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DISCLAIMER OF RE' PUNSIBILITY

The only undertakings of the General Electric Company respecting j

information in this document are contained in the contracts for ,

i i
i Mark II Containment Consulting Services between the General Electric

Company and each of the members of the U. S. Mark II Cuner Group, h
effective varicualy June 9,1975, June 13,1975 and July 29, 1975, '

and nothing contained in this doew:ent shall be construed as changing :
2

the contracts. The use of this information by anyone other than the
~members of the U.S. Mark II Cuners Group either themselves or through

rechnical consultants, or for any purpose other than : hat for chich
it is intended under the contracts, is not authorized; and with respect
to any unauthorised use, the General Electric Company makes no
representation or carranty, eapress or implied, and assumes no liability
of any kind as to the completeness, accuracy, usefulness or non-
infringing nature of the infomation contained in this document. ;
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SUMMARY

This report was prepared to document work done on Task A.16 Phase II
of the Mark II Owners Group Long-Term Program. The purpose of Task
A.16 is to provide an improved chugging load definition methodology
and to answer h7C concerns about fluid-structure interaction which

were raised in NUREG-0487.

Thic report demonstrates that chugging is an acoustic phenomenon.

| Pressures on the boundary of the suppression pool may be calculated
by applying an appropriate source at the downcomer exit and

propagating its effects to the rigid or flexible boundary of the

suppression pool using an acoustical transfer function.

The effects of fluid-structure interaction are seen to be (1) a
reduction in the eifective sonic velocity of the tank / water system
and (2) damping of the pressure signals felt on the tank boundary.
The sonic velocities in the vent and in the tank / water system control
the frequency content of the chugging pressures and damping controls
the duration of the chugging signal.

The amplitude of the chugging pressure is controlled by the collapsing
steam bubble source at the vent exit. The design source was generated

j from 4T experimental data. A conservative chugging data base was
! chosen from the 4T tests and the design source was developed to

represent the data base in an appropriately conservative manner.

The accuracy and utility of the improved chugging methodology is
confirmed by comparing predicted results with 4T experimental data
and with results calculated by the NASTRAN computer program. Using
this methodology, sample calculations made for a t>7 cal Mark IIi|

containment confirm that calculated responses are below those

generated using the lead plant bounding loads specification.

|
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Note that the acoustical chugging methcdology and the procedure used
to define the desf gn chugging source from experimental data are
independent of the actual data base considered. Althougl. the methods
could be n11ed equally well to any available del 611ed data base, the

4T data base was used. It is anticipated tha: the currert design
c' tugging source will be compared with other recently available data.
If mecessary, the design chugging source may be modified to maintain
at approg,riate degree of conservatism when considering all applicable

data,

a
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1. INTRODUCTION

In October 1975, a series of pressure suppression tests was performed
by General Electric in its 4T facility to investigate pool dynamic

phenomena (poolswell) in the Mark II containment 1 (Figs. 1-1 and 1-2).
During these Phase I tests, a pulsating condensation phenomenon termed
" chugging" was observed. Further investigation of chugging in 4T was
made in the Phase II and III tests.

1.1 The Chugging Phenomenon

Chugging, or unsteady condensation, is a design consideration in all
pressure suppression containment systems, using either vertical or
horizontal vents, and has been observed in many experiments. The

mechanism behind chugging involves the collapse of the vapor-liquid
interface at the vent exit. Two mechanisms involved are excessive
steam condensation rate and surface instabilities at the vapor-liquid

interface. The excessive condensation occurs because the supply from

the vent system is exceeded by the available surface area for

condensation, causing the interface surface to contract. The surface
instabilities are probably bubble-size dependent and tend to cause an
increase in interface surface area.

The steam condensation pressure oscillation begins in the vent pipe
before it occurs in the drywell and the magnitude of the oscillation |

f is greater there. The sharp underpressures measured at the vent exit
are due to the collapse of the vapor-liquid interface and condensation
of the vapor in the vent pipe. This underpressure causes the pool

'

water to enter the vent pipe. Once the water enters the vent pipe,

only the cross-sectional area of the vent is available for

condensation and, as the water in the vent heats, its condensation

rate drops. When the steam flow into the drywell exceed: the

condensation rate, the pressure in the drywell and vent system
increases and a new vent clearing transient starts.

1-1
.
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Figure 1-1. Mark II Pressure Suppression Containment

1-2



e

NEDO-24822

1

*

DOWNCOMER

O Of O o O 7"'w^A"'"'O
00 0 0O 0 0 O

O OOO 00 O O0 0O O
O 0O O 00 0

OO O O O OO

Vo o
O

OO o o O O
O O O

OO O O o
OO OO

O
O 0 0 O0 0 000 O0 0 oO

Figure 1-2. Typical Mark II Wetwell

,

1-3

_ _ _ _ __ _ _ _ _ _ _ _ - - - - - - _ _ _ _ _ __



- _______________ _ _ - _ _ _ _ _ _ -

*

NEDO-24822

,

The vent flow rate follows from the previous chronology of a chug. As
the vapor bubble collapses and the low pressure in the vent is
generated, a large pressure difference exists across the vent system,
causing a large increase in the flow rate. The large flow from the
drywell to the pool in turn causes the drywel? pressure to drop,

,

lowering the pressure difference across the vent system and thus
decreasing the flow rate. At the same time, the pool water b.,a surged
back into the vent system, lowering the condensation rate and thus
raising the pressure there. The vent system pressure difference and
hence the vent flow rate thus drop to near zero before the vent is
retleared and another chugging cycle begins.

Once chugging has been initiated, individual chugs occur in a more or
less periodic manner. Chug starts do not have a single frequency,
however, but vary from run to run and even within a sing;e blowdown.

1.2 The Mark II Chugging Load Definition

In February 1977, an Application Memorandum was issued by General
Electric specifying the symmetric chugging load at the containment
boundary to be +37.9/-34.5 kPa (+5.5/-5.0 1+: O at a 95% conIidence
level (mean values: +33.1/-27.6 kPa; +4.8/ ,.a psid) with a frequency
range of 20 to 30 Hz. The asymmetric load was specified to be
+137.9/-96.5 kPa (+20/-14 psid) with a frequency range of 20 to 30
Hz. These loads were believed to be very conservative and, in 1977,

3General Electric issued a bounding loads report justifying the
.

conservatism of these loads. A key argument fo- the conservatism of
the Application Memorandum was based on the results of the Multivent

Hydrodynamical Model which exploits the random nature of chugging.
An additional argument was that the Application Memorandum utilized 4T

chugging responses which contained additional 4T-unique frequencies
and fluid-structure interaction.

1-4
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To obtain an understanding of the structursi characteristics of 4T, a
5fluid-structure interaction study was undertaken. The study concluded

that the chug source is impulsive and the 4T response to the impulsive
source is a sinusoidal-like "ringout" whose frequency is system
related.' '

The Nuclear Regulatory Commission issued comments 6 dated August 10,
1977, which questioned the adequacy of the Application Memorandum, in
en ence , because the frequency range over which the load was to be
applied is 4T- and not Mark II-unique and the pressure amplitudes
would likely be larger for a more rigid Mark II containment.

A.16 of the Mark II program was initiated to develop an improved
chugging load definition which would provide for more realistic loads
and resolve fluid-structure interaction concerns. The results of
Phase II of Task A.16 yielded an approach to chugging consisting of
the following key elements:

(1) Investigation of the 4T chugging data to develop an understanding
of the data base and clues to the nature of the chug source
(Chapter 2).

(2) A numerical simulation of the response of a tank-water-vent sys-
tem to a pressure impulse which represents the chug source. From

such a simulation and the governing equations of motion, we learn
the 4T system response is essentially acoustic in nature (Chapter
3).

(3) Development of an acoustic three-dimensional ar$1ytical model for
the 4T and Mark II georeetries using the assumptions verified by
the numerical simulation and analysis (Chapter 4).

I

i
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(4) Treatment of fluid-structure interaction (FSI) effects by (a)

application of a rigid wall pressure to a NASTRAN flexible wall
model and (b) solution of the acoustic wave equation with

f'exible wall boundaries; verification of this method of FSI
,

in 4T with a NASTRAN model (Chapter 5).

(5) Verification of the adequacy of the acoustic model by comparison
with several types of 4T chugging data (Chapter 6). ,

(6) Creation of a procedure to develop a design source from an

experimental data base and the use of the 4T data to determine
a design source (Chapter 7).

(7) Application of the chugging methodology and the design source to
a Mark II multivent geometry to develop structural responses
using an ANSYS structural model (Chapter 8).

1-6

_ _ . _ . _ _ . _ _ - _-



.

HEDO-24822

2. [2?DERSTANDING THE 4T CHUGGING DATA

Prior to this study, the entire pressure history from the
bottom-center sensor and the combined acceleration history from the
vent-exit accelerometers for each 4T blowdown were scanned to identify
chugs. The bottom-center sensor recorded the highest pressure
amplitudes and the vent e'xit accelerometers were responsive to the
impulsive chug events. A pressure excursion greater than 27.6 kPa or
less than -27.6 kPa ( 4 psi) or a vent tip acceleration greater than
2g or less than -2g, following trend removal, was regarded as
signifying a chug start. A 3/4-second interval was required before
such a departure was accepted as another chur. Approximately 600
chugs were identified in this way from the 27 usable runs, which
spanned all anticipated operating conditions.

Chug peak overpressure (P0P) values were studied to identify any
systematic effects of such parameters as time into test, vent pipe
diameter, initial pool temperature, submergence, and liquid versus
steam break. No trend of POP with time into test was noted.
Cumulative histograms of POP for each combination of pipe diameter and
initial pool temperature, however, indicated that two test conditions
yielded higher pressures at the upper probability points than the
other conditions and there was a corresponding slight increase in mean
POP for those two conditions (see Appendix A). It was not possible
from physical considerations to identify a cause of the higher
pressures. Accordingly, the view was taken that there may be some
conditions in which high POP values could occur in the higher
proportions noted, and the chugs in the data base were restricted to
conditions giving the unfavorable oistributions. This provided
137 chugs from nine runs for the two conditions of 610 mm (24 inch)
pipe, 21 C (70 F) initial pool temperature (Phase I tests, runs 27 to
31 and 34), and 508 mm (20 inch) pipe, 66 C (151 F) initial pool
temperature (Phase III tests, runs 42, 44, and 46); these were steam
breaks, with 63.5 mm (2.5 inch) and 76.2 mm (3.0 inch) venturi data
taken together as indistinguishable. A moderate effect due to
submergence was averaged to 3.35 m (11 feet) to be used in modeling

2-1
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I,

the 4T. In each chug, the POP was placed midway in a 0.768-second
signal, which was found to consistently encompass the high-signal
strength pe:cion of.each chug. Accordingly, a data base of 137 chug
signals from the bottom-center of the 4T; each 0.768 seconds in

duration with the POP at the midpoint, was <tsed in this study. *

A spectral analysis was performed on each chug in the data base to
reveal patterns of power by frequency. Other runs, including liquid
breaks, have also been analyzed spectra 11y, although on a continuous
rather than chug by chug basis (see Appendix A). The consistency of
the frequency patterns in both studies indicates that the 137-chug
data base is fully representative of frequencies which occur in any -

i 4T run.

s

2.1 Classification of the 4T Chugs
!

Even a casual perusal of the 4T chug library shows that not all
chugging events are created equal. Thus, a careful review of the 4T

chug library has been made with the intent of classifying the various
types of chugging events. The review of the 4T chug library was
performed by comparing:

(1) Plots of the pressure time-history,

(2) Plots of the power spectral density (PSD), and

(3) Tables of the PSD (amplitude vs frequency)

for the 137 chugs. The chug library was classified into four

categories with the following characteristics:

4

2-2
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Category I Chugs Classical

Shape: damped sinusoidal

Predominant Frequencies: 5, 13, 21 and 18 to 31 Hz

Peak Pressure Amplitude: 34 to 138 kPa positi've (5 to 20 psi)
28 to 96 kPa negative (-4 to -14 psi)

Category II Chugs Sinusoidal

Shape: sinusoidal
Predominant Frequencies: 5, 13, 21, 29 Hz

Peak Pressure Amplitude: 34 kPa positive and 34 kPa negative (t5 psi)

; Category III Chugs Mixed Sinusoidal and Classical

Shape: damped and undamped sinusoidal

Predominant Frequencies: 5, 13, 21 and 18 to 31 Hz

Peak Pressure Amplitude: 103 kPa positive and 103 kPa negative (115 psi)

Category IV Chugs Other Events

Shape: irregular

Predominant Frequencies: mixture of 5, 13, 21, 30, 35 to 40, 45 to 50 Hz
Peak Pressure Amplitude: <34 kPa (<5 psi) or very low amplitude |

Figs. 2-1 through 2-4 show four examples each of the four chugging
categories f rom the 4T chug library. Note here that the sinusoidal
event is called a Category II type of chug. It is important to note

that although the sinusoidal events and chugging are related by the
fact that they are steam condensation phenomena, their characteristic
frequency and amplitude are markedly different.

The relative fractions of occurrence of the various types of chueging
categories have been calculated and the results are shown in Table
2-1. A list of chug numbers, their categories, and the 4T run numbers
from which they came is shown in Table 2-2.

2-3s



~ _ _ .. _ _ _ _ _

h

NEDO-24822,

)

i

l
i

!

i The following Figures are GENERAL ELECTRIC COMPANY PROPRIETARY

| and have been removed from this ' document in their entirety. i

i
j 2-1 Examples of Category I Chug -

4

; 2-2 Examples of Category II Chugs
i

j 2-3 Examples of Category III Chugs

; 2-4 Examples of Categroy IV Chugs
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Table 2-2
|

CLASSIFICATION OF 4T CHUGS i

|
*

Chug No. Category 4T Run No. Chug No. Category 4T Run No.
|

|
'

1y 36 II p !1 II

2 III 37 III
I | l

,
i 3 I 3'1 III

I

'

4 IV 39 II

5 II 27 40 III
1.' 6 II 41 II 29

I! 7 I 42 III
I I8 III 43 III

! 9 II h 44 II
10 II p 45 III
11 II 46 IV k |

i

; 12 II 47 II p |
13 II 48 II I

I I; 14 1 49 II
I !15 II 50 II
I16 II 51 I 30.

I'

17 I 52 I
I !18 II 53 III
I2 19 II 54 III k

|20 II 55 IV p
21 III 56 II

I I
!.

22 I 57 II
I23 II 28 58 II
I24 III 59 II

I I; 25 I 60 II
I Ii 26 IV 61 II.

I I'

27 III 62 II
I28 I 63 I 31
I29 II 64 II
I I30 I 65 IV
I I: 31 I 66 II
I I

i
32 II 67 III I

! I I

'

33 II 68 IV
I I34 IV 69 II4

35 II k I1

70 II

: 71 I k
,

I I

I

|

:
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Table 2-2

CLASSIFICATION OF 4T CIWGS (Cont'd)

Chug No. Category 4T Run No. " Chug No. Category 4T Run No.

72 III p 105 III
g73 II 106 II

|
74 II 107 IV
75 III 108 II

;76 III 34 109 II
g77 II 110 III

I78 IV 111 IV 44
I79 II 112 IV

80 II k 113 IV |81 II p 114 IV
g82 Ill 115 IV

I I83 II 116 IV
I84 II 117 IV k
|85 II 118 II p86 II 119 II

I87 II 42 120 II
I88 II 121 II

I !89 II 122 III
I I90 I 123 IV
I I91 III 124 II
I I92 IV 125 II

93 IV Y 126 III I

94 II p 127 II~ 46
95 II 128 IV
96 II . 129 IV
97 III 130 II

I I98 III 131 IV
I !99 II 132 II

100 II 44 133 IV I
'

I101 II 134 II
I I102 II 135 IV
I I103 II 136 IV
I 1104 IV 137 IV

i
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2.2 Principal Frequencies for the Chug Categories

Each chug from the 4T library of 137 chugs was placed into a category
according to its shape and frequency characteristics. In order to

find the dominant frequency characteristics, we can average the PSDs
for each category. This averaging will tend to accentuate those

frequencies which occur most often. Figs. 2-5 through 2-8 show

normalized PSDs for chug Categories I through IV. The normalization
procedure is explained in the following paragraphs. Column C of Table

2-1 shows the principal frequencies in each chug category. The

patterns of these frequencies and their origin will be discussed in

the next section.

Column D of Table 2-1 shows the sum of the normalization constants

| (the total area under all the unnormalized PSDs) for each category.
When the sum of unnormalized PSD values is divided by this
normalization constant, the area under the resultant PSD is unity and
we call the PSD " normalized." Thus, the normalization constant for

, each category represents the total power (energy density) contained in
the chugs of that category.

,

Notice that the Category II chugs contain a majority of the total
chugging power (Column E, Table 2-1). One of the reasons for this is
that they are at least twice as numerous as any other category of
events. On a "per event" basis (Column F, Table 2-1), it is clear
that the Category I chugs contain more power per event than Category
III chugs and roughly twice as much power per event as the Category II
chugs.

Fig. 2-9 shows the normalized PSD for all 137 chugs (all categories
combined). Fig. 2-10 shows a composite normalized PSD for all 137
chugs (solid line) and contributions to the total PSD from the four

! chug categories (dashed lines). The PSD of each category has been
multiplied by the ratio of the total power of that category to the

| total power of all categories. Notice that:

2-8
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The following Figures are GENERAL ELZCTRIC COMPANY PROPRIETARY

| and have been removed from this document in their entirety.
!

2-5 Normalized PSD for Category I Chugc
2-6 Normalized PSD for Category II Chugs

2-7 Normalized PSD for Category III Chugs
2-8 Normalized PSD for Category IV Chugs
2-9 Normalized PSD for 137 Chugs in the Chug Library

2-10 Composite Normalized PSD for Category 1, II, III,

and IV Chugs
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(1) All categories contribute to the frequency peaks at 5, 13, and 21
Hz;

(2) The Category IV events make a negligible contribution to the
total power. |

2.3 Analysis of Frequency Patterns in the 4T Chugging Data

In order to develop an analytical model of the chugging phenomenon, it
is necessary to understand the causes of the dominant frequencies seen
in the 4T data. Once the patterns in the 4T data are well understood,
the application to the Mark II geometry can be accomplished.

|
It is reasonable to believe that the dominant frequencies seen in the i

|4T data result from excitation of various acoustic modes of
oscillation in the tank and in the vent of the 4T facility.

Consequently, we will look for frequency patterns in the 4T data which
result from the vent pipe and pool natural frequencies and their

| ha rmonics .

We picture the vent as a one-dimensional pipe closed at one end by
water and open to the drywell at the othc. end. For this geometry,
the natural acoustic frequencies are

= (2n +f , n = 0, 1, 2, 3, ... (2.1)9 4L

Using the speed of sound in pure steam *, c = 488.6 m/s (1603 fps), and
the length L of the 4T vent of 28.65 m (94 ft), we can calculate they

vent fundamental frequency f, to be

f, = 4{ = 4.26 Hz . (2.2) I
v

The higher odd harmonics are shown in Tab 1.e 2-3 where they are
compared with the observed frequencies from the Category II chugs. I,

Noting the similarity b.: tween the predicted and observed frequencies
leads to the conclusion that the 4T vent plays an important role in

* Assuming saturated steam at 275.79 kPa (40 psi).

2-10
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determining the frequency of the wall pressure traces for the
sinusoidal events. Since the frequencies 5,13, and 21 Hz appear in
the data for all chug categories, it appears that the vent pipe
frequencies defined by Eq. (2.1) are important components of the wall
pressure loads.

_

Table 2-3

VENT PIPE FREQUENCIES IN 4T

n

0

1

2

3

4

5

6

7
.

8

9
.

10

11

We can perform a similar type of analysis for the pool to explain the
additional dominant frequencies seen in Category I and III chugs. The
pool can be pictured as a vessel filled with water and open at one

. end. For this geometry, the frequencies of oscillation are again
.

f * (2n + 1)c I
n 4L , n = 0, 1, 2, 3, ... (2.3) 1

P !
i

,

$
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where c is the acoustic velocity in the 4T suppression pool and L is
p

the depth of the pool. Adjustments must be made to the sonic velocity
in the 4T pool to account for flexibility of the tank wall and base
plate and the presence of small amounts of air in the water. These
adjustments will have a substantial effect on c, which will be

demonstrated below. Adjustment of sonic velocity due to flexibility

of the 4T tank wall and base plate can be made according to the formula
(see Appendix B)

c' = c/V 2 (2.4)1 + pc 6 ,

where c is the sonic speed in pure water * and 6 is the distensibility
of 4T.

