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ABSTRACT,

A-new method is proposed for treating convective-dispersive,

transport._ The motivation for developing this technique arises
from the demands of performing a risk assessment for a nuclear

waste repository. These demands include computational efficiency
'

over a relatively large range of Peclet numbers and the ability
to handle chains of decaying radionuclides with rather extreme

contrasts in both. solution velocities and half lives. To the

extent it has been tested to date, the Distributed Velocity
Metbod (DVM) appears to satisfy these demands. Included in

! this paper are the mathematical theory, numerical implementation,

i an error analysis employing statistical sampling and regression

| analysis-techniques, and comparisons of DVM with other methods

for convective-dispersive transport.
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CHAPTER I. INTRODUCTION
. ;

; The motivation for this work arises in the context of a risk
i

i analysis methodology for nuclear waste repositories (Campbell,
'

et al., 1978). In such analysis, results are calculated using,,

mathematical models which describe a number of processes. One

i of these processes is radionuclide migration in groundwater from
,

the depository to a discharge point to the surface environment.
.

Risk analysis necessarily involves large numbers of calculations.

Furthermore, radionuclide migration times from the depository,

} to the surface environment are typically long so that radio-
| .

nuclides in the actinide chains are likely to be significant

{ contributors to risk. Thus a radionuclide transport model for
i

i use in risk assessment must be computationally efficient and
.

must provide the ability to model transport of chains of

radionuclides.

There are two general classes of techniques which onr bc.

;

used to-simulate the migration of miscibic trace constituents

within a convecting medion. The first class colves the app:cpri-

ate partial differential equations. The finite-difference method|

(Ames, 1977) and the finite-element method (Pinder and Gray, 1977),
| with, perhaps, special modifications for convection-dominant trans-
"

port, are examples of this first class of techniques. The second

class directly. simulates the migration of representative'partic1'es
of the trace constituent. One example of this second class of.

i techniques is the Method of Characteristics (Garder, Peaceman
.

.
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|
and Pozzi, 1963). Another example is the Monte Carlo method

!

(Ahlstrom, et al, 1977).

In terms of the requirements of a risk methodology, each |
*

<
. ;

| of.the above techniques appears to have a problem. The various ;,

i finite-difference and finite-element schemes have several cri-
teria which limit the space and time steps Ax and At. These

criteria may be expressed in terms of the Peclet number p, the
.

; Courant number c, and combinations thereof. These dimensionless

numbers are defined by

p=fE vatand c= (1_1)

1

where v is the interstitial velocity and a is the dispersivity (
(all symbols are defined in the section on nomenclature). For

example, a standard finite-difference scheme, which is centered
1

in space and time, requires that
i

(1 + 2) 12 (1-2)pi2 and c-
.

to prevent overshoot (Price, Varga and Warren, 1966; Tang, 1980a;
"

and Noble, 1969). Although criteria such as Eq. (1-2) have not

.been derived for the finite-element method, practical experierce,

indicates that they are similar to those of Eq. (1-2) for centered-+

in-time differencing. Thus for applications involving large -,

numbers of calculations with realistic but relatively small
| *

,

values of a, the finite-difference and finite-element methods

10.
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may be prohibitively expensive because of the required fineness
of the space and time mesh.

The direct-simulation approaches which have been used in.

the past have difficulty in treating radioactive decay chains

in which the different species have differing retardations.

Presumably a set of particles would be required for each

species, which would, ir, many cases, lead to excessive computer
storage.

The technique presented in this report, the Distributed

Velocity Method (DVM), is a direct simulation approach. It is

quite similar to the Phase-Space-Time-Evolution (PSTE) Method

for neutron transport (Jones and Campbell, 1978). In DVM, as

in PSTE, tracking of individual particles is avoided by treating
an ensemble of particles. In the numerical implementation of

DVM (Chapter III), the spatial extent of an ensemble of particles
is taken to be one grid block. This grid block averaging intro-

duces numerical dispersion which is examined in Chapter IV

using statistical sampling and regression techniques. Finally,

Chapter V shows comparisons between DVM results and results

obtained from other techniques.

In this, our initial investigation of DVM, we use a one-

Jimensional, constant velocity system which is the usual pro-
cedure for establishing error criteria. Furthermore, the

resulting model is directly applicable in risk assessment for
.

nuclear waste repositories. To qualify for more general site
,

||
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' -analyses, however, the method must be extended to variable-

; velocity and multi-dimensional systems. Such extensions will

! be examined in future work. *
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| CHAPTER II. THEORY

The objective of this section is to show basic concepts.
.

Consequently, a single species is considered to be transported

'
in one dimension via the mechanisms of convection and disper-s

sion. Radioactive chains and sorption are not difficult to;

treat, but their inclusion tends to obscure the simplicity of
,

the Distributed Velocity Method (DVM). Although decay chains

and sorption are not considered in this chapter, they are in-

cluded in numerical implementation in the next chapter.

Multiple dimensions are not considered in this report.

'
Direct Simulation with DVM. The thinking underlying DVM is as

follows: Consider a receiver point located at x and donor

points located at some typical coordinate x'. Taking the den-
,

sity of an ensemble of particles at x' to be p(x', t'), the

density p(x, t) at x for t > t' may be determined by introducing

a velocity distribution.

