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ABSTRACT

This report documents the formulation of a methodclogy for modeling and
evaluating the effects of structural uncertainty on predicted modal
characteristics of the major structures and substructures of commercial
nuclear power plants. The uncertainties are cast in the form of normalized
random variables which represent the demonstrated ability to predict modal
frequencies, damping and modal response amplitudes for broad generic
types of structures (steel frame, reinforced concrete and prestressed
concrete). Data based on observed differences between predicted and
measured structural performance at the member, substructure, and/or

major structural system levels are used to quantify uncertainties and

thus form the data base for statistical analysis. Proper normalization
enables data from non-nuclear structures, e.g., office buildings, to be
included in the data base. Numerous alternative methods are defined
within the general framework of this methodology.

The report also documents the results of a data survey to identify, classify
and evaluate available data for the required data base. A bibliography

of 95 references is included. Deficiencies in the currently identified

data base are exposed, and remedial . easures suggested. Recommendations

are made for implementation of the methodology.

iii



SUMMARY

— — — -
- - . .
-

N P NN
w N -

w w

R — T R =
—

TABLE OF CONTENTS

INTRODUCTION

Backgriound and Problem Statement
Objectives

Scope

ORGANIZATION OF AVAILABLE DATA
Sources of Uncertainty

Sources and Types of Data
Classification of Data

ANALYTICAL FORMULATION
Coordinate Systems and Equations of Motion

Selection of Parameters to Represent Structural
Uncertainty

Alternative Parameters for Representing
Structural Uncertainty

General Methodology for Evaluating Structural
Uncertainty

IMPLEMENTATION
Assessment of Available Data
Member Level Data (Tabie 4-1)

Substructure and Major Structure Data (Tables
4-2 and 4-3)

Potential Benefits from Additional Data

CONCLUSIONS AND RECOMMENDATIONS
Conclusions
Recommendations

1-1
1-1
1-4
1-6

3-21

3-24

4-1
4-1
4-1
4-3

4-8
5-1

5-1
5-5



TABLE OF CONTENTS
(continued)

Page

BIBL IOGRAPHY R-1
APPENDIX A - ILLUSTRATION OF OPTION 4 A-1

vi



Figure
2-1.

2-2.

2-3.

2-5.

2-6.

2-7.
2-8.

2-9.

2-10.

2-11.

2-12.

LIST OF FIGURES

Histogram of Ratio of Actual Deflection-to-
Deflection Calculated by ACI 318-63 METHOD

Histogram of Ratio of Actual Deflection-to-
Deflection Calculated by ACI 318-71 METHOD

Plot of Ratio of Actual Short-Term Defiection-to-
Deflection Calculated by ACI 318-71 Code Method
(normal model)

Plot of Ratio of Actual Long-Term Deflection-to-
Deflection Calculated by ACI 318-71 Method
(normal model)

Plot of Ratio of Actual Short-Term Defiection-to-
Deflection Calculated by ACI 318-71 Method (log-
normal model)

Plot of Ratio of Actual Long-Term Deflection-to-
Defl$§tion Calculated by ACI 318-71 (lognormal
mode

Probability Density Function Fitted to
Experimental Data

Cumulative Distributions of Ratios of Actual-to-
Calculated El-products

Histogram of Ratios of Observed to Computed
Feriod Determinations for Small Amplitude
Vibrations of A1l Building Types

Histogram of Ratios of Observed to Computed
Period Determinations for Large Amplitude
Vibrations of A1l Building Types

Histogram of Ratios of Observed to Computed
Period Determinations for Small and Large
Amplitude Vibrations of A1l Building Types

Relation Between the Fundamental Pericds of the
Bu.ldings Estimated from the Strong-Motion

Seismograph Records (TE) and Those from the Records

of Microtremors in the Buildings (T

"

vii

2-8

2-8

2-9

2-9
2-10

2-10

2-15



2-16.

2-19.

2-20.

2-21.

2-22.

2-23.

LIST OF FIGURES
(continued)

Relation Between Natural Periods and Earthquake
Building Periods. Steel Buildings

Relation Between Natural Periods and Earthquake
Building Periods. Reinforced Concrete Buildings

Histogram of Ratios of Earthquake to Pre-Earth-
quake Period Determinations for Buildings
Subjected to an Earthquake Near Tokyo

Histogram of Ratios of Earthquake to Pre-Earth-
quake Period Determinations for Buildings
Subjected to the San Fernando Earthquake

Relation Between Natural Periods and After
Earthquake Building Periods. Steel Buildings

Relation Between Natural Periods and After
Earthquake Building Periods. Reinforced Concrete
Buildings

Relations Between Pre-Earthquake Natural
Periods, Earthquake Building Periods and After
Earthquake Building Periods

Pre- VS. Post-Earthquake Period Determinations
for Buildings Subjected to San Fernando Earth-
quake

Histogram of Damping Determinations for Small
Amplitude Vibrations of Reinforced Concrete
Buildings

Histogram of Damping Determinations for Small
Amplitude Vibrations of Steel Buildings

Histogram of Damping Determinations for Small
Amplitude Vibrations of Composite Buildings

viii

Page
2-16

2-17

2-20

2-21

2-22

2-23

2-25

2-26

2-27



Figure

3-1.

3-4.

LIST OF FIGURES
(continued)

Diagram of Coordinate Systems and Related
Transformations for Substructuring Using Direct

Method

Diagram of Coordinate Systems and Related
Transformations for Substructuring Using Modal
Synthesis Method

Flow Diagram
Flow Diagram
Flow Diagram
Flow Diagram
Flow Diagram
Flow Diagram
Flow Diagram
Flow Diagram
Flow Diagram
Flow Diagram
Flow Diagram
Flow Diagram

Flow Diagram

of General
for Option
for Option
for Option
for Option
for Option
for Option
for Option
for Option
for Option
for Option
for Option
for Option

Methodology
1

O O N O o &6 w N

-t ek el
N - O

ix

Page
3-12

3-26
3-30
3-41
3-43
3-44
3-45
3-46
3-48
3-49
3-51
3-52
3-54
3-56



4-3.

LIST OF TABLES

Sources of Structural Uncertainty
Nomenclature for Figure 3-3
Member Data

Substructure Data

Major Structure Data

Page
2-2
3-27
4-2
4-4



SUMMARY

This re; -t presents a methodology for modeling structural uncertainty in
the major structures and substructures of nuclear power reactor facilities.
The methodology is aimed at representing this uncertainty in terms of
three normalized random variables which relate to modal frequency, modal
amplitude and modal damping. It is shown how the distributions of these
random variables can be derived from available analysis and test data.
Once defined in this manner, the random variables can be sampled for
numerical simulation of structural response to seismic excitation. With
the use 0f these three random variables and a structural model, the
natural frequencies, mode shapes and modal damping for an arbitrarily
specified structure and an arbitrary number of modes can be varied
randomly and independently of each other.

A new approach has been taken in developing the present methodology.
Whereas the conventional approach relies on the a priori definition of
random structural properties and their distributions (or statistical
moments) which must be established largely on the basis of conjecture,
this approach does not. The problem is viewed here in much the same
way as that of modeling structural damping. In general it cannot be
done by inductive means. Structural uncertainty can only be deduced
by comparison of ii.iy‘ical predictions with experimental measurements
for generically similas structures whose dynamic response is ¢omputed
and measured relative to the way the structure will behave in an actual
earthquake, i.e., in its lower natural modes of vibration.

The methodology accommodates the use of either generic structure and/or
substructure modal data (e.g., theoret' cally predicted and experimentally
measured modal data for steel frame buildings, reinforced concrete
buildings, etc.), or structure-specific data -obtained from seismic tests
or forced vibration tests on the particular structure being modelad.
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The use of structure-specific data is of course expected to reduce
modeling uncertainty appreciably, but will not eliminate it entirely.
This methodology will enable the reduction of uncertainty to be
quantified, thus demonstrating the benefit of seismic testing.

Finally, this report presents and summarizes the results of a literature
survey conducted to identify the various types, quantities and sources
of data which can be used with the proposed methodology. Much nore

data are believed to be available in foreign technical journals as well
as in unpublished reports within the United States and abrcad. The
potential benefit of acquiring such data is considered to be great.



| INTRODUCT ION

1.1 Background and Problem Statement

Seismic risk for critical structures and facilities has been defined in
many ways, ranging from the probability of experiencing a certain ground
motion intensity, to the probability of experiencing a certain level of
structural response, to the probability of experiencing failure in a
critical failure mode, to the probability of system failure which is
the ultimate consequence of failure in a number of interdependent
subsystems comprising a functional system. The prcbability that
radioactive gas will be released from a nuclear power reactor during

a LOCA triggered by an earthquake is the measure of seismic risk chosen
for the SSMRP program. Structural uncertainty is only one of many
contributors to this overall measure of seismic risk.

The task of analyzing this risk is enormously complex. A numerical
simulation approach has been selected as a means of coping with the
time-dependent, nonlinear, nondeterministic nature of the problem,

Not only must the functional performance of all aspects of the nuclear
power plant be understood in detail, but they must be understood well
enough to make valid engineering approximations to the degree that the
tots’ problem remains tractable while (a) all significant functional
features of the plant are represented, (b) all significant sources of
uncertainty are represented, and (c) models are sufficiently realistic
and flexible to accommcdate the learning process which the analysts
must undergo in the proc2ss of developing and learning to use them,

Structural modeling is recognized as being one of the significant sources

of uncertainty in the network of systems and subsystems. There are
countiess sources of uncertainty which in turn contribute to that which
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we categorically call “"structural uncertainty". These include un-
certainties in material properties, construction, modeling, analysis
and even experimental observation to the extent that physical reality
may never be perfectly known. We shall therefore define structural
uncertainty (generally speaking) to be the difference between that
which we can predict based on analytical modeling and analysis, and
that which we might physically observe.

There are two distinct kinds of uncertainty which must be recognized

in this general problem area. One relates to a population of structures,
and the other to a particular structure. The SSMRP program is directed
toward the evaluation of seismic risk for particular power plants, i.e.,
particular structures. To some extent, however, we are forced to use
population statistics in modeling the uncertainties of substructures

and elements of major structural systems. We shall adont the concept

of generic classification as a means of compartmentalizing the various
uncertainties which contribute to overall structural uncertainty,

thereby creating a general framework of analysis which permits us to use
available data and potentially future data in an optimum manner. We
shall endeavor to minimize structural uncertainty by being as specific

as our knowledge will permit.

We encounter many difficulties when contemplaiing an effort such as this.
Some of them are listed below:

o There are probably more sources of uncertainty than we can name.
e Even for those which we can name, there are relativelv few

sources of data upon which to base any quantitative estimates,
let alone statistical estimates with high confidence.



® And, even if we could identify all sources of uncertainty
and appropriately quantify them, we would face the immense
task of combining them computationally.

o Finally, if we could do all of that, we would still have to
reduce the resulting uncertainty to a few significant para-
meters which capture both the qualitative and quantitative
essense of tre problem.

The constraints imposed by having to model structural uncertainty for
numerical simulation in the overall risk analyses (SEISIM) computer
program are severe. Nevertheless, the challenge of the task is to

do so in a way that is reasonable, easy to understand, and which can be
traced through a rigorous mathematical formulation to concrete data,
rather than conjecture.

