are shown in Figure 3:

.

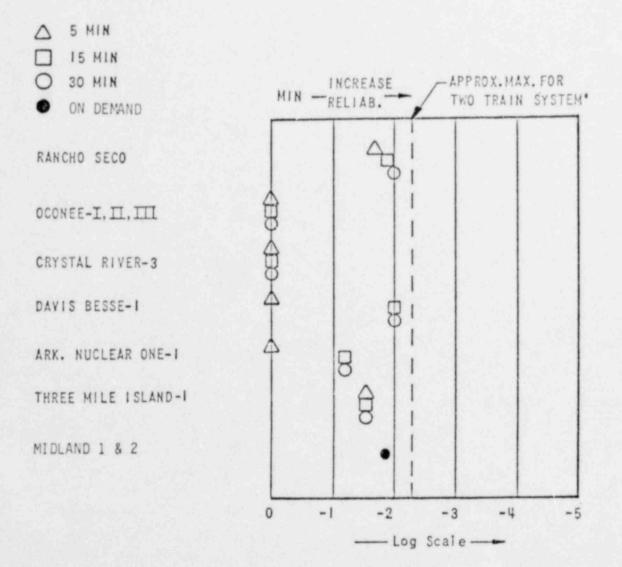
- 3a. Double Crossover (DCO) one 100% motor-driven pump and one 100% turbine-driven pump. This option has been selected by CPCo for installation at Midland. It permits each pump to supply either or both steam generators. Each crossover path is controlled by the same electrical supply as the associated pump.
- 3b. Base Case one 100% motor-driven pump and one 100% turbinedriven pump. This option was the original Midland design. It permits each pump to supply either or both steam generators.
- 3c. Three Pump two 50% motor-driven pumps and one 100% turbinedriven pump. This design is similar to that used at some other (B&W) plants and is included for comparison purposes only.

NRC data was used only in the DCO analysis (Table 1). Tables 2 and 3 present the results using plant-specific data for comparisons of the Base Case and the Three Pump designs against the DCO. The Base Case and the DCO have nearly identical reliability results. The DCO is clearly better than the Three Pump design analyzed.


It is possible to imagine modifications in hardware and procedures that have potential to reduce the impact of the dominant contributors. Some examples are given in Chapter 6. However, the system is already very reliable, i.e., no serious deficiencies have been identified. No changes should be made without a careful evaluation of all costs and benefits including the chance that a change aimed at improving reliability could actually degrade it.

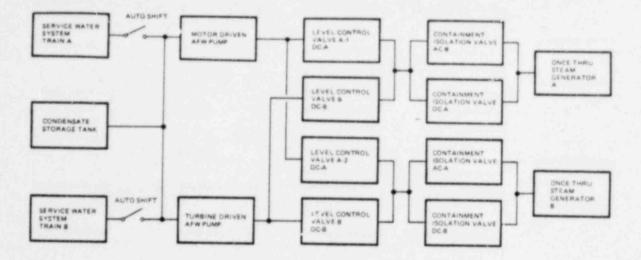
"UPPER LIMIT IS DIFFERENT FOR RANCHO SECO BECAUSE OF THE MULTI-DRIVE PUMP.

FIGURE 2. COMPARISON OF RELIABILITY (NRC DATA) OF AFWAS DESIGNS IN PLANTS USING THE B&W NSSS (This figure, except for Midland, was taken from Reference 2.)


Figure 2(a): LMFW

*WHERE ONE TRAIN IS ELECTRIC POWERED FROM A DIESEL GENERATOR (IE., EXCLUDING DAVIS-BESSE-I). LIMIT IS DIFFERENT FOR RANCHO SECO BECAUSE OF THE MULTI-DRIVE PUMP.

FIGURE 2. COMPARISON OF RELIABILITY (NRC DATA) OF AFWAS DESIGNS IN PLANTS USING THE B&W NSSS (This figure, except for Midland, was taken from Reference 2.)


FIGURE 2(b): LMFW/LOOP

*WHERE ONE TRAIN IS ELECTRIC POWERED FROM A DIESEL GENERATOR (IE., EXCLUDING DAVIS BESSE-I)

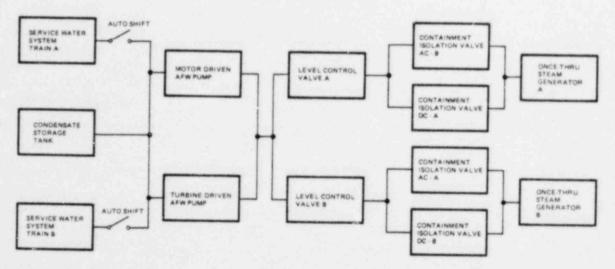
> FIGURE 2. COMPARISON OF RELIABILITY (NRC DATA) OF AFWAS DESIGNS IN PLANTS USING THE B&W NSSS (This figure, except for Midland, was taken from Reference 2.)

> > FIGURE 2(c): LMFW/LOAC

.

f

.


1

•

Þ

.

a. Double Crossover

b. Base Case

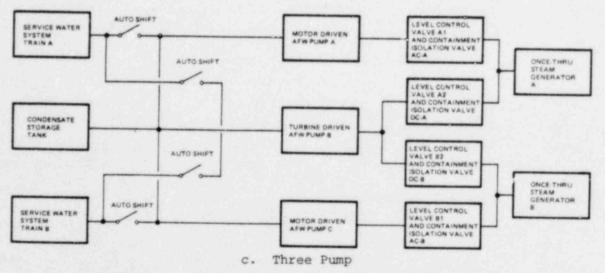


FIGURE 3. BLOCK DIAGRAMS OF THREE ALTERNATIVE PUMP CONFIGURATION DESIGNS FOR THE MIDLAND PLANT AFW SYSTEM

Contributors to	Loss of Main Peedwater		Loss of Main Peedwater Due to Loss of Offsite Power		Loss of Main Peedwater and Loss of All AC Power	
Unavailability	Double Crossover	Base Case	Double Crossover	Base Case	Double Crossover	Base Case
Random failures	7.0 E-5*	7.3 E-5	6.6 E-4	6.6 E-4	1.7 E-2	1.6 E-2
	().1 E-8)	(1.9 E-8)	(8.4 E-6)	(3.3 E=6)	(5.3 E-4)	(7.5 E-3)
Test and maintenance and	1.2 E-4	1.2 E-4	3.4 E-4	3.4 E-4	5.9 E-3	5.9 8-3
random system failures	(3.9 E-8)	(1.2 E-7)	(6.5 E-7)	(3.2 E-7)	(1.9 E-4)	(1.9 E-4)
Human error (testfailure to	6.3 8-6	6.4 8-6	1.8 E-5	1.8 E-5	3.1 8-4	3.1 E-4
close full flow test valve)	(1.1 E-10)	(3.4 E-10)	(2.0 E-9)	(9.2 E-10)	(5.3 E-7)	(5.3 E-6)
Common cause (full flow	8.4 E-6	8.4 E-6	8.4 8-6	8.4 E-6	8.4 E-6	8.4 E=6
test valve open after test)	(5.9 E-10)	(5.9 E-10)	(5.9 E-10)	(5.9 E-10)	(5.9 E-10)	(5.9 E-10)
Other	ε	ε	ε	ε	ε	ε
System Total						
Mean	2.0 E-4	2.1 E-4	1.0 E-3	1.0 E-3	2.3 E-2	2.2 E-2
Variance	4.7 E-8	1.1 E-7	6.0 E-6	2.9 E-6	6.7 E-4	8.8 E-4
Sth	3.4 E-5	1.7 E-5	4.1 8-5	7.9 E-5	3.5 E-3	2.5 E-3
95th	5.8 E-4	7.0 E-4	3.8 E-3	3.5 E-3	6.8 E-2	7.0 E-2
Median	1.4 E-4	1.1 E-4	4.0 E-4	5.3 E-4	1.6 E-2	1.3 E-2

TABLE 2. SUMMARY OF RESULTS CONDITIONAL* UNAVAILABILITIES** OF THE MIDLAND AFWS (Plant Specific Data)

*The total unavailabilities as well as the individual contributions given in this table are not actual system unavailabilities but are system characteristics conditional on specific states of electric power as follows: LMFW: Offsite AC power is continuously available. LMFW/LOOP: Offsite AC power is unavailable--diesel generators may or may not accept load. LMFW/Loss of All AC: All AC power is unavailable; DC power is available.

**Unavailability is the fraction of times the system will not perform its function when required.

*7.0 E-5 read 7.0 x 10-5.

() Variance - describes the spread of the results about the mean.

Contributors to	Loss of Main Feedwater		Loss of Main Peedwater Due to Loss of Offsite Power		Loss of Main Peedwater and loss of All AC Power	
Unavailability	Double Crossover	Three Pump	Double Crossover	Three Pump	Double Crossover	Three Pump
Random failures	7.0 E-5*	8.1 E-4	6.6 E-4	2.0 E-3	1.7 8-2	1.7 E-2
	(1.1 E-8)	(1.4 E-6)	(8.4 E-6)	(1.1 E~5)	(5.3 E-4)	(3.6 E-5)
Test and maintenance and	1.2 E-#	4.9 E-4	3.4 E-4	9.2 E-4	5.9 8-3	5.9 E-3
random system failures	(3.9 R-8;	(1.0 E-7)	(6.5 E-7)	(2.9 E-6)	(1.9 E-4)	(1.9 E-4)
Ruman error (testfailure to	6.3 E-6	2.6 E=5	1.8 2-5	4.9 E-5	3.1 E-4	3.1 E-4
close full flow test valve)	(1.1 E=10)	(2.0 E-9)	(2.0 E-9)	(8.8 E-9)	(5.3 E-7)	(5.3 E-7)
Common cause (full flow	8.4 8-6	8.4 E-6	8.4 E-6	8.4 E-6	8.4 E-6	8.4 E-6
test valve open after test)	(5.9 E-10)	(5.9 E-10)	(5.9 E-10)	(5.9 E-10)	(5.9 E-10)	(5.9 E-10)
Other	ε	ε	ε	ε	e	ε
System Total						
Mean	2.0 B-4	1.3 E=3	1.0 E-3	3.0 E-3	2.3 E-2	2.3 E-2
Variance	4.7 E-8	2.0 E-6	6.0 E-6	1.3 E-5	6.7 E-4	2.0 E-4
Sth	3.4 E-5	2.2 E-4	4.1 E-5	4.0 E-4	3.5 E-3	8.0 E-3
95th	5.8 E-4	3.8 E-3	3.8 E-3	9.0 E-3	6.8 E-2	5.0 E-2
Median	1.4 E-4	9.2 E-4	4.0 E-4	1.9 E-3	1.6 E-2	2.0 E-2

TABLE 3. SUMMARY OF RESULTS CONDITIONAL* UNAVAILABILITIES** OF THE MIDLAND AFWS (Plant Specific Data)

*The total unavailabilities as well as the individual contributions given in this table are not actual system unavailabilities but are system characteristics conditional on specific states of electric power as follows: LMFW: Offsite AC power is continuously available.

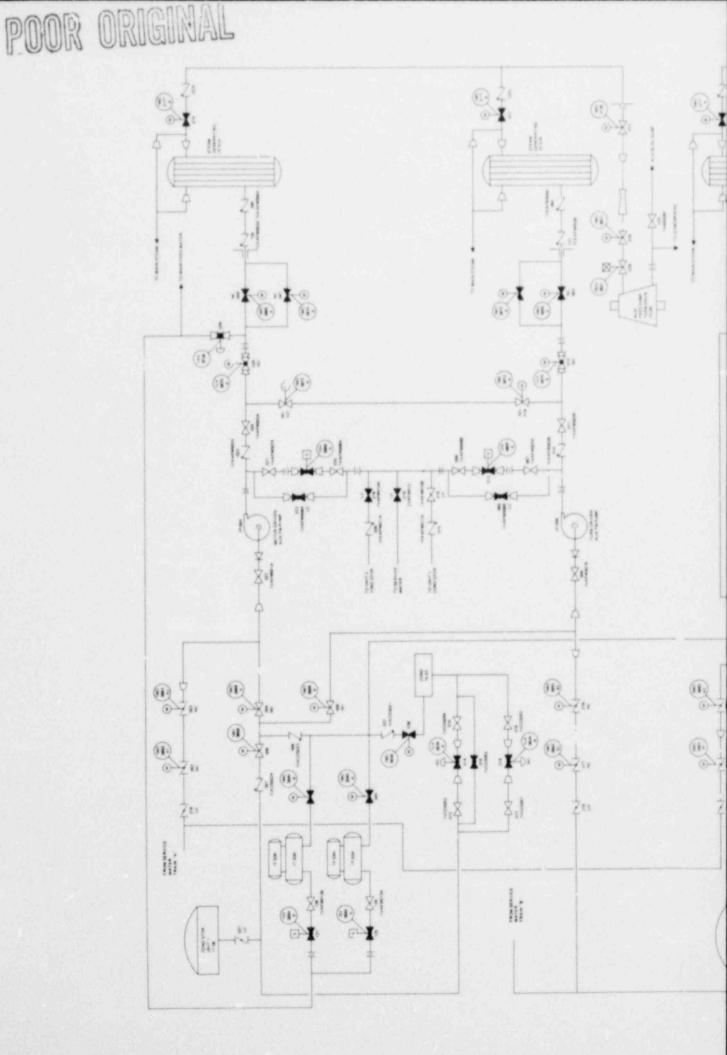
LMFW/LOOP: Offsite AC power is unavailable--diesel generators may or may not accept load. LMFW/Loss of All AC: All AC power is unavailable; DC power is available.

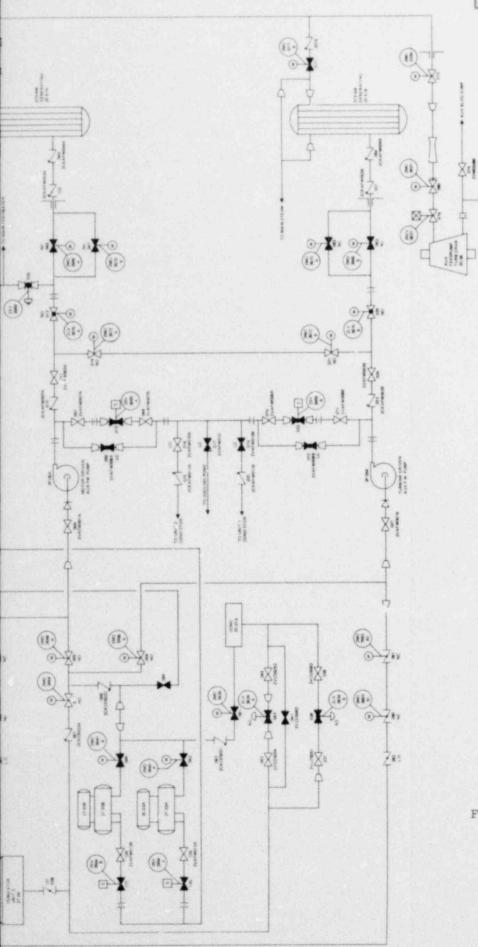
**Unavailability is the fraction of times the system will not perform its function when required.

*7.0 E-5 read 7.0 x 10-5.

() Variance - describes the spread of the results about the mean.

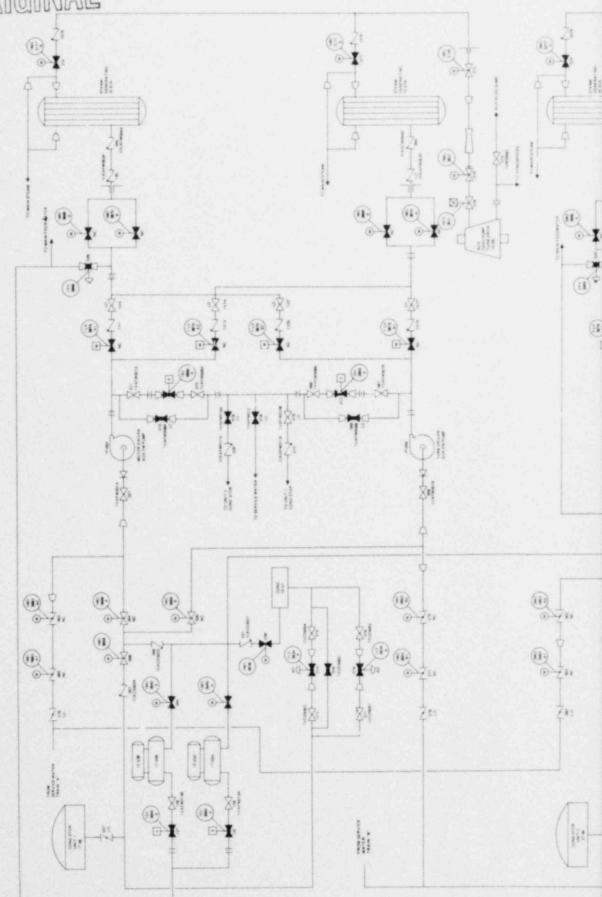
3. INTRODUCTION AND SCOPE


3.1 BACKGROUND


The purpos of this study is to analyze the reliability of three alternative Auxiliary Feedwater System (AFWS) designs for the Midland Nuclear Station. A diagram of each alternative system design is drawn and is presented here as Base Case, Figure 4; Double Crossover, Figure 5; and Three Pump, Figure 6. The auxiliary feedwater system supplies feedwater to the steam generators during normal plant startup, shutdown, and hot standby conditions. It also serves an important emergency function by providing cooling water to remove decay heat from the core. To place the AFWS emergency function in perspective, we consider what options for cooling are available to a core following extended high power operations. The simplified core cooling event tree of Figure 7 provides a framework for discussion. Following an initiating event that could lead to loss of main feedwater (turbine trip, reactor trip, LOCA, etc.), core heat can be removed via the primary coolant system in two ways: through the steam generators (steam production in the secondary side) or directly by reactor coolant blowing down through a valve or rupture. If a LOCA is large enough to remove the decay heat, sufficient makeup flow must be delivered to the reactor to avoid core uncovery. The design mode of heat removal is by steam generator cooling (steam reliefs or power operated atmospheric vents). For continued success of this mode, feedwater must be supplied by the AFWS or b, restoring main feedwater. Even if all feedwater supplies fail, successful core cooling can be provided by primary bleed and feed. Recent analyses show that high pressure injeccion combined with the opening of power operated relief valves can supply sufficient bleed and feed cooling to prevent core damage.[3] For cases that involve loss of all AC power, only the feed systems can provide cooling since the makeup pumps cannot run. In this report we address only the reliability of the AFMS.

The fault tree analysis determines the system hardware minimal cutsets, i.e., the smallest groups of combined component failure modes that lead to system failure. We further catalog the causes for specific component failure modes and evaluate their likelihood of occurrence. The causes considered include:

- Random independent failures
- Test and maintenance
- Human error
- Common cause failures


Results are quantified using plant specific data for each case analyzed, and once using NRC generic point value data taken from NUREG-0611^[1] as applied to the double crossover design.

POOR ORIGINAL

FIGURE 4. MIDLAND AUXILIARY FEEDWATER SYSTEM - BASE CASE POOR ORIGINAL

ちょう ちしょ

POOR ORIGINAL

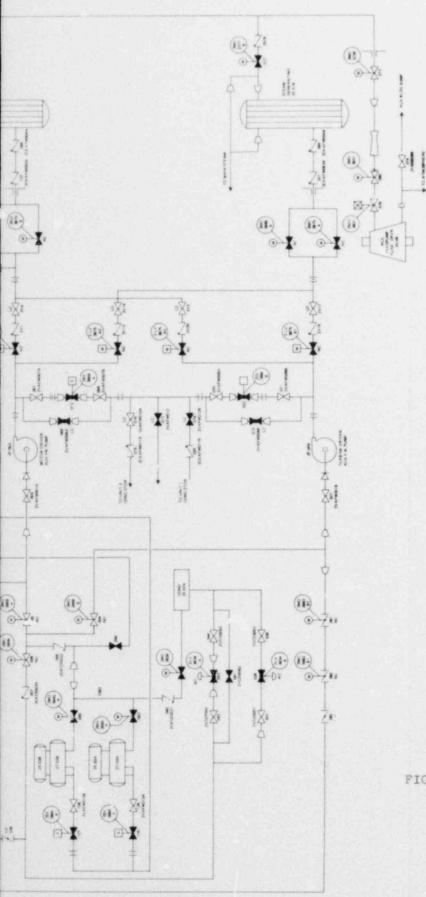
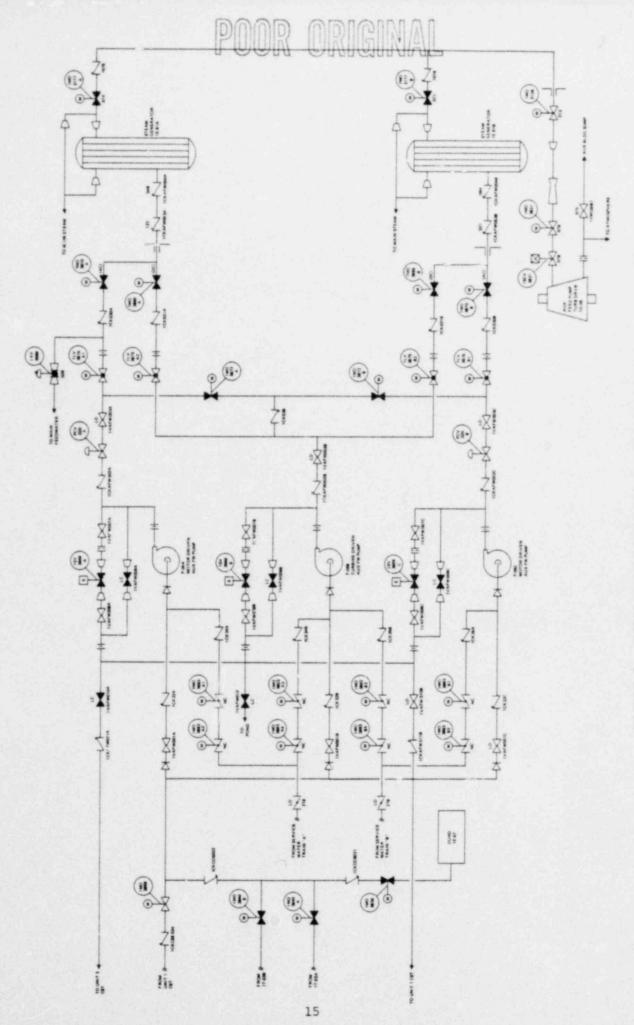



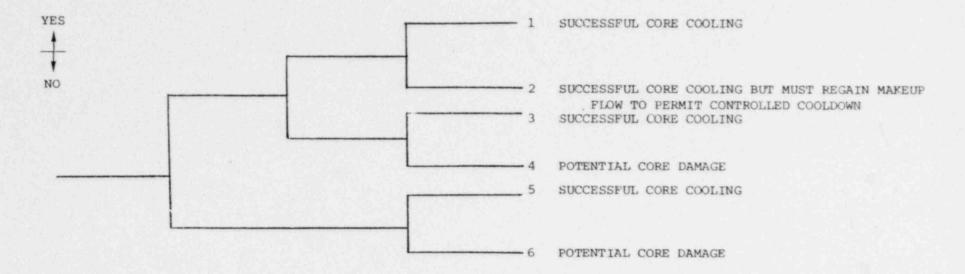
FIGURE 5. MIDLAND AUXILIARY FEEDWATER SYSTEM - DOUBLE CROSSOVER

ļ

•

•

1


J

1

1

FICURE 6. MIDLAND AUXILIARY FEEDWATER SYSTEM -THREE PUMP

INITIATING EVENT (LEADING TO LOSS OF MAIN FEEDWATER)	NO RAPID SUSTAINED LOSS OF PRIMARY COOLANT LEVEL	STEAM GENERATOR COOLING WITH AFWS OR MAIN FEEDWATER	SUFFICIENT PRIMARY MAKEUP FLOW*	SEQ. NO.
--	---	---	--	-------------

RESULT

*INCLUDES SUCCESSFUL OPENING OF PORVS IF REQUIRED FOR FEED AND BLEED COOLING.

FIGURE 7. SIMPLIFIED CORE COOLING EVENT TREE

16

In the report, conditional unavailability is evaluated for the three specific electric power conditions considered by the NRC in NUREG-0611:

- Offsite AC available
- No offsite AC available
- No AC available.

Note that these cases lead to conditional unavailability calculations that are coupled with specific states of electric power.

3.2 AUXILIARY FEEDWATER SYSTEM DESCRIPTION

3.2.1 System Function

.

The auxiliary feedwater (AFW) system [4-10] supplies feedwater to the steam generators during normal plant startup, shutdown, and hot standby operations when the main feedwater system is unavailable for service. The AFW system is also designed to respond automatically to emergency conditions, to supply feedwater to the steam generators (SGs) in order to remove reactor decay heat, assist in establishing natural circulation, and to cool down the reactor coolant system to the point at which the plant decay heat removal system may be placed into operation.

The AFW system must fulfill certain plant safety design bases, therefore, care is taken in selection and design of the interfaces for motive power to the AFW system. Electric power demands of the AFW system are met by taking the load from the vital plant buses that are powered by the onsite emergency diesel generators. A redundant and diverse source of motive power is the steam from either of the two SGs. If a demand occurs on the system, then it is highly likely that steam is available to drive the turbine for the AFW system pump. Valves and controls for the turbine-powered AFW system loop receive power from DC power systems which are battery supported.

Three alternative designs are considered for the Midland AFW system. Although distinct differences exist between the alternatives, the ecsential elements, water sources, pumping sections, flow control, and isolation remain the same.

In the following paragraphs, the basic system is described using the AFW system as described in the Final Safety Analysis Report (FSAR). The differences between the alternative designs are then presented.

3.2.2 Basic AFW System

The Base Case AFW design consists of two AFW pumps, a level control arrangement, AFW to SG feed lines, steam supply to the turbine-driven pump, and a water supply arrangement.

Three sources of water are supplied for the auxiliary feedwater system:

- The condensate storage tank (CST) serves as a backup source of water during normal system operations (startup, hot standby, and cooldown) and as the primary source of water during plant emergency conditions.
- The condensate system is used for plant startup, hot standby, or cooldown operations.
- O The service water system serves as a safety-grade backup system to the CST during plant emergency conditions.

The CST is the source of makeup water to the plant condensate system and the AFW system during normal operations. The CST is always aligned to supply water to the AFW system during plant operation through a normally open motor-operated valve (MOV). This MOV receives an open signal from the auxiliary feedwater actuation system (AFWAS) during plant emergency conditions.

The condensate system is used to supply the AFW system during normal plant startup, shutdown, and cooldown operations. Three separate condensate system sources--either of two deaerating storage tanks or the condenser hotwell--are available to the AFW pumps. MOVs in each separate supply line receive an automatic close signal from the AFWAS system in the event of a plant emergency which requires AFW.

The service water system provides a safety-grade backup to the CST. Two MOVs in series supply each AFW pump. The "A" service water train supplies the "A" AFW pump and the "B" service water train supplies the "B" AFW pump. These motor-operated valves open automatically upon receipt of an AFWAS signal in conjunction with a two-out-of-four low suction pressure condition at the associated AFW pump. The low suction pressure trip also closes the associated normal suction valve from the CST.

Redundant auxiliary feedwater pumps are provided. The motive power for the auxiliary feedwater pumps is diverse and independent; using steam generated in either or both SGs to drive a turbine-powered pump, or vital 4160VAC electric power to the motor-driven pump. The motor breaker is DC controlled to close and trip. The motor breaker trips on bus undervoltage, phase overcurrent, ground fault, and high-high SG level. The motor-driven AFW pump restarts automatically when SG level is restored to normal. The valves associated with steam supply to the turbine-driven pump are DC motor-operated. The turbine controls are supplied power from the same DC source. The pumps and drives are located in separate rooms in the Auxiliary Building. Each room contains a fan cooler unit that is started when the associated pump starts. Cooling water for the fan cooler unit is supplied from the plant service water system. Each pump has a recirculation line to remove pump heat during low flow conditions. Flow through the recirculation line is controlled by a solenoid valve that opens in response to pump flow. AFW pump recirculation is normally directed to the condensate storage tank supplying the AFW pump.

In addition to the recirculation line, each pump has a full flow test line that bypasses the recirculation solenoid. This line is used for the pump flow testing that is required by plant technical specifications. The full flow test valve is normally locked closed and has a remote position indication in the Main Control Room.

Each pump has a manual suction and discharge isolation valve used for isolation of the associated pump for maintenance. Each pump also has a discharge check valve to protect the pump from back flow.

•

•

The motor-driven AFW pump discharge line contains the auxiliary feedwater to main feedwater cross-connect valve. The motor-driven AFW pump supplies flow to the SGs through the main feedwater system piping during startup, hot standby, and cooldown operations. This valve is hydraulically operated to open and fails closed upon loss of power. This valve also receives a close signal from the AFWAS.

The steam for the turbine-driven pump is supplied from either or both SGs through normally closed motor operated isolation valves. These valves receive an open signal from the AFWAS. The supply from each SG ties into a common supply line inside the Reactor Containment Building. There is a normally open steam header isolation valve outside the building. Should this valve be closed, an AFWAS signal is sent to open the valve.

The turbine is supplied with a trip throttle valve and a turbine governor valve. The trip throttle valve is a motor-open, trip close valve which trips closed on turbine overspeed. Once tripped, the valve motor must be energized, and the valve shut to reset the trip. When the valve motor has been driven to the shut condition, the overspeed trip is reset, and the valve is reopened. The turbine governor valve is an electro-hydraulically operated valve which maintains turbine speed at the required value after the turbine is started. Hydraulic pressure for valve operation is supplied by a lube oil pump attached to the turbine shaft. This pump also supplies lubrication for the turbine journal and thrust bearings. When the turbine is shut down, the governor valve is wide open. As the turbine increases in speed after the admission of steam, the governor valve closes to limit possible overspeed of the turbine and to control final turbine speed. In addition to overspeed, the turbine trips on high-high SG level. When SG level is restored, the pump automatically restarts.

The AFW pumps are cross-connected after the pump discharge valve through two normally open MOVs. These cross-connect valves close automatically on high-high SG water level in either SG and must be manually reopened after the high-high level condition has been corrected. These valves do not receive an open signal from the AFWAS. Each SG AFW line contains a normally open, motor-operated level control valve. These valves operate to main tain a programmed water level in the associated SG. Base Case control circuit design requires that two channels of SG level indication require valve movement before the level control valve will change position. Failure of either level channel results in no valve movement under automatic control or manual control. In addition, these valves can only operate for fifteen minutes out of every hour.*

The supply line to each SG passes through a parallel Reactor Containment Building AFW isolation valve arrangement. These isolation valves are normally closed and receive an open signal from the AFWAS. In the line to each SG there is one DC and one AC operated valve, which provides diversity of power supply for these valves. Two check values in series in the AFW line to each SG prevent blowing down an intact SG through the AFW lines to a leaking or ruptured SG.

Turbine exhaust steam passes up through the exhaust line to the roof of the Auxiliary Building where the steam is exhausted to the atmosphere. There are no isolation valves in the turbine exhaust line.

In addition to the AFWAS signal required to start the AFW system, the AFW feedwater isolation valves and the steam supply valves to the turbine-driven pump receive a Main Steam Line Isolation System (MSLIS) signal through a Feed-Only-Good-Generator (FOGG) logic network. This FOGG signal is designed to prevent the addition of feedwater to a ruptured SG and is used as an interlock or blocking signal rather than a direct signal such as the AFWAS signal (i.e., the FOGG signal being present prevents valve movement but does not cause valve movement).

The AFW system is normally in a standby status with the valves lined up as indicated in Figure 4. Upon receipt of an AFWAS signal, the following events occur: The motor-driven and turbine-driven AFW pumps receive a start signal; the turbine steam supply valves from the SGs open; the AFW isolation valves to the SGs open; if closed, the CST isolation valve opens; the DAST and condenser isolation valves close; and the main feedwater cross-connect valve closes. Within 40 seconds they will be supplying both SGs.

In the event of a loss of suction to the AFW pumps, after a time delay of 4 seconds, the service water valves will open and the CST outlet valve will close.

After the SG levels have been restored, the level control valves will throttle closed to maintain SG level. In the event of a high-high SG level, the associated AFW pump will trip off and the discharge crossconnect valve will close. With an AFWAS signal still present, the associated AFW pump will automatically restart upon the clearing of the SG

*The design of these valves has been changed to allow continuous operation.

high level alarm. The discharge cross-connect valve must be reopened by the operator after the SG high level alarm has reset.

3.2.3 Double Crossover Design

The double crossover design shown in Figure 5 represents the present design of the AFW system. The differences between the basic design (Base Case) and the double crossover are as follows:

- Improved Feed-Only-Good-Generator logic and system interaction.
- Two level control valves per SG, one supplied from each of the AFW pumps.
- Improved level control system for the SGs.

The improved FOGG logic continously monitors differential pressure between the SGs and automatically isolates AFW flow to the lower pressure SG whenever the differential pressure exceeds a predetermined value. This allows the FOGG logic to be independent of the MSLIS signal and to perform a direct function (i.e., close valves) rather than a blocking or interlock function. In addition, FOGG signals are channelized and are sent to the SG level control valves, thus preventing a single failure from disabling the FOGG function. Presented below are the new relationships between FOGG channels and the actuated valves and the AFWAS channels and actuated equipment.

Actuated Equipment	t FOGG Channel	AFWAS Channel _	Electric Power		
			AC	DC	
LP-05A	NA	lA	1A05	1D11	
1P-05B	NA	1B	NA	1D21	
1MO3865A	1C	1A	NA	1D11	
1MO3870B	1C	1A	1B56	NA	
1MO3865B	1D	1B	NA	1D21	
1MO3870A	1D	1B	1855	NA	
1LV3875A1	1A	1A	1Y11	NA	
1LV3875A2	1A	1A	1¥12	NA	
1LV3875B1	1B	1B	1Y13	NA	
1LV3875B2	18	1B	1Y14	NA	
1MO3177A	18	1B	NA	1D21	
1MO3177B	18	1B	NA	1D21	

FOGG/ACTUATED EQUIPMENT RELATIONSHIP

The level control valve arrangement for the double crossover design was shown in Figure 5. Each AFW pump discharges to two electrohydraulically operated level control valves, one valve for each SG. These level control valves are 120 VAC motor-operated and fail open upon loss of AC power. The AC power for the level control valves associated with one AFW pump comes through an inverter network from the same DC load group as the pump's DC control power.

The level control system for each level control valve now relies upon a single level signal rather than two level signals, which was the requirement in the Base Case design. A single level channel failure will not cause either underfeeding or overfeeding of the SG.

System operation remains the same for the double crossover design as was discussed for the base case design.

3.2.4 Three Pump Design

The three pump design shown in Figure 6 is similar to the design of the auxiliary feedwater system used in Bellefonte Nuclear Power Station. In this design, either both motor-driven pumps or one turbine-driven pump is required to operate in order for the AFW system to satisfactorily perform its safety functions.

For the purposes of this analysis, it is assumed that the power supplies to the AFW feedwater isolation valves would be the same as the base case, that the motor-driven pumps discharge through the two AC-powered valves, and that the turbine-driven pump discharges through the two DC-powered valves. In addition, the control circuit for the level control valves was assumed to be modified such that a single channel of SG level could only affect one level control valve rather than both. These assumptions assure a system design that is similar to Midland.

Further assumptions were required concerning DC power to the turbine controls. DC power to the turbine-driven pump was assumed to be available from either DC bus. Preliminary analysis indicated a single failure of DC bus 1D21 would cause system failure due to the loss of the turbine-driven pump and the failure to start of the second motor-driven AFW pump. An alternative assumption to power the second motor-driven pump from the same AC source as the first motor-driven pump produced the same results as the alternate DC power supplies to the turbine-driven pump. These assumptions allow the most flexibility for the AFW three pump design.

Assumptions concerning the service water modifications were made to maintain the same double isolation valve and independence of service water trains as are present in the current Midland design.

3.2.5 Electric Power and Other Babcock and Wilcox Designs

The AFW system dependence on electric power is analyzed to the bus that powers the equipment. The power supply interface used in the analysis is given in Table 4.

A comparison of the Midland double crossover design with other operating B&W plant AFWS designs is given in Table 5.

3.3 SCOPE

The three Midland alternative auxiliary feedwater system designs are analyzed as presently designed (with the assumptions noted above) and as expected to be maintained and operated. Two sets of data are used in separate quantifications. The NRC point estimate data from NUREG-0611 is identified here as NRC DATA. Data most applicable to the Midland AFWS, including uncertainty has been identified as Plant-Specific Data. The three specific cases described in NUREG-0611 are analyzed:

- LMFW transient initiated by interruption of the main feedwater system (reactor trip occurs) and offsite AC power remains available.
- LMFW/LOOP transient initiated by loss of offsite AC power and reactor trip occurs (main feedwater system is interrupted by the loss of offsite power). Onsite emergency AC power sources (diesel generators) are treated probabilistically.
- LMFW/only DC power available transient is initiated as in item 2 above, but onsite emergency AC power sources are unavailable.

The boundary of the analysis is pictured in Figure 8. The turbine steam supply from the SGs and all of the auxiliary feedwater system components are included directly in the analysis. The water supplies themselves are not analyzed in detail. However, the piping systems and valves that deliver water to the auxiliary feedwater system are included. Electrical power supplies are outside the boundary of the analysis and are considered as discussed in Cases 1, 2, and 3 above. The AFWS actuation signal is outside the boundary of the analysis is conducted conditional on the presence of an AFWS actuation signal. Finally, some human interactions are included within the analysis and some are outside the boundary. Within the boundaries the human interaction through test and maintenance as well as operator response to system failure on demand are considered.

An event tree model of AFW system operation is developed in order to address detailed system concerns such as overcooling and undercooling, reliability of continued operation, discrimination among "Bad SG" conditions, and consequences of feeding the "Bad SG."

TABLE 4. AFW POWER SUPPLIES

Base Case Alternative

	Component	Power Supply		
1.	Motor-driven AFW pump P05A	4160V AC bus 1A05		
	control power	125 VDC panel 1D11		
2.	Turbine-driven AFW pump P05B			
	control power	125V DC panel 1D21		
3.	Level control valve, LV3875A	480V MCC 1855		
4.	Level control valve, LV3875B	480V MCC 1856		
5.	OTSG A steam supply to turbine MO3177A	125V DC panel 1D21		
6.	OTSG B steam supply to turbine MO3126	125V DC panel 1D21		
7.	Steam supply isolation valve MO3126	480V MCC 1B56		
8.	Turbine throttle valve MO3831	125V DC panel 1D21		
9.	Feedwater isolation to SG A (AC), MO3870A	480V MCC 1855		
10.	Feedwater isolation to SG A (DC), MO3865A	125V DC panel 1D11		
11.		480V MCC 1856		
12.	the second s	125V DC panel 1D21		
13.		480V MCC 1855		
14.	AFW discharge crossover, MO3872B	480V MCC 1856		
15.		480V power panel 1BP0:		
16.	AFW suction cross-connect, MO3868A	480V power panel 1BP03		
17.	AFW suction cross-connect, MO3868B	480V power panel 1BP04		
18.	Train A service water to P05A, M03893A1	480V power panel 1BP0		
19.	Train A service water to P05A, M03893A2	480V power panel 1BP0		
20.	Train B service water to P05B, M03893B1	480V power panel 1BP04		
21.	Train B service water to P05B, M03893B2	480V power panel 1BP04		
22.	DAST A outlet valve, MO3840A DAST B outlet valve, MO3840B	480V power panel B31 480V power panel B32		
4.3.	DADI D OULIEL VAIVE, MO30408	480V power panel B31		

TABLE 4 (continued)

Double Crossover Alternative

Component				Power	Supply		
1.	Level	control	valve,	LV3875A1	120VAC	Panel 1	1411
2.	Level	control	valve,	LV3875B1	120VAC	Panel 1	112
3.	Level	control	valve,	LV3875A2	120VAC	Panel 1	LY13
4.	Level	control	valve,	LV3875B2	120VAC	Panel 1	LY14

Three Pump Alternative

	Component	Power Supply
1.	Motor-driven AFW pump P05C	4160V bus 1A06
	control power	125V DC panel 1D21
2.	Turbine-driven AFW pump P05B	125V DC panel 1D21 or
	control room	1D11
3.	Train A service water to P05B, M03893A3	480V power panel 1BP03
4.	Train A service water to P05B, M03893A4	480V power panel 1BP03
5.	Train B service water to P05B, M03893B3	480V power panel 1BP04
6.	Train B service water to P05B, M03893B4	480V power panel 1BP04

Note: All power supplies for Three Pump Designs are assumed.

TABLE 5. SUMMARY OF MAJOR CHARACTERISTICS OF B&W OPERATING PLANT AFW SYSTEMS

PLANT	Rancho Seco	Oconee-1,11,111	Crystal River-3	Davis-Bestell	Arkanaks Nuclear Court	Three Mile Island-1	Midland 1 & 2
Putps	i turbine/motor driven 1 motor driven	1 turbine driven 2-1/2 capacity motor driven	1 turbine driven 1 motor driven	2 turbine driven	l turbine drives 1 motor drives	1 turbine driven 2-1/2 capacity motor driven	l turbine driven 1 motor driven fielk copacity)
Frimary Suction Source	250,000 g. CST	50,000 g. USTA+B for TOP UST+100,000 g. condensor hotwell for MDP	150,000 g. CST	2 CSTs each 257,000 g.	107,000 q. CST	2 CST's each 150,000 g.	2 ChTw, 100,000 g. mach
Aiternate Suction Source	Canal and reservoix connector	Condensor Notwell	Condensor hotsell	2 service wathr trains	Nuclear acreice water	River water system	lst - Service water 2nd - Condensor Inteell (for startup, shutdown)
Switchover to Alternate Suction	Manusl	Manual for TDP	Manual	Automatic	Manual	Manua)	Automatic
Dischare- Croastie	Yes, with normally open values	No (normally closed paths not considered) Each MDP feeds 1 SG TDF feeds both	Yes, two-with check valves	Yes, with normally closed values SPRCS/manual control	Yes, with normaliy open values	Yes, any pump feeds any SG	Kes, each pump feeds each SG through a different LCV (4)
Backup Power	2 diesel generatore	Keowee hydro genera- tors	2 diesel generators	2 diesel generators	2 diemel generators	2 diesel generators	4 diesel geberators (2 per plant)
Connon Steam Supply Header Fed from both 50	Yes	Yes	Yes	No, separate steam supply lines with cross-over connections under SFRCS control	Yes	Yes	Yes
TDP Pump Initiation	ESFAS, 4 BCP trip, 2 MFWP trip	2 MFWF lo discharge pressure 2 MFWP trip	2 MEWP trip 2 SG to level	1 MPW valve hi reverse AF 1 SG 10 level, 4 BCP trip	2 MPWP crip, 1 SG io level 4 MCP trip	2 ммже 16 др. 2 ммже trip 4 RCP trip	ECCAS, RCP trip main fees water trip, RB presson high. Class IE bos 05 SG level low. SG press low.
MDP	Same minus ESFAS	Same	Same	N/A	Same	Same minus 2 MEWP trip	States
Location	External to ICS	External to ICS	External to ICS	SPRCS	All within ICS	External to ICS	External to ICS
APW Control and Valves	ICS control for flow Control valves SPS for loss of 4 RCP, 2 MPWP	SG level control circuits for each SG flow control valves	ICS control for flow control valver	Turbine speed control, speed-control walves, BFRCS isolation valves All control separate from ICS	ICS control for flow control valves SPs for loss of 4 NCP, 2 MEMP	ICS control for flow control valves SPs for loss of 4 RCP, 2 MPMP	SG level control circuits for each SG flew control values
Operator Actions Case 2 for Sustained APM Flow	None required	None required	None required	None required	None required	None required (open 5" steam supply)	None required
	Monual load of MDP on diesel generator (if TDP fails)	Open Th. coo. 9 water valve, restore load shed PWB	Manual load of MDP (if TDP fails)	None required	None required	steam subby) steam subby)	None respired
	None required	None available	None available	Manual open AC valves	Manual open AC values	None required topen 6" steam supply]	None required

Note: For details, refer to plant specific draft reports (Reference 2)

 TDP
 - Turbise Driven Pump
 UST
 - Upper Surge Tank
 SG
 - Steam Generator

 MOP
 - Motor Driven Pump
 BCP
 - Reactor Coulant Pump
 SP
 - Set Point

 CST
 - Condensate Storage Tank
 NEWP
 - Main Feedbater Pump
 ICS
 - Integrated Control System

26

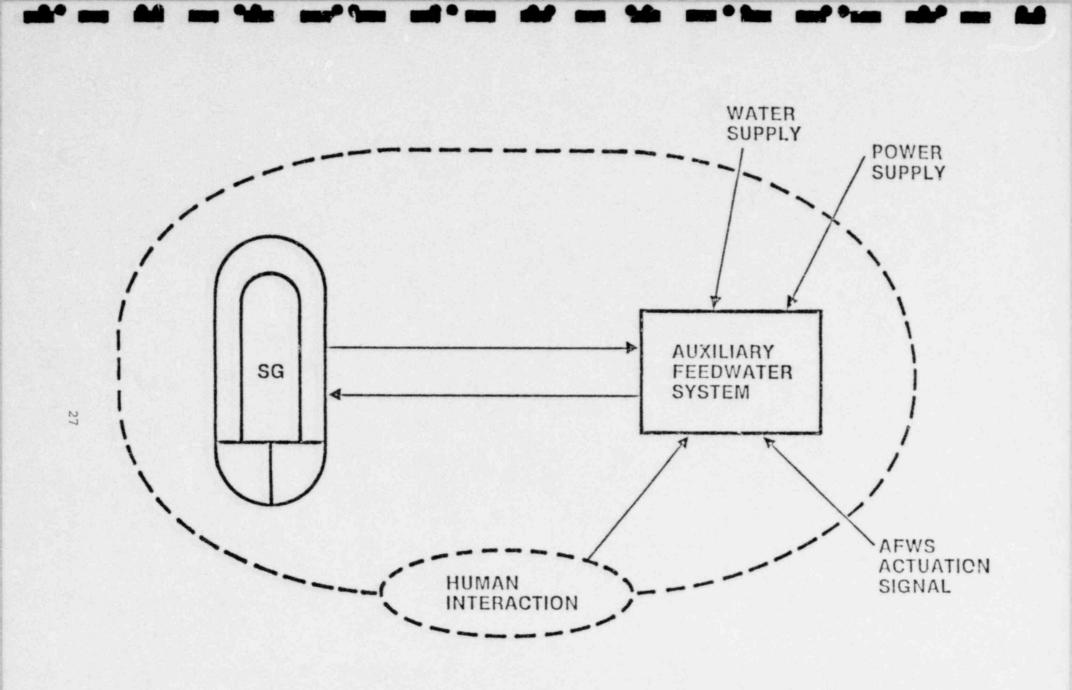


FIGURE 8. BOUNDARY OF ANALYSIS

4. METHODOLOGY

The approach taken in this study is to separate the reliability problem into two logically distinct modules--determination of minimal cutsets of <u>equipment failure modes</u> and determination of cause sets, i.e., <u>causes</u> that can bring about failures of the equipment cutsets.

The first step is to develop a detailed fault tree of the system. That tree is developed down to the level of basic component failure modes, such as "valve MOV-3870A fails to open." Thus when the minimal cutsets of this fault tree are determined, they represent groups of equipment functional failure modes that must occur together if the system is to fail. Those cutsets are characteristic of the system hardware alone.

A simplified fault tree for the Midland AFWS is shown in Figure 9. The TOP event, "No Or Insufficient Flow (NOIF) To Both Steam Generators," can only occur if there is NOIF from the motor pump section AND from the turbine pump section. NOIF from a pump section can only occur on NOIF from all water sources or failures within the pump sections. The detailed fault trees are shown in Appendixes A, B, and C for the base case, double crossover, and three pump, respectively.

The second step is to tabulate the possible causes for each failure mode. A single equipment functional failure mode may be caused by random independent faults, test and maintenance, common or independent human interactions, common environmental conditions such as high temperature or flooding, aging, etc. Entire cutsets may fail due to any single cause or coincident combinations of causes.

