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ABSTRACT

Due to the penetrating power of gamma photons and their long mean
vee paths compared to fuel rod dimensions, the gama heating distribu-~
tion in a reactor core is normally flatter than that of the gamma scurce.
The degree of flattening is referred to as the decay heat redistribution

factor. This report describes the determination of this factecr for

Core XI of the Yankee nuclear power station at Rowe, Massachusetts,

under shutdown conditions. The analysis was based on the use of SHADRAC,
a shield heating and dose rate attenuation code utilizing a moments-
method solution of the Boltzmann transport equation. The model employed

in the analysis is described in detail.
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1.0 INTRODUCTION

Decay heat energy in a reactor core during shutdown conditions is
composed of beta particles and gamma photons from the decay of fission
and activation products. For normal design calculations both photons
and particles are conservatively assumed to be captured at their point
of origin. This assumption is valid only for beta particle absorption
because of the short range these particles have in heavy material; the
assumption, in fact, is still conservative since some beta energy will
escape the fuel rod by bremsstrahlung radiation. The gamma photons
on the other hand have considerably longer mean free paths relative
to the fuel rod dimensions and can therefore escape from a fuel rod
where they are generated and deposi. their energies in the clad, moderator,
structural and control! materials or other adjacent or distant fuel rods.
As a result, the gamma heating distribution at any particular location
in the cor: is flatter than the gamma source distribution. In fact,
the distribu-ions would be similar only in cases where a given fuel rod
gets back as mu.h gamma energy as it loses, as would be the case, for
instance, in a uni. orm array of rods in a flat power distribution and
a very low density me 'ium. Generally, however, the effect, which is
often referred to as gam'a smearing, results in a more diffuse gamma
heat source.

The importance of gamma smearing, which is evaluated in terms of
a decay heat redistribution factor, depends on the conditions being
examined. For instance, the effect is more important during shutdown
than during normal operation since during shutdown the gamma photons
make up approximately 50 percent of the total energy, compared to
approximately 11 percent during normal operation. But, of particular

interest is the considerable reduction in peak clad temperatures that
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can be achieved by accounting for this effect in the analysis of a loss~
of-coolant accident.

Peak energy production in a {ue! pin depends, in part, on localized
geometric effects producing local thermal neutron flux peaking. In pres-
ent PWR designs, this is caused largely by water holes designed to accom-
modate control rod fingers. The resulting local peaking used in design
calculations is of the order of 6 to 10 percent (much greater in the case
of cruciform rods), and occurs predominantly in the pins immediately ad-
jacent to the water holes. But for LOCA calculations, where the energy
source is from radioactive decay, local peaking factors decrease by ap-
proximately one-half down to 3 to 5 percent as a result of gamma smear-
ing. In essence, as discussed in Sec. 2.5, the local peaking factcr for
the gamma half of the decay energy approaches unity and the gaama heating
distribution becomes approximately flat. The exact amount of the reduvc~
tion in peak fuel pin heat production from decay sources depends on the
core design, Detailed calculations by the reactor suppliers during the
rulemaking hearings on the ECCS Interim Acceptance Criteria lead to the

following results (Ref. 1):

Manufacturer Reduction Factor ( % )
Combustion Engineering 6
Westinghouse 5
B&W 4

The Combustion design ha~ a large. control rod water hole. This leads to
a somewhat larger loc«l peaking design value and therefore to a greater
effect from decay heat redistribution. Combustion's cruciform rod design

of Palisades has, of course, an even larger effect.



For the Yankee Rowe core, where the cruciform contro. rod configur-
ation leads to local peaking factors* of the order of 1.3 to 1.4 (depend-
ing on the size of the fuel rod ensemble considered) the expected reduc~
tion {s aboat 15 to 20 percent. An analysis carried out by Westinghouse
and reported in the original Yankee Rowe FHSR (Ref. 2) indicates that the
difference in FQN (the nuclear heat flux factor) between steady state and
shutdown condition is approximately 17 percent, Indeed, it is the scope
of t*%, work to develop a method and obtain an accurate value for this

reduction.

*Local peaking factor is detined as tihe ratio of peak rod power to average

power of rods in a given ensemble. The ensemble includes all rods (about
150) around the peak rod wiihin a few mean free paths of the most penetrat-
ing gamma photons in the source spectrum. Rods beyond this emsemble are

assumed to have no effect on the peak rod gamma heating.



2.0 ANALYTICAL MODEL

2.1 Redistribution Factors

The decay heat redistribution factor is defined as:
Fe H (1)
G

where G and H are the rates at which decay heat is generated and absorbed
(respectively) per unit length of a fuel rod during shutdown conditions.
Since the decay heat source consists of both beta particles and gamma
photons, it is important to account for these two types of radiation sep-
arately. Thus, if the fractional decay heat generation attributable to

gamma rays is denoted by y, then G and H can be put in the forms:

C=06 (1 -v)+ Gy (2)
and

H=G (1 - v) F, + GyFY (3)

where FB and FY are the beta and gamma redistribution factors respectively.
Therefore,

Fo(l-y) Fg+yF. (4)

Note that the redistribution factor is a function of posi'tion in the core.
To compute F throughout the core is an almost impossible joh. In this anal-
ysis, therefore, attention was focused only to the hottest spot in the core
since this is the spot of primary concern in the evaluation of peak clad
temperature following a postulated LOCA. Rediscribution factors for a few
rods surrounding the peak rod were also computed, but the analysis in this
case was based on a rule-of-thumb approach described in Sec. 2.5.

It was noted in the introduction that the beta redistribution factor

F‘ is equal to unity since all beta particles are assumed absorbed at their
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points of origin. It follows then that

Feol-yQ-F). (5)
Also, since data for the gamma contribution to the total decay heat is
available in the literature (Ref. 3), the only unknown in Eq. (5) is Fy.