In Appendix B, this formula is shown to yield an effective value of
c' = 878 m/s (2834 fps). Thus, the expected ringout frequency
(fundamental) in the air-free 4T pool is given by

;

f,=g[I=30.8Hz (2.5) !

P

.

where L = 7.01m (23 ft).p

The difference between this value and the observed average ringout
i,

frequency in the 4T pool (21.7 Hz) is believed to be the result of air
entrained in the water. It is shown in Appendix B that an air content
of 0.04% by volume vould account for this difference. The amount of

1

air was not measured during the 4T tests, but a value of 0.04% is
|

regarded as reasonable. The fact that ringout frequency tends to
increase with time into test further supports the hypothesis that the
sonic velocity is being reduced by air in the water.

!

I
i

i
*Taken to be 1524 m/s (5000 fps) for the average pool temperature and |
pressure in the 4T data base tests. j

l
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The average amount of sonic velocity reduction due to air derived from
the 4T tests is 29.5%. This compares well with the value of 31% as
determined from independent tests in the Pressure Suppression Test '

i

Facility (PSTF)7 Using these values in the 4T yields a frequency.

'

which agrees well with the frequency in the 4T chugging tests.

J

Thus, we conclude that:

) (1) The predominant Category II chug frequencies are the vent
j fundamental acoustic frequency and its harmonics.
i

(2) The predominant Category I (classical chug) frequency is the pool-

; fundamental accustic frequency based on c/4L (where L is the pool
"

uepth) with c reduced from its pure water, rigid tank value by
tank flexibility and entrained air.

1

!

t
.

I .

!
'

,

J.

I

i

4
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3. GOVERNING EQUATIONS FOR CHUGGING

In Chapter 2 it was shown that the 4T data can be described in terms
of vent and pool acoustics. We now proceed to support this assertion
with a more detailed theoretical understanding of the 4T system
response to chugging. This theoretical understanding in the form of a
mathematical model will help us to specify the chugging load, i.e.,

the forces due to chugging, on the suppression pool boundary of any
Mark II containment.

Chugging is viewed as a three part phenomenon composed of a source, a
transfer function, and a fluid-structure interaction. The chug source
is the result of an acceleration of the steam-water interface at or in
the vicinity of a vent exit. This acceleration of the interface is
due to the pulsating condensation and is either impulsive resulting in
a Category I type chug, periodic which results in a Category II chug,
or both resultir - in a Category III chug. The effects of the chug
source are p- . gated to the pool boundary. This propagation is
described F aat we term a transfer function which results from the
equations .f motion for the fluid. Finally, we come to the

interaction between the fluid and- the containment structure. In our
description of chugging, the transfer function which represents the
propagation of the effects of the source to a rigid containment can
be separated from the fluid-structure interaction which describes the
response of a flexible containment to the rigid containment pressure.
Our treatment of the fluid-structure interaction, including the proof
that such a separation of the fluid and structural motions is possible,
is treated in Chapter 5. Here we will deal with the chug source and
the transfer function.

3.1 Semiempirical Chug Source

The pressure excursions called chugging observed in the 4T are the
result of intermittent steam condensation occurring at the vent

I'3' ' '9exit This condensation is controlled principally by the.

vent steam mass flux, the air content in that flux, and the

3-1
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temperature difference across the steam-water interface. When

| conditions at the vent exit are such that stable condensation is no
i
t longer possible, the sequence of chugging as shown in Fig. 3-1 begins:
i

! (1) The water in the vent is isolated which allows a layer of
saturated water to form at the interface reducing the rate of

condensation.

(2) The reduced condensation rate allows the drywell pressure to
,

|

| increase; the interface is thus pushed out of the vent back into
the pool. The layer of saturated water protects the interface
while it is inside the vent.

(3) As the steam-water interface emerges into the pool, local j
'turbulence destroys the protective boundary layer of saturated

water and the interface comes in contact with the colder pool. A
" burst"'of condensation follows.

(4) The steam flow through the vent is not sufficient to supply the
rapid condensation. The drywell is depressurized and water 4. gain
reenters the vent to repeat the cycle. -

!

Thus, a condensation event is responsible for initiating the chug and
is the chug source. This source is dependent on several factors, some
of which are highly random. As a result, the nature of the source is I

also random. For example, if local conditions permit the steam-water
interface to extend sufficiently far into the pool, the resulting
condensation event can impulsively excite the pool acoustic
vibrational modes. Or the chug source may include multiple
condensation events which will not always excite the pool acoustics.
These multiple condensation events appear to be driven by the acoustic
vibrational modes of the vent.

| To be able to develop a completely analytical description of chugging,
it is obvious that we need an analytic model of the condensation and
interface collapse. A model of steam bubble collapse is given by

3-2
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10Florscheutz and Chao This model treats the mechanics of the.

collapse under spherically symmetrical conditions to ascertain the
relative importance of the dominant mechanisms controlling the
collapse: liquid inertia and heat transfer. Florscheutz and Chao
conclude that when the collapse is inertia controlled, collapse rates
are high and increase as the collapse proceeds. In contrast, when the

collapse is heat-transfer contro11ec, the collapse rates are low and
decrease as the collapse proceeds. An integral component of the
Florscheutz and Chao model is the use of a calculational result

IIobtained by Plesset and Zwick In their article on bubble dynamics.

l2and cavitation, Plesset and Prosperetti express doubts as to the
applicability of this result to collapsing steam bubble . In their

opinion, no entirely satisfactory theoretical results are available

for the modeling of steam bubble collapse under conditions in which
thermal effects play a significant role.

I Because of this disagreement between notable workers in this field and

also because the conditions at the vent exit which effect the chug
source are random, we will not rely entirely on any theoretical model
for an analytical description of the chug source. Instead, we will

develop a semiempirical chug source. Wherever possible, the 4T data
will be used to develop the source. Where the data cannot be used,
theory will be employed. Since it is necessary to have a transfer

function in order to relate wall pressure data to source behavior, we
will only be able to describe the source in terms of unknown constants
in this chapter. Following the derivation of the transfer function,
these constants will be evaluated.

From che examination of the 4T data in Chapter 2, we saw that there
are essentially two kinds of chugs: Category I and Category II. A

Category III chug can be treated as a Category 11 chug terminated by
a Category I chug. Thus, two different chug sources are necessary.

An analysis of the Category I chugs in Chapter 2 reveals the pressure
response to be that of the acoustic ringout of the 4T tank-water
system. This type of response would be generated by an inertia

|3-4
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controlled steam-bubble collapse. To simulate a chug, Anac.et
Laboratories, during an experimental study of the 4T fluid-structure

5interaction , imploded an evacuated bell jar placed at the 4T vent
exit. The pressure time-history at the tank bottom-center during one
of those tests is shown in Fig. 3-2. The similarity between the
pressure response of the simulated chug and actual Category I chugs is
apparent.

Since the collapse of the void created by crushing the bell jar is
inertia controlled, we can roughly estimate the general shape or

'
time dependence of a Category I source from Rayleigh's treatment of

l3bubble collapse This yields an acoustic source whose strength.

may be written 'I

3
P R

S(t) = -n - [ , - 4R(t)]. (3.1)P R(t)'

Here R(t) is the radius of the cavity at time t, R, is its
initial value, ar.d p, is the static fluid pressure. Note that at

extremely small values of R(t)/R,, for which this expression for the
source tends to +m, the classical Rayleigh solution is not applicable .

because it neglects the opposing internal pressure due to compression
of the vapor inevitably present and the presence of the vent into
which the void collapses. Guided by Eq. (3.1), we will approximate the
impulse delivered to the pool by an inertia controlled bubble collapse |
by a single impulse. We defer until Chapter 6 the demonstration that
this approximation will generate a pressure response similar to that '

shown in Fig. 3-2. The inertia controlled collapse also excites an
acoustic vent response which serves as a source of long-term acoustic
energy for the pool. Therefore, we could approximate the total 4T
Category I source empirically by

i

N

S(t)=-A,A(f-1)+ { Ae n sin w t, (3.2) |y n n
n=1

3-5
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where

1 - lxl lxl < 1
A ,..) E (3.3)

o Ixt > 1 .

The impulse ar' .~ ae A, and duration I as well as the amplitudes A,,
damping constant a, and frequencies w f the vent response will ben
determined empirically from the 4T data in Chapter 6.

An examination of the Category II chugs shows that the pool is not
responding in its transient acoustic modes bet rather at the acoustic
frequencies of the vent, Each Category II chug has a time duration
that is consistent with the opinion that a Category II chug is a

'

succession of condensation events the frequency of which function
is being driven in a steady state fashion, it is transparent to the
Category II source. Thus, the general time dependence of the source
is given by the Category II chugs themselves, and we therefore could '

approximate the Category II source empirically by

N

Syy(t) = u(T-t) { B, sin (m t), (3.4)n
n=0

where u(x) is the Heaviside step function.

3.2 Fluid Equations of Motion

The state of a fluid is completely determined once we specify the
->

fluid velocity u and any two of the thermodynamic properties
pertaining to the fluid as functions of space and time. Hence, the
motions of a fluid medium are governed by four equations. The first
equation is a continuity equation expressing the conservation of mass

ht 7 - (p$) = 0 (3.5).

.
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!

! The second equation is a force equation expressing the conservation of
momentum

|
,

|

p h = - p ($ V) E - V [P + p$ - (q + h p) V El - pv x V x d, (3.6)

| where p and q are the coefficients of shear and bulk viscosity and &

| is a potential energy causea t; force per unit mass. The third
| equation is a heat exchange equation expressing the conservation oft

,

' energy

pT hf = - pT u Vs + V - (KVT) + i : V$, (3.7)
l
i

where i is the viscous-stress tensor, K the thermal conductivity, and
!
'

s the specific entropy. The last equation can be one of several
equations expressing the constitutive relations that characterize the

fluid and its response to thermal or mechanical stress

P = P(p,s)
(3.8)

T = T(p,s) .

The above four equations form the governing set of equations for the
fluid. We have made the implicit assumption that the fluid properties
(bulk modulus, viscosity, thermal conductivity) are everywhere constant.
To obtain a unique solution for a particular fluid geometry, we need
to impose some boundary conditions. Normally ve require that the fluid
pressure equal its equilibrium value at a free surface and that the
fluid cannot penetrate a solid surface. Since these solid surfaces are

formed by structures that are seldom perfectly rigid, a fluid-structure
interaction (FSI) must be considered. This is accomplished by simply
requiring the normal component of fluid velocity to equal the structure
velocity at the fluid-structure interface. Thus, we must augment the
governing set of fluid equations with the equat'on of motion for the
structure represented symbolically as

3-8



NEDO-24822

2
M + L (w) = p, (3.9)8t

where w is the boundary displacement, M is the local mass per unit
N

area, and L' is a space operator of order N describing the local
structural restraining force per unit area.

Upon inspection, it is readily apparent that analytical solutions to
the above set of coupled nonlinear partial differential equations
would be such a formidable task that such solutions would be rare.
Therefore, in general we rely on numerical techniques in the form of
finite-difference o'r finite-element computer programs. Numerical

solutions are in principle quite adequate. Houever, in practice they
do not contain all the physical insight to which one is accustomed
from analytical solutions. It will be shown that if certain
assumptions are made this set of equations will collapse to a single
equation of acoustic fluid motion which will have a straightforward
analytic solution for Mark II and 4T suppression pool geometries. If

these assumptions can be justified, we will obtain the physical
insight and at the same time maintain an adequate representation of
chugging.

3.3 Assumptions and their Justification

The theory of sound deals with systematic motions of a fluid relative
to an equilibrium state. Such perturbations of state can be described
by incremental or reoustic variables and approximate equations
governing them can be obtained by linearizing the general equations of
motion given above. These results, as well as higher order
approximations, can be derived in an orderly way by invoking a modified

15,16perturbation analysis Th , consists of replacing the depender.t.

variables appearing in Eqs. (3.Si .hrough (3.9) with the sum of their
equilibrium or zero-order values .nd their first- and second-order
variational components and then fort ng the separate equations thati

must be satisfied by the variables of each order. The resulting
first-order equations, with the assumption of isentropic behavior of

3-9
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the ticid, yield the scalar wave equation of classical acoustics which
has analytic solutions. The second-order equations, however, have no
general solution but are useful for making approximations and

'

investigating some second-order phenomena that cannot be predicted by
the first-order equations alone. If an analytic solution is sought,
some rationale must be given to show that the second-order effects can
safely be neglected.

.

Thus, we proceed in the same spirit as the modified perturbation
analysis except we explicitly make three a priori assumptions:
(1) the fluid motion is isentropic, (2) the change in the fluid
pressure is proportional to the change in the fluid density, and
(3) the velocity of the fluid particles is small compared with the
velocity of sound. In addition, we also implicitly assume average
valuee for the fluid properties and that the fluid is at rest. To

justify these assumptions, we first separate the fluid pressure and
density into an equilibrium value plus a small acoustic part

F = p, + p p = p, i 6, (3.10),

and then proceed as follows:

d
(1) Isentropic Fluid Motion (gs = 0)

We write the general equation of heat transfer expressing the
conservation of energy (Eq. (3.7)) in the following form:

pT ff = pT (h{ + u Vs) = V - (KUT) + i : Vu (3.11).

For reversible adiabatic or isentropic fluid motion, the above
equation vanishes. To be able to approximate the fluid as an

isentropic fluid, we must show that thermal conductivity and viscosity
are unimportant, i.e., the fluid is ideal. The left-hand side of Eq.
(3.11) is the quantity of heat gained per unit volume per unit time at
the expense of the mechanical energy of a sound wave. Therefore, the

3-10
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sound wave is damped out in time. This subject is treated extensively
17-20

in the literature whereby one can calculate the rate of acoustic
energy loss to be so slight as to warrant the neglect of viscosity and
thermal conduction.

Therefore, to a good approximation, the fluid may be considered as
ideal, i.e., the effects of viscosity and thermal conductivity can be
neglected. Therefore,, ds/dt = 0 and the fluid is said to be

isentropic.

(2) First-Order Equation of State, [p = ( ) 6]
s

Since the fluid is isentropic, the equation of state is a function of
the fluid density only and can obviously be expanded in a Taylor
series in the term 6/p, (called the " condensation")

P = p, + A ( )+ ( )2 , ( )3+..., (3.12)
o o o

where A = p, c since (dP/dp)s Ec. By application of thermodynamic
formulae for the isentropic derivatives of the pressure with respect

2Ito density, the ratios B/A and C/A can be computed For water, the.

numerical values for these ratios are B/A < 6 and C/A < 39 where p, <
24.5 MPa (3553 psir) and T = 30 C (86*F). Keeping only the linear
term in Eq. (3.12) , we write

p=A( )=c 6 (3.13).

o

If this first-order equation of state is used instead of the Taylor
series expansion, it can be quickly shown that we are in error by no
more than 1% when the condensation 6/p, is less than 0.0032. A

condensation this large would produce an acoustic pressure p in excess
of 73 atm (7.4 MPa or 1073 psi) -- far larger than any chug possible
in a Mark Il boiling water reactor (BWR).

.
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(3) Linear Equation of Motion (u << c)

Since the assumption of isentropic fluid motion is tantamount to

neglecting fluid viscosity and thermal ca'Juctivity, the equation of

motion (Eq. (3.6)) reduces to Euler's equacion

h + (u V) u -fVP (3.14)= ..

We now explore under what conditions it is justified to omit the

| nonlinear term (u' V)u compared with the other two terms. We are
interested in the relative order of magnitude of the terms of

Eq. (3.14) in connection with the propagation of sound waves.
Therefore, we introduce for the characteristic time and length over

which the sound wave changes appreciably the period T and the length A
of the wave, so that 8/8t ~ 1/T and V ~ 1/A. Then, to obtain the

relative orders of magnitude of the different terms, we use the

property of plane waves that p = peu. Thus, the relative orders of

magnitude of the terms in Eq. (3.14) are: 1, u/c, 1. The condition,
)

then, that the fluid equation of motion be linear is u << c.

To establish the validity of this assumption (and the previous one
concerning the condensation 6/p,), we resort to a numerical solution
of the conservation equations for mass, momentum, and energy in a
rigid circular tank similar to the 4T facility. We use a nationally
available computer code K-FIX'2 to solve the above system of equations'

subject to the specified boundary conditions. The K-FIX computer code
uses a two-fluid model to simulate transient, two-dimensional,

I two phase flow. The two phases have different densities, velocities,
and temperatures determined by separate mass, momentum, and energy
equations. The conse rvation equations are written in finite

difference form for their numerical solution. The nonlinear finite

difference equations are solved iteratively using a point relaxation
technique. The geometric region of interest is divided into many

finite-size, space-fixed cells that collectively form the computing

|
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mesh. In cylindrical geometry, the cells are toroids with rectangular
cross section. Tae pressure, density, and internal energy are
computed at the cell center while the components of the velocity are
computed at the cell boundary. The K-FIX model of a tank-vent system
is shown in Fig. 3-3. This is an axisymmetric model. Only the watst
in the tank and the steam in the vent are modeled; the air above the
water is neglected.

.

The problem is now sufficiently specified to obtain a solution using
K-FIX. All that remains is a description of the chug source as input
to K-FIX. We choose to simulate a Category I chug because this type
of chug has the largest pressure excursions and will be the most
severe test of our assumptions. We will assume the collapse of or
isolated steam bubble for conservatism. In principle, the source could
be specified with K-FIX by modeling the collapse of a cavity. This
is not practical, however, because of the large number of computational
cells required to track the collapse. Instead, we specify the pressure
time-history in the cells immediately adjacent to the steam-water
interface at the vent exit. Using the Florscheutz and Chao model with

increased heat transfer rates due to the turbulent conditions at the
vent exit yields the bubble pressure time-histories shown in Fig. 3-4.
The Florscheutz and Chao model treats the collapse of a spherically
symmetric steam bubble in an infinite sea. The calculated flow field,
therefore, will not conform to the actual flow field in 4T. Thus, the
pressure time-history in Fig. 3-4 serves only to obtain a plausible
time-history shape. Other choices such as an impulse yield the same
conclusions. Since the collapse time relative to the acoustic ringout
is short, the precise shape is not vital and we shall idealize the
pressure source given in Fig. 3-4 with i

2t - 2T Ip(t) = p7 A(2t/t - 1) t p2 A( -1) (3.15)g 7

where A(x) is given by Eq. (3.3). This pressure source has the time
dependence shown in Fig. 3-5.
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By reviewing the pressure transients in the vicinity of the vent
5observed during the Anamet bell jar tests , values for the constants

pt, p ' *1' T2, in Equation (3.15) can be obtained. A collapse time for2

the bell jar was observed when the air space above the water was vented
to the atmosphere. Follewing the collapse, a pressure transducer in the
vent recorded a transient. When the air space has the same pressure as
that during the 4T Phasc I, II, and III tests the collapse time would be

,

less. In the absenca of an experimental measurement, we can

crudely estimate the collapse time corresponding to a pressurized air
space as follows. We learn from the collapse of a spherical void in
an infinite sea that the collapse time is proportional to the inverse

13of the square root of the ambient pressure For an overpressure.

of 275.79 kPa (40 psia), the collapse time should be roughly 50 ms.
TSus, we choose T

3 = 50 ms and T2 = 56 ms. These values compare
favorably with Fig. 3-4 when one considers that it can be shown that
collapse in a confined geometry takes longer than in an infinite sea.,

We choose p3 = -5.24 kPa (-0.76 psid) and p2 = 32.82 kPa (4.76 psid)
to simulate tank bottom-center and vent pressure amplitudes.

