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* ABSTRACT

.

Simple piping systems are composed of linear elastic elements and can be
analyzed using conventional linear methods. The introduction of constraint
springs separated from the pipe with clearance gaps to such systems to cope
with the pipe whip or other extreme excitation conditions introduces non-

linearities to the system, the nonlinearities being associated with the gaps.
Since these spring-damper constraints are usually limited in number, dis-
cretely located, and produce only weak nonlinearities, the analysis of linear
systems including these nonlinearities can be carried out by using modified
linear methods. In particular, the application of pseudo force methods where-
in the nonlinearities are treated as displacement dependent forcin functions
acting on the Ifnear system were investigated.

The nonlinearities induced by the constraints were taken into account as
generalized pseudo forces on the right-hand side of the governing dynamic
equilibrium equations. Then an existing linear elastic finite element piping
code, EPIPE, was modified to permit application of the procedure. This option
was inserted such that the analyses could be performed using either the direct
integration method or via a modal superposition method, the Newmark-Beta inte-
gration procedure being employed in both methods. The modified code was proof
tested against several problems taken from the literature or developed with
the nonlinear dynamics code OSCIL. The problems included a simple pipe loop, a
cantilever beam, and a lumped mass system subjected to pulsed and periodic
forcing functions. The problems were selected to gage the overall accuracy
of the method and to insure that it properly predicted the jump phenomena
associated with nonlinear systems.

Implementation of the method wa,s found to be straightforward with the
simplest iteration procedure for the psuedo force vector sufficing. The
results predicted with the method agreed in all important aspects th ex-
isting solutions as well as those generated with other methods. . rith
linear analyses, the modal superposition solution mode was found to be the
most efficient, however, exhibiting slightly greater inaccuracies.
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I. Introduction .

Simple piping systems are composed of linear elastic elements and can be

analyzed using conventional linear methods. The introduction of constraint

springs (bumpers) separated from the pipe with clearance gaps to such systems to.

cope with pipe whip or other. extreme excitation conditions introduces non-

linearities to the system. The nonlinearities are produced by the clearance"

gaps in the bumper asse=blies and additionally by the nonlinear stiffness of

the bumper springs. Since these spring-damper assemblies are usually limited

in number, discretely located, and produce only weak nonlinearities, the analysis

of linear systems including these can be cr.rried out by using modified linear

methods. In particular, the application c f pseudo force met. hods wherein the

nonlinearities are treated as displacement dependent forcing functions acting

on the linear system were investigated.

To perform the investigation an available linear elastic finite element

code was modified to accommodate the method. Solutions to several problems

were developed and compared to existing solutions and or to solutions de-

veloped using a general purpose nonlinear analysis code. The relative merits

and accuracy of the method were then determined by comparison.

II. System Equations and Method Implementation

The nonlinearities induced by the bumpers are taken into account as gener-

alized pseudo forces on the right-hand side of the governing dynamic equilibrium

equations as

[M] [ ] + [C] [h] + [K] [W] = [F] + [P] (1)
.

- where

[M], [C], and [K] are the mass, damping, and stiffness matrices,

1
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[W], [k], and [U] are the displacement, velocity, and acceleration vectors,

[F] is the external load vector, and

[P] is the pseudo force vector of nonlinear external forces due to bumpers.

.

The pseudo forces can be calculated as:
.

P n (u , u- ) = k n (u n n* n
g g -g n) + c if u " > g (2)

'u
t

=0 if u " < g "
1 -- i

.

th
where the superscript n and subscript i connotate node n in the i direction.

k , e , and g are the spring constants, damping coefficients, and clearance
t 1

gaps of the bumpers.

The dynamic equilibrium equation (1) can be solved by either the direct
l

integratior procedure or normal mode theory. Both methods will be con-

sidered be low.

II.1 The Direct Integration Method

Since the nonlinearities are treated as pseudo forces, the lef t-hand side

of Eq. (1) remains linear and must be formed and triangulized only once. The

solution at each time step can be obtained by backward substitution. The se-

lection of the integration procedure is based on the fact that for these sys-

tems, the action of the higher modes of motion may strongly influence the

displacements at the nonlinear elements and thereby define the pseudo force

magnitudes. Since most numerical integration schemes introduce artificial
,

damping into the system and since damping has a disproportionate effect on

the higher modes, the selection was based on the level of artificial damping -

associated with each method. Of the methods surveyed, the Newmark-Beta method,

has no artificial damping associated with it and this was the method used in

,
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these procedures. All the other methods, such as central difference, Houbolt

method, and Wilson-0 method introduce artifical da= ping in varying amounts,

with the Wilson-0 method introducing the most. I

The assumptions used on the Newmark integration scheme are.

h +3e = Q + [(1-6)U + 66 .3t]AtJ (3)t e t t

W =W+ At + [(1/2-a)h + ch ]At (4)g

where e and 6 are parameters that can be selected to achieve integration accu--

racy and stability. The suggested values are 6 = 1/2 and a = 1/4.