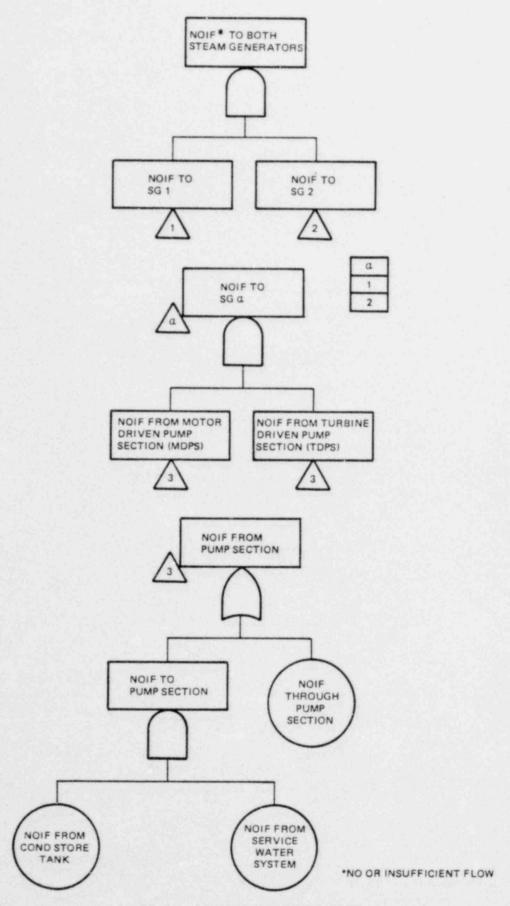
The cause tree for the Midland AFWS, Figure 10, lays out the overall solution approach of this report. NOIF to both steam generators can only occur if one or more failure mode cutsets are failed. Such failures must be caused by

Random Independent Failures

OR

Independent Human Errors

OR

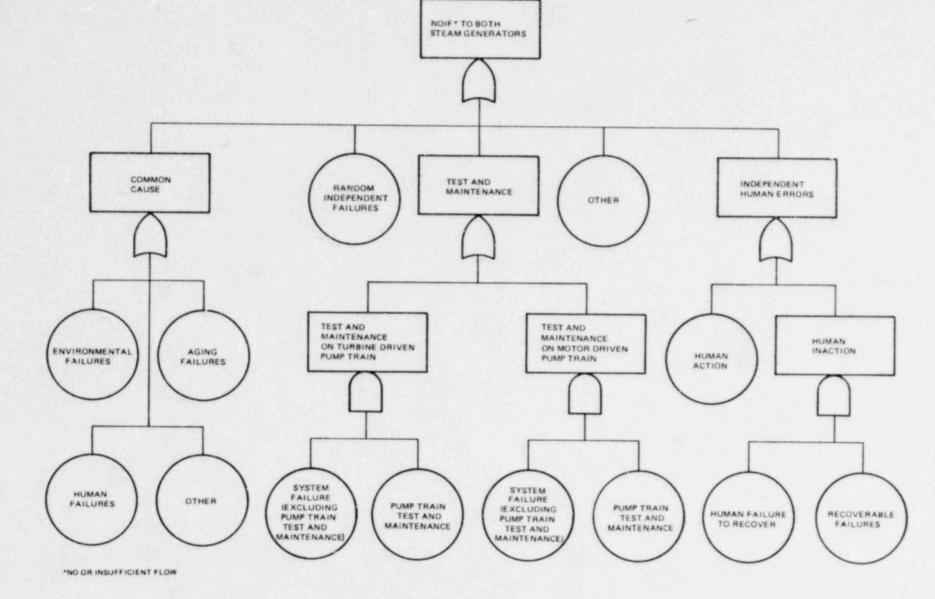

Test and Maintenance in Conjunction With Other Causes

OR

Common Cause Failures

OR

Other Failure Causes.



•

.

FIGURE 9. SIMPLIFIED FAULT TREE

FIGURE 10. CAUSE TREE FOR THE MIDLAND AUXILIARY FEEDWATER SYSTEM

If time is available to recover from system failure, then recoverable random failures only lead to system failure when combined with human inaction--human failure to recover. Such cases were not considered in this analysis because, based on available information, system success requires immediate operation.

.

.

•

5.1 SYSTEM MODELS

5.1.1 System Fault Tree

The fault tree models the failures that must occur to prevent successful system operation. The TOP event is defined as "No Or Insufficient Flow To Both Steam Generators." Success is defined as the flow from at least one pump train delivered to at least one steam generator. The simplified fault tree of Figure 9 (Section 4) shows that for the system to fail we must fail to deliver sufficient flow to both steam generators. In each case this requires that there is no or insufficient flow through the steam generator inlet valve section or that there is no or insufficient flow delivered to that section. Secondly, we must have no or insufficient flow from the motor driven pump (either must fail in the three pump alternative) and no or insufficient flow from the turbine driven pump. Finally, there is no water from any of the potential water sources. The complete fault tree models are presented in Appendixes A, B, and C for the base case, double crossover, and three pump alternatives respectively, where the system is modeled to the level of major components. Included are the pumps, valves, electrical supply, motor operators, and turbine and control mechanisms. Not modeled are drain lines, drain valves, piping, and connected lines which are small in size, i.e., syster components whose failure rates are very low compared to the ones included in the model. The AFWS flowpath is modeled from the water sources to the steam generators. Electrically, the system is modeled from the bus to the system. (Note that for the case No Offsite Power Available, the diesel generators are treated probabilistically.)

Variations on the main models were made depending upon the initial conditions of the scenario. These variations were made at the basic event level and consisted of changes to the failure probability for the basic event. As examples, consider the following: to run the model for the case "Loss of Offsite Power," the failure probabilities for the AC buses were increased to the value of the probability of failure of a diesel generator to start; to simulate the condition of maintenance on a pump train, the pump failure probability was changed to one (which indicates a failed component) which resulted in a new listing of minimum cutsets for system failure. In this manner, the basic tree developed for a particular system design can correctly evaluate system failure for varying initial conditions.

5.1.2 Computer Programs

The computer programs that are used by Pickard, Lowe and Garrick, Inc., to process information in system reliability analyses are in the public domain and are available through the Argonne Code Center. The codes are the most current versions of computer packages that have been in use for many years. Most of the computer programs were used in support of the Reactor Safety Study, WASH-1400, and have been modified as developments are made to reduce computer cost or improve output presentations. The computer programs used on this project are RAS[11], COMCANII-A[12], and MOCARS[13]. 5.1.2.1 RAS. Reliability analysis system, RAS, is a combination of codes that do qualitative and quantitative fault tree analysis. FATRAM (method of obtaining cutsets) KITT (kinetic tree theory), and COMCAN (commom cause failure analysis) are the core elements for RAS. FATRAM is known as a "top down" method for determining cutsets or pathsets for a fault tree. The tree top is developed for its inputs until it is resolved to the basic events in the model. The super sets are then eliminated leaving the minimal cutsets. Kinetic tree theory is the methodology used next to predict the system reliability characterisitics (quantitatively) from the cutset developed by FATRAM. These codes use the rare event approximation in quantifying reliability.

RAS also includes the COMCAN routines necessary to perform a common cause failure analysis on fault trees. This common cause analysis uses the minimal cutsets as input to the algorithm. Searches are then carried out through other libraries of information supplied to the routines by the user to identify those cutsets that have a single cause of failure for each component.

5.1.2.2 <u>COMCANII-A</u>. The II-A version of COMCAN presently stands separately from RAS. Incorporation is forthcoming. A principal advantage of COMCANII-A is that it allows the common cause analysis to be completed on a much larger tree without the need for "pruning" and analysis of each pruned branch.

5.1.2.3 MOCARS. The Monte Carlo sampling program, MOCARS, is a marked improvement over SAMPLE which was used in the <u>Reactor Safety Study</u>. MOCARS readily accepts the cutsets as they are prepared in RAS. A Monte Carlo routine is then used to determine the distribution for the reliability characteristic in question. Improvements in MOCARS make it readily usable for applications other than fault tree analysis.

5.1.3 Data

!

.

5.1.3.1 NRC Data. The data used for the point estimate quantification as requested by the NRC, is taken from Appendix III of NUREG-0611. The source for that data was primarily WASH-1400^[14]. In some cases such generic data misrepresents equipment actually installed in a specific plant. Using point estimates masks the plant-to-plant variability as the primary source of uncertainty in the data as used in WASH-1400. A complete listing of this data source is provided in Table 6.

5.1.3.2 <u>Generic and Plant-Specific Data</u>. A plant specific data book for Midland is provided in Appendix D. Here the best available data to describe the specific equipment in place at Midland is presented. It is based upon generic data that includes a wide uncertainty band to account for plant-to-plant variability and where sufficient Midland specific data is available those generic distributions have been updated to account for the specific equipment and practices in place at Midland.

Events	(x 10 ⁻⁶)	MTTR	Q (Demand)	WASH-1400 Event
CSTIGLOR	.0001	360	_	PTKCONDF
J001A05F	30.	8	-	JHOO
JOO1BP3F	14.	8	-	JFOO
JOO1BP4F	14.	8		JFOO
J001B55F	14.	8	-	JFOO
J001B56F	14.	8	-	JFOO
JOOIDIIF	1.2	2	-	JKOO
J001D21F	1.2	2	-	JKOO
PCV0001D	-	-	1×10^{-4}	PCV0157C
PCV0013D	-		1×10^{-4}	PCV0157C
PCV0015D	-	-	1×10^{-4}	PCV0142C
PCV0025D	-	-	1×10^{-4}	PCV0142C
PCV024-D			1×10^{-4}	
PCV075-D	-	-	1×10^{-4}	-
PCV076-D	-	-	1×10^{-4}	-
PCVU53AD	-	-	2 x 10 ⁻⁴	PCV0133, 131C
PCVU53BD		-	2 x 10 ⁻⁴	PCV0137, 138C
PLV75A1D	-	-	1.1 x 10-3	-
PLV75A2D	-	-	1.1 x 10-3	
PLV75B1D	-	-	1.1 x 10-3	-
PLV75B2D	-	-	1.1 x 10-3	이 같은 일을 위해 있다.
PMO105AA	-	-	4 x 10-3	PST3ACNT
PMO177AA	-	-	6 x 10-3	-
PMO177BA	-		6 x 10-3	
PM03126C	-	-	1×10^{-4}	PMVMS02C
PM075A1A	-		6 x 10-3	-
PM075A2A	-		6 x 10-3	
PM075B1A	-	-	6 x 10-3	이 아이 그 아이 영어 등
PM075B2A	-	-	6 x 10-3	
PM08931A	-	-	6 x 10-3	입장 선택하는 것이.
PM08932A		-	6 x 10-3	297. 2 00 - 19
PM08933A	-	-	6 x 10-3	
PM08934A	-	-	6 x 10-3	-
PMV177AD	-		1.1 x 10-3	_
PMV177BD		_	1.1 x 10-3	_
PMV3856C	-	-	1 x 10 ⁻⁴	_
PMV865AD	-	-	1.1 x 10-3	-
PMV865BD		-	1.1 x 10-3	-
PMV868AC	-	-	1 x 10 ⁻⁴	
PMV868BC		-	1 x 10 ⁻⁴	1. <u></u>
PMV870AD	_	_	1.1 x 10-3	

TABLE 6. NRC FAILURE DATA

Ł

F

l r

L

ſ

ł

B

Events	(x 10 ⁻⁶)	MTTR	Q	([Demand)	WASH-1400 Event
PMV870BD	20 <u>-</u> 1 1	-	1.1	x	10-3	_
PMV8931D	-	_	1.1	x	10-3	-
PMV8932D					10-3	-
PMV8933D	_				10-3	-
PMV8934D	-	_			10-3	_
PPM105AF	-				10-3	PPMFW3AA
PPM105BF		_			10-3	PPMTURBF
PREA109F		10 L			10-4	-
PREA209F	-	Sec. 2010			10-4	_
PREB109F	-				10-4	_
PREB209F	-				10-4	_
PRE1A03F	-	1112			10-4	_
PRE1A08F	-		1	x	10-4	
PREIAIIF	-	-			10-4	
PRE1A12F	-	-			10-4	
PRE1B03F	-				10-4	_
PRE1B08F	-	_			10-4	1997 <u>-</u> 1997 - 1997
PREIBIIF	-	-			10-4	요즘은 유민이가 가지?
PRE1B12F	-	-	1	x	10-4	
PREIIIIF		-	1	x	10-4	
PRE1512X	-	-			10-4	나는 승규는 것이 같아요.
PRE1514X	-	-	1	x	10-4	2013년 1월 1993년 1월 19 1월 1993년 1월 1 1월 1993년 1월 1
PRE1610F	-	-			10-4	이는 것 같아요. 영화 영화
PRE1613F	-	-			10-4	영화의 국가 위험을 했다.
PSTMOOAF	-	-			10-3	승규는 부가 가지 않는 것이 없다.
PSTMOOBF	-	-			10-3	
PSTM05AF		-			10-3	말 아들 수 있는 것이다.
PSTM05BF	-	-			10-3	이야 말 밖에 안 안 다.
PTB1G05A	-	-			10-3	이야지 유민이지 않는
PXV001AC	-	-			10-4	PXV0168C
PXV001BC	-	-			10-4	PXV0153C
PXV0002C	-	-			10-4	-
PXV0004C		-	1	x	10-4	- 1995
PXV0014C		-	1	x	10-4	-
PXV0017C			1	x	10-4	-
PXV009AO	-	-	5	х	10-4	PXVTESTY
PXV009BO	-	-	5	х	10-4	PXVTESTY
PXV037-C	-	-	1	x	10-4	-
PXV278-C	5 	-	1	x	10-4	-
PXV279-C		11 - H	1	x	10-4	

TABLE 6. NRC FAILURE DATA (continued)

2

1

.

.

1

\$

3

Note: All other events were contained in the events listed above, therefore, no failure rates were assigned. All data taken from WASH-1400 or NUREG-0611.

5.2 RANDOM FAILURES

Random system failures reflect the system malfunctions that occur as a result of random component failures. The coincident failure of each component in an AFWS cutset results in a random system failure. This situation does not include, and should be differentiated from, test and maintenance, common cause, and independent human errors. The section on human interaction elaborates on the subject of recovery of the system by repair or operator action.

Table 7 lists all basic events (component failure modes) for the three designs analyzed. Table 8 presents the dominant cutsets and basic events for the double crossover design using NRC data and all three designs using plant specific data for each of the three states of electric power analyzed.

5.3 TEST AND MAINTENANCE

5.3.1 Testing

The Auxiliary Feedwater System (AFWS) and its supporting systems are tested periodically to satisfy plant technical specification requirements. This testing ensures that these systems will be operable when required by various plant conditions. The plant technical specifications also limit the time that systems, or portions of systems, may be out of service and identify special testing requirements necessary to ensure plant safety while these out-of-service systems or components are being repaired.

Plant procedures concerning this technical specification testing were not yet available for this analysis; therefore, slight differences between the actual test methods and the general methods discussed in this section may exist.

5.3.1.1 <u>AFW Pumps</u>. The auxiliary feedwater pumps are tested monthly on a staggered basis. This test requires that the AFW pump successfully pass 100% of the required flow through the pump test bypass line at the required pump discharge head. To develop the required pressure, the pumps were assumed to be isolated from the AFW system at the level control valves during this full flow testing. During the test, if the AFWS is required to operate, the operator at the test bypass valve must close this valve to allow AFW flow to feed the SGs.

Every 18 months, the auxiliary feedwater pumps are checked to ensure that they start upon receipt of an Auxiliary Feedwater Actuation Signal; and that the auxiliary feedwater pumps restart after tripping on high level in the steam generators when the steam generator water level is returned to the normal control band.

5.3.1.2 <u>AFW Valves</u>. All manual, power-operated, or automatic valves that are not locked, sealed, or otherwise secured in position are verified in the correct position monthly. This test is assumed to be a visual check rather than a valve cycling check.

TABLE 7a. FAULT TREE COMPONENT LIST AND FAILURE MODE BASE CASE

-

-

Basic Event Failure Mode		Failure Mode	ure Mode Description of Event	
1.	PPM105AF	Fail to operate	Pump PO5A fails to deliver sufficient water (includes support equipment).	D-8
2.	PPM105BF	Fail to operate	Pump PO5B fails to deliver sufficient water (includes support equipment).	D-8
3.	PTB1G05A	Fail to start	Turbine GO5A fails to start (includes MO3831 and turbine controls).	D-28
4.	J001A05F	No output	4,160 V switchgear bus 1AO5 fails.	D-10
5.	J001B55F	No output	480 V MCC 1B55 fails.	D-10
6.	J001B56F	No output	480 V MCC 1B56 fails.	D-10
7.	JOOIDIIF	No output	125 VDC panel 1D11 fails.	D-12
8.	J001D21F	No output	125 VDC panel 1D21 fails.	D-12
9.	JOO1BP4F	No output	480 V power panel 1BPO4 fails.	D-10
10.	JOO1BP3F	No output	480 V power panel 1BPO3 fails.	D-10
11.	J001Y13F	No output	120 V instrument panel 1Y13 fails.	D-10
12.	JOOLY14F	No output	120 V instrument panel 1Y14 fails.	D-10
13.	J001Y31F	No output	120 V instrument panel 1Y31 fails.	D-10
14.	J001Y32F	No output	120 V instrument panel 1Y32 fails.	D-10
15.	CMUAF1TO	Flow lost	CST makeup flow lost to condenser hotwell (includes LV-3834A, LV-3834B, and ball valve VO63).	D-5
16.	CSTIGLOR	Rupture	Condensate storage tank ruptures.	D-27
17.	1RUPTLOF	Flow lost	AFW flow lost in main feed system.	D-27
18.	1PPSW-AF	No flow	No supply from service water train A.	D-11
19.	1PPSW-BF	No flow	No supply from service water train B.	D-11
20.	PLV875AC	Closed	Level control valve, LV3875A, fails closed.	D-5
21.	PLV875BC	Closed	Level control valve, LV3875B, fails closed.	D-5
22.	PCVU53AD	Closed	Check valves in OTSG A supply fail closed (includes CVOO4A and CVO53A).	D-2
23.	PCVU53BD	Closed	Check valves in OTSG B supply fail closed (includes CVOO4B and CVO53B).	D-2

Basic Event Fai		ent Failure Mode Description of Event		Failure Dat Appendix D Page No.	
24.	PCV076-D	Closed	Check valve OTSG B to AFW turbine fails closed.	D-2	
25.	PCV075-D	Close ⁴	Check valve OTSG A to AFW turbine fails closed.	D-2	
26.	PCV002AD	Close	Check valve PO5A discharge fails closed.	D-2	
27.	PCVOO2BD	Closed	Check valve PO5B discharge fails closed.	D-2	
28.	PCV024-D	Closed	Check valve CST to AFW fails closed.	D-2	
29.	PMV8931D	Closed	Service water supply valve MO3893A1 fails closed.	D-3	
30.	PMV8932D	Closed	Service water supply valve MO3893A2 fails closed.	D-3	
31.	PMV8933D	Closed	Service water supply valve MO3893B1 fails closed.	D-3	
32.	PMV8934D	Closed	Service water supply valve MO3893B2 fails closed.	D-3	
33.	PMV868AC	Closed	Suction header cross-connect valve MO3868A transfers closed.	D-4	
34.	PMV868BC	Closed	Suction header cross-connect valve MO3868B transfers closed.	D-4	
35.	PMV177AD	Closed	OTSG A steam supply to AFW turbine MO3177A fails closed.	D-4	
36.	PMV177BD	Closed	OTSG B steam supply to AFW turbine MO3177B fails closed.	D-4	
37.	PMV872AC	Closed	AFW pump discharge cross-connect valve MO3872A transfers closed.	D-4	
38.	PMV872BC	Closed	AFW pump discharge cross-connect valve MO3872B transfers closed.	D-4	
39.	PMV870AD	Closed	Feedwater isolation valve MO3870A fails closed.	D-4	
40.	PMV870BD	Closed	Feedwater isolation valve MO3870B fails closed.	D-4	
41.	PMV865AD	Closed	Feedwater isolation valve MO3865A fails closed.	D-4	
42.	PMV865BD	Closed	Feedwater isolation valve MO3865B fails closed.	D-4	
43.	PXV037-C	Closed	CST isolation valve VO37 transfers closed.	D-3	
44.	PXV278-C	Closed	Service water train A isolation valve, V278, transfers closed.	D-3	
45.	PXV279-C	Closed	Service water train B isolation valve, V279, transfers closed.	D-3	
46.	PXVOOLAC	Closed	PO5A suction valve, VOO1A, transfers closed.	D-4	
47.	PXVOO1BC	Closed	PO5B suction valve, VOO1B, transfers closed.	D-4	
48.	PXV003AC	Closed	PO5A discharge valve, VO03A, transfers closed.	D-4	
49.	PXV003BC	Closed	PO5B discharge valve, VOO3B, transfers closed.	D-4	
50.	PXV009A0	Open	PO5A full flow test valve, VO09A, transfers open.	D-5	

~

-

1.1

•

Bas	sic Event	Failure Mode	Description of Event	Failure Data Appendix D Page No.
51.	PXV009B0	Open	PO5B full flow test valve, VOO9B, transfers open.	D-5
52.	PHV889-0	Open	AFW - main feed cross-connect valve HV3889 transfers open.	D-5
53.	PCN1C560	Open	FOGG relay 95-1, channel 1C, contacts 5-6, fail open.	D-20
54.	PCN1D120	Open	FOGG relay 95-1, channel 1D, contacts 1-2, fail open.	D-20
55.	PSTMOOAF	Fail to operate	Valve MO387OA motor operator does not operate (includes: motor operator, master contactor, 95 relay, FOGG power fuse, and breaker).	D-25
56.	PSTMOOBF	Fail to operate	Valve MO387OB motor operator does not operate (includes: motor operator, master contactor, 95 relay, FOGG power fuse, and breaker).	D-25
57.	PSTCCOAF	No signal	Valve M03870A controls fail (includes opening circuit, closing circuit, and common circuit failures).	D-25
58.	PSTCCOBF	No signal	Valve MO3870B controls fail (includes opening circuit, closing circuit, and common circuit failures).	D-25
59.	PCB15260	Open	Breaker 52-26 in MCC1B55 transfers open.	D-13
60.	PCB16260	Open	Breaker 52-26 in MCC1B56 transfers open.	D-13
61.	PREIAIIF	Open	AFWAS relay K611, channel 1A, fails open.	D-18
62.	PRE1B11F	Open	AFWAS relay K611, channel 1B, fails open.	D-18
63.	PSTM05AF	Fail to operate	Valve 3865A motor operator does not operate (includes motor operator, master contactor, 95-1 relay, FOGG power fuse, and FOGG power breaker).	D-25
64.	PSTM05BF	Fail to operate	Valve 3865B motor operator does not operate (includes, motor operator, master contactor, 95-1 relay, FOGG power fuse, and FOGG power breaker).	D-25
65.	PSTCC5AF	No signal	Valve MO3865A controls fail (includes opening circuit, closing circuit, and common circuit).	D-26
66.	PS-TCC5BF	No signal	Valve MO3865B controls fail (includes opening circuit, closing circuit, and common circuit).	D-26
67.	PCN1C120	Open	FOGG relay 95-1, channel 1C, contacts 1-2 fail open.	D-20
68.	PCN1D560	Open	FOGG relay 95-1, channel 1D, contacts 5-6 fail open.	D-20
69.	PRE1A12F	Open	AFWAS relay K612, channel 1A, fails open.	D-18

-

Bas	ic Event	Failure Mode	Description of Event	Failure Da Appendix Page No.	D
70.	PRE1B12F	Open	AFWAS relay K612, channel 1B, fails open.	D-18	
71.	PCC1AC1E	False signal	Valve LV3875A closing circuit Cl fails energized.	D-25	
72.	PCC1AC2E	False signal	Valve LV3875A closing circuit C2 fails energized.	D-25	
73.	PCC1BC1E	False signal	Valve LV3875B closing circuit Cl fails energized.	D-25	
74.	PCC1BC2E	False signal	Valve LV3875B closing circuit C2 fails energized.	D-25	
75.	PSTSLIAF	False signal	Valve MO3872A closing circuit fails energized.	D-26	
76.	PSTSL1BF	False signal	Valve MO3872B closing circuit fails energized.	D-26	
77.	PRE1111F	Open	AFWAS relay K1111, channel 1A, fails open.	D-18	
78.	PMO105AA	Fail to start	PO5A motor fails to start.	D-10	
79.	PSTBRIAF	Fail to close	PO5A motor breaker does not close (includes control power and closing circuit failures).	D-25	
80.	PMO177AA	Fail to start	Valve MO3177A motor operator does not operate (includes motor operator and power fuses).	D-7	4
81.	PMO177BA	Fail to start	Valve MO3177B motor operator does not operate (includes motor operator and power fuses).	D-7	
82.	PRE1512X	False signal	MSLIS relay K512, channel 1B, fails closed, false signal.	D-18	
83.	PRE1514X	False signal	MSLIS relay K514, channel 1B, fails closed, false signal.	D-18	
34.	PRE1610F	Open	AFWAS relay K610, channel 1B, fails open.	D-18	
85.	PRE1613F	Open	AFWAS relay K613, channel 1B, fails open.	D-18	
86.	PCB17140	Open	1021 circuit breaker 72-14 fails open.	D-15	
87.	PCB17150	Open	1D21 circuit breaker 72-15 fails open.	D-15	
88.	PCC177AF	Fail to operate	Valve MO3177A control circuit fails (includes opening, circuit, closing circuit, and common circuit).	D-26	
89.	PCC177BF	Fail to operate	Valve MO3177B control circuit fails (includes opening circuit, closing circuit, and common circuit).	D-26	
90.	PM03126C	Closed	Valve MO3126 transfers closed (includes control circuit and valve failure).	D-4	
91.	PSTCSIAC	False signal	Valve MO3868A controls provide close signal (includes false signal).	D-26	
92.	PSTCS1BC	False signal	Valve MO3868B controls provide close signal (includes false signal).	D-26	

Ma, Jan 114.

142

.

15

Bas	Basic Event Failure Mode		Description of Event	Failure Dat Appendix D Page No.
93.	PMV3856C	Closed	Valve MO3856 fails closed (includes inadvertant close signal).	D-4
94.	PM08934A	Fail to operate	Valve MO3893B2 motor operator fails to operate.	D-6
95.	PCB11030	Transfer open	Valve MO3893B2 circuit breaker opens.	D-13
96.	PRE1BO3F	Open	Valve MO3893B2 AFWAS relay fails open.	D-18
97.	PSTCCB2F	No signal	Valve MO3893B2 control circuit fails (includes open, close, and common circuits).	D-25
98.	PM08933A	Fail to operate	Valve MO3893B1 motor operator fails to operate.	D-6
99.	PCB11020	Transfer open	Valve MO3893B1 circuit breaker opens.	D-13
100.	PRE1BO8F	Open	Valve MO3893B1 AFWAS relay fails open.	D-18
101.	PSTCCB1F	No signal	Valve MO3893Bl control circuit fails (includes open, close, and common circuits).	D-25
102.	PM08932A	Fail to operate	Valve MO3893A2 motor operator fails to operate.	D-6
103.	PCB21030	Transfer open	Valve MO3893A2 circuit breaker opens.	D-13
104.	PRE1A03F	Open	Valve MO3893A2 AFWAS relay fails open.	D-18
105.	PSTCCA2F	No signal	Valve MO3893A2 control circuit fails (includes open, close, and common circuits).	D-25
106.	PM08931A	Fail to operate	Valve MO3893Al motor operator fails to operate.	D-6
107.	PCB21020	Transfer open	Valve MO3893Al circuit breaker opens.	D-13
108.	PRE1A08F	Open	Valve MO3893Al AFWAS relay fails open.	D-18
109.	PSTCCALF	No signal	Valve MO3893Al control circuit fails (includes open, close, and common circuits).	D-25

41

1

10. 11.

100

. Andre

TABLE 75. FAULT TREE COMPONENT LIST AND FAILURE MODES DOUBLE CROSSOVER

Bas	ic Event	Failure Mode	Description of Event	Failure Data Appendix D Page No.
1.	PPM105AF	Fail to operate	Pump PO5A fails to deliver sufficient water (includes support equipment).	D-8
2.	PPM105BF	Fail to operate	Pump PO5B fails to deliver sufficient water (includes support equipment).	D-8
3.	PTB1G05A	Fail to start	Turbine GO5A fails to start (includes MO3831 and turbine controls).	D-28
4.	J001A05F	No output	4,160 V switchgear bus 1AO5 fails.	D-10
5.	J001B55F	No output	480 V MCC 1B55 fails.	D-10
6.	J001B56F	No output	480 V MCC 1856 fails.	D-10
7.	J001D11F	No output	125 VDC panel 1D11 fails.	D-12
8.	J001D21F	No output	125 VDC panel 1D21 fails.	D-12
9.	JOO1BP4F	No output	480 V power panel 1BPO4 fails.	D-10
10.	JOO1BP3F	No output	480 V power panel 1BPO3 fails.	D-10
11.	JOOLAILE	No output	120 V instrument panel 1Y11 fails.	D-10
12.	J001Y12F	No output	120 V instrument panel 1Y12 fails.	D-10
13.	J001Y13F	No output	120 V instrument panel 1Y13 fails.	D-10
14.	J001Y14F	No output	120 V instrument panel 1Y14 fails.	D-10
15.	J001Y31F	No output	120 V instrument panel 1Y31 fails.	D-10
16.	J001Y32F	No output	120 V instrument panel 1¥32 fails.	D-10
17.	CMUAF1TO	Flow lost	CST makeup flow lost to condenser hotwell (includes LV-3834A, LV-3834B, and ball valve VO63).	D-5
18.	CSTIGLOR	Rupture	Condensate storage tank ruptures.	D-27
19.	1RUPTLOF	Flow lost	AFW flow lost in main feed system.	D-27
20.	1PPSW-AF	No flow	No supply from service water train A.	D-11
21.	1PPSW-BF	No flow	No supply from service water train B.	D-11
22.	PLV75A1D	Closed	Level control valve, LV3875Al, fails closed (mechanical failure).	D-5
23.	PLV75A2D	Closed	Level control valve, LV3875A2, fails closed (mechanical failure).	D-5

.

. .

_

Bas	ic Event	Failure Mode	Description of Event	Failure Data Appendix D Page No.
24.	PLV75B1D	Closed	Level control valve, LV3875B1, fails closed (mechanical failure).	D-5
25.	PLV75B2D	Closed	Level control valve, LV3875B2, fails closed (mechanical failure).	D-5
26.	PCVU53AD	Closed	Check valves in OT3G A supply fail closed (includes CV004A and (053A).	D-2
27.	PCVU53BD	Closed	Check valves in OTSG B supply fail closed (includes CVOO4B and CVO53B).	D-2
28.	PCV076-D	Closed	Check valve, OTSG B to AFW turbine, fails closed.	D-2
29.	PCV075-D	Closed	Check valve, OTSG A to AFW turbine, fails closed.	D-2
30.	PCV0001D	Closed	Check valve, outlet of LV3875A1, fails closed.	D-2
31.	PCV0013D	Closed	Check valve, outlet of LV3875A2, fails closed.	D-2
32.	PCV0015D	Closed	Check valve, outlet of LV3875B1, fails closed.	D-2
33.	PCV0025D	Closed	Check valve, outlet of LV3875B2, fails closed.	D-2
34.	PCV024-D	Closed	Check valve, CST to AFW, fails closed.	D-2
35.	PMV8931D	Closed	Service water supply valve, MO3893A1, fails closed.	D-3
36.	PMV8932D	Closed	Service water supply valve, MO3893A2, fails closed.	D-3
17.	PMV8933D	Closed	Service water supply valve, MO3893B1, fails closed.	D-3
38.	PMV8934D	Closed	Service water supply valve, MO3893B2, fails closed.	D-3
39.	PMV868AC	Closed	Suction header cross-connect valve, MO3868A, transfers closed.	D-4
40.	PMV868BC	Closed	Suction header cross-connect valve, MO3868B, transfers closed.	D-4
41.	PMV177AD	Closed	OTSG A steam supply to AFW turbine, MO3177A, fails closed.	D-4
42.	PMV177BD	Closed	OTSG B steam supply to AFW turbine, MO3177B, fails closed.	D-4
43.	PMV870AD	Closed	Feedwater isolation valve. M03870A, fails closed.	D-4
44.	PMV870BD	Closed	Feedwater isolation valve, M03870B, fails closed.	D-4
45.	PMV865AD	Closed	Feedwater isolation valve, M03865A, fails closed.	D-4
46.	PMV865BD	Closed	Feedwater isolation valve, MO3865B, fails closed.	D-4
47.	PXV037-C	Closed	CST isolation valve, VO37, transfers closed.	D-3

-

Bas	sic Event	Failure Mode	Description of Event	Failure Data Appendix D Page No.
48.	PXV278-C	Closed	Service water train A isolation valve, V278, transfers closed.	D-3
49.	PXV279-C	Closed	Service water train B isolation valve, V279, transfers closed.	D-3
50.	PXV001AC	Closed	PO5A suction valve, VOO1A, transfers closed.	D-4
51.	PXV001BC	Closed	PO5B suction valve, VOO1B, transfers closed.	D-4
52.	FXV0002C	Closed	Outlet valve, LV3875B2, transfers closed.	D-4
53.	PXV0004C	Closed	Outlet valve, LV3875A1, transfers closed.	D-4
54.	PXV0014C	Closed	Outlet valve, LV3875A2, transfers closed.	D-4
55.	PXV0017C	Closed	Outlet valve, LV3875B1, transfers closed.	D-4
56.	PXV009A0	Open	PO5A full flow test valve, VOO9A, transfers open.	D-5
57.	PXV009B0	Open	PO5B full flow test valve, VOO9B, transfers open.	D-5
58.	PHV889-0	Open	AFW - main feed cross-connect valve, HV3889, transfers open.	
59.	PCN1C560	Open	FOGG relay 95-1, channel 1C, contacts 5-6, fail open.	D-20
60.	PCN1D120	Open	FOGG relay 95-1, channel 1D, contacts 1-2, fail open.	D-20
61.	PSTMOOAF	Fail to operate	Valve M03870A motor operator does not operate (includes: motor operator, master contactor, 95 relay, FOGG power fuse, and breaker).	D-25
62.	PSTMOOBF	Fail to operate	Valve MO387OB motor operator does not operate (includes: motor operator, master contactor, 95 relay, FOGG power fuse, and breaker).	D-25
63.	PSTCCOAF	No signal	Valve MO3870A controls fail (includes opening circuit, closing circuit, and common circuit failures).	D-26
64.	PSTCCOBF	No signal	Valve MO3870B controls fail (includes opening circuit, closing circuit, and common circuit failures).	D-26
65.	PCB15260	Open	Breaker 52-26 in MCC1B55 transfers open.	D-13
66.	PCB16260	Open	Breaker 52-26 in MCC1B56 transfers open.	D-13
67.	PREIAIIF	Open	AFWAS relay K611, channel 1A, fails open.	D-18
68.	PRE1B11F	Open	AFWAS relay K611, channel 1B, fails open.	D-18

- -

- -- *

4

Bas	Basic Event Failure Mode		Description of Event		
69.	PSTM05AF	Fail to operate	motor operator, master contactor, 95-1 relay, FOGG p	Valve 3865A motor operator does not operate (includes motor operator, master contactor, 95-1 relay, FOGG power fuse, and FOGG power breaker).	D-25
70.	PSTM05BF	Fail to operate	Valve 3865B motor operator does not operate (includes, motor operator, master contactor, 95-1 relay, FOGG power fuse, and FOGG power breaker).	D-25	
71.	PSTCC5AF	No signal	Valve MO3865A controls fail (includes opening circuit, closing circuit, and common circuit).	D-26	
72.		No signal	Valve MO3865B controls fail (includes opening circuit, closing circuit, and common circuit).	D-26	
73.	PCN1C120	Open	FOGG relay 95-1 channel 1C contacts 1-2 fail open.	D-20	
74.	PCN1D560	Open	FOGG relay 95-1 channel 1D contacts 5-6 fail open.	D-20	
75.	PRE1A12F	Open	AFWAS relay, K612 channel 1A, fails open.	D-18	
76.	PRE1B12F	Open	AFWAS relay, K612 channel 1B, fails open.	D-18	
77.	PRE1111F	Open	AFWAS relay, Killl channel 1A, fails open.	D-18	
78.	PMO105AA	Fail to start	POSA motor fails to start.	D-9	
79.	PSTBRIAF	Fail to close	PO5A motor breaker does not close (includes control power and closing circuit failures).	D-25	
80.	FMO177AA	Fail to start	Valve MO3177A motor operator does not operate (includes motor operator and power fuses).	D-7	
81.	PMO177BA	Fail to start	Valve MO3177B motor operator does not operate (includes motor operator and power fuses).	D-7	
82.	PRE1512X	False signal	MSLIS relay K512, channel 1B, fails closed, false signal.	D-18	
83.	PRE1514X	False signal	MSLIS relay K514, channel 1B, fails closed, false signal.	D-18	
84.	PRE1610F	Open	AFMAS relay K610, channel 1B, fails open.	D-18	
85.	PRE1613F	Open	AFWAS relay K613, channel 1B, fails open.	D-18	
86.	PCB17140	Open	1D21 circuit breaker 72-14 fails open.	D-15	
87.	PCB17150	Open	1D21 circuit breaker 72-15 fails open.	D-15	
88.	PCC177AF	Fail to operate	Valve MO3177A control circuit fails (includes opening, circuit, closing circuit, and common circuit).	D-26	
89.	PCC177BF	Fail to operate	Valve MO3177B control circuit fails (includes opening circuit, closing circuit, and common circuit).	D-26	

45

-

Bas	Basic Event Failure Mode		Description of Event	Failure Data Appendix D Page No.
90.	PM03126C	Closed	Valve MO3126 fails closed (includes control circuit and valve failure).	D-4
91.	PSTCSIAC	False signal false signal).	Valve MO3868A controls provide close signal (includes	D-26
92.	PSTCS1BC	False signal	Valve MO3868B controls provide close signal (includes false signal).	D-26
93.	PMV3856C	Closed	Valve MO3856 fails closed (includes inadvertent close signal).	D-4
94.	PM08934A	Fail to operate	Valve MO3893B2 motor operator fails to operate.	D-6
95.	PCB11030	Transfer open	Valve MO3893B2 circuit breaker opens.	D-13
96.	PRE1BO3F	Open	Valve MO3893B2 AFWAS relay fails open.	D-18
97.	PSTCCB2F	No signal	Valve MO3893B2 control circuit fails (includes open, close, and common circuits).	D-25
98.	PM08933A	Fail to operate	Valve MO3893B1 motor operator fails to operate.	D-6
99.	PCB11020	Transfer open	Valve MO3893B1 circuit breaker opens.	D-13
100.	PRE1BO8F	Open	Valve MO3893B1 AFWAS relay fails open.	D-18
101.	PSTCCB1F	No signal	Valve M03893B1 control circuit fails (includes open, close, and common circuits).	D-25
102.	PM08932A	Fail to operate	Valve M03893A2 motor operator fails to operate.	D-6
103.	PCB21030	Transfer open	Valve MO3893A2 circuit breaker opens.	D-13
104.	PRE1A03F	Open	Valve MO3893A2 AFWAS relay fails open.	D-18
105.	PSTCCA2F	No signal	Valve MO3893A2 control circuit fails (includes open, close, and common circuits).	D-25
106.	PM08931A	Fail to operate	Valve MO3893A1 motor operator fails to operate.	D-6
107.	PCB21020	Transfer open	Valve MO3893A1 circuit breaker opens.	0-13
108.	PRE1A08F	Open	Valve MO3893A1 AFWAS relay fails open.	D-18
109.	PSTCCALF	No signal	Valve M03893Al control circuit fails (includes open, close, and common circuits).	D-25
110.	POOCCA1X	No signal	Valve LV3875Al control circuit fails (includes open, close, and common circuits).	D-25

- • •

. (

_ _

•

Bas	ic Event	Failure Mode		
111.	POOCCA2X	No signal		
112.	POOCCB1X	No signal	Valve LV3875B1 contro) circuit fails (includes open, close, and common circuits).	D-25
113.	POOCCB2X	No signal	Valve LV3875B2 control circuit fails (includes open, close, and common circuits).	D-25
114.	PRE1AO1F	Open	Valve LV3875Al AFWAS relay fails open.	D-18
115.	PRE1A02F	Open	Valve LV3875A2 AFWAS relay fails open.	D-18
116.	PRE1BO1F	Open	Valve LV3875B1 AFWAS relay fails open.	D-19
117.	PRE1BO2F	Open	Valve LV3875B2 AFWAS relay fails open.	D-18
118.	PCB16200	Open	Valve LV3875Al circuit breaker opens.	D-13
119.	PCB16210	Open	Valve LV3875A2 circuit breaker opens.	D-13
120.	PCB17200	Open	Valve LV3875Bl circuit breaker opens.	D-13
121.	PCB17210	Open	Valve LV3875B2 circuit breaker opens.	D-13

TABLE 7c. FAULT TREE EVENTS AND FAILURE MODES THREE PUMP

Basic Event Failur		Failure Mode Description of Event			
1.	PPM105AF	Fail to operate	Pump PO5A fails to deliver sufficient water (includes support equipment).	D-8	
2.	PPM105BF	Fail to operate	Pump PO5B fails to deliver sufficient water (includes support equipment).	D-8	
3.	PPM105CF	Fail to operate	Pump PO5C fails to deliver sufficient water (includes support equipment).	D-8	
4.	PTB1G05A	Fail to start	Turbine GO5A fails to start (includes MO3831 and turbine controls).	D-28	
5.	J001A05F	No output	4,160 V switchgear bus 1AO5 fails.	D-10	
6.	J001A06F	No output	4,160 V switchgear bus 1AO6 fails.	D-10	
7.	J001855F	No output	480 V MCC 1855 fails.	D-10	
8.	J001B56F	No output	480 V MCC 1B56 fails.	D-10	
9.	JOOIDIIF	No output	125 VDC panel 1D11 fails.	D-12	
10.	J001D21F	No output	125 VDC panel 1D21 fails.	D-12	
11.	JOO1BP4F	No output	480 V power panel 1BPO4 fails.	D-10	
12.	JOO1BP3F	No output	480 V power panel 1BPO3 fails.	D-10	
13.	J001Y13F	No output	120 V instrument panel 1Y13 fails.	D-10	
14.	J001Y14F	No output	120 V instrument panel 1Y14 fails.	D-10	
15.	J001Y31F	No output	120 V instrument panel 1Y31 fails.	D-10	
16.	JOO1Y32F	No output	120 V instrument panel 1Y32 fails.	D-10	
17.	CMUAF1TO	Flow lost	CST makeup flow lost to condenser hotwell (includes LV-3834A, LV-3834B, and ball valve VO63).	D-5	
18.	CSTIGLOR	Rupture	Condensate storage tank ruptures.	D-27	
19.	IRUPTLOF	Flow lost	AFW flow lost in main feed system.	D-27	
20.	1PPSW-AF	No flow	No supply from service water train A.	D-11	
21.	1PPSW-BF	No flow	No supply from service water train B.	D-11	
22.	PLV75A1C	Closed	Level control valve LV3875Al fails closed.	D-5	
23.	PLV75A2C	Closed	Level control valve LV3875A2 fails closed.	D-5	

_ (

-

Basic Event Failure Mode De		Failure Mode	Description of Event	Failure Data Appendix D Page No.	
24.	PLV75B1C	Closed	Level control valve LV3875Bl fails closed.	D-5	
25.	PLV75B2C	Closed	Level control valve LV3875B2 fails closed.	D-5	
26.	PCVU53AD	Closed	Check valves in OTSG A supply fail closed (includes CVOO4A and CVO53A).	D-2	
27.	PCVU53BD	Closed	Check values in OTSG B supply fail closed (includes CVOO4B and CVO53B).	D-2	
28.	PCV076-D	Closed	Check valve OTSG B to AFW turbine fails closed.	D-2	
29.	PCV075-D	Closed	Check valve OTSG A to AFW turbine fails closed.	D-2	
30.	PCV002AD	Closed	Check valve PO5A discharge fails closed.	D-2	
31.	PCV002BD	Closed	Check valve PO5B discharge fails closed.	D-2	
32.	PCV002CD	Closed	Check valve PO5C discharge fails closed.	D-2	
33.	PCV030AD	Closed	Check valve LV3875Al outlet to OTSG E51A fails closed.	D-2	
34.	PCV030BD	Closed	Check valve LV3875B1 outlet to OTSG E51B fails closed.	D-2	
35.	PCV031AD	Closed	Check valve LV3875A2 outlet to OTSG E51A fails closed.	D-2	
36.	PCV031BD	Closed	Check valve LV3875B2 outlet to OTSG E51B fails closed.	D-2	
37.	PCV032AD	Closed	Check valve condensate supply to PO5A fails closed.	D-2	
38.	PCV032BD	Closed	Check valve condensate supply to PO5B fails closed.	D-2	
39.	PCV032CD	Closed	Check valve condensate supply to PO5C fails closed.	D-2	
40.	PCV034AD	Closed	Check valve service water supply to PO5A fails closed.	D-2	
41.	PCV034BD	Closed	Check valve service water supply to PO5B fails closed.	D-2	
42.	PCV035AD	Closed	Check valve service water supply to PO5C fails closed.	D-2	
43.	PCV035BD	Closed	Check valve service water supply to PO5B fails closed.	D-2	
44.	PCV024-D	Closed	Check valve CST to AFW fails closed.	D-2	
45.	PHV020AC	Closed	Pressure control valve, PCVO2OA, fails closed.	D-5	
46.	PHV020BC	Closed	Pressure control valve, PCVO2OB, fails closed.	D-5	
47.	PHV889-0	Open	AFW main feed cross-connect valve, HV3889, transfers open.	D-5	
48.	PMV177AD	Closed	OTSG A steam supply to AFW turbine, MO3177A, fails closed.	D-4	
49.	PMV177BD	Closed	OTSG B steam supply to AFW turbine, MO3177B, fails closed.	D-4	
50.	PMV870AD	Closed	Feedwater isolation valve, MO3870A, fails closed.	D-4	
51.	PMV870BD	Closed	Feedwater isolation valve, MO3870B, fails closed.	D-4	
52.	PMV865AD	Closed	Feedwater isolation valve, MO3865A, fails closed.	D-4	

49

Bas	sic Event Failure Mode Description of Event		vent Failure Mode Description of Event	
53.	PMV865BD	Closed	Feedwater isolation valve, MO3865B, fails closed.	D-4
54.	PXV037-C	Closed	CST isolation valve, VO37, transfers closed.	D-3
55.	PXV278-C	Closed	Service water train A isolation valve, V278, transfers closed.	D-3
56.	PXV279-C	Closea	Service water train B isolation valve, V279, transfers closed.	D3
57.	PXV001AC	Closed	PO5A suction valve, VOOLA, transfers closed.	D-4
58.	PXV001BC	Closed	PO5B suction valve, VOO1B, transfers closed.	D-4
59.	PXV001CC	Closed	PO5C suction valve, VOO1C, transfers closed.	D-4
60.	PXV003AC	Closed	PO5A discharge valve, VOO3A, transfers closed.	D-4
61.	PXV003BC	Closed	POSB discharge valve, VOO3B, transfers closed.	D-4
62.	PXV003CC	Closed	PO5C discharge valve, VOO3C, transfers closed.	D-4
63.	PXV009A0	Open	PO5A full flow test valve, VO09A, transfers open.	D-5
64.	PXVOO9BO	Open	PO5B full flow test valve, VOO9B, transfers open.	D-5
65.	PXV009C0	Open	PO5C full flow test valve, VOO9C, transfers open.	D-5
66.	PMV93A1D	Closed	Service water supply valve, MO3893A1, fails closed.	D-3
67.	PMV93A2D	Closed	Service water supply valve, MO3893A2, fails closed.	D-3
68.	PMV93A3D	Closed	Service water supply valve, MO3893A3, fails closed.	D-3
69.	PMV93A4D	Closed	Service water supply valve, MO3893A4, fails closed.	D-3
70.	PMV93B1D	Closed	Service water supply valve, MO3893B1, fails closed.	D-3
71.	PMV93B2D	Closed	Service water supply valve, MO3893B2, fails closed.	D-3
72.	PMV93B3D	Closed	Service water supply valve, MO3893B3, fails closed.	D-3
73.	PMV93B4D	Closed	Service water supply valve, MO3893B4, fails closed.	D-3
74.	PCV024-D	Closed	Check valve CST to AFW fails closed.	D-3
	PCN1C560	Open	FOGG relay 95-1, channel 1C, contacts 5-6, fail open.	D-20
76.	PCN1D120	Open	FOGG relay 95-1, channel 1D, contacts 1-2, fail open.	D-20
77.	PSTMOOAF	Fail to operate	Valve M03870A motor operator does not operate (includes: motor operator, master contactor, 95 relay, FOGG power fuse, and breaker).	D-25
78.	PSTMOOBF	Fail to operate	Valve MO3870B motor operator does not operate (includes: motor operator, master contactor, 95 relay, FOGG power fuse, and breaker).	D-25