We apply Eq. (3.15) to the cell located in the water at the vent exit.
Since the source also excites the vent, Eq. (3.15) is also applied
simultaneously to the first cell in the vent adjacent to the
steam-water interface. These two cells are indicated in Fig. 3-3 with
a black dot. The tank bottom-center pressure and the vent midpoint
pressure computed by K-FIX are shown in Fig. 3-6 and their respective
power spearal densities (PSDs) in Fig. 3-7. The computation mesh
was examined to find that |61 $ 0.01 kg m-3 (6.24 x 10-4 3ggfft ) and

|ul $ 0.02 m/s (0.8 in/s). The damping exhibited in Fig. 3-6 has no
physical basis because the boundary conditions in this calculation are
rigid wall boundary conditions and viscosity and heat conduction have
been neglected. Rather, the damping is due to " numerical diffusion"
arising from the solution method chosen in K-FIX. Since we are not
drawing conclusions related to damping, it is of no consequence.
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Thus, we conclude from the K-FIX calculation:

'

(1) The linear fluid equations of motion are an excellent

approximation because u << c and 6 << p,.
'

(2) The vent ant' tank are not strongly acoustically coupled, i.e.,

each responds at its own eigenfrequency.
-

(3) The vent serves as an acoustic source to the tank in addition to ,

the chug impulse.

We have now verified our three assumptions; thus, the conservation
equations reduce to the acoustic wave equation. To show this, we

rewrite the conservation equations subject to our assumptions.

hf+p V u=0 (3.16a)g

' p, g = - Vp (3.16b)

where the energy conservation equation vanishes since ds/dt = 0, and
we have implicitly assumed that V x u = 0.

,

f

| This reduces to the ar .stic wave equation *

!

,

Q2$=0 (3.17)
2 2Cp,9p,_

c 8t'

For the case where sources of acoustic energy are present, such as
impulsive steam bubble collapse and the vent response to that collapse,
the wave equation becomes

a
O'p(4r,t) = -4nq(4r,t), (3.18)

where q(4r,t) represents the acoustic sources.

i
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4. ACOUSTIC MODEL OF CHUCCING

Having demonstrated the acoustic nature of chugging in Chapters 2 and
3, we must now develop a theoretical model that accounts for the
observed phenomena in the 4T tests. Numerical codes (such a: K-FIX
and NASTRAN) are very costly, and an annlytical solution would result
in more reasonable computer costs. Additionally, analytical solutions
permit a better understanding of the physics of the problem. Thus,
using the results of the numerical code K-FIX and the bell jar tests,<

simplifying assumptions can be made which reduce the complexity of the
problem and permit an analytical solution. The code IWEGS

(Inhomogeneous Wave Equation Green's function Solution) was developed
to obtain the numerical results of the analytical solution. The form
of the analytical solution is such that extension from the simple
cylindrical geometry of the 4T to the more complicated annular
geometry of the Mark II is straightforward, as will be seen later in
Section 4.2.

4.1 Wave Equation Solution in 4T Geometry

The development of the acoustic chugging model is based on two
assumptions substantiated by the results of the previous chapter:

(1) The linear wave equation applies and
(2) The vent is not acoustically coupled to the pool.

The results of the previous section indicate that the linearized
equations of motion which lead to the wave equation may be employed.
Nonlinear effects, such as wave shape steepening or shock waves, were

not observed in the Anamet or K-FIX results. This is consistent with
another large amplitude phenomenon, water hammer, the analysis of
which has been successfully accomplished by the wave equation.

4-1
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The results of K-FIX calculations of pressure in the vent show these
oscillations to be at the vent natural frequencies and independent of

| the natural frequency of the pool pressure oscillations. Hence, the
vent may be considered to be acoustically decoupled from the pool and

! its effect included in the source.

Forced wave motion in compressible fluids is described by the inhomo-
geneous wave equationt

|

2
0 p(r,t) = -4nq(r,t) (4.1)

where

p = acoustic pressure

29 2 13
O' : V D'Alembertian operator,

c 8t'

q(r,t) = source density distribution function describing
Ispatial ar.d temporal distribution of the

driving force.

.

The solution of Eq. (4.1) is obtained in a straightforward manner by
the Green's function method'3'24

'

as represented by the following

volume and surface integralsI .

| +.

P(r,t) = dt, dV, G(2,tir ,t,)q($,,t,)o
| o V

(4.2)
#

t

+h dt, d$, * (G(r,tir ,t,)V,p(i ,t,) p(I,,t,)V,G(2,tir ,t,)]o g o
o S

|
*

for a fluid which is initially at rest. By the symbol t we mean

! t + c where c is arbitrarily small. This limit is employed in order

to avoid terminating the integration at the apex of a delta function.
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The time-dependent Green's function G E G(r,tli,,t,) is the solution of

20 G(7,t|2,,t,) = -4n6(i - r,) 6(t - t,) (4.3).
.

We see that the source in Eq. (4.3) is an impulse at t = t, located at
r = r,. G(2,t|r,,t ) then gives the description of the effect of this
impulse as it propagates away from i = 7, during the course of time.

The first integral on the right of Eq. (4.2) represents the effect of
the sources; the second represents the effect of the boundary
conditions on the space boundaries. We wish to use Eq. (4.2) to
describe the pressure field in the fluid region of a perfectly rigid
4T. The solution for flexible wall geometries will be given in
Chapter 5. For the collapse of a steam bubble attached to the 4T
vent, we could, in principle, apply Eq. (4.2) with q(2,t) E 0. The

bubble surface is a complicated part of the boundary enclosing the
iluid region. Only that part of the surface integral of Eq. (4.2) at
the bubble-water interface will contribute to p(r,t) in our idealized
rigid 4T. Thus, a description of the interface motion is required --
something we have been trying to avoid. Also, the solution of Eq.
(4.3) in the 4T geometry will require the joining of the two solutions
in the regions above and below the vent exit. Such a solution for G

25is not tractable For these reasons, we will approximate the 4T.

geometry in the fluid region of Fig. 4-1 with the simpler geometry I

shown in Fig. 4-2. We neglect the presence of the 4T vent and treat
the collapsing steam bubble as a point source:

q(r,t) = p6(r - r,) S(t) . (4.4)

This is an excellent approximation because both the vent and bubble
are small compared to the tank diameter and the wave length of the
resulting pressure wave. This is evident trom a simple calculation. |

The maximum bubble diameter is believed to be equal to one vent
diameter, 508 or 610 mm (20 or 24 in.). The tank diameter is 2.13 m

4-3
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(7 ft) or at least 3.5 times larger than the bubble or vent. The wave

length of a 25 Hz standing pressure wave is 28 m (92 ft) (using c =
701 m/s or 2300 fps), or 46 times larger than the bubble. Thus, we
add a third assumption to those previously enumerated:

>

(3) The source can be represented by a point source.

Under these approximations, the solution of Eq. (4.1) is given by

'
tt

P(7,t) = dt, V,G(r,tir ,t,)q($,,t,) .(4.5).

o
o V

If we define the Fourier transform (in time) of the time dependent
26

Green's function via

G ( ' o) e~i"(''t ) dw , (4.6)G'(2,t|r ,t,) = ko

' expanding G in series of normal modes for the 4T geometry results
k

in
,

Q
G (4#'#,) * '" (4.7)n o n

k o
n (k ~ ( )2l

,

2
A

nn

where the 4,are the eigenfunctions of the Helmholtz equation,

, ,

V' Q + k' $n = 0 . (4.8)n n

The boundary conditions for the rigid wall cylinder are:

|

8Q" = 0
|

(rigid wall) (4.9)At r = a
3

80" = 0 (rigid bottom) (4.10)At z = 0 g

At z = L Q =0 (water surface). (4.11)n

4-6
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Eq. (4.8) is solved in cylindrical coordinates with bounda ry
conditions, Eqs. (4.9), (4.10), and (4.11), resulting in

na .

$n(#) * Jm(a "#)cs(me)cs{(E+f){z) (4.12)

where a represents the quantum number trio n,m,2 which has integer
values equal to 0,1,2, The eigenfunctions $n satisfy the... .

orthonormal condition

/Q (r) $n(r) dV = VA 6 (4.13)-m a mn

where 6 is the Kronecker delta. The normalization constant A ismn n
given by

2

"" l [1-(no,* )2)y (namn), (4.14)
2VA E VA =

2c mn n,m
,

where c, = 2(1+6,,)~I The eigenvalue a is defined by.

mn
.

J'(namn) = 0, (4.15)m

,

where J' is the derivative of J, with respect to its argument. A few
values of o,, are

4

00 = 0.0000 o = 1.2197 a0
02 = 2.2331

**

g

a = 0.5861 a
10 33 = 1.6970 12 = 2.7140 (4.16)

'''0

20 = 0.9722 21
a = 2.1346 aa

22 = 3.1734
'''

a +n+ m- m < n >> 1.mn

.
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Eq. (4.5), together with Eqs. (4.4) and (4.7), yield

+
'0 (i ) o li)2 cm 3 o gp(r,t) = 8 c S('o) 'i"(* (t-t,)}dt2 n o,

n {I-I ,)3 m (""an)aL * na on
mn (4.17)

where

no

0,(i) = J ,( a r)es[(1+f)fz) (4.18)

_

na
0,(7,)=J,(,*"r,)cos[m(0-0,)]cos[(2+j)fz,] (4.19)

(w /C' * (""mn/a) +( + ) (nS) ( . 0).

n

: Applying Eq. (4.17) to the 4T'. with a single source on the tank
centerline, r, = 0, 0, = 0, the acoustic pressure field is given by

)es[(2+f){z)cos[(1+f)fz,]
p(r,t) = 8pc [ { o("U

- on
, 3

o(""on)aL o
-

, g n

*
t 4

S(t,) sin (w (t-t,)]dt,. (4.21)-

,

o i

|
|

This equation presents no computational difficulties providing the I

integral and sum are evaluated accurately. Tables of the roots of
27J (x) are available in the literature A note of caution, however,.

9
is' in order. When evaluating the sum over 1 in Eq. (4.21), enough |

terms must be included to ensure convergence to a desired level of

.
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accuracy. Eq. (4.7) is a " retarded" Green's function. That is, for
|$ - 7,l, the double sum in Eq. (4.21) isvalues of t such that ct <

zero. This expresses the fact of a finite propagation time from
source to observation point. For times on the order of 1 |*r-rl,*

o
many terms in the sum over f are necessary to demonstrate this effect.
As t increases such that ct > |r* - r lo , the number of terms in the
A-sum to obtain a reasonable estimate of the unbounded sum is on the
order of ten.

4.2 Wave Equation Solution in Mark II Geometry

This section will describe how the theoretical acoustic model
developed in Section 4.1 is extended to the multivent annular geometry
of the Mark II containment. The code developed to perform the Mark II
computations is called IWEGS/ MARS (Multivent, Annular System).

As in the cylindrical acoustic model described in Section 4.1, the
Mark II acoustic model rests on the same three basic assumptions:

(1) The linear wave equation applies,
(2) The vent is not acoustically coupled to the pool, and '

(3) The sources can be represented by a point source.

The Mark II acoustic model is also used for the solution of the
inhomogeneous wave equation, Eq. (4.1). Only the geometry and number
of sources are changed (see Fig. 4-3). The point of departure is the
solution of the Helmholtz equation, Eq. (4.8), for the annular
geometry,

9 9

V' Q + k' $n = 0 (4.22).n n

The boundary conditions specified by the annular problem are:
,

l
a$"

At r = a =0 (rigid outer wall) (4.23)g-

4-9
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"At r = b =0 (rigid inner wall) (4.24)
Or

8$

[ =0 (rigid bottom) (4.25)At z = 0

At z = L $n = 0 (water surface). (4.26)

Equation (4.22) is solved in cylindrical coordinates with boundary
conditions, Eqs. (4.23), (4.24), (4.25), and (4.26), resulting in

$,(r) = (mn(#) c (me)cos{(2+f){z] (4.27)

where, as before, n represents the quantum number trio n,m,2 which
has integer values equal to 0,1,2, The eigenfunctions o satisfya

....
n

Eq. (4.13) which determines the normalization constant VA, (see
Eq. (4.13)). The radial function (,9(r) is

ny r J'(ny b/a)

(mn(#) * m( )- N,(ny[r
g ), (4.28)

N,(nymn /a)b

where the eigenvalues ny are defined by the roots of
mn

J'(nymn) N'(nymn /a) - J'(nyb mn /a) N'(nymn) = 0b (4.29),

J' and N' being the derivatives of J, and N sith respect to their
arguments. The roots if Eq. (4.29) are also available in the

literature ~8'.

For multiple sources of strength S (t,) located at coordinates (r),j
0., z.), the source distribution function becomes

J J

q(r , t,) = p [ S (t ) f 6(r, - r ) 6(0 - O ) 6(z, - z ), (4.30)g j o j 9 j j
J

I
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where

S (t,) = S,(t, - t)) u(t, - t)) (4.31)j ,

u(t) is the unit step function, and t. is the initiation time of the I

j source. The source function S,(t) is the Mark II chugging source l

derived from the 4T chugging source and assumed to occur at each vent
exit.

Eq. (4.30), together with the Fourier transform of Eq. (4.7), are
inserted into Eq. (4.5), resulting in

+

2 nP(r,t) = 2npc 0,(r)) S (t,) sin [w (D~t )] dt,,j n on n . o ;n 3 (4.32) |

where
i

1

Of)*E()cos[(f+f){z] (4.33)n mn

O ( j) * b (E ) e s[m(0 - 0 )] cos[(1+f){z] (4.34)n mn j 3 j

2 2 22 2 2 2
VA = na [( (a) - ( ) ( (b) - (n ) k$mn(8) - C (b)}} . (4.35)9 mnm mn

( )2 , ( mn)2 , (f , )2 [ )2 (4.36)
'

l
.

Eq. (4.32) is evaluated numerically by the code IWEGS/ MARS. Note that
the roots of Eq. (4.29) are dependent on the containment diameter
ratio b/a. Thus, the natural frequencies predicted by Eq. (4.36) |
will be different for each of the Mark II containments. Table 4-1
lists the five lowest frequencies for the Susquehanna containment.
Notice that the first transverse mode has a frequency only 7 Hz |
greater than the fundamental.
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Table 4-1

SUSQUEHANNA SUPPRESSION POOL NATURAL FREQUENCIES

2(2)
Transverse Root, Frequency, Hz(I)

(ny ,) (f ,g) Modem n

0 0 0 0. 54.35 fundamental

1 0 0 1.54512 61.12 1st tangential

2 0 0 2.93655 76.02 2nd tangential

3 0 0 4.16609 92.96 3rd tangential
0 1 0 4.88471 103.79 1st radial

Note (1): Solving Equation (4.29) with the following parameters:

c = 1524 m/s (5000 ft/s)

a = 13.4 m (43.96 ft).

b = 4.42 m (14.5 ft)
L = 7.01 m (23.0 ft)

Note (2): m index corresponds to azimuthal direction

n index corresponds to radial direction

f index corresponds to axial direction

,

*
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5. TREATMENT OF FLUID-STRUCTURE INTERACTION

In the previous two chapters, we have dealt with two of the three
chugging elesients: the chug source and the transfer function from that

source through the fluid to the boundary. We now treat the remaining
element of chugging: the fluid-structure interaction. In the exact

technical sense, there will be an interaction between the fluid and

the structure whenever the fluid is disturbed regardless of structure
rigiditf. This is a consequence of Newton's third law of motion.

However, the term " fluid-structure interaction" (FSI) has come to mean
the alteration of a rigid boundary pressure field by the response of
the structure to that field. Thus, when we say there is no FSI we
mean the structure is sufficiently rigid so that the pressure field is
unaltered. This condition is seldom realized in practice and
therefore the effects of FSI must be included in the structural
assessment of chugging.

5.1 Separability of the Fluid-Structure Interaction Problem

We have explicitly assumed that the solution of the set of equations
governing the behavior of the fluid and the structure could be

obtained in two steps. First, the fluid equations would be solved for
the case of rigid boundaries. We define rigid boundaries to be those
where the normal component of fluid velocity (or equivalently pressure
gradient) is zero. Next, the resulting rigid wall pressure p would

g

be input to the set of coupled equations which govern the structure
and the fluid

L (w) + p (5' }:
P1+P2s

o

O'p2 = 0 (5.2)

Nwhere L is a spatial differential operator of order N, p is the
s

structural mass per unit. area, and w is the boundary displacement.

These equations are coupled by way of (8p2)/(0")I =p ev lu ted at
s

'

the fluid-structure interface; p2 is the pressure field generated by
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the motion of that interface. Equations (5.1) and (5.2) are usually
extensive and are solved by a fluid-structure computer program such as

29-32
NASTRAN This method of solution of a coupled fluid-structure.

problem is illustrated in Fig. 5-1.

|

33 '

In work sponsored by the Nuclear Regulatory Commission, Sonin has

established the validity of this n.ethod of solution of the coupled
fluid-structure problem subject to assumptions of small amplitudes and
linearity. Because of the importance of the method of separability in I

obtaining Mark II chugging responses which include fluid-structure
interaction effects, we include his paper in Appendix C.

To demonstrate the application of this method of separability, we
performed the following calculation using NASTRAN. A triangular

2 (1000 in/s ) and duration 36 ms was2impulse of strength 25.4 m/s

place.1 at the vent exit in the 4T NASTRAN FSI model shown in Fig. 5-2.
The spectral density of the resulting acceleration at the bottom-center
of the flexible tank is shown in Fig. 5-3a. This corresponds to the
lef thand illustration at the top of Fig. 5-1. Next, the same impulse
was input to the 4T NASTRAN model where 'e walls were constrained to
be rigid. This yielded the rigid wali pressure field p; at the
boundary, represented by the middle ill stration in Fig. 5 1. This
rigid wall pressure field was input to the same NASTRAN mot el without

a source to obtain the flexible wall acceleration response is pictured
in the righthand illustration in Fig. 5-1. The resulting spectral

density of this acceleration is shown in Fig. 5-3b. The acteleration
response spectra in Fig. 5-3 are identical, verifying the methodology
and demonstrating its applicability to source strengths represintative
of any of the largest chugs in the 4T data base.

5.2 Solution of the Acoustic Equation with Flexible Boundaries

We have now established that the descriptions of fl.'id and structure
motions are indeed separable. The description of fluid motion in

either a cylindrical or annular geometry is given by the rigid wall
solution of the acoustic equation in Chapter 4. To obtain the

5-2



NEDO-24822

:- E-
U g V?" " U
V 4 ::

3's
= v

%v <

$ **Ow w+- 9
- + -.-. , .

In) 5: 3' (n)
/ ,

3 (P3+P) P OUT,
/j P 0UT P2 i 2 3+S'

(01 * hl j: (e ) f, tblj

$wwiumhwwh>I
y 3 7 3 y FLEXIBLE 3

FLExtBLE RIGID CONTAINER
CONTAIN E R CONTAINER INCIDENT

< FORCING SIGNAL y < FORCING SIGNAL y + < PRESSURE WAVE e
-

APPLIED WITHIN APPL:ED WITHIN (P ) APPLIED ATj
FLUlO FLUID FLUID STRUC-

5 s 5 ; ( TURE INTERFACE >

L (W) + M U = P P; w = 0; L'(w) + M Q = pg + p2I+
i 2

'

V'(01 + 0,) : ,1 (03 + $ ); Vo:
*

1

V'02*~0I
1'

2 g 3 0;3 2C C C

P(h;+5); P5;(Pt+P) P5 ;:
2 P1 1 P2 2

: :
2

30
80, ]s * ".

a 1+C)I *'.;
BFg loi l = 0; 3p ;2 s s

(P; + P ) }g = 0; g ]7 = 0; p2 II: 0.2 p

;

Figure 51 Separability of Acoustic and Fluid Structure Interaction

5-3
G1002G20 65

_ __



NEDD-24822
|

,ank,mW

|J0*fs> -

14b?$;> E

A?%5> ;
1

3j"] 55"
3s> pd

|10 $p:5>
In 155> c
|1 155> 0

lyd
.

y> c~

s> N

$1- 55s>
Se> 1d

I
'

nd *
p>> 1&

|Jbb ;

[,5
. a13 :33

$$> $
H bS> 0

14 55? $

1 $8 a-
< ,

MapM #
'

ws>r ;-
T $Y :''*

,M >
435

- -e-r,,

<9 g? :-

3 y$- :-
5>- 3:- t

#M L 'kNN-

'51>Ja

f$w>$?
,'JJ >

Hj p
*

-

M+;$$C'
,-

,,, 335> 1#f
|#1

$$>>
.

|
, *Pp 3;:;

k?55>.'s*
4 >- ssa-

I.
## $$>,

0{ PS>4. a; 4y3> '
,

$$$h
,

*n-a '
+

3k>>.-
d e=8- .>

$>5> ' 6=0.j 3
- + ; ;

-
' |

|

FLulD MODEL FSI MODEL

Figure S-2 Nastran 4T FSI Model

5-4

G 1002820 98

I

_ _ _ _ _



.

