QUAD-CITIES NUCLEAR POWER STATION

UNITS 1 AND 2

MONTHLY PERFORMANCE REPORT

NOVEMBER 1980

COMMONWEALTH EDISON COMPANY

AND

NRC DOCKET NOS. 50-25% AND 50-265 LICENSE NOS. DPR-29 AND DPR-30

TABLE OF CONTENTS

- 1. Introduction
- 11. Summary of Operating Experience

A. Unit One

B. Unit Two

- III. Plant or Procedure Changes, Tests, Experiments, and Safety Related Maintenance
 - A. Amendments to Facility License or Technical Specifications
 - B. Facility or Procedure Changes Requiring NRC /pproval
 - C. Tests and Experiments Requiring NRC Approval
 - D. Corrective Maintenance of Safety Related Equipment
- IV. Licensee Event Reports
- V. Data Tabulations
- VI. Unique Reporting Requirements
 - A. Main Steam Relief Valve Operations
 - B. Control Rod Drive Scram Timing Data
- VII. Refueling Information

VIII. Glossary

I. INTRODUCTION

Quad-Cities Nuclear Power Station is composed of two Boiling Water Reactors, each with a Maximum Dependable Capacity of 769 MWe net, located in Cordova, Illinois. The Station is jointly owned by Commonwealth Edison Company and Iowa-Illinois Gas & Electric Company. The Nuclear Steam Supply Systems are General Electric Company Boiling Water Reactors. The Architect/Engineer was Sargent & Lundy, Incorporated and the primary construction contractor was United Engineers & Constructors. The condenser cooling method is a closed-cycle spray canal, and the Mississippi River is the condenser cooling water source. The plant is subject to license numbers DPR-29 and DPR-30, issued October 1, 1971, and March 21, 1972, respectively, pursuant to Docket Numbers 50-254 and 50-265. The date of initial reactor criticalities for Units 1 and 2 respectively were October 18, 1971, and April 26, 1972. Commercial generation of power began on February 18, 1973 for Unit 1 and March 10, 1973 for Unit 2.

This report was complied by Becky Brown and Robert Tubbs, telephone number 309-654-2241, extensions 245 and 174.

11. SUMMARY OF OPERATING EXPERIENCE

A. UNIT ONE

November 1-30: Unit One remained shutdown for the entire reporting period for End of Cycle Five Refueling Outage.

B. UNIT TWO

November 1-3: Unit Two began the reporting period holding a load of 811 MWe and held an average load of 809 MWe until 2300 on November 1 At that time load was reduced to perform weekly turbine tests, reverse condenser flow, and change control rod pattern. On November 2 load was increased until 1050 when the reactor scrammed on APRM High Flux, due to the 2A Recirc Pump MG Set experiencing a speed transient. The reactor was brought critical at 2056 that same day, and the generator put online at 0246 on November 3. Power was increased at 100 MWe/hour until at 0555; a Recirc Pump B seal cooling water low flow alarm was received, 2B Recirc Pump was secured, with load held at 280 MWe. The unit was then shutdown, tripping the generator off-line at 1133 on November 3, to effect repairs to a leaking B Recirc Pump Suction valve, MO-2-202-4B.

November 4-6: During this three day period, the reactor was shutdown to repair B Recirc Suction valve and perform other maintenance until 2247 on November 6, when the reactor was brought critical.

November 7-11: On November 7, at 0633, the generator was synchronized and load increased until a load of 450 MWe was held at 1050, per the Nuclear Engineer. At 1300 load was increased at various rates until 5 MWe/hour was reached at 1430. This rate was maintained until maximum recirc flow was achieved at a load of 640 MWe, on November 8 at 1045. Load was dropped to 450 MWe at 0030 on November 9 to change the control rod pattern and the loss was again increased at 5 MWe/hour. On November 10, at 0800, ne rate was increased to 7 MWe/hour, until load was held at 820 MWe on November 11 at 1010. At this time the load was held steady at 820 MWe, using rod movement to override the Xenon transient, for the remainder of this period.

November 12-15: Over this four day period an average load of 819 MWe was held.

