TIC ### TENNESSEE VALLEY AUTHORITY CHATTANOOGA, TENNESSEE 37401 400 Chestnut Street Tower II January 5, 1981 SERVICES UNIT Mr. James P. O'Reilly, Director Office of Inspection and Enforcement U.S. Nuclear Regulatory Commission Region II - Suite 3100 101 Marietta Street Atlanta, Georgia 30303 Dear Mr. O'Reilly: OFFICE OF INSPECTION AND ENFORCEMENT BULLETIN 79-14 - RII:JPO 50-259, -260, -296 - BROWNS FERRY NUCLEAR PLANT In my letter to you dated August 31, 1979, Tennessee Valley Authority committed to an IE Bulletin 79-14 inspection program which was planned to be completed by November 25, 1980. However, considerable difficulties have resulted in delays beyond the planned schedule. During the inspection program, it has become evident that several reinspections must be performed in order to complete a design package. Once these inspections are completed, a complete analysis must be performed to find any discrepancies that may exist. Repairs are suggested and drawings transmitted to the plant to physically repair the seismic restraints in question in a system has been completely repaired, a systematic analysis of each stem to verify seismic qualification must be performed. The above process takes time and occasionally reverification. Therefore, enclosed are a revised inspection schedule (Enclosure 1) and the December 1980 status report (Enclosure 2). If you have any questions, please call Jim Domer at FTS 857-2014. Very truly yours, TENNESSEE VALLEY AUTHORITY L. M. Mills, Manager Nuclear Regulation and Safety Subscribed and sworn to before me this 5 to day of 1981. Notary Public My Commission Expires 4/4/82 8101210157 Enclosures ## TENNESSEE VALLEY AUTHORITY CHATTANCOGA, TENNESSEE 37401 #### 400 Chestnut Street Tower II January 5, 1981 Mr. James P. O'Reilly, Director Office of Inspection and Enforcement U.S. Nuclear Regulatory Commission Region II - Suite 3100 101 Marietta Street Atlanta, Georgia 30303 Dear Mr. O'Reilly: OFFICE OF INSPECTION AND ENFORCEMENT BULLETIN 79-14 - RII:JPO 50-259, -260, -296 - BROWNS FERRY NUCLEAR PLANT In my letter to you dated August 31, 1979, Tennessee Valley Authority committed to an IE Bulletin 79-14 inspection program which was planned to be completed by November 25, 1980. However, considerable difficulties have resulted in delays beyond the planned schedule. During the inspection program, it has become evident that several reinspections must be performed in order to complete a design package. Once these inspections are completed, a complete analysis must be performed to find any discrepancies that may exist. Repairs are suggested and drawings transmitted to the plant to physically repair the seismic restraints in question. When a system has been completely repaired, a systematic analysis of each system to verify seismic qualification must be performed. The above process takes time and occasionally reverification. Therefore, enclosed are a revised inspection schedule (Enclosure 1) and the