The concept here is that, due to heterogeneity of the flow

field, (Schwartz, 1977 and Tang, 1980b) a number of alternate

paths exist for migration of particles from x' to x. Such

paths may be characterized by a continuum of migration times

and average velocity components v in the direction of flow.

The distribution of such velocities is P(v). Thus for the
'

donor point x', only those particles with average velocity

y = (x-x')/(t-t') arrive at point x at time t'. The density.

13
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I

of particles at point x may therefore be obtained by summing

over all possible donor points in tbe following manner:,

4

.

g(x,t) =[" dv P(v) p(x-vat, t-At) (2-1)p
,

,

s

! where

At = t - t'

|

For convenience, P(v) is represented as a function of velocity
only. However, it is certainly possible for P to be a function

of other variables such as position x or time increment At.

Otherwise, the functional form of the distribution is completely
general at this point. In the next section, P(v) is specialized

to a gaussian form which is appropriate for a conventional treat-

ment of dispersion.

Eq. (2-1) gives the propagation of the initial conditions,

at time t' , to time t. If, in addition, a source S(x', T) is

included, then an integration over " injection" time must be

i performed in addition to an integration over velocity:

t

g(x,tl +[ dT fYp(x,t) =p o dv P(v) S(x',T) (2-3)
t' v

1

where x' = x - v(t-T). If S(x',T) is nonzero only for (2-4)

'

o<x' <x (2-5)' x
1

.

i

i

14
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1

then the velocity limits for the source term of Eq. (2-3) are
,

(x - xo)/(t r) (2-6)v =
o

! and-

|

v1 = (x - x1)/(t T) (2-7).
,

Sources may arise either by leaching of the radioactive

wastes in the depository or by decay of a radioactive parent.

"or the former, the spatial limits, and hence the velocity
;

limits, are deterasined by the location of the depository as

indicated above. For the latter, the spatial location of the

source (i.e., the radioactive parent) is time dependent.

Connection with Green's Punction. The inhomogeneous convective

dispersion equation in one dimension can be written as

: -

|
! 2

ff = D
U E+S (2-8)V-

:

|

} for null conditions on p at the infinite boundaries, the solu-

tion to Eq. (2-8) contains two terms. One is the complementary,

;

solution

,

, f f

.

O

o
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;

The other term is a particular solution of Eq. (2-8) which

yields the complete solution

.

g(x,tl+]ID di [* dx' S (x' ,T) G(x-x', t-t') (2-10)p(x,t) =p

t' xg

<

The Green's function of Eqs. (2-9) and (2-10) may be

written

*~*' ~Y ~

(2-11)GLx-x', t-t'l = exp -
/fi e ( 2c |2

x

where the variance is

O = 2D(t - t') (2-12)x

Here G is a spatial Green's function, as indicated by the units

of x (i.e. , length) and G (i.e., 1/ length).
Eq. (2-11) may be recast as a velocity distribution by

considering Figure 1. This figure illustrates the evolution

of G over t - t' from a Dirac delta function to a gaussian

distribution. Particles arriving at the mean position of this

spatial distribution have travelled from x' with velocity v.

Particles at position x, however, have travelled from x' with

an average velocity

.

v =-(x - x')/(t - t') (2-13)
.

16
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d(x - x')
! TIME = t'

G(x - x', t - t')
TIME = t

i

!

!

\x' + Wt - t')(x', t') x

Figure 1. The Spatial Green's Function
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'If Eq. (2-13) is substituted into Eqs. (2-11) and (2-12), then

G(x-x', t-t') = G(v, t-t ') / (t-t ' ) (2-14) -

.

where

1 IV-")G(v, t-t') (2-15)= exp -
2/27 c f2c )y

and

/2 D/ (t-t ' ) = c / (t-t ') (2-16)o =
y

Quantity G is a Green's function in velocity space as indicated
by the units of c i.e., (length / time) and G, i.e., (length /y,

time)~1

If Eq. (3-14) is substituted into Eqs. (2-9) and (2-10),

Eqs. (2-2) and (2-3) are recovered with the velocity distribu-

tion P(v) identified as the gaussian form of Eq. (2-15).

|

| -

.
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CHAPTER III. NUMERICAL IMPLEMENTATION
.

IM

The purposes of this chapter are threefold, namely (1) to

numerically implement the integral equations of Chapter II.

~

(2) to generalize the treatment to include sorption and radio-

active decay chains and (3) to discuss source and sink models.

In the first section only one decaying species is considered.

In the second section, the analysis is extended to the treat-

ment of a radioactive docay chain. In the last section a source

model, which includes t th leach and solubility limitations, and

a discharge model are presented.

One Decaying Radionuclide. Here we consider only the propaga-

tion of the density function p(x', t') from time t' to time t

(c. f. Eq. 2-1). Initially, the space-velocity domain is dis-

cretized as in Figure 2. There are N equal space incrementsx

Ax and the time increment At is taken to be a constant. The

velocity dimension is divided into N increments based on equaly

probability. The implementation of DVM can be generalized to

variable spatial and time increments but such generalization

is not considered in this report.

Propagation of densities over time-step At for velocity

subgroup j may be written

Ap (i, j , t) = DW ( j ) M(j) p(i-k., t') +.

