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ABSTRACT

This report documents the formulation of a methodology for modeling and
evaluating the effects of structural uncertainty on predicted modal
characteristics of the major structures and substructures of commercial
nuclear power plants. The uncertainties are cast in the form of normalized
random variables which represent the demonstrated ability to predict modal
frequencies, damping and modal response amplitudes for broad generic
types of structures (steel frame, reinforced concrete and prestressed

,

concrete). Data based on observed differences between predicted and

measured structural performance at the member, substructure, and/or
major structural system levels are used to quantify uncertainties and
thus form the data base for statistical analysis. Proper normalization

| enables data from non-nuclear structures, e.g., office buildings, to be
included in the data base. Numerous alternative methods are defined
within the general framework of this methodology.

The report also documents the results of a data survey to identify, classify

: and evaluate available data for the required data base. A bibliography
of 95 references is included. Deficiencies in the currently identified

data base are exposed, and remedial reasures suggested. Recommendations

i are made for implementation of the methodology.

|

|

iii
1

._ _
!



_ _ _ _ _ _ _ _ _ _ _ _ _ ___ _ _ __ __ _ _ _ _ _ _ _

TABLE OF CONTENTS

Page

SUMMARY xi

1. INTRODUCTION 1-1

1.1 Backgrtsund and Problem Statement 1-1

1.2 Objectives 1-4
1.3 Scope 1-6

2. ORGANIZATION OF AVAILABLE DATA 2-1

2.1 Sources of Uncertainty 2-1

2.2 Sources and Types of Data 2-6
2.3 Classification of Data 2-24

3. ANALYTICAL FORMULATION 3-1

3.1 Coordinate Systems and Equations of Motion 3-4
3.2 Selection of Parameters to Represent Structural 3-11

Uncertainty
3.3 Alternative Parameters for Representing 3- 21

Structural Uncertainty
3.4 General Methodology for Evaluating Structural 3-24

Uncertainty

4. IMPLEMENTATION 4-1

4.1 Assessment of Available Data 4-1

4.1.1 Member Level Data (Table 4-1) 4-1

4.1.2 Substructure and Major Structure Data (Tables 4-3
4-2 and 4-3)

4.2 Potential Benefits from Additional Data 4-8

i

5. CONCLUSIONS AND RECOMMENDATIONS 5-1

5.1 Conclusions 5-1

5.2 Recommendations 5-5

v.

I
l

|



- - - , . - - - - - - - - , . - - - - - - - - - - - - - - - - -

TABLE OF CONTENTS

(continued)

Page

BIBLIOGRAPHY R-1

APPENDIX A - ILLUSTRATION OF OPTION 4 A-1

1

I

l

l

|

|

i
i

Vi ,



P

J

LIST OF FIGURES

Figure Page

2-1. Histogram of Ratio of Actual Deflection-to- 2-7
Deflection Calculated by ACI 318-63 METHOD

2-2. Histogram of Ratio of Actual Deflection-to- 2-7
Deflection Calculated by ACI 318-71 METHOD

2-3. Plot of Ratio of Actual Short-Term Deflection-to- 2-8
Deflection Calculated by ACI 318-71 Code Method
(normal model)

2-4. Plot of Ratio of Actual Long-Term Deflection-to- 2-8
Deflection Calculated by ACI 318-71 Method
(normal model)

2-5. Plot of Ratio of Actual Short-Term Deflection-to- 2-9
Deflection Calculated by ACI 318-71 Method (log-
normal model)

: 2-6. Plot of Ratio of Actual Long-Term Deflection-to-
Deflection Calculated by ACI 318-71 (lognormal
model) 2-9

2-7. Probability Density Function Fitted to 2-10
Experimental Data

2-8. Cumulative Distributions of Ratios of Actual-to- 2-10
Calculated EI-products

1

2-9. Histogram of Ratios of Observed to Computed 2-11
Feriod Determinations for Small Amplitude
Vibrations of All Building Types

2-10. Histogram of Ratios of Observed to Computed 2-12
Period Determinations for Large Amplitude
Vibrations of All Building Types

2-11. Histogram of Ratios of Observed to Computed 2-13
Period Determinations for Small and Large
Amplitude Vibrations of All Building Types

| 2-12. Relation Between the Fundamental Periods of the 2-15
I Bu.ldings Estimated from the Strong-Motion

Seismograph Records (T ) and Those from the Records
Eof Microtremors in the Buildings (T )

M

;

i vii

|

. - - - . ._. -



LIST OF FIGURES
(continued)

Figure Page

2-13. Relation Between Natural Periods and Earthquake 2-16
Building Periods. Steel Buildings

'
2-14. Relation Between Natural Periods and Earthquake ?-17 |

Building Periods. Reinforced Concrete Buildings

2-15. Histogram of Ratios of Earthquake to Pre-Earth- 2-18
quake Period Determinations for Buildings
Subjected to an Earthquake Near Tokyo

2-16. Histogram of Ratios of Earthquake to Pre-Earth- 2-19
quake Period Determinations for Buildings
Subjected to the San Fernando Earthquake

2-17. Relation Between Natural Periods and After 2-20
Earthquake Building Periods. Steel Buildings

2-18 Relation Between Natural Periods and After 2-21
Earthquake Building Periods. Reinforced Concrete
Buildings

t

2-19. Relations Between Pre-Earthquake Natural 2-22
Periods, Earthquake Building Periods and After
Earthquake Building Periods

2-20. Pre- VS. Post-Earthquake Period Determinations 2-23
for Buildings Subjected to San Fernando Earth-

,

; quake

2-21. Histogram of Damping Determinations for Small 2-25,

Amplitude Vibrations of Reinforced Concrete
Buildings

2-22. Histogram of Damping Determinations for Small 2-26
Amplitude Vibrations of Steel Buildings

2-23. Histogram of Damping Determinations for Small 2-27
Amplitude Vibrations of Composite Buildings

|

|

l
viii

- __ _ .



. .. __ __ ._ , ._ ._ __ __ .

i

i LIST OF FIGURES
(continued)

.

Figure Page

3-1. Diagram of Coordinate Systems and Related 3-12-

Transformations for Substructuring Using Direct'

Method

3-2. Diagram of Coordinate Systems and Related 3-13
Transformations for Substructuring Using Modal

i Synthesis Method
i

j 3-3. Flow Diagram of General Methodology 3-26 -

| 3-4. Flow Diagram for Option 1 3-30
:

3-5. Flow Diagram for Option 2 3-41
;
.

.

Flow Diagram for Option 3 3-433-6.;
>

3-7. Flow Diagram for Option 4 3-44
i

i 3-8. Flow Diagram for Option 5 3-45

3-9. Flow Diagram for Option 6 3-46
i

*

{ 3-10. Flow Diagram for Option 7 3-48
!
! 3-11. Flow Diagram for Option 8 3-49

3-12. Flow Diagram for Option 9 3-51

3-13. Flow Diagram for Option 10 3-52

| 3-14. Flow Diagram for Option 11 3-54

3-15. Flow Diagram for Option 12 3-56

i

f

f

I
;

1

|

|

iX
!

I

-- - .- . - - - . _ -. , .. .



- . - - . _ . - . _ . . . . _ . _ - _ - . . _ . . _ _ . - ._. . . - . - _ _ _ _ . . . . . . - - . -

! '
'

,.

1

I

e

:

; ,

!

I

j LIST OF TABLES
1

P

,

j Table g |

2-1. - Sources of Structural Uncertainty 2-2 !
i !

| 3-1. Nomenclature for Figure 3-3 3-27 ;
t

i 4-1. Member Data 4- 2
~

.,
-

4

1 4-2. Substructure Data 4-4 -;
;

4-3. Major Structure Data 4-6

i
4

'

i
.

!

'f
;

<

1

b

i
;

.

1

|
|
4

4

1
1

i
'

!

!
I
i
!
i ,

e b

e

i
1

!

i
b
j

! L

,

! X

!
l
!- .

'

_ . ... . . . . - . - _ - _ = _ - _ - . , . - , . . - - . . - . - _ - , . - . _ - _ - - - _ - _ . . _ - - -. -___.. . , , . . . ,,._



.

SUMMARY

'This rei et presents a methodology for modeling structural uncertainty in
-the major structures and substructures of nuclear power reactor facilities.
The methodology is aimed at representing this uncertainty in terms of
three nonnalized random variables which relate to modal frequency, modal

amplitude and modal damping. It is shown how the distributions of these
random variables can be derived from available analysis and test data.
Once defined in this manner, the random variables can be sampled for
numerical simulation of structural response to seismic excitation. With
the use of these three random variables and a structural model, the
natural frequencies, mode shapes and modal damping for an arbitrarily
specified structure and an arbitrary number of modes can be varied
randomly and independently of each other.

1

A new approach has been taken in developing the present methodology.
Whereas the conventional approach relies on the a priori definition of
random structural properties and their distributions (or statistical
moments) which must be established largely on the basis of conjecture,
this approach does not. The problem is viewed here in much the same
way as that of modeling structural damping. In general it cannot be
done by inductive means. Structural uncertainty can only be deduced
by comparison of an;.lytical predictions with experimental measurements
for generically similar structures whose dynamic response is computed

~

and measured relative to the way the structure will behave in an actual
earthquake, i.e., in its lower natural modes of vibration.

The methodology accommodates the use of either generic structure and/or
substructure modal data (e.g., theoretically predicted and experimentally
measured modal data for steel frame buildings, reinforced concrete
buildings, etc.), or structure-specific data obtained from seismic tests
or forced vibration tests on the particular structure being modeled.

.
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.
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The use of structure-specific data is'of course expected to reduce,

i .modeling uncertainty appreciably, but will not eliminate it entirely.
! . This methodology will enable the reduction of uncertainty to be

quantified, thus demonstrating the benefit of seismic testing.,

Finally, this report presents and summarizes the results of a literature
4

survey conducted to identify the variods types, quantities and sources
of data which can be used with the proposed methodology. Much ntore
data are believed to be available in foreign technical journals as well
as in unpublished reports within the United States and abroad. The
potential benefit of acquiring such data is considered to be great.

!
!
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1. INTRODUCTION
i

1.1 Background and Problem Statement

|

Seismic risk for critical structures and facilities has been defined in
; many ways, ranging from the probability of experiencing a certain ground

) motion intensity, to the probability of experiencing a certain level of
structural response, to the probability of experiencing failure in a
critical failure mode, to the probability of system failure which is

; the ultimate consequence of failure in a number of interdependent
i subsystems comprising a functional system. The probability that

| radioactive gas will be released from a nuclear power reactor during
a LOCA triggered by an earthquake is the measure of seismic risk chosen
for the SSMRP program. Structural uncertainty is only one of many'

j contributors to this overall measure of seismic risk.

|

The task of analyzing this risk is enormously complex. A numerical
simulation approach has been selected as a means of coping with the

; time-dependent, nonlinear, nondeterministic nature of the problem.

_
Not only must the' functional performance of all aspects of the nuclear

4

| power plant be understood in detail, but they must be understood well
i enough to make valid engineering approximations to the degree that the

j totsi problem remains tractable while (a) all significant functional
features of the plant are represented, (b) all significant sources of
uncertainty are represented, and (c) models are sufficiently realistic
and flexible to accommodate the learning process which the analysts
must undergo in the process of developing and learning to use them.

Structural modeling is recognized as being one of the significant sources
; of uncertainty in the network of systems and subsystems. There are ,

i countless sources of uncertainty which in turn contribute to that which
,

1-1
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we categorically call " structural uncertainty". These include un-
certainties in material properties, construction, modeling, analysis
and even experimental observation to the extent that physical reality
may never be perfectly known. We shall therefore define structural -

uncertainty (generally speaking) to be the difference between that
which we'can predict based og analytical modeling and analysis, and
that which we might physically observe.

There are two distinct kinds of uncertainty which must be recognized
in this general problem area. One relates to a population of structures,
and the other to a particular structure. The SSMRP program is directed
toward the evaluation of seismic risk for particular power plants, i.e.,
particular structures. To some extent, however, we are forced to use '

population statistics in modeling the uncertainties of substructures
i and elements of major structural systems. We shall adopt the concept

of generic classification as a means of compartmentalizing the various
uncertainties which contribute to overall structural uncertainty,
thereby creating a general framework of analysis which permits us to use
available data and potentially future data in an optimum manner. We
shall endeavor to minimize structural uncertainty by being as specific
as our knowledge will permit.

1

We encounter many difficulties when contemplating an effort such as this.
Some of them are listed below:

I
: e There are probably more sources of uncertainty than we can name. 1

e Even for those which we can name, there are relatively few
sources of data upon which to base any quantitative estimates,
let alone statistical estimates with high confidence.