NEDO-24822

l

1.50 i a i iie44i i i iiiie4 a a i i a iii

|

1.25 - -

Tn
4
$

-

2 1.00 -

9
Q COUPLED FLUID -STRUCTURE
m ANALYSIS
_j 0.75 - -

m
u
u
4

a
-< 0.50 -

..
>
u
E
m

-0.25 -

' ' ' ' ' ' -

' ' ' ' ' ''' (*}' ' ' ' ' ''I'0

0.1 1.0 10.0 100

FR2QUENCY (CPS)

,

1.50 i
i i . .i

, i . . . .4 ii . , , , , , ,,

1.25 - l
?

-

$
z
9 1.00 -

SEPARATED FLUID -STRUCTURE -

E ANALYSIS
e
"i
d 0.75 - -

a
<
a
<
% 0.50 - -

o j

t
m

0.25 -

' ' ' '''''l ' ' ' ' ' ' ' ' ' ' '''0
O.1 1.0 10.0 100

; FREQUENCY (CPS)

|
Figure S-3 Acceleration Response Spectra at Bottom Dead Center

5-5
G 106'8 20 104

l



.

.

NEDO-24822

structural response, we must u .lize a structural computer program
with compressible fluid elements. Such computer picgrams are both
complex and expensive to execute even though we have introduced a
simplification via separability which makes the chugging problem
tractable. We will now explore the feasibility of obtaining a flexible
wall solution of the acoustic equation. Such a solution, if obtainable,

would yield no small savings since it would then be possible to use a
34-36much simpler structural computer program such as ANSYS , without

fluid, to determine containment response to chugging. Thus, for the
same computer cost we could obtain a more extensive containment analys:s.

Suppose the containment walls are locally reacting * so that to a good
approximation we can assign a specific acoustic admittance

S(w,r,) = & - ic = pc(u /P), where u is the normal velocity at then n

boundary, to each point r, on the wall surface for each frequency
w/2n. ( and a are the specific acoustic conductance and susceptance

,

respectively. The acoustic response to a source can be expressed in

terms of the normal modes of the fluid T(w,r) where, as before, Y, are
the eigenfunctions of the Helmholtz equation

,
-

!

, ,

| V' Y + K' T =0 (5.3)
| n a n

n(*' ) m(w,r)dV = VA,(w)6 ('*

mn
V

|

*The acoustic pressure acts on the surface of the structure and tends
to make it move. If any fluid motion normal to the surface is

possible, there will be wave motion in the material forming the
surface. The motion of the surface at one point will be related to

motion at another point of the surface by the wave motion inside the
,

material as well as by the incident and reflected pressure waves. If
!

| the various parts of the surface are not strongly coupled together and
j we can consider that the motion, normal to the surface, of one portion

of the surface is dependent only on the acoustic pressure incident on
that portion and independent of the motion of any other part of the
area, then we say that the surface is one of local reaction.
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9 must satisfy the boundary condition that, for each point .7, on9

the boundary, the normal component of the gradient of 9, in the
outward pointing direction is equal to i(w/c)S(w,r ) times the value

s
of 9, at that point

8 4 mg P (*'#s) * if-)0f*'4s) a(*'#+) (5.5)# .n s
s

The index n stands for a trio of quantum numbers, as required for a
three-dimensional standing wave. If any portion of the boundary has a
nonzero conductance (, the eigenvalues K (w) will be complex with
negative-imaginary parts. Suppose a root of the equation cK (w) = w is

n
w - iA , with w and A positive quantities. Because of thr; symmetryn n n
of the admittance function S(w,r ) about the imaginary w axis,g

there will be another root a t -m - iA so that the two roots of then
equation cK (*) * * '#*

n

w = +w - iA = cK (+w - iA }' (9 9 9 n

with A usually much smaller than w '
n n

As usual, the first task is to calculate the Green's function G,(rir,)
representing the spatial distribution of the radiation from a point
source of frequency w/2n at a point r . The Green's function satisfies

g

{V + (*)2] G (rir ) = -4n6(r-r ) (5.7).g g

Expanding G in a series of the normal modes or eigenfunctions of the
flexible wall, we can solve for the coefficients and ebtain

9 (w,i )9 (w,r)

G(Ilr)=4n[VA[K-(w)-(*)2]
" "

* ,

n (5.8)., ,

This then is the flexible wall Green's function.

5-7



i

| |
.

1
~

NEDO-24822
1

Very close to the source, this series approaches the free-space I

ikR
Green's function ( = e /R where R = |+r-r l; farther away, it+

o
37

differs from ( because of the waves reflected from the boundaries ,

There will be a resonance when w/c is equal to the real part of one of
|

the eigenvalues K (w). At the ath resonance the 9, term predominates,9
; having an amplitude inversely proportional to the imaginary part of

K,(w) for that frequency.

The Fourier transform of Eq. (4.2) is

P ,(r) = dV, G (#!#o)9 ( o)k w
V j

(5.9) !
+h d$, * [G ( o) o ,($ ) P ,($ )7 GP

|k o o ok o '

t S |

where p, and ( are the Fourier transforms of the pressure field and
source distribution respectively and G is given by Eq. (4.6). Notek

| that G is the Fourier transform of the Green's function defined byk
| the wave equation (see Eq. (4.3)). Unt.il subject to specific boundary

|conditions, G nd thus Eq. (5.9) are completely general. If wek

| specify flexible wall boundary conditions to be satisfied by the
Green's function, then Gk'O a d, using the definition of the

w

|
specific acoustic admittance = pc(u,/p) and Eq. (5.5), the Fourier i

I transform of the flexible wall pressure field given by Eq. (5.9) |

| becomes
!

I

p ,(i) = dV,G (7|$,) ((r ). (5.10)g

!

l -

| |

Inspection of Eqs. (5.8) and (5.10) reveal that p,(r) is simply an
expansion of the pressure field in terms of the flexible wall

eigenfunctions t (*'#)'
n

p ,(r) = [a n(w, r) (5.11)n
"

!
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where

'" 9 (w,$ )q ,(i )d .a =
VA,[K ( ,),(w)2)

2" a o e o

To compute p,(r), we must first determine the 1 (m,r). This we shall
3

do using the eigenfunction $,(r) for the rigid wall containment.
These eigenfunctions were obtained in Chapter 4 from the following
equations:

(d + O ) $,(E) = 0, (5.12)
2

a (7)=0, (5.13)g 3

where i is a point on the rigid wall and ca Ew the rigid walls n
eigenfrequency. Note the slight change in notation for the rigid wall
eigenvalue q . The rigid wall eigenfunctions were normalized according'.ton

f$m(r)$n(7)dV=VA6 (5.14).n mn

The most direct vv of determining changes in the eigenfunctions and
eigenvalues produced when the boundary surface S is no longer rigid is
by use of a Green's function of the general form of Eq. (5.8) but for
rigid walls. We wish to use this Green's function to obtain a set of
solutions of Eqs. (5.3) and (5.4) for a frequency w/2n a ck/2n E cK /2n

N
where K is a flexible wall eigenvalue. The defining equation for theN

Green's function is therefore

(U + K )G ( M ,) = - 4n6( N ,) (5.15)g

subject to the boundary condition

hG(EIr)=0. (5.16)
'

g s o

Expressing this Green's function in terms of the eigenfunctions $ (2),
9

we find that

;

5-9
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G ( M ,) = 4n { 0"(7 )$ (7) (5.17)g o 2 .

VA (q -KI
n o n

The equation for the flexible wall pressure field p, in terms of this
rigid wall Greens function G is obtained from Eq. (5.9) by settingg

Gk*OK and utilizing Eq. (5.16).

,

G(M,)g(7,)+h dS, * G ( M ,)V,p ,(I,). (5.18)P,(7)= dV g gg

V S
.

The first term on the right is the rigid wall pressure response to a
source g and designated p3 in Fig. 5-1 and Appendix C. The second

term is the pressure field due to fluid-structure interaction and

designated p2- Since We are Primarily interested in the flaid-

structure interaction pressure field p2, we shall omit the source q,
in the following development. Once the flexible wall eigenfunctions

i have been determined, the effects of the source q ,can be determinedn
via Eq. (5.10). Thus, for the present the volume integral does not
occur and Eq. (5.18) reduces to

P,(r)=h (ilr,) * dS, = G (M,)S(w,$,)p (7,)dS,, (5.19)g wo

a

where the boundary conditions which p ,must satisfy have been introduced.
Since in Eq. (5.11) p,(r) is expressible in a series of flexible wall
eigenfunctions i (w,r), Eq. (5.19) can be transformed into

n

T ("' ) * O( o)0("' o) N(*' o)dS, (5.20)N K

.

5-10

_ _ _ _



_

.

NEDO-24822
.

for a particular vibrational mode N. This is a homogeneous integral
equation, which includes both the differential equation and the
boundary conditions which T must satisfy. Its exact solution yields

N
the correct form for the eigenfunction T and also the conect value

N
of the corresponding eigenvalue K . n ess K has this value, the

N N

only possible solution of Eq. (5.20) is TN = 0 eve m bere.

The general properties of this equation and its solution can be more
clearly demonstrated by a modification of its form. We separate out
the term n = N in the series for G and write Eq. (5.20) as

K

$ ( s)0(*',s) N(*' s)dSN
Y (w,r) = ik[ }$()N 2 N

VA(qj-K)g
(5.21)

+$[c(iii)s(w,7)t(u,7)dS,3 s s 3 3

where

G(ile,)=4n[v^n(o)0"()
$

(5.22)y ,

n*N (Ob ~ K ')

and, as before, r is a point on the boundary.s

The equation is homogeneous so T can be multiplied by any constant
N

factor and still be a solution. For convenience, we choose that
factor which allows the expression in square brackets to be equal to
1/ik. Thus,

s)0(*' s)Y (*' s)dS = (q -K) (5.23)N N

and

T I*' ) * I#) * O(I s)0(*'#s) N(*' s)dS. (5.24)N N N

5-11
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If E is small, Eq. (5.24) can be solved approximately by expansion in
38,39

a perturbation series to any order desired. A first-order approxi-

mation solutien yields

P (*'#) O()* N( s)0(*' s)*NI s)ds (5.25)N N

and

2 2K (g) g ,)2 , 9,(r,)S(w,r,)dS. (5.26)

The resonance frequency w and damping A f r free vibration of the
N N

Nth standing wave are obtained by solving Eq. (5.6) using the K (*)
N

of Eq. (5.26). To first order, therefore

2 c, - A, 3 ( o)2 , 42(r){*N(*'#s) * A b(*' s)]dS. (5.27)
. 3

,

N%
s

I

A *'lb(*'#s) ' (*'#s)]ds (5.28)N

if we assume that the locally reactive boundary (see footnote, page
5-6) behaves as a simple-harmonic oscillator. The acoustic impedance |

40z(u) for a simple-harmonic oscillator is given by

,2
z(w) = pc/ (w) = R + iM(,s - m) (5.29)

where M : p h is the effective mass per unit area and h is the boundarys

thickness, R = 2(sMu, is the mechanical resistance of the boundary, j
2and Mw is the effective boundary stiffness. We define a spatials

averageacousticadmittanceh(u)via

h(w) Q d,)dSE $ (r )0(*'#s) dS. (5.30)s

|
,

5-12
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Since h(w) E [(w) - id(w), the spatial average conductance [(w) and
susceptance 6(w) also have identical definitions. We can obtain the
spatial average admittance for locally reactive boundaries from

Eq. (5.29) by replacing w which is complex with g. - i For stiff.

walls where

2 ,, 2 >>
(5.31)w , ,

5(w)reducesto

2

s(w) E (P#h)[2(s %
h %

3 *2 "l] . (5.32)i

s w
s s s

The conductance and susceptance are then equal to

9
-

h)[2(s h]*5((w) 2 ( C (5.33)3 2
s w w

, s

and

5(w) E (p ) (5.34).

Hence, to first order, the eigenfrequency g. and damping factor
be 'o.ne

]~I! (5.35)
PCg 3 g [1 + 2
p hws s

and

y'22(,(PC ,)( )[1 + 2 I ]'I (5.36)
PC

2Phw; p,hws
s ,

where we have set

Q (r,)dS = 2VA I (5.37)q
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for simplicity. We note that for a cylindrical geometry I = (1/L + 1/a).

rigid wall eigenfrequencies f are shifted by aWe see that the

constant amount independent of frequency. The rigid wall fundamental
frequency (N = 0) in both 4T and Mark II is given by w = nc/2L. If

we define w E nc'/2L, then Eq. (5.36) is tantamount to an apparent,

reductico in the sonic speed, namely

PC /c' = c [1 + 2 2] (5.38).

P *s s

That such a reduction exists for acoustic signals traveling in flexible
41-45wall enclosures is well known and is discussed in Appendix B. As

a matter of fact, we can quite accurately compute this reduction in 4T
based on agreement between observed and calculated fundamental frequen-
cies as shown in Chapter 2. This is based on the effective increase
in fluid compressibility due to the volume flexibility per unit volume

446 of the containment and the relationship between sonic speed and
compressibility

pc,2 * pc2 + 6. (5.39)

We see that, to a first approximation, the change in the eigenfrequency
and the occurence of damping is due to S # 0. This shift in eigenfre-

-fandthevalue of the damping constant A is propor-quency wN N
tional to the aversge value of a and ( over the boundary surface
weighted by c, so that those parts of the surface where the Nth stand-

h
ing wave is large are emphasized. The effectiveness of the flexible
walls in coupling other normal modes to the Nth one is measured by

the magnitudes of the integrals f $n *NdS entering f G 00 dS in the0 N N
expression for T in Eq. (5.25). If is nearly uniform, most of the

N

integrals f c, $ dS(n # N) will be quite small and T will n t differN N

much from the rigid wall eigenfunction Qg.

5-14
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We have thus succeeded in obtaining a solution to the acoustic wave
equation with flexible boundaries in terms of the specific acoustic
admittance E(w r ) . If the functional dependence of (w,r ) "s s
frequency w/2n and wall location r, is known, we can completely
determine the total pressure field which includes the effects of the
fluid-structure interaction. The structural response would then be
calculated using a structural model without the fluid (" dry contain-
ment") and applying the total pressure field to the boundary. All

that is required is that (w,r ) be small to permit a perturbations
series expansion of Eq. (5.25). This is not an unreasonable expec-
tation for containments with fairly rigid boundaries. In summary, we

46,47
see that the fluid-structure interaction effects are threefold:

| (1) Mixing of the rigid wall normal modes as shown by Eqs. (5.25)
and (5.26),

(2) A reduction in the rigid wall eigenfrequencies f shown by
Eqs. (5.27) and (5.35), and

(3) Damping of the free vibrations of the standing waves as given
by Eq. (5.36).

i
|

| It is noteworthy to mention that this method of describing the
response of a fluid in a cavity with flexible walls to a source or

| sources, which has been called chugging in the Mark II program, is
| that which has been used successfully by physicists and engineers

8active in the field of acoustics for over three decades ,

| -

To verify that the acoustic fluid-structure interaction methodology

correctly gives the flexible wall eigenfrequency g, we shall compare
the fundamental eigenfrequency w, as computed from Eq. (5.35) with
that computed by other methods and with experimental results.

!

We have already made the reasonable assumption that (w,r ) was small
s

enough to permit a first-order perturbation solution of Eq. (5.24).
We further assume that (w,2,) is sufficiently uniform over the

5-15
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boundary, resulting in no appreciable coupling of the rigid wall

normal modes $ (r) such that, to a good approximation,
N

T (*' ) D (r). (5.40)
N N

We shall begin with the 4T using the nominal structure and fluid

properties given in Table 5-1. We assume the 4T to be structurally

composed of two parts: a steel cylindrical shell of thickness h,
and a base plate of thickness h . From a structural point of view,

b
this is an extreme simplification, but for our purposes it will

suffice as we shall demonstrate. The surface integral in Eq. (5.27)

is to be evaluated over the sh;11 and base plate resulting in the

following modification to Eq. (5.35).

,

(Ibg,3f[1+2
h *2 + h,w2)]

(5.41)
s bb 3,

i

The fundamental flexible wall eigenfrequency w,/2n computed by the
above is 26.9 Hz where the rigid wall eigenfrequency w /2n = 36.9 Hz.

We can also compute w /2n using the method described in Appendix B.,

First, the acoustic speed is reduced from its nominal value by the
distensibility of the 4T shell. The effective acoustic speed is

obtained using Eq. (B.8) and the values in Table 5-1. The effect of

the base plate is calculated from Eq. (B.18) using this value for c.
The fundamental flexible wall eigenfrequency turns out to be

w /2n = 26.8 Hz.,

Finally, we examine the results of a NASTRAN calculation for an

impulsive source given in Fig. 5-3a. The eigenfrequency w,/2n as
calculated by NASTRAN is 23.8 + 0.1 Hz. The 4T NASTRAN model had a

" simply supported" base plate; thus, Eq. (5.41) gives w /2n = 23.2 Hz.
,

The experimental results against which we wish to compare are the
5Anamet 4T bell jar and impact tests . The average fundamental

5-16 -
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Table 5-1
,

NOMINAL 4T STRUCTURE AND FLUID PROPERTIES USED IN THE VERIFICATION OF

THE ACOUSTIC FLUID-STRUCTURE INTERACTION METHODOLOGY

a = 1.0668 m (3.5 ft) = tank radius

L = 7.0104 m (23 ft) = nominal water depth

= 6.2484 m (20.5 ft) = water depth for Anamet test

b = 101.6 mm (4 in) = base plate thicknessb

h, = 15.875 mm (5/8 in) = shell thickness

g = 1185.6 S-I = base plate vibrational frequency *

= 1373.6 S~I **

= 674.1 S' ***

I
u, = 4913.8 + = shell vibration frequency

p, = 7700 kgm' (470.7 lbm ft-3) = steel density

Y = 19.5 (1010) Pa (28.3 Mpsi) = steel elastic modulus

p = 0.28 = Poisson's ratio for steel

p = 1000 kgm-3 (62.4 lbm ft-3) = water density

= 1036 m/s (3400 fps) = acoustic speedc

* Observed in Anamet 4T FSI study

1 Y '-
g = 7 (- (1-p') 1]1/ (clamped plate)**

s

h

(1-p )-1 1/2 (simply supported plate)2* g = (4.99) [1 3
i a s
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eigenfrequency for these tests was w /2n = 33.4 + 1.6 Hz. We assume,

an acoustic speed of 1478 m/s (4849 fps) corresponding to an assumed
water temperature of 18.3 C (65 F) and overpressure of 101.325 kPa

l(14.7 psi). The average water depth was 6.2484 m (20.5 ft) Hz. Using i

the observed value for wb given in Table 5-1, Eq. (5.41) gives w /2n = l,

34.0 Hz.

We shall next examine how accurately the acoustic fluid-structure
1interaction methodology determines the flexible wall eigenfrequency '

, in a Mark II suppression pool. Because of the complex nature of the
|

w

Mark II suppression po.i boundary, it is not as straightforward to I

determine the spatial average acoustic admittance %(w) as for 4T.
1If we instead use the distensibility 6 for the Mark II, the correction I

factortotherigidwalleigenfrequencyf/2ncanbeobtainedbyequating
Eqs. (5.38) and (5.39)

216= (5.42).
9

Phw;s

The flexible wall eigenfrequency w,/2n is then given by Eq. (5.41) as
before. To verify this method for Mark II, we again use NASTRAN.
The NASTRAN model of the Limerick-Susquehanna containment used is
shown in Fig. 5-4. The volume flexibility V6, which is defined as
the increase in containment volume per unit of applied pressure, was |
determined to be V6 = 1.061(10-3) ,3/kPa (0.252 ft / psi). It was

3

computed from the Mark II boundary pressures resulting from an
actuation of the safety relief valves (SRV). This boundary pressure
has its principal frequency in the range 7 through 12 Hz. This value I

for V6 is the sum of separate volume flexibilities for the basemat,
wall, and pedestal. From Table 4-1, the volume of water is computed

|
to be V = 3504.8 m . Thus, 6 = 302.7(10-12) ,2/N (2.09 x 10 fp,1), |

-6

We input the water density p and sonic speed c to the NASTRAN model as
31000 kg/m and 1036 m/s. The con:puted rigid wall fundamental fre-

quency for the same triangular impulse used before was m /2n = 37 Hz

5-18
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as shown in Fig. 5-5, while for flexible walls it was w /2n = 32 Hz as
,

shown in Fig. 5-6. Using Eq. (5.36) we find that w /2n = 32.1 Hz,
,

which compares quite well with 32 Hz.