This parameter is defined as

(6)

<
Jﬁ‘(:

where, since our primary interest is in the peak rod,

KY = gamma decay heat absorbed by the peak rod per unit length,
and GY = yG = gamma decay heat generated by the peak rod per unit
length. The generated heat GY can be obtained from core design analyses

and is equal to

G =yP, Py P, 1.2 | = (7)
Y Po! ANS

where P, is the core average linear heat generation rate,

P1 the radial peaking factor, and

P, the axial peaking factor.
The last term in curly brackets is the normalized ANS decay heat standard
with an added 20% uncertainty.

Evaluation of Hy, on the other hand, is more elaborate since one must
perform an energy dependent three dimensional integration that accounts for
all gamma sources and their associated spectra. In addition, HY must be
computed with appreciable accuracy since, as shown by Eq. (40) developed
later, a 10% error in this parsm=t=r (or F ) is approximately equal to a
$% error in the total redistribution factor ™. Au error of this magnitude

would significantly reduce the henefits that can be gained from the gamma
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smearing effect,

Equations (5) and (6) and the methods described above are what is
normally employed for the evaluation of redistribution factors. The
approach requires the computation of both HY and CY on an absolute basis,
a requirement that makes the evaluation of F with only a few percent
error very difficult. jowever, the error in FY can be reduced if both HY
and Gy were computed on a relative (instead of absolute) basis using the
same analytical model for both parameters. If this could be accomplished
then the errors in HY and GY would tend to cancel out and would not be
reflected in the “Y/GY ratio,

Conversion from an absolute basis to a relative basis was accom-
plished using the following reasoning. Consider a large uniform array
of long, activated rods immersed in a coolant and assume that all rods
are equally and uniformly activated such that the source intensity per
unit length of rod is independent of rod or position along a rod axis.

At the center of this system all the gamma rays produced by the rods are
absorbed by the rode and the coolant since these pamma rays cannot escape
from the system in view of the assumed large dimensions of the latter.
That is, at the center of the system, the heat generated per unit length
of a rod is equal to the heat absorbed by a unit length of a rod-coolant
cell, or

Gy = E; . E; (®)

where subscriptc refers to the coolant and the barred symbols represent



the uniformly activated rods in the uniform matrix. Analysis of the
results presented in Sec. 4.2 has shown that Eq. (8) is satisfied at
the center of a spherical system with a radius equal to approximately
20 cm., Hence, without any approximation at this point, Eq. (6) can be
rewritten as:

o (9

F-:_—_-‘—— -
e+ B,

Y
Note that FY has a maximum value of unity (corresponding to the case
where the gamma heat produced by thke rod is equal to the heat it absorbs)
and that any approximation in the analytical model that tends to increase
the value of FY is necessarily conservative. Hence, since Hc in Eq. (9)

amounts to only a few percent of Jy, F, can be conservatively approxima-

Y
ted by

F. = . (10)

This equation represents the ratio of heat absorbed per unit length of
the peak rod in an actual core to that absorbed by an identical rod in
a uniform matrix. The equation fmplies that there is no gamma smearing
in a uniform array of equal-powered rods even if the rods are immersed
in a coolant. Physically this is true only with a zero-density coolant.
To proceed further, when the heating contributions of the various

rods around the peak rod are considered separately, Eq. (10) takes the form:

n
k: h
r._;“ . (1)
\_n_
N
A




where hi and Ei are the heats absorbed per unit length of the peak rod
from gamma rays emanating from rod i, and k1 is the rod peaking factor
relative to the peak rod. Note that for the peak rod, 1 = 1 and kl =1,
and that for all other rods ki is less than unity. In addition, since

a number of the rods in the assumed uniform array are replaced by con-

trol rods or blades in the actual core configuration, some ki values are
equal to zero.

The application of Eq. (11) requires that similar geometrical arranre-
ments be used for the evaluation of both L and E ( In fact, the only
diiference in the two geometries should be the replacement of a few rods
in the uniform array by control rods or blades. In this way, h1 and ;1
in Eq. (11) would be different only in the presence of some control mater-
ial between rod i and the peak rod.

As a final remark, note that if the normally continuous gamma spec-
trum is assumed composed of a set of moncenergetic sources of specified

energy and intensity, the equation for the redistribution factor takes

the form

H, ( E) Sj (E)

b

(12)

HJ(E) SJ(L)

M

In this expression Hj and Hj represent the absorbed heats from a
monoenergetic source with gamma energy E, and Sj (E) is the relative in-

tensity of the § th spectral group in the gamma energy spectrum.



2.2 Discussion

Errors in the absolute determination of the total heat abscrbed per
unit length of the peak rod could result from errors, uncertainties or
approxinations in the following:

(a) The analytical model employed in ihe solution of the

Boltzmann gamma transport equation,

(b) The gamma ray attenuation and energy deposition coeffi-

cients,

(¢) The selected core volume size beyond which all gamma

sources can be neglected,

(d) The geometric representation of this core voluue by a

matrix suitable for use with the shielding code employed,

(e) The representation of volumetric sources by discrete

source points,

(f) The representation of unit length of the peak rod by a

set of point detectors,

(g) The evaluation of gamma source Iintensities and spectra

in the fuel clad, coolant and structuval material as com-
pared to those in the fuel, and

(h) The non-uniform source distributions within the fuel rods.

It is evident therefore that evaluation of H, on an absolute basis
with an error of only a few percent is extremely difficult. And when
the redigtribution factor is determined by Eq. (6) then any error in HY
will be carried over to ?Y. When however, the gamma redistribution fac-
tor is determined by the relative approach (that is Eq. 10 or 11), then
the errors in RY and ﬁ; will tend to cancel out and the uncertainty in FT

will be sub tantially reduced.



This then is the main advantage of the technique used in this work
over that requiring the absolute determination of the absorbed heat. A
few additional benefits of the method are described below.