,

h
'

|

|

3
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e And, even if we could identify all sources of uncertainty
and appropriately quantify them, we would face the imense
task of combining them computationally.

e Finally, if we could do all of that, we would still have to

reduce the resulting uncertainty to a few significant para-
meters which capture both the qualitative and quantitative
essense of the problem.a

The constraints imposed by having to model structural uncertainty for
numerical simulation in the overall risk analyses (SEISIM) computer
program are severe. Nevertheless, the challenge of the task is to

do so in a way that is reasonable, easy to understand, and which can be
traced through a rigorous mathematical formulation to concrete data,
rather than conjecture.

Structural response will be provided to the SEISIM program in a tabular
format representing maximum (peak) response statistics at some 200 -
400 locations for a range of earthquakes. These statistics will be
generated by the SMACS program via time-history response analysis
of multi-degree-of-freedom SSI models. Structural modeling and analysis
will take place independently of the SSI response analysis to produce e
reduced modal representation of the structure portion of the SSI system.
Structural uncertainty will be represented in the modal characteristics
of the structure.;

In light of the foregoing background discussion, the problem which this
study addresses may be stated as follows: Given the likely existence
of limited, incomplete, and possibly incompatible data relating to

(. structural uncertainties for nuclear power plants, as well as other types
of structures, formulate an * 'ytical methodology for maximizing the

1-3
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,

!
:
!

-

:

: usefulness of these data to produce realistic data-based statistics of
:

modal characteristics for major structures of nuclear power plants, for

| purposes of numerical simulation in SSMRP.

!
j 1.2 ' Objectives

!:

| Specific objectives have been defined in structuring a technical approach
to this problem. They reflect parallel efforts aimed at identifying;

sources and types of data upon which to base the uncertainty modeling,
and an evaluation of modeling alternatives aimed at synthesizing computational i

; techniques and procedures which are compatible with LLL's structural

j ar.alysis plan, and which will at the same time accommodate available forms of !

| data. The data oriented objectives are stated as follows:

i
!

(1) Identify data and sources of data for potential use in modeling
j structural uncertainty for seismic risk analysis.
!

i (2) Evaluate the format and adequacy of these data relative to
j alternative modeling and analysis procedures.

(3) Classify and categorize the data for subsequent use in
analysis.

Objectives defined to guide the formulation of modeling and analysis
!' procedures are:

|

j. (4) Ensure that modeling techniques and analysis methods are
' compatible with available (and potentially available) data,

j and that they make maximum use of the data in the following

j ways:

,

!

.

1-4
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,

i

,

'

e be capable of utilizing element , substructure, and/
3

or major nuclear power plant structure data,
.

e be capable of using generic as well as structure-
,

specific seismic / vibration test data at the
;

substructure and major structure levels,

e be capable of using generic data from other than
nuclear power structures,

a

(5) With respect to vibration data at the substructure and major
j structure levels, utilize mode shape as well as frequency and
I damping information to evaluate uncertainties in modal response

time-histories and/or amplitude.
,

(6) Account for correlation among the various modal properties
l of a structure or substructure.

.

(7) Identify combinations of modal parameters which may be used

for; expressing structural uncertainty more concisely.

(8) Consider the use of empirical analysis for reducing the
statistical degrees of freedom required to represent the
modal characteristics of major structures.

The end product of this combined data evaluation and mathematical
formulation effort should be a unified methodology which meets the

following objectives:

(9) Provides a means of assessing the adequacy of available data
relative to the needs of SSMRP, and subsequent identification

:

,

i

1-5
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I
i

j of additional specific data requirements.

| (10) Provides sufficient flexibility for user experimentation and
! learning in its adaptation to SSMRP.

! (11) Will produce realistic results t.hich are in basic agreement

) with the preponderance of theoretical and experimental
evidence available to date.

,

| The present study has endeavored to satisfy these objectives insofar
j as possible.
!
i

j 1.3 Scope
i
;

The scope of the present study includes a rather extensive literature
,

I search. A bibliography has been organized to present data sources
in three distinct categories:,

e Member (or element) data*-

i
j

; e Substructure (including nuclear power plant as well as non-

! nuclear power plant) data

e Major structure (exclusively nuclear power plant) data
;

; Data from these sources have been classified into three generic groups

e Structural steel
,

4

e ' Reinforced concretes

e Prestressed or post-tensioned concrete-*

4

i

i- 1-6
;

I
,
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corresponding to the major generic types of substructures which comprise
the following major structures of existing nuclear power plants:

e Reactor building

e Auxiliary-fuel-turbine building complex

A general formulation of structural modeling and uncertainty analysis is
presented and discussed. Simplified examples are included for purposes
of illustration.

The scope of the present study does not include the specification of
computational procedures, nor does it include any numerical demonstration
problems of a realistic nature. The simplified examples offered herein
are purely hypothetical.

-
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2. ORGANIZATION OF AVAILABLE DATA

2.1 Sources of Uncertainty

for the purposes of collecting and analyzing available data, it is useful
to classify sources of uncertainty into a number of major classes. In

this report five major classes of uncertainty are identified and listed
in Table 2-1.

I. Material Properties

II. Construction

III. Effects of Nonseismic Loading

IV. Modeling Techniques
,

'

V. Analysis Methods

Although the boundaries between the above mentioned classes often
intersect and may in fact be inseparable, this classification is
intuitively appealing and each class is sufficiently distinct to justify
such separation. The decisions made and actions taken during design and
analysis of engineering structures involve all of the five classes
mentioned above and adversely affect our predictive ability of structural

j behavior. Errors made in predicting the response of the structure can
further be classified under two categories: (a) random, and (b) systematic

errors. Each of the five sources of uncertainty mentioned above may

,
contribute to both types of error.

!
|

| Below,we present a sample listing of the sources of uncertainty identified

| under each of the five classes. Although the list is fairly detailed,

|
!

2-1 )
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Table 2-1. Sources of Structural Uncertainty

I. MATERIAL PROPERTIES

(a) CONCRETE

(1) COMPRESSIVE STRENGTH

(ii) E NSILE STRENGTH

(iii) SECANT MODULUS

(iv) TANGENT MODULUS

(v) POISSON'S RATIO

(vi) DENSITY
'

(vii) DAMPING

(viii) NONLINEAR STRESS-STRAIN PROPERTIES,

(fx) CREEP AND SHRINKAGE

i

(b) STRUCTURALSTEEL[KTROLLED]

; (i) YOUNG'S MODULUS, COMPRESSIVE

(11) YOUNG'S MODULUS. TENSILE

(iii) SHEAR MODULUS

(iv) POISSON'S RATIO,

(v) VARIABILITY OF GEOMETRIC SHAPE PROPERTIES

e MOMENTS OF INERTIA: I ,! , I ,,;

o CROSS-SICTIONAL AREAS: A

j (vi) YlELD STREES

(vii) DENSITY

(viii) DAMPING
(ix) NONLINEAR STRESS-STRAIN PROPERTIES

(x) CREEP

;

(c) REINFORCING STEEL [(1) - (x) as in (b) above]
,

II. CONSTRUCTION

(a) GEOMETRIC VARIATIONS OF MANUFACTURED COMPONENTS FROM DESIGN
SPECIFICATIONS

(i) CONCRETE BEAMS: OVERALL WIDTH AND DEPTH

(ii) CONCRETE COLUMNS: CROSS SECTIONAL DIMENSIONS

(iii) CONCRETE SLABS: OVERALL DEPTH

(iv) LOCATION OF TOP AND BOTTOM REBARS OF BEAMS AND SLABS

|
.

| 2-2
,
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Table 2-1. Sources of Structural Uncertainties (cont'd),

.(v) SPACING OF STEEL IN COLUMNS

(vi) STIRRUP SPACING IN BEAMS

[ ~(vii) STIRRUP SPACING IN COLUMNS

! (viii) LENGTH OF COLUMNS
,

(ix) LENGTH OF SPANS

(x) OUT-OF-PLANE IRREGULARITY

(b) PRESTRESSING OR POST TENSION!NG

; (i) GEOMETRIC VARIABILITY OF DIMENSIONS

,

(ii) VARIABILITY IN APPLIED PRESTRES$1NG FORCES
2

1

(c) JOINTS

, (1) VARIABILITY OF JOINT DETAILS FROM SPECIFICATIONS

(ii) INTRODUCTION OF ADDITIONAL JOINTS DUE TO CONTINUITY REQUIREMENTS

I (d) FASTENERS

(i) VARIABILITY OF APPLIED TORQUES TO FRESTRESS BOLTS

i

!!1. EFFECTS OF NONSEISMIC LOADING

(a) CHANGES TO STRUCTURAL PROPERTIES

(i) REDUCTION OF STIFFNESS DUE-TO STATIC LOADING (E.G. LIVE
AND DEAD LOADS).

(ii) THERMAL LOAD EFFECTS
,

e CHANGE IN MEMBER STIFFNESSES*

e GEOMETRICAL DISTORTION LEADING TO ADDITIONAL CHANGES IN
MEMBER STIFFNESS.

e EFFECT OF TEMPERATURE ON MATERIAL PROPERTIES

(11.1) CHANGES IN STIFFNESS DUE TO INTERNAL STRESSES CAUSED BY
i

j FOUNDATION MOVEMENT

|

f (b) COMBINED LOADS EFFECTS

(i) VARIABILITY OF LINEAR RANGE FOR SEISMIC LOADING

( (iii VARIABILITY IN RESISTANCE CAPACITY FOR SEISMIC LOADING

(iii) UNCERTAINTY IN NONSE! Smit LOADS

I

|

2-3
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Table 2-1. Sources of Structural Uncertainties (cont'd)

IV. MDDELING TECHNIQUES

(a) DISCRETE. PARAMETER IDEALIZATION OF COMPLICATED DISTRIBUTED
PARAMETER SYSTEMS

] (1) SELECTION OF MESH SIZE AND NODAL GEOMETRY

(ii) ASSUMED DISPLACEMENT FIELDS

- (iii) ASSUMED DISTRIBUTION OF MASE.

(iv) COORDINATE REDUCTION

(v) SELECTION OF DYNAMIC DEGREES OF FREEDOM

(vi) MDDAL TRUNCATION

(vii) SELECTION OF RESPONSE COORDINATES

(b) BOUNDARY CONDITIONS

(1) ELEMENT-TO-ELEMENT

(ii) . SUBSTRUCTURE-TO-SUBSTRUCTURE

(iii) EXTERNAL TO MAJOR STRUCTURAL SYSTEM

(c) FLUID-STRUCTURE INTERACTION

(d) DAMPING

(1) ASSUMED EQUIVALENT VISCOUS DAMPING

(ii) ASSUMED COMPLEX MODULOUS DAMPING

(iii) ASSUMED UNCOUPLED MODAL DAMPING

(iv) VARIABILITY IN MEASURED MODAL DAMPING RATIOS

,

(e) MODELING OF COMPOSITE MATERIAL ACTION

(f) EFFECTS OF NON-STRUCTURAL ELEMENTS

(g) NONLINEARITIES

(i) MATERIAL

e NONL! HEAR STRESS-STRAIN

e STIFFNESS DEGRADATION DUE TO CRACKING AND CREEP OF
CONCRETE AND YIELDING OF STEEL

(ii) GE0 METRIC

e GAPS
'

e IMPACT

|

2-4
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Table 2-1. Sources of Structural Uncertainties (cont'd)
i

e JOINT SLIPPAGE - COULOMB FRICTION

e LARGE DISPLACEMENTS AND ROTATIONS
'

e BUCKLING

(iii) AMPLI*iUDE AND CYCLE / HISTORY DEPENDENCE

e STIFFNESS

e DAMPING

i
V. ANALYSIS METHODS

,

(a) MODAL ANALYSIS

(1) CONVERGENCE OF NUMERICAL ITERATIG;,

(11)- ORTHOGONALITY OF EIGENVECTORS

(iii) SKIPPED MODES

(iv) NUMERICAL INSTABILITY

(v) ROUND-OFF ERROR

(b) RESPONSE SPECTRUM ANALYSIS

(i) ASSUMPTION OF RANDOM PHASING

(ii) APPROXIMATIONS OF MODAL CORRELATION AND COMBINATION

(iii) FORCING FUNCTION UNCERTAINTY

!
(c) TIME-HISTORY ANALYSIS

(i) NUMERICAL CONVERGENCE

(ii) NUMERICAL RESOLUTION

(iii) FORCING FUNCTION UNCERTAINTY
;

i

,

5
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it must nevertheless be considered incomplete. It is included for two
reasons: (1) as a reminder of the almost endless potential sources of *

uncertu nty. compared with the limited amount of available data, and (2)
to be suggestive of how ur. certainties may be grouped for engineering
analysis.