Basic Event Failure Mode		Failure Mode	de Description of Event	
79.	PSTCCOAF	No signal	Valve MO3870A controls fail (includes opening circuit, closing circuit, and common circuit failures).	D-25
80.	PSTCCOBF	No signal	Valve MO3870B controls fail (includes opening circuit, closing circuit, and common circuit failures).	D-25
81.	PCB15260	Open	Breaker 52-26 in MCC1B55 transfers open.	D-13
82.	PCB16260	Open	Breaker 52-26 in MCC1B56 transfers open.	D-13
83.	PREIAIIF	Open	AFWAS relay K611, channel 1A, fails open.	D-18
84.	PRE1B11F	Open	AFWAS relay K611, channel 1B, fails open.	D-18
85.	PSTM05AF	Fail to operate	Valve 3865A motor operator does not operate (includes motor operator, master contactor, 95-1 relay, FOGG power fuse, and FOGG power breaker).	D-23
86.	PSTM05BF	Fail to operate	Valve 3865B motor operator does not operate (includes, motor operator, master contactor, 95-1 relay, FOGG power fuse, and FOGG power breaker).	D-25
87.	PSTCC5AF	No signal	Valve MO3865A controls fail (includes opening circuit, closing circuit, and common circuit).	D-26
88.	PSTCC5BF	No signal	Valve MO3865B controls fail (includes opening circuit, closing circuit, and common circuit).	D-26
89.	PCN1C120	Open	FOGG relay 95-1, channel 1C, contacts 1-2 fail open.	D-20
90.	PCN1D560	Open	FOGG relay 95-1, channel 1D, contacts 5-6 fail open.	D-20
91.	PRE1A12F	Open	AFWAS relay K612, channel 1A, fails open.	D-18
92.	PRE1B12F	Open	AFWAS relay K612, channel 1B, fails open.	D-18
93.	PRE1111F	Open	AFWAS relay Kllll, channel 1A, fails open.	D-18
94.	PRE1112F	Open	AFWAS relay K1112, channel 1B, fails open.	D-18
95.	PMO105AA	Fail to start	PO5A motor fails to start.	D-9
96.	PMO105CA	Fail to start	PO5C motor fails to start.	D-9
97.	PSTBRIAF	Fail to close	PO5A motor breaker does not close (includes control power and closing circuit failures).	D-25
98.	PSTBR1BF	Fail to close	PO5C motor breaker does not close (includes control power and closing circuit failures).	D-25

Bas	sic Event Failure Mode Description of Event		Failure Mode Description of Event	
99.	PMO177AA	Fail to start Valve MO3177A motor operator does not operate (includes motor operator and power fuses).		D-7
100.	PMO177BA	Fail to start	Valve MO3177B motor operator does not operate (includes motor operator and power fuses).	D-7
101.	PRE1512X	False signal	MSLIS relay K512, channel 1A, fails closed, false signal.	D-18
102.	PRE1514X	False signal	MSLIS relay K514, channel 1B, fails closed, false signal.	D-18
103.	PRE1610F	Open	AFWAS relay K610, channel 1A, fails open.	D-18
104.	PRE1613F	Open	AFWAS relay K613, channel 1B, fails open.	D-18
105.	PCB17140	Open	1D11 circuit breaker 72-14 fails open.	D-15
106.	PCB17150	Open	1D21 circuit breaker 72-15 fails open.	D-15
107.	PCC177AF	Fail to operate	Valve MO3177A control circuit fails (includes opening, circuit, closing circuit, and common circuit).	D-26
108.	PCC177BF	Fail to operate	Valve MO3177B control circuit fails (includes opening circuit, closing circuit, and common circuit).	D-26
109.	PM03126C	Closed	Valve MO3126 fails closed (includes control circuit and valve failure).	D-4
110.	PMV3856C	Closed	Valve MO3856 fails closed (includes inadvertent close signal).	D-4
111.	PMO93A1A	Fail to operate	Valve MO3893Al motor operator fails to operate.	D-6
112.	PMO93A2A	Fail to operate	Valve MO3893A2 motor operator fails to operate.	D-6
113.	PMO93A3A	Fail to operate	Valve MO3893A3 motor operator fails to operate.	D-6
114.	PMO93A4A	Fail to operate	Valve MO3893A4 motor operator fails to operate.	D-6
115.	PMO93B1A	Fail to operate	Valve MO3893B1 motor operator fails to operate.	D-6
116.	PMO93B2A	Fail to operate	Valve MO3893B2 motor operator fails to operate.	D-6
117.	PMO93B3A	Fail to operate	Valve MO3893B3 motor operator fails to operate.	D-7
118.	PMO93B4A	Fail to operate	Valve MO3893B4 motor operator fails to operate.	D-8
119.	PCB93A10	Transfer open	Valve MO3893Al circuit breaker opens.	D-13
120.		Transfer open	Valve MO3893A2 circuit breaker opens.	D-13
121.		Transfer open	Valve MO3893A3 circuit breaker opens.	D-13
122.	PCB93A40	Transfer open	Valve MO3893A4 circuit breaker opens.	D-13
123.	PCB93B10	Transfer open	Valve MO3893B1 circuit breaker opens.	D-13

the setting setting the setting

Basic Event Failure Mode		Failure Mode	Description of Event	Failure Data Appendix D Page No.
124.		Transfer open	Valve MO3893B2 circuit breaker opens.	D-13
125.	PCB93B30	Transfer open	Valve MO3893B3 circuit breaker opens.	D-13
126.	PCB93B40	Transfer open	Valve MO3893B4 circuit breaker opens.	D-13
127.	PREA301F	Open	Valve MO3893A1 AFWAS relay fails open.	D-18
128.	PREA302F	Open	Valve MO3893A2 AFWAS relay fails open.	D-18
129.	PREA801F	Open	Valve MO3893A3 AFWAS relay fails open.	D-18
130.		Open	Valve MO3893A4 AFWAS relay fails open.	D-18
131.		Open	Valve MO3893B1 AFWAS relay fails open.	D-18
132.	PREB302F	Open	Valve MO3893B2 AFWAS relay fails open.	D-18
133.		Open	Valve MO3893B3 AFWAS relay fails open.	D-18
134.		Open	Valve MO3893B4 AFWAS relay fails open.	D-18
135.		No signal	Valve MO3893Al control circuit fails (includes open, close, and common circuits).	D-25
136.	PSTCCA2D	No signal	Valve MO3893A2 control circuit fails (includes open, close, and common circuits).	D-25
137.	PSTCCA3D	No signal	Valve MO3893A3 control circuit fails (includes open, close, and common circuits.	D-25
138.	PSTCCA4D	No signal	Valve MO3893A4 control circuit fails (includes open, close, and common circuits).	D-25
139.	PSTCCB1D	No signal	Valve MO3893B1 control circuit fails (includes open, close, and common circuits).	D-25
140.	PSTCCB2D	No signal	Valve MO3893B2 control circuit fails (includes open, close, and common circuits).	D-25
141.	PSTCCB3D	No signal	Valve MO3893B3 control circuit fails (includes open, close, and common circuits).	D-25
142.	PSTCCB4D	No signal	Valve MO3893B4 control circuit fails (includes open, close, and common circuits).	D-25
143.		False signal	Valve LV3875Al transfers closed due to control faults.	D-25
144.	POOCCA2X	False signal	Valve LV3875A2 transfers closed due to control faults.	D-25
145.	POOCCE1X	False signal	Valve LV3875B1 transfers closed due to control faults.	D-25
146.	POOCCB2X	False signal	Valve LV3875B2 transfers closed due to control faults.	D-25

53

-

TABLE 8. DOMINANT RANDOM FAILURE CUTSETS

F

Í

P

F

i

5

Rank	Cutse	ets	Unava	ila	bility	Cutset Importance	Cutset Cumulative Importance
1	PTBLG05A,	PMOLOSAA	1.6	×	10-5	45.6	45.6
2	PTB1G05A,	PPM105AF	4.0	×	10-6	11.4	57.0
3	PPM105BF,	PMO105AA	4.0	×	10-6	11.4	68.4
4	PXV009BO,	PMO105AA	2.0	×	10-6	5.7	74.2
5	PTB1G05A,	PXV009A0	2.0	х	10-6	5.7	79.8
6	PPM105BF,	PPM105AF	1.0	×	10-6	2.9	82.7
7	PIBIGOSA,	JOOLAOSE	9.6	×	10-7	2.7	85.4
8	PXV009BO,	PPM105AF	5.0	×	10-7	1.4	86.8
9	PPML05BF,	PXV009A0	5.0	×	10-7	1.4	88.3
10	PXV001BC,	PMO105AA	4.0	×	10-7	1.1	89.4
11	PTB1G05A,	PREIIIIF	4.0	×	10-7	1.1	90.5
12	PM03126C,	PMO105AA			10-7	1.1	91.7

TABLE 8.A.1. Loss of Main Feedwater - Double Crossover (NRC Data) -Failure to Start on Demand

Basic Events

Rank	Basic Event	Description	Unavailability	Importance
1	PTB1G05A	Turbine G05A fails to start (and controls)	2.4 × 10 ⁻⁵	68.5
2	PMO105AA	P05A motor fails to start	2.3 x 10-5	66.4
3	PPM105BF	P058 fails to deliver suf- ficient water	6.0 x 10 ⁻⁶	17.1
4	PPM105AF	P05A fails to deliver suf- ficient water	5.8 x 10-6	16.6
5	FXV009BO	POSB full flow test valve transfers open	3.0 × 10 ⁻⁶	8.6
6	PXV009AO	POSA full flow test valve transfers open	2.9 × 10 ⁻⁶	8.3
7	JOO1A05F	4,160V switchgear bus 1A05 fails	1.4 x 10 ⁻⁶	4.0
8	PM03126C	Valve MO3126 fails closed	6.0 x 10-7	1.7
9	PXV001BC	P05B suction valve transfers closed	6.0 × 10-7	1.7
10	PRE1111F	AFWAS relay Killi fails open	5.8 × 10-7	1.7

Rank	Cutsets	Unavailability	Cutset Importance	Cutset Cumulative Importance	
1	PTB1G05A, J001A05F	1.5 x 10 ⁻⁴	58.8	58.8	
2	PPM105BF, J001A05F	3.7 x 10 ⁻⁵	14.7	73.5	
3	PXV009B0, J001A05F	1.8 x 10 ⁻⁵	7.3	80.8	
4	PTB1G05A, PM0105AA	1.6 x 10-5	6.4	87.2	
5	PTB1G05A, PPM105AF	4.0 x 10-6	1.6	88.8	
6	PPM105BF, PM0105AA	4.0 x 10-6	1.6	90.3	

TABLE 8.A.2. Loss of Main Feedwater Due to Loss of Offsite Power -Double Crossover (NRC Data) - Failure to Start on Demand

Basic Events

Rank	Basic Event	Description	Unavailability	Importance
1	J001A05F	4,160V switchgear bus 1A05 fails	2.2 x 10 ⁻⁴	86.5
2	PTB1G05A	Turbine G05A fails to start (and controls)	1.7 x 10 ⁻⁴	67.9
3	PPM105BF	P05B fails to deliver suf- ficient water	4.3 x 10 ⁻⁵	17.0
27	PM0105AA	P05A motor fails to start	2.3 x 10 ⁻⁵	9.2
5	PXV009B0	P05B full flow test valve transfers open	2.1 x 10 ⁻⁵	8.5
6	PPM105AF	P05A fails to deliver suf- ficient water	5.8 x 10 ⁻⁶	2.3

Rank	Cutsets	Unavailability	Cutset Importance	Cutset Cumulative Importance
1	PTB1G05A	4.0 × 10-3	62.7	62.7
2	PPM105BF	1.0×10^{-3}	15.7	78.4
3	PXV009BO	5.0 x 10 ⁻⁴	7.8	86.2
4	PXV001BC	1.0×10^{-4}	1.6	87.8
5	PM03126C	1.0×10^{-4}	1.6	89.4
6	PMV868BC	1.0×10^{-4}	1.6	91.0
7	PMV3856C	1.0 x 10-4	1.6	92.5
8	PXV037-C	1.0×10^{-4}	1.6	94.1
9	PCV024-D	1.0 × 10-4	1.6	95.7

TABLE 8.A.3. Loss of All AC - Double Crossover (NRC Data) -Failure to Start on Demand

Ľ

.

P

6

Basic Events

Rank	Basic Event	Description	Unavailability	Importance
1	PTB1G05A	Aurbine G05A fails to start (and controls)	4.0 x 10-3	62.7
2	PPM105BF	P05B fails to deliver suf- ficient water	1.0 × 10 ⁻³	15.7
3	PXV009BO	P05B full flow test valve transfers open	5.0 × 10-4	7.8
4	PMV868BC	Suction header cross-connect valve transfers closed	1.0 × 10 ⁻⁴	1.6
5	PM03126C	Valve MO3126 transfers closed	1.0×10^{-4}	1.6
6	PMV3856C	Valve MO3856 transfers closed	1.0 × 10-4	1.6
7	PXV037-C	CST isolation valve trans- fers closed	1.0 × 10-4	1.6
8	PCV024-D	CST check valve fails closed	1.0×10^{-4}	1.6
9	PXV001BC	P05B suction valve transfers closed	1.0 × 10-4	1.6

Rank	Cutsets	Unavailability	Cutset Importance	Cutset Cumulative Importance
1	PTB1G05A, PPM105AF	3.3 x 10 ⁻⁵	46.5	46.5
2	PPM105BF, PPM105AF	1.5 x 10 ⁻⁵	20.7	67.2
3	PTB1G05A, PM0105AA	5.8 x 10-6	8.2	75.4
4	PTB1G05A, PSTBR1AF	3.5 x 10-6	4.9	80.4
5	PPM105BF, PM0105AA	2.6 x 10-6	3.7	84.0
6	PPM105BF, PSTBR1AF	1.6×10^{-6}	2.2	86.2
7	PTB1G05A, PRE1111F	1.5×10^{-6}	2.2	88.4
8	PTB1G05A, J001A05F	1.2 x 10 ⁻⁶	1.7	90.1

TABLE 8.B.1. Loss of Main Feedwater - Double Crossover -Failure to Start on Demand

.

Basic Events

Rank	Basic Event	Description	Unavailability	Importance
1	PPM105AF	P05A fails to deliver suf- ficient water	5.1 x 10 ⁻⁵	69.4
2	PTB1G05A	Turbine G05A fails to start (and controls)	4.9 x 10 ⁻⁵	66.6
3	PPM105BF	P05B fails to deliver suf- ficient water	2.2 x 10-5	29.7
4	PM0105AA	P05A motor fails to start	9.0 x 10 ⁻⁶	12.3
5	PSTBR1AF	P05A motor breaker does not close	5.4 x 10 ⁻⁶	7.4
6	PRE1111F	AFWAS relay Killl fails open	2.4 x 10 ⁻⁶	3.2
7	J001A05F	4,160V bus 1A05 fails to supply power	1.9×10^{-6}	2.6

Rank	Cutsets	Unavailability	Cutset Importance	Cutset Cumulative Importance
1	PTB1G05A, J001A05F	3.9 x 10 ⁻⁴	59.1	59.1
2	PPM105BF, J001A05F	1.8×10^{-4}	26.4	85.4
3	PTB1G05A, PPM105AF	3.3 x 10 ⁻⁵	4.9	90.4

TABLE 8.B.2. Loss of Main Feedwater Due to Loss of Offsite Power -Double Crossover - Failure to Start on Demand

Basic Events

Rank	Basic Event	Description	Unavailability	Importance
1	J001A05F	4,160V switchgear bus 1A05 fails	6.3 x 10 ⁻⁴	89.7
2	PTB1G05A	Turbine GO5A fails to start (and controls)	4.4 x 10 ⁻⁴	65.9
3	PPM105BF	P05B fails to deliver suf- ficient water	2.0 x 10 ⁻⁴	29.4
4	PPM105AF	P05A fails to deliver suf- ficient water	5.1 x 10 ⁻⁵	7.3

TABLE 8.8.3. Loss of Main Feedwater Due to Loss of All AC -Double Crossover - Failure to Start on Demand

-

Rank	Cutsets	Unavailability	Cutset Importance	Cutset Cumulative Importance
1	PTB1G05A	1.1 x 10 ⁻²	63.4	63.4
2	PPM105BF	1.1×10^{-2} 4.7 x 10^{-3}	28.3	91.7

Basic Events

Rank	Basic Event	Description	Unavailability	Importance
1	PTB1G05A	Turbine G05A fails to start	1.1 x 10 ⁻²	63.4
		(and controls)		
2	PPM105BF	F05B fails to deliver suf- ficient water	4.7 x 10 ⁻³	28.3

Rank	Cutsets	Unavailabil	ity Cutset Importance	Cutset Cumulative Importance
1	PPM105AF, PTB1G0	A 3.3 × 10"	5 44.8	44.8
2	PPM105AF, PPM105		5 20.0	64.8
3	PMO105AA, PTB1G0	A 5.8 × 10"		72.7
4	PSTBRIAF, PTBIGO	A 3.5 x 10"	4.8	77.4
5	PMOLOSAA, PPM1051			81.0
6	PSTBRIAF, PPM105	F 1.6 × 10 ⁻		83.1
7	PRE1111F, PTB1G0	A 1.5 x 10"		85.2
8	JOOLACSE, PTBIGO	A 1.2 × 10 ⁻	6 1.7	86.9
. 9	PXV003AC, PTB1G0	A 1.2 × 10 ⁻	6 1.6	88.5
10	PCV002AD, PTB1G0		6 1.5	89.9
11	PPM105AF, PXV003		7 1.2	91.1

TABLE 8.C.1. Loss of Main Feedwater - Base Case -Failure to Start on Demand

f

Í

i

Ł

ſ

ł

B

Basic Events

Rank	Basic Event	Description	Unavailability	Importance
1	PPM105AF	P05A fails to deliver suf- ficient water	4.9 x 10 ⁻⁵	67.5
2	PTB1G05A	Turbine G05A fails to start (and controls)	4.8 × 10 ⁻⁵	65.8
3	PPM105BF	P05B fails to deliver suf- ficient water	2.1 × 10 ⁻⁵	29.4
4	PMO105AA	P05A motor fails to start	8.7 × 10-6	12.0
4 5	PSTBRIAF	P05A motor breaker does not close	5.2 × 10 ⁻⁶	7.2
6	PREIILIF	AFWAS relay Killl fails open	2.3 x 10 ⁻⁶	3.2
7	JOOLA05P	4,160V switchgear bus 1A05 fails	1.8 × 10 ⁻⁶	2.5
8	PXV003AC	P05A discharge valve trans- fers closed	1.7 × 10 ⁻⁶	2.4
9	PCV002AD	Check valve P05A discharge fails closed	1.6 × 10 ⁻⁶	2.2
10	PXV003BC	P058 discharge valve trans-	1.3 x 10 ⁻⁶	1.8

Rank	Cutsets	Unavailability	Cutset Importance	Cutset Cumulative Importance
1	J001A05F, PTB1G05A	3.9×10^{-4}	59.1	59.1
2	JOO1A05F, PPM105BF	1.7×10^{-4}	26.4	85.5
3	PPM105AF, PTB1G05A	3.3 x 10 ⁻⁵	4.9	90.4
4	PPM105AF, PPM105BF	1.4 x 10 ⁻⁵	2.2	92.6

TABLE 8.C.2. Loss of Main Feedwater Due to Loss of Offsite Power -Base Case -Failure to Start on Demand

ht was "the sur" "was suit" was shift

Basic Events

Rank	Basic Event	Description	Unavailability	Importance
1	J001A05F	4,160V switchgear bus 1A05 fails	5.9 x 10 ⁻⁴	89.2
2	PTB1G05A	Turbine G05A fails to start (and controls)	4.4 x 10 ⁻⁴	66.1
3	PPM105BF	P05B fails to deliver suf- ficient water	1.9 x 10 ⁻⁴	29.5
4	PPM105AF	P05A fails to deliver suf- ficient water	4.9 x 10 ⁻⁵	7.4

Rank	Cutsets	Unavailability	Cutset Importance	Cutset Cumulative Importance
1	PTB1G05A	1.1 x 10 ⁻²	64.7	64.7
2	PPM105BF	4.7 x 10-3	28.8	93.5

TABLE 8.C.3. Loss of Main Feedwater Due to Loss of All of AC -Base Case - Failure to Start on Demand

Basic Events

Rank	Basic Event	Description	Unavailability	Importance
1	PTB1G05A	Turbine G05A fails to start (and controls)	1.1 x 10 ⁻²	64.7
2	PPM105BF	P05B fails to deliver suf- ficient water	4.7 x 10 ⁻³	28.8

Rank	Cutsets		Unavailability		ability	Cutset Importance	Cutset Cumulative Importance
1	POOCCB1X,	PTBIG05A	1.5	x	10-4	19.1	19.1
2	POOCCB1X,	PPM105BF	6.9	×	10-5	8.5	27.6
3	POOCCALX,	PTB1G05A	5.9	х	10-5	7.3	34.9
4	PHV020BC,	PTB1G05A	5.8	×	10-5	7.2	42.1
5	PHV020AC,	PTB1G05A	5.8	х	10-5	7.2	49.3
6	PSTMOOBF,	FTB1G05A	3.7	x	10-5	4.6	53.9
7	PSTMOOAF,	PTEIGOSA	3.7	x	10-5	4.6	58.5
8	PPM105CF,	PTB1G05A	3.3	х	10-5	4.1	62.6
9	PPM105AF,	PTB1G05A	3.3	x	10-5	4.1	66.6
10	POOCCA1X,	PPMLOSBF	2.6	x	10-5	3.3	69.9
11	PHV020BC,	PPM105BF			10-5	3.2	73.1
12	PHV020AC,	PPM105BF	2.6	x	10-5	3.2	76.3
13	PSTMOOBF,	PPM105BF	1.7	×	10-5	2.1	78.4
14	PSTMOOAF,	PPM1058F	1.7	x	10-5	2.1	80.4
15	PPM105CF,	PPM105BF	1.5	x	10-5	1.8	82.2
16	PPM105AF,		1.5	x	10-5	1.8	84.1
17	PLV75B1C,	PTB1G05A	6.1	x	10-6	0.8	84.8
18	and a second	PTB1G05A	5.8	x	10-6	0.7	85.5
19	PMO105AA,	PTB1G05A			10-6	0.7	86.3
20	POOCCB1X,		4.7	×	10-6	0.5	86.8

TABLE 8.D.1. Loss of Main Feedwater - Three Pump -Failure to Start on Demand

2

1

]

1.1

1

1

1

J

1

,

Basic Events

Rank	Basic Event	Description	Unavailability	Importance
1	PTB1G05A	Turbine G05A fails to start (and controls)	5.3 × 10 ⁻⁴	65.2
2	PPM105BF	Pump P05B fails to deliver sufficient water	2.3 × 10 ⁻⁴	29.1
3	POOCCB1X	LV3875B1 transfers closed (controls)	2.3 × 10-4	28.5
4	POOCCA1X	LV3875Al transfers closed (controls)	8.8 × 10 ⁻⁵	10.9
5	PHV020BC	Pressure control valve PCV020B fails closed	8.6 x 10 ⁻⁵	10.7
6	PHV020AC	Pressure control valve PCV020A fails closed	8.6 × 10 ⁻⁵	10.7
7	PSTMOOAF	MO3870A motor operator does not operate	5.6 x 10 ⁻⁵	6.9
8	PSTMOOBF	MO3870BF motor operator does not operate		6.9
9	PPM105CF	Pump P05C fails to deliver sufficient water	4.9 × 10 ⁻⁵	6.0
10	PPM105AF	Pump P05A fails to deliver sufficient water	4.9 x 10 ⁻⁵	6.0
11	PXV003BC	P05B discharge valve trans- fers closed	1.4 × 10 ⁻⁵	1.8
12	PLV75B1C	Level control valve LV387581 fails closed	9.1 × 10 ⁻⁶	1.1
13 14	PMO105CA PMO105AA	P05C motor fails to start P05A motor fails to start	8.6 x 10 ⁻⁶ 8.6 x 10 ⁻⁶	1.1 1.1

Rank	Cutsets	Unavail	ability	Cutset Importance	Cutset Cumulative Importance
1	PTE1G05A, JOO1A05	F 3.9 x	10-4	19.9	19.9
2	PTB1G05A, JOO1A06	F 3.9 x	10-4	19.7	39.7
3	PPM105BF, JOO1A05	F 1.7 x	10-4	8.9	48.6
4	PPM105BF, JOO1A06	F 1.7 x	10-4	8.9	57.5
5	POOCCB1X, PTB1G05	A 1.5 x	10-4	7.8	65.3
6	POOCCB1X, PPM105B		10-5	3.5	68.8
7	PTB1G05A, POOCCA1		10-5	3.0	71.8
8	PTB1G05A, PHV020B	C 5.8 x	10-5	2.9	74.7
9	PTB1G05A, PHV020A	C 5.8 x	10-5	2.9	77.6
10	PTB1G05A, PSTMOOB	8 3.7 x	10-5	1.9	79.5
11	PTB1G05A, PSTMOOA	F 3.7 x	10-5	1.9	81.4
12	PTB1G05A, PPM105C	F 3.3 x	10-5	1.6	83.1
13	PTBIGOSA, PPM105A	F 3.3 x	10-5	1.6	84.7
14	PPM105BF, POOCCA1		10-5	1.3	86.1
15	PPM105BF, PHV020B		10-5	1.3	87.4
16 17	PPM1058F, PHV020A	2.6 x	10-5	1.3	88.7
17	PPM105BF, PSTM00B	F 1.7 x	10-5	. 8	89.5
18	PPM105BF, PSTMOOA	F 1.7 x	10-5	. 8	90.4
19	PPM105BF, PPM105C			.7	91.1

TABLE 8.D.2. Loss of Main Feedwater Due to Loss of Offsite Power -Three Pump - Failure to Start on Demand

R

ł

ß

Basic Events

Rank	Basic Event	Description	Unavailability	Importance
1	PTB1G05A	Turbine 1G05A fails to start (and controls)	1.3 x 10 ⁻³	66.3
2	JCOLAOSF	4,160V switchgear bus 1A05 fails	5.8 × 10 ⁻⁴	29.6
3	JOOIA06F	4,160V switchgear bus 1A06 fails	5.8 × 10 ⁻⁴	29.6
4	PPM105BF	POSB fails to deliver suf- ficient water	5.8 × 10-4	29.6
5	POOCCB1X	Valve LV3875B1 transfers closed	2.3×10^{-4}	11.7
6	POOCC1X	Valve LV3875Al transfers closed	8.8 × 10 ⁻⁵	4.4
7	PHV020BC	Pressure control valve PCV020 fails closed	8.6 × 10 ⁻⁵	4.4
8	PHV020AC	Pressure control valve PCV020A fails closed	8.6 x 10 ⁻⁵	4.4
9	PSTMOOAF	MO3870A operator fails (and controls)	5.7 × 10 ⁻⁵	2.9
10	PSTMOOBF	M03870B operator fails (and controls)	5.7 × 10 ⁻⁵	2.9
11	PPM105CF	POSC fail/ to deliver suf- ficient water	4.9 × 10 ⁻⁵	2.5
12	PPM105AF	PUSA fails to deliver suf- ficient water	4.9 × 10 ⁻⁵	2.5

all' and Add and "And and" "and all " and " and " And and " And and " and Add

Rank	Cutsets	Unavailability	Cutset Importance	Cutset Cumulative Importance
1	PTB1G05A	1.1 x 10 ⁻¹	62.5	62.5
2	PPM105BF	4.7 x 10-2	27.9	90.3

TABLE 8.D.3. Loss of Main Feedwater Due to Loss of All of AC -Three Pump - Failure to Start on Demand

Basic Events

Rank	Basic Event	Description	Unavailability	Importance
1	PTB1G05A	Turbine G05A fails to start (and controls)	1.1 x 10 ⁻¹	62.5
2	PPM105BF	P05B fails to deliver suf- ficient water	4.7 x 10 ⁻²	27.9

Every 18 months each automatically operated valve is checked to ensure the valve cycles to the correct position upon receipt of an Auxiliary Feedwater Actuation Signal; the auxiliary feedwater steam generator level control valves are checked to ensure they maintain steam generator water level; and the feedwater stop valves are checked to ensure they cycle shut upon receipt of a high level in the associated steam generator.

5.3.1.3 <u>Auxiliary Feedwater Actuation System</u>. The Auxiliary Feedwater Actuation System (AFWAS) is functionally checked monthly. Channel checks are performed at least every 12 hours, and the instrumentation channels are calibrated at least every 18 months.

5.3.1.4 <u>Condensate Storage Tank</u>. Level in the Condensate Storage Tank is verified at least every 12 hours. With one of the two Condensate Storage Tanks inoperable, an auxiliary feedwater pump supply flowpath is demonstrated to be operable at least daily.

5.3.1.5 <u>Service Water System</u>. Service water valves (manual, automatic, or power-operated) which service safety-related equipment are verified to be in the correct position monthly if the valves are not locked, sealed, or otherwise secured in position.

Every 18 months each automatic valve is verified to actuate to its correct position upon receipt of an Essential Safeguards Features Actuation Signal (ESFAS) and each service water pump is verified to start on an ESFAS test signal.

5.3.2 Maintenance

All system components were reviewed for possible contribution to maintenance unavailability. Generic data was reviewed in conjunction with this component review to identify prevalent failure modes and the effect of the associated maintenance on system operation. The following is a brief discussion of the results of this review.

5.3.2.1 Hardware Failures (Mechanical Components). Packing replacement and adjustment is the dominant cause of maintenance on valves. In most cases, this maintenance can be performed with the valve in the correct position for system operation (fully open or fully closed). Valve repairs requiring disassembly of the valve, although not frequently occurring, may have a major impact on system availability due to system isolation requirements necessary to safely perform this maintenance. Those valves which require full AFWS shutdown in order for repair also require a plant shutdown (per technical specifications) and, therefore, do not contribute to the maintenance unavailability of the AFWS. Those valves requiring maintenance which only need a single AFW pump train to be shut down do contribute to maintenance unavailability of the AFWS. Valves which are periodically cycled, which have a throttling action, or which are in a high energy system are the dominant contributors to this unavailability. These valves are included in the pump train maintenance unavailability.

Pump maintenance consists of a range of actions from major disassembly to packing adjustment. For the AFW pumps, most maintenance performed requires isolation of the pump from the system and, therefore, contributes to the maintenance unavailability of the pump train.

The maintenance on large motors range from inspection and cleaning to major disassembly. The prevalent failure mode is bearing failure which requires partial disassembly of the motor. All maintenance of the AFW pump motor contributes to maintenance unavailability and is included in the pump train maintenance unavailability.

Turbine maintenance can range from simple adjustments to major disassembly. A review of Licensee Event Reports from January 1972 to April 1978 revealed only one reported failure of a turbine in an AFWS. This failure was due to a casing steam leak discovered during startup after routine maintenance had been performed. Turbine failure is included in the maintenance contribution to unavailability of the turbine driven pump train.

5.3.2.2 <u>Electrical Failures (Controls, etc.)</u>. Motor-operated valve (MOV, LCV) control circuit failures occur with moderate frequency. Repairs generally consist of troubleshooting and defective component replacement or repair. In some cases, the associated valve may be placed in the desired position prior to commencing repairs on the control circuit. The level control valves (two) for each pump train, and the SG AFW isolation valves (two per SG) were considered for their maintenance contribution to system unavailability; however, their individual contribution to maintenance unavailability is less than 1% of the contribution of the individual pump trains to maintenance unavailability.

The AFW pump motor breaker and control circuit requires periodic maintenance and repair. Because the 4160V breakers are interchangeable between 4160V cubicles, and spare breakers are available, major breaker repair is not included in the maintenance unavailability of the motordriven pump train. All other control and breaker maintenance is included in the unavailability of the motor driven AFW pump train.

5.3.2.3 <u>Data</u>. Plant historical records for maintenance actions were available for this analysis; however, because the plant is not yet operating, this data was not used in determining the maintenance unavailability of the different pump trains, instead generic values from WASH-1400, the Reactor Safety Study, were used.

From WASH-1400, the expected frequency of pump maintenance is one act every 4.5 months. This maintenance is assumed to include the pump, the driver (turbine or motor), and associated control circuits. The maintenance duration ranged from a few minutes to several days. The plant technical specifications limit this maintenance duration to 72 hours. The lognormal mean maintenance act duration is 19 hours.

Based upon the preceding discussion, Table 9 presents the maintenance unavailability contributions for AFW pump trains.

TABLE 9. PUMP TRAIN UNAVAILABILITY DUE TO TEST AND MAINTENANCE

Q maintenance turbine	=	$\frac{1 \text{ actuation}}{4.5 \text{ months}} \times \frac{19 \text{ hours}}{\text{actuation}} \times \frac{\text{month}}{720 \text{ hours}} = 5.9 \times 10^{-3}$
Q maintenance motor	=	$\frac{1 \text{ actuation}}{4.5 \text{ months}} \times \frac{19 \text{ hours}}{\text{actuation}} \times \frac{\text{month}}{720 \text{ hours}} = 5.9 \times 10^{-3}$
Q test turbine (operator error)	=	$\frac{15 \text{ minutes}}{\text{month}} \times \frac{\text{hour}}{60 \text{ minutes}} \times \frac{\text{month}}{720 \text{ hours}} \times 0.9 = 3.1 \times 10^{-4}$
Q test motor (operator error)	=	$\frac{15 \text{ minutes}}{\text{month}} \times \frac{\text{hour}}{60 \text{ minutes}} \times \frac{\text{month}}{720 \text{ hours}} \times 0.9 = 3.1 \times 10^{-4}$

System Unavailability Due to Test and Maintenance

Q system_{T+M} = (Q maintenance turbine + Q test turbine) (Q system with turbine pump down)

+ (Q maintenance motor + Q test motor) (Q system with motor pump down)

5.4 HUMAN INTERACTION

5.4.1 Human Interaction/Recoverable Failures

For the purposes of this analysis, due to the short period of time between failure of the AFWS to start and loss of the SGs due to dryout, no operator action to recover the AFWS was considered. This conservatism could be eliminated if more definitive calculations for timing of AFWS starting are made.

There are some system failures from which the operator may recover. The most significant of these is a turbine-driven auxiliary feedwater pump trip.

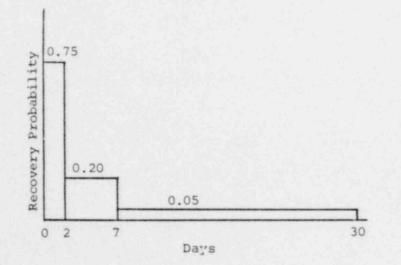
The dominant contributor to turbine-driven auxiliary feedwater pumps failure to start on demand is a failure of the turbine controls; primarily due to turbine trip on overspeed during startup. The operator may manually reset the overspeed trip, or take control of the turbine-driven AFW pump if, during a demand, this pump did not operate. The probability of failure for the operator failing to take action within 30 minutes is P_{f} -0.044 mean with 0.005 variance.

Using this value, a point value estimate of the system unavailability (failure to start and no recovery) for the double crossover system design is 2.5×10^{-5} .

5.4.2 Human Error/Testing

.

During the monthly full flow testing of the AFW pumps, an operator is stationed at the full flow test bypass valve. After the pump is started, this operator throttles open the full flow test valve to achieve rated pump flow and discharge head. Should the AFWS be actuated by a plant transient, this operator must close the full flow test valve to allow the AFW pump to feed the SGs. The full flow test is assumed to last 15 minutes per month. Pump unavailability due to this test is equal to


 $\frac{15 \text{ minutes}}{\text{month}} \times \frac{\text{hour}}{60 \text{ minutes}} \times \frac{\text{month}}{720 \text{ hours}} = 3.5 \times 10^{-4}.$

The operator error, failing to act correctly during the first 5 minutes after the onset of an extremely high stress situation is 0.9. The unavailability of a pump train on demand due to this failure is 3.1×10^{-4} .

5.4.3 Human Error--Common Cause

A common cause human error has been identified for the AFWS. The error can occur after the pump monthly flow testing. Essentially, after each pump test, the auxiliary plant operator must close the full flow test valve. The pumps themselves are controlled from the main control board, and position indication is available for the full flow test valve at the main control board. If the pumps are tested sequentially (i.e., one pump is tested and at the completion of this test the other pump is tested) common human error or combinations of errors is possible. These errors consist of: the auxiliary plant operator failing to close the full flow test valve for the first pump and failing to close the second pump's full flow test valve (close coupling is assumed); and the main control board operator failing to notice the valve position indication for the first valve position indication is missed). The recovery time for this failure is based upon the probability of the improper valve position being discovered during shift change when the oncoming and offgoing operators "walk down" the main control boards from NUREG-0611, Table III-2, the point value estimate for this potential human error is 1 x 10^{-4} with an estimated error factor of 20.

Based upon discussions with the plant operators, the following recovery histogram was constructed.

The mean value from this histogram for recovery is 2.53 days and the variance is 13.7 days.

The probability for failure on demand for this common cause human error is then (if one assumes that the error has occurred)

 $Q_{\rm F} = \frac{1 \text{ actuation}}{\text{month}} \times 10^{-4} \text{ P(f)} \times 2.52 \text{ days} \times \frac{\text{month}}{30 \text{ days}}$ $Q_{\rm F} = 8.4 \times 10^{-6} \text{ with a variance of } 6.7 \times 10^{-10}.$

5.5 COMMON CAUSE ANALYSIS

The method used to perform the common cause failure analysis is based on the system logic model. Qualitative failure characteristics are identified for each basic event. A search is then performed to identify those combinations of basic events that result in system failure and share qualitative failure characteristics. Barriers between components, both physical and administrative, are considered in the analysis. The results of the common cause search are groups of cutsets identified by common failure characteristics and absence of barriers.

There is an extremely large array of failure causes that must be considered in a comprehensive common cause failure analysis. These failure causes have been grouped into two major categories and these two categories have been further subdivided. For each subdivision a generic cause of failure has been identified. The first division is made on the basis of barriers that can be erected to the cause of failure in order to prevent it from failing the entire system. The barriers that exist are of either procedural or physical. The failure causes, also called qualitative failure characteristics of the basic event or "susceptibilities" are categorized by criterion based on barriers to the failure cause.

The susceptibility codes for the causes of failure considered in this analysis are given in Table 10. Due to the limits of the available information, assumptions were made concerning maintenance actions, test procedures, and manufacturers. These links are assumed to be different for different generic components.

5.5.1 The First Criterion

A qualitative failure characteristic, or a susceptibility, is a common link when physical barriers cannot be erected to prevent the propagation of the failures, and procedural barriers must then be erected. Typical common links used in a common cause analysis are:

- Manufacturer
- Test/Maintenance
- Operator
- Motive Power
- Instrument Power
- Installation
- Calibration
- Similar Parts

The common links of manufacturer and similar parts were used in this analysis.

5.5.2 The Second Criterion

The coding of failure sensitivity to causes of failure are given for each generic component type in Table 11. The final information that needs to be coded for the auxiliary feedwater system common cause analysis is the physical location of the basic events. Table 12 is the reference used in location definition. The first part of the exhibit identifies the codes used with the basic events and the location in the plant that these codes represent. The second part of the exhibit identifies all basic events used in the analysis and the physical location for these basic events. TABLE 10. SUSCEPTIBILITY CODES

f

i

ł

F

l r

ł

Z

First Criterion

Maintenance Action	- MA MB MD M1 M2 M3 M4
Test Procedure	- T1 T2 T3 T4 TD TE TF TG
	TI TJ TK TL
	TM TP TS TT
	TU TV TW
Manufacturer	
Anchor Darling	- AD
Byron Jackson	- BG
Control Component	- cc
Henry Pratt	- HP
Limitorque	- LJ
Terry Turbine	- TT
Unknown (Similar	- X1 X2 X3 X4
Components Grouped Together)	X5 X7 X8
Second Criterion	
Impact	- I
Vibration	- v
Moisture	— M
Grit	— G
Stress	- s

Component Type	Code	SI	pecial Condition	2	Susc	cept	ibility
Level Valve	LV	Т	М	I	S		
Manual Valve	XV	T	м	I	S		
Pump	РМ	Т	м	I	v		
Turbine (includes controls)	TB	Т		I	v	М	G
Contact	CN	Т		I	v	м	G
Circuit Breaker	CB	Т		I	v	М	G
Control Circuit	ST	T		I	v	м	G
Power Bus	00	Т		I	v	М	G
Control Circuit	сс	Т	М	I	v	М	G
Motor Valve	MV	Т	М	I	S		
Relay	RE	T		I	v	М	G
Check Valve	CV	Т	М	I			
Motor	MO	Т		I	М	G	

TABLE 11. GENERIC COMPONENTS AND THEIR SENSITIVITIES TO FAILURE

.

.

Equipment Locations Used in the Midland AFW System Analysis R15A R15B - inside reactor building. RSDC PISO - auxilary building pipe chase. CLCV - auxilary building outside AFW pump rooms. MAAA - auxilary building motor driven pump room. TBAA - auxilary building turbine driven pump room. YARD - exterior of buildings. SAAA - 4160VAC switchgear room A. SABA - 480VAC switchgear room A. SBBA - 480VAC switchgear room B. BAAD - 125VDC battery room A, Panel 1D11. BBAD - 125VDC battery room E, Panel 1D21. PABA - service water pump room A. PBBA - service water pump room B. OCHA - ESF actuation - AFWAS channel A. OCHB - ESF actuation - AFWAS channel B. Basic Events in Locations R15A, R15B, RSDC

PMV177AD	PCVU53AD	PMO177AA
PMV177BD	PCVU53BD	PMO177BA

Basic Events in Location PISO

PMV870AD	PMV865AD	PM03126C
PMV870BD	PMV865BD	

TABLE 12. PHYSICAL BARRIER INFORMATION (continued)

Basic Events in Location CLCV

PLV75A1D	PXV0014C	PXV009A0
PLV75A2D	PXV278-C	PMV8931D
PLV75B1D	PXV279-C	PMV8932D
PLV75B2D	PMV868AC	PMV8933D
PM075A1A	PMV868BC	PMV8934D
PM075A2A	PMV3856C	PM08931A
PM075B1A	PCV0001D	PM08932A
PM075B2A	PCV0013D	PM08933A
PXV0002C	PCV0015D	PM08934A
PXV0004C	PCV0025D	

Basic Events in Location MAAA

PXV001AC PPM105AF

Basic Events in Location TBAA

PXV001BC	PXV009B0	PPM105BF
PTB1G05A		

Basic Event in Location YARD

PXV037-C

.

Basic Event 1 SAAA

PSTBRIAF

Basic Events in Location SABA

PCN1D120 PSTMOOAF PSTCCOAF PCB15260 PSTCS1AC

TABLE 12. PHYSICAL BARRIER INFORMATION (continued)

f

İ

i

ł

F

ı r

Í

E

Basic Events in Location SBBA

PCN1C560	PCB16260	PSTMOOBF
PSTCS1BC	PSTCCOBF	

Basic Events in Location BAAD

PCN1C120	PCB16200	PCB16210
PSTCC5AF	POOCCA1X	POOCCA2X
PSTM05AF		

Basic Events in Location BBAD

PCN1D560	PCB17150	PCB17140
PSTM05BF	PCC177BF	PCC177AF
PCB17200	PCB17210	PSTCC5BF
POOCCB1X	POOCCB2X	

Basic Events in Location PABA

PCB21030	PRE1A03F	PCB21020
PRE1A08F	PSTCCA1F	PSTCCA2F

Basic Events in Location PBBA

PCB11030	PCB11020	PRE1B03F
PRE1B08F	PSTCCB1F	PSTCCB2F

Basic Events in Location OCHA

PREIAIIF	PRE1A12F	PRE1111F
PREA109F	PREA209F	PRE1A03F
PRE1A03F		

Basic Events in Location OCHB

PRE1610F	PRE1B11F	PRE1B12F
PRE1613F	PRE1512X	PRE1514X
PREB109F	PREB209F	PRE1B03F
PRE1B08F		

5.5.3 Results of Common Cause Analysis

•

•

All cutsets with common susceptibilities were in the same location, CLCV, the area of the auxiliary building outside the AFW pump rooms. Moisture, grit, and impact were found in this location. The number and order (number of basic events in the cutset) for each of these causes of failure are given in Table 13. Moisture was found to be a common susceptibility for the four level control valves and for four two-event cutsets in the pump suction lines (consisting of the pump suction MOVs and various combinations of the service water supply MOVs). The design of these valves protects the motor operators from high humidity and other minor sources of water. Flooding or pipe rupture could, however, prevent these valves from operating when demanded. The level control valves are the most susceptible to this cause because they must move from their normally closed position to permit AFW flow to the steam generators. The suction valves are only required to operate in the event of low pressure at the pump suction and a coincident AFWAS signal. From WASH-1400, the probability of a pipe rupture is 1 x 10⁻⁴ per reactor year of operation. However, this system is called upon to operate (and therefore pressurized) 16 times per year (six actuations and ten startup/ shutdowns). The average run time is about two hours. The resulting probability of failure is 4×10^{-7} which is significantly less than the common cause human error identified in Section 5.4 but was found to be a common susceptibility for the same cutsets as moisture. Motor operated valve design protects the motor operators from the normal sources of airborne grit or dust during plant operation. During maintenance periods, the plant general maintenance procedures limit the sources of grit as a general housekeeping practice. This practice in conjunction with the safety system testing that occurs prior to plant operation results in a large reduction in the probability of failure due to grit because of maintenance. In addition, because failure due to grit is not an instantaneous failure, but rather a slow degradation in operation, any common cause failures will most likely be detected and corrected as a result of normal testing and preventive maintenance.

Because of the above reasons, the probability of system failure due to the common cause susceptibility--grit--is very much less than the common cause human error identified in Section 5.4.

Impact is identified as a common cause susceptibility for 51 threeevent cutsets in the pump suction piping, 16 three-event cutsets in the pump discharge piping, and 451 four-event cutsets in the pump discharge piping. There is no high energy piping in the immediate vicinity of the pump suction piping, thus eliminating pipe whip as an impact source. The only other possible sources of impact in this area are due to external causes such as explosion. Plant procedures limit the amount and location of explosive materials (acetelyne, etc.) and thereby form an administrative barrier to explosion as a cause of impact.

The pump discharge piping is a high energy system when the AFW system is in operation and is the only high energy system in the vicinity. If one assumes that pipe rupture leads directly to pipe whip (a conservative

	Cu	tsets	
Susceptibility	Quantity	Basic Events	
Moisture (suction)	4	2	
(discharge)	1	4	
Grit (suction)	4	2	
(discharge)	1	4	
Impact (suction)	51	3	
(discharge)	16	ž	
(discharge)	451	ŭ	

TABLE 13. COMMON CAUSE CANDIDATES IN PHYSICAL LOCATION CLCV

| {

ī

ł

F

l r

ß

assumption considering piping support design), impact as a source of common cause failure can be no more severe than moisture as a source which has been discussed above. Therefore, the probability of failure due to impact is less than 4 x 10^{-7} , which is significantly less than the common cause human error identified in Section 5.4.

Common links were found in 278 cutsets, identifying those cutsets as common cause candidates. The common links and manufacturer are identified following the groups of common cause candidates with those susceptibilities in Table 14. Since these components are tested regularly during surveillance tests and normal operations, and are maintained regularly, they should have shaken out most manufacturer-related problems. Furthermore, the components are located in different areas of the plant and are therefore subjected to different environments.

5.6 EVENT TREE ANALYSIS

Time sequential behavior, key system dependencies, and reduced system performance states can be modeled using event tree methods. The event tree of Figure 11 lays out such a model for the Midland Plant Auxiliary Feedwater System. Here, the initiating event is an auxiliary feedwater actuation signal. Next, the question of good and "bad" steam generators is addressed. We have defined a bad steam generator to be one with a steam break that has not been isolated. WASH-1400 gives the failure rate as 1×10^{-4} per for pipes. Further containment and steam generator analyses could lead to a revised definition.

Next in the tree come the questions concerning the availability of electric power. Without DC power, the entire system must fail. Without AC power, the turbine-driven pump train may still operate.

The next three events define successful start of the auxiliary feedwater system. Turbine train starts, turbine restarts after turbine trip, and motor train starts. Probabilities of successful starting will be derived from decompositions of the system fault tree. Without success in at least one start path, the system fails on demand. When some electric power is available we must now ask if the FOGG system operates. For cases with a single bad steam generator, FOGG must keep auxiliary feedwater isolated from that steam generator and must permit flow to a good steam generator. Lacking a final FOGG system design, we have assigned a reasonable unavailability of 10⁻⁴ per demand per train based on high quality actuation systems in WASH-1400. Given that the system has started, we next ask if the failure in the level concol system leads to overccoling in either steam generator. Again lacking complete level control system information, we have assigned a probability of failure of 10⁻⁴ per demand. Finally, given a successful start, we ask if the system continues to run successfully for eight hours.