December 1980 status report (Enclosure 2). If you have any questions, please call Jim Domer at FTS 857-2014. Very truly yours, TENNESSEE VALLEY AUTHORITY L. M. Mills, Manager Nuclear Regulation and Safety Subscribed and sworn to before me this 5th day of and 1981. Notary Public My Commission Expires 4/4 Enclosures An Equal Opportunity Employer ## TENNESSEE VALLEY AUTHORITY CHATTANOOGA, TENNESSEE 37401 400 Chestnut Street Tower II January 5, 1981 Mr. James P. O'Reilly, Director Office of Inspection and Enforcement U.S. Nuclear Regulatory Commission Region II - Suite 3100 101 Marietta Street Atlanta, Georgia 30303 Dear Mr. O'Reilly: OFFICE OF INSPECTION AND ENFORCEMENT BULLETIN 79-14 - RII:JPO 50-259, -260, -296 - BROWNS FERRY NUCLEAR PLANT In my letter to you dated August 31, 1979, Tennessee Valley Authority committed to an IE Bulletin 79-14 inspection program which was planned to be completed by November 25, 1980. However, considerable difficulties have resulted in delays beyond the planned schedule. During the inspection program, it has become evident that several reinspections must be performed in order to complete a design package. Once these inspections are completed, a complete analysis must be performed to find any discrepancies that may exist. Repairs are suggested and drawings transmitted to the plant to physically repair the seismic restraints in question. When a system has been completely repaired, a systematic analysis of each system to verify seismic qualification must be performed. The above process takes time and occasionally reverification. Therefore, enclosed are a revised inspection schedule (Enclosure 1) and the December 1980 status report (Enclosure 2). If you have any questions, please call Jim Domer at FLS 857-2014. Very truly yours, TENNESSEE VALLEY AUTHORITY L. M. Mills, Manager Nuclear Regulation and Safety Subscribed and sworn to before me this 5 Th day of June 1981. 2 12 NOTARY PUBLIC My Commission Expires 4/4/ Enclosures An Equal Opportunity Employer #### ENCLOSURE 1 ## Accessible Areas Unit 1--Inspections to be completed by July 20, 1981. Unit 2-Inspections to be completed by December 31, 1981. Unit 3-Inspections to be completed by April 20, 1981. ## Inaccessible Areas Unit 1-Inspections to be completed by August 1, 1981. Unit 2-Complete. Unit 3-Inspections to be completed by January 10, 1981. #### ENCLOSURE 2 #### BROWNS FERRY NUCLEAR PLANT IE BULLETIN 79-14 PROGRESS REPORT DECEMBER 1980 SECTION A REPRESENTS OVERALL PERCENTAGE COMPLETION OF 79-14 AT BROWNS FERRY SECTION B REPRESENTS DRAWING CONFIGURATION INSPECTION SECTION C REPRESENTS PIPE SUPPORT INSPECTION SECTION D REPRESENTS FLOOR AND WALL PENETRATION INSPECTION SECTION E REPRESENTS VALVE INSPECTION #### OVERALL PERCENTAGE | SYSTEM | UNIT 1
ACCESSIBLE | UNIT 1
INACCESSIBLE | UNIT 2
ACCESSIBLE | UNIT 2
INACCESSIBLE | UNIT 3
ACCESSIBLE | UNIT 3