November 16-17: At 0400 on November 16 load was reduced to 400 MWe at 75 MWe/hour to perform maintenance on a malfunctioning RCIC valve. At 0915, HPC1 was declared inoperable, and per Technical Specification, a manual shutdown was initiated. At 1145 both HPC1 and RCIC were restored to service and load was held at 360 MWe. At 1340 load was increased at various rates, until a rate of 5 MWe/hour was reached at 1840. The rate was increased to 7 MWe/hour at 0830 on November 17 until a load of 825 was reached and held.

November 18-21: Over this four day period an average load of 822 MWe was held. At 2300 on November 21 load was dropped to prepare for shutdown on November 22.

November 22-26: At 0600 on November 22, the turbine was tripped offline and at 0655 the reactor was placed in Hot Standby in order to repair the "B" Recirc Suction Valve. At 1040 the reactor was brought critical, and on November 23 at 0426 the generator was put on line and load was increased to 400 MWe at 100 MWe/hour. At 1200 load was again increased, maintaining a rate of 5 MWe/hour until 0500 on November 26 when a load of 800 MWe was held, due to reaching maximum recirc flow limit. At 0800 rods were pulled to increase load to 820 MWe.

November 27-29: During this three day period an average load of 816 MWe was held.

November 30: At 0015 load was dropped to 700 MWe for weekly turbine tests. Load was increased at various rates until 820 MWe was held at 2200 ending the reporting period.

III. PLANT OR PROCEDURE CHANGES, TESTS, EXPERIMENTS, AND SAFETY RELATED MAINTENANCE

A. Amendments to Facility License or Technical Specification

Amendments to Licenses DPR-29 and DPR-30 Per Order Dated 10/24/80.

These amendments were issued pursuant to Orders for Modification of Licenses for Licenses DPR-29 and DPR-30. This change is a result of the Commission Memorandum and Order of May 23, 1980, which required the NRC staff to codify the documentation requirements for the qualification of safety-related electrical equipment. These Tech Spec changes included two items:

- By 6/30/82, all safety-related electrical equipment shall be environmentally qualified.
- (2) By 12/1/80, documentation is to be available, at a central location, which shows the methods used to qualify safety-related electrical equipment. This documentation is to be retained for the life of the plant.
- B. Facility or Procedure Changes Requiring NRC Approval

There were no facility or procedure changes requiring NRC approval for the reporting period.

C. Tests and Experiments Requiring NRC Approval

There were no tests or experiments requiring NRC approval for the reporting period.

D. Corrective Maintenance of Safety Related Equipment

The following represents a tabular summary of the safety related maintenance performed on Unit One and Unit Two during the reporting period. The headings indicated in this summary include: Work Request Numbers, LER Numbers, Components, Cause of Malfunctions, Results and Effects on Safe Operation, and Action Taken to Prevent Repetition.

UNIT _____MAINTENANCE SUMMARY

W.R. NUMBER	LER NUMBER	COMPONENT	CAUSE OF MALFUNCTION	PESULTS & EFFECTS ON SAFE OPERATION	ACTION TRACT TO PREVENT REPOTITION
Q08268	80-26/03L	1/2 Diesel Cooling Water Motor 1/2-	Faulty Motor	Sent out motor for repair and re-install.	Installed motor & wired; tested.
Q08805	80-29/01T	1A Electromatic Blowdown line 1- 3019A-8"M	Special in- spection	Inspect penetration & 105 ⁰ elbow for in- dications.	Magnetic particle in- spection performed satisfactory.
Q08806	80-29/01T	1B Electromatic Blowdown line 1- 3019B-8"M	Special in- spection	Inspect penetration & 105 ⁰ elbow for in- dications.	Magnetic particle in- spection performed satisfactory.
Q08807	80-29/01T	1C Electromatic Blowdown line 1- 3019C-8"M	Special in- spection	Inspect penetration & 105° elbow for in- dications.	Magnetic particle in- spection performed satisfactory.
Q08U08	80-29/01T	1D Electromatic Blowdown line 1- 3019D-8"M	Special in- spection	Inspect penetration & 105 ⁰ elbow for in- dications.	Magnetic particle in- spection performed satisfactory.
Q08792	80-29/01T	lE Electromatic Blowdown line 1- 3019E-8"M	Crack indication observed due to improper con- struction techniques.	The indications were caused by construction while unit was shutdown.	Work request was initiated to repair the pipe and penetra- tion.
Q07527	80-21/03L	Drywell Exhaust Valve A0-1-1601- 23	Valve needed adjusting	Valve failed leak rate test.	Adjusted valve and re- tested satisfactory.
Q05984		1B RPS Set Out- put Circuit Breaker	Faulty circuit breaker	Circuit breaker will not close. RPS system supplied from backup	Replaced circuit breaker & tested.
				poner source.	

