

ł

WCAP 9179. "PROPERTIES OF FUEL AND CORE

COMPONENT MATERIALS"

APPENDIX B

10.0 ALUMINUM OXIDE/BORON CARBIDE PELLETS

8011030530

10.0 ALUMINUM OXIDE/BORON CARBIDE PELLETS

10.1 THERMAL/PHYSICAL PROPERTIES

10.1.1 DENSITY

The theoretical density of boron carbide is given in Section 8.1.1.

The room temperature, theoretical density of the burnable poison aluminum oxide/boron carbide $(Al_2O_3-B_4C)$ is given by:

 $P_{TD} = 3.95 V_{f_{(A1_20_3)}} + 2.52 V_{f_{(B_4C)}}$ (equation 1)

where

Vf = volume fraction of Al_2O_3 or B_4C PTD = theoretical density in g/cm³

The 3.95 g/cm³ density value for Al_2O_3 in equation (1) was obtained by using the densities in Reference 1 for a- and y-Al_2O_3 and by assuming that the Al_2O_3 would be 90 percent a-Al_2O_3. Commercial a-Al_2O_3 generally contains a small fraction of y-Al_2O_3.

10.1.2 MELTING POINT

Reference 1 gives an average value for the melting point of α -Al₂O₃ as reported by 14 investigators. The value is 3720°F ± 40°F. The variation is the range of values reported by the investigators. As stated in Section 8.1.2, 4400°F is taken to be the melting point of B₄C.

Although the melting point of each constituent is higher, for design purposes the melting point of $Al_2O_3-B_4C$ is conservatively taken as 3500°F; i.e., the maximum reported⁽²⁾ sintering temperature at which alumina and B_4C are compatible.

10.1.3 THERMAL EXPANSION

The equation for the thermal expansion of B_4C is given in Section 8.1.3.

A compilation of data⁽¹⁾ on high-density polycrystalline Al_{203} gives a thermal expansion coefficient of 4.4 x 10^{-6} in./in./°F over the temperature range of RT to 1000°F. [

Since the bulk moduli are similar for the two compounds, a volume average of the thermal expansion coefficient as given below, is a best estimate approximation for thermal expansion. This assumes the B_4C particles do not crack free from the Al_2O_3 matrix.

1+

Best Estimate Thermal Expansion Coefficient (room temperature to 1000°F):

$$a(in./in./F \times 10^{-6}) = F_{B_4C}(2.5) + F_{Al_2O_3}(4.4)$$
 (equation 2)

where

a = thermal expansion coefficient

F = vo'ume fraction of B_4C or Al_2O_3

The upper-bound thermal expansion of $Al_2O_3-B_4C$ is conservatively established as that of Al_2O_3 :

(a,c)

10.1.4 THERMAL CONDUCTIVITY

Out-Of-Pile Thermal Conductivity

The out-of-pile thermal conductivities of $Al_2O_3^{(1)}$ and B_aC (Section 8.1.4) are shown in Figure 10.1-1. A first order approximation to the thermal conductivity of an $Al_2O_3-B_4C$ annular pellet can be obtained by a volumetric averaging of the thermal conductivities of the two components. The equation asumes no significant changes in pore shape for the two constituents.

$$k_p = V_{A1_20_3} k_{A1_20_3} + V_{B_4C} k_{B_4C}$$
 (equation 3)

where

= thermal conductivity of pellet k_p

= volume fraction with respect to the matrix V

The values for $k_{Al_2O_3}$ and k_{B_4C} can be obtained from 10.1-1. The volumetric averaging approach is valid for volume fractions of the discontinuous phase (B_4C) of less than 10 percent. For higher volume fractions, a more accurate (lower) thermal conductivity⁽³⁾ is given by:

 $k_{p} = k_{A_{1}_{2}O_{3}} \frac{1 + 2V_{B_{4}C}}{1 - V_{B_{4}C}} \frac{1 - k_{A_{1}_{2}O_{3}}/k_{B_{4}C}}{1 - k_{A_{1}_{2}O_{3}}/k_{B_{4}C} + 1}$ (equation 4) $\frac{1 - k_{A_{1}_{2}O_{3}}/k_{B_{4}C}}{1 - k_{A_{1}_{2}O_{3}}/k_{B_{4}C} + 1}$

(a,c)

In-Pile Thermal Conductivity

In-pile, the thermal conductivies of both Al_2O_3 and B_4C decrease rapidly. Section 8.1.4 discusses the thermal conductivity of B_4C as a function of temperature and fluence. Figure 10.1-2 gives the thermal conductivity of $Al_2O_3^{(4)}$ as a function of temperature and fluence. An estimate of irradiated thermal conductivity is given by applying a correction factor (ranging from 0.1 to 1 in value) to the out-of-pile values. The correction factor varies as a function of fluence until saturation at ~1 x 10^{21} nvt (E > Mev).