Thus, we conclude from these comparisons that the flexible wall solu-
tion of the acoustic wave equation is capable of predicting the
eigenfrequency w,to within 3%.

We need now to determine either the specific acoustic conductance or,
48-51equivalently, the damping constant A. Unfortunately, here

N52 53we have no theory to guide us , but experience suggests that the

value of the fluid damping factor ( = A I*N f r a welded steel struc-N
ture such as 4T of 0.045 is reasonable. Indeed this is about the
value obtained from the 4T Category I chugs. For the Mark II contain- !

54ment, the value of ( which will be used is set by regulatory guide ,

)

What now remains is to verify the assumption that S(w,2 ) is suffi-
s

ciently uniform that $ (r) is a good approximation to Y (*' ) I # *N N
Nth vibrational mode. This we shall do by comparing the mode shape
of the pressure response obtained during the Anamet tests with that I

computed by the flexible wall acoustic theory. This comparison can ;

easily be effected using the 4T acoustic transfer function H,. The |
defining equation for H, is |

I

p (r) = H (2|2,)S,(r,) . (5.43)g

The transfer function H,(2|r,) is given by |

1((rir,)=4ncp[Y(r)t(o){{ ! iD+A ~*) ~ '" A ' l e N (5.44)g N

N '

and og = tan-I[2mA(w +A -u) ] (5.45)N

I

where 9 (w,r) 3 t (r) as we shall demonstrate.
3 g

5-20



-

NEDO-24822 .

! u 37 Hr !
1 - i i a i i ; i i . i , i

-
-

6.0 -

- _

-
-

-
-

-
-

3.5 -
-

-
.

,2 -
.

w -
.

ce

g -
.

2 1.0 -
-

E -
_

_

, -
.

i
.

|
-

-

-i.5 - -

- \.
-

-

.

[j (a) PRESSURE
,

|
- V_

-4.0 t ? ! - ! . , e i , , , .

0 0.05 0.10 0.15TlME (SEC)

|

r

j 48 , 3 , ; , , , ,, ,

f

40 -
_

!

l 32 -

w _

8,

e
, a

24 -
-

c
w
'

I 4
| u
! E 16 -

-

D

8 - - (b) SPECTR AL
'

DENSITY

t

0 t. . - > ,

0.1 1.0 10.0 100
FREQUENCY (CPS)

Figure S-S Mark II Rigid Wall Pressure and Spectral Density at Basemat

5-21

G1002820-105



-
i

NEDO-24822
je.-- =r 32 Hz :j

. . . . . .

- -

6.0 - -

| . -

| _ _

_

!
_ _

3.s - -
,

. -

_ _

_ -

| -

'

2 1.0 - --

w
z . -

3
~

N
g _ -

_ -

-1.s - -

i

; . -

. - (a) PRESSURE
_ -

_ _

' ' ' ' '-4.o ' '' ' -

o o.os o.1o 0.1s
TIME (SEC)

.

48 i . ..i. z ii . . .

40 -

|
|

|

! 32 -
-

| w
t O

3
2
a
g 24 -

-

<
O
2
6 16 -

-

5

8 - -

(b) SPECTRAL
DENSITY

' ' ' ' ' ' ' ' ' ' ''' ' '' '
0

O.1 1.0 10.0 100
FREQUENCY (CPS)

l

Figure S.6 Mark II Flexible Wall Pressure and Spectral Density at Basemat

5-22

G1002820102
-- ,



_

.

NEDO-24822

Upon inspection of Eq. (5.17), it is immediately obvious that
i

H,(ili)=pG($,) for the case when 9N * *N. To demonstrate |g g

the effect of fluid-strue .ure interaction, we compare ((rli ) ing
Fig. 5-7 for both a rigid wall and flexible wall 4T.

The flexible wall case corresponds to a sonic speed c = 701 m/s and a
fluid damping factor ( = 0.045. Note that an effect of wall flexi-
bility is to increase the spectral density of the pressure in some
frequency ranges. We also see that the 4T responds (" rings out")
primarily in the fundamental mode N = 0 for an impulsive source. Thus,
under our assumption that (w,i)isuniform,thefundamentalmodeis

s

described by t (i) E $g(7) and depends on z as cos(nz/2L) as is seeno

from Eq. (4.12). The comparison between the mode shape obtained from
the Anamet test results and cos(nz/2L) is shown in Fig. 5-8.

We have thus been able to solve the acoustic wave equation in
geometries of interest with flexible walls. That we were able to do
so was, in principle, not in question. What is significant, however,
is that these solutions are no more complex than the rigid wall
solutions provided certain assumptions hold. These assumptions

circumscribe the fluid-structure interaction which is described by
thespecificacousticadmittanceS(w,i) r, equivalently,by6and(.s
Specifically:

(1) S(m,i ) must be sufficiently small such that Eq. (5.25) is valid,s

(2) (u,r ) must be sufficiently uniform such that the surface
s

integral of Eq. (5.25) may be neglected so that 9 (i) E [),3

(3) The boundary must be locally reactive with an acoustic impedance
z(u) given by Eq. (5.29).

Hence, we are able to compute the total flexible wall pressure field

p = p; 55 p2 (Fig. 5-1) via Eq. (5.10) where the Green's function G
+

w
becomes

5-23
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Figure 5-8 Normalized Mode Shape for 30 HZ as Estimated from

Anamet Blttle Test No.1 as a Function of Elevation
(GENERAL ELECTRIC CO)'PANY PROPRIETARY)
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2 @n o) $nG (rir ) = 4nc (5.46).*
IY^n * ~ (**iA )n n

j The rigid wall eigenfunctions 9, are given by Eq. (4.12) for 4T or by
' Eq. (4.27) for Mark II. The flexible wall <tigenfrequencies w, are

calculated from either Eq. (4.20) for 4T or Eq. (4.36) for Mark II
where the speed of sound used is that given by Eq. (5.40). The

damping constant A * $*n is obtained either by experiment, from an

! regulatory guide, or from a NASTRAN calculo, ion.
,

Essentially, we have reduced the description of the fluid-structure
|
| interaction to the parameters 6 and ( controlling the frequency shift

and damping respectively. We have already demonstrated that 6
adequately describes the speed of sound and thus the eigenfrequency
both in 4T and Mark II via Eq. (5.40). However, to provide further
verification of this method of treating fluid-structure interaction
without considering the structure per se, we again compare the predic-
tions of flexible wall acoustic theory with the results of a flexible
wall NASTRAN calculation for our 4T model. Both IWEGS and NASTRAN

used essentially the same chug source shown in Table 5-2, which is a
variant of the design source. For use in the NASTRAN computer program, i

however, the source had to be converted from a volume acceleration to
a linear acceleration. This conversion was accomplished by a multi-
plication constant which was obtained by requiring the peak pressures
calculated by IWEGS and NASTRAN to agree in a rigid wall 4T. The speed
of sound was chosen to be c = 1036 m/s (3400 fps). For IkIGS, the
effective speed of sound used to account for shift in eigenfrequency
is c' = 650 m/s (2131 fps) and is computed from Eq. (5.41) in the same

I manner that Eq. (5.38) was obtained from Eq. (5.35), viz:

2
c: c' [1 + 2 PC (I/l, + 1/a -1/2 (5.47).

P hy h*s
b ss,

|5-26 .
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Table 5-2 ;

CHUGGING SOURCE PARAMETERS (GE125) USED IN COMPARIS0N
OF IWEGS AND NASTRAN IN 4T

S(t) = - A,A( - 1) + A sin (w t)g i
1=1

3 2
Ag (m /s )* w /2n (H )z

0 5.2 (t = 36 ms)
1 0.73 5.0
2 0.43 12.6
3 0.13 20.9
4 0.10 28.7
5 0.23 39.1
6 0.48 45.6
7 1.30 56.1
8 0.29 63.9

l- To convert the source strengths A which are in terms of
g

3 2 2volume accelerations (m /s ) to linear accelerations (in/s )

suitable for NASTRAN Ai + (16760)Ag
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Values for the various constants are found in Table 5-1. Since the
NASTRAN model treats the base plate as simply supported, we set

~I-g = 647.1 S NASTRAN used a structural damping of 0.045 which was ;

manifest as a fluid damping factor of ( = 0.03. The comparison of the
IWEGS and NASTRAN results are shown in Fig. 5-9.

;

!

|

|

<

| I

* .

|
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6. COMPARISON OF CHUGGING NETHODOLOGY WITH 4T DATA

In the preceding chapters we have discussed in detail a chugging
methodology which separates the chugging phenomenon into three parts:
source, transfer function, fluid-structure interaction. We argued

that the chug source was an impulse or series of impulses delivered
to the pool by the collapse of steam bubbles. Since we did not model
the vent, the source had to include the vent response felt by the pool.
We showed in some detail that, to an excellent approximation, the pool
transfer function can be represented by the acoustic wave equation.
Finally, we determined that the fluid-structure interaction could be

33incorporated either via " separability" as shown by Sonin or by

simply solving the acoustic wave equation with flexible boundaries 38,39 ,

The flexible boundary solution required knowing how to obtain the

appropriate frequency shift g - f and damping constant , and we

have demonstrated that such "know-how" is available. These, then,
form the elements of the Mark II Improved Chugging Methodology.

In this chapter we shall demonstrate the utility of this methodology
by comparison with the 4T data. For this comparison we will incorpor-
ate the 4T fluid-structure interaction via the flexible wall solution
of the acoustic wave equation.

6.1 Source Investigations

Preliminary investigations of the chugging phenomena in the 4T were
made using simple source density functions with IWEGS. Two types of
source functions were used:

(1) Impulse, or triangular shape, and
(2) Simple harmonic, or sine waves.

All runs made were for the 4T geometry using the parameter values
shown in Table 6-1,

6-1
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Table 6-1

IWEGS INPUT FOR 4T PROBLEM

7.01 m (23 ft)Pool Depth =

2.13 m (7 ft)Pool Diameter =

1524 m/s (5000 fps)| Sonic Velocity =

0.0%Damping =

| Source Elevation = 3.66 m (12 ft)
31000 kg/m3 (62.4 lbm/ft )Density of Fluid =

| 6.1.1 Impulse Source
|

The triangular shaped impulse source function of 10 ms duration and I
1

3 '5.2 m /s amplitude was first employed. The results are shown in

j Fig. 6-1. Part (a) is the source strength time-history, part (b) is
the pressure response at the bottom-center of the tank, and part (c)
is the spectral density of the pressure response. The spectrum

density shows peaks near 55,160, and 270 Hz. From Eq. (4.20) using ;

parameter values from Table 6-1, the longitudinal normal modes are: |

Funi.amental 54.35 Hz-

j

163.04 Hz !1st Harmonic -

2nd Harmonic 271.74 Hz-

which agree very well with the spectrum peaks of Fig. 6-1(c). Again
using Eq. (4.20), using a 1.2197, the first radial mode is |=

01
872.91 Hz. Because the width of the impulse is relatively long and

-3the response has a factor of w , the amplitude of this mode will be,

! very small. Hence, for the 4T, the wave motion may be considered
1

| entirely one-dimensional, or longitudinal. As we shall see later, we
l i

l do not expect this to be necessarily true for the Mark II annular

geometry.
l

6-2
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A triangular shaped impulse source function of 20 as duration was next
employed. The results are shown in Fig. 6-2. As can be seen from the
spectral dencity, part (c), the results are similar to the 10 as tri-

angle test. This is not an unexpected result. In general, if S (i,)w
represents the Fourier transform of the time dependence of a point

source, the Fourier transform of the resulting pressure field p,(i) is
i given by

p,(i)=H,(ili,)S,(7,), (6.1),

where H ,(r|r,) is the transfer function from 2, to I and is the Green's
function multiplied by the fluid density (see Eq. (5.44)).

i
,

Thus, we expect the p to contain spectrum peaks in proportion to the
eigenvalue content of S,. The spectral densities of the 10 ms and

20 ms triangles are shown in Fig. 6-3. Examination of this figure

reveals that each source function exhibits power at the normal modes,
although the power of the 20 ms triangle is somewhat less than the
10 ms triangle. As we shall see later, this type of analysis can be

I used to tailor the source 1,. .cion to adequately represent the test
data.

6.1.2 Harmonic Source

i

A simple harmonic, or sine wave source function with a frequency of 5 Hz
3 2and 5.2 m /s amplitude was next employed. The results are shown in

Fig. (-4. A 10 Hz sine wave source function of the same amplitude was
also employed and the results are shown in Fig. 6-5. In both cases,
the results were similar; the output pressure response was a sine wave

'

at the same frequency as the input function. The . spectrum densities
show very small peaks at the pool fundamental mode. This is consistent
with acoustical theory. If a system is driven at a frequency lower
than the fundamental mode, the system will oscillate at the driver ,

frequency with some excitation of the normal modes.
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6.2 4T Sources

We have investigated briefly the behavior of the acoustic model with
several very simple sources. An impulse source was shown to excite
the pool fundamental frequency and the response from a simple
low-frequency sine wave source was found to be relatively unchanged at
the wall. We now attempt to reproduce the major chug types in the 4T
data by devising more sophisticated sotrees for input to the acoustic
model. We look at the Category I and II chugs for this comparison
since they are the basic types of 4T chugging data. Category III chugs
can be made by combining chugs from Categories I and II, and Category

'

IV chugs are bounded in amplitude by Categories I and II.

| The objective of this investigation was to find the source giving an
acoustic model response which best represents the available test data.
In Chapter 3 we argued that the chug source is either a single large
impulse, a series of smaller impulses, or a combination of the two.
It is not our intention to develop a chug source theoretically.

| According to experts in bubble collapse, no satisfactory theory
12<

currently exists Instead, we choose to create a source semiempiri-
)

.

cally, using the 4T chugging data base, and let ourselves be guided
by theory whenever necessary.

If p,(r) is known, S,(r ) can be empirically obtained viag

S (r,) = H (rir,)p (r)/lH,(rli,)] (6.2)g

:. swhere 11 is the complex conjugate of H, and |H,l = H,H . Eq. (6.2)g

states that the source is that function which, when operated on by the
transfer function, produces the observed pressure response. It is a

perfectly proper way in which a source function for a complicated
phenomenon can be obtained. However, besides being somewhat difficult

6-9



~

i

! l
! WEDO-24822

~

t

I to carry out, a source definition via Eq. (6.2) has the added disad-
vantage that it is not obvious how to perform the necessary vent-

frequency transformation when transporting S,(r,) from 4T to Mark II.
Thus, we decided to construct a far simpler source from im ulses and
sines with adjustable constants having values obtained from the data
being simulated. Transporting these sources to Mark II would present
no special problem since that part of the source associated with vent
frequencies is clearly indicated.

!
i

|
6.2.1 Category I Source

|
A Category I source is presumed to be composed af an impulse to repre-
sent steam bubble collapse plus a damped harmoric series to represent
the influence of the vent response to that impulse on the pool. Fori

impulse shape, we are guided by the inertia collapse of a spherical
cavity (Rayleigh collapse)l3,14 bea use this type of collapse produces
a pressure response indicative of a Category I chug (see Fig. 3-2).
The acoustic source produced by such collapse, however, becomes
inapplicable as the collapse proceeds. This is due, in addition to

the reasons stated in Chapter 3, to the fact that the cavity can
collapse into the vent, as in the case of the Anamet bell jar tests.

b'e proceed in an d hoc fashion as follows to obtain an approximate
impulse shape of an inertially controlled steam bubble collapse into
a vent. Initially, the bubble radius is assumed to have a radius equal
to that of the vent. As the collapse proceeds, the acoustic source

j strength is given heuristically by Eq. (3.1) until the surface area of
i

the bubble (2nR ) is equal to the cross-sectional area of the vent.
Thence, the source is equal to zero. The resulting source and a com-
parable triangular impulse are pictured in Fig. 6-6a and the corres-
ponding spectral densities in Fig. 6-6b. Although the preceding is
only a plausibility argument for representing an inertially controlled
bubble collapse with a triangular impulse, this must be close to the

true source shape because, when input to the transfer function H (r|r,),
the resulting pressure response compares well with the Anamet bell jar
tests as shown below. In fact, due to the similarity of the Fourier

6-10
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transform for a number of functional shapes, we could have equally well
56chosen a rectangular or haversine impulse;

,

!

In addition to the impulse, the Category I source must include the
response of the vent. This is shown by the results of our K-FIX
simulation (see Fig. 3-7). The vent response is a damped harmonic
series as is clearly shown by a low pass filtering of the test data as
shown in Fig. 6-7. Thus, the complete Category I source is given by

N

S (t) = - A,A( -1)+)[]A,e"*n sin (w t), (6.3)
~

y ,

n=1

|

where the w are the vent acoustic frequencies. The constants A,, A ,
3

I, o, and the number of vent frequencies N are obtained from the test
{

data and given in Table 6-2. The comparisons of our general Category
I source with the Anamet bell jar test, Chug #30, and Chug #71 with test
data are shown in Figs. 6-8, 6-9, and 6-10.

1

i

| 6.3 Category II Source

A Category II source is presumed to be composed of a series of small
impulsive bubble collapses. The frequency of these "minichugs" is
controlled by the vent acoustic frequencies (see Table 2-3). Thus,

i

( we represent a Category II source with
|

I
i

N i

yg(t)=u(T-t)}{'B sin (w t), (6.4)S
, n n

n=0 l

|
|

!

j where u(x) is the Heaviside step function. The constants T and B,are
obtained from the test data and given in Table 6-3. The comparisons of

our general Category II source with representative Category II chugs,

6-12
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Table 6-2

CATEGORY I SOURCE PARAMETERS FOR |

ANAMET BELL JAR TEST, 4T CHUG #30 AND CHUG #71

1
'

N

S(t) = - A,A( - 1) + [ A, e "n' sin (w t)
~

,
'

n=1
t

Parameter Anamet Chus #33 Chug #71

1

'
,

!
1

!

|
|

|

:

|

|

.

k
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The following Figures are CENERAL ELECTRIC COMPANY PROPRIETARY

and have been removed from this document in their entirety.

6-8 Comparison with Anamet Bell Jar Test No.8
6-9 Comparison with Data - Chug No.30

6-10 Comparison with Data - Chug No. 71

|

1

|

|
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i
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Table 6-3

CATEGORY II SOURCE PARAMETERS FOR

4T CHUG #11 AND CHUG #57

, Syy(t) = u(T-t) {B sin (w t)n y

n

Chug #11 Chug #57

i
|

|

|

|
|
;

1

I

|

|

|

|

|

!
1
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Chug #11 and Chug #57, are shown in Figs. 6-11 and 6-12.

Using the flexible wall solution to the acoustic wave equation, we
postulated a Category I and II source function which contained ad-
justable constants. These constants in general vary from chug to
chug due to the random nature of the chugging phenomenon. For appro-
priate choices of these constants, sonic velocity, and pool damping,

i

any chug can be simulated with either the Category I source, the
Category II source, a combination of the two, or, ultimately, a source
defined by Eq. (6.2). The advantage of our Category I and II sources,

is that they are tractable and can be combined in such a manner to
obtain a design source with relative ease. The sources clearly
identify which parts are related to the vent acoustic frequencies and
are transportable from 4T to Mark II in a trivial fashion.

.

|
4

r
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The following Figures are GENERAL ELECTRIC COMPANY PROPRIETARY

and have been removed from this document in their entirety.