UNIT ONE MAINTENANCE SUMMARY

W.R. NUMBER	LER NUMBER	COMPONENT	CAUSE OF MALFUNCTION	RESULTS & EFFECTS ON SAFE OPERATION	ACTION TAKEN TO PREVENT REPORT FLOOR
Q07523	80-22/03L	HPC1 Turbine Area Hi Temperature Switch 1-2371A	Faulty temperature swtich	Switch found out of high setpoint limit.	Replaced temperature switch with like; tested.
Q08167		SRM Detector Cable, SRM Channel 23	Faulty cable connector. Damaged sec ion of cable.	SRM reads downscale.	Installed 100 ohm resistor at preamp end of cable. Replaced cable connector under vessel. Remated & tested.
Q08168		SRii Detector Cable, SRM Channel 21	Faulty cable connector. Damaged section of cable.	SRM reads downscale.	i stalled 100 ohm resistor at preamp end of cable. Replaced cable connector under vessel. Remated & tested.
Q08175		SRM Detector Cable, SRM Channel 22	Faulty cable connector. Damaged section of cable.	SRM reads downscale.	Installed 100 ohm resistor at preamp end of cable. Replaced cable connector under vessel. Remated & tested.
Q08174		SRM Detector Cable, SRM Channel, 24	Faulty cable connector. Damaged section of cable.	SRM reads de nscale.	Installed 100 ohm resistor at preamp end of cable. Replaced cable connector under vessel. Remated & tested.

UNIT ONE __ MAINTENANCE SUMMARY

W.R. NUMBER I	LER NUMBER	COMPONENT	CÂUSE OF MALFUN CTION	RESULTS & EFFECTS ON SAFE OPERATION	ACTION TAKEN TO PREVENT REPETITION
Q08165		IRM Detector Cable, IRM Channel 16	Faulty cable connector. Damaged section of cable.	IRM reads downscale.	Installed 100 ohm resistor at plamp end of cable. Replaced cable connector under vessel. Remated & tested.
QC8164		IRM Detector Cable, IRM Channel 17	Faulty cable connector. Damaged section of cable.	IRM reads downscale.	Installed 100 ohm resistor at preamp end of cable. Replaced cable connector under vessel. Remated & tested.
Q08163		IRM Detector Cable, IRM Channel 18	Faulty cable connector. Damaged section of cable.	IRM reads downscale.	Installed 100 ohm resistor at preamp end of cable. Peplaced cable connector under vessel. Remated & tested.
Q09041		Standby Gas Discharge 1/2-7507A	Faulty contacts.	When SBGT train was shutoff, the valve did not auto close.	Replaced auxiliary contacts in main breaker.
Q07483		Head Spray Valve 1-i001-63	Broken line.	Packing drain line is broken off at packing gland.	Installed nipple and cap. Re-tapped threads prior to inserting nipple.