It would appear at first glance that the parameter n in Eq. (11)
should be large so that the summations represent the total heats absorbed
as accurately as possible. Actually, an accurate, conservative value for
FY can be obtained by considering only a small number of rods in the anal-
ysis. From the mathematical point of view,as shown later, a conservative
(i.e., close to unity) FY value would result if one excludes from the sum-

mations all rods satisfying the condition

k, h
ded F (13)
hy Y

where F. 1s now assumed to be a predetermined quantity, that is, already
computed using other rods closer to the peak rod. The same would also
apply for a group of rods beycad those already considered, the inequal~-
ity now taking the form

{

e

i=1
= < e v (14)
E ]

If the rods in this group are approximately the same distance from the

peak rod, Eq. (14) can be approximated by

k << FY (15)
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where k is the average relative peaking factor given by
L

P

s 1
ko= I k : (16)
: L N

j=1
These equations we-e obtained by considering two redistribution fac-

tors defined as

A
W A——" 17
¥, s (17)

and

+
FZ.F+6r-u.

1 B + 4B (18)

where AA and AB are changes brought about by the inclusion of one or more

rods. It then follows that

BAA - AAB
AR » TSR 19
’ B (B + AB) e

and this parameter will be negative whenever

mn> . A (20)

or, in a form similar to Eqs. (13) and (14),
AA
b < 1 e

Thus, if one neglects AA and AB in the analysis, that is, if one considers
fewer rods, the redistribution factor would change from F2 to F; and Fl
will be larger than F, (i.e., a conservative move) if Eq. (21) is satis-
fied. AF 1s positive if the fiactional change in A is greater than that
in B, that is,
84 4B
AF) 0 if A B . (22)
Note that the inequality represented by Eq. (14) can be readily sat-

isfied since some kj values are equal to zero. Thus, whereas only a small
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number of rods is needed for the evaluation of the redistribution factor
by the approach used in this work, an absolute determination of Hy in

Eq. (6) with reasonable accuracy requires the inclusion of all rods within
at least 4 or 5 mean free paths of the most penetrating gamma rays in the
source spectra.

Another advantage of the method is the insensitivity of the model on
the coolant density. To understand this let F, and F2 in Egs. (17) and
(18) be the results obtained using two different coolant densities. F,
is for the high coolant density and Fz is for the low density. AA and AB
then represent the increases in the heat absorbed by the peak rod due to
the d2creased gamma ray absorption by the coolant, and since the heat ab-
sorbed by the coolant is directly proportional to the heat generated in
the fuel rods it follows that (4A/A) is approximately equal to (AB/B) and,
therefore, from Eq. (19) AF i: approximately equal to zero. In addition,
as can be concluded by comparing Eqs. (9) and (10), redistribution fac-
wurs computed by the model described in chis report correspond to the case
of zero coolant density in a model which involves the abs( lute determination
of absorbed heat.

From the analysis and reasoning discussed above, it is clear that
the model is equally insensitive to secondary sources of gamma radiation
which are present in both the uniform and actual core configurations.

Note that the intensities of these sources, such as activation products
in the cladding and coolant, would be higher in the uniform array case
with uniform power (equal to that of the prd’ | >d) than in the corres-

ponding actual geometi'y and power distr s o,

wlfe



2.3 Equations for Absorbed Heat

The parameters ;; and hy in Eq. (11) for the gamma redistribution
factors represant the heats absorbed per unit length of the peak rod
from gamma rays emanating from rod i. The peak rod is identified by
i=1, and hl (equal to El) is the energy deposition from gamma rays
originating within the peak rod itself (i.e., self-heating). In this

work, h; was determined from the expression (Ref. &)

3

*RECEu, §
a v Z -
hy = — - . m! a, Vp (uR) (23)

m= 0

where
h1 = peak rod self-heatir  (cross-rod average) (W/cm)
R = rod radius (cm)
C = 1.602 x 10713 (W - sec/Mev)
E = initial gamma energy (MeV)

My = energy deposition coefficient at energy E (also known as
the linear energy absorption coefficient) (opm~1)

U = total linear attenuation coefficient at energy E (cm'l)

Sy = volumetric source intensity (assumed uniform)
photons/cp3 - sec)

am = buildup - factor coefficients:

(B = <£i a, (pR)m, B =~ buildup factor)

m=*= 0

wi = averaged collision probabilities.

Closed form analytical expressions for the | functions are available only

for E; and ;1. 57 and E3 on the other hand can be either computed by
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numerical integration or extracted from a graphical presentation of
these functions in the literature (see Fig. 2.3.1). The expressicans

for Jo and |, are:

(24)

and

where In(x) and Kn(x) are the modified Bessel functions of first and
second kind, respectively, evaluated at x = uR.

The energy deposition rate in the peak rod from gamma rays originat-
ing in surrounding rods was calculated using the computer code SHADRAC
(Ref. 5). Tiis is a General Dynamics code that computes neutron and/or
gamma spectra, direct-beam flux, heat gerevation rate, and/or dose rate
received at a point detector from a source of radiation. The program is
the culmination of shield-penetration studies based on the moments-method
solution of the neutron and gamma-ray transport equation. The model is
based on the differential energy spectra for a point isotropic source in
an infinite medium along with appropriate edge correction factors to des-
cribe radiation transport in finite media. In addition, the assumption
is made that the only portion of a system of radiation sources, shields
and detectors which affects dose rate (or spectra and heat-generation
rate) is that part of the system on the line of sight between the source
and the detector.

The moments-method data used in SHADRAC is for point isotropic sour-
ces. Therefore, distributed sources in any given geometric configuration

must be approximated by a net of point sources. Each of these point

wlke



sources must represent the radiation generated in an elemental volume
containing the point such that an integration of the source points over
the source volume will equal the total radiation generated by the dis-

tributed source. Similarly, a number of detector points must be util-

ized to compute the total heat generation rate (or average dose rate)

in an & ber of finite dimensions.
A major limitation of the program is its restriction to geometries
composed of frusta of rectangular pyramids and coaxial cylinders. The

explicit representation of a reactor core section is therefore possible

only if one assumes that the fuel rods have a rectangular (in fact, square)
cross-section. Also, because of the point-to-point kernels used, and

the inverse square law in the transport of gamma radiation, the code can-
not be used for reliable self-heating calculations. It is this latter

limitation that prompted the use of Eq. (23) above.