3

(3-1)
'

[1-M (j ) ] p (i-k . -1,
t ' )$3

'

19
.
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Although the argument list in Eq. (3-1) appears formidable,
. it can be readily understood.- As indicated there, the contri-
:

1 bution to receiver block i for velocity interval j is deter--

i _ mined by three fractions: a mixing fraction M, a velocity-
interval fraction W, and a decay fraction D.

4

The mixing fraction M may be understood by reference to,

'

Figure 2. Looking at velocity interval j, we see that there

'

are, in general, two-contributions to receiver block i. One

is a packet' of particles coming from donor block i - k and the2

other is a packet of particles from donor block i - k - 1. As4

j is also indicated in Figure 2, there is generally only partial

f overlap of the propagated block contents with receiver block i.
*

The donor block index k is
.:

k$ = [[v3At/Ax]] (3-2)

!
4

; where

j
'

] [[x]] = greatest integer < x

!

and v3 is determined from
'

i

<

~ -2~(j-f)/N ~( ~ }[jexp dv . (3-3)=
y

j bO 2cy -= y,

j . .-

1

i-
'

.

1

21
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1
;

The corresponding mixing fraction is4

M(j) =1 (vjat/Ax - kj ) (3-4).

.

As the velocity dimension is divided into intervals based on'

'

equal probability, the weight W(j) assigned the jth vel city
interval is just

W(j) = 1/N (3-5)y.,

j The decay fraction is taken to be

-A tp=e (3-6)
,

1
,

With these three fractions defined, Equation (3-1) is4

summed over all velocity intervals to obtain the total particle4

density in grid block i:

v

p (i,t) = D/N ) M(j) p (i -kg, t') +

j=1 (3-7)

1 - M(j) p(i - k. - 1,<

t')j .

]

As a last step in this analysis, we eroress Equation (3-7) in a

I more computationally efficient manner. To do this, we note the

possibility of degeneracy with respect to the index kj. This

could mean either
!

'

k +1 = kj or kj+1 = kj - 1 (3-8)j

.

$ e
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.Taking such degeneracies into account yields the expression

NB(i)
p (i, t) = }} B (j ) p (i - k , t').

g _

.

] j=1

.

Quantities N (i) and B(j) are most easily obtained by a compu-B

tational procedure which makes the tests of Eq. (3-8) and

accumulates the coefficients to form the B m' atrix.

It is important to note that, so long as Ax and.At are

constants, B is a simple vector which contains at most

2*N terms. Furthermore, B(j) may be computed during they

initial setup. For unequal grid block increments Ax, B would

be dependent on grid blor.k index i, and for unequal time incre-

ments A t, B would have to be reevaluated for each change in
time increment.

>

A Chain of Radionuclides. Here the starting point is similar

to Eq. (3-1), and for species r of a radioactive decay chain
it may be written as follows:

Ap(1,j,r,r-p,t) = p(r,r-p)W(j) M(j,r,r-p)
( (3-10)

*p(i-k ,r-p,t')+[1-M(j,r,r-p)lp(1-k -1,r-p,t')}
3 3

In this equation Ap is the incremental particle density for iso-.

1

tope r, grid block 1, velocity subgroup j, and time t which arises
.

from decay of isotope r - p. If p = 0, Eq. (3-10) degenerates to

Eq. (3-1).

23



Quantity M, the mixing fraction, is determined by Eqs.
(3-2) and (3-4).as before. The only difference here is the

velocity. Because of sorptien ef fects, the velocity will, in
'

general, change with species during the decay r - p -- r - p
.

+1 - r, which occurs during time step At. Hence,
'

...

in this case, the velocity v(j, r, r-p) represents a species
average. The velocity model currently being used is based

on an equal partitioning of the time increment among the
various species. This yields

p

v (j , r,r-p) = }[ v(j ,r-q)/(p + 1) (3-11)
q=0

In writing Eq. (3-11), it is assumed that the velocity subgroup
does not change during radioactive decay over time step At.
Weight W, the velocity subgroup fraction, is taken from Eq.
(3-5) as before.

The role of quantity 0 in Eq. (3-10) is expanded beyond
| that of Eq..(3-1). In Eq. (3-1), D denotes that fraction
)

which survives decay during At. In Eq. (3-10), D pertains,

to decay only when p = 0, i.e.,

!

-A 0DD(r,r-p) =e r p=0 (3-12)
<

,

.

k

e

|
i 24
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Otherwise, this quantity denotes production of species r from

species r - p, and may be developed from the Bateman equations

.

\<

P -A OD -A atjr-i -e r.

A _q j ]{}
eD(r, r-p) H ,p/o (3-13)=

y p
9 li=1 H (A -

r-i), r-j I

i ]=o j
k j/i

This equation, when coupled with appropriate mixing and

weighting functions, may be viewed as a model for evaluating

that portion of the source integral in Eq. (2-3) which is

appropriate for radioactive decay processes. The accuracy of

this model is demonstrated in Chapter V by two example calcu-

lations for three member chains and by comparison with analytic

results.

To complete the analysis of radioactive decay chains,

we need to sum Eq. (3-10) over all velocity subgroups j and

all parents p of species r. This procedure yields

p(r)N Ny

p (i,r, t) =} ][) D(r, r-p) W(j) (M (j , r, r-p)

p=o j=1 (
(3-14)

t ')f-
I

.p(i-k., r-p, t') + [1 - M(j, r, r-p) ] .p (i-k . - 1, r-p,
J J

,

}
,

.

