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ABSTRACT

Simple piping systems are composed of linear elastic elements and can be
analyzed using conventional linear methods. The introduction of constraint
springs separated from the pipe with clearance gaps to such systems to cope
with the pipe whip or other extreme excitation conditions introduces non-
linearities to the systsm, the nonlinearities being associated with the gaps.
Since these spring-damper constraints are usually limited in number, dis-
cretely located, and produce only weak nonlinearities, the analysis of linear
systems including these nonlinearities can be carried out by using modified
linear methods. In particular, the application of pseudo force methods where-
in the nonlinearities are treated as displacement dependent forcin-~ functions
acting on the lincar system were investigated.

The nonlinearities induced by the constraints were taken into account as
generalized pseudo forces on the right-hand side of the governing dynamic
equilibrium equations. Then an existing linear elastic finite element piping
code, EPIPE, was modified to permit application of the procedure. This option
was inserted such that the analyses could be performed using either the direct
integration method or via a modal superposition method, the Newmark-Beta inte-
gration procedure being employed in both methods. The modified code was proof
tested against several problems taken from the literature or developed with
the nonlinear dynamics code OSCIL. The problems included a simple pipe loop, a
cantilever beam, and a lumped mass system subjected to pulsed and periodic
forcing functions. The problems were selected to gage the overall accuracy

of the method and to insure that it properly predicted the jump phenomena
associated with nonlinear systems.

Implementation of the method was found to be straightforward with the
simplest iteration procedure for the psuedo force vector sufficing. The
results predicted with the method agreed in all important aspects *h ex-
isting solutions as well as those generated with other methods. . rith
linear analyses, the modal superposition solution mode was found to be the
most efficient, however, exhibiting slightly greater inaccuracies.
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I. Introduction

Simple piping systems are composed of linear elastic elements and can be
analyzed using conventional linear methods. The introduction of constraint
springs (bumpers) seperated from the pipe with clearance gaps to such systems to
cope with pipe whip or other extreme excitation conditions introduces non-
linearities to the system. The nonlinearities are produced by the clzarance
gaps in the bumper assemblies and additionally by .he nonlinear stiffness of
the bumper springs. 3ince these spring-damper assemblies are usually limited
in number, discretely located, ana produce only weak nonlinearities, the analysis
of linear systems including these can be c~rried out by using modified linear
methods. In particular, the arplication ¢f pseudo force methods wherein the
nonlinearities are treated as displacement dependent forcing functions acting
on the linear system were investigated.

To perform the investigation an available linear elastic finite element
code was modified to accommodate the method. Solutions to several problems
were developed and compared to existing solutions and or to solutions de-
veloped using a general purpose nonlinear analysis code. The relative merits
and accuracy of the method were then determined by comparison.

II. System Equations and Method Implementation

The nonlinearities induced by the bumpers are taken into account as gener-

alized pseudo forces on the right-hand side of the governing dynamic equilibrium

equations as

[M] (W] + [C] W] + [K] [W] = [F] + (P] (1)

where

(M], [C], and [K] are the mass, damping, and stiffness matrices,




(W], (W], and [ﬁ] are the displacement, velocity, and acceleration vectors,

[F] is the external load vector, and
[P] is the pseudo force vector of nonlinear external forces due to bumpers.

The pseudo forces can be calculated as:

n - - n n . n n* n n
Py (o 9 "kyg (uy -gg) veguy ite *g )
= n n
- if u,o<gy

where the superscript n and subscript i connotate node n in the ith direction.

ki’ c

gaps of the bumpers.

i and 8y are the spring constants, damping coefficients, and clearance

The dynamic equilibrium equation (1) can be solved by either the direct

(1] (2]

integratior procedure or normal mode theory. Both methods will be con-
sidered be¢ low.
I1.1 The Direct Integration Method

Since the nonlinearities are treated as pseudo forces, the left-hand side
of Eq. (1) remains linear and must be formed and triangulized only once. The
solution at each time step can be obtained by backward substitution. The se=-
lection of the integration procedure is based on the fact that for these sys-
tems, the action of the higher modes cf motion may strongly influence the
displacements at the nonlinear elements and thereby define the pseudo force
magnitudes. Since most numerical integration schemes introduce artificial
damping into the system and since damping has a disproportionate effect on
the higher modes, the selection was based on the level of artificial damping

associated with each method. Of the methods surveyed, the Newmark-Beta method,

has no artificial damping associated with it and this was the method used in



these procedures. All the other methods, such as central difference, Houbolt
method, and Wilson-& method introduce artifical damping in varying arounts,
with the Wilson-8 method introducing the most.[3]