The equilibrium equation (1) at time t+At is

!

[M][b+At + ~ (t t+At t+At t+At t+At

Using Eqs. (3) and (4), equation (5) may be expressed in terms of W as

[K* ] [W +At] = [F" ] (6)t

where

[K* ] = [K] + A [M] + A [C] (7)

.

and

3
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[F" ] = [F ] + [P ] + [M] {A [W ] + [h ] + A I l3 t

+C{ [W ] + A [0 ] + A l4 t 5 t

.

with

6- A =
cat A4=7-1

A =
t 5" ( - )A

(9)
oftA =

6" (l- }A2

A =

3
-

g = 6At

As indicated in (8) [F ] is dependent on [F ], an unknown vector which

is in general a function of W(t+At) and O(t+At) . The procedure we use to es-

timate [P +At * * ** **
t

1) Estinate W assuming IP ]=0 1.e., conpute [Y ] whereg3g

[K" ] [7,] = [F +4t + ^ A
+ ^3t o t 2 t t .

+ [C] { [W ] + A ( t] + A '4 5 t

4
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2) Co:pute bumper forces corresponding to Y,

.

[P ,3 ] = [K,] [Y,] + [C,] [i ) _

.

where [K,] is the matrix of bumper spring constants and [C,] is the = atrix

of bu=per da: ping coef ficients.

3) Compute the additional displace =ent corresponding to these bumper

forces

[3] = [K" ]~ [P ,3 ]

4) Esticate W ,3 as

[T +At] ~ (Y +
t o

This procedure can be repeated until the difference (W +At - W +3tN-1)t t

achieves some tolerance. We have found that iteration does not strongly

effect the results and is not warranted. The solutions are obtained by follow-

ing steps 1 thru 4 without iteration. The identical procedure is also followed

in the nor=al mode method.

II.2 The Normal Mode Method
.

For this method, the natural frequencies and the associated mode shapes

for the system are computed first, then the equilibrium equation, Eq. (1) is,

transformed to the generalized eigen problem by using the following transfor-

mation:

5
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i

,

i

,

W(t) = 4x(t)
. ,

where
,

W(t) = the vector of the displacements f:
= the 1 " code shape vector {E

4

X(t/ = the vector of the generali::ed displacements !
,

Defining a matrix 0 whose columns .e the eigenvectors 4 and a diagonal

o on its diagonalmatrix n which stores the eigenvalues f
- -

g

W1

'.2 (11)0 = [ $ , 4 ' # ' * * * #n 2 '

1 2 3 G
*

= mf,
,2*

w
,'

*
. _

Since the eigenvectors are 11-orthonormal, we have
1

'TO KO = 0' (12)

and

T (13)C 110 = I where I is the identity matrix
:

|
(14) -

0 Co = diag. (2w C )
f

.

.where

t th
i is the damping ratio in the i code.

E
|
i
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Eq. (1) becc=es:

*
s

2 T T- -

X(t) + 7X(t) + 0 X(t) = 4 F + 4 P
.- (15)

s

.

where.

V = the diagonal matrix of 2 g(

i=1, total nu=ber of modes

2 2
0 = the diagonal matrix of w

i=1, total'nu=ber of modes

The system of equations in Eq. (15) are decoupled, so the solutions of

the generalized displacements can be obtained by time integration without the

inversion of the effective stiffness.

The time integration used is again the Newmark-Beta method, where the

equilibrium equatinn, Eq. (15) is considered at time t+At, we have

. . . .

'

..

X +At X
t

+ L[f +At] + L[p +At]I +At =A X
t t (16)t- t

t+At X
t

. . . _

.

.
where

i

4
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1
^

h(-s-2K) C-8)
2

-(1/2-a)s-2(1-6)K 6t

:-

(17) |1-86-26K - 1- (-86)
At [1--6-(1/2-a) 66-2 (1-6)6K AtA= '

i

at(1-as-2aK) (1-as)
-at2 [1/2-a-(1/2-a)cs-2(1-6)aK .