2.2 Sources and Types of Data

A wide variety of test data on structural components as well as on com-
plete structures are scattered in the literature. Recently a comprehensive
summary on the constitutive properties of some construction material
(e.g., concrete, reinforcing steel and structural steel) has appeared in the
literature [17,18 and 8]. A sumary of data on the geometrical variability
of reinforced concrete member dimensions is reported in [19]. The data
reported in the above references are in the form of the first two
statistical moments, namely, the means and standard deviations and a

recomended probability distribution function. The types of data reported
in the above references clearly belong to categories I and II defined in
Section 2.1. Further, the variability of the ratio of measured to computed
deflections of simply supported reinforced concrete beams is reported in

[1 and 23]. In [ l ] normal and lognormal probability density functions
are fitted to the data (see Figures 2-1 to 2-6). In references [10 to 12 ],
the results reported in [1] are utilized to construct a probability
distribution function for the ratio of measured to predicted effective
El values (see Figure 2-7, and 2-8).

A comprehensive sumary of data on measured versus calculated natural

periods of a wide range of structures is reported in [31]. In Figures
2-9 to 2-ll we reproduce the results in [31] for both small and large
amplitude vibrations; we note that these figures include the parameters
of both gama and lognormal distributions fitted to the data.
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Evidence of lengthening of fundamental periods of building structural
systems at higher amplitudes of vibration is well recognized in the
literature. In [31, 49, 54] a summary of this amplitude dependence of
natural periods is reported for data taken in Japan and the U.S.A. Data

i reportedin[31,49,54] are reproduced in Figures 2-12 to 2-16 for
steel, reinforced concrete and lumped steel-reinforced concretei

structures. Further evidence of amplitude-history dependence of natural
periods of vibration is summarized in the above mentioned references

[ 31 ] and [ 54 ], the results of which are reproduced in Figures 2-17 toa

2-20 for steel and reinforced concrete structures and mixed steel-rein-
forced concrete structures.

'

So far, the data reported above are for individual components and building
structures. Realistic data on eigenproperties of major substructures, which
are typically a coupled combination of a number of substructures and their
foundation,are rare in the literature. Obviously, most nuclear power
plant facilities are examples of major structures; hewever, due to

i

their inherently massive and complicated nature very few tests are j
reported in the free literature. However, a literature search revealed

some data on system natural periods, and to a lesser extent, mode
shape data. An ambitious program of small and large amplitude vibration
tests with state-of-the-art mathematical modeling techniques was recently
undertaken on a decomissioned nuclear power plant in the Republic of 1

West Germany [58]; tests of this nature are expected to yield valuable
insight on the dynamic characteristics of complex structures.

Energy dissipation of structural systems in the elastic range is normally
computed using the concept of equivalent viscous damping [31 ]. In

many cases, this method of determining damping values of actual buildings
from vibration tests is sufficient; however, precise and quantitative
descriptions of damping mechanisms in structures are not yet available.
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Although no quantitative measure exists, there is qualitative
evidence from measurements that damping increases with sibration

amplitude [31]. A summary of data on fundamental mode damping is given
in [ 31 ]. In Figures 2-21to 2-23 we reproduce the results of [31] for
damping values for small amplitude vibrations for steel, reinforced
concrete and composite buildings, respectively. Additional data on damping
values for nuclear power plants are reported in [39 and 59].

2.3 Classification of Data

Consistent with the methodology developed elsewhere in this report it.

is instructive to classify the data into three categories, namely:
(a) Major Structures, (b) Substructures, and (c) Structural Elements
(members). We discuss below each of the three categories of data.

4

Major Structures

In this category we include large structural systems which may be a
number of structures that are coupled to each other either through
sharing a common foundation, being physically attached or a combination

of the two (clearly, nuclear power plants belong to this category).
Single structures which are a collection of a set of distinct sub-
structures connected together, may also be classified to belong to this
category (e.g., modular structures and pretast or prestressed structures).
Data in this category are expected to bear information on coupling effects

( of the various interconnected structures.

Substructures

To this category belong any collection of components which as a unit is
designed to perform a specific function. From this definition, it is

1
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ii

l clear that a number of substructures may emerge for the same collection

of components, when viewed by different individuals. This is perfectly
acceptable and is precisely the intent. The only requirement is the
availability of test data (such as modal data) for the particular sub-

; structure chosen. It is also clear that a full-size building may be
; regarded as a substructure when viewed as a simple member of a major I

| structural system as defined in (a). The inclusion of this last category
! as a substructure is significant, since building data can profitably

,

be utilized to furnish us with additional information in the analysis
of uncertainty of nuclear power plant facilities.

Structural Elements (members)

This category includes the individual elements of structures which when

j interconnected, form the complete structure or substructure. Clearly,
j connectors and fasteners belong to this family; unfortunately, their
'

stiffness properties are the least understood. Existing methods of
uncertainty analysis make exclusive use of only this type of data'

[3 to 7], [7 to 9], [20 to 21].
,

t

.

|

1

5

.

|
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3. ANALYTICAL FORMULATION

The mathematical formulation of methods for evaluating structural un-
certainty will have a substructures orientation. This means that the
basic building blocks of major structural systems are considered to be
substructures, as opposed to simple structural elements such as beams,
columns, shell elements, etc. This is not to say that standard finite
element modeling codes cannot be used. On the contrary, it is expected
that standard codes will be used to generate substructure mass and
stiffness matrices, as well as the sensitivity coefficients (first order
partial derivatives) required to perform a linearized statistical
analysis of modal parameters. The following subsections discuss the
coordinate systems and their corresponding equations of motion, the
selection of parameters to represent structural uncertainty, and a
general formulation of the structural uncertainty analysis reconunended
for SMACS. Before engaging the detailed development of methodology, how-
ever, a brief overview and summary is offered to help the reader
establish some perspective.

Section 3.1 lays the foundation for the methodology by describing the
coordinate systems and corresponding equations of motion for any given
major structural system, and its substructures. These equations should
be sufficiently general to relate directly to the structural models used
in SMACS, as well as to those which represent the various structures from
which uncertainty data must be extracted. Modal coordinates have been
chosen for the latter. However, mode shapes define the modal coordinates;
because the assumption of structural uncertainty implies that analytically |

|predicted mode shapes will differ from the (hypothetical) "true" modes,
it is convenient to define two modal coordinate systems. Thus, three

coordinate systems in all (one involving nodal displacements and two
involving modal displacements) are required. Parallel sets of coordinate

1

i

|
3-1 I

. . -. - . _ _ -.



. __ _ . - .- ._- -

t

,

f

systems at the substructure and major structural system levels therefore*

result in a total of 3(N+1) coordinate systems being defined, where N is
the number of substructures comprising the major structural system, and
the "1" added to N accounts for the additional set required for the *

major structural system itself.
,

i

Section 3.2 proceeds to derive the modal parameters recommended to

g embody structural uncertainty at the substructure level. The intent is
to choose these parameters in such a way as to (1) account for all
significant contributions to structural uncertainty (i.e., including all

4

of the potential sources listed in Table 2-1 as well as those which may
have been overlooked), and (2) provide a common basis for relating the
observed uncertainties (differences between predicted and measured
structural characteristics) among 'various structures or substructures
within a given generic family.

Section 3.3 suggests an alternative set of' parameters for embodying
structural uncertainty. Whereas those discussed in Section 3.2 relate
to the modal properties of structures, those of Section 3.3 are identified
with the physical partitioning of a substructure in the sense that un-
certainties can be localized and segregated according to physical
characteristics such as bending stiffness, shear stiffnesses, structural
mass, equipment mass, etc. The mapping of one type of uncertainty (e.g.,

j modal) into the other (localized physical) is not a one-for-one mapping.
I In fact the two representations of uncertainty result from two different

ways of " slicing the cake" so to speak. Esch presents a different view
of the total picture. Transformations between one view and the other
should enhance the understanding of both. One of the advantages of

i representing uncertainty in terms of localized physical characteristics
) is that contributions from such things as operating loads, deterioration,

maintenance, and the extrapolation of small to large amplitude behavior
are more easily accounted for.

J
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Section 3.4 presents a general methodology for evaluating structural
uncertainty. This methodology is considered to be a broad general frame-
work within which various methods may be defined. The concept is'

illustrated by a flow diagram through which many paths can be charted.
"

A total of twelve optional paths (methods) is presented, each beginning
with different kinds of structural uncertainty data, but all leading to

a covariance matrix involving three random variables. The three random,

variables represent uncertainty in modal frequency, amplitude and damping
and are cast in dimensionless form so that their distributions can be
sampled, and the sample variates scaled according to the particular
characteristics of the structure being modeled. This enables a repre-
senation of the variation in the modal parameters of the structure
being analyzed.

1

The reader may benefit by jumping ahead a ways at this point, to catch
a better glimpse of where the methodology ends up. The methodology is
presented in Section 3.4 by " walking through" each of the twelve options,
one step at a time. As each new situation is encountered, it is explained.
As each successive option is described, reference is made to earlier

; described options for points of similarity and/or difference. Option 1

is particularly important in this regard, because it explains each step
of a complete method, from start to finish. The other eleven options
all refer back to Option 1, either directly or indirectly.

The last six pages of Option 1, beginning with Equation (3.43) are of
central importance. It is here that the equations of structural response
are presented showing how the three normalized random variables are
defined. Also contained in these few pages is a discussion of how the
statistics of system eigenvalues and eigenvectors (A and 4) can be
processed to obtain meaninfgul statistics for the three normalized random
variables. Certain assumptions are tentatively suggested, subject to

3-3
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,

;

.

I

i
proper numerical verification. Among these is the assumption, for ;'

example, that eigenvalue and eigenvector statistics tend to be un-
correlated, at least in those cases where generic uncertainty data (as
opposed to structure-specific data) control the confidence of thei

,

estimates. It is important to recognize, however, that these assumptions
are not essential to the methodology; one has the choice of making.

|
alternative assumptions, or no assumptions at all in which case the

t
' computational effort required during numerical simulation may increase

substantially.
i

|

] Perhaps the most important feature of the proposed methodology is its
ability to utilize frequency and mode shape data from non-nuclear

;

i structures such as steel frame and reinforced concrete buildings, as a
f

! basis for quantifying the uncertainty in structural response predictions
,

made for the major structural systems of nuclear power plants. The ,

benefit offered by this feature is that predicted response uncertainties
can be quantified on the basis of actual data which relate directly to

; observed differences between predicted and measured behavior of similar
'

structures.

3.1 Coordinate Systems and Equations of Motion

{ Since structural characteristics are the primary concern of this study,
only the homogeneous equations of motion will be written here. Equations

.

,

of motion for the ig substructure are therefore

) M XI+Ci i+K iI
x x =0 (3.1)

I I iwhere x denotes a vector of nodal displacements, and where M , C and K
denote respectively the mass, damping and stiffness matrices of the i g

,

substructure corresponding to that coordinate system. For the time being,
IC will remain undefined. The mass and stiffness matrices will be of the

form typically generated by standard finite element modeling codes. No

3-4
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I Irestrictions are placed on M and K except that they be symmetric and
i Ipositive definite. Thus, for example M and K could represent the mass

and stiffness matrices of a substructure after static reduction has been
Iperformed to reduce the general coordinate vector x to a smaller set of,

dynamic degrees of freedom.

It will be assumed that the " structure" of the model represented by these
equations of motion is correct (i.e., given the right parameter values,
M and K , these equations of motion would indeed represent the actual
substructure) but that the true parameter values are not precisely

Iknown. We shall denote our original estimate of M and K by *M and 'K

respectively, and denote the differences between these estimates and
the (presently unknown) "true" values by AM and AK . Thus

IM = 'Mi + AM (3.2a)
,

,

KI + AKI (3.2b)K =

i The structural modeling effort will thus lead to the undamped eigenproblem

I I
*A 'M)*4 =0 (3.3)(*K - o

Aj denotes the JM predicted eigenvalue for the in substructurewhere

(a scalar), and *4 denotes its corresponding eigenvector. Consistent

with the present notational convention, the symbols A and 4 will be
used later on to denote the "true" j h eigenvalue and eigenvector.

The predicted mode shapes can be used to transform the equations of motion
,

to a set of truncated modal coordinates, p'. '

|
|

r
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4

l

,

4

i i'

x = '4 p (3.4)

i where '4 is in general considered to be a rectangular matrix (more rows
thancolumns). Applications of this transformation to Equation (3.1)

I i(using 'M , 'C and 'K in place of M , C and K ) results in
>

I I i*m li + 'c # + 'k p 0 (3.5)=

1

: where
!
!

i I'm = (*4 )T gio i EI (3.6a)

I I*c = (*$ )T *CI *$I (3.6b)

i I= ('c )T .gi 1 1*k 4 g .3 3.6c)
!