The event tree in Figure 11 has been simplified by showing repeated similar sequences coded A, B, and C. The full expansion of the complete tree is shown in Figure 12. Seven final system states have been identified on the tree. S stands for complete success. The system starts successfully, does not overcool, and continues to run for eight hours.

itset	Basic Events Commonalities				
1.	PPM105/	AF PPM105BF			
	Common Link M4, TH	Manufacturer BG			
2.	PXV001/	AC PXV001BC			
	Common Link MB	Manufacturer X8			
3.	PXV009/	0 PXV009B0			
	Common Link TK, MH	3 Manufacturer X7			
4.	PPM105/	AF PXV009BO			
5.	PXV009/				
	Common Link TK				
6.	PCVU53	D PCVU53AD			
	Common Link TI, M2				
7.	PXV001A	С РХV009ВО			
8.	PXV009A	O PXV001BC			
	Common Link MB				
9.	PXV037-C PX	(V278-C PXV279-C			
	Common Link MA	Manufacturer HP			
10.	PXV001AC PX	V0017C PXV0002C			
	Common Link MB, TK	백 방법은 영화 방법이 있는 것			
11.	PXV001BC PX	CV0014C PXV0004C			
	Common Link MB, TK				

TABLE 14. COMMON CAUSE CANDIDATES

utset	Basic	Basic Events Commonalities				
12.	PXV009A0	PXV0017C	PXV0002C			
13.	PXV009B0	PXV0014C	PXV0004C			
	Common Link MB,	TK	Manufacturer	X7		
14.	PCV0013D	PCV0015D	PCVU53AD			
15.	PCV0001D	PCV0025D	PCVU53BD			
	Common Link M2,	TI	Manufacturer	X1		
16.	PREB209F	PREIIIIF	PREA109F			
17.	PRE1610F	PRE1613F	PRE1111F			
	Common Link TV		Manufacturer	X2		
18.	PMV8931D	PXV279-C	PXV037-C			
19.	PMV8932D	PXV279-C	PXV037-C			
20.	PXV278-C	PXV8934D	PXV037-C			
21.	PMV8931D	PMV8934D	PXV037-C			
22.	PMV8932D	PMV8934D	PXV037-C			
23.	PXV278-C	PMV8933D	PXV037-C			
24.	PMV8931D	PMV8933D	PXV037-C			
25.	PMV8932D	PMV8933D	PXV037-C			
	Manufacturer HP					
26.	PM03126C	PM075A2A	PM075A1A			
27.	PM08934A	PM08931A	PMV3856C			
28.	PM08933A	PM08931A	PMV3856C			
29.	PM08934A	PM08932A	PMV3856C			
30.	PM08933A	PM08932A	PMV3856C			
	Manufacturer LI					

-

1

1

utset		Basic Events Commonalities				
31.	PF	PRE1514X PRE15123			2X PR	E1111F
32.					2X PR	ElllIF
33.	PF	RE15148	7	PRE161	OF PR	ElllIF
	١	lanufad	cturer X2			
34.	PXV0017C		PXV0004C		PXV0002C	PXV00140
			Link MB,			
35.	PMV865BD		PMV865AD		PMV870BD	PMV870AI
	C	common	Link Ml,	TE	Manu	facturer AD
36.	PLV75A2D		PLV75B2D		PLV75A1D	PLV75B11
	C	common	Link M3,			facturer CC
37.	PCV075-D		PCV0013D			PCV00011
38.	PCV075-D		PCVU53BD		PCV0001D	PCV076-1
39.	PCV0013D				PCV0001D	PCV00251
40.	PCV075-D					PCVU53AI
	C	common	Link M2,	TI	Manu	facturer X1
41.	POOCCA2X				POOCCAIX	POOCCB1X
	C	common	Link TM		Manu	facturer X3
42.	PSTCC5BF		PSTCC5AF		PSTCCOBF	PSTCCOAF
	C	common	Link TS		Manu	facturer X3
43.	PCB17140		PCB16200		PCB16210	PCB17150
44.	PCB16200		PCB16210		PCB17200	PCB17210
	C	ommon	Link TU			facturer X3

-

TABLE 14. COMMON CAUSE CANDIDATES (continued)

utset		Basic Events Commonalities				
45.	PCN1D560	PCN1C120	PCN1C560	PCN1D120		
	C	ommon Link TW	Manufa	acturer X5		
46.	PSTM05BF	PSTM05AF	PSTMOOBF	PSTMOOAF		
	C	ommon Link TI	Manufa	acturer LI		
47.	PRE1B12F	PRE1A12F	PRE1B11F	PREIAIIF		
48.	PREA109F	PREB209F	PREA209F	PREB109F		
49.	PRE1A12F	PRE1B11F	PREA209F	PREB109F		
50.	PRE1A12F	PRE1B11F	PRE1111F	PREB109F		
51.	PRE1B12F	PREA109F	PREB209F	PREIAIIF		
52.	PRE1610F	PREA109F	PRE1613F	PREA209F		
53.	PRE1B12F	PRE1111F	PREB209F	PREIAIIF		
	C	ommon Link TW	Manufa	acturer X2		
54.	PRE1613F	PREA109F	PRE1512X	PREA209F		
55.	PRE1514X	PREA109F	PRE1512X	PREA209F		
56.	PRE1514X	PREA109F	PRE1610F	PREA209F		
	C	ommon Manufacturer	X2			
57.	PCB15260	PSTCCOBF	PSTCC5AF	PSTCC5BF		
58.	PSTCCOAF	PCB16260	PSTCC5AF	PSTCC5BF		
59.	PCB15260	PCB16260	PSTCC5AF	PSTCC5BF		
60.	PSTCSIAC	PCB21030	POOCCB2X	POOCCB1X		
61.	PSTCSIAC	PSTCCA2F	POOCCB2X	POOCCB1X		
62.	PSTCSIAC	PCB21030	PCB17210	POOCCB1X		
63.	PSTCS1AC	PSTCCA2F	PCB17210	POOCCB1X		

an "also and" has ref " any als" any "also and " has and

••

. .

utset		Basic Even	ts Commonalities	
64.	PSTCSIAC	PCB210,7	POOCCB2X	PCB17200
65.	PSTCS1AC	PSTCC .	POOCCB2X	PCB17200
66.	PSTCSIAC	PCB21030	PCB17210	PCB17200
67.	PSTCSIAC	PSTCCA2F	PCB17210	PCB17200
68.	PSTCS1AC	PCB21030	PSTCS1BC	PCB11020
69.	PSTCS1AC	PSTCCA2F	PSTCS1BC	PCB11020
70.	PSTCSIAC	PCB21030	PSTCS1BC	PSTCCB1F
71.	PSTCS1AC	PSTCCA2F	PSTCS1BC	PSTCCB1F
72.	PSTCSIAC	PCB21030	PCB17150	PCB17140
73.	PSTCSIAC	PSTCCA2F	PCB17150	PCB17140
74.	PSTCSIAC	PCB21030	PCC177BF	PCB17140
75.	PSTCSIAC	PSTCCA2F	PCC177BF	PCB17140
76.	PSTCS1AC	PCB21030	PCB17150	PCC177AF
77.	PSTCS1AC	PSTCCA2F	PCB17150	PCC177AF
78.	PSTCS1AC	PCB21030	PCC177BF	PCC177AF
79.	PSTCS1AC	PSTCCA2F	2CC177BF	PCC177AF
80.	PCB11030	PSTCSIAC	PCB21030	PSTCS1BC
81.	PSTCCB2F	PSTCS1AC	PCB21030	PSTCS1BC
82.	PCB11030	PSTCS1AC	PSTCCA2F	PSTCS1BC
83.	PSTCCB2F	PSTCS1AC	PSTCCA2F	PSTCS1BC
84.	PCB21020	PSTCS1AC	POOCCB2X	POOCCB1X
85.	PSTCCA1F	PSTC31AC	POOCCB2X	POOCCB1X
86.	PCB21020	PSTCSIAC	PCB17210	POOCCB1X
87.	PSTCCAIF	PSTCSIAC	PCB17210	POOCCB1X
88.	PCB21020	PSTCS1AC	POOCCB2X	PCB17200
89.	PSTCCA1F	PSTCS1AC	POOCCB2X	PCB17200
90.	PCB21020	PSTCS1AC	PCB17210	PCB17200

Cutset		Basic Even	ts Commonalities	
91.	PSTCCA1F	PSTCSIAC	PCB17210	PCB17200
92.	PCB21020	PSTCS1AC	PSTCS1BC	PCB11020
93.	PSTCCA1F	PSTCS1AC	PSTCS1BC	PCB11020
94.	PCB21020	PSTCS1AC	PSTCS1BC	PSTCCB1F
95.	PSTCCAIF	PSTCS1AC	PSTCSIBC	PSTCCB1F
96.	PCB21020	PSTCS1AC	PCB17150	PCB17140
97.	PSTCCAIF	PSTCS1AC	PCB17150	PCB17140
98.	PCB21020	PSTCS1AC	PCC177BF	PCB17140
99.	PSTCCA1F	PSTCS1AC	PCC177BF	PCB17140
100.	PCB21020	PSTCS1AC	PCB17150	PCC177AF
101.	PSTCCA1F	PSTCS1AC	PCB17150	PCC177AF
102.	PCB21020	PSTCS1AC	PCC177BF	PCC177AF
103.	PSTCCAIF	PSTCS1AC	PCC177BF	PCC177AF
104.	PCB11030	PCB21020	PSTCS1AC	PSTCS1BC
105.	PSTCCB2F	PCB21020	PSTCSIAC	PSTCS1BC
106.	PCB11030	PSTCCAlF	PSTCS1AC	PSTCS1BC
107.	PSTCCB2F	PSTCCA1F	PSTCS1AC	PSTCS1BC
108.	PSTCCOAF	POOCCA1X	POOCCB2X	PSTCC5BF
109.	PCB15260	POOCCA1X	POOCCB2X	PSTCC5BF
110.	PSTCCOAF	PCB16200	POOCCB2X	PSTCC5BF
111.	PCB15260	PCB16200	POOCCB2X	PSTCC5BF
112.	PSTCCOAF	POOCCA1X	PBC17210	PSTCC5BF
113.	PCB15260	POOCCA1X	PCB17210	PSTCC5BF
114.	PSTCCOAF	PCB16200	PCB17210	PSTCC5BF
115.	PCB15260	PCB16200	PCB17210	PSTCC5BF
116.	PCB16200	POOCCB2X	POOCCA2X	POOCCB1X
117.	POOCCA1X	PCB17210	POOCCA2X	POOCCB1X
118.	PCB16200	PCB17210	POOCCA2X	POOCCB1X

the setting addition the setting and the setting addition

Cutset		Basic Even	ts Commonalities	
119.	POOCCA1X	POOCCB2X	PCB16210	POOCCB1X
120.	PCB16200	POOCCB2X	PCB16210	POOCCB1X
121.	POOCCA1X	PCB17210	PCB16210	POOCCB1X
122.	PCB16200	PCB17210	PCB16210	POOCCB1X
123.	POOCCA1X	POOCCB2X	POOCCA2X	PCB17200
124.	PCB16200	POOCCB2X	POOCCA2X	PCB17200
125.	POOCCAIX	PCB17210	POOCCA2X	PCB17200
126.	PCB16200	PCB17210	POOCCA2X	PCB17200
127.	POOCCA1X	POOCCB2X	PCB16210	PCB17200
128.	PCB16200	POOCCB2X	PCB16210	PCB17200
129.	POOCCA1X	PCB17210	PCB16210	PCB17200
130.	POOCCA1X	PSTCS1BC	PCB11020	POOCCA2X
131.	PCB16200	PSTCS1BC	PCB11020	POOCCA2X
132.	POOCCA1X	PSTCS1BC	PSTCCB1F	POOCCA2X
133.	PCB16200	PSTCS1BC	PSTCCB1F	POOCCA2X
134.	POOCCA1X	PSTCS1BC	PCB11020	PCB16210
135.	PCB16200	PSTCS1BC	PCB11020	PCB16210
136.	POOCCA1X	PSTCS1BC	PSTCCB1F	PCB16210
137.	PCB16200	PSTCS1BC	PSTCCB1F	PCB16210
138.	POOCCA1X	PCB17150	PCB17140	POOCCA2X
139.	PCB16200	PCB17150	PCB17140	POOCCA2X
140.	POOCCA1X	PCC177BF	PCB17140	POOCCA2X
141.	PCB16200	PCC177BF	PCB17140	POOCCA2X
142.	POOCCA1X	PCB17150	PCC177AF	PUOCCA2X
143.	PCB16200	PCB17150	PCC177AF	POOCCA2X
144.	POOCCA1X	PCC177BF	PCC177AF	POOCCA2X
145.	PCB16200	PCC177BF	PCC177AF	POOCCA2X
146.	POOCCA1X	PCB17150	PCB17140	PCB16210

1

_

TABLE 14. COMMON CAUSE CANDIDATES (continued)

Cutset		Basic	Events Commonalit	ies	
147.	POOCCAIX	PCC177BF	PCB17140	PCB16210	
148.	PCB16200	PCC177BF	PCB17140	PCB16210	
149.	POOCCA1X	PCB17150	PCC177AF	PCB16210	
150.	PCB16200	PCB17150	PCC177AF	PCB16210	
151.	POOCCA1X	PCC177BF	PCC177AF	PCB16210	
152.	PCB16200	PCC177BF	PCC177AF	PCB16210	
153.	PCB11030	POOCCA1X	PSTCS1BC	POOCCA2X	
154.	PSTCCB2F	POOCCA1X	PSTCS1BC	POOCCA2X	
155.	PCB11030	PCB16200	PSTCS1BC	POOCCA2X	
156.	PSTCCB2F	PCB16200	PSTCS1BC	POOCCA2X	
157.	PCB11030	POOCCA1X	PSTCS1BC	PCB16210	
158.	PSTCCB2F	POOCCA1X	PSTCS1BC	PCB16210	
159.	PCB11030	PCB16200	PSTCS1BC	PCB16210	
160.	PSTCCB2F	PCB16200	PSTCS1BC	PCB16210	
161.	PSTCCOBF	PSTCC5AF	POOCCA2X	POOCCB1X	
162.	PCB16260	PSTCC5AF	POOCCA2X	POOCCB1X	
163.	PSTCCOBF	PSTCC5AF	PCB16210	PCOCCB1X	
164.	PCB16260	PSTCC5AF	PCB16210	POOCCB1X	
165.	PSTCCOBF	PSTCC5AF	POOCCA2X	PCB17200	
166.	PCB16260	PSTCC5AF	POOCCA2X	PCB17200	
167.	PSTCCOBF	PSTCC5AF	PCB16210	PCB17200	
168.	PCB16260	PSTCC5AF	PCB16210	PCB17200	
		Common Manufact	urer X2		
169.	PRE1B12F	PRE1610F	PREA109F	PRE1613F	PREIAIIF
170.	PRE1A12F	PRE1B11F	PREA209F	PRE1610F	PRE1613F
		Common Link TV	М	anufacturer X2	

...

FE

-

- -

. .

Cutset	Basic Events Commonalities								
171.	PRE1B12F	PRE1514X	PREA109F	PRE1512X	PRE1A11				
172.	PRE1B12F	PRE1613F	PREA109F	PRE1512X	PRE1A11				
173.	PRE1B12F	PRE1514X	PREA109F	PRE1610F	PREIAII				
174.	PRE1A12F	PRE1B11F	PREA209F	PRE1514X	PRE1512				
175.	PRE1A12F	PRE1B11F	PREA209F	PRE1613F	PRE1512				
176.	PRE1A12F	PRE1B11F	PREA209F	PRE1514X	PRE1610				
		Common Manu	facturer X2						
177.	PSTCCOAF	PCB11030	POOCCALX	PSTCS1BC	PSTCC5B				
178.	PCB15260	PCB11030	POOCCALX	PSTCS1BC	PSTCC5B				
179.	PSTCCOAF	PSTCCB2F	POOCCA1X	PSTCS1BC	PSTCC5B				
180.	PCB15260	PSTCCB2F	POOCCA1X	PSTCS1BC	PSTCC5E				
181.	PSTCCOAF	PCB11030	PCB16200	PSTCS1BC	PSTCC5B				
182.	PCB15260	PCB11030	PCB16200	PSTCS1BC	PSTCC5B				
183.	PSTCCOAF	PSTCCB2F	PCB16200	PSTCS1BC	PSTCC5B				
184.	PCB15260	PSTCCB2F	PCB16200	PSTCS1BC	PSTCC5B				
185.	PSTCCOAF	PSTCS1AC	PCB21030	POOCCB2X	PSTCC5E				
165.	PCB15260	PSTCS1AC	PCB21030	POOCCB2X	PSTCC5B				
18	PSTCCOAF	PSTCSIAC	PSTCCA2F	POOCCB2X	PSTCC5B				
188.	PCB15260	PSTCSIAC	PSTCCA2F	POOCCB2X	PSTCC5B				
189.	PSTCCOAF	PSTCS1AC	PCB21030	PCB17210	PSTCC5B				
190	PCB15260	PSTCS1AC	PCB21030	PCB17210	PSTCC5B				
191	PSTCCOAF	PSTCS1AC	PSTCCA2F	PCB17210	PSTCC5B				
192.	PCB15260	PSTCS1AC	PSTCCA2F	PCB17210	PSTCC5B				
193.	PSTCCOAF	PCB21020	PSTCS1AC	POOCCB2X	PSTCC5B				
194.	PCB15260	PCB21020	PSTCS1AC	POOCCB2X	PSTCC5B				
195.	PSTCCOAF	PSTCCA1F	PSTCSIAC	POOCCB2X	PSTCC5B				
196.	PCB15260	PSTCCA1F	PSTCSIAC	POOCCB2X	PSTCC5B				
197.	PSTCCOAF	PCB21020	PSTCSIAC	PCB17210	PSTCC5B				
198.	PCB15260	PCB21020	PSTCS1AC	PCB17210	PSTCC5B				

set		Ba	sic Events Commona	lities	
99.	PSTCCOAF	PSTCCAIF	PSTCSIAC	PCB17210	
.00	PCB15260	PSTCCAIF	PSTCSIAC	PCB17210	1
01.	PSTCCOAF	POOCCA1X	PCB17150	PCB17140	1
02.	PCB15260	POOCCA1X	PCB17150	PCB17140	
)3.	PSTCCOAF	PCB16200	PCB17150	PCB17140	1.1
)4.	PCB15260	PCB16200	PCB17150	PCB17140	1
5.	PSTCCOAF	POOCCALX	FCC177BF	PCB17140	124.2

19 PSTCC5BF 200 PSTCC5BF 20 PSTCC5BF 203 PSTCC5BF 20 PSTCC5BF 201 PSTCC5BF 205 PSTCC5BF FCC177BF PCB17140 PUUCCAIX 206. PCB15260 POOCCALX PCC177BF PCB17140 PSTCC5BF 207. PSTCCOAF PCB16200 PCC177BF PCB17140 PSTCC5BF 208. PCB15260 PCB16200 PCC177BF PCB17140 PSTCC5BF 209. PSTCCOAF POOCCA1X PCB17150 PCC177AF PSTCC5BF 210. PCB15260 POOCCA1X PCB17150 PCC177AF PSTCC5BF 211. PSTCCOAF PCB16200 PCB17150 PCC177AF PSTCC5BF 212. PCB15260 PCB16200 PCB17150 PCC177AF PSTCC5BF 213. PSTCCOAF POOCCA1X PCC177BF PCC177AF PSTCC5BF 214. PCB15260 POOCCA1X PCC177BF PCC177AF PSTCC5BF 215. PSTCCOAF PCB16200 PCC177BF PCC177AF PSTCC5BF 216. PCB15260 PCB16200 PCC177BF PCC177AF PSTCC5BF 217. PSTCCOAF POOCCA1X PSTCS1BC PCB11020 PSTCC5BF 218. PCB15260 POOCCALX PSTCS1BC PCB11020 PSTCC5BF 219. PSTCCOAF PCB16200 PSTCS1BC PCB11020 PSTCC5BF 220. PCB15260 PCB16200 PSTCS1BC PCB11020 PSTCC5BF 221. PSTCCOAF POOCCA1X PSTCS1BC **PSTCCB1F** PSTCC5BF 222. PCB15260 POOCCA1X PSTCS1BC **PSTCCB1F** PSTCC5BF 223. PSTCCOAF PCB16200 PSTCS1BC **PSTCCB1F** PSTCC5BF 224. PCB15260 PCB16200 PSTCS1BC PSTCCB1F PSTCC5BF 225. PSTCCOBF PSTCC5AF POOCCA2X PCB11030 PSTCS1BC 226. PCB16260 PSTCC5AF POOCCA2X PCB11030 PSTCS1BC

Cuts

Cutset	Basic Events Commonalities									
227.	PSTCCOBF	PSTCC5AF	PCB16210	PCB11030	PSTCS1					
228.	PCB16260	PSTCC5AF	PCB16210	PCB11030	PSTCS18					
229.	PSTCCOBF	PSTCC5AF	POOCCA2X	PSTCCB2F	PSTCS11					
230.	PCB16260	PSTCC5AF	POOCCA2X	PSTCCB2F	PSTCS1					
231.	PSTCCOBF	PSTCC5AF	PCB16210	PSTCCB2F	PSTCS1					
232.	PCB16260	PSTCC5AF	PCB16210	PSTCCB2F	PSTCS1					
233.	PSTCCOBF	PSTCC5AF	POOCCB1X	PCB21020	PSTCS1.					
234.	PCB16260	PSTCC5AF	POOCCBLX	PCB21020	PSTCS1					
235.	PSTCCOBF	PSTCC5AF	PCB17200	PCB21020	PSTCS1					
236.	PCB16260	PSTCC5AF	PCB17200	PCB21020	PSTCS1					
237.	PSTCCOBF	PSTCC5AF	POOCCB1X	PSTCCAIF	PSTCS1					
238.	PCB16260	PSTCC5AF	POOCCB1X	PSTCCA1F	PSTCS1					
239.	PSTCCOBF	PSTCC5AF	PCB17200	PSTCCA1F	PSTCS1					
240.	PCB16260	PSTCC5AF	PCB17200	PSTCCALF	PSTCS1					
241.	PSTCCOBF	PSTCC5AF	POOCCB1X	PSTCS1AC	PCB210					
242.	PCB16260	PSTCC5AF	POOCCB1X	PSTCS1AC	PCB210					
243.	PSTCCOBF	PSTCC5AF	PCB17200	PSTCSIAC	PCB210					
244.	PCB16260	PSTCC5AF	PCB17200	PSTCS1AC	PCB210					
245.	PSTCCOBF	PSTCC5AF	POOCCB1X	PSTCSIAC	PSTCCA					
246.	PCB16260	PSTCC5AF	POOCCB1X	PSTCSIAC	PSTCCA					
247.	PSTCCOBF	PSTCC5AF	PCB17200	PSTCS1AC	PSTCCA					
248.	PCB16260	PSTCC5AF	PCB17200	PSTCSIAC	PSTCCA					
249.	PSTCCOBF	PSTCC5AF	POOCCA2X	PCB17150	PCB171					
250.	PCB16260	PSTCC5AF	POOCCA2X	PCB17150	PCB171					
251.	PSTCCOBF	PSTCC5AF	PCB16210	PCB17150	PCB171					
252.	PCB16260	PSTCC5AF	PCB16210	PCB17150	PCB171					
253.	PSTCCOBF	PSTCC5AF	POOCCA2X	PCC177BF	PCB171					
254.	PCB16260	PSTCC5AF	POOCCA2X	PCC177BF	PCB171					

_

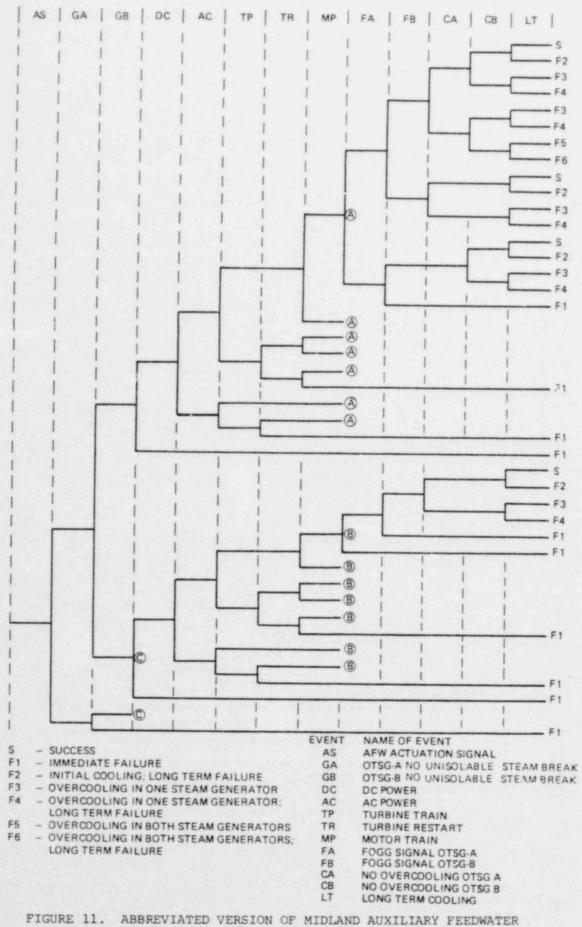
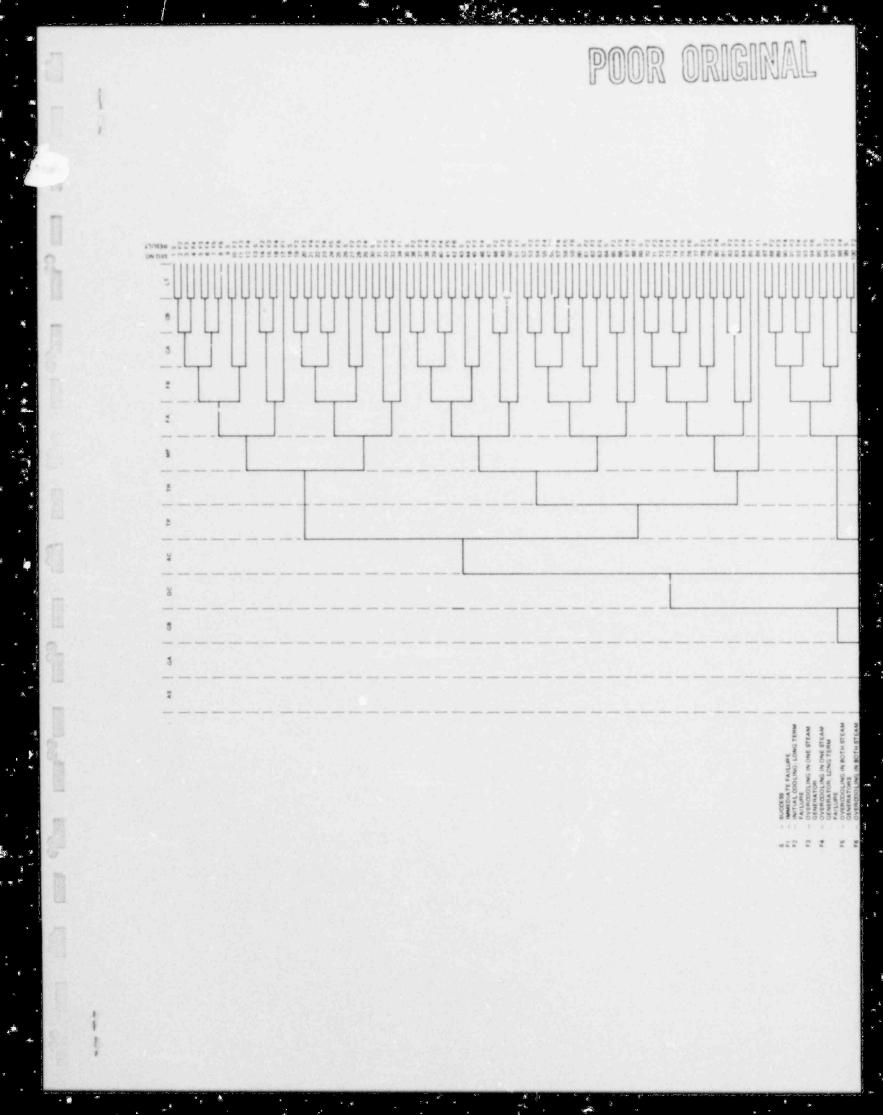

.

TABLE 14. COMMON CAUSE CANDIDATES (continued)

utset		Ba	sic Events Commonal	lities	
255.	PSTCCOBF	PSTCC5AF	PCB16210	PCC177BF	PCB1714
256.	PCB16260	PSTCC5AF	PCB16210	PCC177BF	PCB1714
257.	PSTCCOBF	PSTCC5AF	POOCCA2X	PCB17150	PCC177A
258.	PCB16260	PSTCC5AF	POOCCA2X	PCB17150	PCC177A
259.	PSTCCOBF	PSTCC5AF	PCB16210	PCB17150	PCC177A
260.	PCB16260	PSTCC5AF	PCB16210	PCB17150	PCC177A
261.	PSTCCOBF	PSTCC5AF	POOCCA2X	PCC177BF	PCC177A
262.	PCB16260	PSTCC5AF	POOCCA2X	PCC177BF	PCC177A
263.	PSTCCOBF	PSTCC5AF	PCB16210	PCC177BF	PCC177A
264.	PCB16260	PSTCC5AF	PCB16210	PCC177BF	PCC177A
265.	PSTCCOBF	PSTCC5AF	POOCCA2X	PSTCS1BC	PCB1102
266.	PCB16260	PSTCC5AF	POOCCA2X	PSTCS1BC	PCB1102
267.	PSTCCOBF	PSTCC5AF	PCB16210	PSTCS1BC	PCB1102
268.	PCB16260	PSTCC5AF	PCB16210	PSTCS1BC	PCB1102
269.	PSTCCOBF	PSTCC5AF	POOCCA2X	PSTCS1BC	PSTCCB1
270.	PCB16260	PSTCC5AF	POOCCA2X	PSTCS1BC	PSTCCB1
271.	PSTCCOBF	PSTCC5AF	PCB16210	PSTCS1BC	PSTCCB1
272.	PCB16260	PSTCC5AF	PCB16210	PSTCS1BC	PSTCCB1
		Common Manu		10100100	1010001


TABLE 14. COMMON CAUSE CANDIDATES (continued)

.

EVENT TREE GIVEN AN ACTUATION SIGNAL

Fl is immediate failure; the system does not start on demand. F2 is initial cooling; the system starts successfully but long-term failure and no overcooling. F3 is overcooling in one steam generator; the system starts and continues to run successfully but level control malfunction leads to overcooling in one steam generator. F4 is early overcooling in one steam generator; the system starts successfully but fails to run for eight hours and level control malfunction leads to overcooling in one steam generator. F5 is over cooling in both steam generators; the system starts successfully and continues to run for eight hours but overcools both steam generators, and F6 is overcooling in both steam generators and failure to run for eight hours; the system successfully starts but fails to run for eight hours and level control malfunctions lead to overcooling in both steam generators.

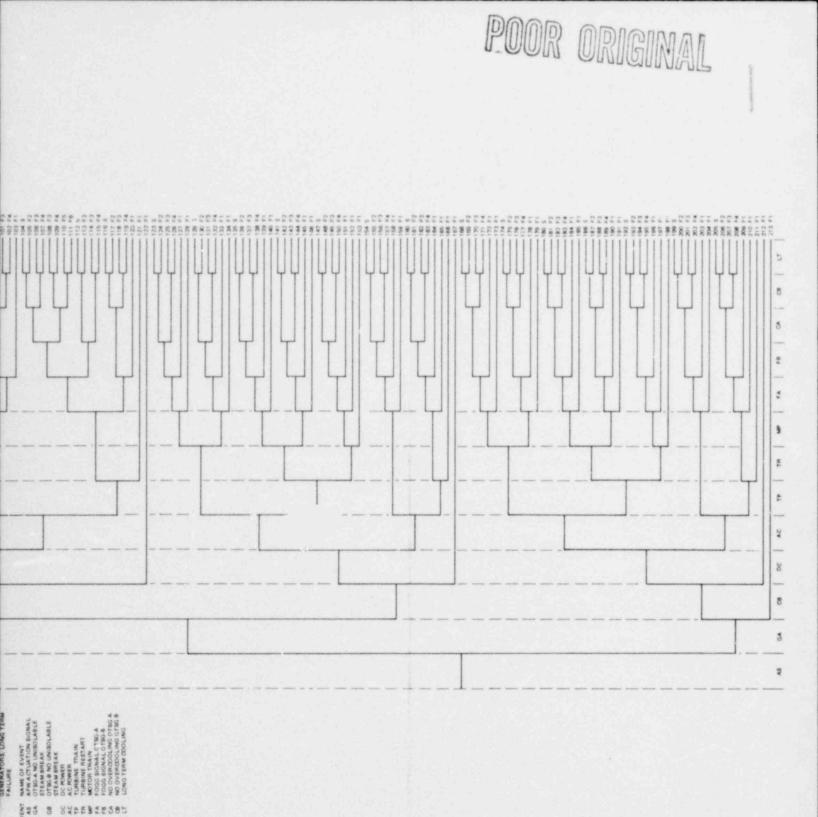


FIGURE 12. MIDLAND AUXILIARY FEEDWATER EVENT TREE GIVEN AN ACTUATION SIGNAL

6. RESULTS

The results presented in this section show that in the emergency mode the Midland Plant Auxiliary Feedwater System is very reliable. Redundancy, separation, and availability during testing are applied in combinations that make the system quite sound. The results presented here follow from the detailed fault trees given in Appendixes A, B, and C, the data given in Appendix D, and the analysis described in Section 5. They are based on failure of the auxiliary feedwater system to deliver sufficient flow immediately upon demand to at least one SG; therefore, human intervention to recover from some system failures is not considered. If further analyses of the B&W nuclear plant demonstrate that a time window exists during which actuation of the auxiliary feedwater system can provide adequate core cooling, then the effects of cperator intervention to restore system function should improve the system reliability. Such considerations will require reviewing emergency procedures to determine the likelihoed of successful operator action.

6.1 RESULTS OF SYSTEM ANALYSIS

The results for all three initiating event cases from NUREG-0611 are given in Tables 15, 16, and 17. In Table 15, the point values based on NUREG-0611 data are tabulated along with means and variances based on plant-specific data for the double crossover design. The distributions obtained by propagating discrete probability distributions for the three alternative designs - loss of main feedwater case are shown in Figure 13 to help picture the uncertainty bands and distribution shapes. Similar shapes apply to the other cases. In Table 16, means and variances based on plant-specific data are provided for the double crossover and the base case designs. In Table 17, means and variances based on plant-specific data are provided for the double crossover and the three pump designs.

Test and maintenance in combination with random system failures are the dominant contributors to unavailability. They are followed by random failures alone, human error, and common human error in importance. For the three pump design and in all cases given a loss of all AC power, random independent failures are the dominant contributors. The dominant random independent failure contributions are associated with the pumps: either the pumps themselves, their prime movers--motors or turbines, and the power supply to the motor-driven pumps. Dominant human errors are associated with failure of the operator to close the full flow recirculation test valve either during a test when the system is demanded to function, or following a test in which the valve is left in the wrong position. Tables 18 through 29 describe the dominant contributions to conditional unavailability for each of the four situations described in Tables 15, 16, and 17.

The dominant contributors for the double crossover design system using NRC data are given in Tables 18, 19, and 20 for the three cases of NUREG-0611. In each case, maintenance on the turbine-driven auxiliary feedwater pump combined with random failures in the motor pump train is

TABLE 15. SUMMARY OF RESULTS CONDITIONAL* . WAVAILABILITIES** OF THE MIDLAND AFWS

Contributors to	Loss of Main Peedwater		Loss of Main Feedwater Due to Loss of Offsite Power		Loss of Main Feedwater and Loss of All AC Power	
Unavailability	Double Crossover (Plant Specific Dats)	Double Crossover (NRC Data)	Double Crossover (Plant Specific Da.a)	Double Crossover (NRC Data)	Double Crossover (Plant Specific Data)	Double Crossover (NRC Data)
Random failures	7.0 E-5* (1.1 E-8)	3.5 E-5	6.6 E-4 (8.4 E-6)	2.5 E-4	1.7 E-2 (5.3 E-4)	6.4 E-3
Test and maintenance and random system failures	1.2 E-4 (3.9 E-8)	6.9 E-5	3.4 E-4 (6.5 E-7)	2.8 E-4	5.9 E~3 (1.9 E-4)	5.9 E-3
Numan error (testfailure to close full flow test valve)	6.3 E-6 (1.1 E-10)	3.7 E-6	1.8 E-5 (2.0 E-9)	1.5 E-5	3.1 E=4 (5.3 E=7)	3.1 E-4
Common cause (full flow test valve open after test)	8.4 E-6 (5.9 E-10)	8.4 E-6	8.4 E-6 (5.9 E-10)	8.4 E-6	8.4 E-6 (5.9 E-10)	8.4 E-6
Other	ε	ε	ε	ε	ε	ε
System Total						
Mean	2.0 E-4		1.0 E-3		2.3 E-2	
Variance	4.7 E-8		6.0 E-6		6.7 E-4	
Sta	3.4 8-5		4.1 E-5		3.5 E-3	
95ch	5.8 E-4		3.8 E-3	1.4.4.4.4.1.1	6.8 8-2	1.2.0.0
Median	1.4 E-4	1.2 E-4	4.0 E-4	5.5 E-4	1.6 E-2	1.3 8-2

*The total unavailabilities as well as the individual contributions given in this table are not actual system unavailabilities but are system characteristics conditional on specific states of electric power as follows: LMFW: Offsite AC power is continuously available.

LMFW/LOOP: Offsite AC power is unavailable--diesel generators may or may not accept load. LMFW/Loss of All AC: All AC power is unavailable; DC power is available.

**Unavailability is the fraction of times the system will not perform its function when required.

*7.0 E-5 read 7.0 x 10-5.

() Variance - describes the spread of the results about the mean.

TABLE 16. SUMMARY OF RESULTS CONDITIONAL* UNAVAILABILITIES** OF THE MIDLAND AFWS (Plant Specific Data)

Contributors to	Loss of Main Feedwater		Loss of Main Peedwater Due to Loss of Offsite Power		Loss of Main Peedwater and Loss of All AC Power	
Unavailability	Double Crossover	Base Case	Double Crossover	Base Case	Double Crossover	Base Case
Random failures	7.0 E-5* (1.1 E-8)	7.3 E-5 (1.9 E-8)	6.6 E-4 (8.4 E-6)	6.6 E=4 (3.3 E-6)	1.7 E=2 (5.3 E=4)	1.6 E-2 (7.5 E-3)
Test and maintenance and random system failures	1.2 E-4 (3.9 E-8)	1.2 E-4 (1.2 E-7)	3.4 E-4 (6.5 E-7)	3.4 E-4 (3.2 E-7)	5.9 E-3 (1.9 E-4)	5.9 E-3 (1.9 E-4)
Human error (testfailure to close full flow test valve)	6.3 E-6 (1.1 E-10)	6.4 E-6 (3.4 E-10)	1.8 E-5 (2.0 E-9)	1.8 E-5 (9.2 E-10)	3.1 E=4 (5.3 E=7)	3.1 E-4 (5.3 E-6)
Common cause (full flow test valve open after test)	8.4 E-6 (5.9 E-10)	8.4 E-6 (5.9 E-10)	8.4 E-6 (5.9 E-10)	8.4 E=6 (5.9 E=10)	8.4 E-6 (5.9 E-10)	8.4 E-6 (5.9 E-10)
Other	з	ε	ε	3	3	ε
System Total						
Mean	2.0 E+4	2.1 E-4	1.0 E-3	1.0 E-3	2.3 E-2 6.7 E-4	2.2 E-2 8.8 E-4
Variance	4.7 2-8	1.1 2-7	6.0 E-6	2.9 E-6 7.9 E+5	3.5 8-3	2.5 E-3
Stn	3.4 E-5	1.7 E-5	4.1 8-5	7.9 E+5 3.5 E-3	6.8 E+2	7.0 8-2
95th Median	5.8 E-4 1.4 E-4	7.0 E-4 1.1 E-4	3.8 E-3 4.0 E-4	5.3 5-4	1.6 E-2	1.3 E=2

"The total unavailabilities as well as the individual contributions given in this table are not actual system unavailabilities but are system characteristics conditional on specific states of electric power as follows: LXFW: Offsite AC power is continuously available.

LMFW/LOOP: Offsite AC power is unavailable--diesel generators may or may not accept load. LMFW/Loss of All AC: All AC power is unavailable; DC power is available.

**Unavailability is the fraction of times the system will not perform its function when required.

*7.0 E-5 read 7.0 x 10⁻⁵.

() Variance - describes the spread of the results about the mean.

poor original

TABLE 17. SUMMARY OF RESULTS CONDITIONAL* UNAVAILABILITIES** OF THE MIDLAND AFWS (Plant Specific Data)

Contributors to	Loss of Main Feedwater		Loss of Main Feedwater Due to Loss of Offsite Power		Loss of Main Feedwater and Loss of All AC Power	
Uhavailability	Double Crossover	Three Pump	Double Crossover	Three Pump	Double Crossover	Three Pump
Random failures	7.0 E-5*	8.1 E-4	6.6 E-4	2.0 E+3	1.7 E-2	1.7 E-2
	(1.1 E-8)	(1.4 E-6)	(8.4 E-6)	(1.1 E-5)	(5.3 E-4)	(3.6 E-5)
Test and maintenance and	1.2 E-4	4.9 E-4	3.4 E-4	9.2 E-4	5.9 E-3	5.9 E-3
random system failures	(3.9 E-8)	(1.0 E-7)	(6.5 E=7)	(2.9 E-6)	(1.9 E-4)	(1.9 E-4)
Human error (testfailure to	6.3 E-6	2.6 E-5	1.8 2-5	4.9 8-5	3.1 E-4	3.1 E-4
close full flow test valve)	(1.1 E-10)	(2.0 E-9)	(2.0 E-9)	(8.8 E-9)	(5.3 E-7)	(5.3 E-7)
Common cause (full flow	8.4 E-6	8.4 E-6	8.4 E-6	8.4 E-6	8.4 E-6	8.4 E-6
test valve open after test)	(5.9 E-10)	(5.9 E-10)	(5.9 E-10)	(5.9 E-10)	(5.9 E-10)	(5.9 E-10)
Other	ε	3	e	з	ε	ε
System Total						
Mean	2.0 E-4	1.3 E-3	1.0 E-3	3.0 E-3	2.3 E-2	2.3 E-2
Variance	4.7 E-8	2.0 E-6	6.0 E+6	1.3 E-5	6.7 E-4	2.0 E-4
Sch	3.4 E-5	2.2 E-4	4.1 E-5	4.0 E-4	3.5 E-3	8.0 E-3
95th	5.8 2-4	3.8 E-3	3.8 E-3	9.0 e-3	6.8 E-2	5.0 E-2
Median	1.4 E-4	9.2 E-4	4.0 E-4	1.9 E-3	1.6 E-2	2.0 E-2

"The total unavailabilities as well as the individual contributions given in this table are not actual system unavailabilities but are system characteristics conditional on specific states of electric power as follows: LAFW: Offsite AC power is continuously available.

LMFW/LOOP: Offsite AC power is unavailable -diesel generators may or may not accept load. LMFW/Loss of All AC: All AC power is unavailable; DC power is available.

**Unavailability is the fraction of times the system will not perform its function when required.

*7.0 E-5 read 7.0 x 10-5.

() Variance - describes the spread of the results about the mean.