Structural response will be provided vo the SEISIM program in a tabular
format representing maximum (peak) response statistics at some 200 -

400 locations for a range of earthquakes. These statistics will be
generated by the SMACS program via time-history response analysis

of multi-degree-of-freedom SSI models. Structural modeling and analysis
will take place independently of the SSI response analysis to produce o
reduced modal representation of the structure portion of the SSI system.
Structural uncertainty will be represented in the modal characteristics
of the structure.

In Tight of the foregoing background discussion, the problem which this
stucy addresses may be stated as follows: Given the likely existence

of limited, incomplete, and possibly incompatible data relating to
structural uncertainties for nuclear power plants, as well as other types
of structures, formulate an - ‘“ytical methodology for maximizing the
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usefulness of these data to produce realistic data-based statistics of
modal characteristics for major structures of nuclear power plants, for
purposes of numerical simulation in SSMRP,

1.2 Objectives

Specific objectives have been defined in structuring a technical approach

to this problem. They reflect parallel efforts aimed at identifying

sources and types of data upon which to base the uncertainty modeling,

and an evaluation of modeling alternatives aimed at synthesizing computational
techniques and procedures which are compatible with LLL's structural

arslysis plan, and which will at the same time accommodate available forms of
data. The data oriented objectives are stated as follows:

(1) Identify data and sources of data for potential use in modeling
structural uncertainty for seismic risk analysis.

(2) Evaluate the format and adequacy of these data relative to
alternative modeling and analysis procedures.

(3) Classify and categorize the data for subsequent use in
analysis.

Objectives defined to guide the formulation of modeling and analysis
procedures are:

(4) Ensure that modeling techniques and analysis methods are
compatible with available (and potentially available) data,
and that they make maximum use of the data in the following
ways:

1-4



® be capable of utilizing element , substructure, and/
or major nuclear power plant structure data,

e be capable of using generic as well as structure-
specific seismic/vibration test data at the
substructure and major structure levels,

e be capable of using generic data from other than
nuclear power structures.

(5) With respect to vibration data at the substructure and major
structure levels, utilize mode shape as weil as frequency and
damping information to evaluate uncertainties in modal response
time-histories and/or amplitude.

(6) Account for correlation among the various modal properties
of a structure or substructure.

(7) Identify combinations of modal parameters which may be used
for expressing structural uncertainty more concisely.

(8) Consider the use of empirical analysis for reducing the
statistical degrees of freedom required to represent the
modal characteristics of major structures.

The end product of this combined data evaluation and mathematical
formulation effort should be a unified methodology which meets the
following objectives:

(9) Provides a means of assessing the adequacy of available data
relative to the needs of SSMRP, and subsequent identification
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of additional specific data requirements,

(10) Provides sufficient flexibility for user experimentation and
learning in its adaptation to SSMRP,

(11) Will produce realistic results i.hich are in basic agreement
with the preponderance of theoretical and experimental

evidence available to date.

The present study has enaeavored to satisfy these objectives insofar
as possible.

1.3 Scope

The scope of the present study includes a rather extensive literature
search. A bibliography has been organized to present data sources
in three distinct categories:

e Member (or element) data

e Substructure (including nuclear power plant as well as non-
nuclear power plant) data

® Major structure (exclusively nuclear power plant) data

Data from these sources have been classified into three generic groups
® Structural steel
e Reinforced concrete

o Prestressed or post-tensioned concrete
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corresponding to the major generic types of substructures which comprise
the following major structures of existing nuclear power plants:

® Reactor building

® Auxiliary-fuel-turbine building complex
A general formulation of structural modeling and uncertainty analysis is
presented and discussad. Simplified examples are included for purposes
of illustration.
The scope of the present study does not include the specification of
computational procedures, nor does it include any numerical demonstration

problems of a realistic nature. The simplified examples offered herein
are purely hypothetical.
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2. ORGANIZATION OF AVAILABLE DATA

2.1 Sources of Uncertainty

for the purposes of collecting and analyzing available data, it is useful
to classify sources of uncertainty into a number of major classes. In
this report five major classes of uncertainty are identified and listed
in Table 2-1.

1. Material Properties

II. Construction
111. Effects of Nonseismic Loading
IV. Modeling Techniques

V. Analysis Methods

Although the boundaries between the above mentioned classes often

intersect and may in fact be inseparable, this classification is
intuitively appealing and each class is sufficiently distinct to justify
such separation. The decisions made and actions taken during design and
analysis of engineering structures involve all of the five classes
mentioned above and adversely affect our predictive ability of structural
behavior. Errors made in predicting the response of the structure can
further be classified under two categories: (a) random, and (b) systematic
errors. Each of the five sources of uncertainty mentioned above may
contribute to both types of error.

Below, we present a sample listing of the sources of uncertainty identified
under each of the five classes. Although the list is fairly detailed,
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Table 2-1. Sources of Structural Uncertainty

1. MATERIAL PROPERTIES

(a) CONCRETE
(1) COMPRESSIVE STRENGTH
(11) 1_NSILE STRENGTH

(4i1)  SECANT MODULUS

(iv) TANGENT MODULUS

(v) POISSON'S RATIO

(vi) DENSITY

(vii) DAMPING

(viii) NONLINEAR STRESS-STRAIN PROPERTIES
(ix) CREEP AND SHRINKAGE

(b) STRUCTURAL STEEL [wiY ROLLED)

(i) YOUNG'S MODULUS, COMPRESSIVE

(ii) YOUNG'S MODULUS, TENSILE

(111)  SHEAR MODULUS

(iv) POISSON'S RATIO

(v) VARIABILITY OF GEOMETRIC SHAPE PROPERTIES
@ MOMENTS OF INERTIA: I". 1
¢ CROSS-STCTIONAL AREAS: A

(vi) YIELD STRESS

(vii)  DENSITY

yy' lxy

(viii) DAMPING
(ix) NONLINEAR STRESS-STRAIN PROPERTIES
{x) CREEP

(c) REINFORCING STEEL [(i) - (x) as in (b) above]

I1. CONSTRUCTION
(a) GEOMETRIC VARIATIONS OF MANUFACTURED COMPONENTS FROM DESIGN

SPECIFICATIONS

(1) CONCRETE BEAMS: OQVERALL WIDTE AND DEPTH

(11) CONCRETE COLUMNS: CROSS SECTIONAL DIMENSIONS
(111}  CONCRETE SLABS: OVERALL DEPTH

(iv) LOCATION OF TOP AND BOTTOM REBARS OF BEAMS AND SLABS




Table 2-1. Sources of Structural Uncertainties (cont'd)

111,

(v)

(c)

(d)

{v) SPACING OF STEEL IN COLUMNS
(vi)  STIRRUP SPACING IN BEAMS
(vii) STIRRUP SPACING IN COLUMNS
(viii) LENGTH OF COLUMNS

{ix}  LENGTH OF SPANS

(x) OUT-0F -PLANE IRREGULARITY

PRESTRESSING OR POST TENZIONING

(i) GEOMETRIC VARIABILITY OF DIMENSIONS
(i1) VARIABILITY IN APPLIED PRESTRESSING FORCES

JOINTS

(i} VARIABILITY OF JOINT DETAILS FROM SPECIFICATIONS
(i%) INTRODUCTION CF ADDIT'ONAL JOINTS DUE TO CONTINUITY REQUIREMENTS

FASTENERS
{1) VARIABILITY OF APPLIED TORQUES TO PRESTRESS BOLTS

EFFECTS OF NONSEISMIC LOADING

(a)

(b}

CHANGES TO STRUCTURAL PROPERTIES
(1) REQUCTION OF STIFFNESS DUE TO STATIC LOADING (E.G. LIVE
AND DEAD LOADS).
(i) THERMAL LOAD EFFECTS
o CHANGE IN MEMBER STIFFNESSES

o GEOMETRICAL DISTORTION LEADING TO ADDITIONAL CHANGES IA
MEMBER STIFFNESS.

e EFFECT OF TEMPERATURE ON MATERIAL PROPERTIES

(i11) CHANGES IN STIFFNESS DUE TO INTERNAL STRESSES CAUSEC BY
FOUNDATION MOVEMENT

COMBINED LOADS EFFECTS

{1) VARIABILITY OF LINEAR RANGE FOR SEISMIC LOADING
(1 VARIABILITY IN RESISTANCE CAPACITY FOR SEISMIC LOADING
{i11) UNCEPTAINTY IN NONSEISMIC LOADS
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Table 2-1. Sources of Structural Uncertainties (cont'd)

IV. MODELING TECHNIQUES

(a) DISCRETE PARAMETER IDEALIZATION OF COMPLICATED DISTRIBUTED
PARAMETER SYSTEMS
(1) SELECTION OF MESH SIZE AND NODAL GEOMETRY
(11)  ASSUMED DISPLACEMENT FIELDS
(191)  ASSUMED DISTRIBUTION OF MAS®
(iv)  COORDINATE REDUCTION
(v) SELECTION OF DYNAMIC DEGREES OF FREEDOM
(vi)  MODAL TRUNCATION
(vi1) SELECTION OF RESPONSE COORDINATES

(b) BOUNDARY CONDITIONS

(1) ELEMENT-TO-ELEMENT
(1) SUBSTRUCTURE-TO-SUBSTRUCTURE
(111)  EXTERNAL TO MAJOR STRUCTURAL SYSTEM

(c) FLUID-STRUCTURE INTERACTION

(d) DAMPING

(1) ASSUMED EQUIVALENT VISCOUS DAMPING

(i1) ASSUMED COMPLEX MODULOUS DAMPING

(11i)  ASSUMED UNCOUPLED MODAL DAMPING

(iv) VARIABILITY IN MEASURED MODAL DAMPING RATIOS

(e) MODELING OF COMPOSITE MATERIAL ACTION

(f) EFFECTS OF NON-STRUCTURAL ELEMENTS

(g) NONLINEARITIES

(1) MATERIAL
@ NONLINEAR STRESS-STRAIN

e STIFFNESS DEGRADATION DUE TO CRACKING AND CREEP OF
CONCRETE AND YIELDING OF STEEL

(i) GEOMETRIC
o GAPS
o IMPACT
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Table 2-1.

Sources of Structural Uncertainties (cont'd)

V.