2.4 Error Equation

To obtain an estimate of the error in the gamma redistribution fac-
tor as defined by Eq. (11) it is important to modify the said expression
to reflect the fact tiat some of the hy and Ei are identical and that
the only difference between these two parameters results from differences
in the attenuating properties of the material between sources and detec-
tors. Thus, without any approximation, one can define

hy = by hy (26)
where bi represents a gamma-ray relative attenuation correction factor.
Recall that the barred symbol represents the uniform array of rods with

uniform source intensity.
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When Eq. (26) is substituted into Eq. (11) one obtains

) ¥
N\,

K, p kb B
W - W e % N 5
Hy ~ i

This modification from Eq. (11) to Eq. (27) is import = since the error

as two completely

in Fy may be over-estimated if one considers hi and h

i

independent parameters.

To proceed further, since b, is a function only of the fairly well

i
known attenuating properties of the materials between a source and a de-
tector in the actual core configuration as compared to the uniform array
of rods, the error in bi may be neglected in comparison to that in ;1.
In addition, even though the error in the absolute peaking factors could
be significant, the error in the relative peaking factor k1 is also neg-
ligible, particularly when one considers only a very small fraction of

the core. With these assumptions then, and according to the equation for

the propagation of errors, the equation for the square of the error in

- 2
2 3F ol
¢ (F) = §_~ E—_“Pﬁi_]i 7 ) (28)

i

FY is simply

where¢f(hi) is the error in ;1° From Eq. (27) one also has

aF Bk b, =~ HY k, b, - F

i, NORN- . ot ‘B 1 - i 1 Y (29)
3“1 ot i
Hy Y
and ther:fore
o 2
2 - “(h 3
o (F,) ﬁ; o ( i) (30)

. Expressed differently,

~-16~



P g(F 'F
(PY)/'Y

E (;1) = -r;i)/ﬁi

end represent the fracti-nal errors in the two pavameters.

Since E(hi) is not a readily determinable quantity, it was neces-

sary to assume that the error in each hi is approximately the same, that
is,
E(hi) - C (31‘)

where ¢ is a constant. The basis for this assumption is that all gi are

computed using the same analytical procedure and data. Moreover, since

(35)

m—

GBI I O I W Y

i
it follows that

and therefore

E (Fy) =




where E (i‘) is the fractional error in EY and

z* 1

- T N S [(
2 2
F, > (hy) LL_.

- 2
ky b, £) h} (39)
Y

Note that Z can be computed without any difficulty since all the para-
meters in Eq. (39) are known. Therefore, according te Eq. (38), only
the error in ﬁY is needed for the determination of E (Fy). And an esti-
mate of the error in ﬁy can be obtained from Eq. (8) when one compares
the calculated total heat absorbed per unit length of a rod-coolant
cell to the actual heat assumed(in the form of input data) to be gen-
erated per unit length of the peak rod.

Finally, using Eq. (5) and the equation for propagation of errors,

the fractional error is tne redistribution factor is equal to
E(F) = yE (F) (40)

The equation is based on the assumption that the error in y is neg-
ligible.

2.5 Rule-of-Thumb Approach

Evaluation of the gamma redistribution factor by the method des-
cribed above is a long, tedious and complex process. It is possible,
however, to obtain a reasonable estimate of this factor by using only
the rod peaking factors.

To understand this rule of thumb consider a set of rods immersed
in a coolant. The decay heat generated by rod j is equal to GY kj where,
as defined earlier, =, is the heat generated by the peak rod and kj is

the relative peaking factor. Similarly, the decay heat absorbed U, Il

wil



and the coolant cell around it can be represented by (HY+Bc)kJ* where
(Hy+“c) i{s the heat absorbed by the peak rod and its coolant and kj*
is hereby defined as a relative heat absorption factor. In essence,
the parameters kj and kj* represent the gamma source and the gamma
heating distributions, respectively. If the system is assumed to be
free of structural material, the total heats generated and absorbed by
a small number of rods at the center of the system are approximately

equal, that is,

n n

Gy E ey = () E k* . (41)

- B 3%

Therefore, according to Eq. (6),

H
k n:
FY = -k-* - GY (102)
where
n
_k. = 'L" k (43)
n ;___ i
j=1
and
n
1
k* = > k* (44)
I+1

-

Note that k and k* are iess than unity and that k* is larger than k
due to the flattening of the heating source by the gamma smearing effect.
A flat heating distribution corresponds to k* = 1, a condition physically
achievable with zero-coolant density and high energy gamma photons. For
this particular case Eq. (42) reduces to the simple form

FY - k . (AS)

~19-



The results presented in Sec. 4 indicate that this equation is satis-
fied at gamma energies gr-~ater than about 2 MeV., To a good approxi-
mation, however, the equatio, may be considered applicable at any
energy. But note that, in view of the low-energy gamma photons in
the actual d .ay spectrum, redistribution factors obtained by Eq. (45)
tend to be underestimated. In general, Eq. (45) providzs a good rule
of thumb. It is important however that the equation be applied to

a uniform array of fuel rods and that the contrel blade be properly

represented by a set of rods with zero pover.