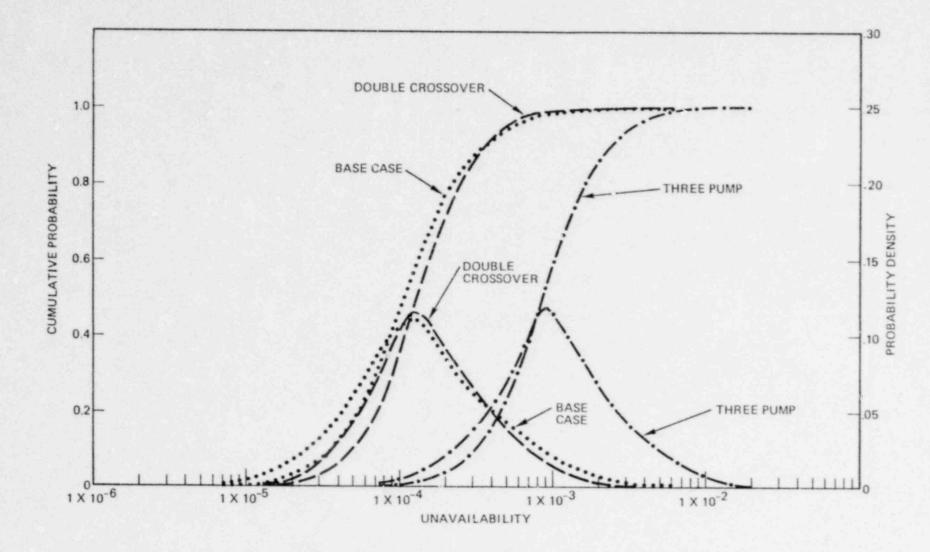


FIGURE 13. CONDITIONAL UNAVAILABILITY OF THE MIDLAND PLANT AFWS - THREE ALTERNATIVE DESIGNS, PLANT-SPECIFIC DATA - LOSS OF MAIN FEEDWATER

TABLE 18. DOMINANT CONTRIBUTORS TO CONDITIONAL UNAVAILABILITY

ſ

Î

ľ

LOSS OF MAIN FEEDWATER

Double Crossover (NRC Data)

Rank	Event Description	Unavailability
1	Maintenance of turbine-driven AFWP an system	3.5 x 10-5
2	failure on demand without this pump. Maintenance of motor-driven AFWP and system	3.4 x 10-5
3	failure on demand without this pump. Turbine or turbine controls fail and PO5A motor fails to start.	1.6 x 10 ⁻⁵
4	Common causehuman errorfull flow test valves open after test.	8.4 x 10 ⁻⁶
5	Turbine or turbine controls fail and PO5A fails to deliver sufficient water.	4.0 x 10-6
6	P05B fails to deliver sufficient water and P05A motor fails to start.	4.0 x 10 ⁻⁶
7	PO5B test valve is open and PC5A motor fails to start.	2.0 x 10-6
8	Turbine or turbine controls fail and P05B test valve is open.	2.0 x 10 ⁻⁶
9	P05B in test (operator error) and system failure on demand without this pump.	1.9 x 10 ⁻⁶
10	PO5A in test (operator error) and system failure on demand without this pump.	1.8 x 10 ⁻⁶

TABLE 19. LOMINANT CONTRIBUTORS TO CONDITIONAL UNAVAILABILITY

LOSS OF MAIN FEEDWATER DUE TO LOSS OF OFFSITE POWER

Double Crossover (NRC Data)

i

ł

1

-

Rank	Event Description	Unavailability
1	Maintenance of turbine-driven AFWP and system failure on demand without this pump.	2.5 x 10 ⁻⁴
2	Turbine or turbine controls fail and 4,160V bus 1A05 fails to supply power.	1.5 x 10 ⁻⁴
3	P05B fails to deliver sufficient water and 4,160V bus 1A05 fails to supply power.	3.7 x 10-5
4	Maintenance of motor-driven AFWP and system failure on demand without this pump.	3.4 x 10-5
5	P05B test valve open and 4,160V bus 1A05 fails to supply power.	1.8 x 10-5
6	Turbine or turbine controls fail and PO5A motor fails to start.	1.6 x 10-5
7	P05B in test (operator error) and system failure on demand without this pump.	1.3 x 10-5
8	Common causehuman errorfull flow test valves open after test.	8.4 x 10 ⁻⁶
9	Turbine or turbine controls fail and PO5A fails to deliver sufficient water.	4.0 x 10-6
10	P05B fails to supply sufficient water and P05A motor fails to start.	4.0 x 10 ⁻⁶
11	P05A in test (operator error) and system failure on demand without this pump.	1.8 x 10 ⁻⁶

TABLE 20. DOMINANT CONTRIBUTORS TO CONDITIONAL UNAVAILABILITY

f

I

P

i

6

LOSS OF ALL AC

Double Crossover (NRC Data)

Rank	Event Description	Unavailability
1	Maintenance of turbine-driven AFWP.	5.9 x 10-3
2	Turbine or turbine controls fail.	4.0 x 10-3
3	P05B fails to deliver sufficient water.	1.0 x 10-3
4	P05B in test (operator error).	3.1×10^{-4}
5	P05B test valve open.	1.0×10^{-4}
6	P05B suction valve transfers closed.	1.0×10^{-4}
7	Valve M03126 transfers closed.	1.0×10^{-4}
8	Suction header cross-connect valve MO868B transfers closed.	1.0 x 10 ⁻⁴
9	Valve M03856 transfers closed.	1.0×10^{-4}
10	CST isolation valve 037 transfers closed.	1.0×10^{-4}
11	CST outlet check valve 024 fails closed.	1.0×10^{-4}
12	Common causehuman errorfull flow test valves open after test.	8.4 x 10-6

TABLE 21. DOMINANT CONTRIBUTORS TO CONDITIONAL UNAVAILABILITY

I

Þ

LOSS OF MAIN FEEDWATER

Double Crossover (Plant-Specific Data)

Rank	Event Description	Unavailabili*y
1	Maintenance of motor-driven AFWP and system failure on demand without this pump.	9.3 x 10 - 5
2	Turbine or turbine controls fail and PO5A fails to deliver sufficient water.	3.3 x 10-5
3	Maintenance of turbine-driven AFWP and system failure on demand without this pump.	
4	P05B fails to deliver sufficient water and fails to deliver sufficient water.	1.5 x 10 ⁻⁵
5	Common causehuman errorfull flow test valves open after test.	8.4 x 10-5
6	Turbine or turbine controls fail and PO5A motor fails to start.	5.8 x 10-6
7	P05A in test (operator error) and system failure on demand without this pump.	4.9 x 10-6
8	Turbine or turbine controls fail and PO5A motor breaker does not close.	3.5 x 10-6
9	P05B fails to deliver sufficient water and P05A motor fails to start.	2.6 x 10 ⁻⁶
10	P05B fails to deliver sufficient water and P05A motor breaker does not close.	1.6 x 10 ⁻⁶
11	Turbine or turbine controls fail and AFWP relay K1111 (P05A) fails open.	1.5 x 10 ⁻⁶
12	P05B in test (operator error) and system failure on demand without this pump.	1.4 x 10 ⁻⁶

TABLE 22. DOMINANT CONTRIBUTORS TO CONDITIONAL UNAVAILABILITY

LOSS OF MAIN FEEDWATEL DUE TO LOSS OF OFFSITE POWER

1

i

Double Crossover (Plant-Specific Data)

Rank	Event Description	Unavailabilit
1	Turbine or turbine controls fail and 4,160V bus 1A05 fails to supply power.	3.9 x 10 ⁻⁴
2	Maintenance of turbine-driven AFWP and system failure on demand without this pump.	2.4×10^{-4}
3	P05B fails to deliver sufficient water and 4,160V bus 1A05 fails to supply power.	1.8 x 10 ⁻⁴
4	Maintenance of motor-driven AFWP and system failure on demand without this pump.	9.3 x 10-5
5	Turbine or turbine controls fail and PO5A fails to deliver sufficient water.	3.3 x 10-5
6	P05B in test (operator error) and system failure on demand without this pump.	1.3 x 10-5
7	Common causehuman errorfull flow test valves open after test.	8.4 x 10 ⁻⁶
8	P05A in cest (operator error) and system failure on demand without this pump.	4.9 x 10-6

TABLE 23. DOMINANT CONTRIBUTORS TO CONDITIONAL UNAVAILABILITY

I

LOSS OF ALL AC

Double Crossover (Plant-Specific Data)

Rank	Event Description	Unavailability
1	Turbine or t rbine controls fail.	1.1 x 10-2
2	Maintenance of turbine-driven AFWP.	5.9 x 10-3
3	P05B fails to deliver sufficient water.	4.7 x 10-3
4	PO5B in test (operator error).	3.1 x 10-4
5	Common causehuman errorfull flow test valves open after test.	8.4 x 10-6

TABLE 24. DOMINANT CONTRIBUTORS TO CONDITIONAL UNAVAILABILITY

LOSS OF MAIN FEEDWATER

Base Case (Plant-Specific Data)

1

L

i

Rank	Event Description	Unavailabilit
1	Maintenance of motor-driven AFWP and system failure on demand without this pump.	9.4 x 10-5
2	P05A fails to deliver sufficient water and turbine or turbine controls fail.	3.3 x 10 ⁻⁵
3	Maintenance of turbine-driven AFWP and system failure on demand without this pump.	2.6 x 10 ⁻⁵
4	P05A fails to deliver sufficient water and P05B fails to deliver sufficient water.	1.5 x 10-5
5	Common causehuman errorfull flow test valves open after test.	8.4 x 10-6
6	P05A motor fails to start and turbine or turbine controls fail.	5.8 x 10-6
7	P05A in test (operator error) and system failure on demand without this pump.	5.0 x 10 ⁻⁶
8	P05A motor breaker does not close and turbine or turbine controls fail.	3.5 x 10 ⁻⁶
9	P05A motor fails to start and P05B fails to deliver sufficient water.	2.6 x 10-6
10	P05A motor breaker does not close and P05B fails to deliver sufficient water.	1.6 x 10 ⁻⁶
11	AFWS relay K1111 (P05A) fails open and turbine or turbine controls fail.	1.5 x 10-6
12	P05B in test (operator error) and system failure on demand without this pump.	1.4 x 10-6

TABLE 25. DOMINANT CONTRIBUTORS TO CONDITIONAL UNAVAILABILITY

LOSS OF MAIN FEEDWATER DUE TO LOSS OF OFFSITE POWER

Base Case (Plant-Specific Data)

i

ł

1

ł

Rank	Event Description	Unavailability
1	Turbine or turbine controls fail and 4,160V bus 1A05 fails to supply power.	3.9 x 10 ⁻⁴
2	Maintenance of turbine-driven AFWP and system failure on demand without this pump.	2.4×10^{-4}
3	P05B fails to deliver sufficient water and 4,160V bus 1A05 fails to supply power.	1.7 x 10 ⁻⁴
4	Maintenance of motor-driven AFWP and system failure on demand without this pump.	9.4 x 10-5
5	Turbine or turbine controls fail and PO5A fails to deliver sufficient water.	3.3 x 10-5
6	P05B fails to deliver sufficient water and P05A fails to deliver sufficient water.	1.4 x 10 ⁻⁵
7	P05B in test (operator error) and system failure on demand without this pump.	1.3 x 10-5
8	Common causehuman errorfull flow test valves open after test.	8.4 x 10 ⁻⁶
9	P05A in test (operator error) and system failure on demand without this pump.	5.0 x 10 ⁻⁶

TABLE 26. DOMINANT CONTRIBUTORS TO CONDITIONAL UNAVAILABILITY

f

ļ

P

ŕ

i

LOSS OF ALL AC

Base Case (Plant-Specific Data)

Rank	Event Description	Unavailability
1	Turbine or turbine controls fail.	1.1 x 10 ⁻²
2	Maintenance of turbine-driven AFWP.	5.9 x 10-3
3	P05B fails to deliver sufficient water.	4.7 x 10-3
4	PO5B in test (operator error).	3.1 x 10-4
5	Common causehuman errorfull flow test valves open after test.	8.4 x 10 ⁻⁶

TABLE 27. DOMINANT CONTRIBUTORS TO CONDITIONAL UNAVAILABILITY

LOSS OF MAIN FEEDWATER

Three Pump (Plant-Specific Data)

i

ł

1

I

1

ł

ł

I

Rank	Event Description	Unavailability
1	Maintenance of turbine-driven AFWP and system	2.9 x 10 ⁻⁴
	failure on demand without this pump.	
2	Turbine or turbine controls fail and LV3875B1 transfers closed (controls).	1.5 x 10 ⁻⁴
3	Maintenance on motor-driven AFWP (P05A) and system failure on demand without this pump.	9.8 x 10-5
4	Maintenance on motor-driven AFWP (P05C) and system failure on demand without this pump.	9.8 x 10-5
5	P05B fails to deliver sufficient water and	6.9 x 10 ⁻⁵
6	LV3875B1 transfers closed (controls). Turbine or turbine controls fail and LV3875A1 transfers closed (controls).	5.9 x 10 ⁻⁵
7	Turbine or turbine controls fail and pressure control valve 020B fails closed.	5.8 x 10 ⁻⁵
8	Turbine or turbine control fail and pressure control valve 020A fails closed.	5.8 x 10-5
9	Turbine or turbine controls fail and MO3870B motor operator fails.	3.7 x 10-5
10	Turbine or turbine controls fail and MO3870A motor operator fails.	3.7 x 10-5
11	Turbine or turbine controls fail and P05C fails to deliver sufficient water.	3.3 x 10-5
12	Turbine or turbine controls fail and P05A fails to deliver sufficient water.	3.3 x 10-5
13	P05B fails to deliver sufficient water and LV3875Al transfers closed (controls).	2.6 x 10-5
14	P05B fails to deliver sufficient water and pressure control valve 020B fails closed.	2.6 x 10-5
15	P05B fails to deliver sufficient water and pressure control valve 020A fails closed.	2.6 x 10-5
16	P05B fails to deliver sufficient water and M03870B motor operator fails.	1.7 x 10-5
17	P05B fails to deliver sufficient water and M03870A motor operator fails.	1.7 x 10 ⁻⁵
19	P05B in test (operator error) and system failure on demand without this pump.	1.6 x 10 ⁻⁵
19	PO5B fails to deliver sufficient water and PC5C fails to deliver sufficient water.	1.5 x 10 ⁻⁵

TABLE 27. DOMINANT CONTRIBUTORS TO CONDITIONAL UNAVAILABILITY (continued)

LOSS OF MAIN FEEDWATER

F

i

P

i

i

Three Pump (Plant-Specific Data)

Rank	Event Description	Unavailability
20	P05B fails to deliver sufficient water and P05A fails to deliver sufficient water.	1.5 x 10-5
21	Common causehuman errorfull flow test valves open after test.	8.4 x 10-6
22	Turbine or turbine controls fail and level control valve LV3875B1 fails closed.	6.1 x 10-6
23	Turbine or turbine controls fail and P05C motor fails to start.	5.8 x 10-6
24	Turbine or turbine controls fail and PO5A motor fails to start.	5.8 x 10-6
25	P05A in test (operator error) and system failure on demand without this pump.	5.3 x 10-6
26	P05C in test (operator error) and system failure on demand without this pump.	5.3 x 10 ⁻⁶

TABLE 28. DOMINANT CONTRIBUTORS TO CONDITIONAL UNAVAILABILITY

LOSS OF MAIN FEEDWATER DUE TO LOSS OF OFFSITE POWER

Three Pump (Plant-Specific Data)

ì

1

1

Rank	Event Description	Unavailability
1	Maintenance of turbine-driven AFWP and system	7.2 x 10 ⁻⁴
	failure on demand without this pump.	
/ 2	Turbine or turbine controls fail and 4,160V bus 1A05 fails to supply power.	3.9 x 10 ⁻⁴
3	Turbine or turbine controls fail and 4,160V bus 1A06 fails to supply power.	3.9 x 10 ⁻⁴
4	P05B fails to deliver sufficient water and 4,160V bus 1A05 fails to supply power.	1.7 x 10-4
5	P05B fails to deliver sufficient water and	1.7 x 10_4
6	4,160V bus 1A06 fails to supply power. Turbine or turbine controls fail and LV3875BA transfers closed.	1.5 x 10 ⁻⁴
7	Maintenance on motor-driven AFWP (P05A) and system failure on demand without this pump.	9.8 x 10-5
8	Maintenance on motor-driven AFWP (P05C) and system failure on demand without this pump.	9.8 x 10-5
9	P05A fails to deliver sufficient water and LV3875B1 transfers closed.	6.9 x 10 ⁻⁵
10	Turbine or turbine controls fail and LV3875Al transfers closed.	5.9 x 10 ⁻⁵
11	Turbine or turbine controls fail and pressure control valve 020B fails closed.	5.8 x 10 ⁻⁵
12	Turbine or turbine controls fail and pressure control valve 020A fails closed.	5.8 x 10 ⁻⁵
13	P05B in test (operator error) and system failure on demand without this pump.	3.8 x 10 ⁻⁵
14	Turbine or turbine controls fail and MO3870B motor operator fails (and controls).	3.7 x 10-5
15	Turbine or turbine controls fail and MO3870A motor operator fails (and controls).	3.7 x 10 ⁻⁵
16	Turbine or turbine controls fail and P05C fails to deliver sufficient water.	3.3 x 10-5
17	Turbine or turbine controls fail and PO5A fails to deliver sufficient water.	3.3 x 10 ⁻⁵
18	P05B fails to deliver sufficient water and LV3875Al transfers closed.	2.6 x 10 ⁻⁵
19	P05B fails to deliver sufficient water and pressure control valve 020B fails closed.	2.6 x 10 ⁻⁵

TABLE 28. DOMINANT CONTRIBUTORS TO CONDITIONAL UNAVAILABILITY (continued)

LOSS OF MAIN FEEDWATER DUE TO LOSS OF OFFSITE POWER

f

F

ŕ

i

ķ

Three Pump (Plant-Specific Data)

Ran	k Event Description	Unavailabilit
20	P05B fails to deliver sufficient water and pressure control valve 020A fails closed.	2.6 x 10 ⁻⁵
21	P05B fails to deliver sufficient water and M03870B operator fails (and controls).	1.7 x 10 ⁻⁵
22	PO5B fails to deliver sufficient water and MO3870A operator fails (and controls).	1.7 x 10-5
23	P05B fails to deliver sufficient water and P05C fails to delver sufficient water.	1.5 x 10-5
24	Common causehuman errorfull flow test valves open after test.	8.4 x 10 ⁻⁶
25	P05A in test (operator error) and system failure on demand without this pump.	5.2 x 10-6
26	P05C in test (operator error) and system failure on demand without this pump.	5.2 x 10-6

TABLE 29. DOMINANT CONTRIBUTORS TO CONDITIONAL UNAVAILABILITY

ą

LOSS OF ALL AC

Three Pump (Plant-Specific Data)

Rank	Event Description	Unavailability		
1	Turbine or turbine controls fail.	1.1 x 10-2		
2	Maintenance of turbine-driven AFWP.	5.9 x 10-3		
3	P05B fails to deliver sufficient water.	4.7 x 10-3		
4	P05B in test (operator error).	3.1×10^{-4}		
5	P05B discharge valve transfers closed.	2.9 x 10-4		
6	LV3875B2 transfers closed (controls) and LV3875A2 transfers closed (controls).	2.2 x 10 ⁻⁴		
7	LV3875AS transfers closed (controls) and M03870B fails closed.	2.1 x 10 ⁻⁴		
8	LV3875B2 transfers closed (controls) and M03870A fails closed.	2.1×10^{-4}		
9	Common causehuman errorfull flow test valves open after test.	8.4 × 10-6		

the dominant contributor. For the loss of main feedwater case, maintenance on the motor-driven auxiliary feedwater pump combined with random failures in the turbine train ranks second. In the other two cases, this failure mode is not as important because of the reduced availability of AC electrical power. Next in all cases is turbine or turbine control failure coupled with failure of the motor-driven pump motor. Using plant-specific data for the double crossover system, Tables 21, 22, and 23 show the same dominant contributors appear with some changes in ordering.

Dominant contributors for the base case design using plant-specific data are presented in Tables 24, 25, and 26. These results are very similar to the double crossover case using plant-specific data both in the iank order of the individual contributors and in the quantification. Tables 27, 28, and 29 present the dominant contributors for the three pump design using plant-specific data. The overall results of this design are not as good as for the double crossover or base case designs. Although there are three pumps, success requires either the turbine pump operating or both 50% motor pumps operating. The leading contributor for the cases when AC power may be available is maintenance of the turbinedriven auxiliary feedwater pump combined with random failures in the motor-driven pump trains. However, the large number of fairly important contributors due to random failures throughout the system leads to the overall effect that combined random failures provide the dominant contribution to system unavailability. Such random failures include failure of the turbine or turbine controls combined with single motor pump train level control valve failing, failure of the turbine-driven pump combined with failure of power to either electrically driven pump, turbine or turbine control failure and a single pressure control valve in a motordriven pump train failing, and failure of the turbine-driven pump combined with failure of a motor-operated valve in either motor-driven pump train. This design suffers from the fact that success, given a failure in a turbine pump train, requires that two complete trains of motor-driven pumps operate.

The selected design, the double crossover system, has very low unavailability. Nevertheless, it is instructive to list possible system modifications that have potential to further reduce that unavailability. To improve unavailability, the modifications must attack dominant contributors of Tables 18 through 23. For example, consider the following dominant contributors and the possible modifications that might address them.

- Maintenance of the turbine-driven auxiliary feed pump and system failure on demand without this pump--reduce the frequency of pump maintenance by carefully eliminating any nonessential maintenance, consolidating maintenance, etc., and reduce the duration of pump maintenance outages through additional preplanning, training, etc.
- Maintenance of the motor-driven auxiliary feedwater pump and random failures in the turbine-driven pump train--same as for turbine maintenance.

- Turbine or turbine controls fail combined with random failures in the motor-driven pump train--modifications to improve reliability of turbine controls, perhaps provisions for preheating control fluid and positive identification that the turbine trip is reset.
- Human errors associated with the full recirculation flow valve during and following pump test--carefully written test procedures to ensure the valves are reclosed, staggered testing to avoid sequential highly coupled human failures, automatic closing of these test valves when an AFWAS is present.

These contributors are responsible for approximately 80% of the total unavailability of the auxiliary feedwater system. Thus, improvements could have a substantial effect on the overall unavailability. However, a word of warning is appropriate. It is possible that some of these changes could create more problems than they solve. For example, a redesigned turbine control system might not perform better than the one already installed. Also, for any of these options aimed at the single cause of failure, accomplishment of any one enormously decreases the value of those remaining. Finally, the system is already very reliable and no serious deficiencies have been identified. Any changes considered should only be made after a careful evaluation of all costs and benefits including the chance that a change aimed at improving reliability could actually degrade it.

6.2 RESULTS OF EVENT TREE ANALYSIS

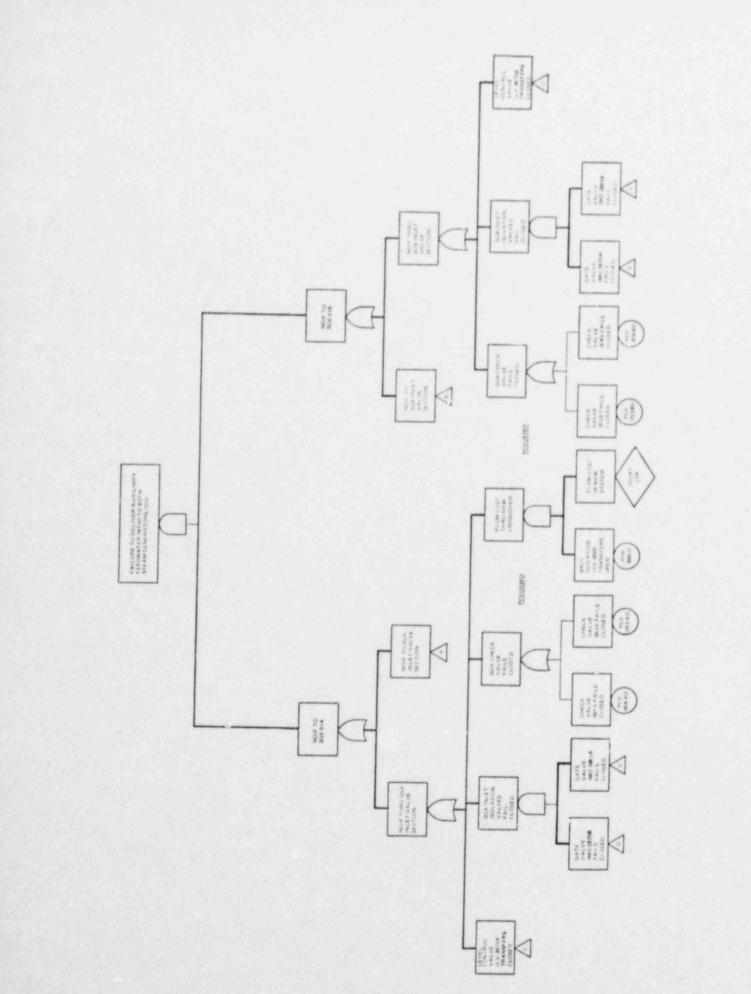
The event tree analysis described in Section 5 has been performed for the double crossover system (see Figures 11 and 12). A decomposition of the double crossover system event tree and time dependent reliability calculations have been used to quantify the system event tree. Probabilities have been calculated for each path and cach sequence number in Figure 12. We have summarized those calculations in the following brief table.

	System State	Relative Frequenc Followin Demand		
1.	Immediate failure	4 x 10 ⁻⁵		
2.	Initial cooling, long-term failure	1 x 10 ⁻⁵		
3.	Successful operation but overcooling in at least one SG	2 × 10 ⁻⁴		
4.	Initial overcooling and long-term failure	2 x 10 ⁻⁹		

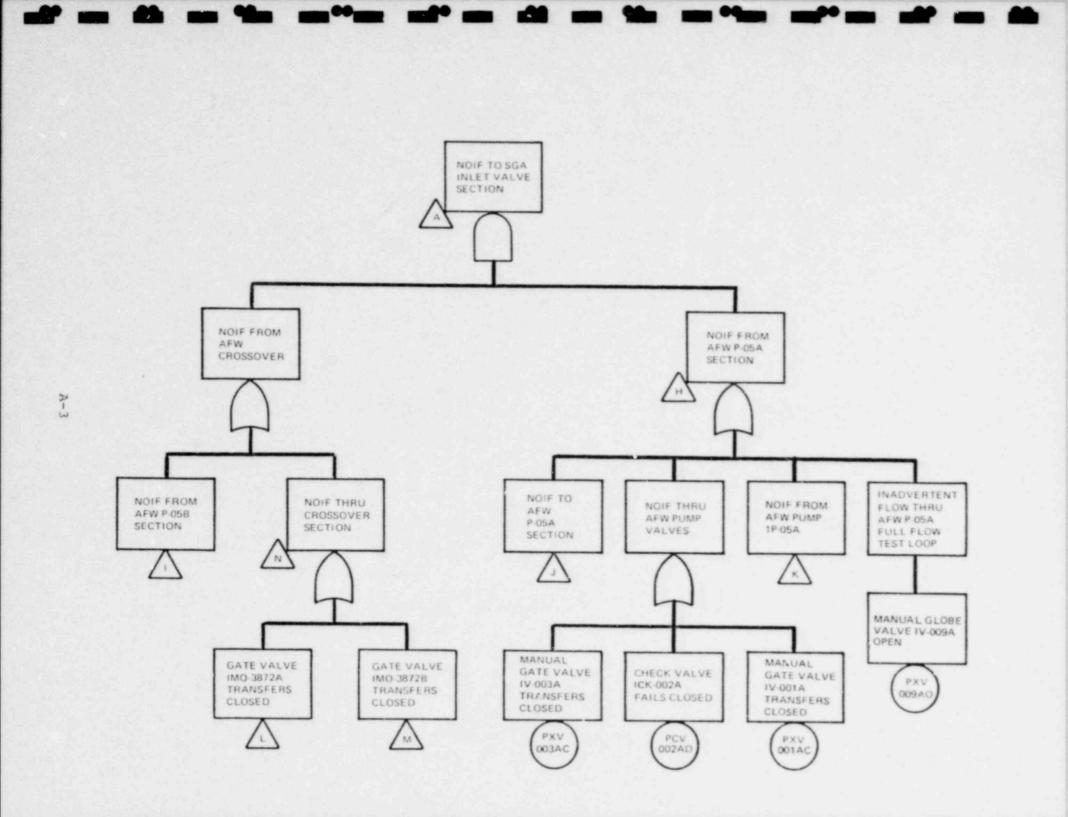
State 3, overcooling, may not be a serious contributor to public risk. Recent calculations show that natural circulation cooling can be effective even with two phase conditions in the primary as long as the core remains covered. Overcooling cannot shrink the primary coolant enough to uncover the core. States 2 and 4--initial cooling but long-term failure--are much less serious than State 1--immediate failure. They have removed initial decay heat, permitted some cooldown, and have allowed power to decay. Much more time is available for recovery.

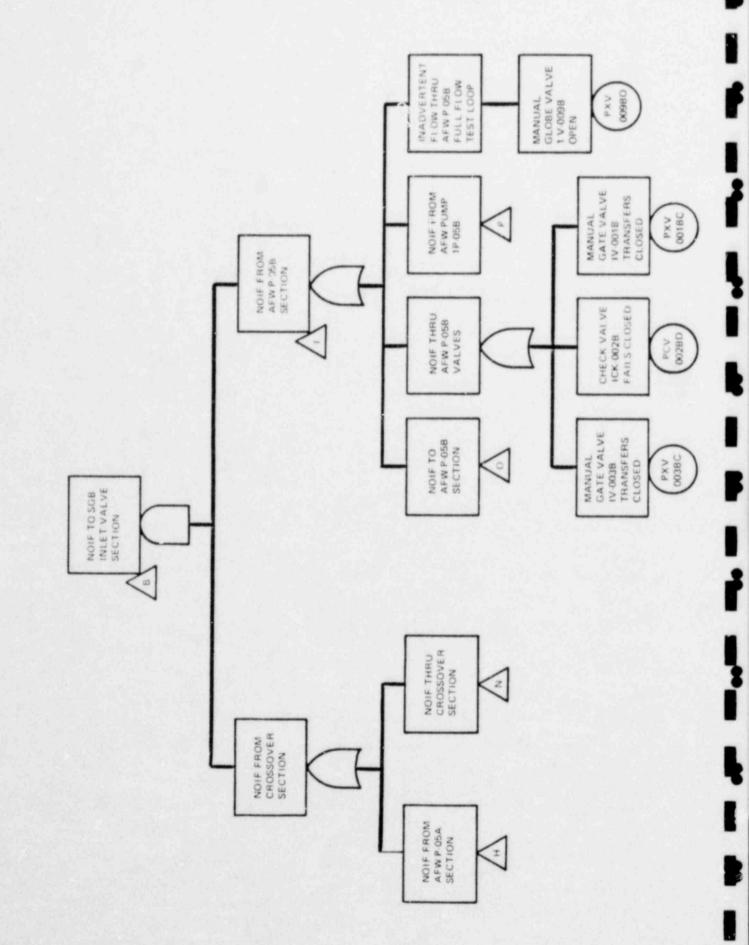
The event tree developed in this study can provide a basis for revised analyses in the future. As more details on FOGG and the level control system become available, they can be easily included. Also, additional thinking on good and bad SGs can be incorporated.

7. REFERENCES

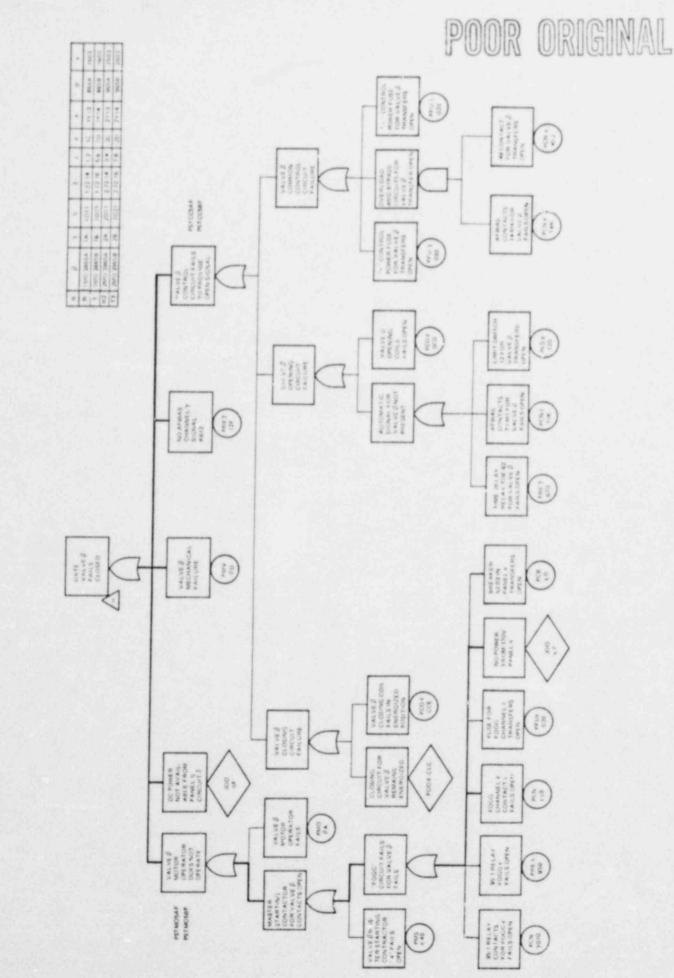

- USNRC, "Generic Evaluation of Feedwater Transients and Small Break Loss of Coolant Accidents in Westinghouse Designed Operating Plants," NUREG-0611, January 1980.
- Weaver, W. W., R. W. Dorman, R. S. Enzinna, "Auxiliary Feedwater Systems Reliability Analyses: A Generic Report for Babcock and Wilcox-Designed Plants," BAW-1584, December 1979.
- U.S. Nuclear Regulatory Commission, "Transient Response of Babcock and Wilcox-Designed Reactors," NUREG-0667, May 1980.
- 4. Midland FSAR, Chapters 8 and 9.
- Midland P&IDs for Auxiliary Feedwater, Main Steam, Condensate and Feedwater, and Service Water Systems.
- 6. Midland Schematics for AFW pumps and motor-operated valves.
- Midland Technical Specifications for Auxiliary Feedwater, Condensate Storage Tank, Electric Power, Service Water, and Instrumentation Systems.
- 8. AFW System Operating, Emergency and Surveillance Procedures.
- 9. Discussions with members of the Midland Plant Staff in the Operations, Maintenance, Startup, and Technical Groups.
- Sullivan, T. S., J. P. Kindinger, "AFW System Configuration and Control Task Recommendation," Consumers Power Company Internal Correspondence, Kind 5-80, April 9, 1980
- 11. Users Guide for the Reliability Analysis System (RAS) Computer Code, TREE-1168, developed by EG&G, IDAHO, Inc., at the Idaho National Engineering Laboratory (INEL), September 1977.
- COMCAN II-A, A Computer Program for Automated Common Cause Failure Analysis, TREE-1361, developed by EG&G, IDAHO, Inc., at the Idaho National Engineering Laboratory (INEL), May 1979.
- MOCARS: A Monte Carlo Code for Determining the Distribution and Simulation Limits, Scott D. Mathews, developed by EG&G, IDAHO, Inc., July 1977.
- U.S. Nuclear Regulatory Commission, "Reactor Safety Study: An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants," WASH-1400, 1975.
- U.S. Nuclear Regulatory Commission, "Staff Report on the Generic Assessment of Feedwater Transients in Pressurized Water Reactors Designed by the Babcock and Wilcox Company," NUREG-0560, May 1979.

APPENDIX A


MIDLAND AUXILIARY FEEDWATER SYSTEM FAULT TREE

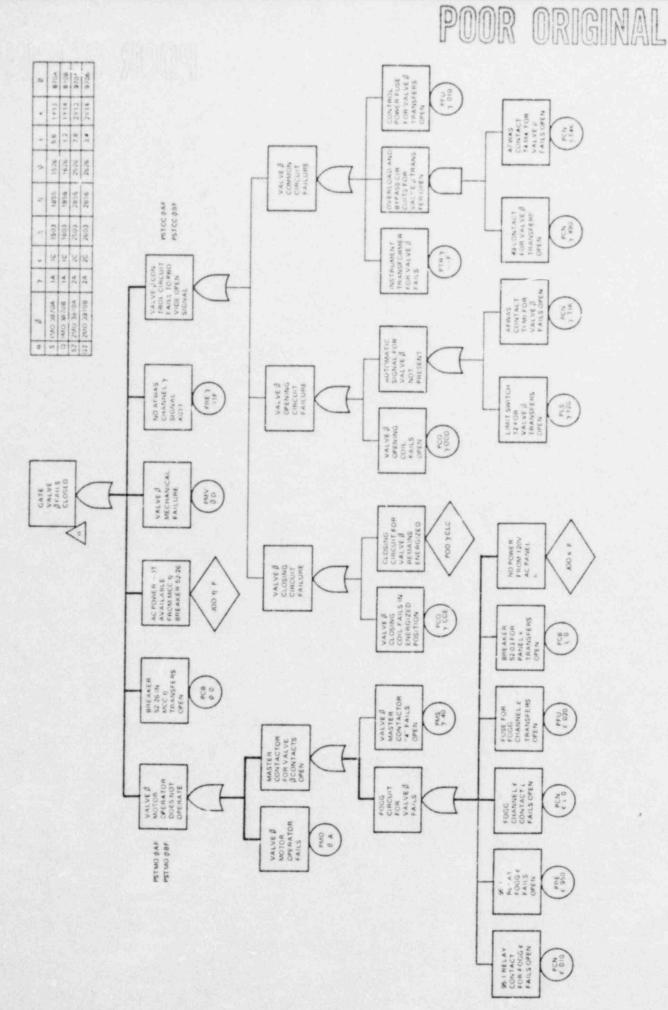

BASE CASE DESIGN

This appendix presents the fault tree model constructed to represent the original AFWS design at Midland. The tree logic defines the component failure modes necessary to fail the system. The fault trees have been heavy lined to show the level to which the quantification was performed. Quantification was performed to the level at which the most applicable data was available. The detailed fault trees were constructed to ensure that all components which could possibly affect the system performance were included in our analysis.



A-2

A-4

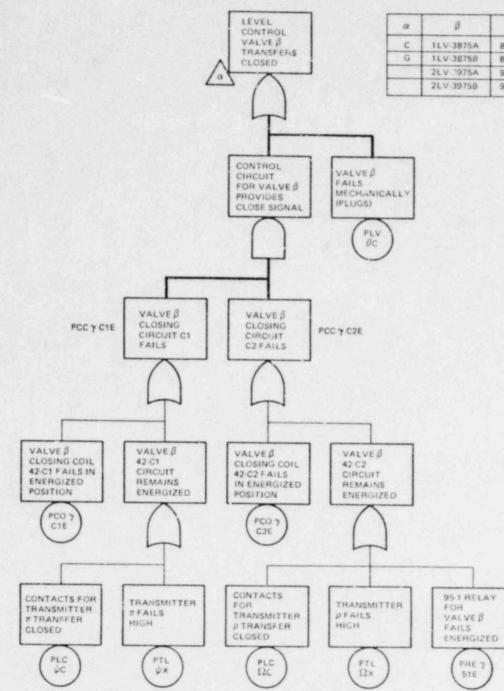


1

ł

A-5

in the

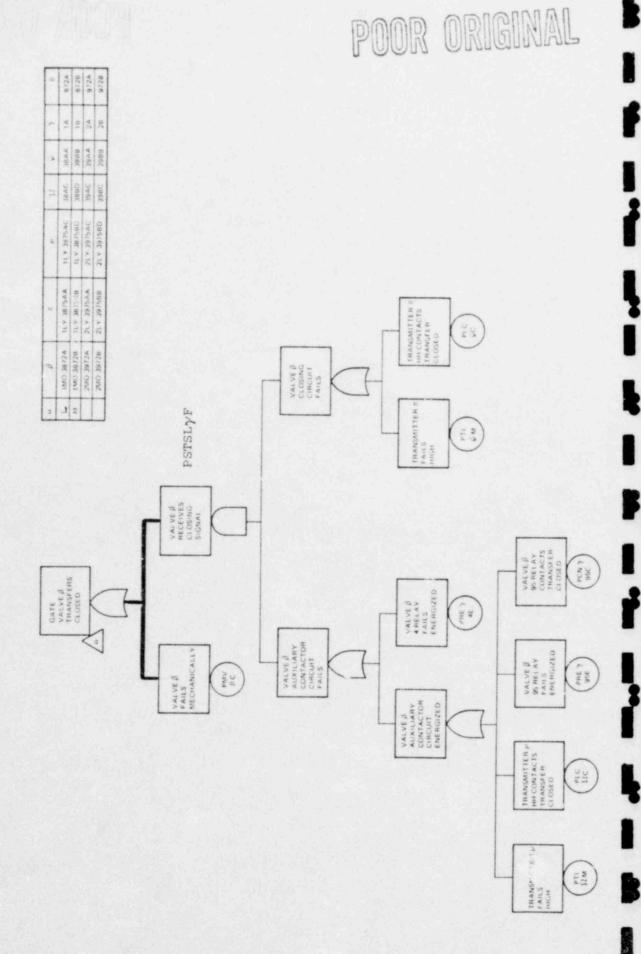


f

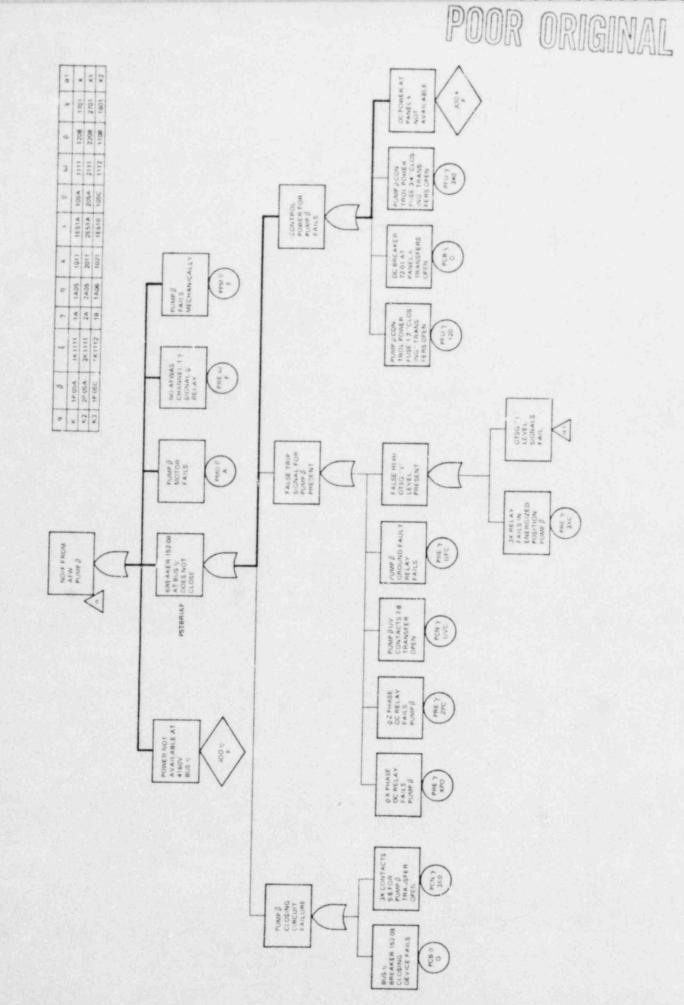
ł

P

A-6



α	β	Ð	7	π	¥	ρ	Ω
C	1LV-3875A	875A	1A	1LY-3875AB	38A8	1LY-3875AD	38AD
G	1LV-38758	8758	18	1LY-38758A	388A	1LY-38758C	388C
	2LV . 975A	975A	2A	2LY 3975AB	39A8	2LY-3975AD	39AD
	2LV-39758	975B	28	2LY 39758A	398A	2LY-39758C	398C


POOR ORIGINAL

-

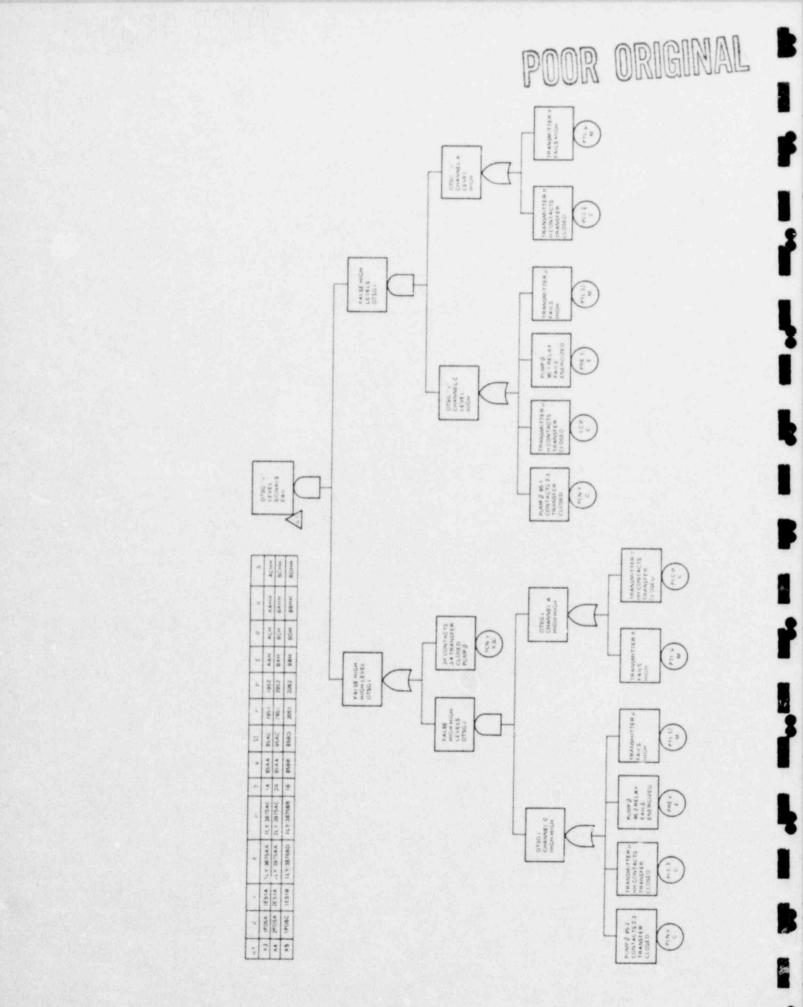
A-8

.....