.

.
.

+ E + c)~ K=E (18)
wat$= ( 2 2 aut, 3g

.. 7
6
2 2to 3t

86 (19)
21/" 3 3g

.

2,

e
.'.

is the modal load due to external loads at time t+At and
I

feet
is the =odal load due to bumper forces at time t+At.

P +Att

The actual time responses of the structure are:

W(t) =$X(t) (20)
* -

W(t) =tX(t), *
1

_

W(t) =$X(t) .

I
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Note that this scheme is restricted to small time steps to assure a

required level of accuracy. Normally, a time step of 1/10 of the smallest

period of the system is recommended. Moreover, in the selecticn of the neces-
.

sary number of modes, all modes which influence the motions at the nonlinear

elements must be considered.,

Both the direct integration option and the normal mode option were in-

corporated into an existing linear finite element code EPIPE. This required

the addition of some s1=ple algorithms and the substitution of the Newmark-

These modifi-Beta integration scheme for the original integration algoritts.

cations were most readily made for the direct integration solution mode while

requiring some additional coding for the modal superposition solution mode

(gap eff ects necessitated a constant return to system coordinates) .
However,

overall the implementation was found to be straight forward.

III. Numerical Examples

Four separate problems were used to evaluate the method. For two, solu-

tions were available in the literature permitting an independent check while

for the remaining two solutions were developed using the nonlinear analysis

code OSCIL.[6] The problems were chosen to simulate piping systems and to

test the capacity of the method to predict salient nonlinear characteristics.

III.1 Three Dimensional Coolant Loop

For the first exa=ple, a three-dimensional nonlinear piping system, shown

in Figure 1, consisting of nine straight pipes and two elbows with three gap-

bumper supports was considered. The system was subjected to the dynamic loads*

shown in Figure 2. Solutions to this problez by' two techniques are given in

Reference 2 and are presented in Figure 3 of this report..

9
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Figures 4, 5, and 6 show the predicted bumper force versus time for each

of the bumpers for both the direct integration solution and the modal solu-

tion considering 30 modes. In each figure, in fact, three separate solutions

. for each method are shown, the uppermost corresponding to an integration time

step of 0.000125 sec, the center of 0.0000625 sec, and the lower-most to
.

0.00001325 sec. Figure 4 corresponds to bumper 1 (node 4), Figure 5 to bum-

per 2 (nede 6), and Figure 6 to bumper 3 (node 10) with the direct integra-

tion solutions appearing,on the left side, the modal solutions on the right.

Comparing the results on any of the Figures indicates that all the solu-

tions look identical. If the numerical results from which the plots were gen-

erated are referred to, slight differences are apparent between the solutions

for the different time steps and between the modal and direct integration

solutions, however, these are all minimal. Referring to the Ref erence 2,

graphical results, Figure 3, again the two sets of graphical output look

identical. A comparison of the numerical results to those of Reference 2,

show only slight differences.

III.2 Cantilever Beam

As the second exa:ple, the response of a cantilever beam subjected to

a ground motion acceleration and having two gap-bumper springs at its free

end was considered. The identical problem was treated in Reference 5 per-

mitting an evaluation of the results.

The 20 inch long cantilever was modeled with 20 beam elements and 2 gap-

bumpers on each side of the free end as shown in Figure 7A. The material and
,

structural properties of the beam were taken as; Young's modulus; 30 x 10 ,

poisson's ratio 0.3; cross-section 2" x 3"; coment of inertia 2 in ; and mass*

lb/secdensity 0.0042 per in. The exc'.tation was the ground motion accelera-

tion time history shown in Figure 7B. The gap, G, had an initial clearance

13 *
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of 0.5 x 10 in; and the bumper spring stif fness, K, was 2 x 10 lb/in. Two5

cases were considered, in one case the bumper damping coef ficient was taken
The time step

as C = 10.0688 lb/sec/in and the other case was without damping.
e

used in all analyses was 0.00003125 seconds.

The transverse displacement responses determined by direct integration for ,

node 10 and node 21 for both cases are shown in Figure 8 and Figure 9 respec-
-

The displacement responses for the no damping case from Referencetively.

5 are shown in Figure 10 for comparison. The comparison of Figures 8 and

10 shows good agreement of results. The results for the no damping case in-

dicates that the negative gap-bumper opens and closes three times while the
For the

positive gap-bumper opens and closes only once during the event.

damped case the maximum damping force acts at the beginning and the end of

the impact and is zero when the spring force is maximum.