6-11 Comparison with Data - Chug No.11

6-12 Comparison with Data - Chug Ne.57

,
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7. MARK II DESIGN SOURCE APPLICATION

7.1 Introduction

The strategy will be to find a volumetric acceleration time dependent
point source at the 4T vent exit which produces a pressure signal at
the 4T bottom-center that fulfills certain signal strength, frequency,
amplitude, and decay criteria. A single source representative of
actual. rindom sources will be found. This source will be regarded as
ciaracteristic of chugging and associated system responses so that,
after frequency modification for the vent length element of the system
and considering a range of pool acoustic speeds, it can be used in
Mark II. The signal will be subject to a different damping criterion
from source to pool boundar*; in Mark II than in 4T. The distribution
of source strengths in 4T is considered to be applicable to Mark II
plants because of the prototypical nature of the 4T geometry and test
conditions.

|
Two loading cases will be provided: symmetric and asymmetric. For

-
'

the symmetric case, the source will be applied synchronized at all
vents. For the asymmetric case, the waveform of the symmetric case
source will be increased and decreased in amplitude and each will be
applied synchronized at all vents in each half of the pool. The

criteria and source history for the symmetric case will now be
described.

7.2 Symmetric Load Case

For the symmetric loading case, the design source found is to
correspond to a Mark II suppression pool boundary forcing function
which is suitably conservative with respect to its anticipated
structural consequences on the basis of the maximum average pressure
over the pool boundary; that is, maximum in time and average
spatially. Thus, conservatism with respect to responses due mainly to
vertical floor modes and symmetric shell modes is provided for. It is

7-1
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assumed that a maximum average pressure criterion will be
conservatively implemented by considering that all vents chug
synchronously. And, it is assumed that chugs which occurred

sequentially at the 4T vent can occur simultaneously at plant vents on
the bases of (1) lack of trend with time into test of chug strength,
as shown in Fig. 7-1 which shows chug RMS by time into test, and (2)
actual chug strengths depending on local steam-water interface
conditions at vent exits, which will differ among vents. The source
for a suitably conservative maximum average pool boundary pressure in
Mark II will produce a pressure history at bottom-center of 4T which
meets criteria for signal strength, frequency content, peak and final
amplitudes, and decay rate. These criteria will now be described.

|

|(1) Criterion for Signal Strength ;

I

|
Overall signal strength will be characterized by the mean square 4T |
bottom-center pressure (BCP) signal taken over 0.768 seconds, chosen |

1

as discussed in Section 2. Since the average effect of all vents '

chugging with different actual chugs is anticipated to be applicable
in Mark II, one might adopt the mean mean square of the 137 chugs in
the data base, which was 110.3 kPa2 (2.32 psi ). But conservatism was I

2

introduced by assuming that only Category I and III (higher strength) |

chugs might occur in a Mark II pool instead of essentially the same
distribution among chug categories as in the data base and adopting as
the design objective mean square that of the mean of the 39 Category I
and III chugs. This is 181.6 kPa2 (3.82 psi ),2

(2) Criterion for Frequency Content |

There are three parts to the criterion for frequency content.

First, the strong 5 and 13 Hz components are taken as fundamental and
first harmonic of the vent acoustic response. These frequencies, I

increased in the Mark II application by the ratio of 4T vent length

1
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to plant vent length, are to be applied in the source as 0.768-second
sinusoids with zero phase. As to strength, the 4T BCP PSD of these
frequencies must bound the mean PSD of these frequencies for the
137-chug data base.

Second, the strong signals in the 20 to 30 Hz range are taken as pool
response reinforced by the second harmonic of vent response varying in
frequency because of changes in pool acoustic speed. The mean PSD in
this range for Categories I and III is bounded by the 4T BCP from the
design source. To cause this BCP signal, an initial negative

triangular impulse is used in the design source, the acoustic pool
model producing the appropriate frequency at 4T BCP using a selected
pool acoustic speed following correction for fluid-structure

interaction. This frequency will be modified in Mark II by requiring
that a range of pool acoustic speeds from 732 to 1311 m/s (2400 to
4300 fps) be used. (These values are without the 4T fluid-structure
interaction correction.) The source impulse does not change, however.
A source base width of 0.036 seconds is chosen based on the observed
duration of prechug underpressure in 4T.

|

And third, higher frequencies are introduced in the 0.768-second
zero phase sinusoids in the source at discrete higher vent harmonics )
having strength sufficient to bound the mean PSD of the 137-chug data J
base from 30 to 80 Hz. The frequencies of these signals are also to l

lbe increased by the vent length ratio.

1

(3) Criteria for Peak and Final Amplitudes

1

While it is assumed that any signal waveform fulfilling the mean '

square and frequency criteria will cause similar structural responses,
two 4T BCP amplitude criteria are also adopted. First, it is required
that the 4T BCP signal from the design source have a peak positive
overpressure (POP) at least equal to the mean POP of Category I and )
III chugs. This is 55.9 kPa (+8.1 psi). It is required to occur on |
the first positive cycle, as in the 4T waveforms. And second, it was I

required that the final cycle have peak amplitudes of 20.7 kPa |

7-4
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(13 psi), values conservatively representative of 4T BCP signal
amplitudes at the end of the 0.768-second period.

(4) Criterion for Decay

The 4T data exhibit a decaying waveform in both the vent and the pool
for the Category I and III chugs. It is expected that the Mark II

will display similar decaying waveforms; however, the rate of decay is
not expected to emulate that observed in 4T. Thus, for conservatism,
it is required that the signal associated with the 4T vent waveforms
be incorporated into the source as unattenuated (undamped) sinusoids.
The only damping allowed will be that originating from structural
damping specified by regulatory guide as Mark II unique. That damping
characteristic of Category I and III chugs in 4T corresponds to 4.5%
in the fluid. To ensure that there has been no error toward
nonconservatism, the Mark II chugging design source will be
constructed using a value of damping in the 4T fluid of 6%. This
requires a stronger source to produce the same BCP in 4T than
otherwise would be the case.

.

The design source found meets all of these criteria. It can be

expressed by the equation

S(t) = - A,A(2 3) , g sin (2nf Rt) (7.1)n 9

n=1 '

3 2where S(t) is the volumetric point source acceleration, m /s , and
= 0.036 second is the duration of the impulse. The triangularI

impulse function A is defined by Eq. (3.3). Values for the design
chug source parameters are given in Table 7-1. Note that this source
is made unique for each Mark II via the parameter R which is defined
as the ratio of the 4T vent length 28.65 m (94 ft) to that of a
specific Mark II.

7-5
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Table 7-1
DESIGN CHUG SOURCE PARAMETERS

2
fn (Hz) An (m /s )

5.20 -

1 5 0.70
2 12.6 0.44
3 20.9 0.10
4 28.7 0.08
5 39.1 0.14
6 45.6 0.25
7 56.1 0.25
8 63.9 0.13

On criterion (1), the mean square of the design source signal at 4T
BCP is 291.4 kPa2 (6.13 psi ), while the objective was 182.1 kPa2 (3.822

2
psi ). The excess is a consequence of fulfilling the other criteria.

On criterion (2), the PSD of the 4T BCP signal from the design source
is compared to the mean PSD of all 137 chugs in the data base in

Fig. 7-2. It is compared to the mean PSD of each chug category in

Fig. 7-3 and to the mean PSD of Categories I and III in Fig. 7-4.

The pool response peak at 25 Hz corresponds to an assumed acoustic
speed of 701 m/sec (2300 fps) following adjustment for fluid-structure
interaction and air content.

On criterion (3), the POP of the design source at 4T BCP is 75.1 kPa
(10.9 psi) exceeding the criterion of 55.8 kPa (8.1 psi). The final
amplitudes exceed 120.7 kPa (13 psi).

The design source history is shown in Fig. 7-5; impulse, sinusoids,

and net signal are shown. The signal from it at 4T BCP is shown in

Fig. 7-6.

Further indications of the degree of conservatism of the 4T BCP signal
2from the design source are that the mean square of 291.4 kPa

2(6.13 psi ) exceeds that of 91% of the chugs in the data base and the
POP of 75.1 kPa (10.9 psi) exceeds that of 91% of the chugs in the
data base.

7-6
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The following Figures are GENERAL ELECTRIC COMPANY PROPRIETARY

and have been removed from this, document in their entirety.

7-2 Chug rms versus Time into Test

7-3 Comparsion of Design Source Rssponse PSD Compared to
Mean PSDs of the Four Categories

7-4 Comparison of Design Source Response PSD

to Category I and III PSDs

.
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Throughout this analysis, the 4T BCP signal mean square and PSD have
been the principal bases for evaluating total signal strength and
signal strength by frequency. Let us examine whether these are the |

measures most pertinent to structural consequence.
1

|

One alternative would be to use peak overpressure alone; but no
frequency information is conveyed. Another alternative would be to

use response spectra which evaluate the peak response of single degree
of freedom (SDOF) " structures" for these highly transient chug events.

For low frequencies having few but constant-amplitude cycles during
the chug event, the reduced response due to shortage of cycles to !

achieve steady state response would be properly reflected in the
response spectrum. With the PSD, this problem is overcome by using )
the same time duration for application as was used for test '

evaluation. With response spectra, there is the question of whether
,

1

the mean (peak) response at each frequency is a suitable profile for a <

|" total" (all-frequency) response since there is no measure ofmean
;

total signal response. With the PSD, however, there is a single !
|measure of total signal strength, the total mean square, and it is

arithmetically equal to the area under the mean PSD values at all

frequencies. Response spectra vary depending on the critical damping
chosen, a factor not affecting PSDs. However, when it is required
that a synthesized signal correspond to a target signal using response
spectra, this is ordinarily done at two different damping values so
that waveform by frequency is better matched.

In the case of chugging, as transient as many of the signals are,

signal root-mean-square (RMS) by frequency from PSDs is very closely
correlated with the 2% response spectrum by frequency. This is shown
in Fig. 7-7 through 7-10 for four different frequency ranges by there
being little scatter of points aoout the lines. (The slopes of the
four lines are also nearly identical because the measured response
spectrum values were adjusted to steady state response by dividing by
the fraction of steady state response achieved in the number of cycles

7-10
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The following Figures are GENERAL ELECTRIC COMPANY PROPRIETARY

and have been removed from this document in their entirety.

7-7 Steady State Response Spectrum versus rms 4T
Run 28 Chugs, 4 to 6 HZ

7-8 Steady State Response Spectrum versus rms 4T
Run 28 Chug, 13 Hz

7-9 Steady State Response Spectrum versus rms 4T
Run 28 Chugs, 17 to 22 Hz

7-10 Steady State Response Spectrum versus ras 4T
Run 28 Chugs, 30 Hz
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of the particular peak frequency which occurs in the 0.768-second
interval. This fraction of steady state cycles for 2% damping systems
appears in Fig. 7-11.) Thus, the PSD method reliably reflects

structural consequence by frequency, even for events as transient as
chug response signals. Nevertheless, to ensure that any possible

special effect of waveform on structural response is considered, peak
and final amplitudes are included in the criteria.

The symmetric case fulfills the Newmark-Kennedy criteria for combining
response peaks by the square root of the sum of the squares (SRSS)
method. Two of the criteria deal with forcing function peak

amplitudes. One is that the design peak amplitude exceeds the upper
84% point in the distribution of peak amplitudes among recurrences of

2the event. For '.he symmetric case, the mean mean square is 110.3 kPa
2(2.32 psi ) and the variance among mean squares is 1763 kPa4 (0.78 psi')

2 2fo r a standard deviation of 42.3 kPa (0.89 psi ). Taking the
distribution of mean squares as approximately normal out to a least
one standard deviation, the upper 84% point is at mean plus one
standard deviation, which is 152.1 kPa2 (3.20 psi ). Because the 4T2

BCP mean square of the design source is 291.4 kPa2 (6.13 psi ), it2

clearly meets this Newmark-Kennedy criterion since probability points i

for both peak amplitude and mean square will correspond for similar
overall waveforms. The other Newmark-Kennedy criterion on peak

)amplitude is that the ratio of design to median peak amplitude is at
least 1.15. Using the mean mean square for the median, the ratio of |
peak amplitudes for similar waveforms can be found from the square
root of the ratio of mean squares, (6.13/2.32)1/2 = 1.63, which
exceeds 1.15. Thus, the design objective mean square for the
symetric case meets the two Newmark-Kennedy peak amplitude criteria.
Other criteria on signal duration, waveform, and zero mean must also
be met by examination of forcing function histories.

7.3 Asynunetric Load Case
1

l

Attention will now be turned to the asymmetric load case.

|

l
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In principle, chuying could produce some lateral force or overturning
moment on the pool boundary as well as a symmetric force. This could
be due to unequal strengths among chugs or to pool boundary signals |
which are not exactly in phase throughout the pool. To account for 1

this possibility, an asymmetric load case will also be provided. It

will be defined in terms of vertical moment on the floor, and it will

be assumeI that the source pattern developed will also have essen-
tially the same conservatism for other characterizations of asymmetric
loading such as containment lateral force, etc. The criterion will be

in terms of a quantity called RMS-moment. Compared to maximum actual

floor moment, which is the integral of the pressure-area-moment arm
product taken at an instant when there is an unfavorable combination

of pressure values over the floor, the RMS-moment is the sum of

products of RMS values at 4T BCP of randomly chosen chugs and the
,

,
.

moment arm of a point beneath each vent. The RMS-moment is selected
because its probability distribution is much easier to evaluate than

that of the actual moment, yet a chosen asymmetric pattern of sources
will be equally conservative in its effect in both distributions as to

having a selected small exceedance probability. That is, the values |

in the probability distributions of RMS-moment and maximum actual

moment are assumed to be simply proportional to each other.

A number of general aspects of the RMS-moment will be touched on,
followed by further details on some assumptions, and then a derivation
of the 1 + a and 1 - a adjustment factors required.

Maximum actual floor moment will have plaat-specific values and will
depend on the nature of pool modal response. To provide an appro-
priate generic asynnetric set of sources, however, the view is taken
that a source will cause a 4T BCP single-cell pressure history over a
region beneath each vent, the region for each vent having the same
area. In actuality, if pool boundary pressures are not synchronized
over the pool and/or result from varying source strengths, tha fact
that identical instantaneous single cells would not be formed over
the pool could be expected to lead to decreased pressures where high
pressures were expected and increased pressures where low pressures

7-14
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where expected with the result that maximum actual moments could
easily be less than implied by the spatial distribution of their

sources. Thus, it is regarded as either appropriate or conservative
to characterize a possible asymmetric effect oi chugging in terms of
sources which would produce a chosen 4T BCP RMS-moment over the floor.

By considering the probability distribution of 4T BCP RMS values, we
can proceed with a method which assumes that such RMS values occur

randomly over the pool, from which, by statistical methods, we can
characterize the probability distribution of RMS-moment, select an
upper probability point, devise any one simple actual deployment of
RMS values such that they provide the desired RMS-moment, and make a
corresponding deployment of source strengths at the vents.

There is evidence that the foregoing approach is valid regardless of
the detailed phasing relationship among pool boundary signals. That
is, for all signals in phase but of a different strength over the
pool or randomly separated signals in their degree of synchronization,
sensitivity testing using potential flow shows that virtually the
same value of maximum instantaneous containment lateral force is
achieved - at a chosen small exceedance probability - regardless of
the exact synchronization of the chug signals from fully synchronized
to random variation up to one-third of the 0.768-second chug duration.
Greater desynchronization leads to a decreased asymmetric effect.
Thus, for simplicity, sources may be applied synchronized for the
asymmetric case, as for the symmetric case, and still provide a suit-
ably conservative asymmetric pressure effect.

This completes the assumption of the method. A number of aspects will
now be discussed in detail, following which the equations will be
derived for calculating the two required chug source strengths.

Since appropriate source strength by frequency was used in the
symmetric case, the same source history waveform is used for the
symmetric case except it is reduced and increased in amplitude for
application to the two halves of the pool. Thus, the asymmetric case

7-15
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is just as conservative in its symmetric effect as the symmetric case
1itself but it add 1M ortally provides a conservative asymmetric
;

excitation.

|

1

If it is assumed that all vents may not chug at near the same time,
the spatial listribution of vents not chugging is regarded as random
t ; th the effect that the floor moment would simply be reduced in
magnitude. Accordingly, it is assumed that all vents chugging will

provide the F.> .st floor moment.

Under random assignment of chug strengths to vents, it is surprising
to note that exact chug synchronization - and thus simultaneous

occurrence of peak pressure values on the pool boundary - leads to the
same asymmetric effect at some small nonexcecdance probability as do
vtrious degrees of random nonsynchronization. A study using actual 4T
chug bottom-center pressure histories showed that, in 50 trials of
assigning randomly chosen 4T BCP histories to vent exits in a Mark II
configuration under potential flow conditions, the maximum value of
peak instantaneous lateral force on the containment portion of the
pool boundary was very nearly the same for the cases of all chugs
synchronized as it was for chugs occurring at random with a uniform
probability distribution. This pattern is shown in Fig. 7-12. In the

,

synchronized case, the lateral force was due to a relatively high positive
pressure at one side of the containment together with a relatively low
positive pressure at the other side. With nonsynchronization, positive

and negative parts of the waveform can occur simultaneously; this feature
tended to have a balancing effect so that the maximum peak lateral force
was due at a relatively high positive pressure on one side of the containment

and a relatively low negative pressure on the other side. It is assumed

that Mark II pool boundary chug wave forms would show a a effect;

therefore, the criterion for the asymmetric case deals with tne distribution

of peak pool boundary pressures occuring simultaneously-implemented in the
distribution of the rms-monent-without the need to consider random phasing
as well.
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The asymmetric case criterion will be in terms of an exceedance
probability of RMS-moment. The corresponding value of RMS-moment will

1be found on the basis that the distribution of RMS-moment is normal.
|

This assumption is anticipated to be reasonable because, while the I

distribution of 4T chug RMS is skewed (long-tailed) to the right, the )
RMS-moment is determined by the sum of products of RMS dues and |

|moment arms, particularly moment arms to vents opposite each other and l

most distant from the axis of rotation. The moment arms are linear )
multipliers. Provisions of the central limit theorem apply. This

1theorem states that the distribution of the sum of several randomly '

chosen values from even an arbitrary distribution tends to normality
as the number of values is increased and as the distribution of the I

iunderlying population of individual values is closer to normality. )
i

(The tendency of s uple means from an arbitrary distribution to be
;

normally distributed is a well-known illustration of the central limit

theorem.) Thus, a value of RMS-moment chosen by normality to fulfill
a criterion for exceedance probability is considered to be likely to
actually have that probability in application. Even under a departure
from no rmality, the chosen RMS-moment will have only a slightly
different exceedance probability from the one in the criterion.

This concludes discussion of the assumptions in the method for the
asymmetric cases. We proceed now to state the criterion, and derive

1

the equations for calculating the two chug source strengths required. |
|
|

The criterion for the asymmetric case is that a value of RMS-moment is I

to be found such that it is exceeded in no more than one poolwide chug
per hour of chugging. With poolwide chugs assumed to occur at the
same rate as in 4T, which is approximately every two seconds, the
probability criterion for one per hour is 1/1800, found in one tail of
the absolute-valued half-normal distribution for RMS-moment - and
therefore at the 1/3600 ordinate in one tail of the complete normal
distribution - which is at 3.45 standard deviations above the mean.

7-18
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To find the RMS-moment corresponding to this criterion, we first
require the equation for RMS-moment as a random variable so that its
mean (expectation) and variance can be calculated and used to
characterize its distribution.

The RMS-moment is computed by applying randomly chosen 4T BCP RMS
values to the pool floor beneath each vent, as

n

{Lg (PRMS)i (7.2)M Eg3

i=1
:

where
|

| MRMS = RMS-moment, kPa-m, a random variable

L. = moment arm to centerline of i vent, positive and negative*'

values about the axis of rotation, ft

=R cos O whereg g

thR radius to centeiline of i vent, fta
g

th8. = angular location of i vent, where 0* is normal to the
1

axis of rotation on the side having positive L values,
gas illustrated in Fig. 7-13

th(PRMS)i = RMS at 4T BCP of chug at i vent, kPa, a random variable

n = number of vents.
(
' Since P is a random variable, M is also a random variable takingg3 RMS

on different values ss different groups of a P values occur.g3

We require the expected value (mean) and variance of M
MS '

n

E(M = E[P I b , by applying the expectation operator (7.3); RMS RMS i

to the MRMS '9""'i "*gg

= 0 if vents are symmetric about the axis, due to [Li = 0.