-20-



3.0 CORE REPRESENTATION AND SOURCE TERMS

3.1 Fuel Rod
The mechanical design parameters of Yankee Rowe Core XI fuel rods

are similar to the Zircaloy-clad rods in Core X. They are as follows

(Ref. 6):
Fuel material vo,
Pellet diameter, inches 0.3105
Pellet dish depth, inches 0.006 to 0.0135
Pellet dish diameter, inches 0.242
Pellet lengtn, inches 0.5 to 0.7
Pellet density (% theoretical) 94.5
Effective pellet densiiy, g/cc 10.36
Clad material Zircaloy -4
Clad material density, g/cc 6.55
Clad 1.D., inches 0.317
Clad 0.D., inches (nominal) 0.365
Clad thickness, inches 0.024
Active length, inches 91.0

Based on the reasoning discussed in Sec. 2.2, it was pcssible to

convert the Zircaloy clad into an equivalent thickness of UQ, and to

2

represent a fuel rod by an effective radius R equal to

R = 0.3105 + 0.024 x 6.55
2 10.36

= (0,1704 iaches

= (0.433 cm

31



This value was used in Eq. (23) for the evaluation of hl' Deter-
mination of the other hy parameters, on the other hand, using SHADRAC,
required the conversion of the circularly cylindrical fuel rods into
parallelepipeds with square cross-section. To account for all the UO2
material in a rod, the cross-sectional area of the equivalent parallel-
lepiped was set equal to rRz (i.e. 0.589 cm?). In addition, since the
code is based on the use of point-to-point kernels, it was necessary to
subdivide the fuel rod cross-sectional area into a number of equal seg-
ments and to represent each segment by a point. As shown in Fig. 3.1.1,
a total of 12 segments were used in the subdivision. The centroids of
these segments were determined analytically in terms of the effective
radius R. The equations appear in Fig. 3.1.1.

The centroids in F*e 3,1.1 were selected to represent a set of
detecteor points in the peak rod. A similar arrangement was also used
at the start of this work to represent a set of line sources in the
peak rod for the determination of “1' the self-heating contribution.
Eventually h1 was determined (more accurately) by Eq. (23).

Representation of the gamma activity in «. 2 remaining fuel rods
was by a maximum of 4 line sources in each rod near the peak rod and
“y a single line source in the distant rods. (The source arrangement

appears in Fig. 3.2.3).

3.2 Lattice

The core section of interest is shown in Figs. 3.2.1 and 3.2.2, It
ccnsists of a control blade and a total of 100 fuel rods immersed in
coolant. The control blade, which consists of a mixture of Ag, In and
Cd, has an average density of 9.67 g/cma. The coolant was assumed to

3

have a density of 1 g/cm”., All other structural material was neglected.
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Since SHADRAC permits the use of a maximum of 64 regions, it was
necessary to subdivide the core section in Fig. 3.2.2 into 4 quadrants.
Each quadrant was then analyzed separately and the results were then
combined with a computer program specially written for this purpose.

The geometrical arrangement in Fig. 3.2.3 was used to represent
each of these quadrants. To make this possible it was necessary to
assume that the assemblies are physically closer to each other, . hat
the fuel rods are located at the node: of a uniform grid and that the
thickness of the control blade is slightly less (about 7 percent) than
actual and equal to that of the parallelepiped representing the fuel
rod. Also, all other structural material was neglected. Thesc assump-
tions are all conservative since they result in increased heat absorp-
tion by the peak rod.

The uniform array confi, uration for evaluation of ﬁ; in Eq. (10)
was obtained by combining 4 quadrants similar to quadrant A in Fig.
Jedods

The fuel rods in Fig. 3.2.3 were assigned into six source groups
according to their distance from the peak rod as follows: source group
1 for the pezk rod, group 2 for all rods next to the peak rod, group 3
for rods next to and surrourding group 2, etc. With this grouping, it
was possible, as shown in Sec. 4.2, to obtain by graphical extrapola-
tion an estimate of the hea* absorbed by the peak rod from gamma rays
emanating from rods turther away than those in group 6.

The nuvmbers in Fig. 3.2.2 are the radial peaking fa~tors for the
beginning of life of Core XI (Ref. 7). Division of these numbers by
1.773, the largest poaking factor, yields data for the ki parameters

in Eq. (11). Additional data pertaining to group peaking factors and
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the application of Eq. (15) appears in Table 3.2.1. 1In this table, 2

is the rotal number of rods per source group in the uniform array con-

figuration (4 quadrants). The group 2 entry is low because five of the

eight k1 values represenu part of the control blade and are equal to

zero. Data for k in Eq. (43) for combined groups is given in Table 3.2.2.
In Figs. 3.2.2 and 3.2.3 the third dimension ranges from x = - 115.6

to x = 115.6 »m. This is equivalent to the 91-inch active length of the

fuel rods.
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Relative Peaking Factors - Combined Source-Group Averages

GROUPS

1-7
1-8

1-9

k is defined by Eq.

(43)

TABLE 3.2.2

25
49
81
121
169
225

289

=1

1.000

0.402

0.548

0.632

0.645

0.650

0.648



3.3 Source Activities

Since the SHADRAC code is 'ased on the use of point-to-point kernels,
it was necessary to represent each of the line sources in Fig. 3.2.3 by a
set of point sources along the x axis. The source intensitites were
therefore expressed in terms of unit source lengths and the hi parameters
in Eq. (11) were computed by subjecting the SHADRAC results to numerical
integration along this axis.

To permit evaluation of the functional dependence of the redistrib-
ution factor on gamma energy, the analysis was repeated a number of times
using monoenergetic scurces. The point source intensities were selected
arbitrarily. The selection, however, was such that the relative h: at
generation rate in a rod was the same at all energies. Subsequent con-
version of the assumed intensities to actual heat yielded 0.04545 W/cm.
Based on this number, the volumetric source intcnsity Sy in Eq. (23)

takes on the following values:

3

EJ (MeV) Sy (photons/ecm” - sec)
0.5 9.633 x 10!1
1.0 4.816 x 1011
1.38 3.490 x 10*1
2.0 2.408 x 1011
3.0 1.605 x 101!
and is given by
0.04545 (46)

(8y)y = 7 RZ C E

The parameters in this equation were defined in Sec. 2.3.

The source intensity data in rod i at energy E, required as input to

J
SHADRAC 1is given by

(Sv)j Aikir,

photons/(sec - cm - MeV) (47)
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where Aiis the segmented area (in cmz) of a rod represented by the
point source, AEJ is the energy bin width (in MeV) as specified in
SHADRAC, and g is a geometric factor equal to 0.5 for source points
common to neighboring quadrants and equal to 1 otherwise. For the Ej

data in the above table, AE, is equal to 0.25, 0.25, 0.25, 0.375, 1.0

j
and 1.0 MeV, respectively.