INACCESSIBLE | |-------------------------------|----------------------|------------------------|----------------------|------------------------|----------------------|------------------------| | Core Spray | 100% | 100% | 0% | 100% | 100% | 90% | | CRD | 100% | 100% | 75% | 100% | 100% | 100% | | CSS
Ring
Header | 100% | NA | 0% | NA | 100% | NA . | | DW & Torus
Purge
Piping | 100% | NA . | 0% | NA . | 100% | NA . | | Drywell
Spray
Header | NA | 100% | NA | 100% | NA | 100% | | Torus
Spray
Header | NA | 100% | NA | 100% | NA. | 100% | | Control
Air | NA | 100% | NA | 100% | NA | 100% | | EECW | 95% | NA | 30% | NA | 35% | NA | | Feedwater | NA . | 100% | NA | 100% | NA | 85% | | FPC | 100% | 100% | 0% | 100% | 100% | 85% | | SYSTEM | UNIT 1
ACCESSIBLE | UNIT 1
INACCESSIBLE | UNIT 2
ACCESSIBLE | UNIT 2
INACCESSIBLE | UNIT 3
ACCESSIBLE | UNIT 3
INACCESSIBL | |------------------------------------|----------------------|------------------------|----------------------|------------------------|----------------------|-----------------------| | HPCI | 100% | 100% | 0% | 100% | 85% | 99% | | Main
Steam | NA | 100% | NA. | 100% | NA | 85% | | Torus
Ring
Header | 100% | NA · | .100% | NA | 100% | NA · | | RBCCW | 100% | 100% | 30% | 100% | 100% | 100% | | RCIC | 100% | 100% | 85% | 100% | 85% | 99% | | Recircu-
lation | NA | 100% | NA | 100% | NA | 85% - | | RHR | 100% | 100% | 15% | 100% | 50% | 75% | | RHRSW | 95% | NA | 5% | NA | 95% | NA | | RWCU | NA . | 100% | NA | 100% | NA | 85% | | Radwaste
Sump Pump
Discharge | 100% | 100% | 60% | 100% | 100% | 100% | | SYSTEM | UNIT 1
ACCESSIBLE | UNIT 1
INACCESSIBLE | UNIT 2
ACCESSIBLE | UNIT 2
INACCESSIBLE | UNIT 3
ACCESSIBLE | UNIT 3
INACCESSIBLE | |---------------------|----------------------|------------------------|----------------------|------------------------|----------------------|------------------------| | Rx Drain
& Ver.t | NA | 100% | NA | 100% | NA | 85% | | SGT | 100% | NA | 100% | NA | 100% | NA | | SLC | 100% | 100% | 0% | 100% | 100% | 100% | | UNIT | SYSTEM | NUMBER
INSPECTED
TO DATE | NUMBER
WITH
DEVIATIONS | SIGNIFICANT
DEVIATIONS | NUMBER
REPAIRED | |------|------------------------------|--------------------------------|------------------------------|---------------------------|--------------------| | 1 | Core Spray | 3 | 0 | 0 | 0 | | 2 | Core Spray | 1 | 0 | 0 | 0 | | 3 | Core Spray | 6 | 3 | 0 | ٥. | | 1 | CRD | 2 | 1 | 1 | 0 | | 2 | CRD | 6 | . 1 | 1 | 0 | | 3: | CRD | 4 | 2 | 1 | 0 | | 1 | CSS Ring Header | 1 | 1 | . 0 | 0 | | 2 | CSS Ring Header | 1 | 1 | 0 | 0 | | 3 | CSS Ring Header | 1 | 1 | 0 | 0 | | 1 | DW and Torus
Purge Piping | 4 | 4 | 0 | 0 | | 2 | DW and Torus
Purge Piping | 0 | 0 | 0 | 0 | | 3 | DW and Torus
Purge Piping | 1 . | 1 | 0 | 0 | | | | | | | | | UNIT | SYSTEM | NUMBER
INSPECTED
TO DATE | NUMBER
WITH
DEVIATIONS | SIGNIFICANT
DEVIATIONS | NUMBER
REPAIRED | |------|-------------------------|--------------------------------|------------------------------|---------------------------|--------------------| | 1 | Drywell Spray