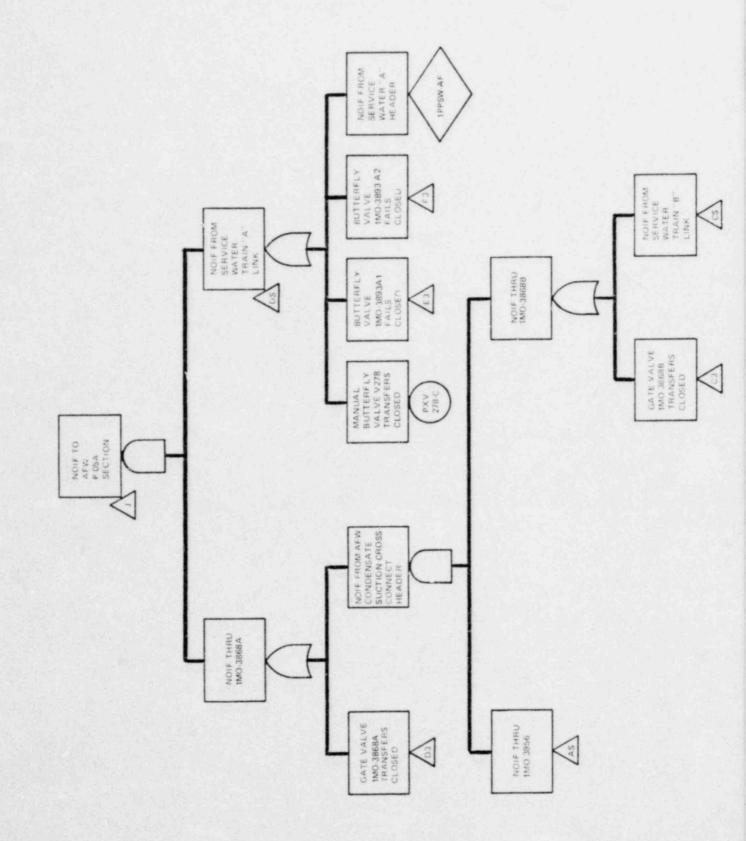
A-9

ì

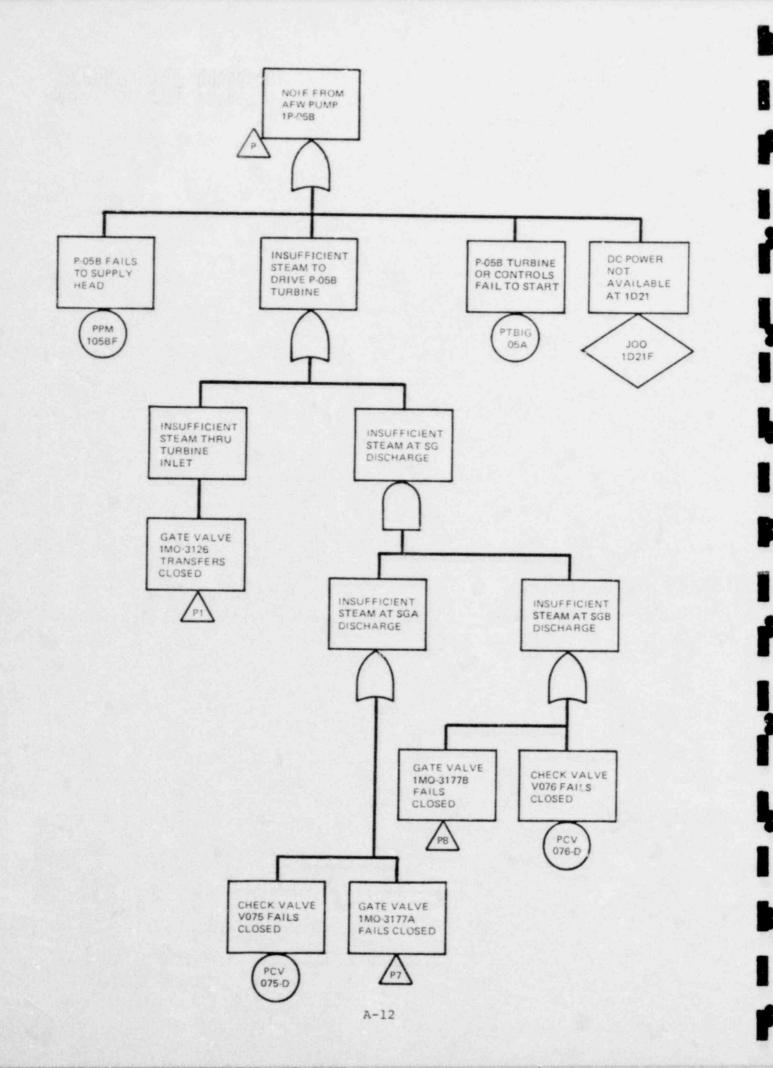
ł

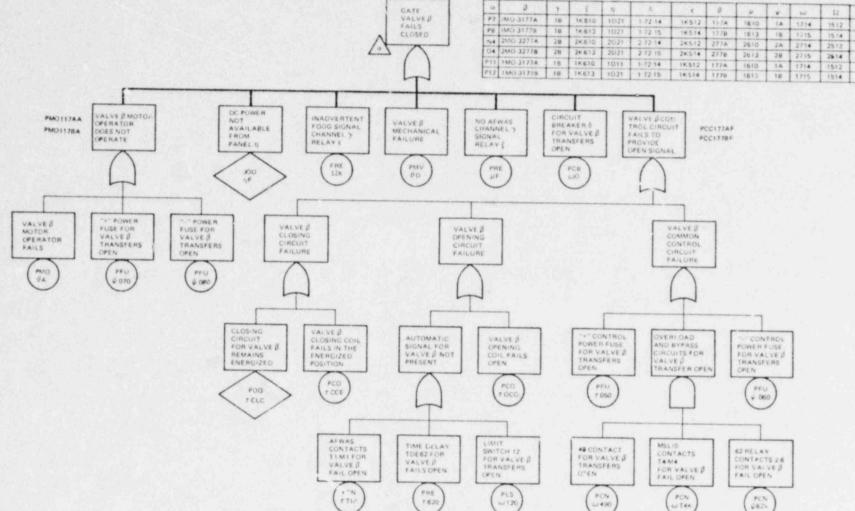

1

1


1

ì


ł



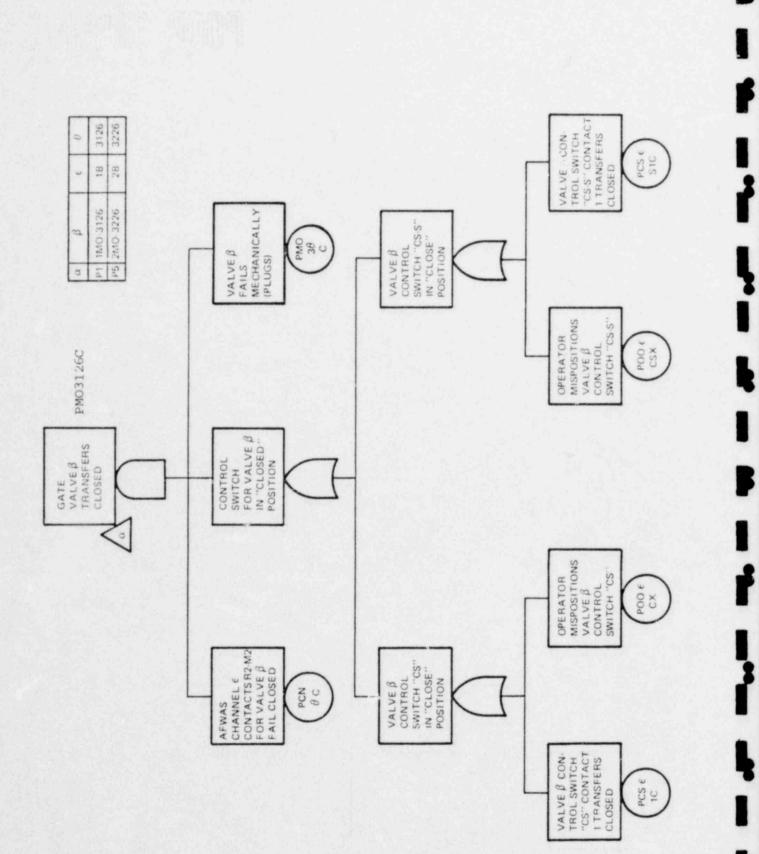
ā

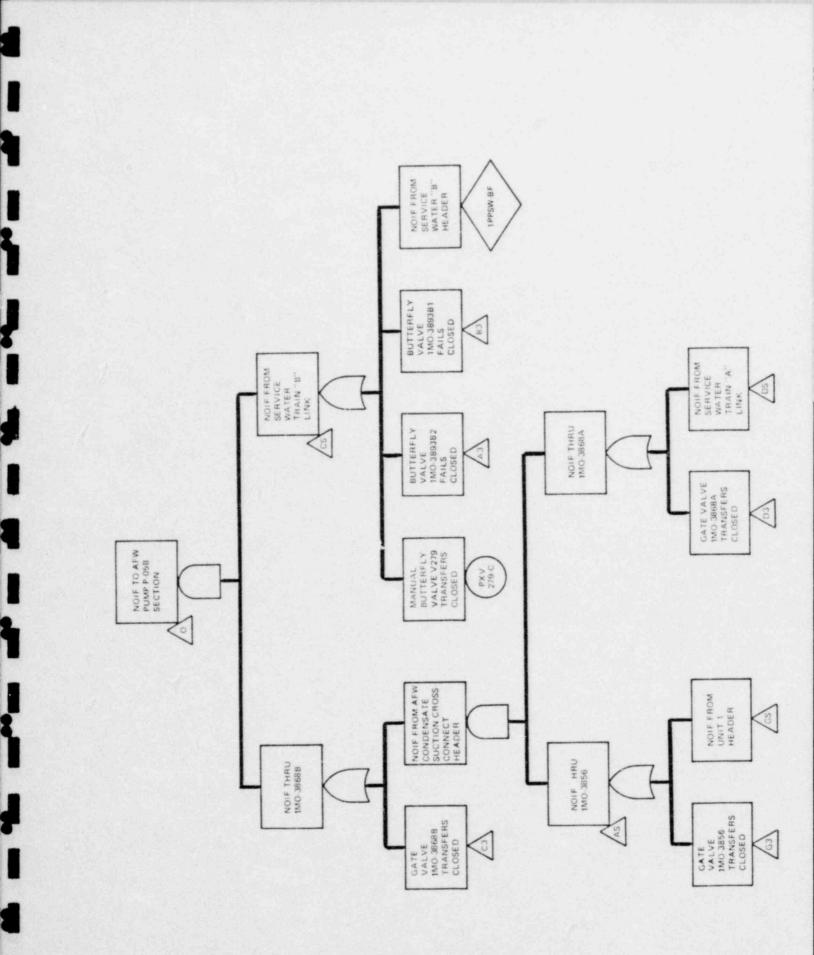
POOR ORIGINAL

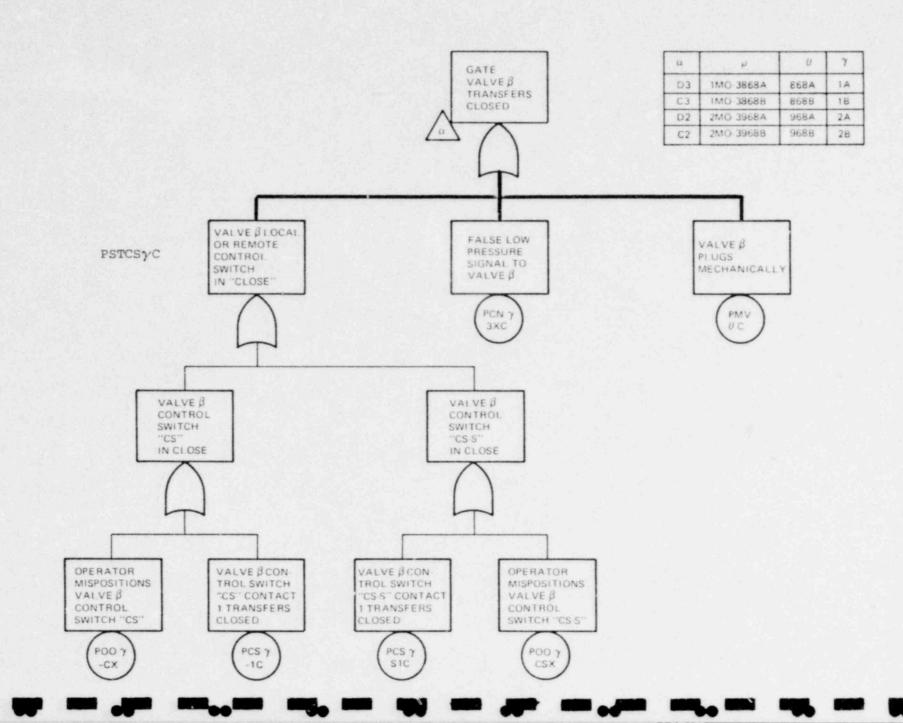
*

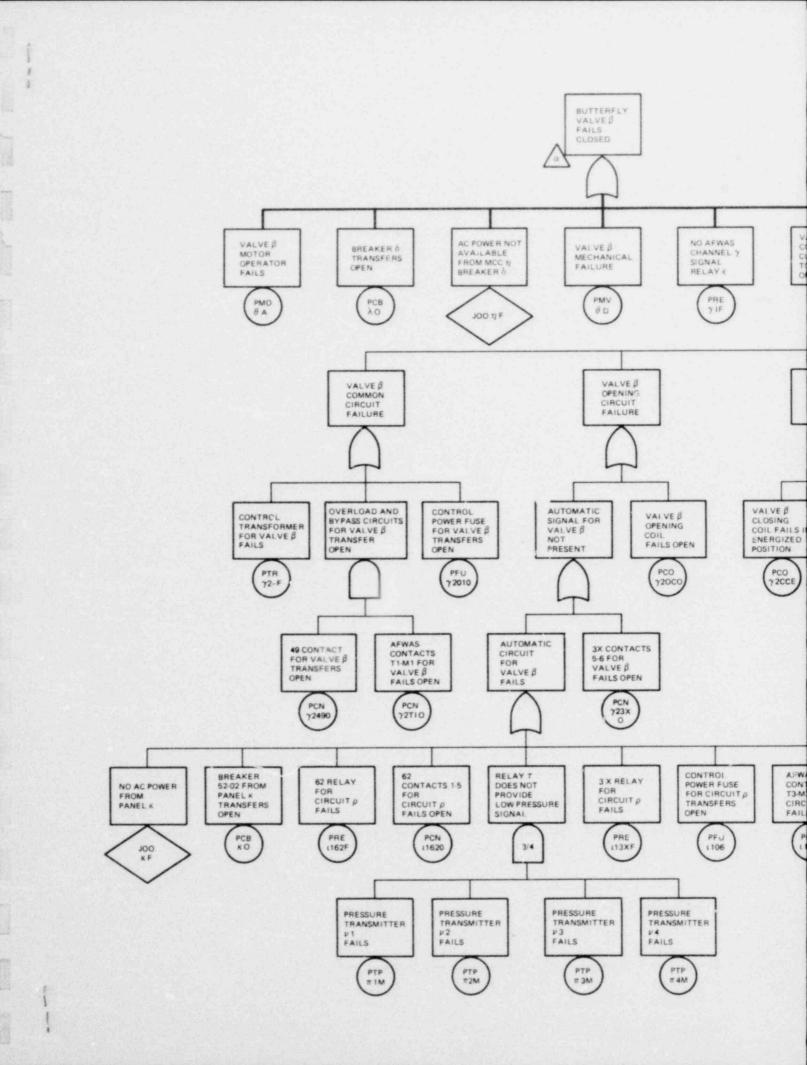
18

TE


28


25


38


14

A-13

18	β	Y	ě	η_{i}	à-	0	19 H	22	+3	24	- p	А.	1
E3.	IMC 3893A1	1A	18 K 608	1823	1)-1/52-02	8931	1PT-38000A1	1PT-38000A2	1PT 38000A3	1PT 38000A4	1A1055	1731	1KY 38000A
63	1MO-3893A2	1A.	18-K-603	1893	11-1-52-03	8932	1PT 38000A1	1PT 38000A2	1PT 38000A3	1P.1 38000A4	1A(065	1931	TK Y 38000A
83	1MO-389381	18	1A-K 608	1894	1152-03	8933	1PT 3800081	197-3800082	1PT-380008.1	1PT-3800084	181055	11/32	1K Y 380008
A3	1MO-389382	18	1A-K603	18P4	11-52-03	8934	1PT 3800081	191 3800082	1PT-3800083	1PT-3800084	181055	114.32	1K Y 380008
E2	2MO-3993A1	2A.	28-K608	28P3	11.2.52.02	9931	291-39000A1	2PT 39000A2	2P1 39000A3	2PT-39000A4	2A/365	29.31	2K Y 39000A
F.2	2MO-3993A2	2A	28 K603	2873	11-2-52-03	9932	1 A0000E 1 95	2PT 39000A2	2PT 39000A3	2PT 39000A4	27.1055	2Y31	2K Y 39006A
82	2MO-399381	28	2A-K608	2894	12.52.02	9933	2PT-3900081	2PT 3900082	287-3900083	2PT 3900084	.81055	2732	2 K Y 39000 8
A2	2MO 399382	28	2A-K603	28P4	1.2.52.03	9934	2PT 39000B1	2PT 3900087	2PT 3900083	2PT 39000054	281055	2Y 32	2K.Y.390008

T

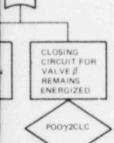
-

T

I VE A	
NTROL CIR	
ITFAILS	P
PROVIDE	
EN SIGNAL	

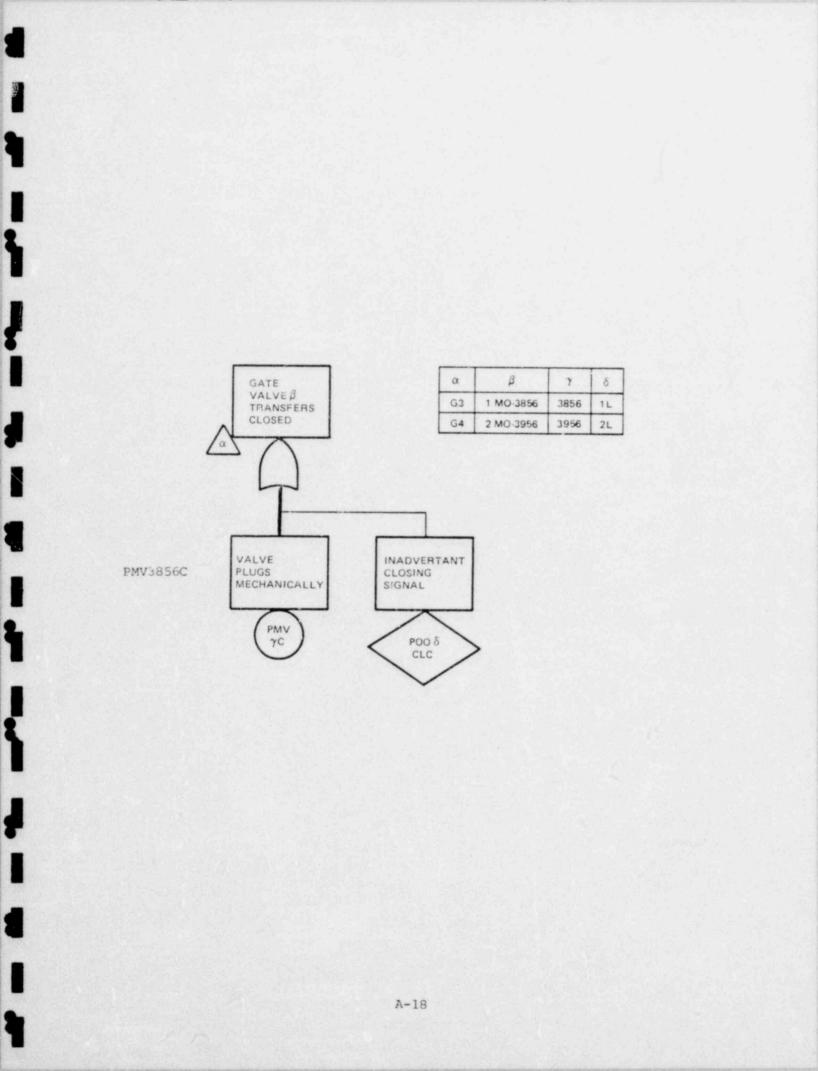
1

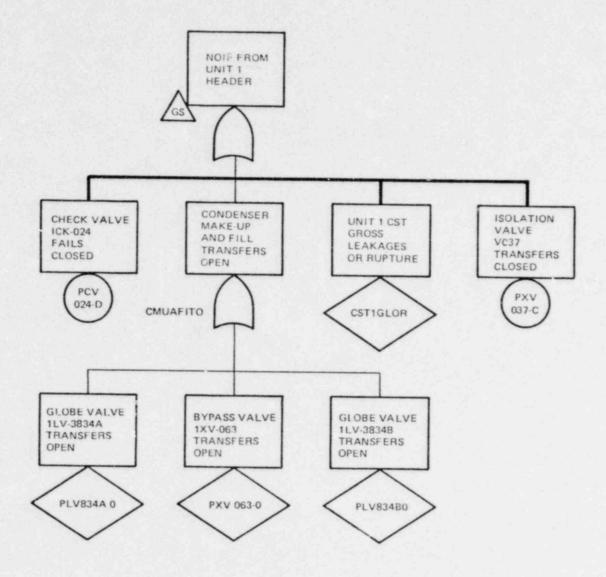
CIR S DE VAL	1.000	71	72	Ę	λ.	1.1	n 1	#2	#3	7.4	4
		1808	16	1P03	2102	16	38A1	38A2	38A3	38A4	A1
	PST CC AF	1803	114	1903	2103	11.	38A1	38A2	38A3	38A4	A2
	1. Call	1A08	1.1	1204	1102	1.14	3881	3882	38B3	3884	81
		1A03	1K.	1904	1103	1.1/1	3881	3882	3883	3884	B2
	10.0	2808	2G	2P03	2202	21	39.A.1	39A2	39A3	39A4	A3
	0 in 1 in	2803	214	2P03	2203	21.	39A1	39A2	39A3	39A4	A4
	10.00	2A08	2.1	2P04	1202	2M	39B1	3982	3983	3964	83
		2A03	2K.	2P04	1203	214	3981	3962	3983	3984	84


-

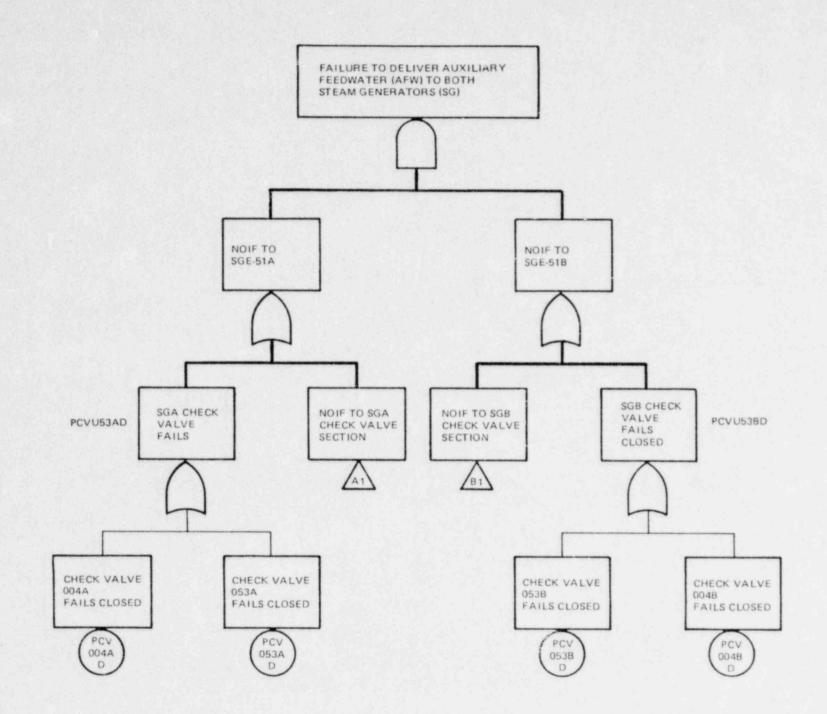
-

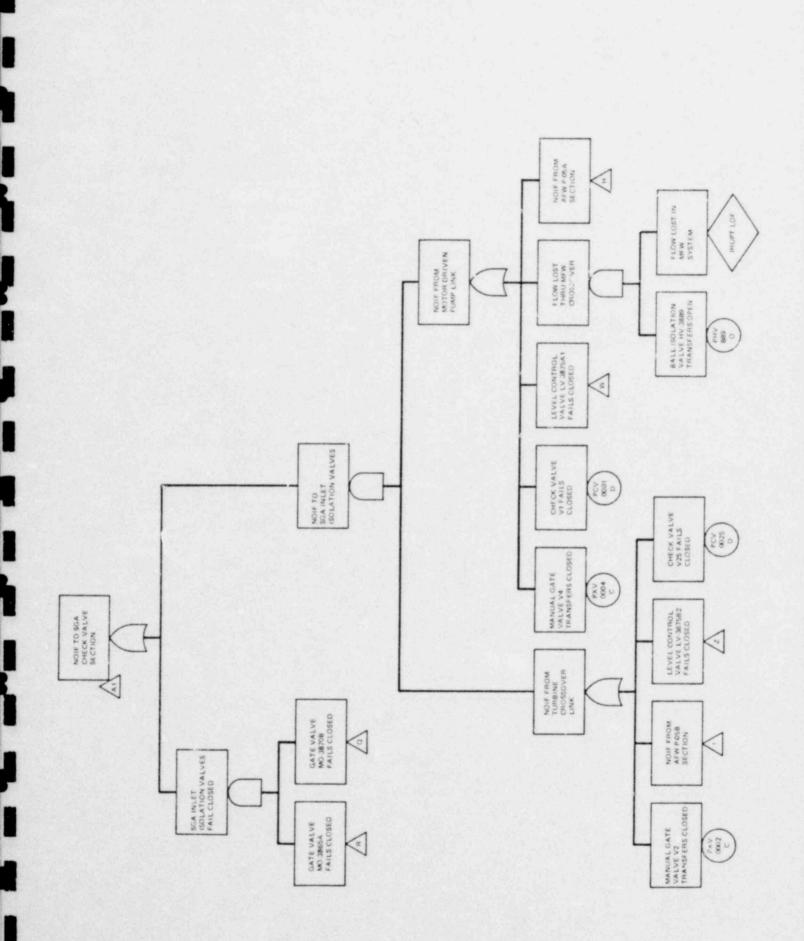
-


T

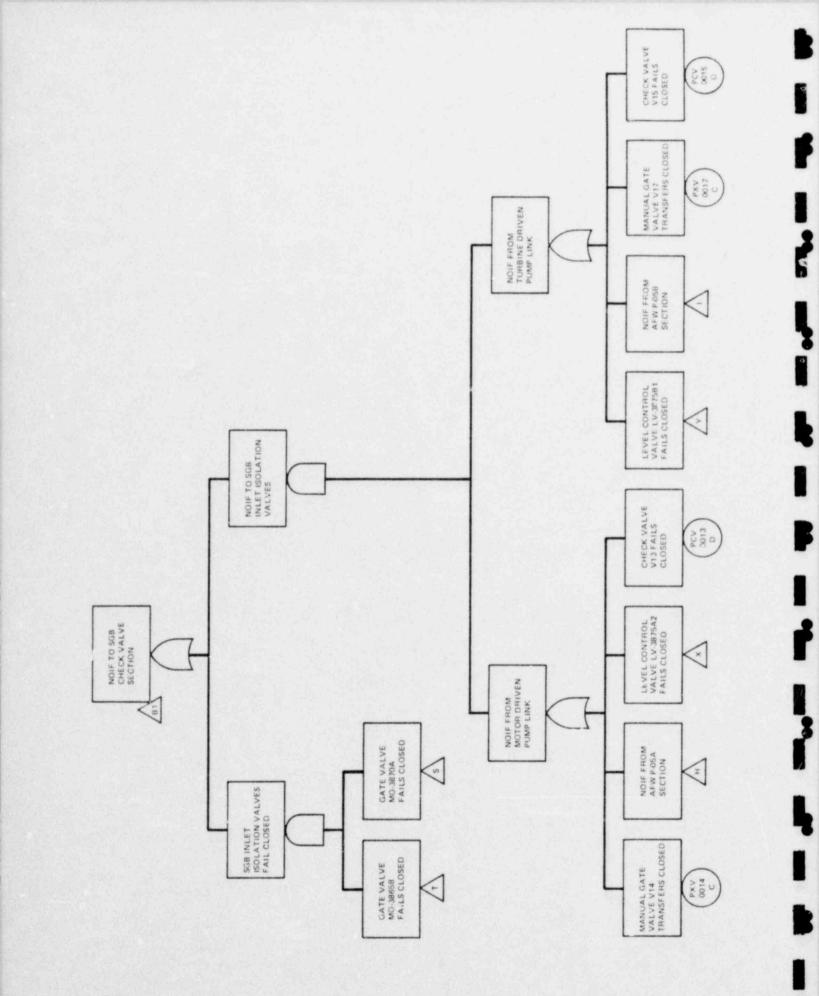


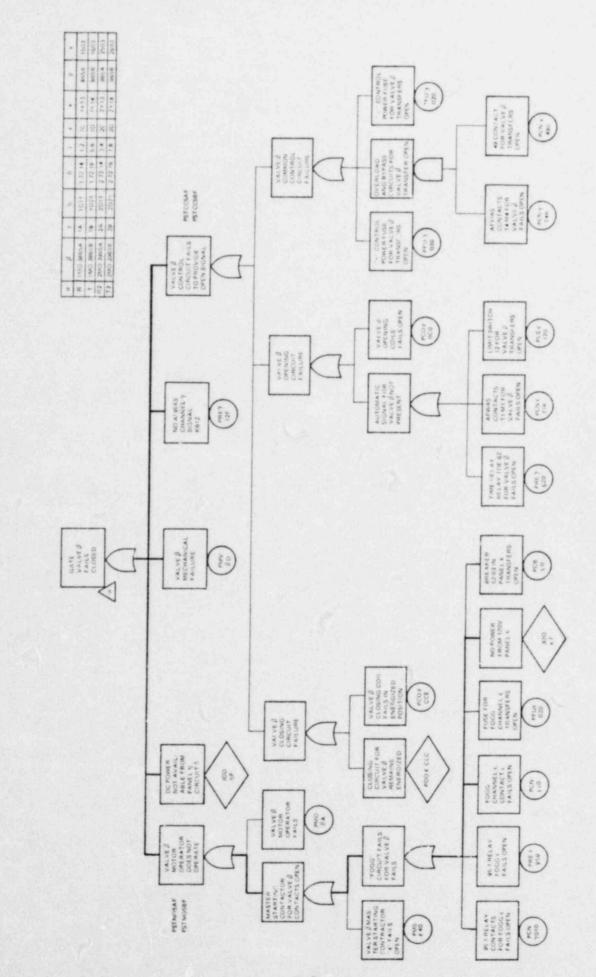
N T30



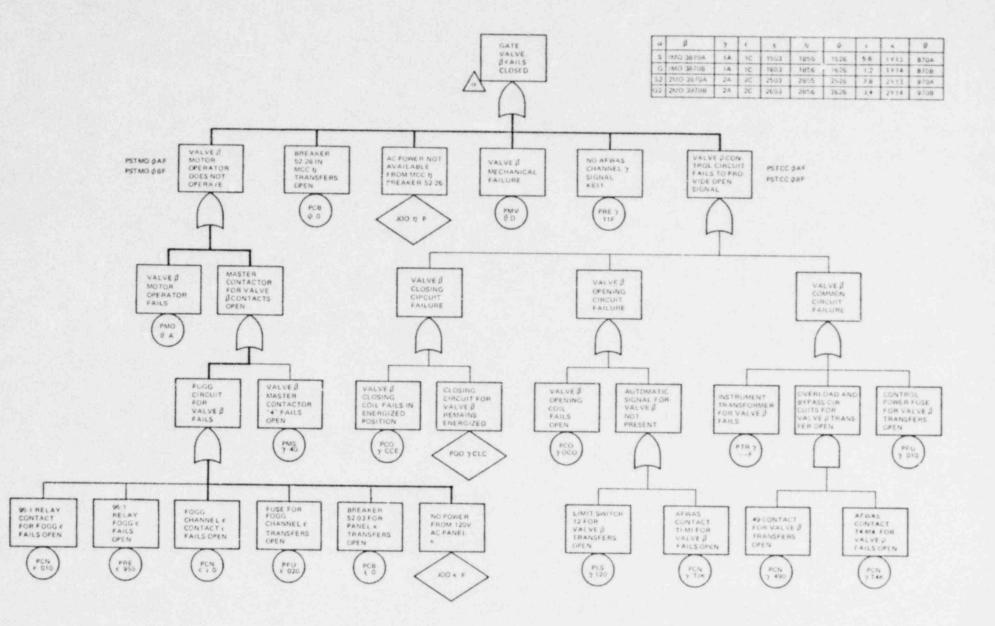

APPENDIX B

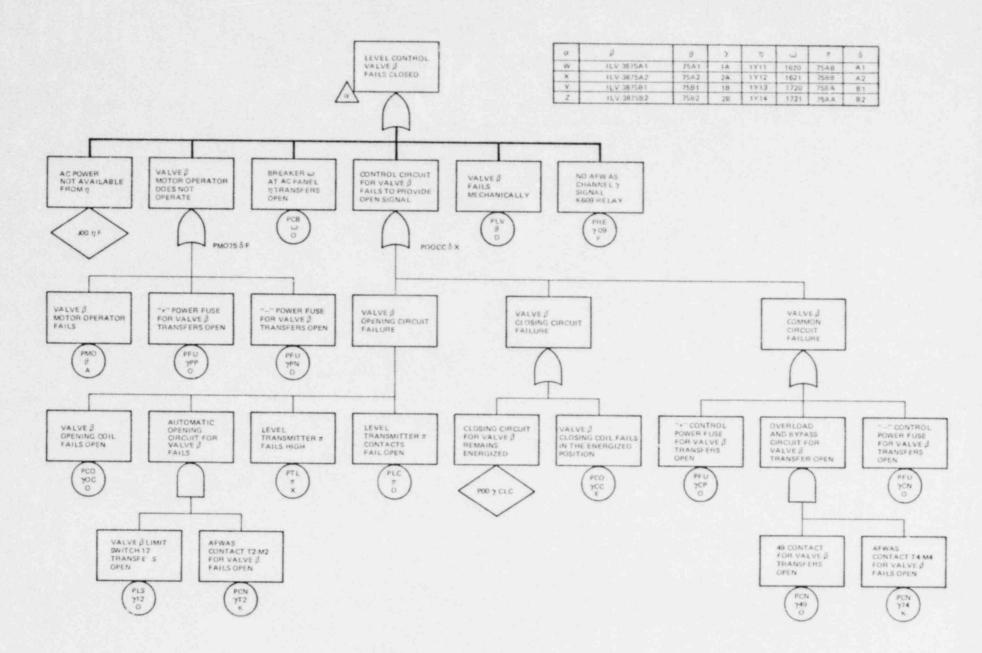
MIDLAND AUXILIARY FEEDWATER SYSTEM FAULT TREE

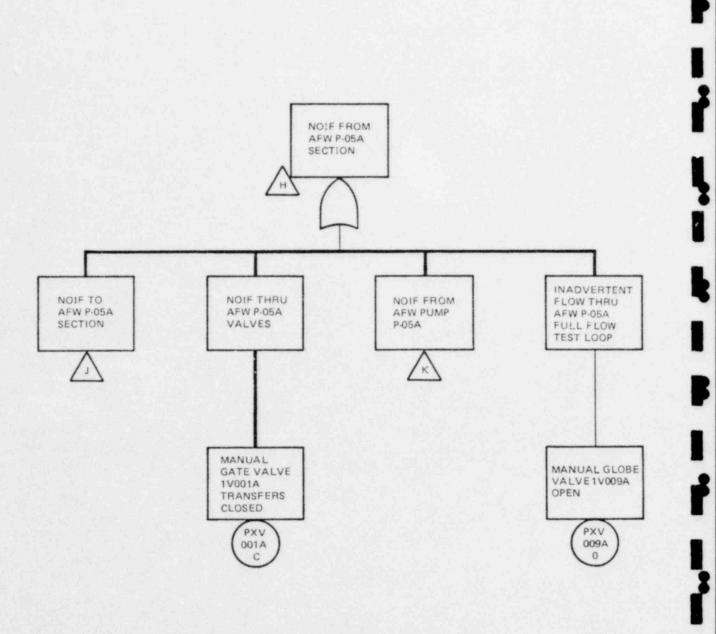

DOUBLE CROSSOVER DESIGN

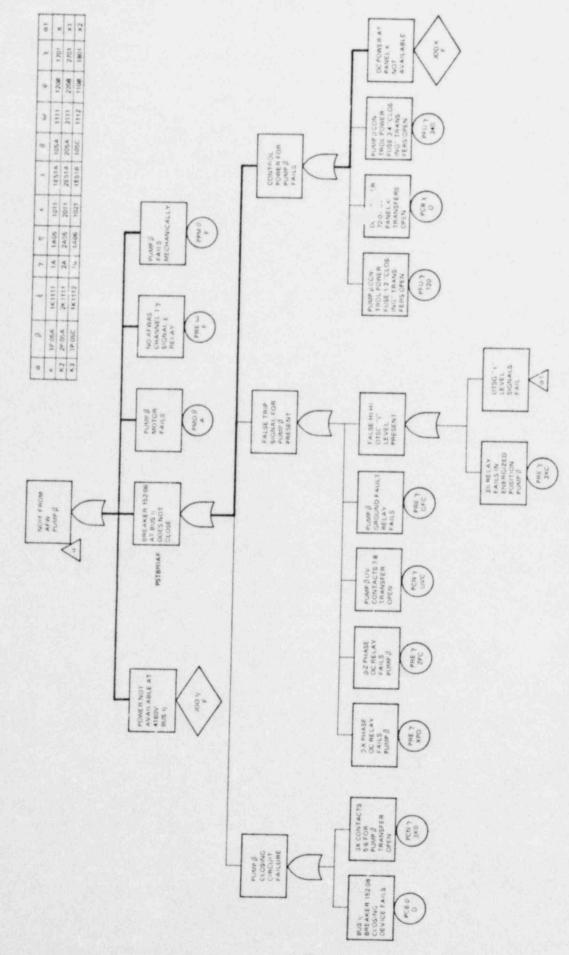

This appendix presents the fault tree model constructed to represent the AFWS as it is presently designed at Midland. The tree logic defines the component failure modes necessary to fail the system. The fault trees have been heavy lined to show the level to which the quantification was performed. Quantification was performed to the level at which the most applicable data was available. The detailed fault trees were constructed to ensure that all components which could possibly affect the system performance were included in our analysis.

-



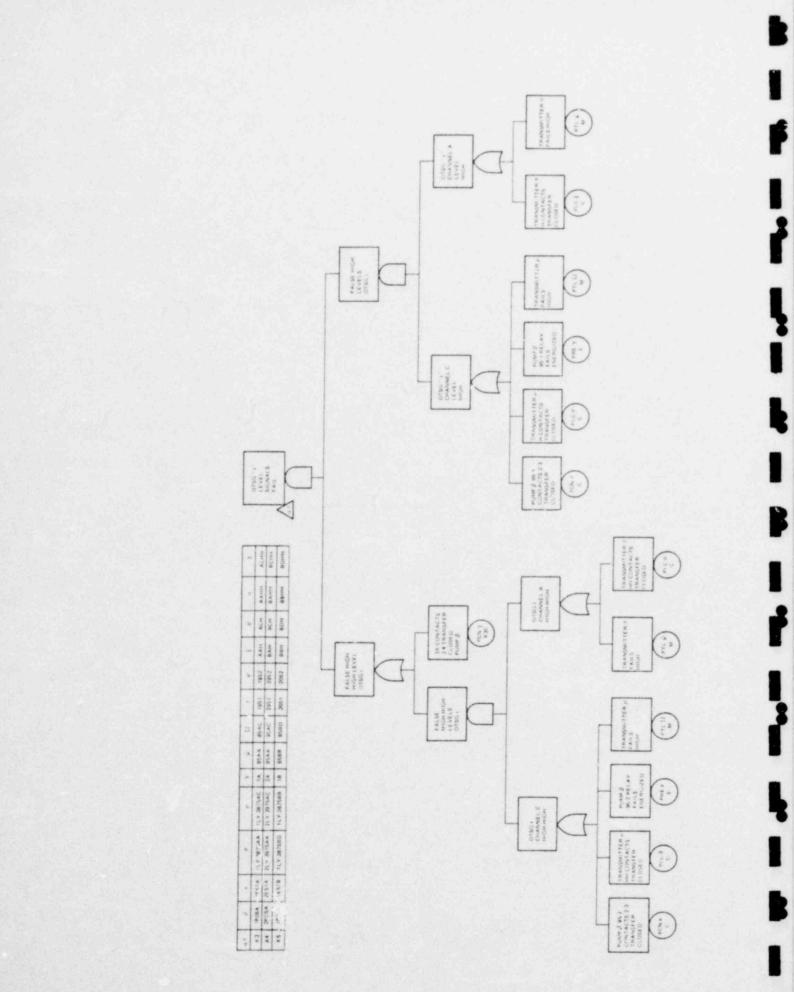


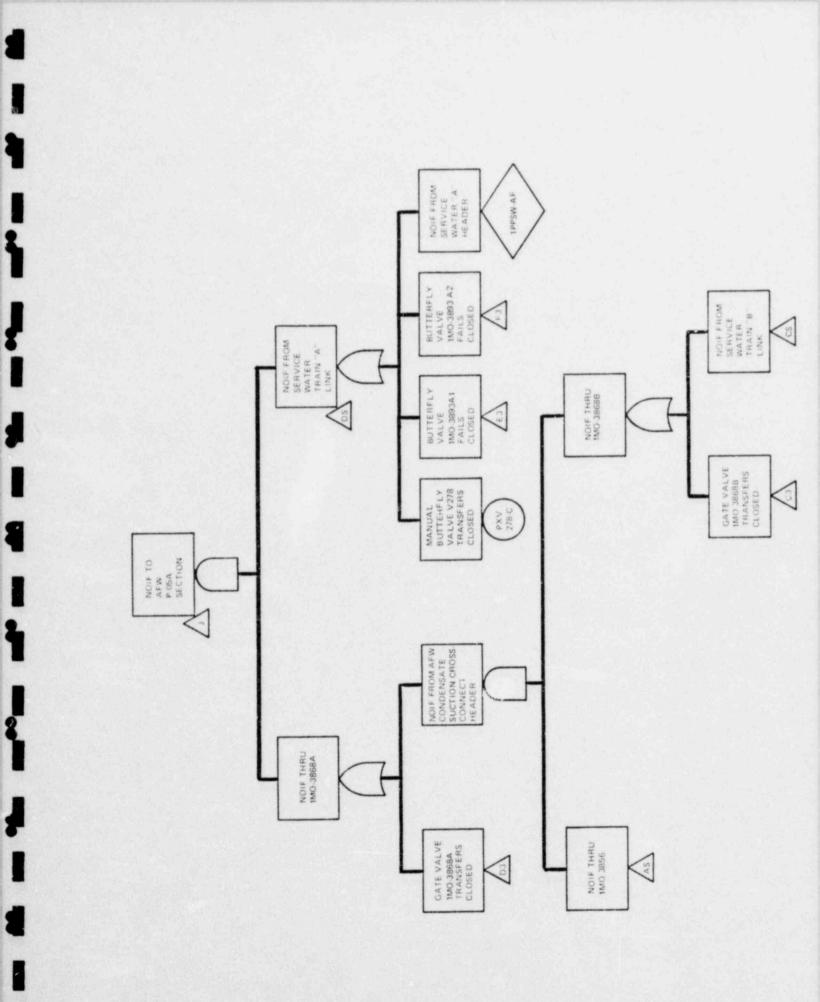

ł

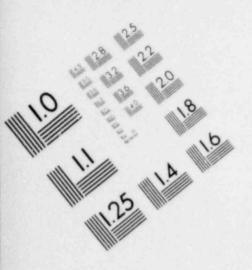

1

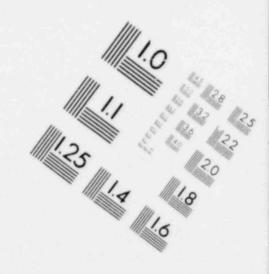
ł

•

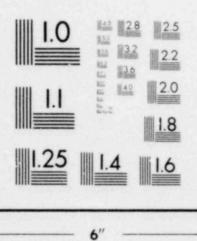

i

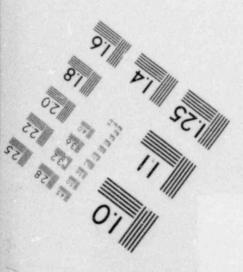

4

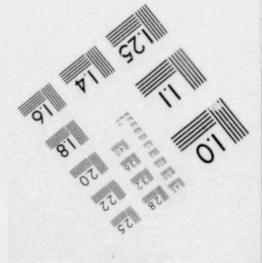

2

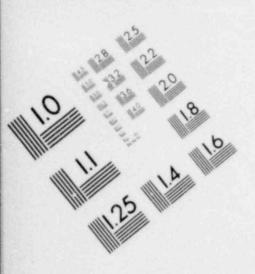

Ī

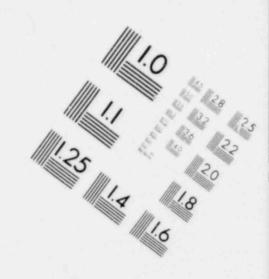
g

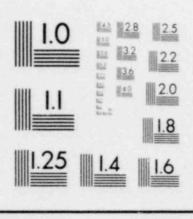


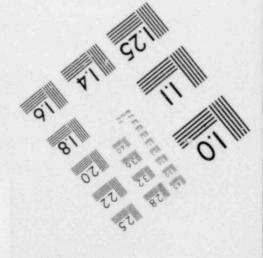


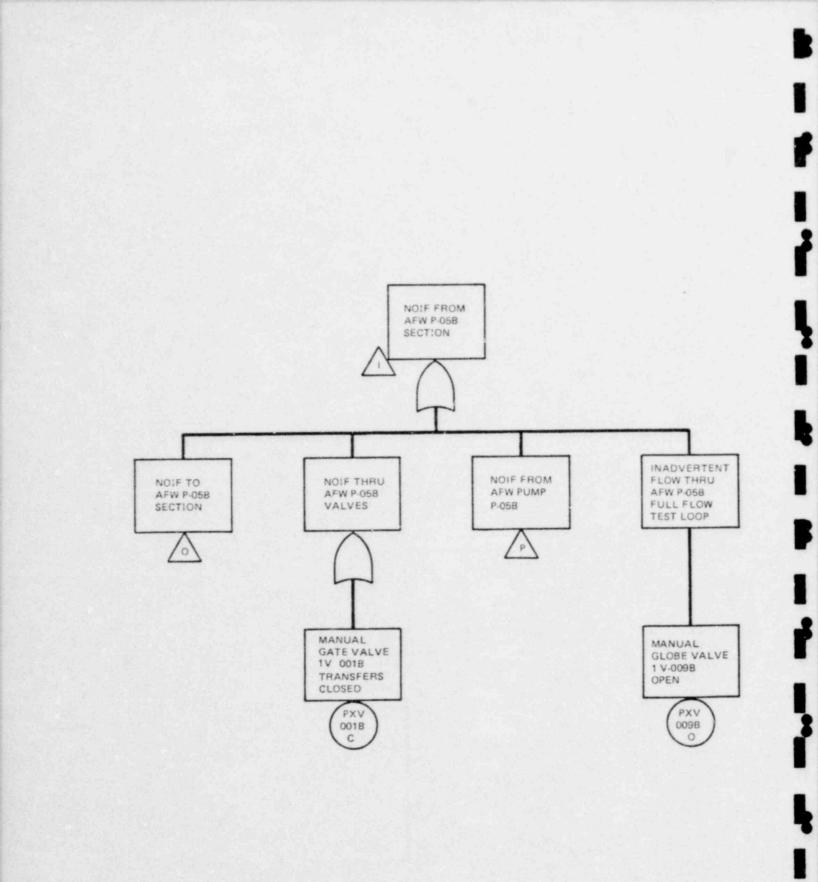


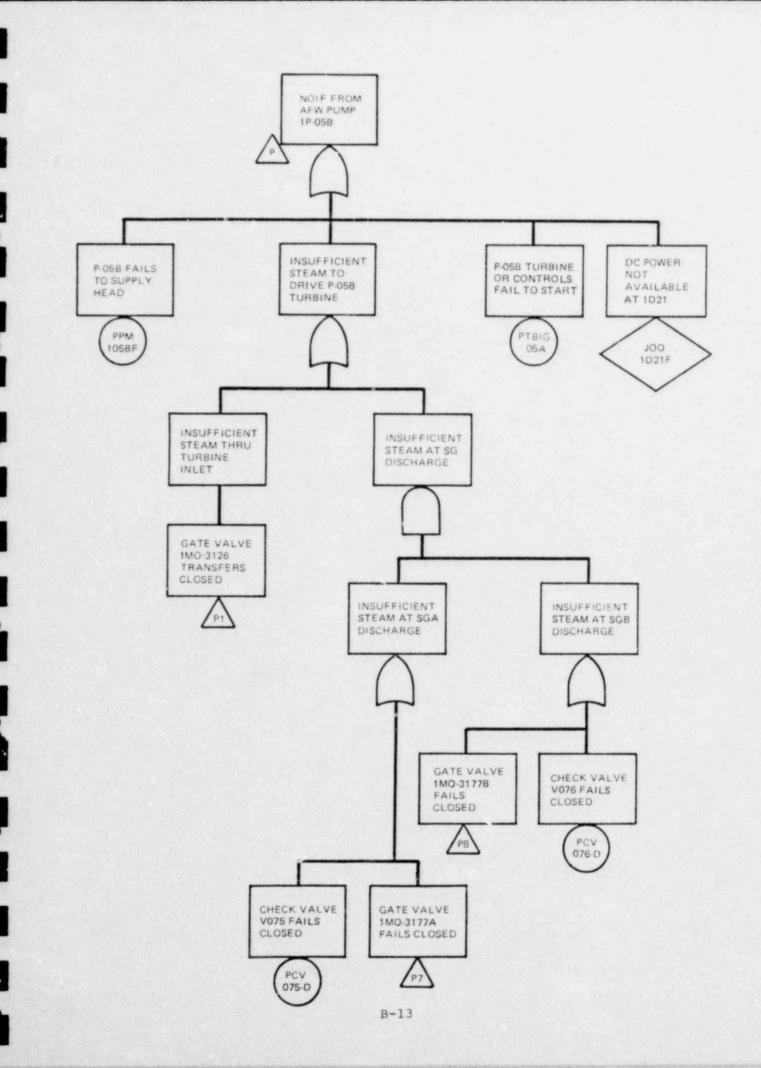


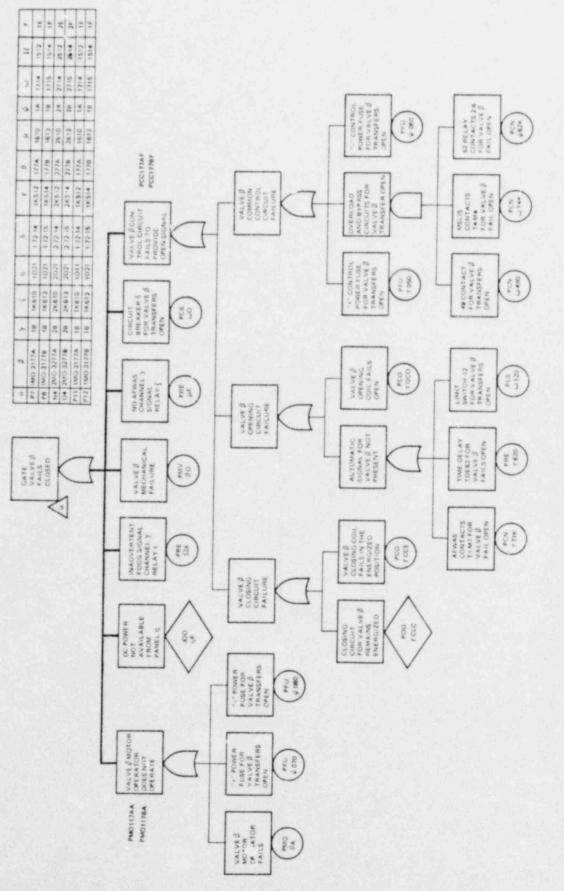

MAGE EVALUATION TEST TARGET (MT-3)

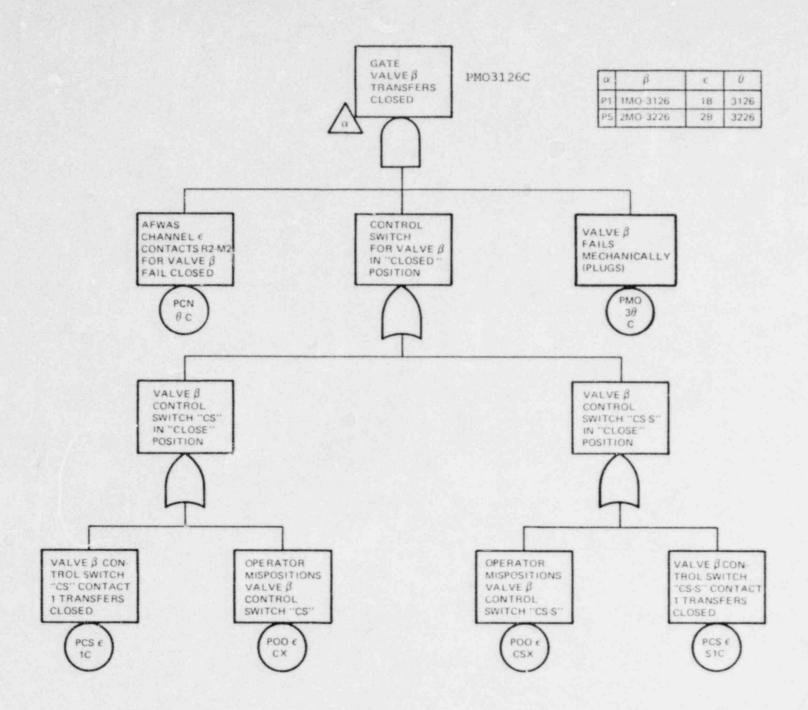


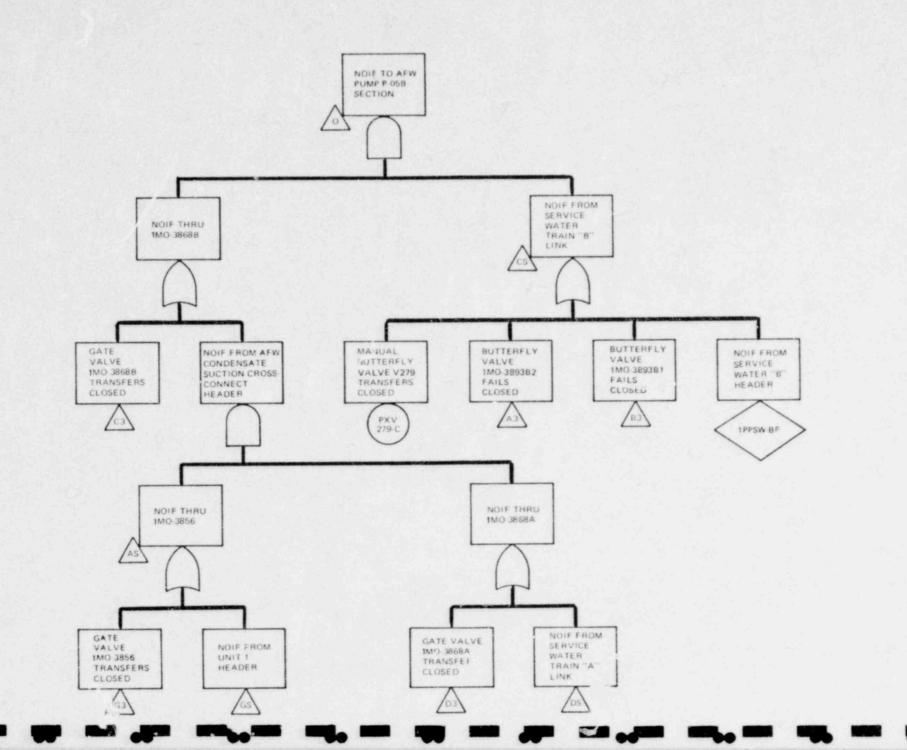



IMAGE EVALUATION TEST TARGET (MT-3)

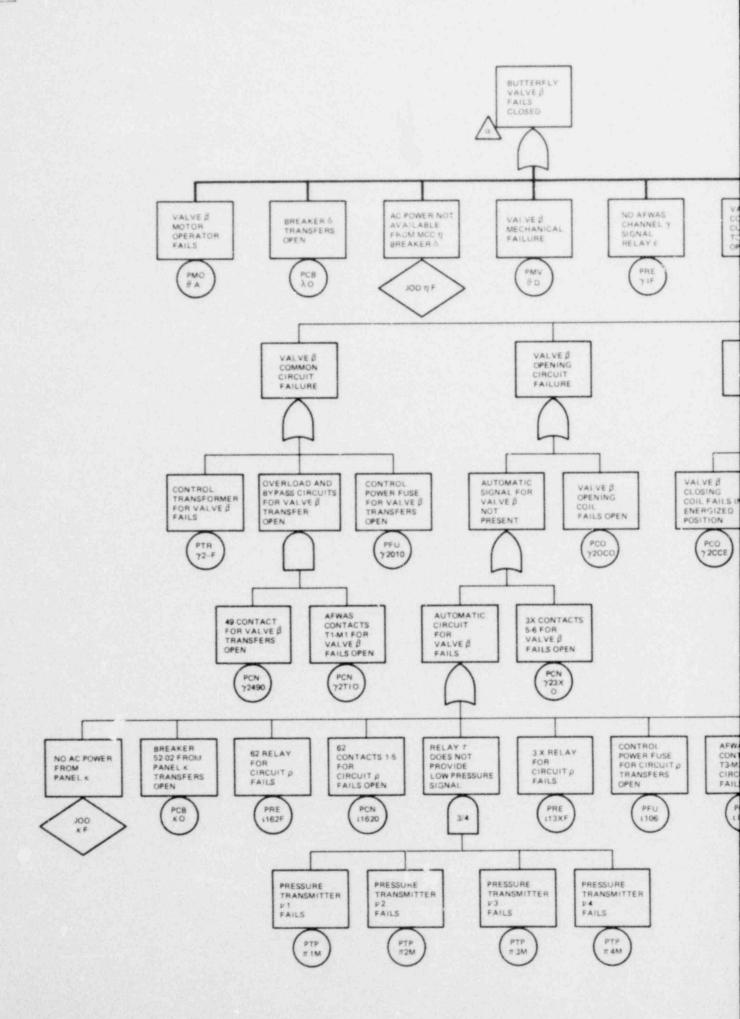



6"





