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SUMMARY

This report was prepared to document work done on Task A.16 Phase II
of the Mark 'I Owners Group Long-Term Program. The purpose of Task
A.16 is to provide an improved chugging load definition methodology
and to answer NRC concerns about fluid-structure interaction which
were raised in NUREG-0487.

Thic report demonstrates that chugging is an acoustic phenomenon.
Pressures on the boundary of the suppression pool may be calculated
by applying an appropriate source at the downcomer exit and
propagating 1its effects to the rigid or flexible boundary of the

suppression pool using an acoustical transfer function.

The effects of fluic-structure interaction are seen to be (1) a
reduction in the effective sonic velocity of the tank/water system
and (2) damping of the pressure signals felt on the tank boundary.
The sonic velocities in the vent and in the tank/water system control
the frequency content of the chugging pressures and damping controls
the duration of the chugging signal.

The amplitude of the chugging pressure is controlled by the collapsing
steam bubble source at the vent exit. The design source was generated
from 4T experimental data. A conservative chugging data base was
chosen from the 4T tests and the design source was developed to

represent the data base in an appropriately conservative manner.

The accuracy and utility of the improved chugging methodology is
confirmed by comparing predicted results with 4T experimental data
and with results calculated by the NASTRAN computer program. Using
this methodology, sample calculations made for a typical Mark 1I
containment confirm that calculated responses are below those

generated using the lead plant bounding loads specification.
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Note that the acoustical chugging methcdology and the procedure used
to define the desfgn chugging source from experimental data are
independent of the actual data base considered. Althoug! the methods
could h~ -nlied equally well to any available dei=1led data base, the
4T data base was used. It is anticipated tha: the currert design
cwgging source will be compared with other recently available data.
If mecessary, the design chugging source may be modified to maintain
a\ appropriate degree of conservatism when considering all applicable

data,

xi/x1id
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1. INTRODUCTION

In October 1975, a series of pressure suppressicn tests was performed
by General Electric in its 4T facility to investigate pool dynamic
phenomena (poolswell) in the Mark II contaimnent1 (Figs. 1-1 and 1-2).
During these Phase I tests, a pulsating condensation phenomenon termed
"chugging" was observed. Further investigation of chugging in 4T was
made in the Phase II and III tests.

1.1 The Chugging Phenomenon

Chugging, or unsteady condensation, is a design consideration in all
pressure suppression containment systems, using either vertical or
horizontal vents, and has been observed in many experiments. The
mechanism behind chugging involves the collapse of the vapor-liquid
interface at the vent exit. Two mechanisms involved are excessive
steam condensation rate and surface instabilities at the vapor-liquid
interface. The excessive condensation occurs because the supply from
the vent system 1is exceeded by the available surface area for
condensation, causing the interface surface to contract. The surface
instabilities are probably bubble-size dependent and tend to cause an

increase in interface surface area.

The steam condensation pressure oscillation begins in the vent pipe
before it occurs in the dryweil and the magnitude of the oscillation
1s greater there. The sharp underpressures measured at the vent exit
are due to the collapse of the vapor-liquid interface and condensation
of the vapor in the vent pipe. This underpressure causes the pool
water to enter the vent pipe. Once the water enters the vent pipe,
only the cross-sectional area of the vent is available for
condensation and, as the water in the vent heats, its condensation
rate drops. When the steam flow into the drywell exceed: the
condensation rate, the pressure in the drywell and vent system

increases and a new vent clearing transient starts.