:
1
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n

V[MRMS] = V[PRMSI bi , by the propagation of errors method (7.4)
and independence of P values amongi=1 RMS
the vents.

From the 137-chug data base, E[PRMS} = 9.65 kPa (1.4 psi) and V[Pg3]
= 19.02 kPa2 (0.4 psi ),2

Assume that M is normally distributed. The design value of Mg3 RMS'
designated MRMS, at the upper 1/3600 point of the M distribution

RMS
is found at 3.45 standard deviations above the mean; thus,

*
MRMS = E(Mgg] + 3.45 (V[Mgg])1/2 (7.5).

Use the positive E[MRMS} if it is not 0.

*
M can be made to occur due to a +AP applied beneath all vents onRMS gg
one side of the axis and -AP applied beneath all vents or,the othergg
side. AP in kPa can be computed for one side, on a plant-specificRMS
basis, by

*

"RMS
APRMS * 2 (7.6)({( - Qj .

one side, other side,

positive L , negative L _
i g

To find the proportional basis for adjusting the source, define

RMSo= (7.7)
RMS,D.S.

where PRMS,D.S. E the RMS of the design source at 4T BCP, kPa

= (291.4)1/2 = 17.1 kPa (2.5 psi)

7-21



._--

l
_

WEDO-24822

Thus,

a = AP I *)/I *1 (*)
RMS

and the amplitude adjustment factors on the symmetric source for a
plant are 1 + a and 1 - u.

The Mark II source used for the symmetric load case is adjusted in

amplitude to obtain two new sources

S (t) = (1 + a) S(t) (7.9)
3

S (t) = (1 - a) S(t), (7.10) i2

where a is calculated as shown in Eq. (7.8). S (t) is applied to all
g

vents on one side of the diameter chosen as the axis of rotation, and |

S (t) is applied to all vents on the other side. They are applied
2

i simultaneously. I

:

The same considerations for calculating pool boundary forcing functions
are to be made for this case as for the symmetric case.

1
I
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8. APPLICATION TO THE MARK II CONTAINMENT

As discussed in Chapter 5, two equivalent methods can be used to
calculate the Mark II containment response due to chugging. These
methods are briefly outlined in Figs. 8-1 and 8-2.

Fig. 8-1 shows the flexible wall application method wherein the
appropriate damping and corrected sonic velocity are used with the
design source distribution in IWEGS/ MARS to calculate the total
flexible wall pressure field in the Mark II containment. The total
flexible wall pressure field is then applied to a containment
structural model without water for the calculation of the containment

,

response. The sonic velocity input to IWEGS/ MARS in this method is

corrected from its rigid wall pure water value by use of Eq. B.l. The

damping value input to IWEGS/ MARS is specified by regulatory guide 54
for the type of structure under consideration (e.g. , steel, reinforced
concrete, prestressed concrete).

Fig. 8-2 shows the rigid wall application method wherein the
appropriate sonic velocity is used with the design source distribution
in IWEGS/ MARS to calculate the rigid wall pressure field. The rigid-
will pressure field is then applied to a coupled fluid-structure
containment model for the calculation of the containment response.

|
The sonic velocity input to IWEGS/ MARS in this method is selected from
the range of values specified in Chapter 7. Eq. B.1 can be used for
this calculation if the distensibility 6 is set equal to zero.

Details of the selection of sonic velocity, damping, and the design
source distribution are discussed in Sections 8.2, 8.3, and 8.4.
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8.1 The Mark II Containment and Vent Geometry

The geometry of the Mark II containment selected for use in this sample
caltulation is shown in Figs. 8-3 and 8-4. The downcomers are set on
four radii at approximately 15 intervals in a somewhat irregular

pattern. The downcomer exits are all at the same elevation z3 (3.65 m,
12 ft) and the pool deptn, z = L is 7.39 m (24.25 ft). The origin of

3

the IWEGS/ MARS annular coordinate system is on the containment -

centerline on top of the basemat as shown in Figs. 8-3 and 8-4

8.2 Selection of Sonic Speed and Damping
'

The calculation of rigid wall pressure time-histories corresponding to
the improved Mark II chugging methodology requires, as a parameter,
the speed of sound in the suppression pool water. The characteristic
vibration frequencies of the suppression pool water are directly
proportional to the sonic speed. It was observed, during 4T testing,
that the vibration frequency of the wetwell water generally increased
over the course of a given test. This is believed to be due to the

fact that air was being driven from the water with increasing water
temperature. To account for this frequency shift in a Mark II analysis,
it will be necessary to perform the calculations over a range of sonic
speeds. Each result must then be regarded as an equally likely
consequence of the chugging phase of a postulated loss of coolant
accident (LOCA).

In the absence of a direct measurement of the sonic speed during the
4T tests, it is necessary to infer an appropriate range from the
measured vibration frequencies of the wetwell liquid. This is done
with the use of the well-known formula relating the vibration frequency

to the sonic speed:

f=k (6.1)
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where:

f = vibration frequency, Hz

c = sonic speed, m/s
L = water depth, m.

This formula applies to the case of one-dimensional fluid vibration
i,n a rigid cylinder container with a free surface. A modification

is required to account for the effect of container flexibility.

Appendix B shows that for the 4T material and dimensions this effect

reduces the frequency by 42%. Thus, for the 4T, the relationship

between sonic speed and frequency becomes:

f = (0.58) c (8.2)4L

The range of sonic speeds was determined from the observed range of
pool vibratice frequencies for Category I and III chugs. These 39

chugs represent the fraction of the 4T data base for which the chug
impulse imparted to the pool was of sufficient strength to excite its
natural vibration mode.

The ringout frequency is determined to be between 17 and 27 Hz. Thus,

the range of sonic speeds for chugging due to the presence of air is

732 m/s (2400 fps) $ c 1 1311 m/s (4300 fps) (8.3)

If the method of separability is selected to assess for fluid-structure
interaction (see Fig. 5-1), then IWEGS/ MARS will be used to generate

rigid wall pressures (p3) and the sonic speed is to be selected from
the range in Eq. (8.3). However, if IWEGS/ MARS is required to generate

flexible wall pressures (p3 + p2), then the range of sonic speeds in
Eq. (8.3) is further modified to account for containment flexibility
via

8-7
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'

c' = c4 2 (8.4)1+ c3

where the distensibility 6, when multiplied by the gross supression
pool volume, is the volume flexibility. The volume flexibility V6 is j
a measure of the increase of volume per unit pressure applied and is '

containment unique. !

8.3 Selection of Damping Factor

As demonstrated in Chapter 5, the damping of the pressura response is i

essentially due to energy dissipation in the structure (see Eq.
(5.28)); for design, structural damping values are specified by f52regulatory guide The proper damping value to be used in IWEGS/ MARS.

depends on how the fluid-structure interaction is to be treated. Thus,
two choices are possible. If IWEGS/ MARS is to provide rigid wall

|

pressures which in turn will be used as input to a suitable structural '

analysis model with compressible fluid elements, then of course the I
;

damping factor ( E ,/g, = 0. On the other hand, if IWEGS/ MARS is
! used to provide total flexible wall pressures which are to be used in

conjunction with a structural model without water, i.e., a " dry
containment," then the proper damping factor to use is that which
produces a damped pressure response comparable with the response
generated by a fluid-structural model. For example, an impulse input
to the NASTRAN Mark II model shown in Fig. 5-4 yields the flexible
wall pressure response given in Fig. 5-6. The average value of the

, damping constant ( given either by an average of the logarithmic
l
; decrements or exponential fits yields ( = 0.093 + 0.005. The value of
1

the damping factor input to the model was 0.02 for the structure.
The soil-structure interaction was considered and significantly
contributed to (. For the following example, a nominal value of
( = 0.04 was used in IWEGS/ MARS.

|

|
|
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8.4 Calculation of the Asymmetry Factor
:

For design, two load cases are considered: symmetric and asymmetric.
The symmetric case needs no further elaboration. However, for the

asymmetric case, we obviously cannot use the same source at all vents.

Instead, all sources are adjusted by the source asymmetry factor a.
Given a specified vent pattern, a is calculated from Eq. (7.8). For our
prototypical Mark II containment a = 0.167. Asymmetric sources S (t)

g

and S (t) are then computed via Eq. (7.9) and applied at vent locations2

described in Fig. 7-13.

8.5 Results

Using the design source described in Chapter 7 and the sonic velocity,
damping, and asymmetry factor discussed in the previous sections, the
flexible wall pressure field in the sample Mark II containment was
generated.

Figs. 8-5 and 8-6 show the pressure time-histories in a radially-
oriented plane at 0 for the symmetric load case. The eight pressure
transients shown in these figures are for points P1 through P8 as shown
in Fig. 8-4. Fig. 8-7 shows flexible wall pressure time-histories at
the intersection of the containment wall and basemat at five different
angles from 0 to 180 for the symmetric load case. Figure 8-8 shows
five pressure time-histories at the intersection of the pedestal and
basemat for angles between 0 and 180* for the symmetric load case.

As can be seen from these figures, all the pressure traces are very;

similar in appearance. The peak overpressure on the basemat is on the
order of 20 to 28 kPa (3 to 4 psid). Peak underpressures are of a
similar magnitude. Pressures near the pool surface are less than those
on the basemat, as expected. Decay of pressure occurs in all the
pressure traces after 0.768 sec, which is the time at which the source
ceases to act. The initial portion of the pressure time-histories
shows no decay. This is due to the fact that the damping constant for
the vent sine waves in the design source is conservatively assumed to

8-9
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be zero. A spectral analysis of a typical flexible wall pressure time-

history is shown in Fig. 8-9. Contribution from the pool axial

fundamental at 25 Hz can be seen along with a contribution from the vent
fundamental at 10 Hz.

\<

Asymmetric load case results can be seen in Fig. 8-10 where flexible

wall pressures at the intersection of the containment wall and basemat

at 0* and 180 are shown. The pressure time-history at 0 is in the
middle of the "high side" of the pool where the design source strength
has been multiplied by (1 + a). The pressure time-history at 180 is

in the middle of the " low side" of the pool where the design source has
been multiplied by (1 - 0). These two traces show that the limit of

the asymmetry in the asymmetric chugging load is less than 14 kPa
(2 psi). A comparison of the asymmetric load case peak overpressure
and peak underpressure with the bounding load specification is shown
in Fig. 8-11.

'

The symmetric load case flexible wall pressure field was then applied
to the Mark II containment structural model shown in Fig. 8-12. This
structural model is an ANSYS finite element model of a typical
reinforced concrete Mark II containment. Flat shell elements are used
to model the reinforced concrete containment structure and the reactor
vessel. Pipe elements are used to model the columns supporting the
drywell floor. The ANSYS program uses stiffness proportional-damping.
A damping value corresponding to a structural modal damping value of
approximately 4% was used.

Acceleration response spectra for various important nodes in the
,

containment are shown in Figs. 8-13 through 8-17. Results for the

improved chugging load (shown as solid lines) are compared to the
Dynamic Forcing Func tion Information Report (DFFR) bounding load
(dashed lines). The four curves shown for each load definition
correspond to spectral damping values of 0.5%, 1.0%, 2.0%, and 5.0%.
The improved chugging load acceleration response spectra peaks are two
to seven times lower than the bounding load except on the RPV in the
vertical direction where they are similar to the bounding load results.

8-14
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GLOSSARY OF SYMBOLS ~

Radius of 4T cylinder or outer radius of Mark II annulusa

A Cross section area (B.2)
A Category I source strength term (3.2)n

b Inner radius of Mark II annulus (pedestal)
2B = pc Bulk modulus (Appendix B)

B Category II source strength term (3.4)n

c Acoustic speed

c' Effective acoustic speed (2.4), (Appendix B)

D Diameter of cylindrical tank (4T)

f = w/2n Frequency

g Geonetrical factor (B.8), (Table B-1)

g(rlr,) = * Green's function for infinite space

G General Green's function (4.2), (4.3)
G

k Green s function for frequency w/2n (4.2-

h Boundary thickness

H, Transfer function (5.44)
.

G-1
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I A constant (5.37)

J,(x) Bessel function of order m

J'(x) Derivative of Bessel function of order a

i

k = w/c Wave number
i

K (w) Flexible wall eigenvalue (5.3) )n

i

1 Axial quantum number (see page 4-7)
i

L Water depth
N

L Spatial differential operator (3.9), (5.1)

Azimuthal ~ quantum number (see page 4-7)m

M = p,h Effective mass per unit area (5.30)

! l
i

Radial quantum number (see page 4-7)n

n = n,m,2 Quantum number trio (see page 4-7)<

N,(x) Neumann function of order m

p Acoustic pressure (3.10)

p, Equilibrium pressure (3.10)

P Total pressure (3.10)

i

| q Chug source function
I

( Fourier transform of chug source function

G-2
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r Radius fron. o;igin ~

Radius vector from originr

r, Radial position of source in 4T

r) Radial position of jtt source in Mark II

R=|I-7,1 Distance between source and observer

R = 2(,b , Boundary resistance factor (5.30)

R, Initial void radius (3.1)
R(t) Void radius (3.1)

s Entropy per unit mass (3.7)

S Surface area

S(t) Chug source strength (3.1), (3.2), (3.4)

t Time
,

T Temperature (3.7)

T Duration of Category II chug source (3.4)

u(x) Heaviside step function

72 Acoustic fluid velocity (3.5), (3.6), (3.7)

Ac ustic fluid velocity normal to the boundaryu
n

V Water volume

V Noncondensible (air) volume (B.20)g

V Liquid volume (B.20)g

Boundary displacement (3.9)w

G-3

.
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x Air volume fraction (B.23)

Y Young's (elastic) modulus (Table 5-1), (B.4)

z Elevation from origin

z, Axial position of source in 4T

!

z) Axial position of jth source in Mark II

z(e) = p/u Acoustic impedance (5.30)

a Characteristic numbers for Bessel functions inmn

cylindrical geometry (4.16) ;

S(w.r,) Specific acoustic admittance (see page 5-6), (5.5) |

|(w) Spatial average specific acoustic admittance (5.30) |

.

y Characteristic numbers for Bessel functions in annularmn

geometry (see page 4-11)

6 Acoustic density change (3.10)

6 Boundary distensibility (2.4), (5.39)

6(x) Dirac delta function (4.3)

6,9 Kronecker delta symbol (4.13)
>

c, Normal::ation constant (see page 4-7)

(= /m Fluid damping factor
N

(s Structural damping factor

(mn(r) Radial function for annular geometry (4.28)

G-4
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q Bulk viscosity (3.6)

q Rigid wall wave number (5.12)N

0 Azimuth angle

0, Azimuth angle of source in 4T (4.19)

0) Azimuth angle of jth source in Mark II (4.30)

K Thermal conductivity

Fluid damping constant (5.6), (5.36)

A (u) Eigenfunction mean square amplitude (4.13)n

A (w) Rigid wall eigenfunction mean square amplitude (5.14)

A(x) Triangular impul,se function (3.3)

p Coefficient of shear viscosity (3.6)
p Poisson's ratio

((w,r ) S ecific acoustic conductance (see page 5-6)Ps

((w) Spatial average specific acoustic conductance (see page

5-13), (5.33)

[t=3.14159... Ratio of circumference to diameter of a circle

p Mean fluid density

p Mean boundary densitys

.
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c(w,r,) Specific acoustic susceptance (see page 5-6)

6(w) Spatial average specific acoustic susceptance (see page

5-13), (5.34)

i Viscous-stress tensor (3.7)

t Impulse duration

$,(I) Rigid wall eigenfunction (4.8), (4.12), (4.27)

$ Potential energy per unit mass (3.6)

t,(w r) Flexible wall eigenfuntion (5.3), (5.24), (5.25)

Flexible wall eigenfrequency (5.6), (5.27), (5.35), (5.41) -w
,

E cr), Rigid wall eigenfrequency (5.27)w

g 4T base plate vibrational frequency (5.41), (Table 5-1)

Structure vibrational frequency (5.29), (5.35)w
,

w 4T shell vibrational frequency (5.41), (Ta' le 5-1),

0,(r) Spatial factor for annular geometry (4.18), (4.33)

V Gradient operator

V Laplacian operator

O D'Alembertian operator (4.1)

D/On Normal deviation (5.5)

.
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Appendix A

THE 4T CHUGGING DATA BASE

Cumulative histograms of peak overpressure (POP) for the 4T data base
runs are shown in Fig. A-1. A PSD for a 10-second period during
chugging in 4T liquid break run 36 is shown in Fig. A-2. Comparison

to the mean PSD for the 137-chug data base can be made by referring to
Fig. 2-9.
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T1.e following Figures are GENERAL ELECTRIC COMPANY PROPRIETARY
!

' n their entirety.i iand have been removed from this document
I
| ;

A1 Cumulative Probability Distributions for Peak Overpressure
at Bottom-Center for Groups of 4T Runs

i
r

A-2 PSD Plot for 4T Run 36, Bottom-Center ?ressure
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Appendix B

ACOUSTIC SPEED REDUCTION

There are two principal factors which can have a pronounced effect on
acoustic velocity and thus perturb the ringout frequency from a pure
water, rigid tank c/4L value. They are:

(1) Container fle::ibility and
(2) Air content in the water.

In this appendix we address these factors with the ultimate intentions

of understanding their influence and being able to quantitatively pre-
dict their influence on the 4T and Mark II pool ringout frequency.

B.1 Container Flexibility Effects on Ringout Frequency

The acoustic wave propagation velocity determines the ringout frequency
of a chugging signal via c'/4L. A relatively exhaustive treatment of
the effect of pipe wall flexibility and support on the acoustic wave

1-3propagation velocity is given in the literature ,

The general equation for the speed of transmission c of an acoustic
signal in a contained fluid of density p written in terms of

compressibility is

=k+6, (B.1)3pc'' pc'

2where the term 1/pc is the unbm,6}-J ',1uid compressibility and c the
unbounded sonic velocity. Th: 3 Vb s t,ppressibility due to motion of
the containment boundaries is represent.,ed by 6 which is the
distensibility of the containment.
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6=f( )p=0 5 (B.2)

Various different formulas for c result from the calculation of the
term (AA/Aap) for various containment geometries. We will develop the
formu;a for the simple case of a cylinder (pipe).

The area change for a thin walled cylinder which expands radially only
is re'ated to the elongation (strain) in the pipe wall by definition

=fOAqAc = (B.3),

where c is the strain in the pipe wall and D is the diameter of the
cylinder. The strain in the cylinder wall is related to the applied
stress by Young's modulus, Y

Y=h. (B.4)

The stress o in the pipe wall is assumed to be hoop stress only and
is given by the well known formula

D60 = '

(B.5),

where h is the cylinder wall thickness.

By combining equations (B.2), (B.3), and (B.4) we calculate

=h (B.6),
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and the acoustic propagation velocity becomes

2
Cc' =

2 (B.7).

1 + pc D/hY

Equations similar to (B.7) have been derived for thin and thick walled
.

pipes for various types of pipe anchoring. All of these formulas are
of the form

c,2 ; B/p
(B.8)1 + (BD/hY)g '

2where B, the bulk modulus, is defined as B = pc and g is a geome-
trical factor which takes on various forms depending on pipe wall
thickness and pipe support.

The various forms of g taken from Reference 3 are shown in Table
B-1. Formulas for circular tunnels and noneircular pipes are also
given in Reference 3.

From these data we see that D/h = 134.4. Thus, the 4T tank can be

considered thin walled. If we consider the tank as fixed at one end
(the base plate) then,

g=1-p = 0.92. (B.9)

The term B/p is the square of the basic acoustic velocity of pure
water c which, for the average pool temperature and pressure in the
4T data base tests, is taken to be

c = VB/p = 1524 m/s (5000 fps) (B.10)
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Table B-1

3FORMS OF THE FUNCTION g

1
1

'ain Walled Pipes (D/h > 25)
i

1. Anchored at upstream end only g = 1 - p/2

2. Anchored axially g=1-p

3. No axial anchoring g=1
<

Thick Walled Pipes (D/h < 25)

1. Anchored at upstream end only g=S(1+p)+ghg(1-f)

2)2. Anchored axially g=Sh(1+p)+D(
2h D3. No axial anchoring g = D (I * Y) * D+h

j p = Poisson's ratio for the pipe wall material.

i

In applying the above formulas to the 4T we make use of the follcwing
geometrical and material data:

3p = 994 kg/m
p = 0.28

D = 2.134 m

h = .0159 m
11Y = 1.95 x 10 Pa

,

t
-

e

t B-4
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We calculate the reduction in acoustic wave propagation velocity due
to flexibility in the 4T tank as

N = [1 + (BD/hY)g]-1/2 = 0.64
c (B.11)

Thus, the acoustic wave propagation velocity in the 4T tank is reduced
by about 36% due to 4T wall flexibility.