25
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Recollecting the sum then gives the working equation

3
N (r) N ~E' 'B

{} }{} B(j, r, r p) p(i-k3, r p, t') (3-15)p(i,r,t) =

p=o j=1

The upper bounds in Eq. (3-15) are expressed as functions.

The dependence Np(t) reflects the fact that, in general, each
nuclide has a different number of parents. Furthermore, one

may want to arbitrarily impose a bound on the parent sum.

The limit NB(I' E' r-p) gives the number of grid blocks which

contribute to a receiver block i. It carries nuclide indices

because of the velocity model [Eq. (3-11)]. As in the case

of a single decaying nuclide, B will not vary with grid block
or time step indices provided that Ax and at do not vary. Thus

the B matrix may be geneinted during the setup process. As

indicated in Eq. (3-15) B is a three-dimensional array. Its

maximum dimension is typically less than 10 so that it may
be easily stored. It should be noted, for purposes of compar-

ison with other numerical techniques, that Equation (3-15) is

an explicit relation in that each term on the right-hand side

is known prior to solution for the unknown density p(i,r,t).

Source and Discharge Models. For the present application of

DVM, the source of radionuclides is considered to be a nuclear

waste depository whose containment has been breached. To simu-
,

late such a source, the numerical implementation simply injects

26
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radionuclides into an appropriate number of source grid blocks.
A one-dimensional system with source blocks at the left side

is shown in Figure 3. Discharge occurs when radionuclides,

pass the right boundary of the system.
.

Source Blocks -Fluid Flow + Discharge
Ym

fAlb/b kk

Firtre 3. One Dimensional Flow System Showing Source Blocks-

and Discharge.

The source model accounts for both leach and solubility

limits by considering three different radionuclide inventories;

namely, (1) unleached, (2) leached but undissolved and and (3)
dissolved.- In the present version of DVM, the leach rate is

assumed constant. .However, generalization to a time-dependent
leach rate is straightforward.

For a constant leach-rate model, the quantity of waste
matrix leached during time step At is

m
am = - At (3-16)

.

1

1

27
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where m is the. initial mass of waste matrix and T is the leacha

-time. The concentration N(r, t + At/2) of species r in the

waste matrix at time t + At/2 is determined from -

p(r)N *

N(r, t+At/2) =} O(r, r-p) N(r-p, t-At/2) (3-17)
p=o

Thus the amount of species r leached between t and t + At is

approximated as-

:
AN(r, t+At/2) = N(r, t+At/2) At ( 3-18)

.

Quantity AN(r, t + At/2) is placed in the undissolved inventory
which is given by

p(r)N

N (r, t+At/2) D(r, r-p) N (r-p, t-At/2)=

p=o<

+ AN(r, t+At/2) (3-19)

.

5

*

1

28



___

>

where N_ u(r,t) represents the quantity of species r in the
undissolved inventory at time t. The quantity of species r

which enters solution between t and t + At is,

.

ANs(r, t+At/2) = MIN [Nu(r, t+At/2), C oat] (3-20)s

where AN (r, t + At/2) is the amount of species r placed ins
'

solution between t and t + At, C is the solubility limit ins

mass radionuclide per mass fluid, and Q is the fluid flow
!

rate in mass fluid per time.

To model discharge, a 3-dimensional array, F(1, r, r-p),

is initially created in a manner similar to the creation of

B. Here index i represents a number of grid-blocks to the
1

left of the'right_ boundary. Thus, F(i, r, r-p) is the frac-

tion of species r - p in grid block N - i + 1 that decays tox

,

species r and discharges during At. The decay and production

factors included in these fra:tions are altered from those in
(3-12) and (3-13) by replacing at with the time at which the

spatial midpoint of a packet crosses the boundary. Discharge

of species r between time t and time t + At is then given by
i

p(r) L(r,r-p)N

t+At) _ = ]{ { F(i,r,r-p) p(N -i + 1, r-p, t) ( 3-21)6(r,
x

p=o i=1

.

!
'

i

29
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;.

1

4

4

;

I '
where L(r, r-p) is the maximum number.of grid blocks traversed

|

| by any packet that decays from species r - p to species r during

! At. .The discharge rate for species r is defined at t + At/2
1 .

is,! and is considered ~ constant over At. That
|

.

,

; R(r,t+At/2) = Q 6(r,t+At) (3-22)
t

i

i

!'

!

|
.

!

I

e

s

&

I

!

'

_

j

i

4

f
a

3-

1

1

1

!
>

I

i4 .

;

| -

!
.

(

*

L
i

30
:

. _ . . . . - . - , _ _ . . . - _ - . . _ . . _ _ _ . . _ . __ . . . . . .,_ . _ . _ _,_ . . . _ ,



:
i

! CHAPTER IV. ERROR ANALYSIS
i

; The Distributed Velocity Method differs from other direct-
!