(i11) AMPLI'UDE AND CYCLE/HISTORY DEPENDENCE

ANALYSIS METHODS
(a) MODAL ANALYSIS

(1)
(11)

(111)  SKIPPED MODES

(iv)
(v)

(b) RESPONSE SPECTRUM ANALYSIS

(1)
(1i)
(i11)
(c) TIME-
(1)
(i1)
{iii)

e JOINT SLIPPAGE - COULOMB FRICTION
® LARGE DISPLACEMENTS AND ROTATIONS
e BUCKLING

o STIFFNESS
o DAMPING

CONVERGENCE OF NUMERICAL ITERATICK
ORTHOGONALITY OF EIGENVECTORS

NUMERICAL INSTABILITY
ROUND-OFF ERROR

ASSUMPTION OF RANDOM PHASING
APPROXIMATIONS OF MODAL CORRELATION AND COMBINATION
FORCING FUNCTION UNCERTAINTY

HISTORY ANALYSIS

NUMERICAL CONVERGENCE
NUMERICAL RESOLUTION
FORCING FUNCTION UNCERTAINTY




it must nevertheless be considered incomplete. It is included for two
reasons: (1) as a reminder of the almost endless potential sources of
uncert.inty compared with the limited amount of available data, and (2)
to be suggestive of how urcertainties may be grouped for engineering
analysis.

ek Sources and Types of Data

A wide variety of test data on structural components as well as on com-
plete structures are scattered in the literature. Recently a comprehensive
summary on the constitutive properties of some construction material

(e.g., concrete, reinforcing steel and structural steel) has appeared in the
literature [17, 18 and 8]. A summary of data on the geometrical variability
of reinforced concrete member dimensions is reported in [19]. The data
reported in the above references are in the form of the first two
statistical moments, namely, the means and standard deviations and a
recommended probability distribution function. The types of data reported
in the above references clearly belong to categories I and II defined in
Section 2.1. Further, the variability of the ratio of measured to computed
deflections of simply supported reinforced concrete beams is reported in

[1 and 23]. In [ 1 ] normal and 1lognormal probability density functions
are fitted to the data (see Figures 2-1to 2-6). In references [10to 12 ],
the results reported in [1] are utilized to construct a probability
distribution function for the ratio of measured to predicted effective

EI values (see Figure 2-7, and 2-8).

A comprehensive summary of data on measured versus calculated natural
periods of a wide range of structures is reported in [31]. In Figures
2-9to2-11 we reproduce the results in [31] for both small and large
amplitude vibrations; we note that these figures include the parameters
of both gamma and lognormal distributions fitted to the data.
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Evidence of lengthening of fundamental periods of building structural
systems at higher amplitudes of vibration is well recognized in the
literature. In [31, 49, 54] a summary of this amplitude dependence of
natural periods is reported for data taken in Japan and the U.S.A. Data
reported in [31, 49, 54] are reproduced in Figures 2-12 to 2-16 for
steel, reinforced concrete and lumped steel-reinforced concrete
structures. Further evidence of amplitude-history dependence of natural
periods of vibration is summarized in the above mentioned references

[31 ] and [54 ], the results of which are reproduced in Figures 2-17 to
2-20 for steel ard reinforced concrece structures and mixed steel-rein-
forced concrete structures.

So far, the data reported above are for individual components and building
structures. Realistic data on eigenproperties of major substructures, which
are typically a coupled combination of a number of substructures and their
foundation,are rare in the literature. Obviously, most nuclear power
plant facilities are examples of major structures; hcwever, due to

their inherently massive and complicated nature very few tests are
reported in the free literature. However, a literature search revealed
some data on system natural periods, and to a lesser extent, mode

shape data. An ambitious program of small and large amplitude vibration
tests with state-of-the-art mathematical modeling techniques was recently
undertaken on a decommissioned nuclear power plant in th2 Republic of

West Germany [58]; tests of this nature are expected to yield valuable
insight on the dynamic characteristics of complex structures.

Energy dissipation of structural systems in the elastic range is normally
computed using the concept of equivalent viscous damping [31]. In

many cases, this method of determining damping values of actual buildings
from vibration tests is sufficient; however, precise and quantitative
descriptions of damping mechanisms in structures are not yet available.
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Although no quantitative measure exists, there is qualitative

evidence from measurements that damping increases with \ bration

amplitude [31]. A summary of data on fundamental mode damping is given

in [31]. In Figures 2-21to 2-23 we reproduce the results of [31] for
damping values for small amplitude vibrations for steel, reinforced
concrete and composite buildings, respectively. Additional data on damping
values for nuclear po.er plants are reported in [39 and 59].

2.3 Classification of Data

Consistent with the methodology developed elsewhere in this report it
is instructive to classify the data into three categories, namely:
(a) Major Structures, (b) Substructures, and (c) Structural Elements
(members). We discuss below each of the three categories of data.

Major Structures

In this category we include large structural systems which may be a
number of structures that are coupled to each other either through

sharing a common foundation, being physically attached or a combination
of the two (clearly, nuclear power plants belong to this category).

Single structures which are a collection of a set of distinct sub-
structures connected together, may also be classified to belong to this
category (e.g., modular structures and precast or prestressed structures).
Data in this category are expected to bear information on coupling effects
of the various interconnected structures.

Substructures

To this category belong any collection of components which as a unit is
designed to perform a specific function. From this definition, it is
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clear that a number of substructures may emerge for the same collection
of components, when viewed by different individuals. This is perfectly
acceptable and is precisely the intent. The only requirement is the
availability of test data (such as modal data) for the particular sub-
structure chosen. It is also clear that a full-size building may be
regarded as a substructure when viewed as a simple member of a major
structural system as defined in (a). The inclusion of this last category
as a substructure is significant, since building data can profitably

be utilized to furnish us with additional information in the analysis

of uncertainty of nuclear power plant facilities.

Structural Elements (members)

This category includes the individual elements of structures which when
interconnected, form the complete structure or substructure. Clearly,
connectors and fasteners belong to this family; unfortunately, their
stiffness properties are the least understood. Existing methods of
uncertainty analysis make exclusive use of only this type of data

[3 to 7], [7 to 9], [20 to 21].
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3. ANALYTICAL FORMULATION

The mathematical formulation of methods for evaluating structural un-
certainty will have a substructures orientation. This means that the
basic building blocks of major structural systems are considered to be
substructures, as opposed to simple structural elements such as beams,
columns, shell elements, etc. This is not to say that standard finite
element modeling codes cannot be used. On the contrary, it is expected
that standard codes will be used to generate substructure mass and
stiffness matrices, as well as the sensitivity coefficients (first order
partial derivatives) required to perform a linearized statistical
analysis of modal parameters. The following subsections discuss the
coordinate systems and their corresponding equations of motion, the
selection of parameters to represent structural uncertainty, and a
general formulation of the structural uncertainty analysis recommended
for SMACS. Before engaging the detailed development of methodology, how-
ever, a brief overview and summary is offered to help the reader
establish some perspective.

Section 3.1 lays the foundation for the methodology by describing the
coordinate systems and corresponding equations of motion for any given
major structural system, and its substructures. These equations should

be sufficiently general to relate directly to the structural models used
in SMACS, as well as to those which represent the various structures from
which uncertainty data must be extracted. Modal coordinates have been
chosen for the latter. However, mode shapes define the modal coordinates;
because the assumption of structural uncertainty implies that analytically
predicted mode shapes will differ from the (hypothetical) "true" modes,

it is convenient to define two modal coordinate systems. Thus, three
coordinate systems in all (one involving nodal displacements and two
involving modal displacements) are required. Parallel sets of coordinate
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systems at the substructure and major structural system levels therefore
result in a total of 3(N+1) coordinate systems being defined, where N is
the number of substructures comprising the major structural system, and
the "1" added to N accounts for the additional set required for the
major structural system itself,

Section 3.2 proceeds to derive the modal parameters recommended to
embody structural uncertainty at the substructure level. The intent is
to choose these parameters in such a way as to (1) account for all
significant contributions to structural uncertainty (i.e., including all
of the potential sources listed in Table 2-1 as well as those which may
have been overlooked), and (2) provide a common basis for relating the
observed uncertainties (differences between predicted and measured
structural characteristics) among various structures or substructures
within a given generic family.

Section 3.3 suggests an alternative set of parameters for embodying
structural uncertainty. Whereas those discussed in Section 3.2 relate

to the modal properties of structures, those of Section 3.3 are identified
with the physical partitioning of a substructure in the sense that un-
certainties can be localized and segregated according to physical
characteristics such as bending stiffness, shear stiffnesses, structural
mass, equipment mass, etc. The mapping of one type of uncertainty (e.g.,
modal) into the otner (localized physical) is not a one-for-one mapping.
In fact the two representations of uncertainty result from two different
ways of "slicing the cake" so to speak. Each presents a different view
of the total picture. Transformations between one view and the other
should enhance the understanding of both. One of the advantages of
representing uncertainty in terms of localized physical characteristics
is that contributions from such things 2s operating loads, deterioration,
maintenance, and the extrapolation of small to large amplitude behavior
are more easily accounted for.
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Section 3.4 presents a general methodology fur evaluating structural
uncertainty. This methodology is considered to be a broad general frame-
work within which various methods may be defined. The concept is
illustrated by a flow diagram through which many paths can be charted.

A total of twelve optional paths (methods) is presented, each beginning
with different kinds of structural uncertainty data, but all leading to

a covariance matrix involving three random variables. The three random
variables represent uncertainty in modal frequency, amplitude and damping
and are cast in dimensionless form so that their distributions can be
sampled, and the sample variates scaled according to the particular
characteristics of the structure being modeled. This enables a repre-
senation of the variation in the modal parameters of the stru:ture

being analyzed.

The reader may henefit by jumping ahead a ways at this point, to catch

a better glimpse of where the methodology ends up. The methodology is
presented in Section 3.4 by “walking through" each of the twelve options,
one step at a time. As each new situation is encountered, it is explained.
As 2ach successive option is described, reference is made to earlier
cescribed options for points of similarity and/or difference. Option 1

is particularly important in this regard, because it explains each step

of a complete method, from start to finish. The other eleven options

all refer back to Option 1, either directly or indirectly.

The last six pages of Option 1, beginning with Equation (3.43) are of
central importance. It is here that the equations of structural response
are presented showing how the three normalized random variables are
defined. Also contained in these few pages is a discussion of how the
statistics of system eigenvalues and eigenvectors (1 and ¢) can be
processed to obtain meaninfgul statistics for the three normalized random
variables. Certain assumptions are tentatively suggested, subject to



proper numerical verification. Among these is the assumption, for
example, that eigenvalue and eigenvector statistics tend to be un-
correlated, at least in those cases where generic uncertainty data (as
opposed to structure-specific data) control the confidence of the
estimates. It is important to recognize, however, that these assumptions
are not essential to the methodology; one has the choice of making
alternative assumptions, or no assumptions at all in which case the
computational effort required during numerical simulation may increase
substantially.

Perhaps the most important feature of the proposed methodology is its
ability to utilize frequency and mode shape data from non-nuclear
structures such as steel frame and reinforced concrete buildings, as a
basis for quantifying the uncertainty in structural response predictions
made for the major structural systems of nuclear power plants. The
benefit offered by this feature is that predicted response uncertainties
can be quantified on the basis of actual data which relate directly to
observed differences between predicted and measured behavior of similar
structures.

3.1 Coordinate Systems and Equations of Motion

Since structural characteristics are the primary concern of this study,
only the homogeneous equations of motion will be written here. Equations
of motion for the ith substructure are therefore

5 29 , i

Wt ectat et X =0 (3.1)

where xi denotes a vector of nodal displacements, and where Hi. C1 and Ki

denote respectively the mass, damping and stiffness matrices of the ith
substructure corresponding to that coordinate system. For the time being,
¢! will remain undefined. The mass and stiffness matrices will be of the
form typically generated by standard finite element modeling codes. No
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restrictions are placed on Hi and Ki except that they be symmetric and
positive definite. Thus, for example M1 and Ki could represent the mass
and stiffness matrices of a substructure after static reduction has been
performed to reduce the general coordinate vector xi to a smaller set of
dynamic degrees of freedom.