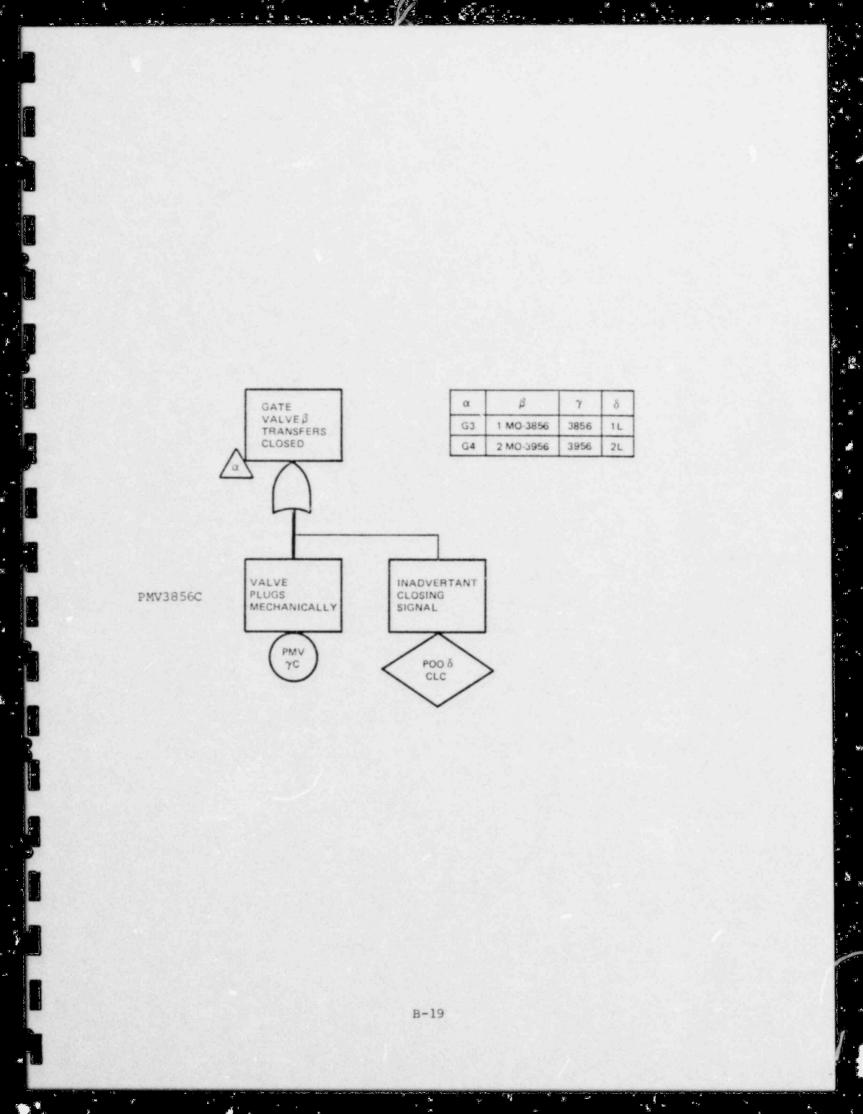


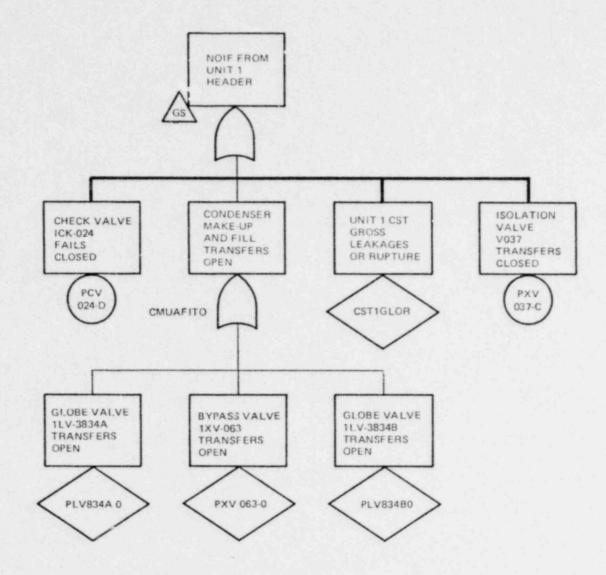


f

a	ß	7	. e .	- Q	6	U.	¥3.	v 2	F.3.	V.4	ρ	8	7
63	1MO-3893A1	I.A.	18 K 608	1893	11-1-52-02	8931	1PT-38000A1	1PT-38000A2	1PT 38000A3	1PT 38000A4	141055	1831	TKY 38000A
F3	1MO-3893A2	1.4	18 K 603	1823	11.1.52.03	8932	1PT 38000A1	1PT 38000A2	1PT 38000A3	1FT 38000A4	1A1055	1931	1K.Y.38000A
83	1MO 389381	TR	1A-K-608	1884	1.1.52.03	8933	1PT 3800081	1PT-3800082	1PT 3800083	1PT 3800084	18:055	19.32	TKY380008
A3	1MO-389382	18	1A-K603	18P4	1.1.52.03	Rg04	1PT 38000B1	1PT 3800082	1PT 38000B3	1PT 3800084	181055	14.32	1 K Y 380008
82	2MO-3993A1	24	28-8-608	28P3	11-2-52 32	9931	2PT 39000A1	2PT 39000A2	2PT 39000A3	2PT 39000A4	2A1055	24.31	2K Y 39000A
F2	2MO-3993A.2	2A	28-K603	28PD	11 2-52-03	9932	29 T-39000A 1	2PT-39000A2	2P1-39000A3	2PT 39000A4	2A1055	24.33	2K Y 39000A
82	2MO-399361	28	2A-K 608	28P4	12.52.02	9933	221-39000B1	2PT 3900082	2P1 3900083	2PT 3900084	281055	2 Y 32	2K.Y.39000 B
A.7	2MO 399382	28	2A-K 603	2894	1.2.52.03	9934	291 3900081	2PT-3300082	291 3900083	2PT 3900084	281055	27.32	2KY390006

VE B	PSTICC AF	71	72	1	À	13.	π.1	π.2·	11 2	77.4	Δ
TROI. CIR-		1808	16	1903	2102	11	38A1	38A2	38A3	38A4	A1
T FAILS PROVIDE IN SIGNAL		1803	TH	1903	2103	11	38A1	38A2	38A3	38A4	A2
		1A.08	11	1P04	1102	1.54	3881	3882	3883	3884	81
~		1.A03	3.K	1P04	1103	1.7.4	3881	3882	3883	3884	82
1		2808	26	2P03	2202	21	39A1	39A2	39A3	39A4	A3
		2803	214	2P03	2203	21	39A1	39A2	39A3	39A4	A4
-		2A08	21	2P04	1202	2M	3961	3982	3983	3984	83
100		2A03	2K	2904	1203	2M	3981	3982	3983	3984	84

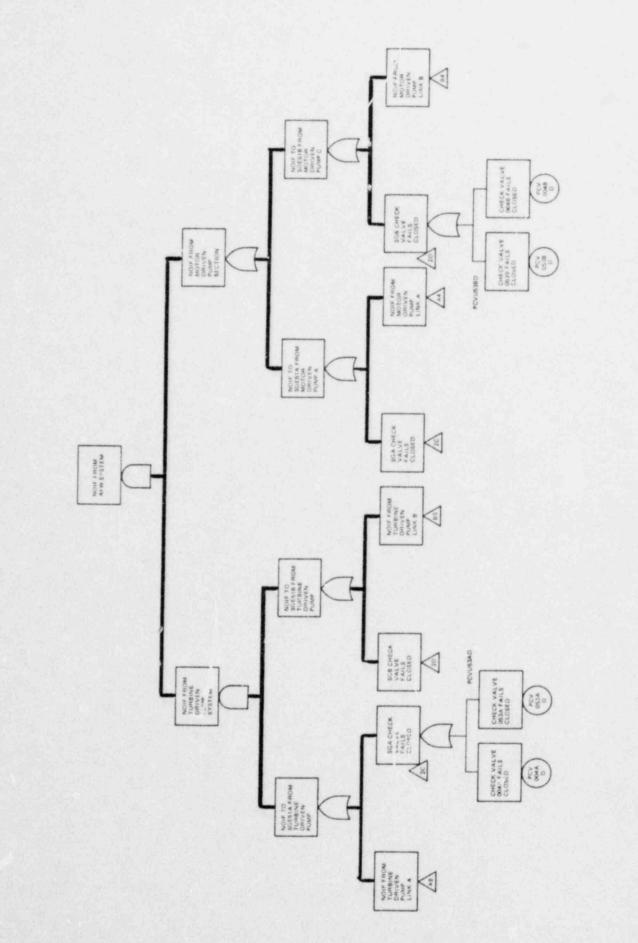

ALVE Å LOSING IRCUIT AILURE


S ACT FOR IT p OPEN

CLOSING CIRCUIT FOR VALVE β REMAINS ENERGIZED POOY2CLC

B-18

K.J. 1



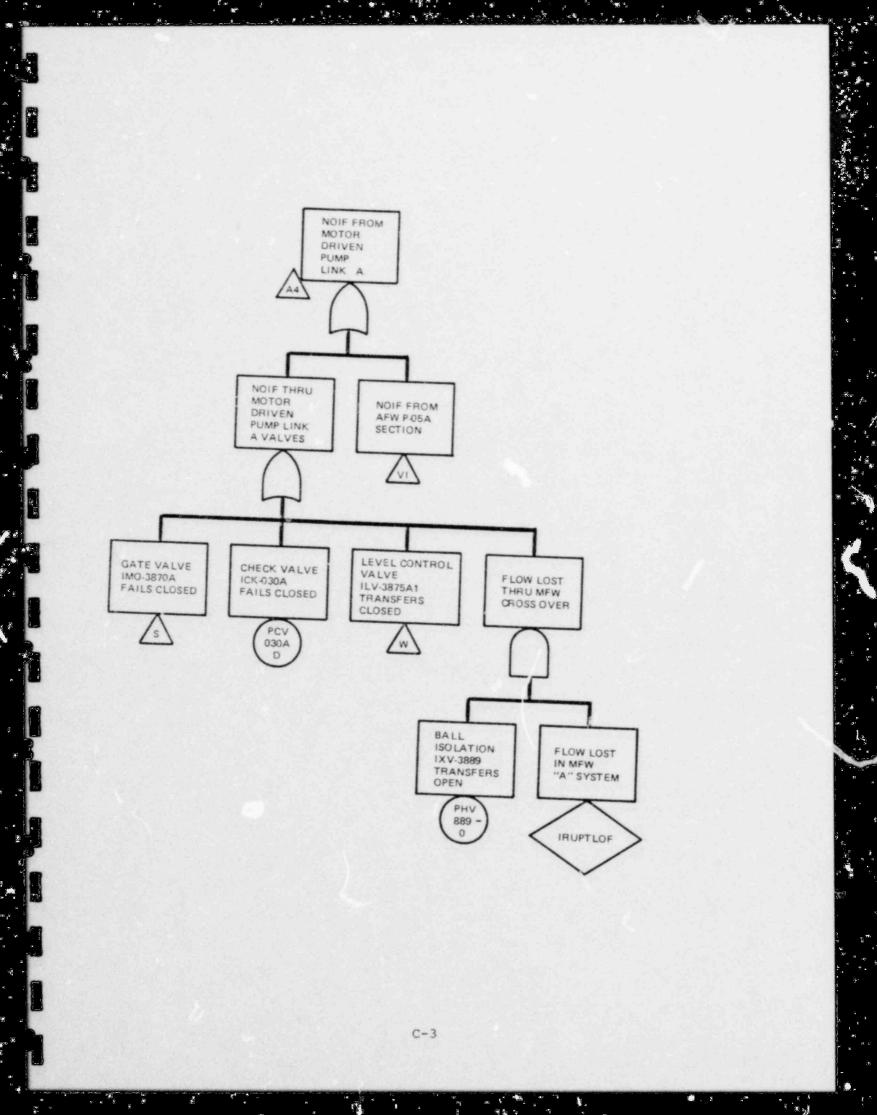
APPENDIX C

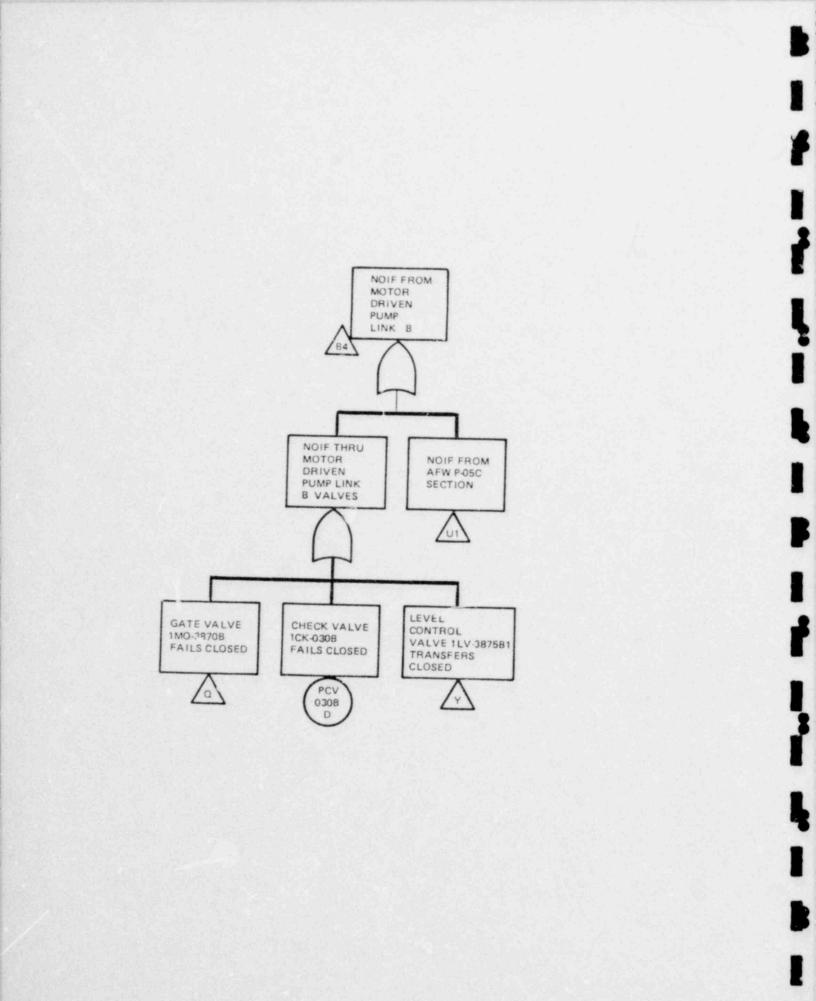
MIDLAND AUXILIARY FEEDWATER SYSTEM FAULT TREE

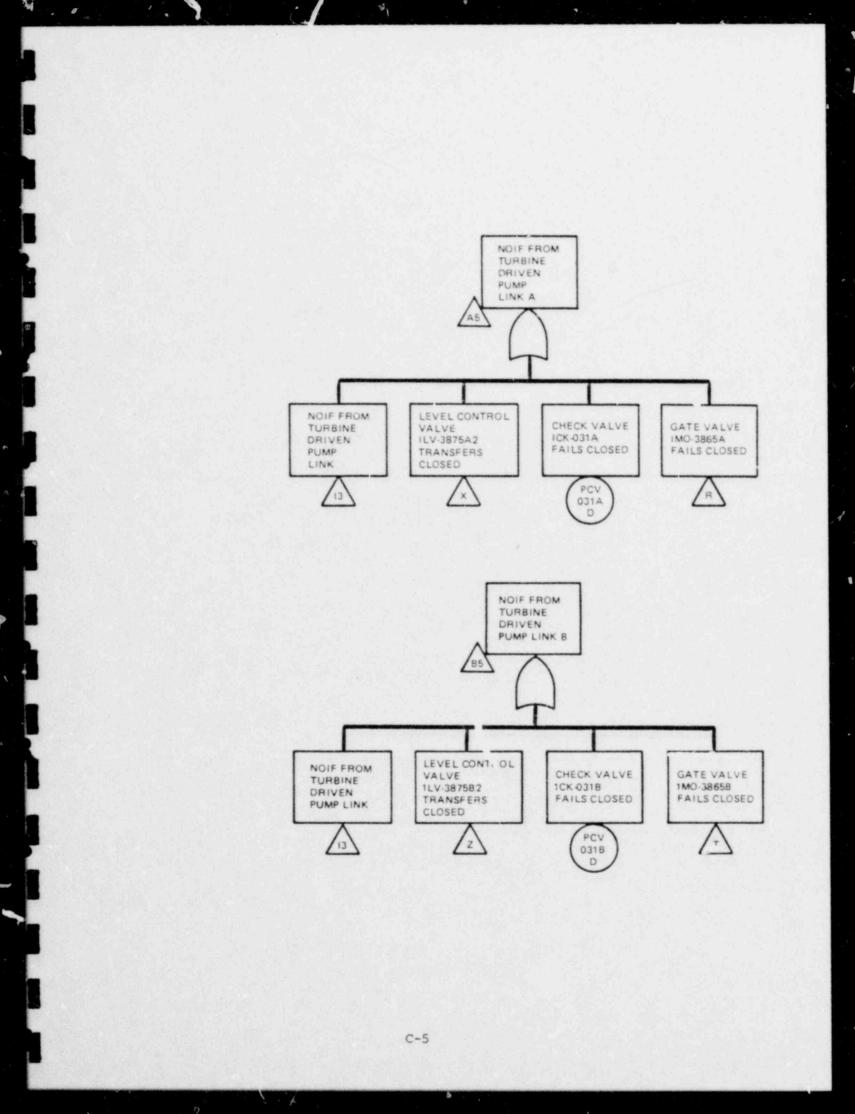
THREE PUMP DESIGN

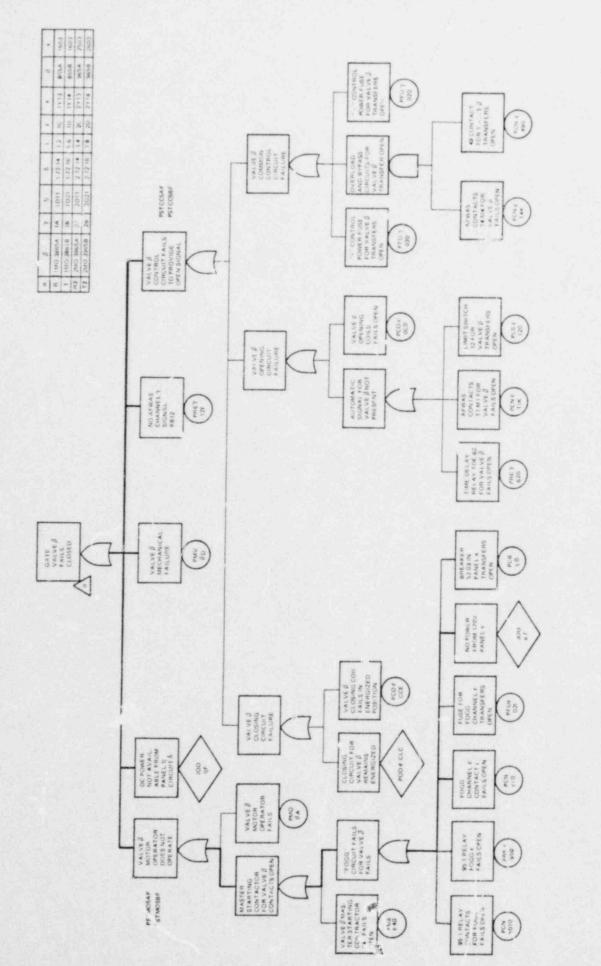
This appendix presents the fault tree model constructed to represent an alternate design of the AFWS. The basic system modeled was similar to the AFWS installed at some other B&W nuclear plants. The tree logic defines the component failure modes necessary to fail the system. The fault trees have been heavy li.ed to show the level to which the quantification was performed. Quantification was performed to the level at which the most applicable data was available. The detailed fault trees were constructed to ensure that all components which could possibly affect the system performance were included in our analysis.

1

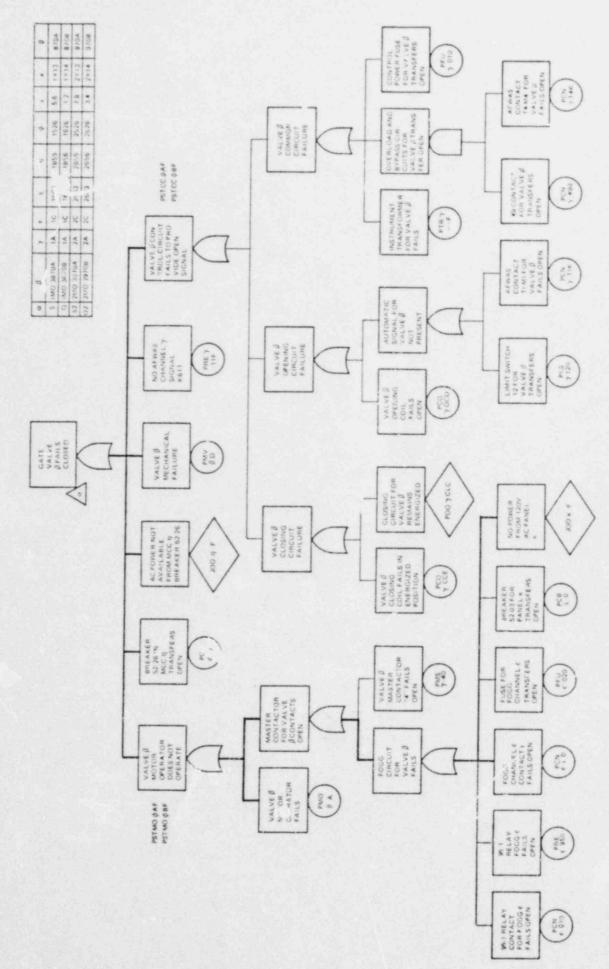

F


I


I

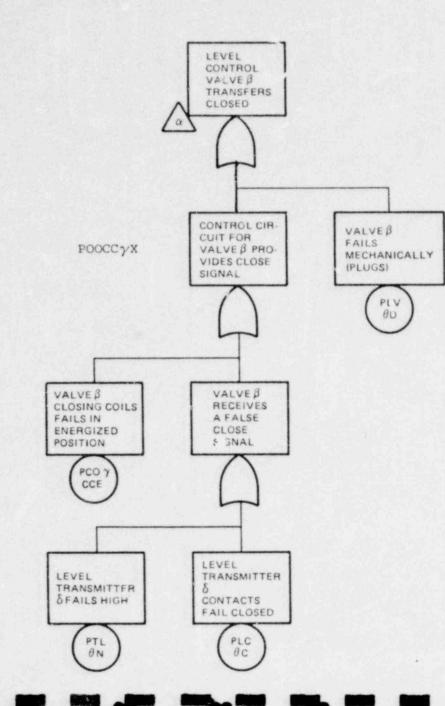

5

C-2

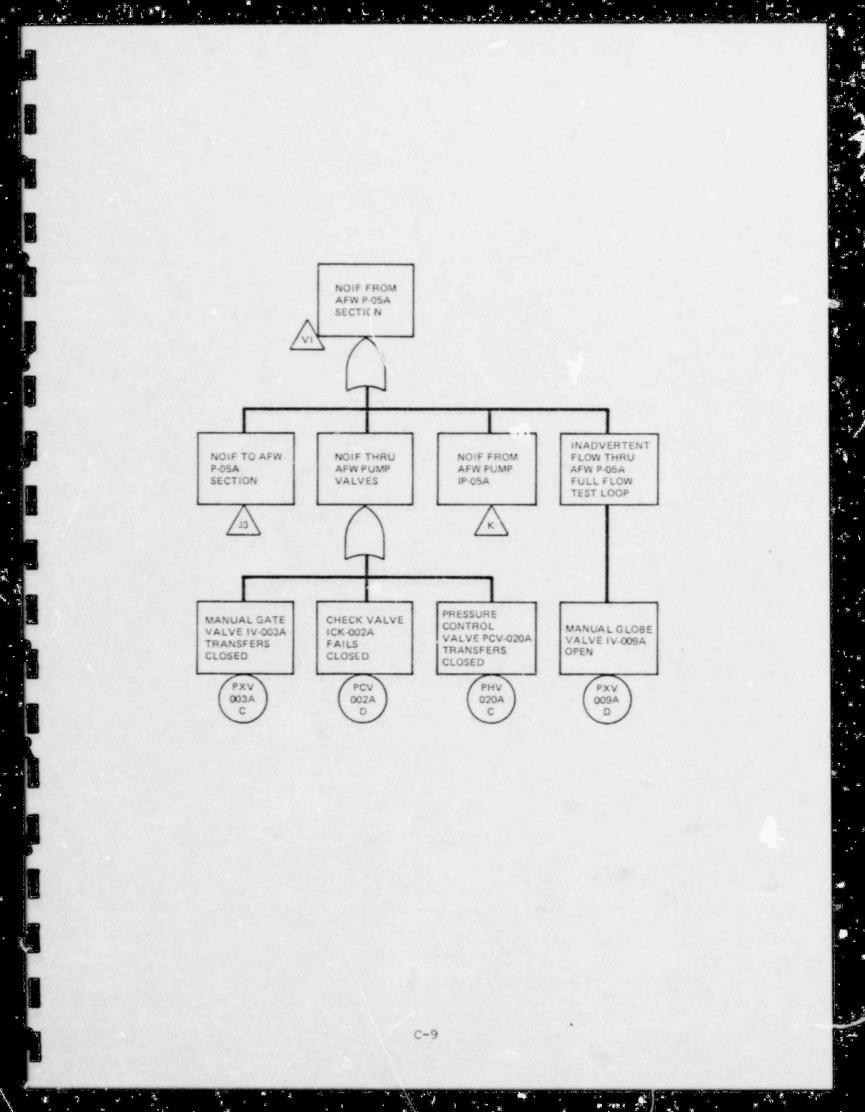

•

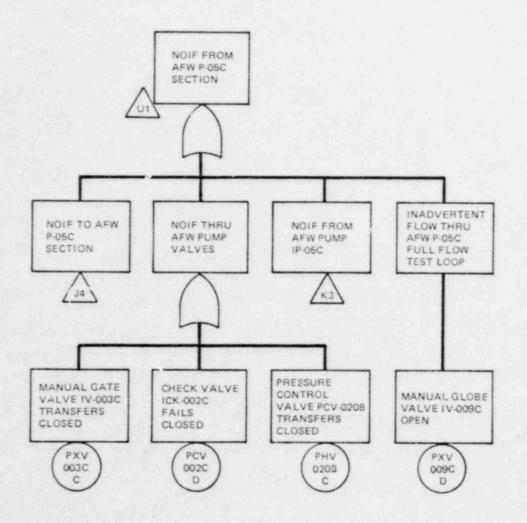
f

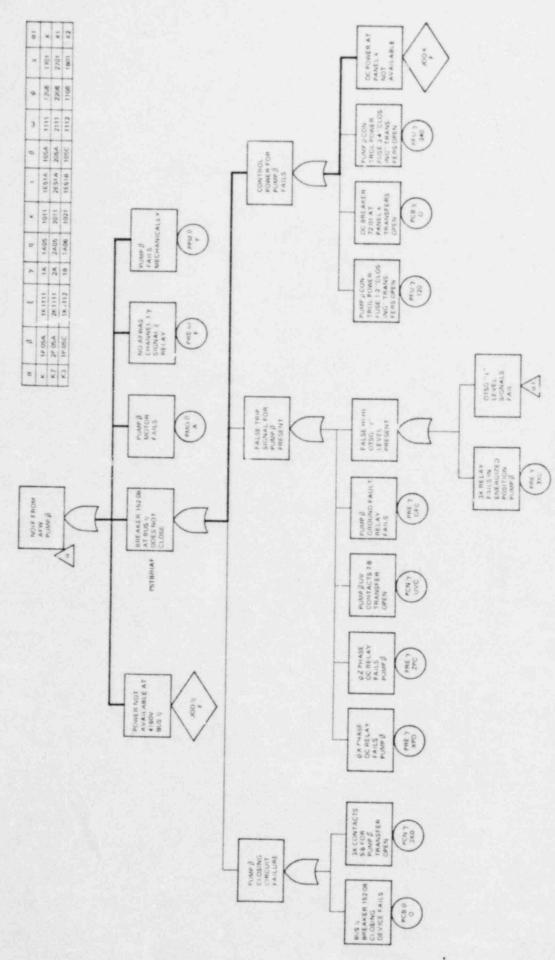
L


Ļ

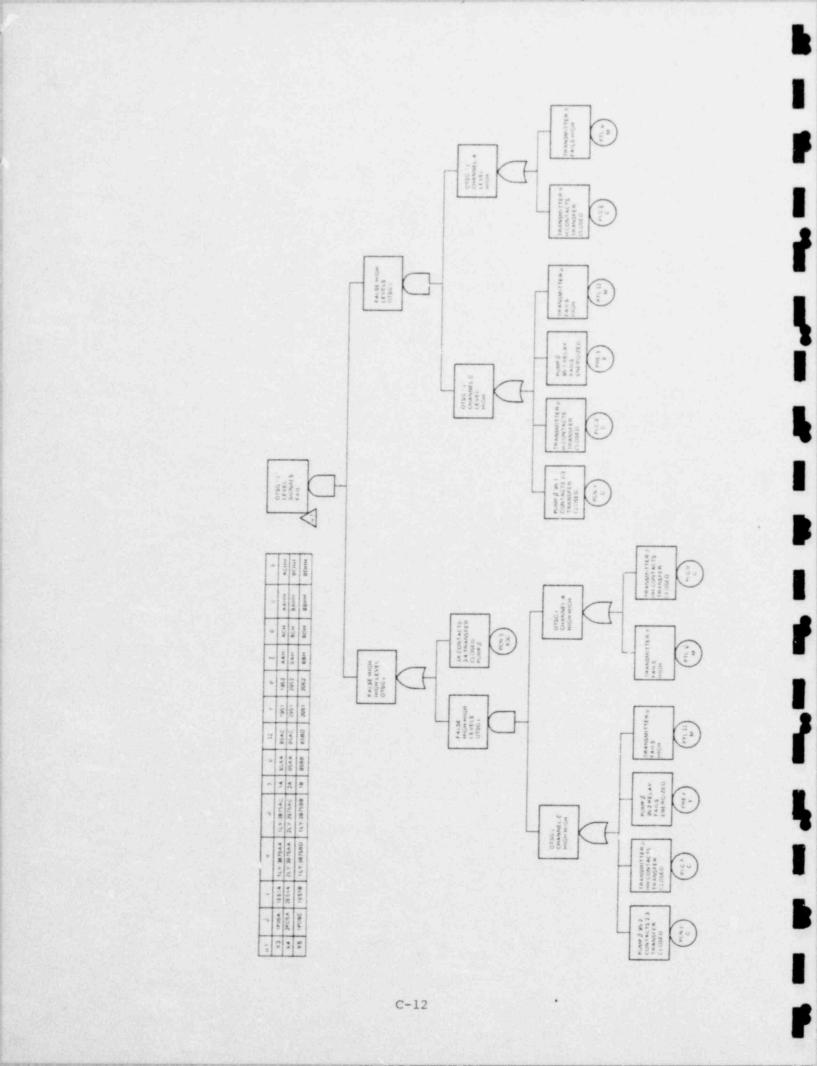
C-6

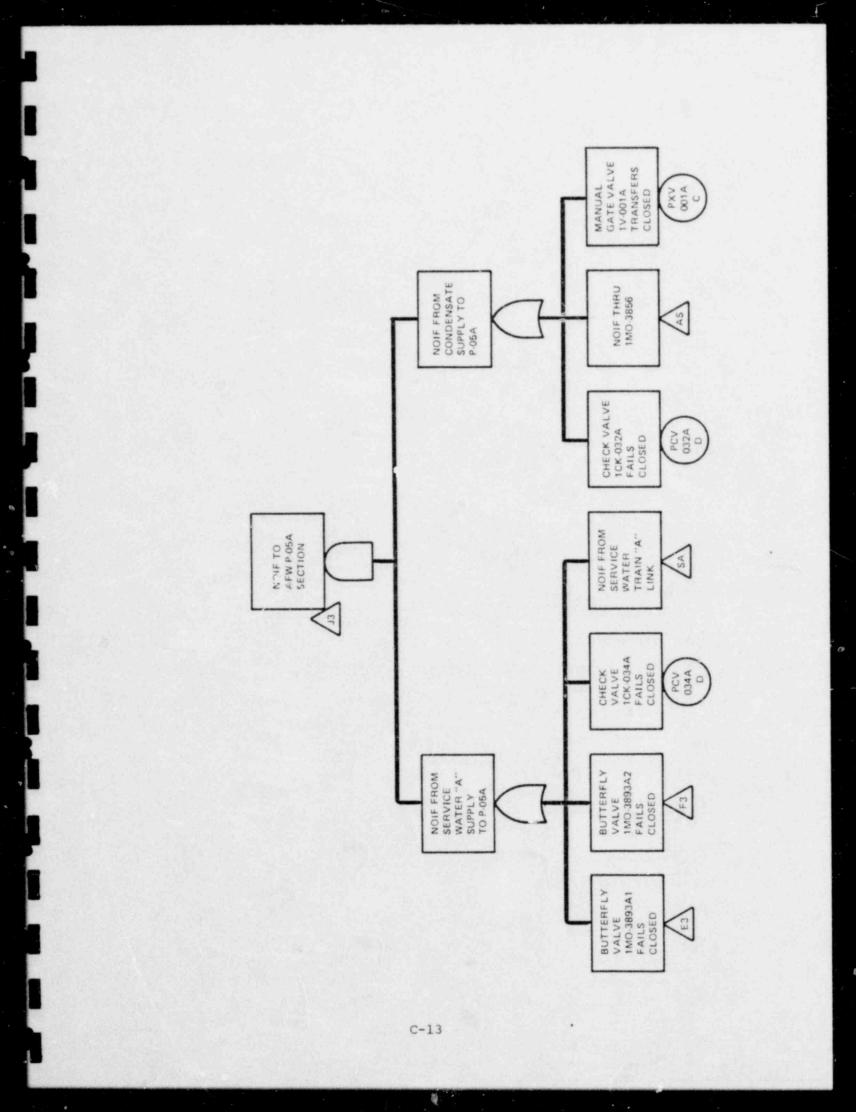


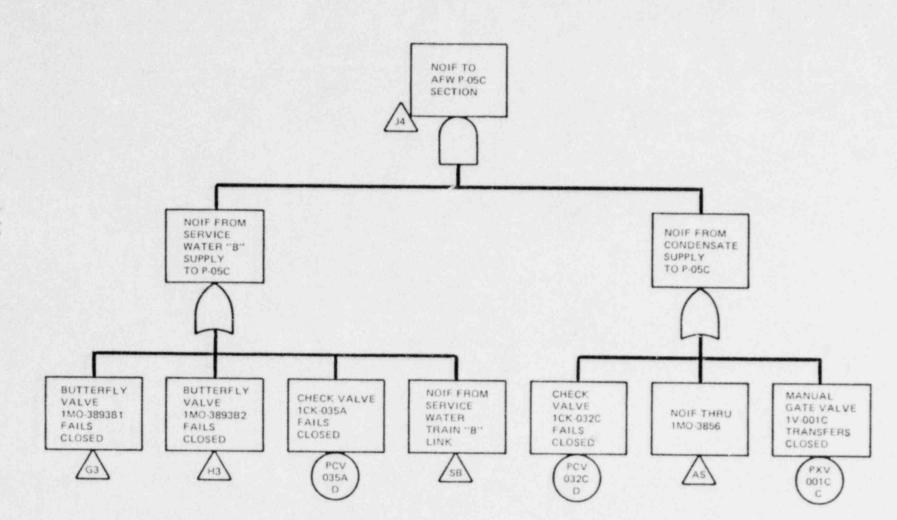

1

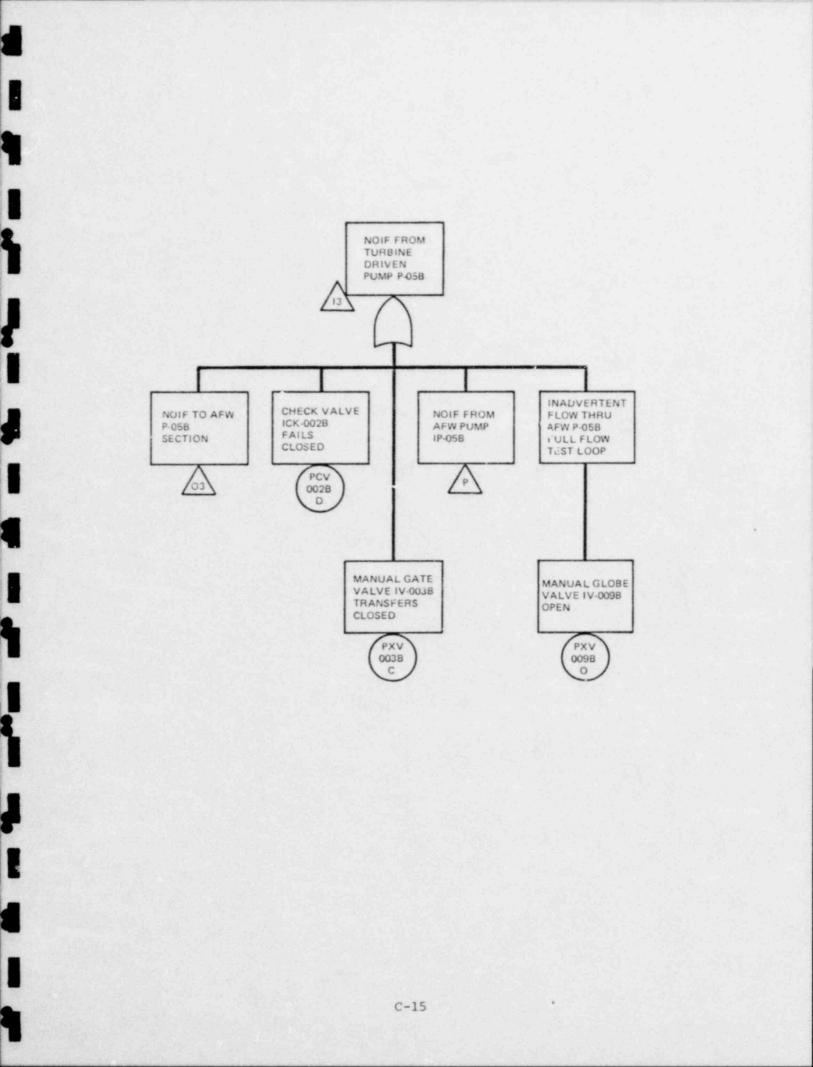

C-7

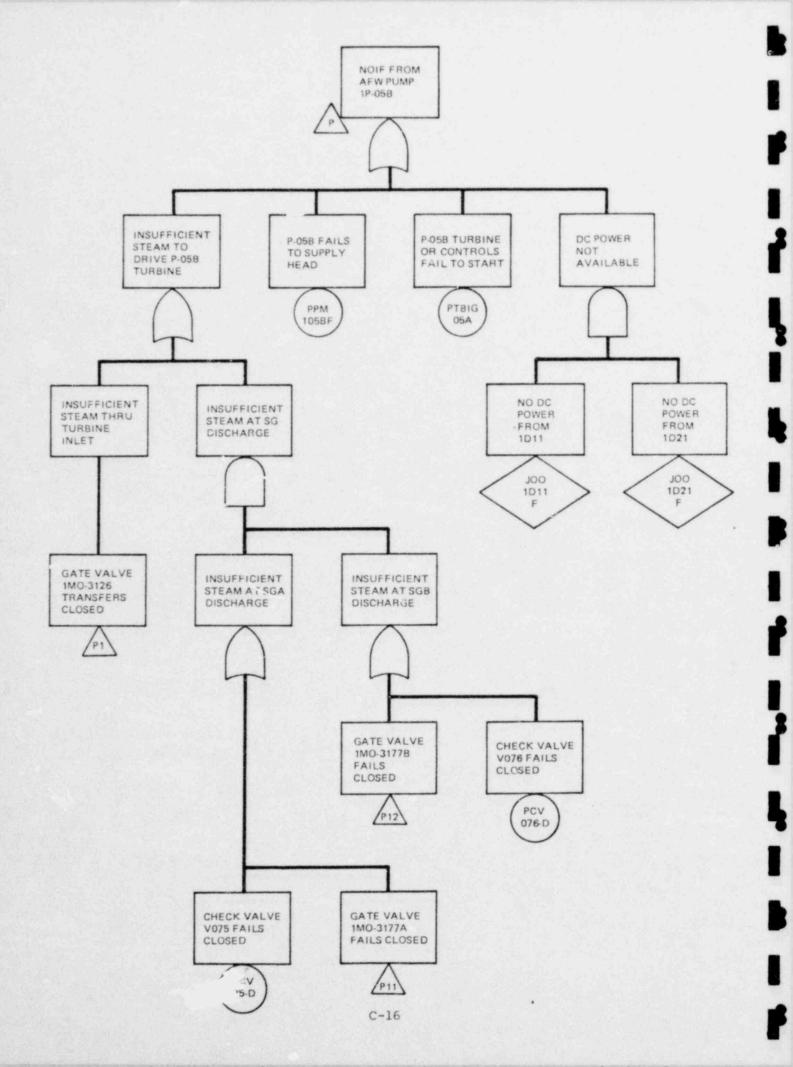
α	β	θ	Y	δ
W2	2LV-3975A1	75A1	A1	LYS-38758A
¥2	2LV-3975A2	75A2	A2	LYS 075AB
×2	2LV-3975B1	7581	81	LYS-38758C
Z2	2LV-397582	7582	82	LYS-3875-AD
W	1LV-3875A1	75A1	A1	LYS-3875AA
×	1LV-3875A2	75A2	A2	LYS-3875AB
Y	1LV-387581	7581	B1	LYS-38758A
Z	1LV-387582	7582	82	LYS-3875BB
-	And the second se		Anti-	A second s

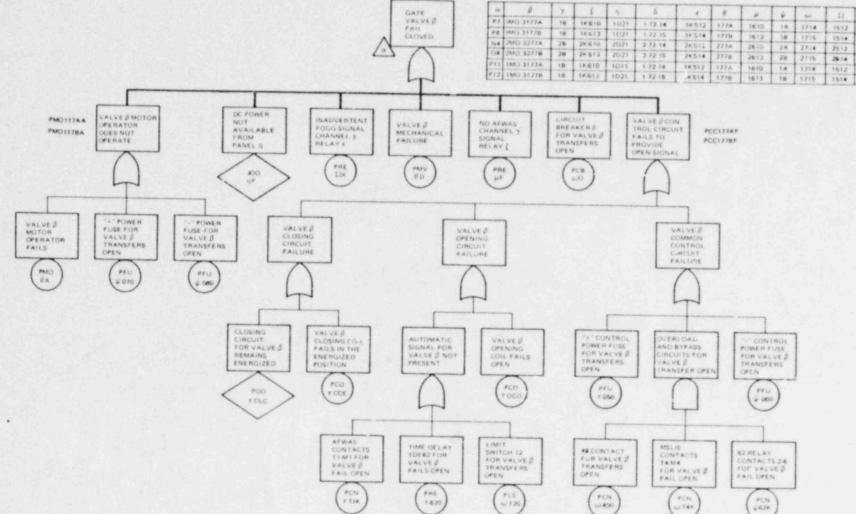




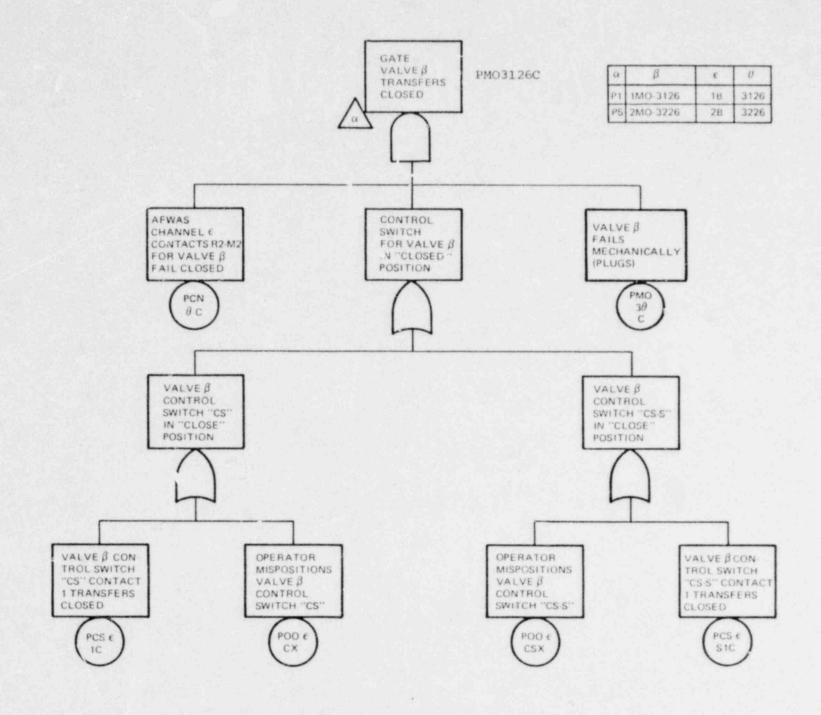

C-11

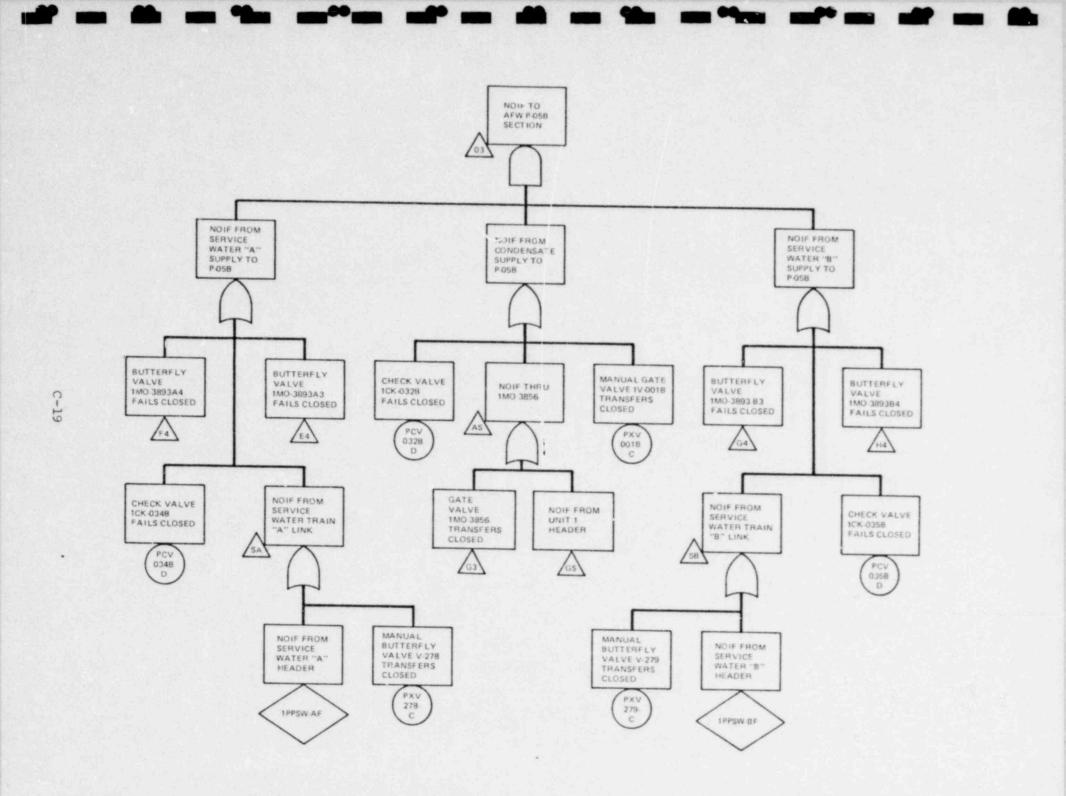

.