DOWNCOMER

AR 1100 -

SUPPORT

@ ey

q
&

T j\qldl‘”q
o2 speld )°

REACTOR

MAIN STEAMLINE
SAFETY

RELIEF

VALVE

WETWELL
SAFETY RELIEF

VALVE
DISCHARGE
DEVICE
IQUENCHER!

ainment

iy
FLeggae

-



NEDO-24822

DOWNCOMER

CONTAINMENT

.....
wetlwell



NEDO-24822

The vent flow rate follows from the previous chronology of a chug. As
the vapor bubule collapses and the low pressure in the vent is
generated, a large pressure difference exists across the vent system,
causing a large increase in the flow rate. The large flow from the
drywell to the pool in turn causes the drywel’ pressure to drop,
lowering the pressure differe;ce across the vent system and thus
decreasing the flow rate. At the same time, the pocl water h-s surged
back into the vent system, lowering the condensation rate and thus
raising the pressure there. The vent system pressure difference and
hence the vent flow rate thus drop to near zero before the vent is

recleared and another chugging cycle begins.
Once chugging has been initiated, individual chugs occur in a more or
less periodic manner. Chug starts do not have a single frequency,

however, but vary from run to run and even within a sing.e blowdown.

1.2 The Mark II Chugging Load Definition

5

In February 1977, an Application Memorandum™ was issued by General
Electric specifying the symmetric chugging load at the containment
boundary to be +37.9/-34.5 kPa (+5.5/-5.0 i1+ 1) at a 95% con.idence
level (mean values: +33.1/-27.6 kPa; +4.8/-.  psid) with a frequency
range of 20 to 30 Hz. The asymmetric load was specified to be
+137.9/-96.5 kPa (+20/-14 psid) with a frequency range of 20 to 30
Hz. These loads were believed to be very conservative and, in 1977,
General Electric issued a bounding loads report3 justifying the
conservatism of these loads. A keyv argument fo- the conserva*tism of
the Application Memorandum was based on the results of the Multivent
Hydrodynamical Hodel“ which exploits the random nature of chugging.
An additional argument was that the Application Memorandum utilized 4T
chugging responses which contained additional &4T-unique frequencies

and fluid-structure interaction.
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To obtain an understanding of the structuril characteristics of 4T, a
fluid-structure interaction studyS was uniertaken. The study concluded
that the chug source is impulsive and the «7 response to the impulsive
source is a sinusoidal-like "ringout" whose frequency is system
related.

The Nuclear Regulatory Commission issued comment.s6 dated August 10,
1977, which questioned the adequacy of the Application Memorandum, in
essance, because the frequency range over which the load was to be
applied is 4T+ and not Mark IT-unique and the pressure amplitudes
would likely be larger for a more rigid Mark Il containment.

A.16 of the Mark Il program was initiated to develop an improved
chugging load definition which would provide for more realistic loads
and resolve fluid-structure interaction concerns. The results of
Phase II of Task A.16 yielded an apyroach to chugging consisting of
the following key elements:

(1) Investigation of the 4T chugging data to develop an understanding
of the data base and clues to the nature of the chug source
(Chapter 2).

(&) A numerical simulation of the response of a tank-water-vent sys-
tem to a pressure impulse which represents the chug source. From
such a simulation and the governing equations of motion, we learn

the 4T system response is essentially acoustic in nature (Chapter
3¥,

(3) ovevelopment of an acoustic three-dimensional as+lytical model for
the 4T and Mark Il geometries using the assumptions verified by
the numerical simulation and analysis (Chapter 4).

1-5
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Treatment of fluid-structure interaction (FSI) effects by (a)
application of a rigid wall pressure to a NASTRAN flexible wall
model and (b) solution of the acoustic wave equation with
f'exible wall boundaries; verification of this method of FSI
in 4T with a NASTRAN model (Chapter 5). .

Verification of the adequacy of the acoustic model by comparison

with several types of 4T chugging data (Chapter 6).

Creation of a procedure to develop a design source from an
experimental data base and the use of the 4T data to determine

a design source (Chapter 7).

Application of the chugging methodology and the design source to
a Mark Il multivent geometry to develop structural responses
using an ANSYS structural model (Chapter 8).

1-6
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2. UNDERSTANDING THE 4T CHUGGING DAT.