The effect of the flexible 4T base plate can be estimated using a
one-dimensional model originally formulated by Balsa . Figure B-1
illustrates the geometry and loading of this one-dimensional model.
The pressure field in the 4T tank is assumed to be axial and the base
plate is represented with a spring-mass system with the same mass and
natural frequency as the plate. The sides of the 4T walls are con-
sidered rigid. The correction arising from the 4T wall flexibility,
calculated above, will be made by adjusting the acoustic velocity.

The governing equations and boundary conditions for the model are

~2 2 ~, g 33C~p(z,t) = P(z,t) = 0 (B.12)2 2 2
_8 z e at _

p(0,t) = 0
(B.13)

28 8y
- p(0,t) = -p q (B.14)3'

at

0
w(t) + 2(s*s w(t) + w w(t) = - p(0,t) , (B.15)

s
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where o 's the fluid density, p, the plate density, h the plate
ti cxuc.s, p the fluid pressure, and w the plate displacement. For
the e '.culation of the coupled system natural frequencies we takes

~i"'p(z,t) = p, sin [* (L-z)] e (B.16)

and

~i*tw(t) = w e (B.17).,

Substitution of these equations into Equations (B.13) and (B.14) yields
the characteristic frequency equation

2wL ph w
tan ( " ) = [wl-wl ( 'I }cp n

n

and the system damping constant

w 2 mL
A = 2(s"s II*(w ) + ( ) sec ([)} (B.19)n ,

n s

where wIw ~ iA is the complex frequency.n n

The base plate frequency for 4T was experimentally determined 5 to be
188.7 Hz. Thus, w = 1185.6 s"I The 4T base plate thickness is.

s
310.16 cm. For a steel density p, = 7700 kg/m and using the value

given above for p and c, solution of Equation (B.18) gives w /2 t =
9

30.8 Hz. Thus, the correction for the 4T base plate flexibility is an
additional 11% reduction in the frequency corrected for wall flexibility.
For a more exact correction, see Reference 4.

B-7
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B.2 Effects of Entrained Air on Ringout Frequency

The propagation velocity of an acoustic wave in water can be dramati-
6-8cally reduced if air bubbles are dispersed throughout the liquid ,

A straightforward calculation demonstrates that this is indeed true

even with a small amount of air present in the form of bubbles in the
liquid.

Consider the total volume V of the 4T or Mark II suppression pool
fluid which can be expressed as the sum of the liquid volume V andg

the air volume V . A change in pressure results in a volume change
8

AV = AVp + AV (B.20).

g

The bulk modulus B of the fluid is defined by

O
fp = 3 (B.21)B= .

which also is valid for the liquid and air separately. Thus

B
f

(B.22)*
1 + x (B /B -1)g g

where x = V /V is the air volume fraction. The mixture density p ing
terms of the liquid and air densities is

p=xp + (1-x)p (B.23)g g .

Substitution of Eqs. (B.22) and (B.23) into Eq. (B.8) yields the
acoustic wave speed as a function of wall flexibility and air volume
fraction

a
p p c' 2g cDc' = c {[x( - 1) + 1][1 + x ( p - 1) + p g))-1/2 (B.24)g ,

B-8
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where the air bubbles are considered to compress isothermally such
'that p = B . Comparison of Eq. (B.24) with experimental data is showng

in Fig. B-2. The minimum acoustic propagation velocity in bubbly air-
water mixtures can be as low as 70 fps for a void fraction of 0.5.
While the test conditions existing in the 4T task had much smaller air
cont ats than this, a substantial reduction in the acoustic velocity
is still possible.

It is possible to estimate the amount of air present in the 4T pool
during the chugging tests by comparing the observed pool fundamental
f requency to its pure water, rigid tank value. For pure water in a
rigid 4T tank the fundamental frequency is f, = c/4L = 54 Hz.

If we account for flexibility in the 4T tank, then this fundamental
ringout frequency is reduced by factors of 0.64 and 0.89 to 30.8 Hz.
The average pool fundamental ringout frequency for the 14 Category I
chugs was 21.7 1 3.6 Hz during the 4T chugging tests. This implias an
air reduction factor for frequency (and acoustic velocity) of

'l~7 + 3 6~

= 0.70 1 0.12 (B.25)30.8 .

9
Mark III tests showed an acoustic velocity of 1018 m/s (3340 fps).
Ignoring the small PSTF flexibility correction, this acoustic velocity
implies an air reduction factor of 0.69 which agrees favorably with
the 0.70 reduction observed in the 4T tests.

From Figure B-2 one can calculate that air content reduction factors
in the range 0.69 to 0.70 imply air content in the water of 0.06% to
0.07% by volume. Allowing for the fact that flexibility has been
ignored, this amount of air is too large but consistent with an air
fraction 0.04% which would be required for Eq. (B.24) to yield a speed
of sound c' such that c'/4L = 21.7 Hz.

B-9
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Appendix C

FLUID-STRUCTURE INTERACTION SEPARABILITY THEOREM

This appendix contains Ain A. Sonin's complete paper entitled "Raticaale

for a Linear Perturbation Method to Deal with the Flow Field Perturba 1ons
in Complex Fluid-Structure Interaction Problems," dated March 1979. The
theory in this paper constitutes one of the two ways fluid-structure inter-
action is incorporated into the chugging methodology.
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RATIONALE FOR A LINEAR PERTURBATICri METHOD

TO DEAL WITH THE FLOW FIELD PERTURBATIONS
e

IN COMPLEX FLUID-STRUCTURE INTRACTION PROBLEMS

Ain A. Sonin

Department of Mechanical Engineering

Massachusetts Institute of Technology
Cambridge, Ma. 02139

;

ABSTRACT

A formal justification is developed for a method in which hydrodynamic
data for a transient in a rigid-wall system (derived, for example, from a
small-scale experimental simulation) is used as input in a linear computation
for the perturbation flow field due to actual wall flexibility. The method

is useful in problems where the basic flow transient is so complex that it
can be quantified only empirically, and where the fluid-structure interaction
is too complex for the fluid side to be represented by an a priori defined
equivalent mass.

* Work supported by the U.S. Nuclear Regulatory Commission, Office of i:uclear
Regulatory Research, Division of Reactor Safety Research, under Contract
No. NRC-04-77-Oll.
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1. INTRODUCTION

. The analysis of loads resulting from complex flow transients in

vessels is of ten further complicated by the effects of elastic boundaries.

Nucerical methods are almost invariably required, and even so, only

relatively simple problems can be solved practicably [1]. The purpose

of this paper is to identify a class of such problems where it is useful

to separate the flow field into a component which would result if the

walls were perfectly rigid, and a perturbation which arises because of

wall flexibility. We will show rigorously that the effects of the wall

flexibility can be derived separatley by means of a perturbation analysis i

l
which in most cases is considerably simpler than the general . problem.

The pressure of the rigid-wall flow field appears as a forcing function

at the boundary of the perturbation flow field.

This result is useful in two ways. First, it simplifies analysis.

The calculation for the flow transient with assumed rigid boundaries can

be done first and the additional effects of wall flexure can be derived by
! a separate perturbation calculation in which the fluid behaves linearly.

The second utility of our result arises in cases where the flow transient

is so complex that a computation for it, or for its rigid-wall component, is

difficult or impossible. In such cases, the first calculation can be replaced

by experimental data for a small-scale simulation using rigid walls. Our

analysis provides a formal justification for a method of using such data as

1

,
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input in a relatively simple calculation for the perturbation caused by wall
fl exibil i ty. Such a combined empiric.al/ analytical approach is often more

practical than a complete empiriesl simulation which includes both the
{

effects of wall flexure and the fluid dynamic transient proper.
| The technique of applying the experimental rigid-sy' tem load as as

forcing function to compute structural oscillations has been used widely

to solve problems involving flow-induced vibrations of cylinders and similar

structures [2]. In those applications, the question of how one deals with

the inertially induced pressure field in the fluid is resolved simply by

introducing an equivalent mass, one which can be determined semi-empirically
for a given body geometry. The method we propgse here is useful in more

.

complex problems where an equivalent water mass cannot be specified a priori, and

where a solution must be derived for the flow field perturbation which results
,

from wall flexibility. !
j

The mehtod suggested here is not novel. Bedrosian [3], for example, has

applied essentially this method to compute the fluid-structure interaction

effects in pressure-suppression containment vessels of boiling-water reactors.

The purpose of the present paper is to give the method a formal basis, and

to specify the conditions which must be satisfied if it is to be valid.

<
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2. ANALYSIS

We consider a class of problems where an essentially inviscid motion i

is induced in a liquid by the transient application of pressure at one or
'

several of the places where the liquid is bounded by gas. Elsewhere, the

liquid is bounded by solid, but flexible, walls. The general case is best
;

illustrated with an exampic (Figure 1).
' l

A vertical pipe is partially submerged in a liquid pool which i:

initially at rest, and bounded above by a region of gas. An event is triggered

i by a sudden discharge of gas or vapor into the pipe from above, causing the
:

clearing of the liquid from the pipe, the formation of a gas bubble at the

pipe end, and the rise or oscillation of the liquid in the pool. If the pool

I boundaries are rigid, the resulting pressure history at some point on the -

pooi floor, for example, might be the one sketched in Figure 2. If the boundaries

are elastic, they, and together with them the pool, would be set into oscill-

ation, and the resulting pool acceleration and deceleration would give rise to an

additional oscillatory component of pressure, as indicated on the figure. We

aim to show how these two contribution to the pressure can be separated.

The 1iquid dynamics in governed by the equation of motion,
,

7 N ) = -Vp - og7Z , (1)p( +

.

the equation of mass conservation,

h + V. (cv) = 0 (2)

.
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and the isentropic pressure-density relation, dp/dp = c . We shall assume2

that the latter applies in the linear approximation.

p-p = c * (p-p ) W*

g g g

where p , c , and p are the pressure, speed of sound and density,g g

respectively, in the undisturbed fluid.

The boundary conditions must be specified for Eqs.1 - 3 at the free

surfaces and at the solid walls. We assume that the pressure at any free

surface is uniform and, for the purposes of the analysis of the liquid,
given. In F,igure 1, the trapped gaseous space above the liquid is one

free surface, and the bubble emerging from the pipe is another. The free-
surface boundary condition can thus be express as

|

p = p (t) at the i'th free surface . (4)g

At the flexible sol'd walls one must apply a boundary condition like

h (5)v =
1

where v is the fluid velocity component directed parpendicularly into1

the wall, and x is the displacement of the wall (away from the fluid) from

its initial, equilibriun position under hydrostatic conr.itions. The wall

displacement x is governed by a structural equation of motion which can be

expressed symbolically as

d'* d* d**(p-p ) - o (n ..... t) (6)m *.

dt dE , dt:2 g
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|

where m is the local mass of the wall per unit area, p is the local

instantaneous pressure in the fluid, p, is the initial hydro:;tatic
pressure, and o is a local structural restraining force per unit area,

*

whose magnitude depends on the displacement x of the wall from its
>

1

initial equilibrium position, on the time derivatives of x, and possibly
i

also on the time t itself. The form of a is governed by structural l

|considerations. Note that when the d.solacements x are small, the '

l

boundary condition embodied in Eqs. 5 and 6 can to a good approximation
|

| be applied at the equilibrium, or undisturbed, location of the wall

rather than at the actual, instantaneous deflected position.
1We separate the varibles into three components by writing
|

1

y = 0 + v, (7, t) + v, (7, t) (7)

p = p (r) + p (7, t) + p (f t) (8)o 1 2

p = p, + p (r, t) + p (r,t) (9),

where the subscript (o) refers to the values corresponding to the initial

static conditions in the fluid, the subscript (1) refers to the hypothetical,

perturbation which would be caused if the imposed blowdown occurred in the

system with rigid walls, and the subscript (2) refers to the remainder of

the quantity, and represents the perturbation which can be attributed to the

flexibility of the walls. The initial pressure distribution p is assumed

to be hydrostatic,

.

p, = constant - p gz (10)a

C-6
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By definition, the rigid-wall flow is the solution of Eqs.1-3 with

7 , p, and o equal to zero. Thus,

I

av
(p +p) ( g[ + 7 77 ) = -yp - p g7z (11),

.

30, ,7 .70, + (p + p ) 7 v, = 0 (12),at

= 2p pc (13),g

Where we used Eq.10 to eliminate p, , and assumed o to be constant.g

The boundary conditions for the rigid-wall solution are that

p +p = p (t) at the i'th free surface (14)o t i

and that

(v ), 5 0 at solid walls (15)
{
i

i

\

The equations for the perturbation (2) due to wall flexure is obtained

by substituting Eqs. 7-10 into Eqs.1 and 2, and subtracting Eqs.11 and 12,
respectively. One obtains the equation of motion

37
(o +o + pa)(Bt + 7 .77 + 7 .772

7 .77 )+ =o 1 2 1 1 2 2 2

a7
- Up p 972 p ( + v .77 ) (16)

'= -

2 2 2 gg 1 1

.
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and the mass conservation equation

30
J
at + v .7p + y 7p + y Vo + o7v

1 2 2 a 2 2 2

.

+ (p +p +p)7v 0 (17)=
,0 1 2 2

and the pressure-density relation .
.

2p p c (18)=
2 2 O

Assuming that the wall flexure does not actually affect the gas pressure

at the free surfaces, we can write the free-surface boundary condition
as

|

|

p,= 0 at the i'th free surface (19.)

The boundary condition at the rigid walls is -

h (20)(v ) =

where x(t) is given by Eq. 6.

Eqs.16 and 17 can be simplified considerably under conditions which

are often not very restrictive in practice. Let

p, = typical amplitude of p

typical amplitude of p,p =

'

C-8
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L= characteristic length over which gridients in
velocity and pressure occur during tre transient

T= characteristic time of the oscillation caused by
2 wall flexure

.

x= typical wall displacement during wall flexure

We assume that

p
- J- 1 (21)
DOO

p
L 1 (22)

00
,

A 1 (23) '

C*
n

T p
L J- 1 (24)L p

o

X
- 2. u 1 (25)L

.

X p

yu p (26)
1

i

)

I

|
C-9 |
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|

l The implication of these assumptions becomes apparent when we analyze

the ordersof magnitude of the various terms in Eqs.11 and 12 and Eqs.16 and

17. We note the orders of magnitude (denoted by the symbol * )
;

~

ip
y (27)-

, c,

o

h (28)V-

h (29)y -

,
2

a v, ,e x
(30)-

2
at T

3

30

[A (31)at
2

,

and that p and p are given in terms of p and p by Eqs. 13 and 18,
1 2 1 2

respectively.4

Eqs. 21 and 22 imply that p and o are small compared with o .g

Eq. 21 furthemore implies that, in Eq.11, the gravitational term on the

right is negligible compared with the pressure gradient term and that in '

Eq.12, the second ' term is small compared with the third. Hence, the

equation for u.e rigid-wall flow reduce in good approximation to
i

37

7, 77,) = -Vp, (32)
'

g (3t +o

Op.

* P Y'V =0 (33)at o i

C-10
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2
(34)p, = p c3 g

The boundary conditions are given by Eqs. 14 and 15. On the left-

hand side of Eq. 16, the second and third velocity terms are negligible

compared with the time-derivative term when Eq. 24 applies, and the

fourth term is negligible when Eq. 25 applies. On the right-hand side

of the same equatien, the pressure-gradient term is large compared with

the terms involving v, when Eq. 21 applies, and also large compared with

the gravitational term if Eq. 23 applies. Thus, the equations for the

perturbation caused by wall flexure reduce to

av
*

-VP (3S)P *
o 3g 2

3p
0 (36)+ PY =

at o 2 ,

.

n, = c *p (37)
*

o

The boundary conditions for the wall flexure perturbation are Eqs.19 and
4

20, with x(t) governed by Eq. 6, -

d
p, c(x, h, d .....,t) (38)d P +m " -

i

The equations 35-37 for the perturbation #1ow field do not explicity

involve the rigid-wall solution The wall perturbation solution is coupled.

|

C-11



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

.

.

NEDO-24822)

to the rigid-wall flow field only tc rough the pressure p in the boundary

condition at the wall, Eq. 38, and through the instantaneous locations and

shapes of the free surfaces (governed by the rigid-wall solution), where

the boundary condition Eq.19 must be applied. It is as if the rigid-wall

pressyre P (t) appears as an externally applied transient pressure on the

wall, and drives the wall (and fluid) oscillation calculate ^: by the

perturbation (2). Thus, if one has obtained, analytically or experimentally,

the rigid-wall pressure' distribution history p at the walls and the time -

dependent shapes of the free surfaces, one can apply it as a boundary

conditions on the solution 2 and calculate the perturbations in velocity and

pressure, throughout the fluid, caused by wall flexibility.
4

Eqs. 35-37 are the linearized acoustic equations for the liquid, and

can be solved for example by the usual linear method of characteristics with

the sound speed c taken as a constant. The liquid is, as it were, regardedg

somewhat as a "gc!" with its free surface boundaries prescribed as a function

of time by the rigid-wall flow field. In the particular case where the period

of the wall oscillations is much longer than the acoustic transit time L/cT
o

across the system, that is,

" I' )Tc
2 o

Eqs. 35-37 reduce to the simple, linearized incompressible flow form

37.

*
o 3t -9p, (.40)P =

0 (41)9.v =

This constitutes a particul,arly simple case, since tnc pressure p, now satisfies
La pl ace''s equation.

C-12
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3. DISCUSSION OF APPLICATIONS
I

The analysis outlined here has an important application in the design
~

of large vessels, such as the pressure-suppression containment systems of

boiling-water reactors, where transient liquid flows are induced and wall

flexibility effects must be accounted for. In many such cases the basic

transient flow phenomena are very co", Ax and can be quantified only by

means of small-scale experimenta1 simulation [4, 5]. Often it is

impracticable to model both the effects of wall flexibility and the

hydrodynamics on a small scale. The question then arises whether one can

use the hydrodynamic data derived from small-scale tests with rigid walls,

and derive from that the strains in the walls of a real, full-scale system

where wall flexure may occur.

The present analysis gives a rigorous basis for such a procedure.

Consider the situation in Fig. 1 as an example. Let us say we have available,

from an experimental simulation with rioid walls, the pressure history p (t)
g

at every point on the walls and the locations of the free surfaces as a function

of time. One can then obtain a numerical solution of the relatively simple,~

linear fluid equations, Eqs. 35-37 (or, if Eq. 39 applies, Eqs. 40-41) for

the perturbations caused by wall flexiblity. The rigid-wall pressure p)(t)
appears as a driving force in the wall boundary condition for the perturbation,

Eqs. 20 and 38, and the specified free surface locations define where tht free

surface boundary condition, Eo.19, is to be applied.

c-13
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;

The method is valid as long as the inequalities expressed in Eqs. 21-26

apply. These ineqJalities can be shown to apply under a broad range of4

practical conditions.
.
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SYMBOLS'

c speed of sound in liquid

g gravitational acceleration

L characteristic length associated with gradients in
velocity, density and pressure

.

m wall mass per unit area

p pressure

t time

v velocity

v component of velocity directed perpendicularly into wall
1

x displacement of wall from equilibrium position, in
perpendicular direction away from fluid

z direction measured vertically upward, against gravity
I

-

p liquid density

T characteristic time associated with the wall flexure (e.g. .

2 period of wall vibration).

Subscripts: '

0 value corresponding to the initial conditions in the static
fluid.

1 perturbation which would be caused if the event occurred in
a rigid-wall system.

2 remainder of the quantity, i.e. additional perturbation
caused by wall flexibility.
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Figure 1: Example of flow transient. (a) Initial condition.
(b) Time t in system with rigid walls. (c) Time
t in system with flexible walls.
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Figure 2: Sketch of pressure histories in rigid-wall
,

and in flexible-wall systems.

.

-