It will be assumed that the "structure" of the model represented by these
equations of motion is correct (i.e., given the right parameter values,
Mi and Ki. these equations of motion would indeed represent the actual
substructure) but *hat the true parameter values are not precisely

known. We shall denote our original estimate of M{ and K1 by °Mi and °K1
respectively, and denote the differences between these estimates and

the (presently unknown) "“true" values by AM1 and AKi. Thus

i

M= oyl

.o (3.2a)

i i i

K' = °K" + AK (3.2b)

The structural modeling effort will thus lead to the undamped eigenproblem

i i
oK - ©
( A

Hi)°¢; =0 o (3.3)
where °A; denotes the jth predicted eigenvalue for the ith substructure
(a scalar), and °¢; denotes its corresponding eigenvector. Consistent
with the present notational convention, the symbols A; and o; will be
used later on to denote the "true" jth eigenvalue and eigenvector.

The predicted mode shapes can be used to tfansform the equations of motion
tc a set of truncated modal coordinates, p'.
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x! s o p (3.4)

where °¢ is in general considered to be a rectangular matrix (more rows
than columns)._ Applications of this transformation to Equation (3.1)

(using °Hi. °c’ and °K1 in place of Mi. Ci and Ki) results in
n' B eoc’ p e ok pl <o (3.5)
where
om' = (°1)T op' gt = g (3.6a)
oct » (oQi)T oc] o¢f (3.6b)
okt o (opT)T okl o4l = o1 3.6c)

assuming that mode shapes are normalized to give unit modal mass.

Notationally, I denotes an identity matrix and °xi denotes a diagonal

i , IR
° - © °
matrix of predicted frequencies squared ( Ajk - “j W éjk' where ij

is the kronecher delta).

!

By analogy with Equations (3.2) we shall assume that th~ "true" param-
; :
eter va ues, m and k' are related to those of our initial estimate by

i i

ST R (3.7a)

i

k' = ot

i i

LI LI (3.7b)
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The substructure eigenproblem involving m‘ and ki in the p1 coordinate
system may be stated

' - x; m') w; = 0 (3.8)
where A;
vector in the p1 coordinate system. The true eigenvector in the x
coordinate system would then be given by

and w; denote the "true" jth eigenvalue and corresponding eigen-
i

, QO (Y
oj ¢ wj (3.9)

Modal damping cannot be predicted the way modal mass and stiffness can.
It is customary to rely on experimental measurements. Experimental
measurements by definition relate to the actual structure, and strictly
speaking should be associated therefore with the "true" structural
model, in the "true" modal coordinate system. We shall associate thic
coordinate system with the coordinate vector q1 and define the trans-

formation from pi to q1 by

i
P =¥ q (3.10)
i i
or from x to q by

i
x' s °¢‘ wi qi - ¢ q (3.11)

Equations of motion are thus written in the qi coordinate system as

1§+l et et g =0 (3.12)
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where ‘n general the substructure modal damping matrix gi will not pe
diagonal. Although the off-diagonal terms of gi have in the past been
neglected in substructuring type analysis, it is, strictly speaking,
incorrect to do so [B9). We shall examine the implication of this state-
ment later on. Suffice it to say for the time being that the diagonal

elements, 533 of the matrix Ei are given by the familiar relationship

i i
z : 3.13
i_ /i i ,
where wj z Aj and Cj is the critical damping ratio of the jth mode of
the ith substructure.

A completely parallel development can be given for a major structure
comprised of a number of substructures. The results are identical to
Equations (3.1) through (3.13) with all the "i" superscripts removed. It
is therefore unnecessary to repeat the derivation. What is required,
however, is %o define how one proceeds from the isclated substructure
equations to the coupled equations of motion representing the major
structural system which is comprised of interactive substructures.

There are basically two ways in which this can be done. Both will be
considered here, although the first is likely to be preferred for the
sake of convenience. For the moment we shall overlook the fact that our
structural modeling gives inaccurate predictions, and proceed as though
the true structural parameters are known. Returning to the substructure
equations of motion in the x1 coordinate system, we shall formally
assemble the egquations of motion for the major structure in the tollowing
block-diagonal form

m et stantst =0 (3.14)

3-8



where

x' =< i > (3.15)

considering the major structure to be composed of N substructures, and
where accordingly

m = . (3.16)

— . -

and c+ and k* are defined in a simila; fashion. We shall consider the
substructure equations of motion to be coupled by application of the
constrairt equations

Gx =0 (3.17)

where G is a rectangular matrix consisting of a number of rows equal to
the number of constraint equations, and a number of columns equal to the
length of the vector x+. We shall apply a reordering transformaticn, E,
to xf so as to separate the dependent coordinates, xd. from those con-
sidered to be indspendent, x.

3-9



Thus we can write

6 {’.‘:} it {5’?} ‘%

By partitioning G we may solve for x9

in te-ms of x.

x! = f |oede| x = Bx (3.18)

where § is arectangularmatrix commonly referred to as the compatibility
matrix. The coupled equations of motion for the major structure can then
be written

MX+Cx+Kx=0 (3.19)

where M = 5T M+ B, and where C and K are similarly defined.
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The equations of motion written in the various coordinate systems, and the
transformations which relate them are summarized diagrammatically in
Figure 3-1.

An alternative substructuring procedure for writing the structural system
equations of motion in terms of substructure equations of motion is what
is usually referred to as "modal synthesis" [90, 81, 88]. For comparison with
Figure 3-1 which illustrates a direct substructuring procedure, the modal
synthesis approach is diagrammed in Figure 3-2. In this case one must be
particularly concerned with the boundary conditions assumed in calculating
the substructure modes so that unacceptably large errors do not result
from modal truncation at the substructure level. Since the first method
(or "direct" method) is considered to be the preferred one here, the

modal synthesis approach will not be discussed in further detail. It will
be mentioned later on when discussing the treatment of structural un-
certainty because it does appear to offer one advantage over the direct
method. That advantage will be pointed out in Section 3.3.

3.2 Selection of Parameters to Represent Structural Uncertainty

One of the obvious conclusions to be drawn from Section 2 is that there
are many more acknowledged sources of uncertainty than there are data
to quantify them. Even if the data were available, a tremendous data
processing effort would be required to compute the corresponding
statistics of modal properties. Confidence in these computed values
might be 1~w, to the extent that significant sources of uncertainty
have been overiooked. This situation is quite similar, in fact, to that
of trying to model damping in complex structures. There are too many
damping mechanisms about which too little is known, and there is no
guarantee that all of the significant ones can be identified. In the
case of damping, we must resort to direct measurement of composite
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structural damping. A similar approach is suggested for the estimation
of structural uncertainty.

Normally, the measurement of damping requires dynamic testing of the
complete structure so that the damping mechanisms which contribute to
damping in a particular mode of vibration are exercised in a realistic
way. Such a direct approach would also be desirable for measuring
structural uncertainty. The analogous -ituation here would be to have
both the predicted and measured modal data for a family of similar major
structures, from which statistics of the differences could be computed.
Clearly, however, this is not possible.

Conceivably, the next best thing would be t) have such data from families
of generic substructures of which the major structure is comprised.

This is the essence of the approach proposed here. The basic plan is to
take uncertainties in the modal properties of generic substructures,

and combine them to predict uncertainties in the modal properties of
major structural systems.

A crucial question arises here. What parameters can be defined to
represent uncertainty in substructure modal properties? Obviously, the
difference between predicted and measured resonant frequencies would
constitute one type of parameter. But what about mode shape? It is
often (but not always) true that frequencies can be predicted more
accurately than mode shape. This would imply that mode shape un-
certainties ought to be important in representing structural uncertainty.
The problem here is to transfer knowledge of mode shape uncertainty from
one structure to another within the same generic category. The generic
categories defined in Section 1 were structural steel, reinforced
concrete, and prestressed (or post-tensioned) concrete. These are

very broad categories in which modal characteristics obviously will vary
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considerably. Some convenient form of normalization is required in
order to do a statistical analysis.

Ar interesting possibility is suggested by the form of Equations (3.5,
3.6 and 3.7). It may be recalled that these equations were written in
the substructure predicted modal coordinate space. Theoretically,

the mass and stiffness matrices will be diagonal as shown in (3.6a) and
(3.6c). However, since the theoretical model at best only approximates
the {unknown) “true" modal properties, we expect that the “"true” m‘ and
k1 will have off-diagonal terms which are not precisely zero in the
predicted modal coordinate system. In fact we consider the diagonal

matrices °m1 = | and °k1 = °Ai to be perturbed by the matrices am' and

Ak‘. The elements of these matrices provide a basis for representing
uncertainty at the substructure level in terms of modal characteristics.
This assertion becomes clgarer after a perturbation analysis is carried
out to express Am1 and Ak1 explicitly in terms of measured vs. predicted

modal parameters,

The results of the perturbation analysis yield the following relationships:

i i

- - 3.20a
AmJJ ZAnJJ (3.20a)
At'ni = - An'i + Ani ) (3.20b)

ik jk kJj ’

i a8

., = . * % am, 3.20c
Ak.JJ A)‘J J JJ ( )

RS, B B 5. A
Akjk Aj Anjk Ay Ankj. J Kk (3.204)

where °x; are the theoretically predicted eigenvalues and



)\ = - © )
AJ Aj AJ (3.21a)
g Ry
Anjk ij ij (3.21b)
=% i\T i i
wjk = (°¢j) °M N (3.21¢)

~ A‘
where Ai and ¢j are the measured (experimentally estimated) "true" eigen-
values and eigenvectors, respectively.

Now Ami and Aki begin to resemble the kind of terms we might expect to
represent modal uncertainty. It may be noted in particular that Ak}j
contains AA;. the difference between predicted and measured eigenvalues,
and that

1 o e VYT ofd 41

o= (o) W' 4
is a scalar measure of the cross orthogona11ty between the predicted mode
shape o; and the measured moue shape °k Clearly, if the "true" modes

could be predicted perfectly and measured perfectly, then N ® 0,
-IandAmitAkito.

It is significant to note that by virtue of the fact that °¢; and ;k
occur in vector product form, many measurements are reduced to a single
scalar value. This is certainly appealing from both a computational and
a data storage point of view.

One further thing must be done before any statistical aralysis can be
performed. The parameters Ak;k must be first normalized by a scaling
transformation to remove the frequency dependence. We shall define this
transformation as follows:
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P ,(,Ai)-l/z At (,Ai)-l/Z
: (oui)-l ak] (owi)d (3.22)

where o, are the predicted undamped natural frequencies of the ith
substructure. Since °w1 is a diagonal matrix, *t follows that

~4 Ax
Akjj . oA' - ZAan (3.230)
J
owi o 3
~1 = _.1 A - wk An
Akjk 2 i ur‘jk 3 i o ‘kj (3-23b)
W wj

We shall now define a set of generic substructure parameters as m}k and
i
k  where

Jk

(3.24a)
(3.24b)

=
We shall array these parameters in the parameter vector r such that
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. "
g 4 -_EQD-- k (3.25)

\ knn J
The covariance matrix of r1 is then

i

Ser

= € |or' (ar')

(3.26)

In particular, a set of scalar equations is obtiined,

N - &
(S;F)jk - N—If Z[(Ar;) (Ar;)} (3.27)
T £

averaging over N substructures.
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It 1s anticipated that many of the off-diagonal terms of the covariance
matrix, S:i’ will tend to be zero. Reasonable assumpticns can probably
be made ir this regard. Conceivably, it may even be valid to assume
that S;& is diagonal. This would have to be investigated on the basis
of actual data as well as engineering judgement.