The numerical integration along the axis was between x = - 10
and x = 10 cm.* Since this represents only a small fraction of the
fuel rod active length, the variation of source intensities along
this axis according to the cosine law was neglected. This is a con-
servative assumption since it leads to an increase in the heat absorbed
by the peak rod in the actual core geometry and power distribution
(il.e., in HY in Eq. (10)).

Gamma rays from activation products in the coolant were not
considered. As pointed out in Section 2.2 the model employ d in this
work is insensitive to secondary sources of gamma radiation which are
present in both the uniform array and actual core configuratious. The
activity of the control blade was also neglected since it was estimated
to be insignificant compared to that of the fuel rods. As shown in
Figure 3.2.1, this control blade is used only for shutdown purposes and
is withdrawn from the core during normal operation. The blade was
assumed to bercome fully inserted at the time of the accident., Note

that the Yankee Rowe control blades have Zircalcy followers.

*

As discussed later in Section 4.2, this limit of integration under-
values the heating rate in the uniform array case by a maximum of

6 percent for the most penetrating gamma rays.
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4.0 RESULTS

4.1 Peak Rod Self-Heating

Data for the parameters in Eq. (23) appear in Table 4.1.1. The

buildup factor coefficients a, were computed using the expression

> -
,
~

a, = / Cae /B (48)

k =0
and the ka data for uranium in Reference (4). The data for u and
hg is identical to that in SHADRAC. The results obtained for hl' the

sel”-heating contribution, are as follows:

El (MeV) hy (W/em)
0.5 0.0208
1.0 0.00969
1.38 0.00765
2 0.00700
3 0.00729

Recall that the peak rod was assumed to generate 0.04545 W/em at each
gamma energy. At 0.5 MeV, approximately 46 percent (i.e. 0.0208/0.04545)
of this heat is aosorbed by the peak rod itself. At 1 MeV the fraction
drops to 21 percent and at about 2 MeV it reaches a minimum of approxi-

mately 15 percent.
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TABLE 4.1.1

Data for the evaluation of hj

-OE-

E (MeV) Mg (cmzlg) u(cmzlg) LR N Iy Ko Ky g
0.5 0.132 0.176 0.789 1.162 0.4256 0.5749 0.8801 9.¢33
1.0 0.0482 0.0757 0.340 1.029 0.1725 1,259 2.647 4.816
1.38 0.,0363 0.0580 0.260 1.017 0.1311 1.505 3.588 3.490
2 0.0324 0.0484 0.217 1.012 0.1092 1.675 4.376 2.408
3 0.0332 0.0445 0.200 1.010 0.1005 1.753 4,776 1.605
E (MeV) a, a; a, a, ¥, ¥ ¥, ¥,

0.5 1.00170 0.3262 ~0.004659 0.0002041 0.5277 0.2509 0.11 0.047
1.0 1.00613 0.2649 -0.01224 0.0003731 0.3107 0.08680 0.023 0.013
1.38 1.00841 0.2232 ~0.01360 0.0004359 0.2544 0.05923 0.015 0.008
2 1.01073 0.1790 -0.01431 0.0004877 0.2201 0.04428 0.011 0.005
3 1.01275 0.1396 ~-0.01456 0.0005251 0.2070 0.04002 €.010 0.004

xg, = 1011

photons/cm3 - sec



4.2 Heat from Neighboring Rods

In Fig. 4.2.1 are presented typical hot spot heating rate distribu-
tions as functions of gamma enegy and source x-plane elevation. The
curves were obtained by combining the SHADRAC results for the four quad-
rants and 12 detectors and by moving the yz plane containing the sources
in Fig. 3.2.3 along the x-axis. The distributions in Fig. 4.2.1 are for
the uniform array/source intensity case and include a total of 120 rods
around the peak rod.

The hot spot heating rate (in W/cm) due to gamma rays of energy Ej

emanating from all neighboring rods is equal to

2 (7R?/12) 1 = 0.,09°12 1 (49)
where the 2 multiplier accounts for negative x values, ("R?/12) is the
segmented area of the peak rod representing a point detector, and 1 is
the integral of curves similar to those in Fig. 4.2.1. The results ob-

tained are as follows:

Ej (MeV) n

ey n
N hi
¥ _ kyhy
i=2 i=2
0.5 .0193 .00953
1.0 L0254 ,0138
1.38 L0247 0136
2 L0246 0135
3 0246 .0132

Note that each entry in this table represents the evaluation of ap-

proximately 10,000 point-to-point kernels.
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The 1 integrals were obtained by fitting n-degree polynomials to the
data points and rerforming a parabolic-rule integration using interpolated
and extrapolated data. The polynomial was cubic from x = 0 to x = 6 cm
and quadratic for x > 6. In this werk, the limit of integration was set
equal to x = 10 cm. It was estimated that choice of this limit undervalues
the heating rate in the uniform array c.se by a maximum of about 6 percent.
In terms of the gamma energies used .n the analysis the following results
were obtained for 1/1_, , the ratio of the integral I as defined above and

a similar integral covering the entire range:

Ej (MeV) 1/1, (estimated)
0.5 1.0
1 0.98
1.38 0.96
2 0.94
3 0.94

With regard to the effect of the number of fuel rods used, the 121
rod configuration in the uniform array/source intensity case was estima-

ted to undervalue the heating rates by the following fractions:

£y (MeV) Fraction (estimated)
0.5 1.00
1 0.94
1.38 0.89
2 0.84
3 0.81

These estimates were obtained with the use of Fig. 4.2.2 where the

hot spot heating rate is presented in terms of the source groups identified
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in Fig. 3.2.3. The date points in Fig. 4.2.2 were computed u ing Eq. (49)
and a 0 to 10 cm integration for the integral I. Note that the points can
be fitted approximately by a simple exponential curve at each energy. The
slopes of these curves were found to be directly relate. to the lineur at-
teauation coefficient y. In fact, the estimated fractions in the last
table ¢re equal to (1 - exp(- ut)) where t = 37.8 g/cw’ and represents the
product of the average density of the region used in the analysis (about
5.2 g/em?) times an effective attenuation distance of 7.27 cm.