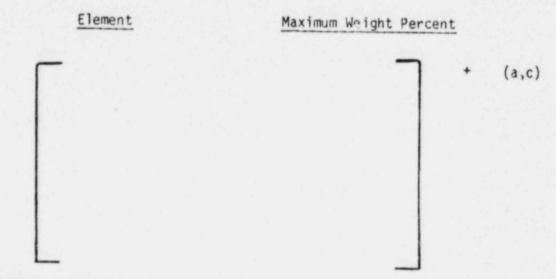
10.1.5 SWELLING

The following relationship was developed by Westinghouse and represents the expected swelling behavior of the $Al_2O_3-B_4C$ pellets and is supported by data given in Reference 5.

$$\frac{\Delta V}{V} = [$$

(a.c)

where


$$N = \begin{bmatrix} \\ \end{bmatrix}^+$$
 (a,c)

 $%\Delta V/V = volume$ fraction increase (%)

10.2 CHEMICAL PROPERTIES

10.2.1 CHEMICAL COMPOSITION

The chemical requirements for the individual B_4C and Al_2O_3 powders are those given in Section 8.2.1 and ASTM F7 respectively. The nominal chemical requirements on the pellets are limited to restricting impurities as follows:

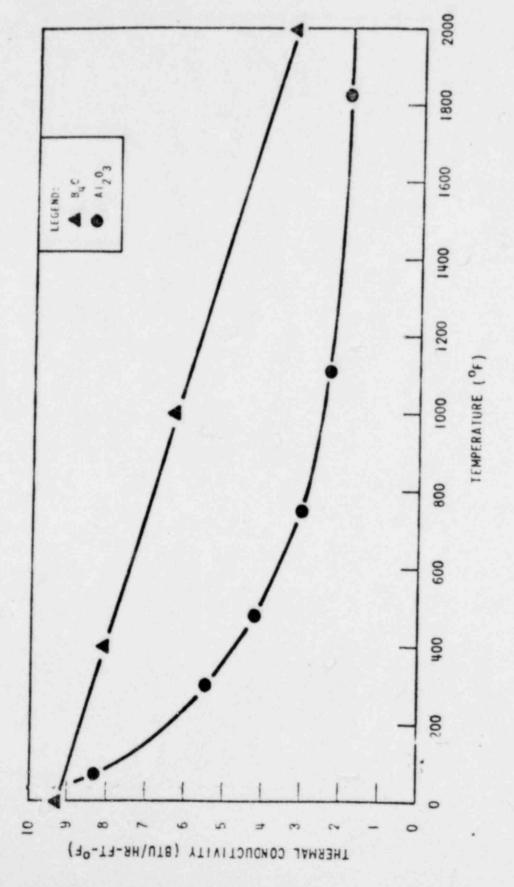
10.2.2 CHEMICAL COMPATIBILITY

A1203-B4C: H20

Section 8.2.2 established that irradiated B_4C readily corrodes in coolant water. Since the $Al_2O_3-B_4C$ pellet [

], the B_4C particles in the Al_2O_3 matrix would have intimate contact with coolant water should it enter the rodlet, and the boron would likely be readily leached from the pellets.

(a,c)


Al203-B4C: Zircaloy-4

The reaction rate of $Al_2O_3-B_4C$ with Zircaloy-4 is considered to be negligible.

The potential for internal hydriding of the Zircaloy cladding is minimized via stringent manufacturing controls on pellet and internal cladding moisture.

10.3 REFERENCES

- Lynch, J. F., Ruderer, C. G. and Duckworth, W. H., editors, Engineering Properties of Selected Ceramic Material, American Ceramic Society, Columbus, Ohio, 1966.
- Anderson, W. K. and Theilacker, J. S., editors, Neutron Absorber Materials for Reactor Control, USAEC, Washington D.C., 1962.
- Kingery, W. D. Introduction to Ceramics, Wiley New York, 1960, p. 501.
- Thorne, R. P., and Howard, V. C., "Changes Induced in Polycrystalline Alumina by Fast Neutron Irradiation," Proc. Brit. Ceram. Soc. 7, 439-447 (1967).
- Krastins, G., "Preliminary Results of Irradiation Tests of B₄C, B₄C-Al₂O₃, and B₄C-Zircaloy-2," KAPL-2000-5, Reactor Technology Report No. 8-Metallurgy, March, 1959.

B10-7

(a.c)

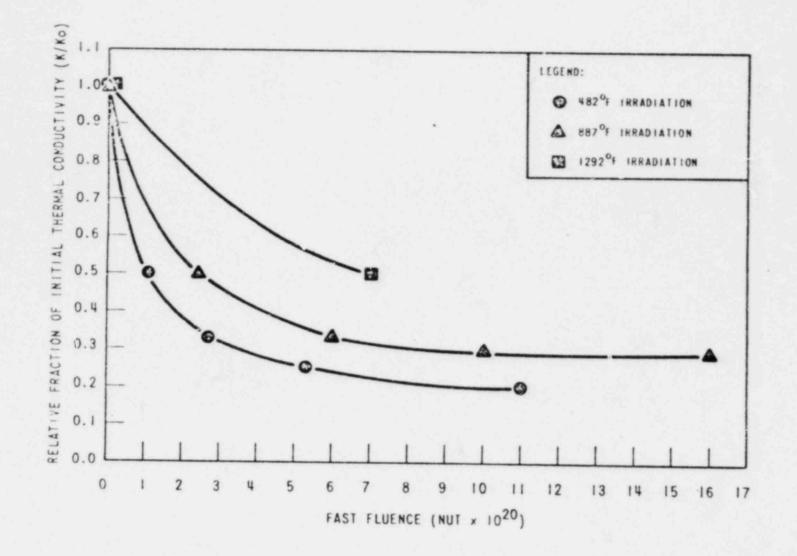


Figure 10.1-2 Irradiation Effects on the Thermal Conductivity of Alumina

B10-8