Once S;F is estimat?d for each generic class of substructures, the
covariance matrix Srr for a particular substructure may be computed by
applying the eigenvalue scaling transformation in reverse, i.e., for

(5t) s = €[ () ()] - (3.29)

i < [l
(55) = (55) o 3.2%)
whenever Ari = Ami and Ari = Ami .
J £m k no °’
i s o ¥ o i [ci
(Srr).]'k “n “o (SFF)jk (3.290)
whenever Ari = Am. and Ar1 - Aki
j m k no '
i e o4 o 1 fei
(Srr)jk W Um (Si?)jk (3.29¢)
whenever Ari T A;i and Ari = Ami -
3 em k no '
of } = dodo iod(sl ) (3.294)
rr, Jk L "m "n To\'rr) Jk -



It is important to recognize here that the frequencies used to normalize
the substructure data in Equations (3.22) and (3.23a, b) are those of the
substructures comprising the data base, while those used in Equations
(3.29a) through (3.29d) are those of the particular substructure of the
major structural system being modeled.

The two principal advantages of using substructure modal parameters to
represent structural uncert>inty are (1) they reflect the combined
effects of all sources of uncertainty present in the substructure, even
those which might not be specifically identified, and (2) there appear
to be at least some data upon which to base quantitative statistical
estimates for generic classes of substructures.

There are some disadvantages, however, which should be recognized also.
One disadvantage is that the parameters may be (at least initially)
difficult to interpret physically. There is of course no problem with
the 4A/°% terms. This relationship between predicted and measured
eigenvalues isAuniversally appreciated. The cross-orthogonality
coefficients, ¢, on the other hand are more difficult to interpret from
the standpoint of structural variability and modeling error, even
though they are frequently used to make qualitative comparisons between
predicted and measured~modes. The importance of cross-correlation
among the parameters, r;. is even more difficult to envision. The
degree to which a particular mathematical formulation lends itself to
physical interpretation at intermediate steps is an important quality
in modern engineering technology.

Another disadvantage, although perhaps only a temporary one, is that
conventional structural anaiysis computer programs are usually not
structured to transform modal representations of substructure mass
and stiffness matrices directly to coupled system coordinates (e.g.,
Figure 3-2).
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In view of these two potential obstacles, the substructure uncertainties
which are computed for parameters related to the pi coordinate system,
will be transformed back to parameters to be subsequently defined in

the x‘ coordinate system.

3.3 Alternative Parameters for Representing Structural Uncertainty

Since the x‘ coordinate system could conceivably represent nodal displace-
ments of a detailed finite element mesh, it wouid be thecretically
possible to define structural uncertainty in terms of such things as the
axial stiffness (EA), shear stiffness (GAS). flexural stiffness (EI),

and joint stiffness (Ke)' etc., of individual structural members.

However, as pointed out previously, the necessary data are not available
and the computational requirements are too great to make this alternative

feasible.

Some investigators (e.g., [9]) have gone to the cppnsite extreme of
assuming that uncertainty can be represented by simple scaling co-
efficients on the mass and stiffness matrices, i.e., M = a](°M) and

K = az(°K). This approach is unrealistic inasmuch as it allows for no
variability in mode shape. A similarly convenient but more satisfying
approach is to use multiple scaling coefficients on a linear combination
of submatrices which nominally sum to the original thecoretical matrices

[93].
M= °M + iai °Mj (3.30a)
R

m

K = °K Z K. 3.30b
+ ay °K; (3.30b)

J=n+]
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where by definition, °M, °K, °Hj and °K. are all square matrices of the

same order as M and K such that

°M = °M + i °MJ. (3.31a)
J:

K » °K & i *K (3.31b)

J

J

J=n+l

We can of course generalize this technique for the substructures approach
by adding the "i" superscripts.

Moo o +i: o) omf (3.32a)
"
i
i
$ _ ot i o4
0% ™ (3.32b)
j=n +]

In such = formulation it is assumed that all uicertainty is embodied in
the scaling parameters, a;. all of which have mean values of unity. The
submatrices, °M; and °K; may be defined in various ways. For example,

an intermediate level in the structural hiserarchy between member and
substructure (e.g., frame, bay, etc.) could be associated with the a's.
The stiffness variates for some of these might be further subdivided to
distinguish between axial stiffness (braced frames), shear stiffness
(shear walls and thick concrete shells) and flexural stiffness (moment
resisting frames). All of these submatrices can be generated with
standard modeling codes simply by selectiveiy setting the unwanted param-

eter values to zero and generating a partial matrix.

s
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Before going on to the next section which addresses the complete
methodology, it will be worthwhile to point out another aspect of
modeling structural uncertainty, another dimension of the problem, so
to speak. Ang and Cornell [ 80 ] suggest a formulation which considers
uncertainty due to “basic variability", separately from that due to
modeling inaccuracy. Basic variability is often referred to as random
error, while modeling inaccuracy is considered to be systematic error.
From the standpoint of analysis (identification), the two are often
inseparable and indistinguishable. From the standpoint of synthesis
(modeling) the conceptual distinction may be significant in the sense
that recognizing two sources of uncertainty instead of one can lead to
a higher estimate of overall uncertainty.

The concept may be generalized further if desired to give separate
consideration to various types of uncertainty which enter the analysis
at different stages. Suppose we consider the following steps of analysis:
(a) Identify materials and construction.
(b) Generate lincar model for small amplitude behavior.
(c) Determine effects of static loading (1ive load and dead load).
(d) Estimate effects of deterioration and maintenance.

(e) Extrapolate to large amplitude behavior.

Under these considerations we might in general replace each of the
parameters, u;, in Equaticn (3.32b) for example, by the product

Q; " u;(a) OI;_(b) 0;(C) 0;_(d) G;(e) (3.33)
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Some of these a's may have mean values different from unity so that the
bias effects of static loading, deterioration, and extrapolation to
large amplitude can be accounted for. The main point to recognize here
is that the uncertainties are approximately additive, provided that they
are relatively small, i.e.,

O 3054'05*(15#05#(} (3.34)

where GZ denotes the variance of a parameter and subscripts correspond
to the steps of analysis listed above.

It has been stated a number of times that insufficient data are available
to make direct statistical estimates of these parameters. The following
section will discuss how these measures of uncertainty can be assigned,
and subsequently estimated using a Bayesian procedure. Part of the
reason for expanding the a's as shown in Equation (3.33 is to revea) the
impact of modeling uncertainty on theoretical predictions. Its con-
tribution is difficult to quantify at this level but should not be
overlooked.

3.4 General Methodology for Evaluating Structural Uncertainty

This section will develop and describe a genera: and comprehensive
methodology for evaluating structural uncertainty. It is emphasized
from the out-et, however, that there are many different paths through
the methodology, the selection ui which will depend on the availability
cf data and the amount of effort one may choose to invest. The end
result in any case will be a set of three (probably uncorrelated)
statistical variates which define the generic uncertainties in computed
values of modal frequency, modal amplitude and damping for a given major
structural system. A significant feature of this result is that
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uncertainties in frequency, mode shape and damping are properly represented
in seismic response calculations. It is anticipated that such parameters
could be used in computing structural response either by the response
spectrum method or by the time-history metnod of analysis.

From the standpoint of helping the reader zstablish a proper perspective,
it may be stated that under the assumption that mode shapes are deter-
ministic (or have negligible uncertainty relative to modal frequency),
the statistical variates, modal frequency and damping, are simply

AN/ °) = A(uz)/°u2 = mcdal frequency variate (similar to Figures
2-9 through 2-11)
r = modal damping variate (Figures 2-21 through Z-23)

where the above symbols represent scalar quantities in this case.

The ensuing development will begin with a presentation of the general
methodology, followed by a limited discussion of the various paths
which may be charted through the methodology. One of these paths will
be subsequently illustrated by example (Appendix A).

Figure 3-3 contains a flow chart summarizing the general methodology. The
nomenclature used in this flow chart is defined in Table 3-1. As before,
the "i" superscript will denote properties of the ith substructure, the

wen 1eft superscript will denote properties of the original theoretical model,

the "*" notation over a symbol will denote experimental measurements or
test data. The "g" superscript is used to denote generic structure or
substructure data, which includes both theoretical predictions and
experimental data. The asterisks (*) are used to denote revised (improved)
estimates of the parameters.
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Table 3-1. Nomenclature for Figure 3-3

{a} Vector of substructure scaling parameters
(treated as random variables) for mass and
stiffness submatrices.

{a) Vector of scaling parametegs for the major
structure (contains all {a }'s).

(ri} Vector of reduced substructure modal
parameters.

{r} Vector of reduced major structure modal
parameters.

(ui: Vector of substructure modal parameters

i i
(AJ and @kj).

{u} Vector of major structure modal parameters
(Aj and ®kJ)'

{°u9} Vector of analytically predicted modal
parameters for a structure or substructure
within a generic category.

{u) Vector of experimental'y measured modal
parameters for a structure or substructure
within a generic category.

{u} A three-element empirical modal parameter
vector where u, = a normalized modal
frequency squa}ed and uy = 2 normalized
modal amplitude, and My ® modal damping

{e } VectorA?f experimental errors associated
with {u'}.
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Table. 3-1. Nomenclature for Figure 3-3 (cont'd)

{e}

(M%)

(s_]

Vector.of experimental errors associated
with {u}.

Original analgtical mass matrix used in
computing {°u3) for a structure or sub-
structure within a generic category.
Covariance matrix of the parameter vector
23

{a'}.

Covariance matrix of the parameter vector
',

Covariance matrix of the parameter vector
tr'}.

Covariance matrix of the parameter vector
{r}.

Covariance matrix of the parameter vector
{u}.

Covariance matrix of the parameter vector
{ul}.

Covariance matrix (usually assumed to be
diagonal) of the experimental error vector
{ci}.

Covariance matrix (usually assumed to be

diagonal) of the experimental error vector
{e}.
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The eleven figures following Figure 3-3 illustrate distinct options which
may be exercised within the general methodology. Additional Options are
possible. Those which are shown have been selected to demonstrate the
methodology. Some are more practical than others. One is recommended for
initial implementation. It is illustrated by example in Appendix A.

Option 1: Figure 3-4.