*

| simulation methods primarily through its grid block mixing fea-
:

) -ture. Use of this process means that there is no need to track,

individual particles as is done in the Method of Characteristics

and in Monte Carlo techniques. Grid-block mixing thus reduces

computer storage requirements and permits tracking chains of

; radionuclides. Such mixing does, however, introduce some

5 numerical dispersion.
1

A statistical-n imerical method was used to evaluate numer-
ical dispersion introduced by DVM. Thus instead of attempting

to evaluate convergence errors theoretically, as was done by

. Lantz [1971].for the finite-difference method, we exercised DVM

on a model problem. Statistical sampling was used to select

~ the various increments and variable values used in such calcula-
tions. Comparisons with analytical solutions were then made to

determine the numerical dispersion introduced by DVM. Finally,

stepwise regression analysis was used to determine a relationship

between the numerical dispersion and the input quantities which<

were varied in the analysis.

,

The Model Problem. The usual method for making error analyses

- is to select a simple one-dimensional model problem for analysis.

The expectation is, of course, that the numerical errors present*

in more complex implementations will manifest themselves in a
,

f

4
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quantitatively similar manner to to the simplified problem.
We also used this strategy. However, in contrast to the

theoretical error analysis cited above, ours was a numerical
-

analysis. Thus we had to choose numerical values for our phy-
.

sical problem. We chose a one-dimensional flow system with

the length and velocity parametets

L = 100,000 ft and

v = 1 ft/yr (4-1).

These values are not dissimilar from those which might arise
in an actual repository evaluation. Within this flow system,

we considered transport of a stable, non-retarded contaminant
subject to the boundary conditions

(x = 0, t) =1 (4-2)

(x > 0, t = 0) =0 (4-3)

Determination of Numerical Dispersion. DVM was used to determine

time-dependent discharge from the system described above. The

resulting numerical dispersion was then determined analytically
as described in this section. Eq. (2-8), when written for the

.
boundary conditions stated above, becomes

!

2

ff=D E (4-4)
'

i -V

.
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where D is related to the velocity V by the dispersivity a,

i.e.,

'

D = a|7| (4-5)
i

.

For the boundary conditions of Eq. (4-2) and (4-3), the

general solution of Eq. (4-4) is

~

_ y'
erfc -1 x-vt) xv/D erfc 1 x+vt

4-6)
_ _

p(x,t) =1 e
2 (/f /2Dtj (/2 /2 Dt/

. -

Our interest in this solution is restricted to one point in

the space domain, namely, x = L, and a relatively small region

of the time domain, namely t = T where T is the the mean

migration time.

T = L/v = 100,000 yr. (4-7)

In this case, the second term in Eq. (4-6) is negligible
yielding '

.

p (L, t) = 1 erfc -1 T-t I

2 (4-8)
g/l ( /2Dt) /v)

Thus the discharge pulse takes the shape of an error function

in which the standard deviation in the time domain of the under-
'

lying normal distribution is

.
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/2 DT , /2 aL
T, (4_9)g

y y

It. order to use Equations (4-8) and (4-9) to interpret

results from DVM, the assumption is made that numerical errors

inherent in DVM will manifest themselves as numerical disper-

sion which is indistinguishable from physical dispersion. This

means that a,p must be replaced by an effective standard deviation

which includes both numerical and physical dispersion, i.e.,

/2a L
ff

o,p + ceff " (4"l0)
v

with eff being the ef fective dispersivity. Use of the proper-

ties of the error functic a in Eq. (4-8) then yields

2c ff = T84 - T16 (4-11)e

or, from Eq. (4-10)

eff = (T84 - T16) v /8L (4-12)a

Quantities T16 and T84 are the times at which the discharge rate,
as calculated by DVM, reaches 16 and 84 percent of its maximum

value. These two times were determined by interpolation of

the DVM - generated output and the effective dispersivity was

calculated using Eq. (4-12).
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Variable Ranges and Distributions. Quantities which were varied
in the error analysis of DVM are shown in Table 1. The ta*le/

displays both the variable ranges and distributions which were,

chosen. The range of dispersivity values was selected to in-
.

clude values one might find in field measurements. Ranges on

the number of intervals in the space and time domain were chosen

to span a range of Peclet and Courant numbers which would adequ-
ately test DVM. The range of values selected for the number

of velocity intervals was also considered adequate to test DVM.

Points sampled randomly from a log uniform distribution are

distributed uniformly on a logarithmic scale. This means that,

in the case of dispersitivity, one would sample as many values

on the range (1, 10) as on the range (10, 100). Thus log uni-

form distributions concentrate point selection toward the low

end of the range. The use of log uniform distributions for

Nx,NT and a assured that most calculations were performed with

relatively large values of Ax and At and small values of a.

Results. Latin Hypercube Sampling [Iman, Helton and Campbell,'

1978) was used to select 50 input vectors (N N N) fromx, T, , y

the ranges in Table 1. Using the model problem described earlier

in this chapter, transport calculations were then performed for
each of the 50 input vectors using DVM. Time-dependent discharge

rates were interpreted via Eq. (4-12). Effective dispersivity

(i.e., the response variable) was fitted using step-wise regression.
.
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Table 1. Variable Ranges of Sensitivity Analysis of DVM
: Numerical Dispersion

.

Variable (Range) Assumed Distribution,

N* (25, 1000) Log Uniform
'

, x

N* (25, 1000) Log UniformT

N (3, 10) Uniformy

(1, 500) Log Uniform
,

N = number of spatial intervalsx

NT = number of time intervals per migration time

N = number of velocity intervalsy

a = dispersivity (f t)

<

*The equivalent range for Ax is (100, 4000) ft.