82 C (

UNIT ONE MAINTENANCE SUMMARY

W.R. NUMBER	LER NUMBER	COMPONENT	CAUSE OF MALFUNCTION	RESULTS & EFFECTS ON SAFE OPERATION	ACTION TAKEN TO PREVENT REPETITION
Q08954		Cleanup Suction Valve Outboard 1-1201-5	Faulty torque switch.	Valve will only partially close to get a dual in- dication.	Replaced torque switch; tested.
Q07535	80-21/03L	Drywell Purge Valve A0-1-1601- 21	Valve disc was out of adjustment.	Valve failed local leak rate test.	Adjusted valve and re-tested satisfactory.
Q09052		CRD 14-47	Faulty accumu- lator.	Continuous high water level alarm was present.	Installed new accumu- lator; tested.
Q07860	80-21/03L	Feedwater Check Valve "A" Loop 1-220-62A	Faulty parts.	Valve failed local leak rate test.	Disassembled valve, cleaned, replaced "O" and seal rings; torqued; tested.
Q07534	80-21/03L	Outboard Feed- water Check Valve 1-220-62B	Faulty parts.	Valve failed local leak rate test.	Replaced disc and ring; made two welds; torqued and tested.
Q09274		CRD 50-51 Accumu- lator	Bad accumulator.	Accumulator has frequent Hi water level alarms.	Installed new accumu- lator.
Q04530		RCIC Steam Supply MO-1-1301-61	Valve seat was cut and leaking through.	Valve leaks.	Lapped seat in valve body at new surface on valve plug; tested.

× ...

UNIT TWO MAINTENANCE SUMMARY

W.R. NUMBER	LER NUMBER	COMPONENT	CAUSE OF MALFUNCTION	RESULTS & EFFECTS ON SAFE OPERATION	ACTION TAKEN TO PREVENT REPETITION
Q04906		LPRM 40-33A, 40- 25A	Faulty connector.	LPRM 40-33A went high & stayed high while maintenance was re- placing CRD at 34-35.	Replaced LPRM connector; tested.
Q08881		Inboard MSIV 2-203-1A	Faulty "O" rings.	Pilot block was leaking instrument air.	Replaced two "O" rings on pilot block.
Q08848		Recirc Valve 2-202-4B	Loose bolts on valve bonnet.	Valve bonnet leak.	Torqued bonnet bolts to 3300 ft/lbs. Fermanited flange; tested.
Q08289		Main Steam Tunnel Temper- ature Switch	Shorted Temper- ature Switch.	Received 1/2 of a Group I isolation on Channel "A" main steam tunnel high temperature. Relay 595-101A is dropped out.	Replaced temperature switch, with like for like; tested.
Q08296		IRM 17	Found no problem.	The full out light in- dication does not light when IRM appears to be full out.	Found no problem; tested.
Q09166	80-31/01T	RCIC Pump Discharge 2-1301-49	Faulty Torque Switches.	Valve will not open from Control Room.	Changed torque switch and cleaned controls on limit switches.
Q09076		- MCC 28-3 480 VAC	Main Feed Breaker defective.	MCC 28-3 keeps tripping.	Replaced main feed breaker at Bus 28

UNIT TWO MAINTENANCE SUMMARY

W.R. NUMBER	LER NUMBER	COMPONENT	CAUSE OF MALFUNCTION	RESULTS & EFFECTS ON SAFE OPERATION	ACTION TAKEN TO PREVENT REPETITION
Q09169	80-32/01T	HPCI Turbine Stop Valve M0-2-2301-3	Cracked cover on valve hydraulic operator.	HPCI system was in- operable.	Replaced cover with identical cover and tested.
Q0€274		SRM Channel 23	Bad capacitors.	SRM gave erratic readings at short *. periods.	Replaced capacitors C2, C4, and C6 for SRM 22 & 23; tested.
Q05242		LPRM 48-33D	Bad connector.	LPRM is pegged up- scale & gives APRM Hi Hi	Replaced connector and tested.
Q09167		HPCI Speed Control 2-2340-1	Failed electro- ic components.	Controller acts sluggish. Controls flow at 600 gpm above setpoint.	Rep + MOSFET in op, and ested.

The following is a tabular summary of all license event reports for Quad-Cities Units One and Two occurring during the reporting period, pursuant to the reportable occurrence reporting requirements as set forth in sections 6.6.8.1. and 6.6.8.2. of the Technical Spr (fications.