Option 1 is considered to be the conventional a jroach in the sense that
statistics associated directly with the mass and stiffness matrices are
propagated through the structural equations to determine corresponding
statistics for the modal properties. Under this option, generic un-
certainty da’a reiated to structural member properties must be utilized
a]qng with engineering judgement *o establish the covariance matrices
[S;u]. The primary reason for dividing a major structural system into
distinct substructures is to try to separate for purposes of analysis
those portions of a major structure which may be expected to exhibit
different levels of uncertainty and/or damping. The a - parameters defined
here are taken to be submatrix scaling coefficients with mean values of
unity as defined in Equations 3.32a, b). It is likely that these param-
eters will be uncorrelated so that [Sla] (or S;a) is diagonal. By
definition

s;Q = E[2a’ (aah)T) (3.35)

where Aa; = (a; - 1). In general, the diagonal elements of S;a may be of
the form suggested by Equation (3.34), where the variance of a reflects
the combined effect of several distinct sources of uncertainty. Judgement
will be a major factor in establishing these uncertainties. To a degree,
the ease or difficulty of making this judgement will depend on how the
a's are defined.
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The transformation of S;a to Saa 15 direct. We first recognize that

-
e §
2
o
a = {a} = 9 .i g (3.36)
a
LGNJ
It follows then that
r;‘ -
.
S
a
Spq 2 [5,,1° " (3.37)
SCm .
S
- s

assuring that a and o)

diagonal, S will be also.
(875 )

i
are uncorreliated. Thus, whenever all Saa are

The n-xt step in the sequence of Option 1 is to transform S(m to Suu'
where the vector u is defined as follows:
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u:iue<-ob (3.38)
b L

¢
\ nnJ

As before, the eigenvalues and eigenvectors of a major structural system
are denoted by Aj and ¢. respectively. The transformation of Sau to
SuJ is obtained as follows:

S = Er(u -u) (u- U)T]

(3.39)
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The transformation matrix TU is called a sensitivity matrix and is the
matrix of first partial derivatives,

(Tua) o = /30 (3.40)

Wnenever u, = Aj'

3K M
(aum - AJ 5;;) (3.41)

Whenever u, = @k

3 Tt fok ) Chjam |,
- kh "h X Xh 3am J aam 2 Bam J
(3.42)

The final step in the sequence of Option 1 is to tranform Suu to S,w
We shall assume that the dynamic equations of motion for the major
structural system are transformed from the physical x coordinate system
to the modal p coordinate system and solved in the time domain. Whether
the equations are solved by time-series integration or by the response
spectrum method of analysis is immaterial.
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The eauations of motion for the theoretical modei are

M X +° x+°Kx = fle) (3.43)

Forced response is of interest here. The force vector is denoted by
f(t); it will be assumed variable separable in space and time such that

f(t) = P_g(t) (3.44)

where Px is the spacial distribution vector and g(t) is a scalar function
of time. In general, g(t) may represent a single component of ground
motion such as ground acceleration in a given horizontal or the vertical
direction. The following derivation can be generalized to include all
three components of ground motion if desired.
Transformation of Equation (3.43) to the p coordinate system results in
Ip+°5p+°rp="°Tg(t) (3.45)
where ' is a vector of modal participation factors

NP 1, | h "
ry = % P, };: 0y4 pxg (3.46)

The off-diagonal terms of °f may be neglected provided that the modal
frequencies are sufficiently well separated [89], leading to a set of

independent equations

bj + 2°cj "wj p+ °w§ p = °1"J- g(t) (3.47)
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The solution of the above equation may be expressed in integral form as
%
¢ ® -1 d .4
by = °I, fhj(t )g(t) de (3.48)

0

where hj(t). the impulse response function for mode "j", is

Finally, response at point "k" on the major structural system is obtained
as a sum of the modal contributions

= %05 T4 f hy(t=1)g(t) de (3.50)

0

We shall further simplify the form of Equation (3.50) by defining a
modal response amplitude parameter, Akj‘

°A . = % . °T. ;
Akj ¢kj j (3.51)

At this point we must address the problem of numerical simulation. If
the number of independent random variables which may be used to repre-
sent structural uncertainty is limited to a few (2, 3 or 4), it would
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appear that three independent random variables might be defined, each
relating to one of the modal parameters °Aj. °Akj or °cj. The following
parameters are tentatively suggested, pending the analysis of actual
data upon which the final selection must be made.

Two parameters are suggested for modeling the randomness of natural
frequencies and modal displacements respectively. We can express A. and

j
Akj as follows:
X
. —l-)°,x. (3.52)
% | o) . J
j
., =% . + ’ ) :
A ( by * 00y3) (°Ty or§)
oA .+ %, . AT, +°T, .
Ag * oxg 8Ty * T B0y
[ |
= o * ] . o - ] X
A ["‘J ( Tt Bl R T )} ("”TJ)
] |
s . TR . '
Ak ("‘J MkJ) S (343

J

where %”j is the computed modal mass of the jth mode. We are now in a
position to define two new random variables, uy,and uy, and will sub-
sequently quantifythem so as to justify the following approximations:

¥y = Aj/°lj (3.%3a)

o 4
b = ”; AAk,j (3.54b)
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We shall define the nean values of M and Mo such that E(Aj) = °AJ

and E(Akj) = oAkj’ Thus
E(u]) = Ei =] (3.55a)
E(uz) = Gé =0 (3.55b)

Information on the variances of e and Mo is contained in the covariance
matrix Suu' With the vector u defined by Equation (3.38), we can
partition Suu as follows:

Sin ! SX@

§ = |-==t--- (3.56)

uu
s
2 | S

Independence of A and ¢ would imply SX¢ = 0. We shall make this
assumption tentatively, subject te verification by the data. It will
a'so be of interest to investigate the possiblity that Aj and )k are
uncorrelated for j # k. In any case, there is more than one way to
establish a reasonible probability law for My We might assume a
lognormal probability law and select a variance based on the average of
the diagonal terms of SAA’ A more conservative anproach would be to
select a variance for u] based on the largest of the diagonal elements
of SAA' This approach is tentatively recommended, pending experience
with actual data. Thus we shall choose

; K”l 9y 25)2]3 051 ; [(SXA)JJ/oxi] max(j) d
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In order to establish a value for of based on SAA’ we must first
evaluate the variance of rj as defingd by

T

[ §

, = ¢, P =P . .

rJ QJ . . QJ (3.58)
If Px is deterministic, then
2 T T
=gfr, - ° . .-°.']p
°ry [(FJ ryf] - E[(q’J 05 (05 = 05" | P,
T

: P .

Px S¢J¢j . (3.59)

The cross correlation betuween °kj and QEJ is expected to be important in
computing the variance of I'.. It is anticipated, however, that the
correlation between okj and Fj will be relatively weak, and therefore
may be neglected. We thus ob*ain

€ [(5n; o8 )7] = £ [lan )]

J

. 2[° 2 Rl R ]
= . [°0, . 0n *+ °TC o (3.60)
J kJ rj J ¢kj
where 02 is given by S .. It also may be noted that 5,. is given by
¢kj ¢ J
1/ [oﬁ] (3.61)
J J| max(k)
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. °M °¢ = I. It remains only to define 05 .
2
given E B1'3 AARJ)Z] for all j. It would again be conservative to define

by based on the upper bound

under the assumption that °¢

ot = E[(%..j AAk.)z] (3.62)
Y2 I Imax(k,J)

Such a recommendation is again made tentatively, pending the analysis
of actual data. The normal probability law is suggested for Moo

Finaily, we must define the uncertainty in modal damping gj. The best
data for this purpose are those data which constitute direct measuremenis
of modal damping for the type of major structure being considered, i.e.,
reactor buildiny or auxiliary-fuel-turbine building complex. Such

data are identified in Table 4-3. The data may be combined as shown in
Figures 2-21 through 2-23 to establish .robability distributions

directly for a single "equivalent" random variable, M3 such that

Having previously established
A, = "X 3.64
5% WA ( )
Akj = Akj + “2/"j (3.65)

along with probability laws for H and Hos We have reached the end of the
sequence in Option 1.
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Option 2: Figure 3-5.

It may be noted that Option 2 directly parallels OptiOn 1, and in fact is
identical to it except for the manner in which S is established. The
procedure for deriving S p Was derived in Section 3.2. It remains here
only to define the transformation from S to [S;a]*.

The transformation is written [9]1]
is' 1" = [y Tsi ) e T (3.66)
ao ra rr roa ’

where elements of the sensitivity matrix T;',Ll are given by

i i
(rm)th IV (3.67)

Whenever 7 < h < n' in Equation (3.32a),

T YPe, e IR e JAE
ar, /3ah amjklaah ¢j Mh ¢k (3.68a)
Whenever n' + 1 <hc< mi in Equation (3.32b)
Yt 4t P, QPO PR
ari/aah akjk/aah Qj Kh @k (3.68b)

It is important to note here that in order to solve for S as shown,

both of the matrices S: and [(T ) s! ) -1 Tua] must be nonsingular.

In particular, this means that there must be at least as many r's as o's.

3-40



lv-€

MEASURED AND/OR
PREDICTED
MODAL DATA

REDUCED STRUCTURE

0OR SUBSTRUCTURE MODAL
PARAME TERS AND/OR
THEIR UNCERTAINTIES

SUBSTRUCTURE
PARAME TERS AND/OR
THEIR UNCERTAINTIES

STRUCTURE
PARAMETERS AND/OR
THE IR UNCERTAINTIES

STRUCTURE MODAL
PARAMETERS AND/MR
THEIR UNCERTAINTIES

EMPIRICAL
UNCERTAINTIES ON
MODAL FREQUENCY
AND AMPL | TUDE

{
{
1=
{
|
{

FINITE ELEMINT APPROACH

il

MODAL APPROACH -

—~ -~ ~

SUBSTRUCTURE ME THOD

MODAL APPROACH - DIRECT METHOD

CONVENT 1 ONAL

//'JN!M( /

STRUC TURAL

/i s/
i

|
I
|
i

]

STATISTICS

CONVENT 1 ONAL

STATISTICS

GENERIC
SUBSTRUCTURE

BAYESIAN STATISTICS

[ seecicic /

/ SUBSTRUCTURE

- /
MODAL DATA ol B N,)Ullll_}fl_li_/
q 4 q [~ i i

u'l, (MW7), {u7) fu't, [s, )

—

—

CONVENTIONAL STATISTICS

BAYESIAN STATISTICS
/eeriFic

GENERIC
MAJOR STRUCTURE / W 0R STRUCTURE /
MODAL DATA

—

/ /. wooaL oata  /
9, W01, %) (wl, ts

;:r:‘i
S O
r il:_‘
S

NOTE:

LARGEST

| UNCERTAINTY

1
The vectors (a

a'* and

{u!* have been crossed out

revisea parameter estimates are not obtained without

specific test data.

Figure 3-5.

l I

: ¥ [(‘rr ]

to ndicate
substructure-

Flow Diagram for Option 2

b

— e -
]

]
i LT
e

SMALLEST
UNCERTAINTY

that




Option 3: Figure 3-6.

Option 3 issimilar to Cnotion 2 except that generic major structure modal
data are used to generate Srr' insteac cf generic substructure modal
data being used to generate S:r. Srr is then transformed directly to
Saa in a manner similar to that described in Equations (3.66) through
(3.68).

Option 4: Figure 3-7.

i *
Option 4 is similar to Option 2, except that [S;a] is now obtained by
the transformation

: -1
1.7 i -1 T a1 358 %=1
[Saa] - [(Saa) . (Tra) (Srr) T;a} (3.69)

instead of Equation (3.66). The covariance matrix S;J is obtained as in

Option 1. This option was selected for illustration in Appendix A.