*The equivalent range for at is (100, 4000) yrs.

l

?

.

36



r

|
:
I

Results are presented in Table 2. The regression sum of

2squares (R ) value of 0.91 indicates a good fit was achieved.

2The R value, if multiplied by 100, can be interpreted as the
,

percentage of variation in the response variable (i.e., effec-
'

tive dispersi"ity) which is explained by the fitted expression.

The standardized regression coefficient provides an indication

of the relative importance of selected input varie.bles in ex-

plaining output variation. Thus the ratio N /N was responsibleT g

for most of the variation in effective dispersivity. Note that

the number of velocity intervals (Ny) was not selected as a
significant variable. The fitted expression for a ff whiche

is indicated in Table 2 is the following:
>

e,,,=61.2Er+4Ssx1o'+0.859a-26.32 (4-13)
x N

x

For comparison with other numerical schemes, it is desirable

to recast this equation in several different forms. For example,

the grid-block or element Peclet number is important for finite-

difference or finite-element calculations. In the latter, and

in centered-in-space implementations of the former, the relation

p=h3<2 (4-14)

.

*

O
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) Table 2. Stepwise Regression Analysis Results
!

!

-
tVariable Standardized

Selected Regression Coefficient Regression Coefficient4

i N /N 61.2~ 0.617T x
21/N 4.95 x 105' 0.441x

i

0.859 0.258i a

;

i

i
'

I

i

Intercept = -26.3

! R2 = 0.91
.
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__

.

must be maintained to prevent spatial oscillations. It is

useful, then to restate Eq. (4-13) in terms of the Peclet

number
.

*ff
~

(fE)p-4 (vft) p + 4.95= 6.12 x 10

(4-15)
-4

(h)- 2.63 x 10 + 0.859

The results shown in Figures 4(a) - 4(d), obtained from Eq.
(4-15), more clearly illustrate the effects of Peclet number

on the numerical dispersion introduced by DVM. In generating

these results, the fitted response surface was not used out-

side the variable ranges shown in Table 1. This explains,

for example, why the maximum value of Ax is 500 for p = 1.

Similar restrictions will be apparent in other results produced
from the fitted response surface.

The results shown in Figure 4(a) to 4(d) indicate that as

the Peclet number increases, the space step may be decreased

or the time step increased to reduce numerical dispersion.

The limiting value of at may be determined by the resolution
desired for the discharge curve. For instance, one might

require

at 1 ot = /7EL /v (4-16)
.

l

.
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For the model problem and range of dispersivity considered in

this error analysis, the range of values for ist

450 6 t < 10,000 yr (4-17)

For calculations involving radioactive decay, one may require

tgTl/2 (4-18)

where Tl/2 is the half life of the shortest-lived isotope.

It should be noted that for large values of P and small

values of ax, the fitted response surface may predict values
for aeff/a less than 1. This does not indicate problems with

DVM but rather that the response surface fit may not be ade-
quate over the full range of all variables. However, in the

50 transport calculations, which form the basis of this error

analysis, the smallest observed value of aggg/a was 0.7.
Effective dispersivity, as given by Eq. (4-13) may also

ha exprecano in terms of Courant numbers as follows:

* ~4
(h) (f) +4.95h= 6.12 x 10,

(4-19)

-4
(h)- 2.63 x 10 + 0.859

.
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The Courant number, like the Peclet number, is significant

for finite difference and finite element formulations. For

centered-in-time finite difference implementations, it is

limited (to first order) as follows:

"0c= 52 (4-20)x

Eq. (4-19) shows an inverse dependence of effective dispersi-
vity on Courant number which is at variance with finite-

difference and finite-element formulations. Thus rather than

bounding the Courant number from above, as in Eq. (4-20), it
apparently must be bounded from below in DVM.

Figures 5(a) - 5(d) show the relationships between the

variables c, Ax and a which control numerical dispersion for
a given value of a. To lower numerical dispersion either Ax

must be decreased or c must be increased. Considering the

direct dependence of Courant number on At, however, this pre-

scription is identical to the one observed previously for the
Peclet-number representation. The direct dependence of numeri-

cal dispersion on Peclet number and thus on grid-block size is

a rather conventional relation, compared to other methods. How-

ever, the inverse dependence of numerical dispersion on Courant

number and thus on time increment is quite irregular. The

implication is that, consistent with the desired resolution

[Eq. (4-16)] and the shortest half-life [Eq. (4-18)], the time
'

increment should be made as large as possible. This has the

1
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dual-benefit of decreasing numerical dispersion and decreasing

computer running time.

The importance of small grid blocks and large time steps
.

can be understood by considerina the numerical implementation

of DVM. Contaminant transport is advanced through each time

step by app)t?ation of the Green's function matrix. At the

end of each time step, contaminant concentrations are reparti-

tioned among grid blocks. Clearly this repartitioning process

would introduce less numerical dispersion in a fine grid-block

structure than in a coarse one. Furthermore, large time steps

imply that this repartitioning takes place fewer times, thus

reducing numerical dispersion.

Before concluding this chapter, it is of interest to

examine some of the breakthrough curves generated in the error

analysis. We select a series having high Peclet numbers and

examine the effect of Courant number on effective dispersivity.
1

As stated earlier, for a given Peclet number, the effective

dispersivity can be reduced by increasing the Courant number.