	UNIT UNE	
Licensee Event Report Number	Date	Title of Occurrence
80-29/01T	11-03-80	Crack in 'E' Electro- matic Line Penetration
80-30/03L	11-04-80	1/2 'A' Diesel Fire Pump Out of Service Greater than 7 Days
80-31/03L	11-24-80	Main Steam Line Low Pressure Switch (1-261-30D)
	UNIT TWO	
80-31/0IT	11-16-80	RCIC Inoperable
80-32/01T	11-16-80	HPCI Turbine Stop Valve Oil Leak
80-33/03L	11-24-80	A0-1-1601-32F Unit 2 Suppression Chamber to Drywell Vacuum Breaker Dual Indication

V. DATA TABULATIONS

The following data tabulations are presented in this report.

- A. Operating Data Report
- B. Average Daily Unit Power Level
- C. Unit Shutdowns and Power Reductions

OPERATING DATA REPORT

DOCKET NO. 50-254

UNIT ONE

DATE December 1, 1980

COMPLETED BY R C Tubbs

TELEPHONE 309-654-2241, ext 174

OPERATING STATUS

0000 110180

1. Reporting period: 2400 113080 Gross hours in reporting period: 720

2. Currently authorized power level (MWt): 2511 Max.Depend capacity (MWe-Net): 769* Design electrical rating (MWe-Net): 789

3. Power level to which restricted(if any)(MWe-Net): NA

4. Reasons for restriction (if any):

		This Month	Yr.to Date	Cumulative
5,	Number of hours reactor was critical	0.0	5725.1	60439.2
ь.	Reactor reserve shutdown hours	0.0	0.0	3421.9
7.	Hours generator on lin-	0.0	5623.1	57664.0
8.	Unit reserve shutdown hours.	0.0	0.0	909.2
9.	Gross thermal energy generated(MWH)	0	11394718	115938699
i0.	Gross electrical energy generated(MWH)	35	3662846	37285900
ii .	Net electrical energy generated(MWH)	-2642	3358241	34773777
12.	Reactor service factor	0.0	71.2	80.6
13.	Reactor availability factor	0.0	71.2	<u>85,1</u>
14.	Unit service factor	0.0	69.9	76.9
15.	Unit availability factor	0.0	69.9	<u>78,1</u>
16.	Unit capacity factor (Using Des.MWe)	- , 5	54.3	60.3
17.	Unit capacity factor (Using MDC)	5	52.9	58.7
18,	Unit forced outage rate	0.0	3,6	7,8
10	Churdenne askadalad			19. State 1. State

19. Shutdowns scheduled over next 6 months (Type,Date,and Duration of each):

20. If shutdown at end of report period, estimated date of startup 12-29-80

#The HDC may be lower than 769 MWe during periods of high ambiant temperature due to the thermal performance of the spray canal.

OPERATING DATA REPORT

DOCKET NO. 50-265

UNIT TWO

DATE December 1, 1980

COMPLETED BY R C Tubbs

TELEPHONE 309-654-2241, ext 174

OPERATING STATUS

0000 110180

1. Reporting period: 2400 113080 Gross hours in reporting period: 720

2. Currently authorized power level (MWt): 2511 Max.Depend capacity (MWe-Net): 769% Design electrical rating (MWe-Net): 789

3. Power level to which restricted(if any)(MWe-Net): NA

4. Reasons for restriction (if any):

		This Month	Yr.to Date	Cumulative
5.	Number of hours reactor was critical	623.0	5056.8	58185,7
6.	Reactor reserve shutdown hours	0.0	0.0	2985.8
7.	Hours generator on line	590.6	4869.7	55661.5
8.	Unit reserve shutdown hours,	0.0	0.0	702.9
9.	Gross thermal energy generated(MWH)	1306085	10852830	113868939
1.0.	Gross electrical energy generated(MWH)	424374	3425110	36288160
ii .	Net electrical energy generated(MWH)	395711	3212980	33955505
12,	Reactor service factor	86.5	62.9	78.5
13.	Reactor availability factor	86.5	62.9	82.5
14.	Unit service factor	82.0	60.6	75.1
15,	Unit availability factor	82.0	60.6	76.1
16.	Unit capacity factor (Using Des.MWe)	71.5	52.0	59.6
17,	Unit capacity factor (Using MDC)	69.7	50.6	58.1
i8.	Unit forced outage rate	18.0	7.1	9.1
19.	Shutdowns scheduled over next 6 months	(Type,Date,	and Duration	of each):
20.	If shutdown at end of report period.est	imated date	of startup	NA

The MDC may be lower than 769 MWe during periods of high ambiant temperature due to the thermal performance of the spray canal.