It is clear from the above that at low energies all sources located
outside the region used in the evaluation of E; contribute insignificantly
to this parameter. At high energies on the other hand, due to the longer
mean free paths of the gamma photons, a substantial amount of the absorbed
heat comes from sources beyond the region described. Thus, at 3 MeV, for
instance, if one wishes to account for 99 percent of the sources, one must
analyze a region with an equivalent spherical radius of approximately 20cm.
A region of this size would contain about 900 fuel rods.

4.3 Gamma Redistribution Factors for Moncenergetic Sources

The total heat absorbed per unit length of the peak rod at various
gamma energies is equal to the sum of the data in the previous sections.
The results are presented in the table below along with data for the gamma

redistribution factor for monoenergetic sources.

Ei (MeV) EY (W/cm) Ez-(WIcm) F, (monoenergetic)
0.5 0.0401 0.0303 0.756
1 0.0351 0.0235 0.670
1.38 0.0324 0.0213 0.657
2 0.0316 0.0205 0.649
3 0.0319 0.0205 0.643
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A graphical presentation of this data is shown in Fig. 4.3.1. Note
that by extrapolating the results to lower gamma energiec, the two curves
merge together at E = 0 MeV and that at this point the absorbed heat is
equal to the heat assumed /{in the form of input dacta) to be generated by
the peak rod. This result can serve as a measure of the overall accuracy
of the procedure, computer codes, computatfons and cata used in this work.

Gamma redistribution factors were also computed using only few »f the

source groups in Fig. 3.2.3. The results obtaine. at E = 1 MeV are as

fellows:
Source Groups 5; (W/ em) Hy (W/ecm) F, (monoenergetic)
% 0.00969 0.00969 1.000
1,2 0.0204 0.0135 0,662
1-3 0.0271 0.0178 0.657
1-4 0.0309 0.0205 0.663
1-5 0.0334 0.0223 0.668
1-6 0.0342 0.0234 0.672
1-7 <0.672

The data in the 6th row corresponds to the 1 MeV entry in the previ-
ous table, the small difference between the two sets being attributable to
the errors incurred in the evaluation of the integrals I. The entry in the
last row was obtained through the use of Eq. (15) by comparing the FY values
above with the K data in Table - 3.2.1. Note that a reasonable estimate of

F) could have been arrived at by using only 3 or 4 source groups.

4.4 Peak Rod Redistribution Facto;

In Fig. 4.4.1 are shown plots of F, F, and . as functions of time after
shutdown. The curve: .or the redistribution factors are spectrum - weighted
averages based on Eqs. (5) and (12) and on the results for monoenergetic
sources in Sec. 4.3. Data for the gamma contribution to the decay heat and

for the decay gamma spectra was extracted from Refs. (3) and (8).
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It is seen from rig. 4.4.1 that the =1k rod redistribution factor
F decreases monotonically from a value ¢! approximately 0.845 at time
zero to 0.820 at 1000 seconds after shutdown. This variation is mainly
due to the increase v'th time of Lhe decay heat gamma fraction. The
weightes gamma redistribution factor FY , on the other hand, incrcases
but only slightly, with time. This i{ncrease is due to the softening of
the gamma spectrum with time. The average value obtained for this para-
meter is approximately equal to that for a monoenergetic source with
1 MeV gamma photons.

Note that the results presented in Fig. 4.4.1 are for the peak rod
identified in Fig. 3.2.2. In addition, in view of the relative approach
used in the analysis, the results apply at any positicn along the axis
of this rod. This is *ecause the variation of power along the x-axis
in Fig. 3.2.3 is the same for all rods and theref ce the relative peak-
ing factors «-e independent of the elevation of the yz plane.

4.5 Error Estimate~

An estimate of the error in ﬁy, the absorbed heat in the uniform
array uniform intensity case, was obtained by comparing the calculated
total heat absorbed per unit length of a rod-coolant cell to the actual
heat assumed to be generated per unit length of the peak rod. The anal-
ysis wae carried out using the 0.5 MeV results since at this energy all
gamma sources located outside the region used in the evaluation of ﬁ&
were found to contribute insignificantly to this parameter. The heat
absorbed per unit length of a coolant cell surrounding the peak rod was
also computed using SHADRAC and a model similar to that for the peak rod.
A summary of the results on which evaluation of the error in the absorbed

heat was based is as follows (in W/ cm):



Assumed heat generation rave 0.04545
Heat absorbed by peak rod (i) 0.0401
Heat absorbed by coolant cell 0.001
Total heat absorbed by rod/cooclant 0.0411

Generated heat not-accounted for 0,00435

The last entry prv.des a direct measure, on an absolute basis, of
the error in E&. It is non-zero mainly because of the representation of
the fuel rod activities by a finite number of point sources and can
therefore apply at all energies.

Based on the above information and on Eqs. (33) and (40) the frac-
tional errors in the various parameters are as follows:

E (H,) = 0.11
E (Fy) = 0.048
E (F) = 0.023
A conservative value of 0.482 was used for y in Eq. (40) and, therefore,

the errors can be assumed to apply at any time after reactor shutdown.

4,6 Rule-of-Thumb Results

In the previous sections attention was confined to the peak rod
and its redistribution factor. What is of interest now is to determine
hether some other rod, whose heat absorp ion rate during shutdown is
affected only slightly by the gamma smearing effect, could become the
controlling rod in a LOCA. In other words, it is important to verify

that the rod with the peak power during normal rea:teor operation is
also the rod with the peak heat absorption rate followiag shutdownm.
This question was answered by applying the rule-of-thumb model

described in Sec. 2.5. In particular, redistribution factors were first




computed for a number of rods around the peak rod by making use of
Eqe. (5), (43) and (45). The results were chen multiplied by the
corresponding actual peaking factors to obtain and compare the rela-
*ive heat absorption rates by the various rods.