4' assuming that mode shapes are normalized to give unit modal mass.
Notationally, I denotes an identity matrix and 'A denotes a diagonal

i imatrix of predicted frequencies squared ('A E 'w)i 'wp k jk, where 6jk6,

is the kronecher delta).
t *

By analogy with Equations (3.2) we shall assume that th' "true" param-4

i2 eter va'.ues, m and k are related to those of our initial estimate by
1
i

; m = 'mi + Am I + Am' (3.7a)
i

=

Ik = *kI + Ak 'A + Ak (3.7b)=

.

,
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1

i IThe substructure eigenproblem involving m and k in the p coordinate

system may be stated
I

I
! (k -A m)$ =0 (3.8)

where A and $ denote the "true" jg eigenvalue and corresponding eigen-
Ivector in the p coordinate system. The true eigenvector in the x'

I coordinate system would then be given by

I4 = '4 $ (3.9)

Modal damping cannot be predicted the way modal mass and stiffness can.
It is customary to rely on experimental measurements. Experimental

measurements by definition relate to the actual structure, and strictly
speaking should be associated therefore with the "true" structural
model, in the "tru6" modal coordinate sy3 tem. We shall associate this4

coordinate system with the coordinate vector q and define the trans-
I i

formation from p to q by

I I
p=tq (3.10)

or from x to q by

i I Ix = '4 $ q =4 q (3.11)

Equations of motion are thus written in the q coordinate system as

I Q + (I 4+A q =0 (3.12)
I

|
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where in general the substructure modal damping matrix C will not be
diagonal. Although the off-diagonal terms of C have in the past been
neglected in sub' structuring type analysis, it is, strictly speaking,
incorrect to do so [89]. We shall examine the implication of this state-
ment later on. Suffice it to say for the time being that the diagonal

I
C ) of the matrix (I are given by the familiar relationshipelements,

3

C33 = 2 c w (3.13)

where w E and c is the critical damping ratio of the j_th mode of
the Qh substructure.

A completely parallel development can be given for a major structure
comprised of a number of substructures. The results are identical to
Equations (3.1) thrpugh (3.13) with all the "i" superscripts removed. It

is therefore unnecessary to repeat the derivation. What is required,
however, is to define how one proceeds from the isolated substructure
equations to the coupled equations of motion representing the major
structural system which is comprised of interactive substructures.

There are basically two ways in which this can be done. Both will be
considered here, although the first is likely to be preferred for the,

sake of convenience. For the moment we shall overlook the fact that our
structural modeling gives inaccurate predictions, and proceed as though
the true structural parameters are known. Returning to the substructure!

Iequations of motion in the x coordinate system, we shall fonnally
assemble the equations of motion for the major structure in the following
block-diagonal form

i *[ + ct t+kt ip x =0 (3.14)m
;
+
|

| 3-8
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where
i

e)3
x

2
Y

.

x =4 i> (3.15)i
'

x
.

.

.

N
x
w s

considering the major structure to be composed of N substructures, and
where accordingly

,

_ _.

l i

m
2

m
i= (3.16)*

m j.

*m
'

N
*

_.
.m

i iand c and k are defined in a similar fashion. We shall consider the
substructure equations of motion to be coupled by application of the-

constraint equations;

Gxi=0 (3.17)

where G is a rectangular matrix consisting of a number of rows equal to
the number of constraint equations, and a number of columns equal to the

ilength of the vector x . We shall apply a reordering transformaticn, E,
i d

to x so as to separate the dependent coordinates, x , from those con-
sidered to be independent, x.

|

,
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Thus we can write

GE E5 =0x x

dBy partitioning 5 we may solve for x in tenns of x.
t

d

[5 i 5 3 5- =0j 2 x

d ,_g-lg xy

-5 -I(Xd -l--5! 'x- =

I

j
i It follows formally that
i

",g -l g -
i=E - l--- S x E 6x (3.18)x.

I '

. _

where S is a rectangular matrix commonly referred to as the compatibility
matrix. The coupled equations of motion for the major structure can then
be written

MX+Cx+Kx=0 (3.19) |
l

T twhere M = B g 6, and where C and K are similarly defined.
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)
The equations of motion written in the various coordinate systems, and the
transformations which relate them are summarized di:igrammatically in

Figure 3-1.

An alternative substructuring procedure for writing the structural system
equations of motion in terms of substructure equations of motion is what
is usually referred to as " modal synthesis" [90, 81, 88]. For comparison with

Figure 3-1 which illustrates a direct substructuring procedure, the modal
synthesis approach is diagrammed in Figure 3-2. In this case one must be
particularly concerned with the boundary conditions assumed in calculating
the substructure modes so that unacceptably large errors do not result
from modal truncation at the substructure level. Since the first method
(or " direct" method) is considered to be the preferred one here, the
modal synthesis approach will not be discussed in further detail. It will

be mentioned later on when discussing the treatment of structural un-
certainty because it does appear to offer one advantage over the direct
method. That advantage will be pointed out in Section 3.3.

3.2 Selection of Parameters to Represent Structural Uncertainty

One of the obvious conclusions to be drawn from Section 2 is that there
are many more acknowledged sources of uncertainty than there are data
to quantify them. Even if the data were available, a tremendous data
processing effort would be required to compute the corresponding
statistics of modal properties. Confidence in these computed values
might be kw, to the extent that significant sources of uncertainty
have beeq overlooked. This situation is quite similar, in fact, to that
of trying to model damping in complex structures. There are too many
damping mechanisms about which too little is known, and there is no
guarantee that all of the significant ones can be identified. In the
case of damping, we must resort to direct measurement of composite

.
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1

SUBSTRUCTURE MAJOR STRUCTURE

PHYSICAL (N0DAL) . . i . g
C0 ORDINATE [M' ,C' , K ], { x' } ; [M,C,K],{x}
SYSTEM

io o
4

1 r i r

PREDICTED MODAL - . . i
' COORDINATE [m',c',k'],{p ) [m,c,k],{p}
SYSTEM

|

$ $
1 r 1 r

"TRUE" MODAL . . .

COORDINATE [I,E',A'],{q'} [I.C.A],14}
SYSTEM

80-1380

|

|

Figure 3-1. Diagram of Coordinate Systems and Related Transformations
for Substructuring using Direct Method
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SUBSTRUCTURE MAJOR STRUCTURE

PHYSICAL (r10DAL) i I i[M ,C ,K ],{x*)i I I i
C00RDifiATE [f t ,C ,K ],(x }
SYSTEM

'
o i

i f

PREDICTED MODAL i
i i I i

C00RDIf4 ATE [m ,c ,k ],{p ) [m',c',k'],{p'}

SYSTEM

I
$ c'

1 r 1 r

"TRUE" MODAL I i i
C00RDIriATE [1,C ,A ],{q } [I,C,A],{q'}

SYSTEM
80-1380

Figure 3-2. Diagram of Coordinate Systems and Related Transformations
f6r Substructuring using Modal Synthesis Method
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structural damping. A similar approach is suggested for the estimation
of structural uncertainty. *

Normally, the measurement of damping requires dynamic testing of the
complete structure so that the damping mechanisms which contribute to,

damping in a particular mode of vibration are exercised in a realistic
way. Such a direct approach would also be desirable for measuring
structural uncertainty. The analogous situation here would be to have
both the predicted and measured modal data for a family of similar major
structures, from which statistics of the differences could be computed.
Clearly, however, this is not possible.

Conceivably, the next best thing would be ta have such data from families
of generic substructures of which the major structure is comprised.
This is the essence of the approach proposed here. The basic plan is to
take uncertainties in the modal properties of generic substructures,
and combine them to predict uncertainties in the modal properties of
major structural systems.

A crucial question arises here. What parameters can be defined to
represent uncertainty in substructure modal properties? Obviously, the
difference between predicted and measured resonant frequencies would
cons titute one type of parameter. But what about mode shape? It is
often (but not always) true that frequencies can be predicted more
accurately than mode shape. This would imply that mode shape un-
certainties ought to be important in representing structural uncertainty.
The problem here is to transfer knowledge of mode shape uncertainty from
one structure to another within the same generic category. The generic

| categories defined in Section 1 were structural steel, reinforced
concrete, and prestressed (or post-tensioned) concrete. These are

very broad categories in which modal characteristics obviously will vary;

|

|
t

: 3-14
:

l

. .- . _ -



_ .

considerably. Some convenient form of normalization is required in
order to do a statistical analysis.

An interesting possibility is suggested by the form of Equations (3.5,

3.6 and 3.7). It may be recalled that these equations were written in
the substructure predicted modal coordinate space. Theoretically,
the mass and stiffness matrices will be diagonal as shown in (3.6a) and
(3.6c). However, since the theoretical model at best only approximates
the (unknown) "true" modal properties, we expect that the "true" m and

Ik will have off-diagonal terms which are not precisely zero in the
predicted modal coordinate system. In fact we consider the diagonal
matrices *m = I and 'k' = 'A to be perturbed by the matrices Am and

IAk . The elements of these matrices provide a basis for representing
uncertainty at the substructure level in terms of modal characteristics.
This assertion becomes clearer after a perturbation analysis is carried1

Iout to express Am and Ak explicitly in terms of measured vs. predicted
modal parameters.

The results of the perturbation analysis yield the following relationships:

Am ) = - 2An 3 (3.20a)

t y.

OUjj (3.20b)Am OUjk
*'

jk k

Ak = AA + A An (3.20c)

OU j ; j/k (3.20d)Ak Anj k ' ^=-
jk k

I

where 'A are the theoretically predicted eigenvalues and

,
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*
-

*A (3.21a)AA =A -

i ^i i
jk * *jk ~0 (3.21b)An

jk

*i f iT i
*^1 (3.21c)$jk*(*j[T M

k

^1 ^i
where A and 4 are the measured (experimentally estimated) "true" eigen-

3 3
values and eigenvectors, respectively.

INow Am and Ak begin to resemble the kind of terms we might expect to
represent dal uncertainty. It may be noted in particular that Ak

contains AA), the difference between predicted and measured eigenvalues,
and that

,

f

k'jk c M=

i

is a scalar measure of the cross orthogonality between the predicted mode
shape '4 and the measured mode shape 4 Clearly, if the " rue" modes
could be predicted perfectly and measured perfectly, then AA E 0,
$' E I and am = Ak = 0.

4)i andkiIt is significant to note that by virtue of the fact that

occur in vector product form, many measurements are reduced to a single
scalar value. This is certainly appealing from both a computational and
a data storage point of view.

One further thing must be done before any statistical analysis can be
performed. The parameters Ak must be first normalized by a scaling

k
transformation to remove the frequency dependence. We shall define this
transformation as follows:
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1

t

'
t

| !

i

[

i(*A)-1/2'i,(ox)-1/2 1i! Ak3

1

=(*w)-I i (*w
I Ii (3.22)i Ak

,.

Iare the predicted undamped natural frequencies of the ithwhere w
Isubstructure. Since *w is a diagonal matrix, it follows that

!

AA

j Akjj= - 2 An))
(3.23a)

j'

.

'

I f*w f*wfAk; d
~

An (3.23b)

(*wh'An
|

=- -'

kjd - jk og
{

!
,

.

f
shall now define a set of generic substructure parameters as m and

i k where
! jk

i

m
=63 + Am.k (3.24a);

i

~1 'i (3.24b)
jk j k + Akjkk =6

~4
We shall array these parameters in the parameter vector r such that

J
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i
j

:
,

;

' 'Im
jj
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-
,

*
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.

*22i

*23
| .

. .
,

i
i 'i "nn

= + ------- P (3.25)i
r

; k,,j j
'

k
12,

1 *

i
,

! .

22

.| E
23

.

.

k
nn ,s

,

4

IThe covariance matrix of r is then t

!i
~1(I'iiT (3.26)S =E or or Jpp

i

, In particular, a set of. scalar equations is obtained,
t

:

i
'

1 N
~ -

f j ) f,) 7,3 .

??f jk \or) j
*

Arf ( .27)N-1 - k;
E: t=1

i

t

averaging over N substructures,

i

!
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It is anticipated that many of the off-diagonal terms of the covariance

matrix, Sfp, will tend to be zero. Reasonable assumptions can probably
be made in this regard. Conceivably, it may even be valid to assume

thatSfp is diagonal. This would have to be investigated on the basis
'' of actual data as well as engineering judgement.

i
Once S is estima+.ed for each generic class of substructures, thepp

covariance matrix S for a particular substructure may be computed by
rr

applying the eigenvalue scaling transformation in reverse, i.e., for

f i i f il fAr ) (3.28)
i

| Srq! # j=E I Ar ,

I fji fji
(3.29a)

rr [ S * ISFF[ #
S

whenever or = Am and or = Am ;
, 9

f i I i i f i i
(3.29b)S

n "o FF [ jkrr[ jk * *

whenever Ar = Am and or = Ak 9;

f i I i ifi)*
I (3.29c)rr[ jk "E "m (SFF [ #

) S

and Arf = Am 9;okwhenever or r

rr jk ? jk (3.29d)* " " " " 3b

iwhenever or = Ak and or = Ak .
g
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It is important to recognize here that the frequencies used to normalize I

the substructure data in Equations (3.22) and (3.23a, b) are those of the
substructures comprising the data base, while those used in Equations
(3.29a) through (3.29d) are those of the particular substructure of the
major structural system being modeled.