APPENDIX B AVERAGE DAILY UNIT POWER LEVEL

DOCKET NO. _ 50-254

UNIT ONE

DATE December 1, 1980

COMPLETED BY R C Tubbs

TELEPHONE 309-654-2241, ext 174

MONTH No	vember 1980		
DAY AVERAGE	DAILY POWER LEVEL MWe-Net)	DAY AVERAGE	DAILY POWER LEVEL MWe-Net)
i	-2.1	17	-3,6
2.	-2.3	18	-3.6
3.	-2.3	19	-3,4
4,	-2,5	20.	-3.8
5.	-3,5	21.	-3.5
ь.	<u>-3</u> . <u>e</u>	22.	-4.2
7	-3.6	23.	-5.7
в	-3.4	24.	-5.4
9	-3,5	25.	-4.6
i0	-3.2	26.	-4,4
11	-3.9	27.	-3,8
12.	-2.8	28.	-4.1
13	-2.6	29.	-4.5
14	-3.2	30.	-6.0
15.	-3.7		
16.	-3.5		

INSTRUCTIONS

On this form, list the average daily unit power level in MWe-Net for each day in the reporting month. Compute to the

Un this form, issue overlage outry that y and y and near second worth. Note that when maximum dependable capacity is These figures will be used to plot a graph for each reporting month. Note that when maximum dependable capacity is used for the net electrical rating of the unit, there may be occasions when the daily average power level exceeds the 1002 line (or the restricted power level line). In such cases, the average daily unit power output sheet should be interval and the constructed power level line).

APPENDIX B AVERAGE DAILY UNIT POWER LEVEL

		DOCKET NO	. 50-265
		UNI	ттwo
		DAT	EDecember 1, 1980
		COMPLETED B	Y R C Tubbs
		TELEPHON	E <u>309-65-42241, ext</u> 17
MONTH NO	vember 1980		
DAY AVERAGE	DAILY POWER LEVEL MWe 2t)	DAY AVERAGE	DAILY POWER LEVEL MWe-Net)
i	774.6	17	727.1
2.	187.3	18.	754,9
3	54.7	19,	763.1
4	-12.0	20.	765.4
5.	-12.0	21.	769.7
ό,	-12.0	22.	66.0
7.	309.4	23.	323.6
8	568.5	24.	544.1
9.	504.4	25.	. 658.8
10	618.8	26.	776.6
1.1 .	754.5	27	749.8
12.	762.6	28.	763.2
1.3 .	775.1	29.	768.9
14	762.7	30.	722.5
15.	770.4		
1.6.	527.3		

INSTRUCTIONS

On this form, list the average daily unit power level in MHe-Net for each day in the reporting month. Compute to the nearest whole megawatt.

These figures will be used to plat a graph for each reporting month. Note that when maximum dependable capacity is used for the net electrical ruting of the unit, there may be occasions when the daily overage power level exceeds the 100% line (or the restricted power level line). In such cases, the average daily unit power output sheet should be footnoted to explain the apparent anomaly

	DUCTIONS QTP 300-513 Revision 5 March 1978	COMPLETED BY R C Tubbs	530 TELEPHONE 309-654-2241, ext.	CORRECTIVE ACTIONS/COMMENTS	Continuation of End of Cycle Five Refueling	
	POWER RE		IOVEMBE? 1	соре сомроиеит	FUELXX	(Inal)
.C	APPENC DWNS AND		HINC	CODE SASLEW	RC	-1-(1
•	UNIT SHUTDO		REPORT MO	LICENSEE EVENT REPORT NO.		
•		61		METHOD OF SHUTTING DOWN REACTOR	4	
		nit One	980	NOZAJA	J.	
•	54	-Cities U	mber 1, 1	DURATION (HOURS)	720.0	
-	50-2	Quad	Dece	F OR S TYPE	S	
C	KET NO.	T NAME	Ψ.	DATE	800831	
	DOC	IND	DAT *	NO.	ñ	