III.3 Concentrated Masses, Ground Motion Excitation

As the third example, a system consisting of three concentrated masses

interconnected and attached to ground with linear springs and separated from

the side walls with gap-nonlinear spring bumpers, as shown in Figure 11A,

For the analysis, the interelement springs were modeled withwas considered.

truss elements while the linear base springs were modeled with massless beam

The bumper elements had an initial gap of 0.001" and a cubic non-elements.

linear spring constant given by

(21)k = 1000 (D-G) + 100,000 (D-G)
*

The input excitation was the ground motion acceleration time history depicted

in Figure 113. All the pertinent system parameters are shown in Figure llA. .

The response time histories were determined by both the =odal superposi-

integration using an integration time step of 0.001 sec.
l tion method and direct

18
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To provide a means to corroborate the results, the system response was

also determined using the BNL nonlinear dynamics code OSCIL (Reference 6).

This code, developed to evaluate RTGR core block response, is designed to

evaluate the response of multimass systems containing nonlinear spring ele-
4

incorporates a numerical integrationItments with general characteristics.a

scheme which automatically varies the integration time step size as a function
,

of event severity.

The resultant displacement time histories for the three masses are shown

in Figures 12A and 12B with the modal superposition results shown in A and the

The predicted bumper force time historiesdirect integration resulte in B.

for both methods are shown in Figures 13A and 13B, with the positive forces

corresponding to the lef t side bumper and the negative forces corresponding to

Tho OSCIL predicted displacement time histories arethe right side bumper.

shown in Figure 12C and the corresponding bumper force time histories are

shown in Figure 13C.

A comparison of Figures 12A,12B, and 12C or 13A,13B and 13C indicates
A comparison of thethat all three methods provide near identical renults.

numerical results for the three runs showed minimal differences with the best
agreement occurring between ti'e direct integration solution and the OSCIL re-

integration runs with finer time steps producedsuits. Additional direct
further convergence to the OSCIL solution

Concentrated Masses, Sweeping Sinosoidal ExcitationIII.4

As a last test of the method, the three mass problem was again used to*

investigate whether the psuedo force method would correctly predict the multiple

response roots inherent in this nonlinear system. Using the direct integration
.

solution mode and the.0 SCIL code, the response of the system to a sweeping

frequency sinusoidal forcing function, the frequency being both swept up and

23
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swept down, was determined. The excitation was a evncentrated force given by

F=20 cos(wt) acting, in phase, on each mass point. For the direct integration

~

solution the integration time step was 1 : 10 seconds while the OSCIL code
#~

adapted minimum time steps as small r31 x 10 seconds.
-

Both soletion methods predicted the same response curve, shown in Figure
.

14. This curve is typical for a system with a hardening characteristic [5] and .

was to be expected for the problem being considered. In the frequen.cy range
'

4+6 cps two distir.ct response roots are evident, the root exhibited by the sys-

tem excited at these frequencies being determined by the prior histocy tran-
'

sients. Clearly, this result further confirms the adequacy of the psuedo force

method as a nonlinear analysis method.

IV. Conclusions

The implementation of the psuedo force method into an existing elastic
,

1

| finite element code was found to be straightforward. The required modifica-
.

tions were most readily made for the direct integration solution mode chile

requiring some additional coding for the modal superposition solution mode:

(gap effects necessitated a constant return to system coordinates) . Lastly,

potential problems foreseen for the development of a pseudo force iteration

scheme proved unfounded as the simplest, most direct procedure provided ac-

ceptable accuracy. ~

Concerning the problem solutions contained herein, the results predicted

with the BNL psuedo force code option agreed in all important aspects with

the existing solutions. This was true for both the direct integration and
,

the modal superposition solution modes with the latter exhibiting slightly

greater, but insignificant, inaccuracys. As with linear system analyses, '

the modal superposition solution mode was found to be the most rapid, ex-

hibiting the reduction in computer running time normally associated witn it.

'
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The psuedo force method was found to be a fully genetc1. nonlinear analysis

method. Its employment for the analysis of linear systems cont dning a limited

number of discrete nonlinear components is recommended as it is both more economi-

cal and as accurate as more sophisticated nonlinear methods. However, since
*

these advantages rapidly decline as either the extent or duration of nonlinear

affects increase it is not recommended as a general purpose nonlinear method. .
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