The two principal advantages of using substructure modal parameters to
represent structural uncerteinty are (1) they reflect the combined

i effects of all sources of uncertainty present in the substructure, even
those which might not be specifically identified, and (2) there appear
to be at least some data upon which to base quantitative statistical
estimates for generic classes of substructures.

,
.

. There are some disadvantages, however, which should be recognized also.

One disadvantage is that the parameters may be (at least initially)
; difficult to interpret physically. There is of course no problem with
'

the AA/ A terms. This relationship between predicted and measured

eigenvalues is, universally appreciated. The cross-orthogonality
coefficients, $, on the other hand are more difficult to interpret from
the standpoint of structural variability and modeling error, even
though they are frequently used to make qualitative comparisons between
predicted and measured modes. The importance of cross-correlation

among the parameters, 'r)i, is even more difficult to envision. The

degree to which a particular mathematical formulation lends itself to
physical interpretation at intermediate steps is an important quality
in modern engineering technology.

Another disadvantage, although perhaps only a temporary one, is that
conventional structural analysis computer programs are usually not
structured to transform modal representations of substructure mass

and stiffness matrices directly to coupled system coordinates (e.g.,
Figure 3-2).
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In view of these two potential obstacles, the substructure uncertainties
Iwhich are computed for parameters related to the p coordinate system,

will be transformed back to parameters to be subsequently defined in
Ithe x coordinate system.

3.3 Alternative Parameters for Representing Structural Uncertainty;

ISince the x coordinate system could conceivably represent nodal displace-
ments of a detailed finite element mesh, it would be thecretically
possible to define structural uncertainty in terms of such things as the
axial stiffness (EA), shear stiffness (GA ), flexural stiffness (EI),

s
and joint stiffness (K ), etc., of individual structural members.g

However, as pointed out previously, the necessary data are not available
and the computational requirements are too great to make this alternative
feasible.

!

Some investigators (e.g., [9]) have gone to the cppnsite extreme of
assuming that uncertainty can be represented by simple scaling co-

I efficients on the mass and stiffness matrices, i.e., M = a)('M) and
K = a ( K). This approach is unrealistic inasmuch as it allows for no

2
variability in mode shape. A similarly convenient but more satisfying
approach is to use multiple scaling coefficients on a linear combination
of submatrices which nominally sum to the original theoretical matrices

[93].

n

M = 'M +
a) *M) (3.30a)

j=I

* K) (3.30b)K = 'K + a

j=n+1

|
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where by definition, 'N, *K, *M) and *K) are all square matrices of the
same order as M and K such that

n

*M = *R + *M. (3.31a)
J

J=

*K=*K+
*K) (3.31b)

j=n+1

We can of course generalize this technique for the substructures approach
by adding the "1" superscripts.

,

i
I I IH+ a *M (3.32a)M =

j=1

i
I

K =*KI+ a *K (3.32b)
j=n'+1

In such a formulation it is assumed that all uacertainty is embodied in

thescalingparameters,aj,allofwhichhavemeanvaluesofunity. The

submatrices, M and *K may be defined in various ways. For example,
3

an intermediate level in the structural hierarchy between member and
substructure (e.g., frame, bay, etc.) could be associated with the a's.
The stiffness variates for some of these might be further subdivided to

j distinguish between axial stiffness (braced frames), shear stiffness

(shear walls and thick concrete shells) and flexural stiffness (moment
resisting frames). All of these submatrices can be generated with
standard modeling codes simply by selectively setting the unwanted param-
eter values to zero and generating a partial matrix.

t

| |

l
.,

3-22

i
l l



. - _ ..

'

Before going on to the next section which addresses the complete
methodology, it will be worthwhile to point out another aspect of
modeling structural uncertainty, another dimension of the problem, so
to speak. Ang and Cornell [ 80] suggest a formulation which considers
uncertainty due to " basic variability", separately from that due to
modeling inaccuracy. Basic variability is often referred to as random
error, while modeling inaccuracy is considered to be systematic error.
From the standpoint of analysis (identification), the two are often
inseparable and indistinguishable. From the standpoint of synthesis
(modeling) the conceptual distinction may be significant in the sense
that recognizing two sources of uncertainty instead of one can lead to
a higher estimate of overall uncertainty.

The concept may be generalized further if desired to give separate
consideration to various types of uncertainty which enter the analysis
at different stages. Suppose we consider the following steps of analysis:

1

(a) Identify materials and construction.

(b) Generate linear model for small amplitude behavior.
,

(c) Determine effects of static loading (live load and dead load).

(d) Estimate effects of deterioration and maintenance.

(e) Extrapolate to large amplitude behavior.

Under these considerations we might in general replace each of the
parameters, o , in Equatica (3.32b) for example, by the product

,J1 , ,j(a) aj(b) ,j(c) g,(d) a.(*)
1 i 1 i I

(3.33),

J J

3-23
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,

i

| |

|
.

Some of these n's may have mean values different from unity so that the
'

bias effects of static loading, deterioration, and extrapolation to
large amplitude can be accounted for. The main point to recognize here
is that the uncertainties are approximately additive, provided that they
are relatively small, i.e.,

2 ,g,2 , g2,c2 * "d + (3.34)o

2where c denotes the variance of a parameter and subscripts correspond
to the steps of analysis listed above.

It has been stated a number of times that insufficient data are available
to make direct statistical estimates of these parameters. The following
section will discuss how these measures of uncertainty can be assigned,

'

and subsequently estimated using a Bayesian procedure. Part of the
reason for expanding the a's as shown in Equation (3.33 is to reveal the
impact of modeling uncertainty on theoretical predictions. Its con-
tribution is difficult to quantify at this level but should not be

1,

overlooked.

1

3.4
.

General Methodology for Evaluating Structural Uncertainty
|

! This section will develop and describe a general and comprehensive
,

methodology for evaluating structural uncertainty. It is emphasized
from the outret, however, that there are many different paths through
the methodology, the selection of which will depend on the availability
of data and the amount of effort one may choose to invest. The end
result in any case will be a set of three (probably uncorrelated)
statistical variates which define the generic uncertainties in computed
values of modal frequency, modal amplitude and damping for a given major
structural system. A significant feature of this result is that

3-24
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uncertainties in frequency, mode shape and damping are properly represented

in seismic response calculations. It is anticipated that such parameters
,

could be used in computing structural response either by the response
spectrum method or by the time-history metnod of analysis.

!

!
From the standpoint of helping the readar establish a proper perspective,
it may be stated that under the assumption that mode shapes are deter-
ministic (or have negligible uncertainty relative to modal frequency),
the statistical variates, modal frequency and damping, are simply

,

AA/'A = A(w )/% = modal frequency variate (similar to Figures
i 2-9 through 2-11)

c = modal damping variate (Figures 2-21 through 2-23)

where the above symbols represent scalar quantities in this case.
1

The ensuing development will begin with a presentation of the general
methodology, followed by a limited discussion of the various pathst

which may be charted through the methodology. One of these paths will
be subsequently illustrated by example (Appendix A).

.

Figure 3-3 contains a flow chart summarizing the general methodology. The
nomenclature used in this flow chart is defined in Table 3-1. As before,

the "1" superscript will denote properties of the i g substructure, the
" " left superscript will denote properties of the original theoretical model,
the "^" notation over a symbol will denote experimental measurements or

,

test data. The "g" superscript is used to denote generic structure or
substructure data, which includes both theoretical predictions and
experimental data. The asterisks (*) are used to denote revised (improved)
estimates of the parameters.

3-25
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Figure 3-3, Flow Diagram of General Methodology
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Table 3-1. Nomenclature for Figure 3-3

:

{a } Vector of substructure scaling parameters
(treated as random variables) for mass and
stiffness submatrices.

{a} Vector of scaling paramete{s for the major
structure (contains all {a }'s).

I{r } Vector of reduced substructure modal
parameters.

{r} Vector of reduced major structure modal
parameters.

{u ) Vector of substructure modal parameters

(A and 4 ).

{u} Vector of major structure modal parameters
(A) and ckj)*

9{"u } Vector of analytically predicted modal
parameters for a structure or substructure
within a generic category.

9{u } Vector of experimental'.y measured modal
parameters for a structure or substructure

,

within a generic category.

{u} A three-element empirical modal parameter
vector where ui = a normalized modal

* frequency squared and'U = a normalized
modal amplitude, and p32= m dal damping

i{c } Vector of experimental errors associated
1with {u }.
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Table. 3-1. Nomenclature for Figure 3-3 (cont'd)

{c} _ Vector-of experimental errors associated
with {u}.

9[*M]- Original analy)tical mass matrix used incomputing {*u9 for a structure or sub-
structure within a generic category,

[Si] Co ariance matrix of the parameter vector
{a }.

[S ,] Covariance matrix of the parameter vector
{r 1.

[S ] Covariance matrix of the parameter vector
{r'}. .

[Srr] Covariance matrix of the parameter vector
{r}.

[S""] Covariance matrix of the parameter vector
{u).

[SDD] Covariance matrix of the parameter vector I
{p}.

I
[S''] Covariance matrix (usually assumed to be |

diagonal) of the experimental error vector
i{c }.

[SEC] Covariance matrix (usually assumed to be
diagonal) of the experimental error vector
{c}.
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The eleven figures following Figure 3-3 illustrate distinct options which
may be exercised within the general methodology. Additional options are
possible. Those which are shown have been selected to demonstrate the
methodology. Some are'more practical than others. One is recomended for
initial implementation. It is illustrated by example in Appendix A.

i
Option 1: Figure 3-4.

Option 1 is considered to be the conventional a ,1 roach in the sense that
statistics associated directly with the mass and stiffness matrices are;

propagated through the structural equations to determine corresponding
; statistics for the modal properties. Under this option, generic un-

certainty data related to structural member properties must be utilized
along with engineering judgement to establish the covariance matrices

[S ]. The primary reason for dividing a major structural system into
distinct substructures is to try to separate for purposes of analysis
-those portions of a major structure which may be expected to exhibit,

different levels of uncertainty and/or damping. The a - parameters defined
here are taken to be submatrix scaling coefficients with mean values of
unity as defined in Equations (3.32a, b). It is likely that these param-

eters will be uncorrelated so that [S ] (or S ) is diagonal. By
definition,

i

S = E[AaI (Aa ) ] (3.35)
I

where Aa = (a - 1). In general, the diagonal elements of S may be of
the form suggested by Equation (3.34), where the variance of a reflects
the combined effect of=several distinct sources of uncertainty. Judgement
will be a major factor in establishing these uncertainties. To a degree,
the ease or difficulty of making this judgement will depend on how the
a's are defined.

3-29
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i
'

iThe transfomation of S to S is direct. We first recognize that
, aa aa

,. .

a
2

a
*

i
' .

a E {a} = < (3.36)
' '

j
a

i .

'

.

i
.

N
.a .

,

It follows then that
- _

I
Saa

2
Saa-

' *
<

- S , E [S,,] - (3.37)
,

S". "
N

3
""

._ _

I d Iassuming that a and a are uncorrelated. Thus, whenever all S areaa
diagonal, S will be also.

:

'

The next step in the sequence of Option 1 is to transform S , to Suu'
where the vector u is defined as follows:

,

,

,

1 -
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f

.

,

!

it
. e ,
,

i As j
t A

2
8 .

j -

I .

1

i |-

A

j u E {u} = y - "- >
(3.38)

j- &jj .

4

#
21

J .

4 |
1 .

|

! -

*12
a

l *22
.

I i
*

>

.

1
1

*

| 4 "

i nn ,s

;

] As before, the eigenvalues and eigenvectors of a ' major structural system
i

1 are denoted by A
; j and &j respectively. The transformation of S to

aa
1 -S is obtained as follows:j ur
4

i

(u - u) (u - @ T~S *
uu

.
, _

! -

i .

T
.

Ti =E T Aa Aa T =T S T (3.39)! _ ua ua . ua na ua
,

4
;

e

i
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.