Header | 4 | 1 | 0 | 0 | | 2 | Drywell Spray
Header | 1 | 0 | 0 | 0 | | 3 | Drywell Spray
Header | 1 | 0 | 0 | 0 | | 1 | Torus Spray
Header | 1 | 1 | 0 | 0 | | 2 | Torus Spray
Header | 1 | 0 | 0 | 0 | | 3 | Torus Spray
Header | 1 | 1 | 0 | 0 | | 1 | Drywell
Control Air | 1 | 0 | . 0 | 0 | | 2 | Drywell
Control Air | 1 | 1 | 0 | 0 | | 3 | Drywell
Control Air | 3 | 0 | 0 | 0 | | 1 | EECW | 17 | 14 | 2 | 0 | | 2 | EECW | 0 | 0 | 0 | 0 | | 3. | EECW | 6 | 3 | 1 | 0 | | UNIT | SYSTEM | NUMBER
INSPECTED
TO DATE | NUMBER
WITH
DEVIATIONS | SIGNIFICANT
DEVIATIONS | NUMBER
REPAIRED | |------|------------|--------------------------------|------------------------------|---------------------------|--------------------| | 1 | Feedwater | 1 | 0 | 0 | 0 | | 2 | Feedwater | 1 | 0 | 0 | 0 | | 3 | Feedwater | 1 | 0 | 0 | c | | 1 | FPC | 4 | 2 | 0 | 0 | | 2 | FFC . | 2 | 0 | 0 | 0 | | 3 | FPC | 2 | 2 | 0 , | 0 | | 1 | HPCI | 4 | 2 | 0 | 0 | | 2 | HPCI | 3 | 2 | 0 | 0 | | 3 | . HPCI | 2 | 1 | 0 | 0 | | 1 | Main Steam | 3 | 1 | 0 | . 0 | | 2 | Main Steam | 3 | 1. | 0 | 0 | | 3 | Main Steam | 1 | 1 | 0 | 0 | | and the same of th | | | | | | |--|-------------------|--------------------------------|------------------------------|---------------------------|--------------------| | UNIT | SYSTEM | NUMBER
INSPECTED
TO DATE | NUMBER
WITH
DEVIATIONS | SIGNIFICANT
DEVIATIONS | NUMBER
REPAIRED | | 1 | Torus Ring Header | ļ | 1 | 0 | 0 | | 2 | Torus Ring Header | 0 | 0 | 0 | 0 | | 3 | Torus Ring Header | 1 . | 1 | 0 | 0 . | | 1 | RBCCW | 11 | 5 | 13 | 13 | | 2 | RBCCW | 3 | 1 | 0 | · 1 | | 3 | RBCCW | 7 | 2 | 3 | 0 | | 1 | RCIC | 4 | 3 | 0 | 0 | | 2 | RCIC | 4 | 4 | 0 | 0 | | 3 | RCIC | 4 | 3 | 0 | 0 | | 1 | Recirculation | 1 | 0 | 0 | 0 | | 2 | Recirculation . | 1 | 1 | 0 | 0 | | 3 . | Recirculation | 1 | 0 | . 0 | 0 | | UNIT | SYSTEM | NUMBER
INSPECTED
TO DATE | NUMBER
WITH
DEVIATIONS | SIGNIFICANT
DEVIATIONS | NUMBER
REPAIRE | |------|---------------------------------|--------------------------------|------------------------------|---------------------------|-------------------| | 1 | RHR | 13 | 13 | 1 | 0 | | 2 | RHR | 1 | 0 | 0 | 0 | | 3 | RHR | 7 | 5 | 0 | 0 | | 1 | RHRSW | . 1 | 0 | 1 | 1 | | 2 | RHRSW | 0 | 0 | 1 | 0 | | 3 | RHRSW | 0 | 0 | 1 | 1 | | 1 | RWCU | 2 | 0 | 0 | 0 | | 2 | RWCU | 2 | 1 | 0 | 0 | | 3 | RWCU | 2 | 1 | 0 | 0 | | 1 | Radwaste Sump
Pump Discharge | 2 | 2 | 10 | 0 | | 2 | Radwaste Sump
Pump Discharge | 4 | 4 | 1 | 0 | | 3 | Radwaste Sump
Pump Discharge | 1 | 1 | 1 | 0 | | UNIT | SYSTEM | NUMBER
INSPECTED
TO DATE | NUMBER
WITH
DEVIATIONS | SIGNIFICANT
DEVIATIONS | NUMBER
REPAIRED | |------|----------------------|--------------------------------|------------------------------|---------------------------|--------------------| | 1 | RX Drain and
Vent | ļ | 1 | 0 | 0 | | 2 | RX Drain and
Vent | 1 | 1 | 0 | 0 | | 3 | RX Drain and Vent | 2 | 2 | 0 | 0 | | 1 | SGT | . 1 | 1 | 0 | 1 | | 2 | SGT | 1 | 0 | 1 | 1 | | 3 | SGT | 1 | 1 | 0 | 0 | | 1 | SLC | 3 | 3 | 0 | 0 . | | 2 | SLC | 1 | 1 | 0. | 0 | | 3 | SLC | 2 ` | 2 | 0 | 0 | | UNIT | SYSTEM | NUMBER