1.8

<i>i</i> ,							(ð í l	
DOCKET NO.		50-265 Quad-Cities Unit Two				UNIT SHUTD	APPEN OWNS AN	DIX D D POWER RED	QTP 300-513 Revision 5 March 1978
UN	IT NAME	December 1, 1090							COMPLETED BY R C Tubbe
DATE		December 1, 1980				REPORT MONTH NOVEMBER 1980			TELEPHON" 309-654-2241,
*					~ ~ 1			· · · · · · · · · · · · · · · · · · ·	ext. 174
NO.	DATE	TYPE F OR J	DURATION (HOURS)	REASON	METHOD OF SHUTTING DOWN REACTOR	LICENSEE EVENT REPORT NO.	SYSTEM CODE	COMPONENT CODE	CORRECTIVE ACTIONS/COMMENTS
19	801102	F	15.9	G	3		СВ	INSTRU	Reactor scrammed on APRM High Flux, due to Recirc Pump MG Set Speed Transient
20	801103	F	91.0	A/B	1		CB	VALVEX	Shutdown to repair leaking Recirc Suction Valve, and perform other miscellaneous work items
21	801116	F	0.0	A	1	80-32	SF	VALVEX	Initiated shutdown due to simu ¹ taneous mal- functions in the RCIC and HPCI systems
22	801122	F	22.4	A	1		CB	VALVEX	Reactor shutdown to repair leakage Recirc Suction Valve

-1-(finai)

÷ *

10.000

VI. UNIQUE REPORTING REQUIREMENTS

The following items are included in this report based on prior commitments to the commission:

A. Main Steam Relief Valve Operations

There were no Main Stear Relief Valve Operations during the reporting period.

B. Control Rod Drive Scram Timing Data for Units One and Two

There were no Control Rod Drive Scram Timings for the reporting period.

VII. REFUELING INFORMATION

The following information about toture reloads at Quad-Cities Station was requested in a January 26, 1978, litensing memorandum (78-24) from D. E. O'Brien to C. Reed, et. al., titled "Dresden, Quad-Cities, and Zion Station -NRC request for refueling information" dated January 18, 1978. QUAD-CITIES REFUELING INFORMATION REQUEST QTP 300-S32 Revision 1 March 1978

1.	Unit:	11	Reload:	6	Cycle:	7	

Scheduled date for next refueling shutdown:

9-12-82 (Shutdown E0C6) 12-5-82 (Startup B0C7)

- 3. Scheduled date for restart following refueling:
- 4. Will refueling or resumption of operation thereafter require a technical specification change or other license amendment: No, Plan 10CFR50.59 reloads for future cycles of Quad Cities Unit 1. The review will be conducted in August, 1982.
- Scheduled date(s) for submitting proposed licensing action and supporting information: August, 1982 for 10CFR50.59 related changes ~ 90 days prior to shutdown.
- 6. Important licensing considerations associated with refueling, e.g., new or 'different fuel design or supplier, unreviewed design or performance analysis methods, significant changes in fuel design, new operating procedures: New fuel designs:

7. The number of fuel assemblies.

a.	Number	of	assemblies	in	core:			724
ь.	Number	of	assemblies	in	spent	fuel	pool:	820

8. The present licensed spent fuel pool storage capacity and the size of any increase in licensed storage capacity that has been requested or is planned in number of fuel assemblies:

a.	Licensed storage capacity for spent fuel:	1460
ь.	Planned increase in licensed storage:	None

9. The projected date of the last refueling that can be discharged to the spent fuel pool assuming the present licensed capacity: <u>September</u>, 1985 (end of batch discharge capability)