The transfornation matrix T is called a sensitivity matrix and is the
g

]
matrix of first partial derivatives,

,

[T
\ ua

im " 3"tI0"m
>

Wnenever u =A.g 3

T IaK BM[T \ = aa,= 4j! aa, , 3j aa,j &j (3.41)i

(ua,tm (,

Whenever u =$j'g k

[T kJ=
ua tm Ba

g j m

, -
-

l-6 I I 0
h1 aMT hj BK BM

# #*

2 3"m Id 3"m )kh h A -A
3 h (3 m

(3.42)

The final step in the sequence of Option 1 is to tranform S to S .

uu

We shall assume that the dynamic equations of motion for the major

structural system are transformed from the physical x coordinate system
,

to the modal p coordinate system and solved in the time domain. Whether
the equations are solved by time-series integration or by the response
spectrum method of analysis is immaterial.i

i

.

,
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.

i
1
1

;

I

~ The equations of motion for the theoretical model are

!

] *M R + *C x + *K~x = f(c) (3.43),
i
;

Forced response is of interest here. The force vector is denoted by
f(t);- it will be assumed variable separable in space and time such that

f
f(t) = P g(t) (3.44)x

,

where P is the spacial distribution vector and g(t) is a scalar function
'

of time. In general, g(t) may represent a single component of ground
motion such as ground acceleration in a given horizontal or the vertical

I direction. The following derivation can be generalized to include all
three components of ground motion .if desired.

:

{ Transformation of Equation (3.43) to-the p coordinate system results in

{ I E +- E p + *A p = *r g(t) (3.45)
.

Where P is a vector of modal participation factors
!

P =4 P *tj (3.46)P*

3 x
'

t

The off-diagonal terms of *C may be neglected provided that the modal
! frequencies are sufficiently well separated [89], leading to a set of
i independent equations

p + 2*c) *w) p + *w) p = *r g(t)~ (3.47)
'

- j j
4

;

1

i 3-34-
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;

,

|

The solution of the above equation may be expressed in integral form as

4

t

h (t- T)g(T) dT (3.48)| p) = *rj j
'

O'

f

where h (t), the impulse response function for mode "j", is
j,

i >

I *w -c'mt f 2)
'

sinlw.1/1-c)|t
d d (3.49)h (t) = e

( J J
Sfl- c

2
,

J;

| Finally, response at point "k" on the major structural system is obtained
as a sum of the modal contributions'

j *kj D p"
kj j

t

f = *& j j j
h (t - T)g(T) dT (3.50)k

I o

i

i We shall further simplify the form of. Equation (3.50) by defining a
! modal response amplitude parameter, Akj ' s

i
'

1
!

'A.= c . T. (3.51)
; kJ kJ J-
.

;

i At this point we must address the problem _of numerical simulation. If

! the number of independent random variables which may be used to repre-
sent structural uncert'ainty is limited to a few (2, 3 or 4), it would

|
!

1
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; appear that three independent random variables might be defined, each

relating to one of the m0dal parameters *A), *A 3 or *c). The following
parameters are tentatively suggested, pending the analysis of actual
data upon which the final selection must be made.

.

Two parameters are suggested for modeling the randomness of natural;

I frequencies and modal displacements respectively. We can express ~A and
j

A as foHows:
kJ,

,

4

(Ad ) *A. (3.52): A.=,
JJ (ox j

*kj+0*kj)(Ij + Ar )A "

3kj

i |

3 AkJ + *kj Ar + Tj 3 Ac jk
1,

; - _

Akj + , "'j (*kj I | !OIj+ j 0*kj=

j,

;
.

kj + ( "'j kj ) mj . (3.53)= *A i

.

1

)
where %) is the computed modal mass of the jth mode. We are now in a

j position to define two new random variables, p ,and p2, and will sub- ;j

i sequently quantify them so as to justify the following approximations:
\

! i

. p 5 A /*A (3.54a) |j 3 3

AA (3.54b)p2 j g

:
I
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4

such that E(A ) = AWe shall define the mean values of p) and p2 j
and E(Akj ) = kj .A Thus

E(p ) E p) = 1 (3.55a)j

=0 (3.550E(p2) #2

is contained in the covarianceInformation on the variances of p) and p2
matrix S With the vector u defined by Equation (3.38), we can.

uu
partition S as follows:

uu
't

"S Sg
---i--- (3.56)S =

uu
S S

.

A& &&-i

Independence of A and $ would imply S = 0. We shall make thisg,

| assumption tentatively, subject to verification by the data. It will

also be of interest to investigate the possiblity that A and A arej
uncorrelated for j / k. In any case, there is more than one way to

,

establish a reasonable probability law for p . We might assume aj
,

lognormal probability law and select a variance based on the average of

( the diagonal terms of S A more conservative anproach would be toyy.
select a variance for p based on the largest of the diagonal elements
of S This approach is tentatively recommended, pending experienceg.
with actual data. Thus we shall choose

,

f

,

|
-

1 - - max (j)
;

I

i
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1.

|

.;
s

In order to establish a value for o based on Sg , we must first
evaluate the variance of r as defin!d by

3
.

l

T =4 P =P 4 (3.58)j 3
: |

If P is deterministic, then; x
i
;

;
'

2
-

T
-

0 =E (P - T )2- =P E ($ - *4 ) (c) - $j )''' P
7 j x 3 3 x

a

T=P S P (3.59)
&j 3c xx

,

The cross correlation between 4 3 and $gj is expected to be important in
computing the variance of T.. It is anticipated, however, that tN

J j

correlation between & j j
and T will be relatively weak, and therefore

k
j may be neglected. We thus obtain

( k; AA j)2 =%E (AAkj)-E

i

* b) &j 0 +F o (3.60) -

7

: 2 is given by 5 It also may be noted that b. is given by'i where o& jk &&. J
3

l
. - 2'

1/L.= 4 (3.61)J. kJ
, _ . max (k)

1

|

i 3-38 i
t !

!
'

,_ _1



.

.

under the assumption that *$ *M *4 E I. It remains only to define oM,
2

given E ( %) AAkj)2~for all j. It would again be conservative to define
.

p based on the upper bound
2

(3.62)
kd) -max (k,j)

=E (b AA'

o# - d2

1

Such a recommendation is again made tentatively, pending the analysis
of actual data. The normal probability law is suggested for p *

2

Finally, we must define the uncertainty in modal damping c). The best
data for this purpose are those data which constitute direct measurements
of modal damping for the type of majnr structure being considered, i.e.,
reactor building or auxiliary-fuel-turbine building complex. Such

data are identified in Table 4-3. The data may be combined as shown in
! Figures 2-21 through 2-23 to establish probability distributions

directly for a single " equivalent" random variable, p , such that
3,

G EP (3.63)
j 3 ,

:
Having previously established

,

A =p *A (3.64)
3 j j

A = *Akj + "2 "j - (3.65) )/g

i

along with probability laws for p) and p2, we have reached the end of the
sequence in Option 1.

|

!
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i Option-2: Cigure 3-5._

; It may be-noted that Option 2 directly parallels Option 1, and in fact is

identical to it except for the manner in which S is established. The
,

procedure for deriving S was derived in Section 3.2. It remains here
rr j

only to define the transformation from S to [Sj ], .

rr

The transformation is written [91]

-_1*
-(Tf,)T(3 )-1 T (3.66)[S ] =

ra
- -

whereelementsofthesensitivitymatrixTf,aregivenby

(Tfa)th= Br /Ba ( '0 }g h

' i
Whenever 7 <h <n inEquation(3.32a),

3rf/Baf=3m /Baf=*c'Mf4f (3.68a)

1

Whenever n +11h1m in Equation (3.32b)

Brf/Baf=3k /Baf='4 K 4 (3.68b)

iIt is important to note here that in order to solve for S as shown,

bothofthematricesSfr and.[(T )T [3 )-1 Tg] must be onsingular.
1 In particular, this means that there must be at least as many r's as c's.

:

!

!
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Figure 3-5. Flow Diagram for Option 2
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.0ption 3: Figure 3-6.

Option 3 is similar to Option 2 except that generic major structure modal

data are used to generate Srr, instead cf generic substructure modal
data being used to generate Si b is then transformed directly to*

rr rr

S ,in a manner similar to that described in Equations (3.66) through
(3.68).

! Option 4: Figure 3-7.

Option 4 is similar to Option 2, except that [S ,i ]* is now obtained by
the transformation

*

(S )~I + (T )T (3 r) T (3.69)[S ] =

_

instead of Equation (3.66). The covariance matrix S is obtained as in
Option 1. This option was selected for illustration in Appendix A.)

:

Optior: 5: Figure 3-8.

*

Option 5 is a combination of Options 2 and 3 where [S,,] * is obtained
by the transformation-

~~I**
-

(Say)~1 + (Tm)T (Srr)1
*

[S,,] T (3.70)=
ra

. .

4

Option 6: Figure 3-9.

*
Option 6 is a combination of Option 1 and 3 where [S ] * is obtained
by the transformation-

3-42

.



FINITE ELIKNT AFPROACH MODAL APPRCACH - SUBSTRUCTURE METHOD MODAL AFPROACH - DIRECT ME THOD

, .
^ *

, ,

CONVENTIONAL STATISTICS CONVENTIONAL STAil5 TICS BAYESIAN STA!!STICS CONVENTIONAL STATISTICS BAYESIAN STATIST |C5

TENERIC GENERIC / SPECIFIC GE MRIC SPECIFIC /
STRUCTURAL SUBSTRUCTURE / SUBSTRUCTURE MAJUR STRUCTURE MAJOR STRUCTURE /
MEMiiE R DAT A MODAL DATA / MODAL DATA MODAL DATA N00AL DATA /

MEASURED AND/OR ,9 ( ). [5''] | (*u ), ["M ] (u | (ul, [5, ' )9 I 9 9 99 , ["M ], tu 1 *PRE D!f.T E D (*u 16

MODAL DATA

REDUCED STRUCTURE l'
_

II 1'

OR SUBSTRUCTURE PODAL 1 i* i | [* Id ' U
* * *

b (r I ,[5
PARAMETERS AND/OR rr rr | rr I rr

THEIR UNCERTAINTIES
|

'

if h 1r
SUBSTRUCTURE - ,.

w PARAMETERS AND/OR [5' ] (4 } , [5' ]
'" '"

$ THEIR UNCERTAINTIES

ir V I U,

STRUCTURE " y /' j [5 } -

. . ..

PARAMETERS AND/OR (S l hil , (5 ) b ;

y y ,

THEIR UNCERTAINTIES
+<s <s

1r y i t

STRUCTURE MODAL .

PARAMETERS AND/OR [S I"I * [5 l IS luu uu uu
THEIR UNCERTAINTIES

E MPIRIC AL U 1r 1 '

UNCERTAINTIES ON *

UNCE ST AINTY UNCERTAINTY { unl" *|L ARC' 5T SMALLEST[5vi'j [5lin']MODAL F REQUE NCY j

AND AMPLITUDE w

NOTE: The vectors (cal ** and (u t** have been crossed out to indicate that revised parameter
estimates are not obtainable without major structure-specific test data.

Figure 3-6. Flow Diagram for Option 3

. _ _ _ - _ _ _ _ - _ _ _ _ _



-
.

FINITE ELEKNT APPROACH MODAL APPROACH - SURSTRUCTURE METHOD MODAL APPROACH - DIRECT METH00
, ,

^

,
,

CONVENTIONAL STATISTICS CONVENTIONAL STATISTICS BAYESIAN STATISTICS CONVENTIONAL STATISTICS BAYESIAN STATI5 TICS

GENERIC GENERIC SPECIFIC GENERIC SPECiflC
STRUCTURAL SUBSTRUCTURE SUBSTRUCTURE MAJOR STRUCTURE MAJOR STRUCTURE
ME MBE R DAT A MODAL DATA MODAL DATA MODAL DATA MODAL DATA

e

MEASURED AND/0R
- "'

|(*u), [*M ], fu 1 (u'), [5, ) (*u ), [*M ), fu ) (u),[5 )9 9 .9
.

9 9 9PRE DICTED
MODAL DATA

REDUCED STRUCTURE U
OR SUBSTRUCTURE HDDAL | ($rr) Q i* i * _

" V-

1 *
--> (rl , [5 1*g, ($ r) [5rr)PARAMETERS AND/OR | I rr'r

THEIR UNCERTAINTIES |
I Ui r,

SUBSTRUCTURE
v.a PARAMETERS AND/0R [5' ]

g g -[ ,[5']
.

'*' I :I1 THEIR UNCERTAINTIES *

I i u
*

U
STRUCTURE

. .. ..
PARAMETERS AND/OR [5 ) ,[5 ] O fa) , [5 ) 4-

^
THEIR UNCERTAINTIES

kr s n
U ' '

STRUCTURE MGDAL U

PARAMETERS AND/OR ISuu] , [5uu)
..

> I"I *Ib l
THEIR UNCERTAINTIES u

EMPIRICAL U U
UNCERTAINTIES ON LARGEST |

($un) | SMALLEST
*

[spH] **
MUDAL FREQUENCY I$ lUNCERTAINTY I E UNCERTAINTY pu
AND AMPLITUDE

NOTE: The vectors (m'l*, (al*, and ful* have been crossed out to indicate that
revised parameter estimates are not obtainable without substructure-
specific test data.