INSPECTED
TO DATE | NUMBER
WITH
DEVIATIONS | SIGNIFICANT
DEVIATIONS | NUMBER
REPAIREI | |------|------------------------------|--------------------------------|------------------------------|---------------------------|--------------------| | 1 | Core Spray | 92 | 58 | 0 | 16 | | 2 | Core Spray | 16 | 5 | 0 | 1 | | 3 | Core Spray | 103 | 57 | 0 | 1 | | 1 | CRD | 76 | 24 | 0 | 3 | | 2 | CRD | 82 | 16 | 0 | 0 | | 3 | CRD | 75 | 18 | 0 | 0 | | 1 | CSS Ring Header | 29 | 7 | 0 | 3 | | 2 | CSS Ring Header | 0 | 0 | 0 | 0 | | 3 | CSS Ring Header | 32 | 32 | 5 | 0 | | 1 | DW and Torus
Purge Piping | 31 | 0 | 0 | 5 | | 2 | DW and Torus
Purge Piping | 0 | 0 | 0 | 0 | | 3 | DW and Torus Purge Piping | 27 | 0 | 0 | 0 | | UNIT | SYSTEM | NUMBER
INSPECTED
TO DATE | NUMBER
WITH
DEVIATIONS | SIGNIFICANT
DEVIATIONS | NUMBER
REPAIRED | |------|-------------------------|--------------------------------|------------------------------|---------------------------|--------------------| | 1 | Drywell Spray
Header | 12 | 0 | 0 | 0 | | 2 | Drywell Spray
Header | 8 | o | 0 | 0 | | 3 | Drywell Spray
Header | 2 | 0 | 0 | 0 | | 1 | Torus Spray -Header | . 1 | 1 | 0 | 0 | | 2 | Torus Spray
Header | 16 | 16 | 0 | 0 | | 3 | Torus Spray
Header | 1 | 1 | 0 | 0 | | 1 | Drywel
Control Air | 4 | 2 | 0 | 0 | | 2 | Drywell
Control Air | . 3 | 3 | 0 | 0 | | 3 | Drywell
Control Air | 20 | 0 | 0 | 0 | | 1 | EECW | 269 | 61 | 2 | 13 | | 2 | EECW | 18 | 10 | 0 | 2 | | 3 | EECW | 126 | 60 | 1 | 2 | | UNIT | SYSTEM | NUMBER
INSPECTED
TO DATE | NUMBER
WITH
DEVIATIONS | SIGNIFICANT
DEVIATIONS | NUMBER
REPAIRED | |------|------------|--------------------------------|------------------------------|---------------------------|--------------------| | 1 | Feedwater | 28 | 9 . | 0 | 0 | | 2 | Feedwater | 40 | 13 | 0 | 0 | | 3 | Feedwater | 36 | 7 | 0 | 8 | | 1 | FPC | . 134 | 48 | 0 | 9 | | 2 | FPC . | 7 | 0 | 0 | 0 | | 3 | FPC | 107 | 60 | 1 | 1 | | 1 | HPCI | 88 | 58 | 2 | 24 | | 2 | HPCI | 26 | 24 | 0 | 0. | | 3 | HPCI | 82 | 27 | . 2 | 3 | | 1 | Main Steam | 85 | 8 | 0 | 0 | | 2 | Main Steam | 109 | 25 | 0 | 0 | | 3 | Main Steam | 90 | 32 | 0 | 1 | | UNIT | SYSTEM | NUMBER
INSPECTED
TO DATE | NUMBER
WITH
DEVIATIONS | SIGNIFICANT
DEVIATIONS | NUMEER
REPAIRED | |------|-------------------|--------------------------------|------------------------------|---------------------------|--------------------| | 1 | Torus Ring Header | 23 | 4 | 0 | 9 | | 2 | Torus Ring Header | 3 | 0 | 0 | 0 | | 3 | Torus Ring Header | 30 | 30 | 0 | 0 . | | 1 | RBCCW | 176 | 153 | 2 | 77 | | 2 | RBCCW | 81 | 76 | 0 | 1 | | 3 | RBCCW | 184 | 158 | 2 | 14 | | 1 | RCIC | 57 | . 38 | 1 | 11 | | 2 | RCIC | 62 | 34 | 0. | 1 | | 3 | RCIC | 56 | 26 | 0 | 5 | | 1 | RCW | 5 | 5 | 0 | 2 | | 2 | RCW | 2 | 2 | 0 | . 2 | | 3 | RCW | 1 | 1 | 0 | 1 | # PIPE SUPPORT INSPECTION | UNIT | SYSTEM | NUMBER