Gamma redistribution factors computed as described are shown in
Fig. 4.6.1. These were based on the use of 121 relative peaking fac-
tors around the rod of interest. In each case, 21 relative peaking
factors were equal to zero and represented the control blade. o -
that the peak rod gamma redistribution factor is the smallest and cor-
responds to the 6-group entry in Table 3.2.2. This table may be re-
ferred to for additional results based on the use of snaller and larger
numbers of relative peaking factors. The rod which experiences the
next highest gamma smearing effect is diagonally across the control
blade relative to tne peak rod.

The peak rod gamma redistribution factor determined by this crude
model compares very favorably with the results fa Sec. 4.3 for the 2
and 3-MeV gamma photons. Indeed, it is this approximate equality of
the results by the two models that has justified and encouraged the
use of the rule-of-thumb approach.

Also shown in Fig. 4.6.1 are the redistributior factors F for zero
decay time following shutdown (i.e., y= 0.482). This data was used in
conjunction with the actual peaking factors to compute the relative
heat absorption rates in the various rods. The results, which are
equal to the products of these two parameters, are shown in Fig. 4.6.2.
The peaking factors during normal reactor operation are also given for
direct comparison. A plot of the quadrant-A peaking factors before and
after redistribution appears in Fig. 4.6.3. Note that the peak rod

is controlling also during shutdown, a result that we set out to prove.

.



5.0 SUMMARY AND CONCLUSIONS

This study has shown that, due to the gamma smearing effect, the
decay heat absorbed by the peak rod in Core XI of Yankee Rowe is sub-
stantially less than the decay heat it produces. A summary of the re-
sults, presented in terms of the redistribution factor F (i.e., the
ratio of the decay heat absorbed per unit length of the peak rod to
that generated per unit length) and the decay time t after shutdown,

is as follows:

F(t = 0 sec.) = 0,845
F(t = 10 sec.) = 0.829
F(t = 100 sec.) = 0.820
F(t = 1000 sec.) = 0.820

As explained in the main body of this report, these results were
obtained through the use of a number of conservative assumptions.
Smaller, less conservative numbers would have been obtained if more
fuel rods were used in the analysis, if the control blade was not
assumed to be thinner than it actually is, or if the axial cosine
power distribution was taken into account. Additional conservatism,
on the other hand, can be obtained by increasing the above results
to include the maximum value of the error estimate. In this case,
since the error in the analysis was determined (on an obsolute basis)
to be approximately 2.3 percent, the redistribution factor takes on

t.e following values:

F(t = 0 sec.) = 0.864
F(t = 10 ¢a- O = 0.848
F(t = 100 sec.) = 0.839
F(t = 1000 sec.) = 0.839
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It is of interest to note that the redistribution factors given
above compare very favorably with the ratio of certain nuclear heat
flux factors computed by Westinghouse and reported in the original
Yankee Rowe FHSR. Specifically, the following entry appears in the

FHSR section dealing with the loss-of-coolant accident (Ref. 2):

"FQN (the nuclear heat flux factor) is 3.88 for
steady state conditions and 3.23 for decay heat
calculations."”

The ratio z{ these two numbers, i.e., 3.23/3.88, is the redis-
tribution factor as defined in this work and is equal to 0.832. Un-
fortunately, since these results were obtained more than 13 years
ago, it was not possible to obtain specific details on the analytical
model and assumptions employed in that work.

Finally it was shown in this report that reasonably accurate re-
distribution factors can be obtained through the use of a very simple
formula. This formula, which involves only 100 to 150 relative peak-
ing factors around the peak rod, was used in this work to verify that
the peak power rod during normal reactor operation is also the rod

with the highest heat absorption rate during reactor shutdown.
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Fig. 3.1.1 Fuel rod segmentation and centroids
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Fig. 3.2.1 Yankee Rowe control rod configuration
and region of interest

Region of
interest

A - Regulating Rods D - Shutdown rods
. B - Used to attain power S - Shim rods

C - Shutdown rods
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Fig. 3.2.2 Core region analyzed and peaking factors
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Hot spot heating rate (W/cem? per 4x)

Fig. 4.2.1 Peak rod heati: 3 rate from point sources in 120 neighboring rods
(uniform array/source intensity case)

10~

10”4

E = 2 MeV
e
~
E =1 MeV
.
-
10’ 3%-
= 0.5 MevV
10~ 4 S | | 1 |
0 2

oy

4 6 8'ﬁwﬁt“fa lofb"nqﬁnpﬁaf\s
o e i, - P OUR. URIGINAL

~46-



Hot spot heating rate (W/cm)

Fig. 4.2.2 Peak rod heating rate - Contribution from

various source sets (uniform array/source
intensity case)
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Fig. 4.3.1 Heat absorbed by peak rod
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edistribution factors F\ and F, and y factor
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Peak rod

Fig. 4.4.1
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Fig. 4.6.1 Redistribution factors F, (top) and F (bottom)

based on rule-of-thumb approach (y = 0,482)
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Fig. 4.6.2 Peaking factors before and after

redistribution (rule-of-thumb model)

TN
1.425 \ 1.445 1.427
1.2€i/ 1.291 1.27/)
o .

N\

g

\

\

1.580
1.36}/)

—

CONTROL BLADE

Peak Rod

TN
1.359 1.389 1.418 1.607
\ 1257 1.275 1.290/} 1.385/}
. 2 L \,.

A 1.579

1.273 1.371

1.318 1.355 (:T;;;\\
\i;ffs 1.253 \i;jif/}

S

.

1.489
1.317

(1.535
1.340
\



-zg-

1

5
SN

M
Wi

=9

,
i
&

=9
—

THNI

Peaking factor after redistribution

Fig. 4.6.3 Quadrant-A peaking factors before and after redistribution (rule-of-thumb model)
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