Figure 3-7. Flow Diagram for Option 4
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(S )-I + (Tra) (Srr) T (3.71)
**

[S ] =
ra

Option 7: Figure 3-10.

Option 7 is a combination of Options 1, 2 and 3 where in this case,
Equations (3.69) and (3.71) both apply.

Option 8: Figure 3-11.

Option 8 introduces the concept of Bayesian parameter estimation based
on substructure-specific test data. There is an important philosophical
point to be made here. If modal test data are available for the specific

s'ubstructures which comprise a major structural system (or any one of
them for that matter), revised (improved) parameter estimates can be
obtained by Bayesian statistical estimation [91]. At the same time,
we should expect the corresponding uncertainties to be reduced
significantly. Under this Option, {r }I * is obtained by applying the
recursive equation

(Sfr) + (T )T(Sfg)-II
Tr =r +

(Sfr) (r - r ) + (T r) (Sec) (u -u) (3.72)x

i .. s *

until {r } converges to {r;} at which time [S ] is computed from
the equation

-

_1

[Sh]*= (Sh)-I+(T 7)T (3 g)-1 T (3.73)
r_
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In the above equations, r denotes the original (a priori) estimates of
theparametervectorri,rjdenotesthemostrecentestimatefromthe
iterative operation, u{.is the theoretically-predicted modal parameter
vectorbasedonr{,andu[istheobserved(measured)modalparameter
vector. The covariance matrix S denotes the estimated statisticalgg

variances of measurement error (usually assumed to be diagonal) while
i IT is the sensitivity matrix relating r to u .

r

(Tur)im * 0"t /ar, (3.74)

Option 9: Figure 3-12.a

i

Option 9 is similar to Option 8 except that both generic and structure- '

specific modal data are assumed available for the major structure
instead of the substructures.

Option 10: Figure 3-13.

This option represents what is considered to be the most advanced of
,

the more practical options. (The more practical options are considered
to include Optionsl, '2, 4 and 10. The others are considered to be less ,

practical, either because they require generic najor structure modal
data, specific substructure modal data, or both. These data are believed
to be relatively unavailable.) The implication is that structural
uncertainty, and thus seismic risk, may be reduced by physically testing
the particular structure of interest. It is of interest to note here

* *
that the step of computing r and S has been bypassed in this option.

rr

1

|

J'

| -3-50
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Figure 3-13. Flow Diagram for Option 10
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Option ll: Fioure 3-14.

This option is shown only to illustrate the most complete use of the
present methodology. It is considered to be one of the less practical

options because of the data requirements discussed in the previous
paragraph.

A few gencral comments on the methodology are in order at this time. As
can be noted in Figure 3-4 and succeeding figures,' estimates of the r -
parameters are always transformed to corresponding estimates of the a -
parameters before transforming to the u - parameters which symbolize
frequency and mode s' ape. As mentioned in Section 3.1, this was doner

primarily for the sake of convenience, anticipating that most structural
analysis codes do not have a modal synthesis capability which is required

ito make the compatibility transformation from p to p' as shown in
Figure 3-2. A secondary reason for choosing this approach, however, was
to transform the uncertainty parameters into a form where they are more

,

'

readily understood. As explained in the latter part of Section 3.3,
the modal parameters (i.e., the r - parameters) may be difficult
to relate to practical experience, at least for a while.

There are two points to make here before concluding the'present section.
The first is that care must be taken in defining the a - parameters so-

that they can " accept" the information contained in the r - parameters.
If the two are incompatible, significant information may be lost in the

.

transformation. In general, it is thought to be preferrable to define
,

too many a's rather than too few in order to give the r - parameter
information " freedom to go where it wants to go," without undue constraint.
In order to do this, of course, one must choose an option which utilizes
a priori estimates of S or S,,; otherwise the matrix inversion_

|
cannot be made, i.e.,

,
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(Tra)T (Srr) TS =

. r.
.

is rank ifeficient when the number of n's exceed the number of r's. In

a sense, the prior estimate of S ,is used to condition the transformation,

(S )-I + (Tra) (3rr) T
*

[S ] =

- .

If S is too large, the matrix on the right hand side of the equation
may be ill-conditioned. If it is too small, it will dominate Srr*
The objective is to make S small enough to facilitate m n rix inversion,
Lut still large enough (within reason) to allow S to control the

rr*

outcome of [S ].

The second point to be made will help to bring this section to a con-
clusion on "more familiar ground." Although none of the options

w
identified so far take this path, Figure 3-15 does show the possibility G
of transforming directly from [Srr] to [Suu]**. Although this option
(designated Option 12) is not considered to be very practical because
of the requirement for generic major structure modal data, it definitely
provides insight because of the similarity between some of the r and u -
parameters. In particular, some of the r - parameters are such that

j + 'Aj= Ak)3 = AA
AmArg

i

while corresponding u - parameters are such that

,

Lu = AAg j

j If rrode-shape uncertainty were negligible, then Am)) = 0 and

3-55 )
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Figure 3-15. Flow Diagram Option 12
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Ar = Ak
= AA) E Aug jj g

This comparison clearly reveals the implication of using only frequency4

data and neglecting mode shape uncertainty; i.e., the implication is
.

that mode shapes can be predicted accurately!

To demonstrate that this is a poor assumption, we need only to compute

values of AA and Am from some actual data. References [87 a id 92]
j

present respectively the predicted and measured frequencies and i' ode
shapes for a 22 - story steel frame building. The predicted frequecy
for the second N-S bending mode was 1.077 Hz, whereas the corresponding

measured frequency was 1.10 Hz. Based on these frequencies and the
corresponding predicted and measured mode shapes, the following values

were calculated

. .

2 _2(h - I)_Ak22 " OA2 - A 22

= 1.97 - 45.97 [2(.922 - 1)]

= 1.97 + 7.14 = 9.114

,

This contribution to Ak from mode shape differential is seen to be 7.14,
22

while that from frequency differential is only 1.97.
4

is always less than unity, so thatIt may be noted in general that $33

Am j = -2($ ) -1) will always be a positive quantity. On the other hand.
j 3

AA may be either positive or negative.
j

.

This example illustrates the relative sensitivity of the r - parameters
to uncertainty in frequency and mode shape prediction. In general, we

expect mode-shape uncertainty to dominate. Cross-orthogonality co-
! efficierts on the order of 20% (i.e., |$33-1|=0.20) are not
j uncomon [93]. It should be understood that the corresponding eigenvalue

; 3-57
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differential would be 40% (i.e., 2Ang), reflecting a frequency
differential on the order of 20%, which is, relatively speaking, un-
usua'. Mode shape uncertainty therefore should not be neglected, at
least until further investigation is undertaken to apply the proposed
analysis to actual data, thereby demonstrating the relative importance
of frequency and mode shape uncertainty.

3-58
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4. IMPLEMENTATION

4.1 Assessment of Available Data

4.1.1 Member Level Data (Table 4-1)

9 parameters are selected by the analyst to represent uncertaintiesAfter the a
.

in the structure, then the uncertainly analysis of structural response is
completely defined provided we have the joint probability distribution
functions for the a 's, or at least their first two statistical moments.

g

i Typically a may include parameters related to flexural stiffness of membersj
EI, shear stiffness parameters GA , joint stiffness parameters K , etc.'

s g

Hence the most direct data required are the mean values, variances and
J

covariances of conveniently normalized versions of these parameters;
unfortunately, data of this type are extremely rare. The closest thing
to statistics of EI obtained directly for reinforced concrete (RC) beams

.

is that reported in [12], see also Figure 2-8. In [12], statistical data
for the ratio of measured to computed mid-span deflections of simply
supported RC beams as reported in [l ] are used to construct a probablity
distribution function for the ratio of effective measured to computed EI.
Even for this case, the statistics can only be regarded as a priori estimates
since as-tested component loading and boundary conditions may not be realized
for similat romponents in real structures. The situation becomes aggravated
when one attempts to estimate EI indirectly, using models for EI. Indirect

estimation of EI for RC using models for El tends to result in lower
confidence because of our inability to correctly model E and I for partially-
cracked RC members; moreover, only empirical models for E and I exist

which are subject to large uncertainty. It is precisely for these reasons
that the statistical data reported in [8][17]-[193, for material and geo-
metric properties of materials, are not particularly relevant for the

( purposes of this study. Hence, the best alternative under the given

4-1
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Table 4-1. Member Data

TYPE DESCRIPTION OF DATA REFERENCES

1 RATIO 0F MEASURED TO COMPUTED DE- 1, 23
FLECTIONS OF SIMPLY SUPPORTED RC
BEAMS

2 EFFECTIVE YOUNG'S MODULUS OF RC FROM 2, 16, 24
SHEAR TEST DATA; ALSO SHEAR STRENGTH
DATA

3 STATISTICS.L PROPERTIES FOR RATIO 0F 10, 11, 12, 9
EFFECTIVE MEASURED TO PREDICTED EI
VALUES FOR SIMPLY-SUPPORTED RC

4 STATISTICAL STRENGTH PROPERTIES OF 8, 18, 16
STEEL

1

5 GE0 METRIC VARIABILITY OF RC BEAM, 19, 16
COLUMN AND SLAB DIMENSIONS

,

6 STATISTICAL DATA ON COMPRESSIVE 17
STRENGTH OF CONCRETE

|
7 DAMPING RATIOS FOR CONCRETE, STEEL 16, 39

AND S0IL ;

j

8 VARIABILITY OF MASSES IN DYNAMIC 16 4

ANALYSIS
!
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circumstances, may be to use subjective engineering judgement to specify

the prior estimates of the statistical parameters of the a$ s.
'

To overcome the unavailability of member-level miormation, we will seek
elsewhere to learn about their properties; we recomend the use of major
structure and/or substructure test data to extract the missing information.
The basic advantage to be gained in using these data (usually expressed in
terms of modal parameters) is that, unlike member-level data, they
furnish information on the a 's taking into account the effect of thej
particular boundary conditions and strain distributions as they exist
in real interconnected structural systems, provided of course that the
data contain sufficient information on the particular o 's of interest.

g

In other words, the a 's must be identifiable or observable from thej
data.

4.1.2 Substructure and Major Structure Data (Tables 4-2 and 4-3)

Above we have em1hasized the importance of structure and substructure-level )
data to gain infarmation on the a's. In section 2.2, building data |

(treated as subscructere data) are reported. Upon study of the available
data the following commenti are in order:

(1) The' reported date: do not explicitly account for measurement
error effects.

|
|

(2) The data may include structure-to-structure and/or soil-
structure interaction effects.

(3) Most of the reported data do not contain any information on mass
distribution and mode shapes.

4-3
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Table 4-2. Substructure Data

0STRUCTURE w e & $ M REFERENCESp

II)S X X X X 26

S X X X X X 30

S(2) X X X 31

5 X X 32

S(3) X(3) X X(3) X X(3) X 33, 51

S(10) X X 34

5 39

5 X X X X X(4) X 40

S X(5) X X(5) X X X 41

S X X X X 43

S X(6) X X X X(6) X 44

5 X X X X X X 46

S(15) X X 49

S X X x x(7) x 52

S X X x X 53

S(8) X 54

RC(9) X X 25

RC X X X X 27

RC X X X X X X 28, 36, 51

'RC X X X X 29

i

l

| 4-4
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Table 4-2. Substructure Data (Cont.)

MEASURED^

STRUCTURE w 0 *4 & M REFERENCES
DAMPING

RC(2) X X X 31

RC(10) X X 34

RC(" } X 35'

RC X X X 37

RC X 39

4I
RC X(5) X X(5) X X X

RC X X X 42

RC X( 2) X X(I2) X X 45

RC(13) X X 47

RC(I ) X X X 48

RC(15) X X 49

RC(16) X X X 50

RC X X X X 53

RC(0) X 54

CONCRETELg)PRESTRESS
X X 38

NOTES

(1) This is a two story steel frame building with two reinforced concrete-block shear walls along two
adjacent sides.

(2) This is a cone' hensive sunnary of statistical dafa for fundanental frequencies and damping.
(3) Analytical mr is for this building are reported in: Gobler, H. , "Three-0tmensional Modeling

and Dynamic t ..alysis of the San Diego Gas and Electric Company Building," MS Thesis. UCLA.1969.
(4) May be estimated from given data. .

(5) Reported results utiltre data from identified stiffness matrices; they are not a priori data.
(6) These values are reported in Reference 4 of our Reference 44.
(7) Scale model structures, mass can be estimated from given data.
(8) Contains data of pre, during and post ear thquake fundamental frequency data.
(9) For additional infor1 nation for this structure, see Reference 71 of our Reference 25.