INSPECTED
TO DATE | NUMBER
WITH
DEVIATIONS | SIGNIFICANT
DEVIATIONS | NUMBER
REPAIRED | |------|---------------|--------------------------------|------------------------------|---------------------------|--------------------| | 1 | Recirculation | 47 | 3 | 0 | .0 | | 2 | Recirculation | 39 | 38 | 1 | 0 | | 3 | Recirculation | 53 | 7 | 0 | 0 , | | 1 | RHR | 296 | 220 | 4 | 63 | | 2 | RHR | 33 | 16 | 1 | . 1 | | 3 | RHR | 158 | 20 | 0 | . 12 | | 1 | RHRSW | 50 | 36 | 6 | 17 | | 2 | RHRSW | . 11 | 6 | 2 | 3 | | 3 | RHRSW | 15 | 9 | 0 | 1 | | 1 | RWCU | 15 | 4 | 0 | 1 | | 2 | RWCU . | 7 | 7 | 0 | 1 | | 3 | RWCU | 13 | 4 | - 0 | 1 | | UNIT | SYSTEM | NUMBER
INSPECTED
TO DATE | NUMBER
WITH
DEVIATIONS | SIGNIFICANT
DEVIATIONS | NUMBER
REPAIRED | |------|---------------------------------|--------------------------------|------------------------------|---------------------------|--------------------| | 1 | Radwaste Sump
Pump Discharge | 65 | 12 | 1 | 8 | | 2 | Radwaste Sump
Pump Discharge | 62 | 2 | 1 | 0 | | 3 | Radwaste Sump
Pump Discharge | 66 | 60 | 0 | 1 | | 1 | RX Drain and
Vent | 17 | 11 | 1 | 0 | | 2 | RX Drain and Vent | 20 | 15 | 1 | .0 | | 3 , | RX Drain and Vent | 7 | 1 | o | 0 | | 1 | SGT | 24 | 5 | 0 | 12 | | 2 | SGT | 19 | 6 | 0 | 0 | | 3 | SGT . | 13 | 5 | 0 | 0 | | 1 | SLC | 60 | 18 | 0 | 0 | | 2 | SLC | 16 | 2 | 0 | 1 | | 3 | SLC | 77 | 18 | 0 | 0 | | UNIT | SYSTEM | NUMBER
INSPECTED
TO DATE | NUMBER
WITH
DEVIATIONS | SIGNIFICANT
DEVIATIONS | NUMBEI
REPAIRI | |------|------------------------------|--------------------------------|------------------------------|---------------------------|-------------------| | : | Core Spray | 15 | 0 | 0 | 0 | | 2 | Core Spray | 1 | 0 | 0 | 0 | | 3 | Core Spray | 2 | 1 | 0 | 1 | | 1 | CRD | 1 | 0 | 0 | 0 | | . 2 | CRD | 3 | 0 | 0 . | 0 | | 3 | CRD | 1 | 0 | 0 | 0 | | 1 | CSS Ring Header | 0 | 0 | 0 | . 0 | | 2 | CSS Ring Header | 0 | 0 | 0 | 0 | | 3 | CSS Ring Header | 1 | 0 | 0 | 0 | | 1 | DW and Torus Purge Piping | 3 | 0 | 0 | 0 | | 2. | DW and Torus
Purge Piping | 0 | 0 | 0 | 0 | | 3 | DW and Torus Purge Piping | 0 | 0 . | 0 | 0 | | UNIT | SYSTEM | NUMBER
INSPECTED
TO DATE | NUMBER
WITH
DEVIATIONS | SIGNIFICANT
DEVIATIONS | NUMBER
REPAIRED | |------|-------------------------|--------------------------------|------------------------------|---------------------------|--------------------| | 1 | Drywell Spray
Header | ò | 0 | 0 | 0 | | 2 | Drywell Spray
Header | 0 | 0 | 0 | 0 | | 3 | Drywell Spray
Header | 0 | 0 | 0 | ٥. | | 1 | Torus Spray
Header | 0 | . 0 | 0 - | O | | 2 . | Torus Spray
Header | 0 | 0 | 0 | 0 | | 3,; | Torus Spray
Header | 0 | 0 | 0 | 0 | | 1 | Drywell
Control Air | 1. | 0 | . 0 | 0 | | 2 | Drywell
Control Air | . 2 | 0 | י | 0 | | 3 | Drywell
Control Air | . 1 | 0 | 0 | 0 | | 1 | EECW | 17 | 0 | 0 | 0 | | 2 | EECW | 0 | 0 | 0 | 0 | | 3 | EECW | 3 | 0 | 0 | 0 | | UNIT | SYSTEM | NUMBER
INSPECTED
TO DATE | NUMBER
WITH
DEVIATIONS | SIGNIFICANT