Prior to this study, the entire pressure history from the
bottom-center sensor and the combined acceleration history from the
vent-exit accelerometers for each 4T blowdown were scanned to identify
chugs. The bottom-center sensor recorded the highest pressure
amplitudes and the vent exit accelerometers were responsive to the
impulsive chug events. A pressure excursion greater than 27.6 kPa or
less than -27.6 kP2 (% 4 psi) or a vent tip acceleration greater than
2g or less than -2g, following trend r»moval, was regarded as
signifying a chug start. A 3/4-second interval was required before
such a departure was accepted as another chur. Approximately 600
chugs were identified in this way from the 27 usable runs, which

spanned all anticipated operating conditions.

Chug peak overpressure (POP) values were studied to identify any
systematic effects of such parameters as time into test, vent-pipe
diameter, 1initial pool temperature, submergence, and liquid versus
steam break. No trend of POP with time into test was noted.
Cumulative histograms of POP for each combination of pipe diameter and
initial pool temperature, however, indicated that two test conditions
yiclded higher pressures at the upper probability points than the
other conditions and there was a corresponding slight increase in mean
POP for those two conditions (see Appendix A). It was not possible
from physical considerations to identify a cause of the higher
pressures. Accordingly, the view was taken that there may be some
conditions in which high POP values could occur in the higher
proportions noted, and the chugs “n the data base were restricted to
conditions giving the unfavorable aistributions. This provided

137 chugs from nine runs for the two conditions of 610 mm (24 inch)
pipe, 21°C (70°F) initial pool temperature (Phase I tests, runs 27 to
31 and 34), and 508 mm (20 inch) pipe, 66°C (151°F) initial pool
temperature (Phase [II tests, runs 42, 44, and 46); these were steam
breaks, with 63.5 mm (2.5 inch) and 76.2 mm (3.0 inch) venturi data
taken together as indistinguishable. A moderate effect due to

submergence was averaged to 3.35 m (11 feet) to be used in modeling

2-1
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the 4T. In each chug, the POP was placed midway in a 0.768-second
signal, which was found to consistently encompasc the high-signal
strength pe.cion of each chug. Accordingly, a data base of 137 chug
signals from the bottom-center of the 4T each 0.768 seconds in

duration with the POP at the midpoint, was ised in this study.

A spectral analysis was performed on each chug in the data base to
reveal patterns of power by frequency. Other runs, including liquid
breaks, have also been analyzed spectrally, although on a continuous
t2ther than chug by chug basis (see Appendix A). The consistency of
the frequency patterns in both studies indicates that the 137-chug
data base 1is fully representative of frequencies which occur in any

4T run.

2.1 Classification of the 4T Chugs

Even a casual perusal of the 4T chug library shows that not all
chugging events are created equal. Thus, a careful review of the 4T
chug library has been made with the intent of classifying the various
types of chugging events. The review of the 4T chug library was
performed by comparing:

(1) Plots of the pressure time-history,
(2) Plots of the power spectral density (PSD), and

(3) Tables of the PSD (amplitude vs frequency)

for the 137 chugs. The chug library was classified into four

categories with the following characteristics:

ro
'
ro
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Category I Chugs Classical

Shape: damped sinusoidal

Predominant Frequencies: 5, 13, 21 and 18 to 31 Hz

Peak Pressure Amplitude: 34 to 138 kPa positive (5 to 20 psi)
28 to 96 kPa negative (=4 to -14 psi)

Category Il Chugs Sinusoidal

Shape: sinusoidal
Predominant Frequencies: 5, 13, 21, 29 Kz
Peak Pressure Amplitude: 34 kPa positive and 34 kPa negative (%5 psi)

Category 1II Chugs Mixed Sinusoidal and Classical

Shape: damped and undamped sinusoidal
Predominant Frequencies: 5, 13, 21 and 18 to 31 Hz
Peak Pressure Amplitude: 103 kPa positive and 103 kPa negative (%15 psi)

Category IV Chugs Other Events

Shape: irregular
Predominant Frequencies: mixture of 5, 13, 21, 30, 35 to 40, 45 to 50 Hz
Peak Pressure Amplitude: <34 kPa (<5 psi) or very low amplitude

Figs. 2-1 through 2-4 show four examples each of the four chugging
categories trom the 4T chug library. Note here that the sinusoidal

event 1s called a Category II type of chug. It is important to note

that although the sinusoidal events and chugging are related by the

fact that they are stcam condensation phenomena, their characteristic

frequency and amplitude are markedly different.