A The assumptions used on the Newmark integration scheme are

Wopar = ¥ * [(1~6)wt - okt+At]At (3)
. e — 2
= v + i
wt+3t wt+ ktAt [C(1/ a)wt + aWt+At]At (&)

where a and § are parameters that can be selected to achieve integration accu-
racy and stability. The suggested values are § = 1/2 and a = ilh,

The equilibrium equation (1) at time t+At is

DO W ped +ICT [0, 1+ (KD (W, 0 = (R, ] 4P, ] ()

Using Eqs. (3) and (4), equation (5) may be expressed in terms of wt+A: as

eff

e ] = [F5°7) (6)

LR R Y

where

(%) = (K] + A [M] + A, [C] )

and




eff

" Fepaed * Prpped + DU A ] + A 10T + 4, (9]

+C A W] + AR ] + AS[th

A3:E-1 A7’66t

ef f

As indicated in (8) [F "] is dependent on [Pt+At]’ an unknown vector which

is in general a function of W(t+At) and Q(t+At). The procedure we use to es-

timate [P ], is as follows:

t+At

1) Estimate Wt+ assuming [P

At t+At] =0 1i.e., compute [Yol where

£ff . -
K550 70 = (7, 0 + 04 (AT ] + A0 ] + AyW, 1)

+ [C] {A.l[wt] + A“[fxt] + As[{';c“



2) Compute bunper forces correspending to Yo

[P

] = (k] (Y] +[C] (Y]

t+it

where [Ks] is the matrix of bumper spring constants and [cs] is the nateix
of bumper damping coefficicats.
3) Cozpute the additional displacement corresponding to these bumper
forces

[Keff]—l

(8] = (e ]

t+At

Estimate w:+At as

[1ppe) = [Y,] +(8]

This procedure can be repeated until the difference (W » - W N-'l)

t+At 3 ' o
achieves some tolerance. We have found that iteration does not strongly
effect the results and is not warranted. The solutions are obtained by follow-
ing steps 1 thru 4 without iteration. The identical procedure is also followed
in the normal mode method.

I1.2 The Normal Mode Method
For this method, the natural frequencies and the associated mode shapes
for the system are cozputed first, then the equilibrium equation, Eq. (1) is

transformed to the generalized eigen problem by using the following transfor-

mation:




W
rt
=
m

w(t)

vector of the displacements
tn
: = the i mode shape vector

% (t) = the vector of the generalized displacements

Defining a matrix & whose columns . e the eigenvectors ¢i and A diagonal

2
matrix Qz which stores the eigenvalues w, om its diagenal

¢ = [él’ ¢2) ¢3’ 5 e Qn] 2 .- 2 (11)

Since the eigenvectors are M-orthonormal, we have

y - 2
=0

¢ K¢ a2)
and

QTHQ = T where I is the identity matrix (13)

T

$ Cco = diag. (Zviﬁi) (14)
where

51 is the damping ratio in the ith wode.

6



Eq. (1) beccmes:

X(e) + 7X(E) + 2°X(e) = ¢°F + o7P | (15)

where

¥V = the diagonal matrix of 2“1‘1

i=1, total number of modes
92 = the diagonal matrix of mi

i=1, total number of modes

The system of equations in Eq. (15) are decoupled, so the solutions of
the generalized displacements can be obtained by time integration without the
icversion of the effective stiffness.

The time integration used is again the Newmark-Beta method, where the

equilibrium equatian, Eq. (15) is considered at time t+At, we have

. e
it‘l’At it
Rpae | = A X | HLIE ] 4L, (16)
xt+At X

- o — -

where

~



1 i
- (1/2-0)B-2(1-6)K Lo (-8-2K) l—t-z -8) ]

A= At[1-6-(1/2-0)6&-2(1-6)6K 1-86-26K - %_ (-88)
t

At (1-g8-2aK) (1-a8)

a2 [1/2-a-(1/2-0)eB-2(1-8)aK

1 2£8 -1 EB

= ( +-’"‘ + Q [ soE

B= G733 bt ) K = oat
w At

load due to external loads at time t+At and

f:+bt {s the modal

Peidt {s the modal load due to bumper forces at time t+it.
The actual time responses of the structure are:

We) =4X(E)
F() =4%(t)
w(e) =8%(t)

o

(17)

(18)

(19)

(20)



Note that this scheme is restricted to small time steps to assure a

required level of accuracy. Normally, a time step of 1/10 of the smallest
period of the system is recommended. Moreover, in the selecticn of the neces-
sary number of modes, all modes which influence the motions at the nonlinear
elements must be considered.