Optior 5: Figure 3-8.

*
Option 5 is 3 combination of Options 2 and 3 where [Saa] & is obtained
by the transformation

e * g )T v S
(5,00 = (5507 + (n )T (s D7 1 (3.70)

Option 6: Fiqure 3-9,

**
Option 6 is a combination of Option 1 and 3 where [Saa] is obtained
by the transformation
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-1

) = (507" # (1) (5,07 7, ] (3.71)

Option 7: Figure 3-10.

Option 7 is a combination of Options1, 2 and 3 where in this case,
Equations(3.69) and {(3.71) both apply.

Option 8: Figure 3-11,

Option 8 introduces the concept of Bayesian parameter estimation based
on substructure-specific test data. There is an important philosopnical
point to be made here. If modal test data are available for the specific
substructures which comprise a major structural system (or any one of
them for that matter), revised (improved) parameter estimates can be
obtained by Bayesian statistical estimation [31]. At the same :ime,

we should expect the correspending uncertainties to be reduced
significantly. Under this Option, {ri}* is obtained by applying the
recursive equation

)
i i1 i 0T i (=1 o
i re+ [(SPY‘) + (TUT) (SEC) TUY‘]

B[RO R ML O A (MBS B ER 5

* L3 ' *
until {r'} converges to {r'} at which time [S:r] is computed from
the equation

s - s .1 % It
i "= b a7 st 1) e
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In the above equations, r; denotes the original (a priori) estimates of
the parameter vector ri, rg denotes the most recent estimate from the
iterative operation, ul is the theoretically-predicted modal parameter
vector based on r;. and ug is th$ observed (measured) modal parameter
vector. The covariance matrix Sec denotes the estimated statistical
variances of measurement error (usually assumed to be diagonal) while

T:r is the sensitivity matrix relating r1 to u‘.
i 2 x i
(Tur) un = Uy /0] (3.74)

Option 9: Fiqure 3-12.

Option 9 is similar to Option 8 except that both generic and structure-
specific modal data are assumed available for the major structure
instead of the substructures.

Option 10: Figure 3-13.

This option represents what is considered to be the most advanced of

the more practical options. (The more practical options are considered
to include Options1, 2, 4 and 10. The others are considered to be less
practical, either because they require generic major structure modal
data, specific substructure modal data, or both. These data are believed
tc be reiatively unavailable.) The implication is that structural
uncertainty, and thus seismic risk, may be reduced by physically testing
the particular structure of interest. It is of interest to note here
that the step of computing r* and S:r has been bypassed in this option.
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Option 11: Figure 3-14,

This option is shown only to illustrate the most complete use of the
present methodology. It is considered to be one of the less practical
options because of the data requirements discussed in the previous
paragraph.

A few general comments on the methodology are in order at this time. As
can be noted in Figure 3-4 and succeeding figures, estimates of the r -
parameters are always transformed to corresponding estimates of the a -
parameters before transforming to the u - parameters which symbolize
frequency and mode si ipe. As mentioned in Section 3.1, this was done
primarily for the sake of convenience, anticipating that most structural
analysis codes do not have a modal synthesis capability which is reguired
to make the compatibility transformation from pi to p' as shown in
Figure 3-2. A secondary reason for choosing this approach, however, was
to transform the uncertainty parameters into a form where they are more
readily understood. As explained in the latter part of Section 3.3,

the modal parameters (i.e., the r - narameters) may be difficult

to relate to practical experience, at least for a while.

There are two points to make nere before concluding the present section.
The first is thatcare must be taken in defining the a - parameters so

that they can "accept" the information contained in the r - parameters.

If the two are incompatible, significant information may be lost in the
transformation. In general, it is thought to be preferrable to define

too many a's rather than too few in order to give the r - parameter
information "freedom to go where it wants to go," without undue constraint.
In order to do this, of course, one must choose an option which utilizes

a priori estimates of S;“ or Saa; otherwise the matrix inversion

cannot be made, i.e.,
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-1
T -1
Sm ° [(Tru) (Srr) Tra]

is rank deficient when the number of a's exceed the number of r's. In
a sense, the prior estimate of Saa is used to condition the transformation,

a & E -1
5,0 = [(sw) T ) (s, rm]

If Sau is too large, the matrix on the right hand side of the equation
may be ill-conditioned. If it is too small, it will dominite S ..

The objective is to make Saa small enough to facilitate matrix inversion,
Lut still large snough (within reason) to allow Srr to control the
outcome of [Saa] .

The second point to be made will help to bring this section to a con-
clusion on "more familiar ground.” Although none of the options

identified so far take thic path, Figure 3-15 does show the possibility i
of transforming directly from [Srr] to [Suu]**. Although this option
(designated Option 12) is not considered to be very practical because

of the requirement for generic major structure modal data, it definitely
provides insight because of the similarity between some of the r and u -
parameters. In particular, some of the r - parameters are such that

Ar, = Ak.. = AX, + °). Am..
£ JJ J J 3

while corresponding u - parameters are such that

uy = AAJ.

If node-shape uncertainty were negligible, then Amjj = 0 and
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Ar = A = AX. = Au
g " BByy 04y B SNy

This comparison clearly reveals the implication of using only frequency
data and neglecting mode shape uncertainty; i.e., the implication is
that mode shapes can be predicted accurately!

To demonstrate that this is a poor assumption, we need only to compute
values of ij and Am.. from some actual data. References [87 and 92]
present respectively the predicted and measured frequencies and ."ode
shapes for a 22 - story steel frame building. The predicted frequuency
for the second N-S bending mode was 1.077 Hz, whereas the corresponding
measured frequency was 1.10 Hz. Based on these frequencies and the
corresponding predicted and measured mode shapes, the following values

were calculated

1.97 - 45.97 [2(.922 - 1)]

1.97 + 7.14 = 9.11

This contribution to Akzz from mode shape differential is seen to be 7.14,
while that from frequencyv differential is only 1.97.

It may be noted in general that &jj is always less than unity, so that

Amjj = -2(@jj -1) will always be a positive quantity. On the other hand,
ij may be either positive or negative.

This example illustrates the relative sensitivity of the r - parameters
to uncertainty in frequency and mode shape prediction. In general, we
expect mode-shape uncertainty to dominatg. Cross-orthogonality co-
efficierts on the order of 20% (i.e., ijj - 1| = 0.20) are not

uncommon [93]. It should be understood that the corresponding eigenvalue
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4. IMPLEMENTATION

4.1 Assessment of Available Data

4.1.1 Member Level Data (Table 4-1)

After the ay parameters are selected by the analyst to represent uncertainties
in the structure, then the uncertainly analysis of structural response is
completely defined provided we have the joint probability distribution
functions for the ai's, or at least their first two statistical moments.
Typically a; may include parameters related to flexural stiffness of members
EI, shear stiffness parameters GAS, joint stiffness parameters Kj, etc.

Hence the most direct data required are the mean values, variances and
covariances of conveniently normalized versions of these parameters;
unfortunately, data of this type are extremely rare. The closest thing

to statistics of EI obtained directly for reinforced concrete (RC) beams

is that reported in [12], see also Figure 2-8. In [12], statistical data

for the ratio of measured to computed mid-span deflections of simply
supported RC beams as reported in [1] are used to construct a probablity
distribution function for the ratio of effective measured to computed EI.
Even for this case, the statistics can only be regarded as a priori estimates
since as-tested component loading and boundary conditions may not be realized
for simila, -omponents in real structures. The situation becomes aggravated
when one attempts to estimate EI indirectly, using models for EI. Indirect
estimation of EI for RC using models for EI tends to result in Tower
confidence berause of our inability to correctly model E and I for partially
cracked RC members; moreover, only empirical models for E and 1 exist

which are subject to large uncertainty. It is precisely for these reasons
that the statistical data reported in[81[17]-[19], for material and geo-
metric properties of materials, are not particularly relevant for the
purposes of this study. Hence, the best alternative under the given

4-



Table 4-1, Member Data

TYPE DESCRIPTION OF DATA REFERENCES
1 RATIO OF MEASURED TO COMPUTED DE- 1, 23
FLECTIONS OF SIMPLY SUPPORTED RC
BEAMS
2 EFFECTIVE YOUNG'S MODULUS OF RC FROM 2, 16, 24
SHEAR TEST DATA; ALSO SHEAR STRENGTH
DATA
3 STATISTIC-L PROPERTIES FOR RATIO OF 10, 11,12, 9
EFFECTIVE MEASURED TO PREDICTED EI
VALUES FOR SIMPLY-SUPPORTED RC
< STATISTICAL STRENGTH PROPERTIES OF 8, 18, 16
STEEL
5 GEOMETRIC VARIABILITY OF RC BEAM, 19, 16
COLUMN AND SLAB DIMENSIONS
6 STATISTICAL DATA ON COMPRESSIVE 17
STRENGTH OF CONCRETE
7 DAMPING RATIOS FOR CONCRETE, STEEL 16, 39
AND SOIL
8 VARIABILITY OF MASSES IN DYNAMIC 16

ANALYSIS
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Table 4-2.

Substructure Data

STRUCTURE °w & ° 8| M | DEpine) | REFERENCES
s(1) X X | X X 26
s : X | x X X 30
s(2) X X y 3
S X X 32
5(3) XL x| x| x| x3) X 33, 51
5(10) X X 3
S | 39
S X x [ x| x| x@ X 40
3 xX3) L ox | x5Y | x| x X 4
S : . . X 43
S x6) | x | «x x | x(€ X a4
S X X | x X | x X a6
5(15) X X 49
S X | X x | x(7) : 52
s X X X X 53
5(8) X 54
re(9) . « 25
RC x | x X X 27
RC X X | «x X | x X 28, 36, 51
*®e X X | x X 29
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Table 4-2. Substructure Data (Cont.)
STRUCTURE °w & o | & | °m MEASURTD  |REFERENCES
re (2) X v X 3
re(10) X X 3
re(M) « 35
’C « X X 37
RC X 39
RC x(5) x5 | x | x X -
RC X X ¢ 42
RC x12) 1 x| x02) | « a€
re(13) X X a7
re(14) X X X a8
re(13) X X 49
re(16) X X X 50
RC X X X X 53
re(8) X 54
Egrﬁg;géﬁ?) X X 38
NOTES

This is a two story steel frame building with two reinforced concrete-block shear walls along two
adjacent sides.

This 1s a4 comr ‘hensive susmary of statistical dafa for fundamental frequencies and damping
Analytical me Is for this building are reported in: Gobler, H., "Three-Dimensional Modeling
and Dynamic - jalysis of the san Diego Gas and Electric Company Building,” MS Thesis, UCLA, 1969.
May be estimated from given data.

Reported results utilize data from identified stiffness matrices; they are not a prior! data
These values are reported in Reference 4 of our Reference 44.

Scale mode) structures, mass can be estimated from given data.

Contains data of pre, during and post earthquake fundamental frequency data

for agditional information for this structure, see Reference 71 of our Reference 25

Several measured mode shapes for various structures are presented In the paper.