The relative fractions of occurrence of the various tvpes of chueging
categories have been calculated and the results are shown in Table
2-1. A list of chug numbers, their categories, and the 4T run numbers

from which they came is shown in Table 2-2.

2-3
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Table 2-2
CLASSIFICATION OF 4T CHUGS

Chug No. Category 4T Run No. Chug No. Category 4T Run Ro.

1 1 36 I

2 111 T 37 111 T
3 1 ' 35 111 l
4 Iv 39 I |
5 1 27 40 111

6 1 ' 41 11 29
? I l 42 I11 :
e 111 43 11 l
9 1 v 44 11 ,
10 1 . 45 11

1] 1 , 46 Iv -
12 I l 47 I Y
13 I | 48 1 l
15 11 50 11

16 I | 5] I 30
17 I : 52 1 l
18 1 , 53 11

19 1 | 5% 111 v
20 I : 55 IV " 7
2 I ! 56 11 t
22 I ' 57 I |
23 11 28 58 1 :
-“

RS s el R TR
26 Iv 61 I |
27 11 ' 62 I |
2 1 : 63 I 31
20 I 64 I

30 I } 65 IV '
3 I ‘ 6¢ I |
2 11 ' 67 11 |
33 I j 68 Iv |
3% IV 69 Il |
35 I v 70 11 l

7 I
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Table 2-2
CLASSIFICATION OF 4T CHUGS (Cont'd)

Chug No. Categorx 4T Run No. Chug No. Category 4T Run No.

72 11 W 105 11

73 1 | 106 1 :
74 I , 107 Iv l
75 11 108 I l
76 111 34 109 I l
7 11 110 111

78 Iv ' 111 Iv 4
79 I ' 112 v :
80 3 v 113 Iv l
81 1 ’ 114 v |
82 111 115 v

83 1 : 116 v '
84 I , 117 v v
85 11 | 118 I .
86 I | 119 I :
87 I 42 120 I |
88 11 , 121 I

89 1 i 122 1 :
90 I 123 v

91 111 | 124 I '
92 v | 125 I :
93 v v 126 111

9% 1 . 127 1 46
95 1 ' 128 IV |
G 11 | 129 IV |
97 111 ' 130 I I
98 111 131 Iv

99 11 | 132 1 :
100 i1 4 133 IV

101 11 134 11 '
102 1 ' 135 Iv |
103 1 : 136 Iv |
104 Iv 137 Iv v

ro
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2.2 Principal Frequencies for the Chug Categories

Each chug from the 4T library of 137 chugs was placed into a category
according to its shape and frequency characteristics. In order to
find the dominant frequency characteristics, we can average the PSDs
for each category. This averaging will tend to accentuate those
frequencies which occur most often. Figs. 2-5 through 2-8 show
normalized PSDs for chug Categories I through IV. The normalization
procedure is explained in the following paragraphs. Column C of Table
2-1 shows the principal frequencies in each chug category. The
patterns of these frequencies and their origin will be discussed in
the next section.

Column D of Table 2-1 shows the sum of the normalization constants
(the total area under all the unnormalized PSDs) for each category.
when the sum of unnormalized PSD values is divided by this
normalization constant, the area under the resultant PSD is unity and
we call the PSD "normalized." Thus, the normalization constant for
each category represents the total power (energy density) contained in

the chugs of that category.