Both the direct intezration option and the normal mode option were in-
corporated into an existing linear finite element code EPIPE. This required
the addition of some simple algorithms and the substitution of the Newmark-
Beta integration scheme for the original integration algoritt~x. These modifi-

cations were most readily made for the direct integration solution mode while

requiring some additional coding for the modal superposition solutiom mode

(gap effects necessitated a constant return to system coordinates). However,
overall the implementation was found to be straight forward.
III. Numerical Gxamples

Four separate problems were used to evaluate the method. For two, solu=-
tions were available in the literature permitting an independent check while
for the remsining two solutions were developed using the nonlinear analysis
code OSCIL.[6] The problems were chosen to simulate piping systems and to
test the capacity of the method to predict salient nonlinear characteristics.

III.1 Three Dimensional Coolant Loop

For the first example, a three-dimensional nonlinear piping system, shown
in Figure 1, consisting of nine straight pipes and two elbows with three gap-
bumper supports was considered. The system was subjected to the dynamic loads
shown in Figure 2. Solutions to this probler by two techniques are given in

Reference 2 and are presented in Figure 3 of this report.
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Figures 4, 5, and 6 show the predicted bumper force versus time for each

of the bumpers for both the direct integration solution and the modal solu-
tion considering 30 modes. In each figure, in fact, three separate solutions
for each method are shown, the uppermost corresponding to an integration time
step of 0.000125 sec, the c;ntet of 0.0000625 sec, and the lower-most to
0.00001325 sec. Figure 4 corresponds to bumper 1 (node 4), Figure 5 to bum-
per 2 (node 6), and Figure 6 to bumper 3 (ncde 10) with the direct integra-
tion solutions appearing on the left side, the modal! =solutions on the right.

Comparing the results on any of the Figures incicates that all the solu-
tions look identical. If the numerical results from which the plots were gen-
erated are referred to, slight differences are apparent between the solutions
for the different time steps and between the modal and direct integration
solutions, however, these are all minimal. Referring to the Reference 2,
graphical results, Figure 3, again the two sets of graphical output look
identical. A comparison of the numerical results to those of Reference 2,
show only slight differences.

IIT1.2 Cantilever Beam

As the second exawmple, the response of a cantilever beam subjected to
a ground motion acceleration and having two gap-bumper springs at its free
end was considered. The identical problem was treated in Reference 5 per-
mitting an evaluation of the results.

The 20 inch long cantilever was modeled with 20 beam elements and 2 gap-
bumpers on each side of the free end as shown in Figure 7A. The material and

structural properties of the beam were taken as; Young's modulus; 30 x 106,

4
poisson's ratio 0.3; cross-section 2" x 3"; moment of inertia 2 in ; and mass

1b/sec ;
in

tion time history shown in Figure 7B. The gap, G, had an initial clearance

density 0.0042

per in. The excitation was the ground motion accelera-
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of 0.5 x 105 in; and the bumper spring stiffness, K, was 2 x 105 1b/in. Two

cases were considered, in one case the bumper damping coefficient was taken
as C = 10,0688 1b/sec/in and the other case was without damping. The time step
used in all analyses was 0.00003125 seconds.

The transverse displacement responses determined by direct integration for
node 10 and node 21 for both cases are shown in Figure 8 and Figure 9 respec-
tively. The displacement responses for the no damping case from Reference
5 are shown in Figure 10 for comparison. The comparison of Figures 8 and
10 shows good agreement of results. The results for the no damping case in-
dicates that the negative gap-bumper opens and closes three times while the
positive gap-bumper opens and closes only once during the event. For the
damped case the maximum damping force acts at the beginning and the end of
the impact and is zero when the spring force is maximum.

