

UNITED STATES

NUCLEAR REGULATORY COMMISSION

REGION I

631 PARK AVENUE

KING OF PRUSSIA, PENNSYLVANIA 19406

October 8, 1976

Docket No. 50-29

Yankee Atomic Electric Company Attention: Mr. Robert H. Groce Licensing Engineer

20 Turnpike Road Westborough, Massachusetts 01581

Gentlemen:

The enclosed Circular 76-05 is forwarded to you for action. If there are any questions related to your understanding of the actions required, please contact this office.

Sincerely,

James P. O'Reilly

1561 1738"

Director

Enclosure: IE Circular 76-05

cc: H. Autio, Plant Superintendent Donald G. Allen, President

bcc: (w/encls) IE Mail & Files (For Appropriate Distribution) Central Files Public Document Room (PDR) Local Public Document Room (LPDR) Nuclear Safety Information Center (NSIC) Technical Information Center (TIC) REG: I Reading Room Commonwealth of Massachusetts

では、これでは、これでは、これでは、これでは、これでは、これでは、これでは、日本の日の日本では、またには、東、これのとなってはは、ないには、

OFFICE OF INSPECTION AND ENFORCEMENT WASHINGTON, D.C. 20555

IE Circular No. 76-05 DATE: October 8, 1976 Page 1 of 4

HYDRAULIC SHOCK AND SWAY SUPPRESSORS - MAINTENANCE OF BLEED AND LOCK-UP VELOCITIES ON ITT GRINNELL'S MODEL NOS. - FIG. 200 AND FIG. 201, CATALOG PH-74-R

DESCRIPTION OF CIRCUMSTANCES:

Recent information has become available related to improper lock-up and bleed rates of certain ITT Grinnell shock and sway suppressors (snubbers). The control block or valve block on the snubbers involved is one which contains the mechanisms for a "dual orifice type" snubber valve arrangement. These control blocks or valve blocks can be identified by four locking nuts on the surface of the block. These nuts lock the stem of the valve control into position. Rotation of the stem modifies the orifices which control the lockup and bleed rates. The units in question, at this time, are those snubbers which have control block or valve block serial numbers from B-0001 through B-2000. These snubbers include 1 1/2 inch diameter (3 kip capacity) through 6 inch diameter (72 kip capacity) units.

ITT Grinnell first identified this problem in connection with their own testing program during the last two weeks of August 1975. The origin of the problem was traced by Grinnell to November of 1974 when a design change (known as Revision B) was initiated on Model Nos. - Figure 200 and Figure 201, Catalog PH-74-R snubbers, along with the addition of a Grinnell design specification for lockup and bleed velocities. These new rates were to be 8 in/min. plus or minus 2 in/min. for lockup and 4 in/min. plus or minus 1 in/min. for bleed. At that time production testing of completed snubbers included within the above series of serial numbers was completed on the basis of "go" or "no-go" testing and did not specifically determine the lockup and bleed rates for each snubber.

Grinnell has determined that all snubbers involved should lock under seismic events as designed, but perhaps at a lower velocity. Additionally, the bleed rate has been determined to exist at a value as low as 1/8 in/min. This could result in increased piping stresses depending on the specific design. "Lith the uncertainty of specific lock-up and bleed rates, there is the possibility of adverse effects on the piping systems or components the snubbers were designed to protect. It has been stated, however, that to the best of Grinnell's knowledge, there were no lock-up and bleed criteria defined by their customers for the plants identified as having utilized snubbers from the B-0001 through B-2000 series.

Lupe #7994200324

IE Circular 76-05 DATE: October 8, 1976 Page 2 of 4

Even though lock-up and bleed rates on snubbers with adjustable orifices are now determined prior to shipment from the manufacturer, there is always the possibility that subsequent removal or tightening of the locking nuts on the control block or valve block will modify the orifice setting, thus affecting lock-up and bleed rates. At least two models of Grinnell's snubber control valves use some type of seal on the locking washers and in some cases these may have been replaced in the field to change the seal material or correct small leaks. In these cases, if proper procedures were not followed to maintain the stem portion in its original position, the orifice setting could change. The tightening of a lock nut itself could result in a change to the orifice. ITT Grinnell makes the following statement in the printed material furnished with each snubber assembly: "Adjustment of snubber valve requires equipment capable of measuring rate and load. DO NOT ATTEMPT TO RESET ADJUSTMENTS IN THE FIELD."