Interesting comparison of measured freque.cies for identically designed buildings

Are the results of a posteriori model

Reinforced masonary and RC buildings.

Reinforced masonary building,

Based on lapanese data.

These are RC shear wall structures.

Data for a contain  at structure.
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Table 4-3.

Major Structure Data

STRUCTURE | °w | & | °s | & |°M g::g‘l’:go REFERENCE
RC X X X ' X 61

retl) x x (2) 65

re(3) 56

RC & S X X X X X 58

re(®) x x X x 7n,72,77
RC & S X X X X 73

re & s(3) | «x X x 62

RC X 59,60

Report data for 250'RC stack, control room floor frequency and

equipment fregquency.
Only control room floor vertical mode shape published.

This paper is only a summary of an extensive experimental program

carried out on a power plant in Italy.
categories are gathered, but not published.

Is a combined reactor building and turbine building.
jdentification is also used in this paper to improve a prior model.

Extensive data in all

System

Includes data on three different nuclear power plants.
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(4) The data do not differentiate betweer specific structure
types such as braced frame, moment resisting frame, etc.

The first comment is in order because the determination of natural periods
from measured response data is subject to inherent experimental errors
due to measurement. processing and interpretation of the derived results.
For instance, tne achievable accuracy of modal parameters, for a given
structure, from random vibration data is reported in [82-8€, 94,96]. Hence,
based on the above remarks we may at best interpret the data to reflect
the combined effects of modeling uncertainty and measurement error.
Secondly, the data may contain the effects of structure-to-structure and/
or soil-structure interaction effects. These effects may especially be
relevant to data obtained from blast and earthquake sources; however, it
may be reasonable to expect results derived from very low level ambient
vibration tests to be only minimally affected by the above mentioned
effects. A serious deficienc' of the repo: ted data, at least for the
purposes of this study, is the lack of information on the mass distri-
butions of the tested structure. It is felt that this deficiency may

be partially remedied by going through the original sources of data;
however, this may prove to be a considerable undertaking. The lack of
mode shape data is also clearly apparent; these data bear important
information on the stiffness and mass distributions of structures.

In general, it is believed that considerably more data exist in
unpublished reports than have been identified here. A determined
effort to identify specific data requirements followed by data
icquisition via appropriate channels should produce sufficient data to
.mplement the procedures defined herein.
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4.2 Potential Benefits from Additional Data

A review of the available data which appears in Tables 4-1 to 4-3, reveal-
that apriori mode shapes and apriori mass distribution information are
rather rare, compared to fundamental frequency data. Clearly, there are
two basic reasons for this deficiency, (1) ~conomic, and (2) interest.

It is obvious that a large number of sersors are required to measure

mode shapes; the number of instruments required increases roughly in
proportion to the number of modes to be measured. The operating band-
width of shaking machines and their frequency control resolution further
1imit the measurable frequencies to the lower modes. Also, the number
of recording instruments and personnel required to carry out experiments
to determine higher modes have been excessive in the past. Most

of these practical constraints are being overcome by technological ad-
vancement in the design of sensors, recording equipment, mechanical shakers
and analysis units. The availability of minicomputers and analysis units
have significantly reduced the effort necessary to extract higher mode
data from ambient vibration survey records or random vibration data.

.n th last decade or so, there has been a growing interest by experi-
mentalists to fit analytical models to their measurement data, and intere.t
by theoreticians to utilize more abundant (in quality and quantity)
measured data to construct more realistic mathematical models of physical
phenomena. This surge in interest of experimentalists and theoreticians
towards the work of each other, is to a significaat extent accountable

to the emergence of the methocdology of system identification in the last
decade as well as the widespread use of the digital computer and greatly
improved experimental techniques.

Potential benefits be gained from having additional generic sub-

structure and major structure modal data are considered great. There
appears to be no alternative for making a realistic assessment of
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structural uncertainty, with the exception of dynamic tests performed
on the particular substructures of major structures of interest.

Substructure or major structure - specific testing is of course recognized
as being the very best way to reduce structural uncertainties in seismic
risk analysis. The distinct advantages of this appruach should be fully
appreciated, so that whenever possible, such information can be used.



8. CONCLUSIONS AND RECOMMENDAT IONS

The methodology presented in this report is considered to be new. While
its basic elements have been used successfully in other apolications, it
should be understood that at the present time the proposed methodology

is untried and unproven. As such it may be expected to evolve as
experience is gained. The following statement of conclusions and
recommendations conveys the authors' assessment of significant accomplish-
ments to date, and their view of directions for future development.

5.1 Conclusions

With reference to the problem as stated in Section 1.1 of the Introduction,
it is felt that th2 purpose of this study has been accomplished. An
analytical methodolegy for maximizing the use of preserntly limited,
incomplete and previously incompatible data has been formulated. Tie
methodology should produce results which are based on quantitative data
rather than conjecture, and which are in a form suitable for the aumerical
simulation of seismic response of major structures of nuclear power

reactor facilities.

The following conclusions are drawn with respect to specific objectives
set forth in Section 1.2.

(1) A literature search to identify data and sources of data
for use in mdeling structural uncertainty was completed.
A bibliograpty containing 95 references is included in
this report.

(2) The format and adequacy of the above data nave been
evaluated relative to the proposed methodology. Although
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the data and sources identified in this raport are
probably not sufficient to meet anticipated needs, it

is believed that once the specific needs are firmly
established, the data can be found in unpublished reports
within the United States. Until now there has been no
particular need for complete sets of predicted and
measured modal data, accompanied by the mass matrices
which were used to obtain analytically predicted modes.
Therefore, the data reported in the literature tend to

be incomplete in one way or another. Much of these data
should be available if properly pursued. Tables 4-1
through 4-3 show the deficiencies in data compiled to date.

(3) Available data have been classified into three basic types:
data related to member uncertainties, data related *o sub-
structure uncertainties, and data related to the major
structures of nuclear power plants. The bibliography
and the summary tables in Section 4 are segregated
accordingly. In addition, the summary tables differentiate
among structures in three generic categories - structural
steel, reinforced .uicrete,and prestressed (or post -
tensioned) concrete.

(4) The proposed methodology is compatible with currently
and potentially available data. Structural property data
at the memkar level can be used.as well as modal data at
the substructure or major structure levels. Engineering
Jjudgement may or may not be used at all three leveis as
desired. Data from structures and substructures other
than nuclear power plant structures can Le utilized.
Specific seismic or forced vibration test data for the
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(5)

(6)

(7)

(8)

()

particular structure being modeled can be used in a Bayesian
procedure for statistical parameter estimation.

The proposed methodology utilizes mode shape data at the
substructure and major structure levels in addition to
frequency and damping data. Sample calculations have been
made which demonstrate (using actual data) that mode shape
uncertainties can be significant and may conceivably dominate
frequency uncertainties with respect to characterizing overall
structural uncertainty for response prediction.

The proposed methodology retains the correlation information
relating the statistics of structural properties and modal
parameters until the final step of analysis where freguency
and modal amplitude are assumed to be independent. This
assumption, however, is made only for purpcses of convenience
in the numerical simulation and is not an essential part of
the methodology.

Dimensionless combinations of m.dal parameters have been
identified for concise representation of structural
uncertainty. In addition to the conventional dimensionless
parameters such as the ratio of actual to predicted '
eigenvalue, and actual to critical modal damping, a
dimensioniess modal amplitude parameter involving modal
displacement, modal participaticn factor and mcdal mass

has been identified.

Empirical analyses of the three dimensionless parameters
named above are suggested as a basis for quantifying them
for specific applications.

The framework of analysis outlined in this report should
be helpful in establishing data requirements fo» SSMRP
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as well as other design, analysis and test programs
involving nuclear power plants. The methodology can be
used to evaluate the potential benefits of various kinds
of data in terms of modeling confidence. For example,
calculations can be made which treat steel and reinforced
concrete structures either separately, or in combinatio
to evaluate the trade-offs between aggregating available
data into broader categories, as opposed to segregating
them into narrower categories.

(10) The proposed methodology offers many different options to
choose from, all leading to the same end. Twelve
different options are presented. Of these, four (Options
1, 2, 4 and 10) are identified as being the more practical
ones. Option 4 was selected as the must desirable for
initial implementation.

(11) Because the approach taken in formulating the proposed
methodology is based on utilizing those data which are
most directly representative of prediction uncertainties
in seismic response analyses performed to date, the results
of analysis produced thereby should be in agreement with
the state-of-the-art experience.

In retrospect, *he one aspect of the methodology which may have been
underemphasized, is that of modeling damping and damping uncertainty.
The recommended approach of utilizing direct measurements from

cimilar major structures is considered to be preferable to other
alternatives as a general rule. Since damping has been a focal

point of attention for some time, there are consideranle data available.
However, anticipating the inevitable concern over the possible
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uniqueness of special cases, we might consider the possiblity of
synthesizing measurements (or estimates) of modal damping at the sub-
structure level to predict modal damping (and related uncertainties)

at the major structure level. Such an undertaking must be approached
with great caution, however. Generally speaking, this type of analysis
is beyond the present state-of-the-art and is fraught with many subtle
pitfalls. It should only be considered in special circumstances

where the direct approach cannot be used pecause of insufficient data,
and where suitable data are availeble at the substructure level.
Conditions for "suitability" must be carefully defined in this case.

5.2 Recommendations

Recommendz ions for the implementation and possible future development
of the proposed methodology are summarized here. They represent an
extension of the authors' present thoughts in line with the objectives
of SSMRP as presently understood.

(1) Specific modeling requirements should be identified relative
to the Zion Nuclear Facility which has been selected as the
pilot application for SSMRP. Efforts should then be made
to fill out the required data base. It is of critical
importance here to determine the number of generic sub- .
structures within a given category required to define [S;r]
so that the matrix can be inverted, or conversely, to
determine the maximum number of off-diagonal terms of this
matrix which can be identi“ied using available data. For
the most part, this matrix wiil have to be assumed diagonal.
Justification should be sought for this assumption.

~

(2) 1In general, several cross-orthogonality coefficients, ¥ .,
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(3)

(4)

(5)

may be computed for each measured mrZe shape. A numerical
investigation should be made to decermine how many are

required to capture the essential information contained in
the difference between predicted and measured mode shapes.

Numericai examples should be investigated on the basis of
available data before making a final selection of the
computational option. Option 4 is tentatively recommended,
but the final selection should be made only after alternative
options have been thoroughly considered with respect to
available data.

The quantification of the dimensionless random variables -
Hys Mo and My - should be investigated thoroughly on the
basis of numerical examples using available data. Only
tentative recommendations have been made in this regard.

Early consideration should be given to specific interface
requirements with other parts of the SMACS code. It may

be possible to 1imit the direct interface to considerations
involving only the three random variables named herein.
This would reqg:ire, however, that compatible structural
modeling subroutines be used to generate the submatrices,
transformations, etc. required to implement the proposed
methodology. In other words, this methodology is based on
using the same analytical models as will be used in SMACS.
The validity of the methodology depends on this.
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APPENDIX A

I1lustration of Option 4
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Available generic substructure modal data
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where ‘Ski is the Kronecker delta and TT.;—‘ = 0 for i=k. The expressions
ik
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