DEVIATIONS | NUMBER
REPAIREI | |-------|------------|--------------------------------|------------------------------|---------------------------|--------------------| | 1 | Feedwater | 0 | 0 | 0 | 0 | | 2 | Feedwater | 1 | 0 | 0 | 0 | | 3 | Feedwater | 2 | 0 | 0 | 2 | | 1 | FPC | 0 | 0 | 0 | 0 | | 2 | FPC : | 3 | 0 | 0 | 0 | | 3 -,, | FPC | 2 | 2 | 0 | 0 | | 1 | HPCI | 13 | 3 | 0 | 0 | | . 2 | HPCI | 1 | 0 | 0 | 0 | | 3 | HPCI | 3 | 0 | 0 | 0 | | 1 | Main Steam | 0 | 0 | 0 | 0 | | 2 | Main Steam | 2 | 0 | 0 | 0 | | 3 | Main Steam | 0 | 0 | 0 | 0 | | UNIT | SYSTEM | NUMBER
INSPECTED
TO DATE | NUMBER
WITH
DEVIATIONS | SIGNIFICANT
DEVIATIONS | NUMBER
REPAIRED | |-------|-------------------|--------------------------------|------------------------------|---------------------------|--------------------| | 1 | Torus Ring Header | 0 | 0 | 0 | 0 | | 2 | Torus Ring Header | 0 | 0 | 0 | 0 | | 3 | Torus Ring Header | 0 | 0 | 0 | 0 | | 1 | RBCCW | 5 | .0 | 0 | 0 | | 2 | RBCCW | 2 | 0 | 0 | 0 | | 3 -,, | RBCCW | 7 | 2 | 0 | ō | | 1 | RCIC | 11 | 0 | 0 | 0 | | 2 | RCIC | 12 | 0 | 0 | 0 | | 3 | RCIC | 12 | 0 | 0 | 0 | | 1 | Recirculation | 1 | 0 | 0 | 0 . | | 2 | Recirculation | 1 | 0 | 0 | 0 | | 3 | Recirculation | 0 | 0 | 0 | 0 | | | | | | | | ## FLOOR AND WALL PENETRATION INSPECTION | UNIT | SYSTEM | NUMBER
INSPECTED
TO DATE | NUMBER
WITH
DEVIATIONS | SIGNIFICANT
DEVIATIONS | NUMBER
REPAIRED | |------|---------------------------------|--------------------------------|------------------------------|---------------------------|--------------------| | 1 | RHR | 7 | 2 | 0 | 0 | | 2 | RHR | 1 | 0 | 0 | 0 | | 3 | RHR | 0 | 0 | 0 | 0 | | 1 | RHRSW | 3 | 0 | 0 | 0 | | 2 | RHRSW | 0 | 0 | . 0 | 0 | | 3 | RHRSW | 0 | 0 | 0 | 0 | | 1 | RWCU - | 1 | 0 | 0 | 0 | | 2 | RWCU | 1 | 0 | 0 | 0 | | 3 | RWCU | 2 | 0 | 0 | 0 | | 1 | Radwaste Sump
Pump Discharge | 2 | 0 | 0 | 0 | | 2 | Radwaste Sump
Pump Discharge | 2 | 1 | 0 | 0 | | 3 | Radwaste Sump
Pump Discharge | 2 | 0 | 0 | 0 | | UNIT | SYSTEM | NUMBER
INSPECTED
TO DATE | NUMBER
WITH
DEVIATIONS | SIGNIFICANT
DEVLATIONS | NUMBER
REPAIRED | |------|----------------------|--------------------------------|------------------------------|---------------------------|--------------------| | 1 | RX Drain and Vent | ò | 0 | 0 | 0 | | 2 | RX Drain and
Vent | 0 | 0 | 0 | 0 | | 3 | RX Drain and
Vent | 2 | 0 | 0 | ٥. | | 1 | SGT | 0 | 0 | 0 | 0 | | 2 | SGT | 0 | 0 | 0 | 0 | | 3 | | 0 | 0 | 0 | 0 | | 1 | SLC | 1 | 0 | 0 | 0 | | 2 | SLC | 0 | 0 | 0 | 0 | | 3 | SLC | 10 | 0 | 0 | 0 | | UNIT
NUMBER | SYSTEM | NUMBER
INSPECTED
TO DATE | NUMBER
WITH
DEVIATIONS | SIGNIFICANT | REPAIREL | |----------------|------------------------------|--------------------------------|------------------------------|-------------|----------| | 1 | Core Spray | 63 | 1 | 0 | 0 | | 2 | Core Spray | 4 | 0 | 0 | 0 | | 3 | Core Spray | 62 | 0 | 0 | 0 | | 1 | CRD | 5 | 0 | 0 | 0 | | 2 | CRD | 6 | 0 | 0 | 0 | | 3 | CRD | . 5 | O | 0 | 0 | | 1 | CSS Ring Header | . 0 | 0 | 0 | 0 | | 2 | CSS Ring Header | 0 | 0 | . 0 | 0 | | 3 | CSS Ring Header | 0 | 0 | 0 | o · | | 1 | DW and Torus Purge Piping | 9 | 0 | 0 | 0 | | 2 | DW and Torus