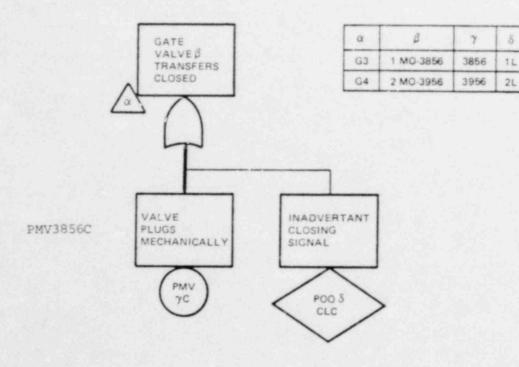

2.



. 9


16

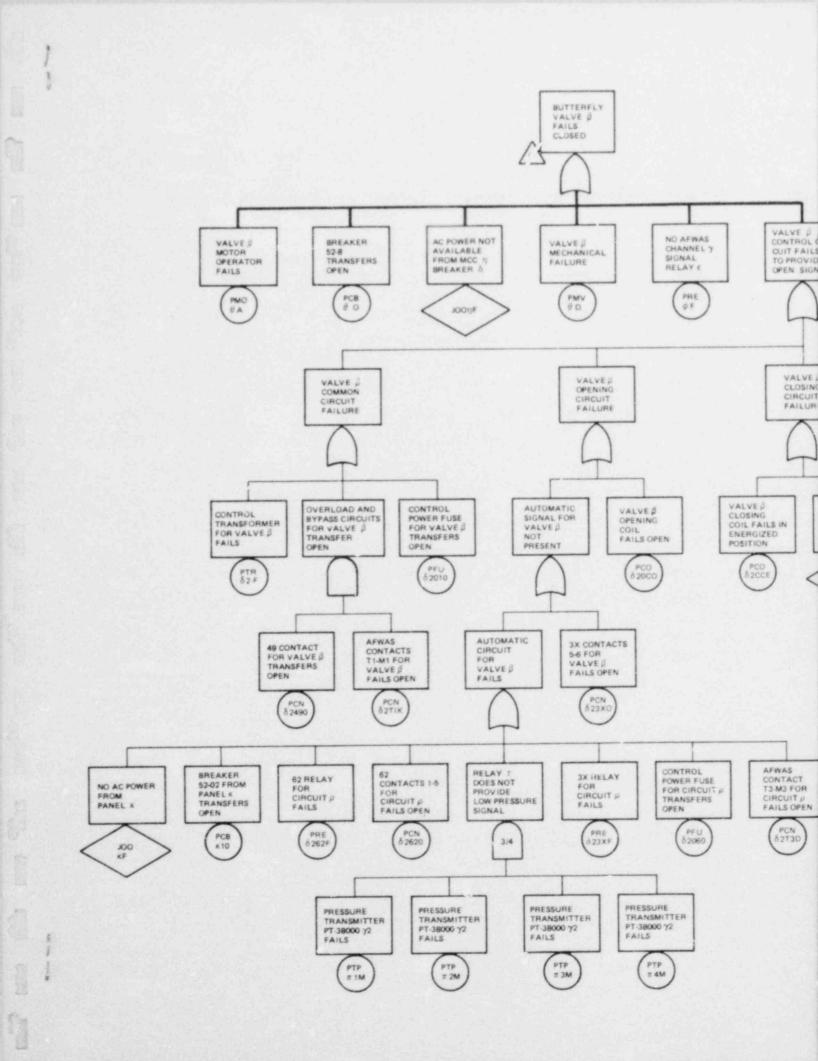

28


25

1.8

3.0

ł

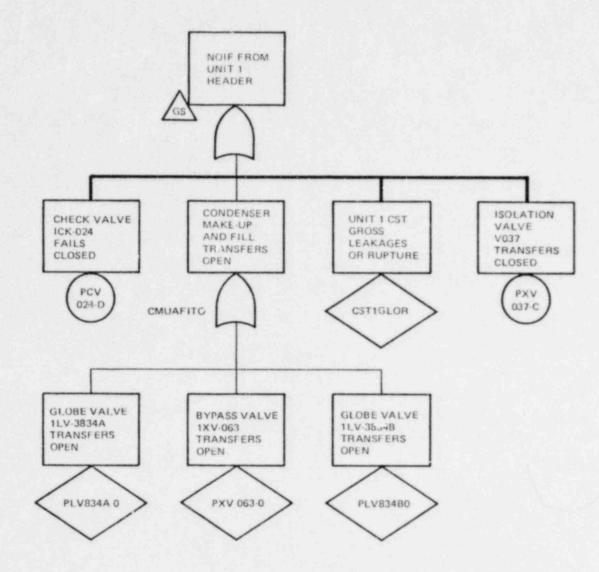

i

P

2

L

3



α	β	7	ŧ	8	η	8	4	82	ĸ	Þ	7	21.5	# 2	73	2.4	1.3
63	1MO-3893A1	1.A	1.A.K.608	93A1	BPOS	1.02	A801	AL.	11/21	1.A.1056	1KY38000A	38A1	38A2	18A3	38A4	A1
F3	1MO-3893A2	1.4	1A-K603	93A2	BP03	1.03	A301	A.5/	1731	1A1055	1K Y 38000A	1881	38A2	38A3	38A4	A2
E4	1MO-3893A3	1.4	1A-K608	93A3	8P03	1-04	A802	A.N	1731	1A1055	3 K Y 38000C	38C1	3802	38C2	38C4	A.3.
Fill	1MO-3893A4	1A	1A-K603	9344	8903	1-05	A302	AP	1.1.21	1.A1055	1K Y 38000C	38C1	38C2	38C3	3804	A4
63	1MO-389381	18	18-K608	9381	8.204	2.02	8801	BL	1432	181055	1K.Y380008	3881	3882	3883	3884	81
H3	1MO-389382	18	18-K.603	938.2	BP04	2.03	8301	BM	1832	181055	1K Y 380008	3881	3882	1861	3884	8.2
34	1440-389383	18	18-K-608	9363	8 PO4	2.04	8802	8%	1732	181055	1KY380000	380.1	3802	3800	3804	83
114	1560-389384	18	18-K.603	9384	8.P04	2.05	8302	BP	1732	181055	1K Y 38000D	10801	3802	3803	380.4	84

PSTCC AF

CLOSING CIRCUIT FOR VALVE & REMAINS ENERGIZED

P00820L0

APPENDIX D

MIDLAND AUXILIARY FEEDWATER SYSTEM

COMPONENT DATA SHEETS

The following sheets were used in developing the reliability characteristics (failure rate and time for restoration) for the components constituting the Midland AFWS. The methods for establishing repair time are as follows:

A. For components that are tested monthly

$$MTTR = \frac{720 \text{ hours}}{2} = 360 \text{ hours.}$$

B. For components that are tested quarterly

MTTR = $\frac{2,160 \text{ hours}}{2}$ = 1,080 hours.

C. For components that are tested when the AFW system is actuated we have 6 actuations per year (based on industry experience).

$$MTTR = \frac{8,760 \text{ hours}}{6 \text{ actuations x } 2} = 730 \text{ hours.}$$

D. For components in the motor-driven pump train up to the pump train discharge check valve, we have 6 actuations per year (Item C. above), one test per month (Item A above), and 10 plant startups or shutdowns per year.

 $MTTR = \frac{8,760 \text{ hours}}{(6+12+10)2} = 156 \text{ hours}.$

E. For components in the Condensate Storage Tank discharge up to MOV-3856, we have 2 tests per month (2 pumps tested once per month), 10 startups or shutdowns, and 6 actuations per year.

MTTR = $\frac{8,760 \text{ hours}}{(24+10+6)2}$ = 109.5 ≈ 110 hours.

F. For components in the turbine-driven pump trains, we have one test per month and 6 actuations per year.

$$MTTR = \frac{8,760 \text{ hours}}{(12+6)2} = 243 \text{ hours.}$$

G. For components in the motor-driven pump train from the pump discharge valve to the MFW cross-connect, we have 10 startups or shutdowns per year and 6 actuations per year.

MTTR =
$$\frac{8,760 \text{ hours}}{(10+6)2}$$
 = 273.75 hours ≈ 274 .

CHECKED	BDATE_6	Pickard, Lowe and Garrick, Inc CONSULTANTS - NUCLEAR POWER 17840 Skypark Boulevard Irvine, California 92714	C. JOB NO. 083 CPC SHEET 1 OF 24 BY Jul DATE 1/29
ITEM: Valve	, Check		
OVERALL FAILU	RE RATE: <u>1 x 10</u>	-4 (3) Fail/Demand	REPAIR TIME: Varies HF
Reference			
dataparticipation of the owner was been upon	pg. 364 27 1	Failures in 12.237 x 10^6 hour	$rs = 2.2 \times 10^{-6} F/hr$.
2. WASH-14	00 Fai Rev	l to open 1 x 10 ⁻⁴ /Demand Ra erse leak 1 x 10 ⁻⁷ /Hour	ange Factor (RF) = 3 RF = 3
B. MTTR fo	r one test p	sting - 360 hours er month and 6 actuations per 6 cycles for actuation and 10	r year - 243 hours 0 SU/SD - 110 hours
		SPECIFIC COMPONENTS	
1,	PCV0013D	Use Reference 2. Use Reference 2. Use Reference 2. Use Reference 2.	
2.	PCV024-D	Use Reference 2.	
3.	PCV075-D PCV076-D	Use Reference 2. Use Reference 2.	
4.	PCVU53AD PCVU53BD	Use 2 x Reference 2 (two va Use 2 x Reference 2 (two va	
5.	PCV002AD PCV002BD PCV002CD	Use Reference 2. Use Reference 2. Use Reference 2.	
6.	PCV030AD PCV030BD PCV031AD PCV031BD PCV032AD PCV032BD PCV032CD	Use Reference 2. Use Reference 2. Use Reference 2. Use Reference 2. Use Reference 2. Use Reference 2. Use Reference 2.	

	HECKED_			JOB NO	083 CP	c		
	APPROVED B DATE 6/00 AVAILABILITY DATA SHEET			ypark Boulevard alifornia 92714		D		
IT	EM: Valve,	Manual Butter	fly		ka najara			
01	VERALL FAILURE	RATE: <u>43 (3)</u>		FAIL/10 ⁶ HR.	REPAIR TI	ME: <u>varie</u>	S	_ н
Re	ference							
	NPROS D	a 343 - (4-11	99 inchoc)	2 failures in 4	621 × 1	06 hours		
				$\lambda = 0.43 \times 10^{-6}$		ov nours		
	WASH-140	0 Fail to rem	ain open (pl	ug) 1 x 10-4 F	/Demand	RF = 3		
		monthly testi quarterly tes						
		valve in norm						
			SPECIFIC	COMPONENTS				
	PXV278-C	Locked open,	fail closed	(plug) use Ref.	1, MTTR	Ref. B.		
	PXV279-C	Locked open,	fail closed	(plug) use Ref.	1, MTTR	Ref. B.		
	PXV037-C	Locked open,	fail closed	(plug) use Ref.	1, MTTR	Ref. C.		
	PMV8931D	Mataraparata	d uplung an	mally closed	una Daf	1 MIRIDO	Def	D
•	PMV8931D PMV8932D			mally closed, mally closed,				
	PMV8933D			mally closed,				
	PMV8934D			mally closed,				
	PMV93A1D			mally closed,				
				mally closed,				
	PMV93A2D	Motor-operate			nee Def	1 M/0/00	Pof	B
	PMV93A2D PMV93A3D	Motor-operate	d valves, nom					
	PMV93A2D PMV93A3D PMV93A4D	Motor-operate Motor-operate	d valves, nom d valves, nom	mally closed,	use Ref.	1, MTTR	Ref.	B
	PMV93A2D PMV93A3D PMV93A4D PMV93B1D	Motor-operate Motor-operate Motor-operate	d valves, nor d valves, nor d valves, nor	mally closed, mally closed,	use Ref. use Ref.	1, MTTR 1, MTTR	Ref. Ref.	B
	PMV93A2D PMV93A3D PMV93A4D PMV93B1D PMV93B2D	Motor-operate Motor-operate Motor-operate Motor-operate	d valves, nor d valves, nor d valves, nor d valves, nor d valves, nor	cmally closed, cmally closed, cmally closed,	use Ref. use Ref. use Ref.	1, MTTR 1, MTTR 1, MTTR	Ref. Ref. Ref.	BBB
	PMV93A2D PMV93A3D PMV93A4D PMV93B1D	Motor-operate Motor-operate Motor-operate Motor-operate Motor-operate	d valves, non d valves, non d valves, non d valves, non d valves, non	mally closed, mally closed,	use Ref. use Ref. use Ref. use Ref.	1, MTTR 1, MTTR 1, MTTR 1, MTTR	Ref. Ref. Ref.	BBBB

ì

ł

ł

4

١

1

ļ

AP		DATE 1/20 DATE 6/80	CONSU	JLTANTS - 7840 Skyp	and Gari NUCLEAI bark Boulev ifornia 927	R POWEI	R J	08 NO(MEET Y	3	0F	24
ITE	M:Valve,	Manual Gate									
ov	ERALL FAILURE	RATE: 0.4 (3)			F	FAIL/10 ⁶ F	R. R	EPAIR TIM	E: <u>var</u>	ies	H R
Rei	ference					01					
1.	NPRDS, po	g. 377 - (4-11 (all m	.99 inc odes)	h gate	valve)	$10 f = \lambda$	ailur 3.7	es in x 10-7	27.16 F/hr	2 x 1	106 hrs
A. B. C. D. E.	MTTR for MTTR for MTTR for	6 actuations/ 1 test/month, 24 test/year, 1 test/month 10 SU/SD and	10 SU/ 6 actu and 6 a	SD, and ations ctuation	d 6 act and 10 ons/vea	SU/S	D = 1 43 ho	10 hou	56 ho rs	urs	
				SPECIF	IC COM	PONENT	S				
1.	PMV3856C	(Includes va	lve and	£alse	signal) use	Ref.	l and	MTTR	Ref.	с.
2.	PM03126C	(lncludes va	lve and	false	signal) use	Ref.	1 and	MTTR	Ref.	D.
3.	PMV868AC PMV868BC		Normal] (868A)	Ly oper D (86	n, tran 68B).	sfers	clos	ed. U	se Re	f. 1	and
4.	PMV177AD PMV177BD PMV870AD PMV870BD PMV865 J PMV865BD	(Normally cl (Normally cl (Normally cl (Normally cl	osed) us osed) us osed) us osed) us	se Ref. se Ref. se Ref. se Ref.	l and l and l and l and	MTTR MTTR MTTR MTTR	Ref. Ref. Ref. Ref.	Г. А. А.			1
5.	PMV872AC PMV872BC	Normally open Normally open	n, trans n, trans	fers c fers c	losed.			l and l and			
6.	PXV001AC PXV001BC PXV001CC PXV003AC PXV003BC PXV003CC PXV003CC PXV0002C PXV0004C PXV0014C PXV0017C	Normally open Normally open Normally open Normally open Normally open Normally open Normally open Normally open Normally open Normally open	n, trans n, trans n, trans n, trans n, trans n, trans n, trans n, trans	fers c fers c fers c fers c fers c fers c fers c	losed. losed. losed. losed. losed. losed. losed.	Use Use Use Use Use Use Use	Ref. Ref. Ref. Ref. Ref. Ref. Ref.	1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and	MTTR MTTR MTTR MTTR MTTR MTTR MTTR MTTR	Ref. Ref. Ref. Ref. Ref. Ref. Ref.	D. B. E. A. E. A.

APF		DATE 11/727 DATE 0/80	Pickard, Lowe CONFULTANTS :7840 Skyj Irvine, Cal	and Garric - NUCLEAR P park Boulevard lifornia 92714	OWER	JOB NO. 083 SHEET BYJul	4	
ITE	Walve,	Manual Globe				Sec.		5 199
ove	ERALL FAILURE I	RATE: 0.8		FAII	L/10 ⁶ HR.	REPAIR TIME:	<u>varies</u>	<u></u> ня
Ref	erence							
1.	NPRDS, po	1. 390 (4-11.99 (all mo	inch globe des)	valve)	$\lambda = 8 \times 10^{-3}$	res in 3. 10-7 F/h	750 x 1 r.	06 hours
2.	Self-actu upon engi	ated pressure ineering judgme	control valv nt.	e. Failu	are rate	e 20 x 10	-6/hour	based
А. в. с.	MTTR base - 1 hour	6 actuations/y d on valve pos 6 actuations/y	ition indica	tion indi			wrong	position
			SPECIFI	IC COMPON	ENTS			
	PLV75A1D PLV75A2D PLV75B1D PLV75B2D	(Normally clos (valve only)						
2.	PXV009BO	(Normally close (Normally close (Normally close	sed test val	ve), use	Ref. 1	and MTTR	Ref. B	
3.	PLV875AC PLV875BC							
4.	PLV75A1C PLV75A2C PLV75B1C PLV75B2C	Normally open. Normally open.	Use Ref. Use Ref.	l and MTT l ard MTT	R Ref.	A. A.		
5.	CMUAFITO	Use 3 x Refere	ence 1 and M	TTR Refer	ence B.			
6.	PHV889-0	Use 0.1 x Ref.	1 (Normall)	y closed,	transf	er open)	and MT	TR Ref. B
7.	PHV020AC PHV020BC	Use Reference Use Reference						

ļ

APPRO	ED (A. VED 3 LABILITY DATA	DATE C/1	CONSU	I, Lowe and G LTANTS - NUCLI 1840 Skypark Bou rvine, California 9	EAR POW	ER J	HEET 5	CPC 0F_24 DATE 1// 74
		erator, AC	A REAL PROPERTY OF A REAL PROPER	and the second sec				
OVERA	LL FAILURE RAT	re: <u>4.3</u>		(3)	_ FAIL/10	⁶ HR. R	EPAIR TIME:	variesHR
Refe	rence							
1.	geared) (includes v	/alve) (in	acting, r cludes con hours)	trols)	(all	modes)	acting,
2.	WASH-1400			te l x 10 or, valve a				
3.	IEEE 500	pg. 386 🕅	Low	Med. Rec 2.5 12.	5 in	10 ⁶ c	ycles RF ·	- 3
4.	NPRDS pg.	243 (mot 53 F	or polyph ailures i	ase 480VAC n 12.405 x) 10 ⁶ h	ours	$\lambda = 4.27 \text{ x}$	10 ⁻⁶ F/hr.
Α.	MTTR for	quarterly	testing -	1080 hour	S			
			SPECIFIC	COMPONENTS				
1.		Operator Operator Operator Operator Operator Operator Operator Operator Operator	only, use only, use only, use only, use only, use only, use only, use only, use only, use only, use	Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference	4 and 4 and	MTTP MTTR MTTR MTTR MTTR MTTR MTTR MTTR	Reference Reference Reference Reference Reference Reference Reference Reference Reference	A. A. A. A. A. A. A. A. A. A.

f

)

CHECKED 2 DATE 4		JOB NO. 083 C SHEET 6 BY GUS	
ITEM: Motor Operator, Do	C Reversible 125VDC		
OVERALL FAILURE RATE: 19.1	B (3) FAIL/10 ⁶ HR.	REPAIR TIME:	360 HR
Reference			
geared) (ind	51 (Direct acting, reverse accludes controls) (all modes) in 1.169 x 10 ⁶ hours $\lambda = 31$	김 사람 같은 것이 같은	
2. WASH-1400 - see Mot	tor Operator, AC, sheet 5, ref	. 2	
3. IEEE 500 - see Mot	tor Operator, AC, sheet 5, ref	. 3	경험감하락
4. NPRDS, pg. 249 (Mot 5 I	cor DC commutator Single Speed Failures in 0.253 x 10 ⁶ hours) $\lambda = 19.76 \ \mathrm{x}$	10 ⁻⁶ F/hr.
A. MTTR for 1 test/mo	nth and 6 actuations/year - 24	40 hours	
	SPECIFIC COMPONENTS		
РМО177ВА Р	perator only, use Ref. 4. and ower fuse use 19.8 x 10 ⁻⁶ F/hr (see sheet 14 for fuse) 19.76 + .02 = 19.78 ≈ 19.8]	MTTR Ref. A.	; with .

AP	ECKED CADATE /// CONSI	rd, Lowe and Garrick, Inc. ULTANTS - NUCLEAR POWER 17840 Skypark Boulevard Irvine, California 92714	JOB NO. 083 CPC SHEET 7 CF 24 BY Put DATE 11/79
ITE	M: Pump, Centrifugal <500 to	2499	
ov	ERALL FAILURE RATE: 19.8 (3)	FAIL/10 ⁶ HR.	REPAIR TIME: <u>varies</u> H
Ref	erence		
1.	WASH-1400 Fumps Failure to S Failure to R	tart (Includes Drive) un (Includes Drive)	r) $1 \times 10^{-3}/D$ RF - 3 3 x $10^{-5}/hr$ RF - 10
2.	NPRDS, pg. 273 90 Failures i	n 4.555 x 10 ⁶ hours	λ = 19.76 x 10 ⁻⁶ F/hr.
А. В.	MTTR for 1 test/month, 6 actu MTTR for 1 test/month and 6 a	ations/year and 10 St ctuations/year - 243	J/SD - 156 hours hours
	SPEC	IFIC COMPONENTS	
1.	PPM105AF Use Ref. 2 and MTTR PPM105CF Use Ref. 2 and MTTR	Ref. B.	

	NED B	DATE	CONSI	d, Lowe and C JLTANTS - NUCL 7840 Skypark Bo Irvine, California	EAR POWER	SHEET		F_24
AVAU	LABILITY DATA SI	HEET		a tribin di t	the second second	ву	DAT	E 1/77
TEN.	Motor, Indu	uction	Squirrel C	age 3500-49	99VAC			
	ALL FAILURE RATE			(3)		REPAIR TIN	ME:360	НВ
Refe	rence							
1.	WASH-1400	Fail Fail	to Start to Run	3 x 10 ⁻⁴ /D 1 x 10 ⁻⁵ /D) Range F) Range F	actor 3 actor 3		
2.	NPRDS, pg.	244	14 Failure	s in 3.995	x 10 ⁶ hour	s λ =	3.50 x 10) ⁻⁶ F/h
3.	IEEE 500 pg. 206		(201 hp a	nd larger) low	rec.	high	max.	
		AI	1 modes	.707	1.897	7.73	10.43	
			tastrophic	other and the second se	1.518	6.184	8.344	
		Table of the local division of the local div	il to run	. 336	.901	3.672	4.954 3.390	

A. MTTR for 1 test/month, 6 actuations/year and 10 SU/SD - 156 hours

SPECIFIC COMPONENTS

1. PMO105AA Use Ref. 1 and MTTR Ref. A PMO105CA Use Ref. 1 and MTTR Ref. A

CHECKED C DATE 11/12 Pickard, Lowe and Garrick, Inc. APPROVED 3 DATE 6/180 Pickard, Lowe and Garrick, Inc. CONSULTANTS - NUCLEAR POWER 17840 Skypark Boulevard Irvine, California 92714 AVAILABILITY DAT. GIVEET	JUB NO. 083 CPC SHEET 9 OF 24 CY DATE 1// 74
ITEM: AC Distribution Puses (4160, 480, 120)	
	REPAIR TIME: 8 HB
Reference	
1. NPRDS, pg. 25 Plant electrical systems (less st 5 System failures in 1847 x 1 ^{\circ3} h 80 Component failures in 1847 x 1 $\lambda = 4.3 \times 10^{-5}$ F/hr.	ours
From bar graph on effect of failure by ma $\approx 1/3$ of failures result in loss of su $\frac{1}{3} \times \frac{80}{1847 \times 10^3} = 14.4 \times 10^{-6}$ F/hr.	
A. MTTR Based upon technical specification requirem	ents
SPECIFIC COMPONENTS	
1. JOOLAOSF Use Reference 1 and MTTR Reference A JOOLAOGF Use Reference 1 and MTTR Reference A JOOLBP3F Use Reference 1 and MTTR Reference A JOOLB5F Use Reference 1 and MTTR Reference A JOOLB55F Use Reference 1 and MTTR Reference A JOOLY13F Use Reference 1 and MTTR Reference A JOOLY13F Use Reference 1 and MTTR Reference A JOOLY14F Use Reference 1 and MTTR Reference A JOOLY3F Use Reference 1 and MTTR Reference A JOOLY12F Use Reference 1 and MTTR Reference A	-2 Failure on stem Analysis

f

j

CHECK	KED 12 DATE	11/12	Pickard, Lowe and Garrick, Inc. CONSULTANTS - NUCLEAR POWER	JOB NO	083 CI	PC	
	OVED 3 DATE		17840 Skypark Bouleva d Irvine, California 92714			OF	24
AVAI	LABILITY DATA SHEET						
TEM:	Service Wate	r Syste	m by Subsystem				
OVER	ALL FAILURE RATE:	380	F/hr. FAIL/10 ⁶ HR.	REPAIR	TIME:	72	_ н
Refe	erence						
1.	NPRDS, pg. 59		tems O system failures in mponent failures	951.8	x 10 ³	hours	
	From effect of	failur caused	e graphs ≈ 30% of equipment loss of subsystem.	failu	res (p	umps)	
			$\frac{1/3 \text{ of } 109 \text{ failures cause}}{\frac{1}{x \text{ 10}^3}} = 38 \times 10^{-6} \text{ F/hi.}$	subsys	tem fa	ilure	
۰.	MTTR of 72 hour	rs based	d on technical specificatio	on requ	iremen	ts	
			SPECIFIC COMPONENTS				
1.	1PPSW-AF 1PPSW-BF	Use F	Reference 1 and MTTR Refere	nce A			•
							-

CHECKED 12	DATEP	J08 NO. 083 CPC	
AVAILABILITY DAT		SHEET 11 OF 24 BY ALL DATE 1//74	
TEM: DC Dist	ribution System		
	ATE:11.2	and a second	REPAIR TIME: HR
Reference			
1. NPRDS, p	in 35,630 in this t	ms; 1164.4 x 10 ³ hours; tests. There have been time period. $\lambda = \frac{39}{1164.4 \times 10^3} = 3.35$	39 component failures
		RF - 3 no/output (Batte	eries)
3. NPRDS, p	g. 26 Batteries	s .42 x 10 ⁻⁶ F/hr.	
	From bar failure	graph 1/3 of component $\frac{1}{3} \times \frac{39}{1164.4 \times 10^3} = 11.3$	initures cause subsystem 2 x 10^{-6} F/hr.
A. MTTR 2 h	ours based on te	echnical specification r	equirements
		SPECIFIC COMPONENTS	
1. JOOID11F JOO1D21F		rence 3 and MTTR Reference	ce A

APPRO	ED <u>A</u> IVED <u>B</u> LABILITY DATA	DATECONSULTANTS - DATECIC CONSULTANTS - I7840 Skyp Irvine, Cali	and Garrick, Inc. NUCLEAR POWER ark Boulevard fornia 92714	S		1	2a	0	F <u>24</u> = E <u>1//77</u>
TEM: .	Breaker C	ircuit Closer/Interrupter							
DVERA	ALL FAILURE RAT	E:0.39 (3	3) FAIL/10 ⁸ HR	. R	EPAIR	TIME:		+	HR
Refe	rence		Failure Mode			Failure R	air		
1	IEEE 500,	Indoor design -		Fast	ster 10° fice	rs.	Fadures	10 [°] Cyrle	
*.	pg. 148	AC Breakers RF = 5	i i	Low	H-c High	Max 1	ow Rec	(byh	Mak
	승규는 것 같은 것		ALL MODES	.02	100	2.02		1 1	1000
			CATASTROPHIC Spurious Operation	.006	.043 .194		1.1 296.8	2968	. 468
			Fails to open	-		1	1.3 226.5		2265
			Fails to interrupt on openin		1.		8.7 69.3	693	693
			Fails to close	-	110	1.	1 1	1.0	10
			DESRADED Operates prematurely	1			2.9 103.2	1632	1032
			INCIPIENT	.014	.101 .454	1.417	e fe	1.1	4. Ku
2.		Fail to operate 1 x 10 Premature Transfer 1 x					110		106 10
2.	NPRDS, pg	. 97 Indoor Sealed Mar	hual 13 fail $\lambda = 3$	lure .93	s in x 10				
	NPRDS, pg	. 97 Indoor Sealed Mar ed on engineering judgmer	the function $\lambda = 3$ and $\lambda = 3$ and $\lambda = 3$	lure .93	s in x 10				
3.	NPRDS, pg	. 97 Indoor Sealed Mar ed on engineering judgmer	hual 13 fail $\lambda = 3$	lure .93	s in x 10				
3.	NPRDS, pg MTTR Bas	. 97 Indoor Sealed Mar ed on engineering judgmer SPECIFIC (480V MCC CB for S.W. va	nual 13 fail $\lambda = 3$ nt and annound COMPONENTS	lure .93 ced	s in x 10 fail	ures	s – .	4 ho	ours
з. А.	NPRDS, pg MTTR Bas PCB11030 PCB11020 PCB21020 PCB21020 PCB93A10 PCB93A10 PCB93A20 PCB93A40 PCB93A40 PCB93B10 PCB93B10 PCB93B20 PCB93B30 PCB93B40 PCB93B40	. 97 Indoor Sealed Mar ed on engineering judgmer SPECIFIC (480V MCC CB for S.W. va	hual 13 fail $\lambda = 3$ at and annound COMPONENTS alves) Use Re	lure .93 ced	s in x 10 fail 3 an	ures d M1	TR I	4 ho	A.
3. A. 1.	NPRDS, pg MTTR Base PCB11030 PCB11020 PCB21030 PCB21020 PCB93A10 PCB93A10 PCB93A20 PCB93A20 PCB93A10 PCB93A20 PCB93A10 PCB93B10 PCB93B10 PCB93B10 PCB93B20 PCB93B40 PCB93B40 PCB93B40 PCB15260 PCB16200 PCB16210 PCB16210	. 97 Indoor Sealed Mar ed on engineering judgmer SPECIFIC (480V MCC CB for S.W. va (Normally closed) (480V MCC CB for MOV3870	hual 13 fail $\lambda = 3$ at and annound COMPONENTS alves) Use Re 3 and MTTR Re 3 and MTTR Re 3 and MTTR Re 3 and MTTR Re	ef.	s in x 10 fail 3 an 3 an A. A. A.	ures d M1	TR I	4 ho	A.

Ĩ

5

Ī

CHECKED DATE Pickard, Lowe CONSULTANTS - APPROVED DATE C/SU AVAILABILITY DATA SHEET	ark Boulevard	JOB NO. <u>083 CF</u> SHEET <u>125</u> BY <u><u><u></u></u></u>	OF_24
r'EM: Breaker, 4160VAC Indoor Metal Cla	d		
GVERALL FAILURE RATE: 1.29	3) FAIL/10 ⁶ HR.	REPAIR TIME:	360 HR
Reference			
 NPRDS, pgs. 94, 95 (Indoor metal of 85 failures in 	lad, magnetic, 65.663 x 10 ⁶ h	motor) rs. $\lambda = 1.29$	x 10 ⁻⁶ F/hr
2. WASH-1400 Failure to operate 1 x	10 ⁻³ F/Demand	RF = 3	
3. IEEE 500 see sheet 13, ref. 1.			
A. MTTR - 5 hours from NPRDS, pg. 36 B. MTTR For 1 test/month, 6 acutatio		SU/SD - 156	hours.
SPECIFIC	COMPONENTS		
 4160V Breaker for P5A Use Ref. 1 4160V Breaker for P5C Use Ref. 1 			

CHECKED DATE DATE CONSULTANTS	ROVED DATE CONSULTANTS - NUCLEAR POWER 17840 Skypark Boulevard Irvine, California 92714						
ITEM: Breaker Circuit Closer/Interrupte OVERALL FAILURE RATE:038 (IR. REPAIR TIME: 4 HR					
Reference 1. IEEE 500, pg. 150 Indoor design DC Breakers	Failure Mode (2)	Failure Rate (3) Failures/10 th Hours Failures/10 th Cyrles Low Hee High Mas Low Hee High Mix					
. RF ≈ 5	ALL MODES CATASTROPHIC Spurious Operation Fails to open Fails to interrupt on opening Fails to close DEGRADED Operates prematurely INCIPIENT	.02 .139 .4 1.2 50 400 4000 4000 .005 .038 .13 .33 29.3 314.6 3146 3145 .005 .038 .13 .33 29.3 314.6 3146 3145 .005 .038 .11 .33 - - - - - - - 23 184.1 1641 - - - - 15.3 130.5 1305 1305 - - - 0 0 0 0 - - - 10.7 85.4 854 854 .015 .101 .29 .87 - - - -					
 NPRDS see AC Circuit Breaker 4500 A. MTTR see sheet 12, ref. A 	7, sheet 12, s	ref. 3.					
1. PCB 17140 (Normally clo PCB 17150		e Ref. 3. sheet 12 MTTR e Ref. A. sheet 12					

APPROVED DA	<u>.</u>	SHEET 1 BY ALS	4 DA						
TEM:	0.021		(5))	FAIL/1	10 ⁶ ня.	REPAIR TIME: ,	1	н
					_	_			
Reference	Failure Mode	. 1		Failure Ra	te		1		
. IEEE 500, pg.	193	-	Failures/10 ⁴ Hou	(3)	Failures/	10 ⁸ Cycles	+		
		Low	Rec High	Max Lo	# Rec	High Ma			
	ALL MODES CATASTROPHIC	.019		.3 -		- 10	$RF \approx 5$		
	Fuses (Open) below m	ating .006	.021 .205	. 205 -					
	Fails to interrupt INCIPIENT	.003	.009 .095	.795 -	1	* 10			
. MTTR based on	announced r		s - 1 IFIC C			TS			
. MIIK Dased on	announced r					TS			
. MIIK Dased on	announced f					TS			
. MTTR based on	announced r.					TS			

Pickard, Lowe and Ganick, Inc. CHECKED OF DATE 11/19 J08 NO. 083 CPC CONSULTANTS - NUCLEAR POWER 17840 Skypark Boulevard OF_24 15 APPROVED ____ DATE SHEET____ Irvine, California 92714 Mul BY___ DATE 11/7. AVAILABILITY DATA SHEET ITEM: __ Motor Starter (2) .12 _ FAIL/10⁶ HR. REPAIR TIME: ____4 OVERALL FAILURE RATE: HR Reference Failurs Mode Failure Rate 123 133 1. IEEE 500, pg. 171 Failures 10⁶ Hours Failures/10^hCycles Low Rec High Max Low Her High Max ALL MODES .15 .224 .45 2.0 CATASTROPHIC .0859 .121 .243 1.578 $RF \approx 2$ Sportous Operation .0204 .0305 .0613 .272 Fails to open .0108 .0161 .0323 .144 Fails to interrupt 8080. \$000, 0050. , 27 Fails to close .0294 .0439 .0683 .592 INCIPIENT .0691 .103 .207 .922 Α. MTTR based on announced failures - 4 hours SPECIFIC COMPONENTS

APPR	CHECKED Q DATE 11/19 APPROVED 3 DATE 6/150 AVAILABILITY DATA SHEET					ANTS - I IO Skypa	and Garrick, In NUCLEAR POW Irk Boulevard ornia 92714	JOB NO. 083 SHEET 16 BY	0		
ITEM:	Relay C	ontro	01 (00-199	VD	c				Line and the		
OVER	ALL FAILURE RAT	ε:	0.59			(3) FAIL/10 ⁸	HR.	REPAIR TIME:	4	HR
Ref	erence										
1.	NPRDS, pg General P	. 289 urpos	9 26 fai se $\lambda = .5$	11u	res x 10	in 44	.137 x 10 ⁶	ope	rating hour	S	
	MTTR see MTTR for		et 17 hly test -	- 3	60 h	ours					
					SPEC	IFIC (COMPONENTS				
1.	PREIAIIF	Use	Reference	1	and	MTTR	Reference	в.			
	PRE1B11F		Reference				Reference				
	PRE1A12F	Use	Reference	2 1	and	MTTR	Reference	в.			
	PRE1B12F	Use	Reference	: 1	and	MTTR	Reference	в.			
	PRE1111F	Use	Reference	: 1	and	MTTR	Reference	в.			
	PRE1112F	Use	Reference	1	and	MTTR	Reference	в.			
	PRE1A03F		Reference			MTTR	Reference	в.			
	PRE1A08F	Use	Reference	1	and	MTTR	Reference	в.			
	PRE1B03F		Reference				Reference				
	PRE1B08F		Reference				Reference				
	PREA301F		Reference				Reference				
	PREA302F		Reference				Reference				
	PREA801F		Reference				Reference				
	PREA802F		Reference				Reference				
	PREB301F						Reference				
	PREB302F						Reference				
	PREB801F						Reference				
	PREB802F						Reference				
	PRE1512X						Reference				
	PRE1514X						Reference				
	PRE1610X						Reference				
	PRE1613X	Use	Reference	> 1	and	MTTR	Reference	8.			

F

8

.

I

CHECKED & DATE 11/14	B DATE 0/80 17840 Skypark Boulevard Irvine, California 92714			
AVAILABILITY DATA SHEET	BY DATE 4/79			
TEM: Relay Control 100-1990				
OVERALL FAILURE RATE:0.49	(3) FAIL/10 ⁶ HR.	REPAIR TIME: 4 or 360 H		
Reference				
 NPRDS, pg. 288 29 fa (General Purpose) 	ailures in 59.076 x 10 ⁶ op $\lambda = .49$	perating hours 9 x 10 ⁻⁶ F/hr.		
A. MTTR for general purpo	ose relay in energized cir	rcuit - 4 hours		
	SPECIFIC COMPONENTS			
	D-19			

ł

ł

CHECKED_ DATE 180 APPROVED ____ DATE.

Pickard, Lowe and Garrick, Inc. CONSULTANTS - NUCLEAR POWER 17840 Skypark Boulevard Irvine, California 92714

J08 NO. 083 CPC

18 SHEET___ OF 24 ful DATE U/79 BY_

AVAILABILITY DATA SHEET

ITEM: Relays, Protective

OVERALL FAILURE RATE: ____0.036

(3) FAIL/10⁶ HR.

REPAIR TIME:

4

HR.

Failure Moste Failure Rate Reference (2) (3) Failures/10⁴ Hours Failures/10⁴Cycles 1. IEEE 500, pg. 155 Low Her High Max Low Rer High Max ALL MODES .02 .097 .25 10.56 1.1 3.5 7 10 CATASTROPHIC .007 .036 .092 1.9 τ. 5.5 1 10 Sourious Operation .007 .038 .092 3.9 * . * Fails to open .509 1.02 14.6 * .145 a. due to coll, mechanism $-RF \approx 3$ b. due to contacts Fails to close . * .854 2,991 5,98 85,4 . a. due to coll, mechanica b. due to contacts DEGRADED 008 .039 .1 4.23 й. . . Contacts chattering INCIPIENT .005 .022 .058 2.43 .

A. MTTR see sheet 17

MTTR for monthly test - 360 hours Β.

SPECIFIC COMPONENTS

1.	PCN1C560	Use	Reference	1	and	MTTR	Reference	B
	PCN1D120	Use	Reference	1	and	MTTR	Reference	В
	PCN1C120	Use	Reference	1	and	MTTR	Reference	В
	PCN1D560	Use	Reference	1	and	MTTR	Reference	В

CHECKED DATEAPPROVED B DATE SO	Pickard, Lowe and Gar ick, Inc. CONSULTANTS - NUCLEAR POWER 17840 Skypark Boulevard Irvine, California 92714	JOB NO. 083 CPC SHEET 19 OF 24 BY DATE 1/17				
TEM: Switchgear Protective	Relay					
OVERALL FAILURE RATE: 0.08	(3) FAIL/10 ⁶ HR.	REPAIR TIME:	4 HR			
<u>Reference</u> 1. NPRDS, (100-199VDC) pg. 189	1 failure in 13.027 x $\lambda = 7.7 \times 10^{-8} \text{ F/hr.}$	106 operating	hours			

SPECIFIC COMPONENTS

CHECKED CH DATE 11/17 APPROVED B DATE 0180 AVAILABILITY DATA SHEET	Pickard, Lowe and Garrick, Inc. CONSULTANTS - NUCLEAR POWER 17840 Skypark Boulevard Irvine, California 92714	JOB NO. 083 CPC SHEET 20 OF 24 BY DATE 11/79
TEM:	Relay 100-199VDC	
OVERALL FAILURE RATE:0.16	(3) FAIL/10 ⁶ HR.	REPAIR TIME:4
Reference		
1. NPRDS, pg. 192 0 fai	ilures in 6.258 x 10 ⁶ opera lation 474	ting hours $< 1.6 \times 10^{-7}$
popul	tación 474	
A. MTTR see sheet 17		
	SPECIFIC COMPONENTS	

CHECKED CL APPROVED B AVAILABILITY DATA SHI	JOB NO. 083 SHEET 21 BY CL	OF.	24 1/7			
TEM:	a provide the second					
OVERALL FAILURE RATE: _	see below	(3) FAIL/10 ⁶ HR,	REPAIR TIME:	4	— н
Reference						
1. NPRDS, pgs.	DC (all vo $\lambda = .02 \times$	olt) l failure) ⁶ F/hr. olt) l failure 10 ⁻⁶ F/hr.	in 4.709 x 1	10 ⁶ hours 10 ⁶ hours		
A. MTTR see sh	neet 17					
		SPECIFIC	COMPONENTS			

CHECKED APPROVED BOATE	Pickard, CONSUL 100 178 Irv	Lov TAN 340 S	TS -	NU(ark E	CLE	AR evar	NO ^q	nc. ÆR		JOB NO. 083 (SHEET 22 BY 4/2)		1
ITEM: <u>Transformer Cor</u> OVERALL FAILURE RATE:			2 [8	3]		. FAI	L/10	6 _{H R}		REPAIR TIME:	4	ня
Reference	Failure Mode (2)	L.	ailures/1		Failure (3	13	arlures/	10 ⁸ C				
1. IEEE 500, pg. 371		Low		_	-		Rec		-			
Potential Trans- former	ALL MODES CATASTROPHIC No output 4. removed because of shorts b. open circuit DEGRADED Mechanical damage	.0108	. 536	5. 3.86 3.05 .750	8. 6.17 4.88 1.20					RF ≈ 8		

.0102 .0758 .708 1.13

2. NPRDS, pg. 211 0 failures in 8.090 x 10⁶ hours population 662 (0-299VAC Air Cooled Natural Circulation)

INCIPIENT

A. MTTR see sheet 17

SPECIFIC COMPONENTS

CHECK APPRO AVAII		DATE 4/19 DATE 6/80	Pickard, Lowe and Garrick, Inc. CONSULTANTS - NUCLEAR POWER 17840 Skypark Boulevard Irvine, California 92714	JOB NO. 083 CPC SHEET 23a OF 24 BY DATE 11/79
ITEM: .	Miscellane	eous Circuit	g	
OVERA	ALL FAILURE RATE:	See below	FAIL/10 ⁶ HR.	REPAIR TIME: Varies HI
Refe	rence			
			SPECIFIC COMPONENTS	
1.	PSTM05AF PSTM05BF	(sheet 15) (sheet 14)	ator - 19.76 (sheet 6); mas ; 95-1 Relay - 0.49 (sheet ; FOGG Breaker - 0.39 (shee 10-6, MTTR = 730 hours, R	17); FOGG Fuse - 0.02 et 12);
2.	PSTMOOAF PSTMOOBF	0.12 (shee Fuse - 0.0	ator - 4.27 (sheet 5); Mast t 15); 95 Relay - 0.49 (she 2 (sheet 14); FOGG Breaker 10 ⁻⁶ , MTTR = 730 hours,	et 17); FOGG - 0.39 (sheet 12);
3.	PSTBR1AF PSTBR1BF	OC Relay (GF Relay -	1.29 (sheet 12b); 3X relay 2) - 0.07 (sheet 18); UV Re 0.04 (sheet 18); Fuse (2) 10-6, MTTR = 156 hours,	elay - 0.04 (sheet 18); - 0.04 (sheet 14);
4.	PSTCCAlF	Control tr (sheet 14)	ansformer - 0.41 (sheet 22)	; Power fuse - 0.02
	PSTCCA2F PSTCCB1F PSTCCB2F PSTCCA3F PSTCCA4F PSTCCB3F PSTCCB4F	Open coil LP circuit 62 Relay - Fuse - 0.0	- 0.49 (sheet 17); Close co consisting of: breaker - 0.04 (sheet 18); 3 x Relay 2 (sheet 14). 10 ⁻⁶ , MTTR = 4 hours (circ	0.39 (sheet 12); / - 0.04 (sheet 18);

APPRO	ED VED ABILITY DATA SI	DATE 6.180	Pickard, Lowe and Garrick, Inc. CONSULTANTS - NUCLEAR POWER 17840 Skypark Boulevard Irvine, California 92714	JOB NO. 083 CPC SHEET 235 OF 24 BY DATE DATE 79
ITEM:	Miscellane	ous Circuit:	5	
1.5	LL FAILURE RATE:			REPAIRTIME: Varies HR
Refe	erence			
			SPECIFIC COMPONENTS	
5.	PSTCC5AF PSTCC5BF PCC177AF PCC177BF	Power fuse (sheet 21)	- 0.59 (sheet 16); Open co (2) - 0.04 (sheet 14); Tim	ne delay relay - 0.08
6.	PSTCCOAF PSTCCOBF	Power fuse	- 0.49 (sheet 17); Open co - 0.02 (sheet 14); Transfo 10-6, MTTR = 4 hours,	ormer - 0.41 (sheet 22).
7.	PSTSL1AF PSTSL2AF PCC1AC1E PCC1AC2E PCC1BC1E PCC1BC2E	$\lambda = 0.1 \text{ x}$ MTTR = 4 h room. RF = 3	10-6 F/hour based on engine ours based on indication av	ering judgment. vailable in the control
8.	PSTCS1AC PSTCS1BC	$\lambda = 0.01 \times MTTR = 4 h$	10-6 F/hour based on engin ours.	neering judgment. RF = 3
9.	POOCCA1X PUOCCA2X POOCCB1X POOCCB2X	no data wa MTTR (POOC	0 ⁻⁶ F/hour based on engined s available for electrohydr CA1X) = 274 hours others) = 720 hours RF =	raulic valves.

APPR	KED <u>62</u> OVED <u>3</u> ILABILITY DATA	DATE/79 DATEG /80 SHEET	Pickard, Lowe and G CONSULTANTS - NUCL 17840 Skypark Bou Irvine, California 9	EAR POWER	JOB NO. 083 CPC SHEET 23C OF 24 BY DWS DATE 11/79
ITEM:	Miscellar	neous Hardward	e Failures		
OVER	ALL FAILURE RAT	E See below	(3)	_ FAIL/10 ⁶ HR.	REPAIR TIME: See below HR
<u>Ref</u> 1.	erence CSTIGLOR	$\lambda = 1 \times 10^{-1}$	Storage Tank Rupt 10 from WASH-1400 MTTR = 1 hour bas	Appendix	2 AFW System
2.	1RUPTLOF	$\lambda = 1 \times 10^{-8}$ through a ch	st in main feedwa based on engine neck valve and a nr, based upon ra	ering judg closed MOV	ment (must pass

CHECKED 02	DATE 3/80	Pickard, Lowe and CONSULTANTS - NUC	Garrick, Inc.	108 NO 083	CPC
APPROVED	DATE C/SO	17840 Skypark Br	oulevard	JOB NO. 083 CPC SHEET 24 OF 24	
		Irvine, California	92714		
AVAILABILITY DATA SH			BY_feisD		DATE _2/2
Turbine Pu					
OVERALL FAILURE RATE: _	(3) 1.06 x	10-2	FAIL/DEMAND	REPAIR TIME:	
Reference					
1. EGG Pump Rep	ort supplier	t values that t	ielded a 1	06 x 10-2 -	Idomard
noo r mub treb	are suppried	a values that y	ieiueu a l.	UUXIU F	/uemand.
	SI	PECIFIC COMPONE	NTS		
1. PTB1G05A	Controls f	fail to perform	function,	turbine fai	ls to star

REFERENCES

9

3

١

ł

-

8

i

ł

ł

8

	Reference	Source	Date
1.	Nuclear Plant Reliability Data System 1978 Annual Reports of Cumulative System and Component Reliability, NUREG/CR0942	National Technical Infor- mation Service, Spring- field, VA 22161	1979
2.	Reactor Safety Study WASH-1400 (NUREG-75/014) Appendix III	U.S. Nuclear Regulatory Commission	1975
3.	IEEE Guide to the Selec- tion and Presentation of Electrical, Electronic and Sensing Component Reliability Data for Nuclear-Power Generating Stations, IEEE Std. 500-1977	The Institute of Electrical and Electronic Engineers, Inc. or John Wiley & Sons, Inc.	1977
4.	Data Summaries of Licensee Event Reports of PUMP? at U.S. Commercial Nuclear	National Technical Infor- mation Service, Spring- field, VA 22161	1980

Power Plants NUREG/CR-1205