Notice that the Category II chugs contain a majority of the total
chugging power (Column E, Table 2-1). One of the reasons for this is
that they are at least twice as numerous as any other category of
events. On a "per event” basis (Column F, Table 2-1), it is clear
that the Category I chugs contain more power per event than Category
IIT chugs and roughly twice as much power per event as the Category I

chugs.

Fig. 2-9 shows the normalized PSD for all 137 chugs (all categories
combined). Fig. 2-10 shows a composite normalized PSD for all 137
chugs (solid line) and contributions to the total PSD from the four
chug categories (dashed lines). The PSD of each category has been
multiplied by the ratio of the total power of that category to the

total power of all categories. Notice that:
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The following Figures are GENERAL ELIZCTRIC COMPANY PROPRIETARY

and have been removed from this document in their entirety.

2-5 Normalized PSD for Category I Chugs

2-6 Normalized PSD for Category II Chugs

2-7 Normalized PSD for Category III Chugs

2-8 Normalized PSD Zor Category IV Chugs

2-9 Normalized PSD for 137 Chugs in the Chug Lihrary

2-10 Composite Normalized PSD for Category I, II, III,
and 1V Chugs

2-9
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(1) All categories contribute to the frequency peaks at 5, 13, and 21
Hz;

(2) The Category IV events make a negligible contribution to the

total power.

2.3 Analysis of Frequency Patterns in the 4T Chugging Data

In order to develop an analytical model of the chugging phenomenon, it
1s necessary to understand the causes of the dominant frequencies seen
in the 4T data. Once the patterns in the 4T data are well understood,
the application to the Mark II geometry can be accomplished.

[t is reasonable to believe that the dowminant frequencies seem in the
4T data result from excitation of various acoustic modes of
oscillation in the tank and in the vent of the 4T facility.
Consequently, we will look for frequency patterns in the 4T data which
result from the vent pipe and pool natural frequencies and their

harmonics.

We picture the vent as a one-dimensional pipe closed at one end by
water and open to the drywell at the oth: end. For this geometry,
the natural acoustic frequencies are

- (2n + 1)c

" L y,n=0,1,2, 3, ... (2.1)

£

Using the speed of sound in pure steam™, c = 488.6 m/s (1603 fps), and
the length I.v of the 4T vent of 28.65 m (94 ft), we can calculate the
vent fundamental frequency fo to be

_ ¢
fo A
v

= 4.26 Hz . (2.2)
The higher odd harmonics are shown in Table 2-3 where they are

compared with the observed frequencies from the Category II chugs.

Noting the similarity b:tween the predicted and observed frequencies

leads to the conclusion *lhat the 4T vent plays an important rule in

*Assuming saturated steam at 275.79 kPa (40 psi).

2-10
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determining the frequency of the wall pressure traces for the
sinusoidal events. Since the frequencies 5, 13, and 21 Hz appear in
the data for all chug categories, it appears that the vent pipe
frequencies defined by Eq. (2.1) are important components of the wall
pressure loads.

Table 2-3
VENT PIPE FREQUENCIES IN 4T

§=

10

11

We can perform a similar type of analysis for the pool to explain the
additional dominant frequencies seen in Category I and III chugs. The
pool can be pictured as a vessel filled with water and open at one

end. For this geometry, the frequencies of oscillation are again

.
fnz%—ﬂf ,n=0,1,2,3, ...
P

2~-11

(2.3)
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where ¢ is the acoustic velocity in the 4T suppression pool and Lp is
the depth of the pool. Adjustments must be made to the sonic velocity
in the 4T pool to account for flexibility of the tank wall and base
plate and the presence of small amounts of air in the water. These
adjustments will have a substantial effect on ¢, which will be
demonstrated below. Adjustment of sonic velocity due to flexibility
of the 4T tank wall and base plate can be made according to the formula
(see Append x B)

¢' = C/yX + pcia ’ (2.4;

where ¢ is the sonic speed in pure water®* and 8 is the distensibility
of 4T.