Purge Piping | 0 | 0 | 0 | 0 | | 3 | DW and Torus
Purge Piping | 7 | 0 | 0 | 0 | #### VALVE INSPECTION | UNIT | SYSTE1 | NUMBER
INSPECTED
TO DATE | NUMBER
VITH
DEVIATIONS | SIGNIFICANT
DEVIATIONS | NUMBER
REPAIRED | |------|-------------------------|--------------------------------|------------------------------|---------------------------|--------------------| | 1 | Drywell Spray Header | ó | 0 | 0 | 0 | | 2 | Drywell Spray
Header | 0 | 0 | 0 | 0 | | 3 | Drywell Spray
Header | 0 - | 0 | - 0 | 0 | | 1 | Torus Sp. ay
Header | 0 | 0 | 0 | 0 | | 2 | Torus Spray
Header | 0 | 0 | . 0 | 0 | | 3 | Torus Spray | 0 | 0 | 0 | . 0 | | 1 | Drywell
Control Air | 5 | 0 | . 0 | 0 | | 2 | Drywell
Control Air | 5 | 0 | 0 | 0 | | 3 | Drywell
Control Air | 5 | 3 | 0 | o | | 1 | EECW | 106 | 4 | 2 | o | | 2 | EECW | 2 | 1 | С | 0 | | 3 . | EECW | 41 | 2 | , 0 | 0 | ## VALVE INSPECTION | UNIT | SYSTEM | NUMBER
INSPECTED
TO DATE | NUMBER
WITH
DEVIATIONS | SIGNIFICANT
DEVIATIONS | NUMBER
REPAIRED | |------|------------|--------------------------------|------------------------------|---------------------------|--------------------| | 1 | Feedwater | 8 | 0 | 0 | 0 | | 2 | Feedwater | 6 | 0 | 0 | 0 | | 3 | Feedwater | 4 | 0 | 0 | 0 | | 1 | FPC | 40 | 0 | 0 | 0 | | 2 | FPC . | 2 | 0 . | 0 | 0 | | 3 | FPC | 41 | 0 | 0 | 0 | | 1 | HPCI | 21 | 2 | 0 | 0 | | 2 | HPCI | 5 | 0 | 0 | 0 | | 3 | HPCI | 21 | 0 | 0 | 0 | | 1 | Main Steam | 8 | 0 | 0 | 0 | | 2 | Main Steam | 34 | 1 | 0 | 0 | | 3 | Main Steam | 4 | 0 | 0 | 0 | | UNIT | SYSTEM | NUME R
INSPECIED
TO DATE | NUMBER
WITH
DEVIATIONS | SIGNIFICANT
DEVIATIONS | NUMBER
REPAIRED | |------|-------------------|--------------------------------|------------------------------|---------------------------|--------------------| | 1 | Torus Ring Kowder | ó | 0 | 0 | 0 | | 2 | Torus Ring Header | 0 | О | 0 | 0 | | 3 | Torus Ring Header | 0 | 0 | 0 | 0 | | 1 | RBCCW | 61 | 1 | 0 | 0 | | 2 | RBCCW , | 23 | 0 | 0 | 0 | | 3 | RBCCW . | 49 | 2 | . 0 | 0 | | 1 | RCIC | 18 | 0 | 0 | 0. | | 2 | RCIC | 21 | 1 | 0 | 0 | | 3 | RCIC | 18 | 1 | 0 | 0 | | 1 | Recirculation | 6 | 0 | 0 | 0 | | ż | Recirculation | 14 | 0 | 0 | . 0 | | 3 | Recirculation | 6 | 0 | 0 | 0 | E5 E6 ## VALVE INSPECTION | UNIT | SYSTEM | NUMBER
INSPECTED
TO DATE | NUMBER
WITH
DEVIATIONS | SIGNIFICANT
DEVIATIONS | NUMBER
REPAIRED | |------|----------------------|--------------------------------|------------------------------|---------------------------|--------------------| | 1 | RX Drain and
Vent | 8 | 0 | 0 | 0 | | 2 | RX Drain and
Vent | 9 | 0 | 0 | 0 | | 3 | RX Drain and
Vent | 7 | 0 | 0 | 0 | | 1 | SGT | 0 | 0 | 0 | 0 | | 2 | SGT | 2 | 0 | 0 | 0 - | | 3 | SGT | 2 | 0 | 0 | 0 | | 1 | SLC | 47 | 0 | 0 | 0 | | 2 | SLC | 4 | 0 | 0 | 0 | | 3 | SLC | 39 | 0 | 0 | 0 |