APPROVED

APR 2 0 1973

Q. C. O. S. R.

-1-

QUAD-CITIES REFUELING INFORMATION REQUEST

QTP 300-S32 Revision 1 March 1978

* 1.	Unit:	2	Reload:	5	Cycle:	6	
2.	Scheduled	date fo	r next refuel	ing shutdown		8-30-81	(Shutdown_EOC
3.	Scheduled	date fo	r restart fol	lowing refu	eling:	12-20-81	(Startup BOC6
4.	Will refu specifica for futur early Aug	eling or tion cha e cycles ust, 198	resumption o inge or other of Quad Citie 1.	f operation license amer es Unit 2.	thereafter ndment: No, The review w	require a t Plan 10CFR ill be condu	echnical 50.59 Reloads acted by
5.	Scheduled informati prior to	date(s) on: Ear shutdown	for submitti ly August, 198	ng proposed 31 for 10CFR	licensing a 50.59 relate	action and s d changes \sim	upporting 90 days
6.	Important different methods, New Fuel	fuel de signific Design:	ng considerat sign or suppl ant changes i 1. Barrier F 2. Control C	ions associa ier, unrevia n fuel desig fuel Cell Core	ated with re ewed design gn, new oper	efueling, e. or performa ating proce	g., new or nce analysis dures:
7.	The numbe	er of fue	a assemblies.				
	a. Numbe	r of as	semblies in co	ore:		7	24
	b. Numbe	r of as	semblies in sp	pent fuel po	01:	6	72
8.	The prese increase in number	in licer of fue	nsed spent fue nsed storage o l assemblies:	al pool stor capacity tha	age capacit t has been	y and the si requested or	ze of any is planned
	a. Licer	nsed sto	age capacity	for spent f	uel:	14	60
	b. Plann	ned incr	ease in licens	sed storage:		No	ne
					and the second		

9. The projected date of the last refueling that can be discharged to the spent fuel pool assuming the present licensed capacity: <u>September</u>, 1984 (End of batch discharge capability)

APPROVED

APR 2 0 1973

Q. C. O. S. R.

The following abbreviations which may have been used in the Monthly Report, are defined below:

CRD	-	Control Rod Drive System
SBLC		Standby Liquid Control System
MSIV	-	Main Steam Isolation Valve
RHRS	-	Residual Heat Removal System
RCIC	1.41	Reactor Core 'solation Cooling System
HPCI		High Pressure Coolant Injection System
SRM	-	Source Range Monitor
IRM	-	Intermediate Range Monitor
LPRM	-	Local Power Range Monitor
APRM	-	Average Power Range Monitor
TIP	-	Traveling Incore Probe
RBCCW	-	Reactor Building Closed Cooling Water System
TBCCW	-	Turbine Building Closed Cooling Water System
RWM	-	Rod Worth Minimizer
SBGTS	-	Standby Gas Treatment System
HEPA	-	High-Efficiency Particulate Filter
RPS	-	Reactor Protection System
IPCLRT	-	Integrated Primary Containment Leak te Test
LPCI	-	Low Pressure Coolant Injection Mode c RHRS
RBM	-	Rod Block Monitor
BWR	-	Boiling Water Reactor
151	-	In-Service Inspection
MPC	-	Maximum Permissible Concentration
PCI	-	Primary Containment Isolation
SDC	-	Shutdown Cooling Mode or RHRS
LLRT	-	Local Leak Rate Testing
MAPLHGR		Maximum Average Planar Linear Heat Generation Rate
RO	-	Reportable Occurrence
DW	-	Drywell
RX	-	Reactor
EHC	-	Electro-Hydraulic Control System
MCPR	-	Minimum Critical Power Ratio
PCIOMR	-	Preconditioning Interim Operating Management Recommendations
LER		Licensee Event Report
ANSI	-	American National Standards Insititute
NIOSH	-	National Institute for Occupational Safety and Health
ACAD/CAM	-	Atmospheric Containment Atmospheric Dilution/Containment
		Atmospheric Monitoring
ATWS	-	Anticipated Transient Without Scram
SDV	-	Scram Discharge Volume
TSC	-	Technical Support Center
EOF	-	Emergency Operations Facility
HRSS	-	High Radiation Sampling System
GSEP	-	Generating Stations Emergency Plan
the second se		