The recommended corrective action outlined by ITT Grinnell is to replace the entire valve assembly (2 required per snubber) known as the "barrel" in the case of the lockup control, and the pins or stems (2 required per snubber) used to control the bleed rate. ITT Grinnell has prepared documents which prescribe the replacement procedures. The replacement parts are precalibrated. Therefore, field calibration of the entire snubber unit will not be necessary if the replacement parts are installed in accordance with the prescribed procedures. The tolerances on the precalibrated pins or stems associated with the bleed mechanism will min. The new bleed rate will be 4 inches/minute plus or minus 1 inch/minute.

Corrective action could also consist of recalibration of the existing snubbers with adjustments made to bring the operating characteristics of the units back within the tolerences specified by ITT Grinnell. Monitoring of relative rotation of the lock washer and stem could in the future be carried out if position marks were provided on the parts after calibration.

ITT Grinnell has identified the following facilities which have licenses under 10 CFR 50 which received snubbers within the group defined by the bounding serial number.

IE Circular 76-05 DATE: October 8, 1976 Page 3 of 4 Number of Grinnell Snubbers Plant Model Nos.-Fig. 200 & Fig. 201 Farley Nuclear Plant 239 Millstone Point Unit #2 185 North Anna 155 Davis Besse Unit #1 111 D. C. Cook 78 Calvert Cliffs 66 Beaver Valley 53 Diablo Canyon 41 Ginna 8 Kewaunee 2 Peach Bottom 2 Browns Ferry ITT Grinnell has also informed the utilities who own these facilities regarding this matter; however, some of the series may be in use or intended for use at other reactor facilities as a result of utilities loaning or selling units to other utilities or by the fact that subcontractors or other suppliers might be involved. ACTION TO BE TAKEN BY LICENSEE: For all power reactor facilities with an operating license or a construction permit using or intending to use the above described snubbers on safety related systems or components: 1. Determine if any of the subject snubbers are installed or scheduled to be installed in safetyrelated systems at your facility. a. Provide a list containing each snubber identified and indicate the piping system or component with which it is associated. b. Indicate for each snubber its history of testing and test results as well as its maintenance history. c. For each snubber list the current required lockup and bleed rates and what rates the snubbers were specified to meet by the original construction/purchase specification. Indicate the organization, by name, that was responsible for the preparation of the construction/purchase specification.

TE Circular 76-05 DATE: October 8, 1976 Page 4 of 4 If replacement parts are utilized instead of recalibration of the snubbers, provide an assessment of the effect of a bleed rate of 2 inches/minute which represents the new lower bound. 2. For snubbers within the above described series that do not have documentation available defining the lockup and bleed velocities, provide a description of the actions to be taken to substantiate these characteristics. Also, provide the schedule to complete these verifications and and modifications, if needed. 3. Review maintenance and modification procedures for the above described series of snubbers where such actions could affect the performance characteristics of the snubbers. Such actions include but are not limited to the disassembly of snubbers, replacement of seals, changing hydraulic fluid and the changing of any valve springs. Modify the procedures, as appropriate, to assure that any future maintenance or modifications will not change the performance characteristics. 4. Provide a report which contains the responses to items 1, 2 and 3 above within 90 days of the date of this Circular. Reports should be submitted to the Director of the NRC Regional Office and a copy should be forwarded to the NRC Office of Inspection and Enforcement, Division of Reactor Inspection Programs, Washington, D. C. 20555. Approval of NRC requirements for reports concerning possible generic problems has been obtained under 44 U.S.C. 3152 from the U.S. General Accounting Office. (GAO Approval B-180255 (R0062), expires 7/31/77).