Figures 6, 7 and 8 illustrate this property of DVM. In-Figure

6, despite the small dispersivity (a = 1.5 ft) and large Peclet

number (p = 89), the comparison between DVM and the analytic

solution is excellent. The reason for this good comparison

is the relatively large Courant number ( c = 7) . In Figure 7,

the Courant number is smaller (c = 1) than in Figure 6 and, as
.

expected, the numerical dispersion has increased. Nevertheless,

.
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the numerical errors apparent in Figure 7 would be tolerable

in most practical applications.

The results shown in Figure 8 are particularly significant

in that, among all the 50 calculations whose parameters span

the ranges exhibited in Table 1, this particular one displayed

the largest effective dispersivity. This result is not

surprising considering the small dispersivity (a 8.8), the=

large Peclet number (p = 421) and the small Courant number

(c = 0.06).

.
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CHAPTER V. COMPARISON OF DVM WITH OTHER METHODS

In the last chapter on error analysis, several comparisons
.

were made between DVM and an analytic solution. The objective

there was to answer the question: "How does one use the DVM,

technique?" In other words, what space and time steps should

be used to control numerical dispersion? This chapter addresses

the question: "Why should one use DVM7" There are various

other available methods. We have chosen three of them for com-

parison, specifically an analytic implementation (computer code
GETOUT [DeMier, et al., 1979]), a Method of Characteristics (MOC)

code (INTERA, 1979), and the finite difference (FD) computer

code SWIFT [Dillon, Lantz and Pahwa, 1978]. It should be pointed

out that both of the numerical methods just mentioned are extend-

able to higher dimer.sions, although three dimensions do present
a storage problem for MOC. The DVM, the authors feel, may be

extended to higher dimensions, but, as yet, this is unproven.

Our objective here is to show that, even in one dimension, an
important role exists for DVM in risk calculations because of

its broad range of applicability in terms of Peclet numbers,

radioactive chains, leach- or solubility-limited sources, and

computer efficiency.

DVM is first compared with the Method of Characteristics

(INTERA, 1979] for a decaying isotope. Parameters of the com-
~

parison calculations are shown in Table 3. Results of the

comparisons are shown in Figure 9 where an analytical solution
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is included for reference purposes. No results from finite

difference are shown because of the relatively large Peclet

number. The results indicate that DVM has introduced some
, ,

numerical dispersion (aggg/a =1.5). Any numerical dispersion

introduced by MOC appears negligible. The fact that DVM in-

troduced some numerical dispersion is not surprising in light

of the small Courant number (c = 1). In fact, such results

could have been anticipated by referring to Figure 5.B.

Furthermore, it is clear from Figure 5 B and Eq. (4-19) that the

numerical dispersion could be further reduced by increasing the

time step.

'

Problem parameters for the second comparison calculation

are presented in Table 4. In this case a radioactive decay

chain consisting of three species is considered. A source

inventory of 1000 curies was used for each species. The rather

] large contrasts in half lives and retardation factors were

taken to assure a strenuous test of DVM.

As indicated in Table 4, a ti.ae step of 4000 years was

used throaghout the DVM calculation. In the finite difference

calculation, however, a time step of 400 years was used for

250,000 years to control the Courant number for isotope C.

Once discharge of isotope C was effectively completed, the time

step was increased to 4000 years to avoid excessive computer

costs. The 4000 year time step adequately controlled the
.

Courant number for isotope A. As isotope B is in equilibrium

with A, the fact that the time step criterion is violated for
*

.
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Table 3. Problem Parameters for Comparison of DVM and MOC

L = 100,000 ft x = 1,000 ft

a = 100 ft t = 1,000 yr

v = 1.0 ft/yr p = 10

4
ip = 10T yr c =1

.
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i Table 4. Problem Parameters for Comparison of DVM
] and Finite Difference (FD)*,

|

1

Half Life Retardation Courant Numb'er~

j Isotope _(years) Factor DVM FD

|

j A 106 100 2.0 0.2 (2.0)#
B 103 1 200 20 (200)#;

;

7
{ C 10 10 20 2.0 (20)#
!

;

;

}
L = 100,000 ft. DVM FD

j

j a = 100 ft Ax = 200 ft 200 ft

v = 10 ft/yr At= 4000 yr 400 (4000)# yr

T = 105 yr
!

J

| *A centered-in-space, centered-in-time implementation was
; used with Ax = 200 f t and A t varied as described below.

#The time step in the Finite Difference calculation was
set at 400 years until isotope C discharged (about 250,000
years) then was changed to 4000 years.

!
<

a

T

'
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isotope B does not introduce excessive numerical error. Results

of the comparison calculations are show* in Figure 10. An analy-

tical solution obtained from the GETOUT model [DeMier, et al., -

1979] is also shown in Figure 10.

The message of Figure 10 is twofold. First, results from
:

MOC are not prrsented since no implementation of that technique i

(or of any other particle-tracking technique) was available which

was capable of treating radionuclide chains. Secondly, there is

the matter of computer efficiency. The FD code, even with con-

trolled violation of the centered-in-time criteria [c.f., Eq.

(1-2b)], took 125 seconds of CDC 7600 time as compared to 20

seconds of CDC 7600 time for the DVM results.