(10) Several measured mode shapes for various structures are presented in the paper.
(11 Interesting comparison of measured f regtercies for identically designed buildings
(12 Are the results of a posteriori model.
(13 Reinforced masonary and RC buildings.
(14 ) Reinforced masonary building.
(15) Based on .'apanese data.
(16) These are RC shear wall structures.
(17) Data for a contaient structure.
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Table 4-3. Major Structure Data

"E^S RED
STRUCTURE % 0 *c 4 *M REFERENCE

0 AMP

RC x x x x 61

RC(I) x(2) 65x x

RC(3) 56

RC & S x x x x x x 58

RC(4} x x x x 71,72,77

RC & S x x x x x 73

RC & S(5) x x x 62

RC x 59,60

(1) Report data for 250'RC stack, control room floor frequency and
equipment frequency.

(2) Only control room floor vertical mode shape published.
(3) This paper is only a summary of an extensive experimental program

carried out on a power plant in Italy. Extensive data in all
categories are gathered, but not published.:

(4) Is a combined reactor building and turbine building. System
identification is also used in this paper to improve a prior model.

(5) Includes data on three different nuclear power plants.

d .
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(4) The data do not differentiate between specific structure
types such as braced frame, moment resisting frame, etc.

The first comment is in order because the determinatiun of natural periods
from measured response data is subject to inherent experimental errors
due to measurement processing and interpretation of the derived results.s

For instance, tne ochievable accuracy of modal parameters, for a given
structure, from random vibration data is reported in [82-86,94,96]. Hence,
based on the above remarks we may at best interpret the data to reflect
the combined effects of modeling uncertainty and measurement error.
Secondly, the data may contain the effects of structure-to-structure and/
or soil-structure interaction effects. These effects may especially be
relevant to data obtained from blast and earthquake sources; however, it
may be reasonable to expect results derived from very low level ambient
vibration tests to be only minimally affected by the above mentioned
effects. A serious deficienc' of the repotted data, at least for the

purposes of this study, is the lack of information on the mass distri-
butions of the tested structure. It is felt that this deficiency may

be partially remedied by going through the original sources of data;
however, this may prove to be a considerable undertaking. The lack of
mode shape data is also clearly apparent; these data bear important
information on the stiffness and mass distributions of structures.

In general, it is believed that considerably more data exist in
unpublished reports than have been identified here. A determined
effort to identify specific data requirements followed by data
i.cluisition via appropriate channels should produce sufficient data to
naplement the procedures defined herein.

4-7
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4.2 Potential Benefits from Additional Data

A review of the available data which appears _in Tables 4-1 to 4-3, reveal:
that a priori mode shapes and a priori mass distributio'n information are,

' rather rare, compared to fundamental frequency data. Clearly, there are
two basic reasons for this deficiency, (1) cconomic, and (2) interest.
It is obvious that a large' number of ser. sors are required to measure
(node shapes; the number of instruments required increases roughly in

i proportion to the number of modes to be measured. The operating band-
width of~ shaking machines and their frequency control resolution further
limit the measurable frequencies to the lower modes. Also, the number
of recording instruments and personnel required to carry out experiments

I to determine higher modes have been excessive in the past. Most
'

of these practical constraints are being overcome by technological ad-
vancement in the design of sensors, recording equipment, mechanical shakers

and analysis units. The availability of minicomputers and analysis units
have significantly reduced the effort necessary to extract higher mode

j data from ambient vibration survey records or random vibration data.
In tk last decade or so, there has been.a growing interest by experi-

4- mentalists to fit analytical models to their measurement data, and intere t
by_ theoreticians to utilize more abundant (in quality _and quantity)
measured data to construct more realistic mathematical models of physical
phenomena. This surge in interest of experimentalists and theoreticians
towards the work of each other, _ is to a significa.it extent accountable

' to the emergence of .he methodology of system identification in the last
decade as well as the widespread use of the digital computer and greatly
improved experimental techniques.

; . Potential benefits . be gained from having additional generic sub-
! structure and major structure modal data are considered great. There
'~

appears to be no alternative for making a realistic assessment of

' 4-8
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structural uncertainty, with the exception of dynamic tests performed
on the particular substructures of major structures of interest.

Substructure or major structure- specific testing is of course recognized
as being the very best way to reduce structural uncertainties in seismic
risk analysis. The distinct advantages of this approach should be fully
appreciated, so that whenever possible, such information can be used.

!
! !

1
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5. CONCLUSIONS AND RECOMMENDATIONS
.

The methodology presented in this report is considered to be new. While
its basic elements have been used successfully in other applications, it
should be understood that at the present time the proposed methodology

is untried and unproven. As such it may be expected to evolve as
experience is gained. The following statement of conclusions and
recommendations conveys the authors' assessment of significant accomplish-
mentsto date, and their view of directions for future development.

5.1 Conclusions

With reference to the problem as stated in Section 1.1 of the Introduction,
it is felt that the purpose of this study has been accomplished. An
analytical methodology for maximizing the use of preser,tly limited,
incomplete and previously incompatible data has been formulated. The
methodology should produce results which are based on quantitative data
rather than conjecture, and which are in a form suitable for the aumerical
simulation of seismic response of major structures of nuclear power
reactor facilities.

.

The following conclusions are drawn with respect to specific objectives
set forth in Section 1.2.

(1) A literature search to identify data and sources of data
for use in modeling structural uncertainty was completed.

7

A bibliograpty containing 95 references is included in i

this report.

(2) The format and adequacy of the above data nave been
evaluated relative to the proposed methodology. Al though

i

|

|

|
,
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the data and sources identified in this report are
probably not sufficient to meet anticipated needs, it
is believed that once the specific needs are firmly
established, the data can be found in unpublished reports

'

within the United States. Until now there has been no
particular need for complete sets of predicted and
measured modal data, accompanied by the mass matrices

which were used to obtain analytically predicted modes.
Therefore, the data reported in the literature tend to

be incomplete in one way or another. Much of these data
should be available if properly pursued. Tables 4-1
through 4-3 show the deficiencies in data compiled to date.

(3) Available data have been classified into three basic types:
data related to member uncertainties, data related 'o sub-
structure uncertainties, and data related to the major
structures of nuclear power plants. The bibliography
and the summary tables in Section 4 are segregated

,

accordingly. In addition, the summary tables differentiate
among structures in three generic categories - structural

,

steel, reinforced evacrete,and prestressed (or post -
tensioned) concrete.

.

(4) The proposed methodology is compatible with currently

,

and potentially available data. Structural property data
'

at the memfar level can be used.as well as modal data at
the substructure or major structure levels. Engineering
judgement may or may not be used at all three levels as
desired. Data from structures and substructures other
than nuclear power plant structures can Le utilized.

Specific seismic or forced vibration test data for the
,

5-2
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I

particular structure being modeled can be used in a Bayesian
procedure for statistical parameter estimation.

(5) The proposed methodology utilizes mode shape data at the
;

substructure and major structure levels in addition to
frequency and damping data. Sample calculations have been

,

made which demonstrate (using' actual data) that mode shape

uncertainties can be significant and may conceivably dominate
frequency uncertainties with respect to characterizing overall
structural uncertainty for response prediction.

1 (6) The proposed methodology retains the correlation information
relating the statistics of structural properties and modal<

parameters until the final step of analysis where frequency
and modal amplitude are assumed to be independent. This

assumption, however, is made only for purposes of convenience
in the numerical simulation and is not an essential part of
the methodology.

,

(7) Dimensionless combinations of msdal parameters have been
identified for concise representation of structural

uncertainty. In addition to the conventional dimensionless
parameters such as the ratio of actual to predicted
eigenvalue, and actual to critical modal damping, a
dimensionless modal amplitude parameter involving modal

,

displacement, modal participation factor and medal mass
I has been identified.

(8) Empirical analyses of the three dimensionless parameters
named above are suggested as a basis for quantifying them
for specific applications.

1

(t) The framework of analysis outlined in this report should
be helpful in establishing data requirements for SSMRP

5-3
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as well as other design, analysis and test programs
'

involving nuclear power plants. The methodology can be
'

used to evaluate the potential benefits of various kinds
of data in terms of modeling confidence. For example,

calculations can be made which treat steel and reinforced
t

concrete structures either separately, or in combination
to evaluate the trade-offs between aggregating available
data into broader categories, as opposed to segregating
them into narrower categories..

,

(10) The proposed methodology offers many different options to
choose from, all leading to the same end. Twel ve

different options are presented. Of these, four (Options
1, 2, 4 and 10) are identified as being the more practical
ones. Option 4 was selected as the must desirable for
initial implementation.

(11) Because the approach taken in-formulating the proposed
methodology is based on utilizing those data which are
most directly representative of prediction uncertainties
in seismic response analyses performed to date, the results
of analysis produced thereby should be in agreement with
ti.e state-of-the-art experience.

In retrospect, the one aspect of the methodology which may have been

underemphasized, is that of modeling damping and damping uncertainty.
The recommended approach of. utilizing direct measurements from

similar major structures is considered to be preferable'to other
alternatives as a general rule. Since damping has been a focal i,

point of attention for some time, there are consideraole data available.
However, anticipating the inevitable concern over the possible

5-4
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:

uniqueness of special-cases, we might consider the possiblity of
synthesizing measurements (or estimates) of modal damping at the sub-
structure level to predict modal damping (and related uncertainties)

i at the major structure level. Such an undertaking must be approached
with great caution, however. Generally speaking, this type of analysis
is beyond the present state-of-the-art and is fraught with many subtle
pitfalls. It should only be considered in special circumstances
where the direct approach cannot be used because of insufficient data,
and where suitable data are available at the substructure level.
Conditions for " suitability" must be carefully defined in this case.!

.

5.2 Recommendations

Recommendett. ions for the implementation and possible future development

of the proposed methodology are summarized here. They represent an
extension of the authors' present thoughts in line with the objectives
of SSMRP as presently understood.

(1) Specific modeling requirements should be identified relative4

to the Zion Nuclear Facility which has been selected as the
pilot application for SSMRP. Efforts should then be madei

to fill out the required data base. It is of critical

importance here to determine the number of generic sub-'

structureswithinagivencategoryrequiredtodefine[Sfr3
l so that the matrix can be inverted, or conversely, to

determine the maximum number of off-diagonal terns of this
matrix which can be ident''ied using available data. For
the most part, this matrix will have to be assumed diagonal.
Justification should be sought for this assumption.

|

(2) In general, several cross-orthogonality coefficients, ,

5-5
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may be computed for each measured mcde shape. A numerical,

investigation should be made to de termine how many are
required to capture the essential information contained in
the difference between predicted and measured mode shapes.

(3) Numerical examples should be investigated on the basis of
available data before making a final selection of the
computational option. Option 4 is tentatively recommended,
but the final selection should be made only after alternative
options have been thoroughly considered with respect to
available data.

(4) The quantification of the dimensionless random variables -
and p - should be investigated thoroughly on thep), p2 3

basis of numerical examples using available data. Onlyq

tentative recommendations have been made in this regard.

(5) Early consideration should be given to specific interface
requirements with other parts of the SMACS code. It may
be possible to limit the direct interface to considerations
involving only the three random variables named herein.

This would require, however, that compatible structural
modeling subroutines be used to generate the submatrices,
transformations, etc required to implement the proposed
methodology. In other words, this methodology is based on
using the same analytical models as will be used in SMACS.
The validity of the methodology depends on this..

.
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APPENDIX A

Illustration of Option 4

STEEL (S) REINFORCED CONCRETE (RC)
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SUBSTRUCTURE 1 SUBSTRUCTURE 2

We assume that these substructures are connected together

by rigid links at the second floor and roof levels.
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.
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2 2Substructure 2: a ,, 3 ,
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.
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Assume that we have a prioriestimates of E(a ), Cov.(a , af): i = 1,2;

j,k = 1,2,3.
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Available generic substructure modal data

Substructure 1: Structural Steel

^1 ^1 1 1 1(i) u , c), *w). *c , *M , structure "a"j j

^1 ^1 1 1 1(ii) w). c), 'wj, *c , M , structure "b"j

Substructure 2: Reinforced Concrete

2 2 2(i) [2, ,og ,o4 , og , structure "c"

^2 ^2 2 2 2
(ii) w). c), e), c), *M , structure "d"

Each q), "4)I is normalized with respect to *M .Note:
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CalculationofSfg,i=1,2,
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/ ~I (a~r)(o~r)T'T[ = l
~

S-fp=E(ar
~i i Ior g)
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Am ) = -2Aq ) = -2 \jj-l\
/

T-
I I.

$) = *4 *M 4 , computed from available dataj

1 1

Ak)) = AA) + Am))), A=w-
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Ak =
,j ,)jj

1 1

AA =A - *A ; computed from available data

' .
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