II11.3 Concentrated Masses, GCround Motion Excitation

As the third example, a system consisting of three concentrated masses
interconnected and attached to ground with linear springs and separated from
the side walls with gap-nonlinear spring bumpers, as shown in Figure 114,
was considered. For the analysis, the interelement springs were modeled with
truss elements while the linear base springs were modeled with massless beam
elements. The bumper elements had an initial gap of 0.001" and a cubic non-

linear spring constant given by

k = 1000 (D-G) + 100,000 (D—G)3 (21)

The input excitation was the ground motion acceleration time history depicted
in Figure 11B. All the pertinent system parameters are shown in Figure 1lA.

The response time histories were determined by both the modal superposi-

tion method and direct integration using an integration time step of 0.001 sec.
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To provide a means to corroborate the results, the system response was
also determined using the BNL nonlinear dynamics code OSCIL (Reference 6).
This code, developed to evaluate HTGR core block response, is designed to
evaluate the response of multimass systems containing nonlinear spring ele-

. ments with general characteristics. It incorporates a numerical integration
scheme which automatically varies the integration time step size as a function
of event severity.

The resultant displacement time histories for the three masses are shown
in Figures 12A and 12B with the modal superposition results shown in A and the
direct integration results in B. The predicted bumper force time histories
for both methods aie shown in Figures 13A and 138, with the positive forces
corresponding to the left side bumper and the negative forces corrasponding to
the right side bumper. Thn OSCIL predicted displacement time histories are
shown in Figure 12C and the corresponding bumper force time histories are
shown in Figure 13C.

A comparison of Figures 12A, 12B, and 12C or 13A, 13B and 13C indicates
that all three methods provide near identical re~ults. A comparison of the
aumerical results for the three runs showed minimal differences with the best
agreement occurring between tie direct integration solution and the OSCIL re-
sults. Additional direct integration runs with finer time steps produced
further convergence tc the 0SCIL solution

111.4 Concentrated Masses, Sweeping Sinosoidal Excitation

As a last test ci the method, the three mass problem was again used to
{nvestigate whether the psuedo force method would correctly predict the multiple
response roots inherent in this nonlinear system. Using the direct integration
solution mode and the OSCIL code, the response of the system to a sweeping

frequency sinusoidal forcing function, the frequency being both swept up and

A S ‘____—*—____J
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swept down, was determinec. The excitation was a cuncentrated force given by
F=20 cos(wt) acting, in phase, on each mass point. For the direct integration
solution the integration time step was 1 = 10-4 seconds while the OSCIL code
adapted minimum time steps as small ¢s 1 x 10.5 seconds. |

Both soli tion methods predicted the same response curve, shown in Figure
14, This curve 1is typical for a system with a hardening characteristic [5] and
was to be expected for the problem being considered. In the freque~ncy range
4+6 cps two distirct response roots are evident, the root exhibitel by the sys-
tem excited at these frequencies being determined by the prior history tran-
sients. Clearly, th.s result further confirms the adequacy of the psuedo force
method as a nonlinear analysis method.

IV. Conclusions

The implementation of the psuedo force method into an existing elastic
finite element code was found to be straightforward. The required modifica-
tions were most readily made for the direct integration solution mode -‘hile
requiring some additional coding for the modal superposition solution mode
(gap effects necessitated a constant return to system coordinates). Lastly,
rotential problems foreseen for the development of a pseudo force iteration
scheme proved unfounded as the simplest, most direct procedure provided ac-
ceptable accuracy.

Concerning the problem solutions cuncained herein, the results predicted
with the BNL psuedo force code option agreed in all important aspects with
the existing solutions. This was true for both the direct integration and
the modal superposition solution modes with the latter exhibiting slightly
greater, but insignificant, inaccuracys. As with linear system analyses,
the modal superposition solution mode was found to be the most rapid, ex-

hibiting the reduction in computer running time normally associated witn it.
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The psuedo force method was found to be a fully gener.l nonlinear analysis

method. Its employment for the analysis of linear systems cont. ‘ning a limited

number of discrete nonlinear components is recommended as it is both more economi=-
cal and as accurate as more sophisticated nonlinear methods, However, since
these advantages rapidly decline ag either the extent or duration of nonlinear

affects increase it is not recommcnded as a general purpose nonlinear method .
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