In the final comparison calculation, the problem parameters

listed in Table 4 were used with the exception that the retarda-
tion factor for isotope A was increased to 1000 and the leach

time (T) was increased to 106 years. In this case DVM was only

compared to an analytic solution, as the computer cost for a

finite difference calculation would have been prohibitive.

Results are shown in Figure 11. The comparison between DVM

and the analytic solution is excellent.

.

9
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CHAPTER VI. SUMMARY AND CONCLUSIONS

A new method has been proposed for treating convective-

dispersive transport. The motivation for developing this

. technique arises from the demands of performing a risk assess-

ment for s nuclear waste repository. These demands include

computational efficiency, the ability to handle chains of

decaying radionuclides with rather extreme contrasts in solu-

tion velocities and half lives, and an ability to treat both

leach-and solubility-limited sources. To the extent it has

been tested to date, the Distributed Velocity Method (DVM)
appears to meet these demands.

DVM directly simulates contaminant migration in ground-

water by simulating the movement of ensembles of representative
particles. The spatial extent of an ensemble is taken to be

one grid block. Dispersion is treated by assigning a velocity
distribution to these particle ensembles. Both the basic theory

and the numerical implementation are presented in this document.

Because DVM treats ensembles of particles rather than indi-

vidual particles, as is done by other direct simulation methods,

radioactive decay chains can be transported without requiring
excessive computer storage. However, the grid-block averaging

feature in DVM does introduce some numerical dispersion. Such

dispersion is analyzed in this report using statistical techni-
~

ques. Statistical sampling and step-wise regression analysis
are used to determine an analytical formula for the effective,

I

l
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dispersions in terms of the most important parameters control-
1

! ling this dispersion. This formula is plotted graphically to

demonstrate its meaning and should be quite straightforward -

:

j to apply in practice. The conclusions of the error analysis

are twofold. First the dependence of numerical dispersion upon

Peclet number is regular in that such dispersion increases as

Peclet number increases. Secondly, the dependence upon Courant

numbers is irregular in that the numerical dispersion decreases

as the Courant number increases. The implication of the latter

point is that numerical error may be decreased and, at the

same time, the technique may be made more efficient by simply

increasing the time step. The desired resolution of the dis-

charge pulse and the half lives of the radioactive species

being transported impose maximum conditions in the time step.

Finally calculations from DVM were compared with several

other techniques to exhibit the areas in which it complementst

those methods. Comparisons were mao 2 with state-of-the-art
,

j implementations of analytic, Method-of-characteristics (MOC)
|

, and finite-differences (FD) computer models. Only one dimension
!

was considered since DVM has not yet bee:1 extended to more than

one dimension and since the analytic code also treats only

one dimension. Even so, applications involving decay chains,

solubility limitation, Peclet numbers p > 2, and applications

requiring high efficiency were either not covered or poorly -

covered by analytic, MOC, and FD techniques. Such applications

| will occur frequently in risk analyses of depository sites.
!
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We therefore feel that DVM is an important complement to

existing transport models.

.

S
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NOMENCLATURE

4

B Coefficient matrix for advancing transport solution
3

by At (dimensionless)'

.

c Courant number (dimensionless)
'

C Solubility limit (M/M) -

g

2
| D Dispersion coefficient (L /T)

D Radioactive decay / production fraction (dimensionless)

F Fractional discharge matrix (dimensionless)

G Green's function in coordinate space (L-1)

G Green's function in velocity space ((L/T)-1)
K Retardation factor for isotope r (dimensionless)r

L Transport path length (L)

M Geometrical mixing fraction (dimensionless)
;

m Mass of waste matrix (M);

!

) m Initial mass of waste matrix (M)o
i

]j
N Mass fraction of a radioactive species in the waste

matrix (M/M)
i

l N Mass of radioactive species in the undissolvedu
1 inventory (M)

P General velocity distribution ((L/T)-1)

p Peclet number (dimensionless)

Q Fluid flow rate (M/T)

R Radionuclide discharge rate (M/T)

S Source rate (M/T)

T Travel time (T)
-

>

Time for discharge rate to reach 16 percent of peak (T)T16
>

;

84 Time for discharge rate to reach 84 percent of peak (T)T -

t

-
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.t Time (T)

v Velocity (L/T)

v Average velocity (L/T)
.

W Velocity subgroup weight from velocity distribution
(dimensionless)

.

x Distance (L)

Greek Variables

Dispersivity (L)a

a ff Effective dispersivity (L), e

AN Amount of radioactive species leached in time step
at (M)

AN Amount of radioactive species entering solution ins
time At (M)

6 Discharge of radioactive species in time step at (M/M)
A Decay constant (T-1)

p Radionuclide concentration

"o Radionuclide concentration arising from propagation
of initial conditions

ggg Standard deviation obtained from calculateda
breakthrough curve (T)

;

t Standard deviation in analytic breakthrough curve (T)

Standard deviation in spatial Green's function (L)o
x

Standard deviation in velocity Green's function (L/T)oy

T Leach til2e (T)

Subscript Variables

L Maximum number of grid blocks *raversed by a packet.

which decays from species r-p to species r in At

N Number of donor grid blocks which contributed to a.

B
receiver grid block

,
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N Number of radioactive parentsp

N Number of time incrementsT

N Number of velocity intervalsy
,

N Number of grid blocksx

.
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