In Appendix B, this formula is shown to yield an effective value of
¢ = B78 m/s (2834 fps). Thus, the expected ringout frequency
(fundamental) in the air-free 4T pool is given by

f, = z{— = 30.8 Hz (2.5)
p

where Lp = 7.0lm (23 ft).

The difference between this value and the observed average ringout
frequency in the 4T pool (21.7 Hz) is believed to be the result of air
entrained in the water. It is shown in Appendix B that an air content
of 0.04% by volume vould account for this difference. The amount of
air was not measured during the 4T tests, but a value of 0.04% is
regarded as reasonable. The fact that ringout frequency tends to
increase with time into test further supports the hypothesis that the

sonic velocity is being reduced by air in the water.

*Taken to be 1524 m/s (5000 fps) for the average pool temperature and
pressure in the 4T data base tests.
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The average amount of sonic velocity reduction due to air derived from
the 4T tests is 29.5%. This compares well with the value of 31% as
determined from independent tests in the Pressure Suppression Test
Facility (PSTF)7. Using these values in the 4T yields a frequency
which agrees wall wit! the frequency in the 4T chugging tests.

Thus, we conclude that:

(1) The predominant Category Il chug frequencies are the vent
fundamental acoustic frequency and its harmonics.

(2) The predominant Category I (classical chug) frequency is the pool
fundamental accustic frequency based on c/4L (where L is the pool
wepth) with ¢ reduced from its pure water, rigid tank value by
tank flexibility and entrained air.

2-13/2-14
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3. GOVERNING EQUATIONS FOR CHUGGING

In Chapter 2 it was shown that the 4T data can be described in terms
of vent and pool acoustics. We now proceed to support this assertion
with a more detailed theoretical understanding of the 4T system
response to chugging. This theoretical understanding in the form of a
mathematical model will help us to specify the chugging load, i.e.,
the forces due to chugging, on the suppression pool boundary of any
Mark Il containment.

Chugging is viewed as a three-part phenomeaon composed of a source, a
transfer function, and a fluid=<*ructure interaction. The chug source
is the result of an acceleration of the steam-water in*erface at or in
the vicinity of a vent exit. This acceleration of the .nierface is
due to the pulsating condensation and is either impulsive resulting in
a Category | type chug, periodic which results in a Category II chug,
or both resultir in a Category III chug. The effects of the chug
source are pr .gated to the pool boundary. This propagation is
described t dat we term a transfer function which results from the
equations f motion for the fluid. Finally, we come to the
interaction between the fluid and the containment structure. In our
description of chugging, the transfer function which represents the
propagation of the effects of the source to a rigid containment can
be separated from the fluid-structure interaction which describes the
response of a flexible containment to the rigid containment pressure.
Our treatment of the fluid-structure interaction, including the proof
that such a separation of the fluid and structural motions is possible,
1s treated in Chapter 5. Here we will deal with the chug source and

the transfer function.

3.1 Semiempirical Chug Source

The pressure excursions called chugging observed in the 4T are the
result of intermittent steam condensation occurring at the vent

1,3,7,8,9

exit This condensation is controlled principally by the

vent steam mass flux, the air content in that flux, and the

3-1
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temperature difference across the steam-water interface. When
conditions at the vent exit are such that stable condensation is no
longer possible, the sequence of chugging as shown in Fig. 3-1 begins:

(1) The water in the vent is isolated which allows a layer of
saturated water to form at the interface reducing the rate of
condensation.

(2) The reduced condensation rate allows the drywell pressure to
increase; the interface is thus pushed out of the vent back into
the pool. The layer of saturated water protects the interface
while it is inside the vent.

(3) As the steam-water interface emerges into the pool, local
turbulence destroys the protective boundary layer of saturated
water and the interface comes in contact with the colder pool. A

"burst" of condensation follows.

(4) The steam flow through the vent is not sufficient to supply the
rapid condensation. The drywell is depressurized and water «gain
reenters the vent to repeat the cycle.

Thus, a condensation event is responsible for initiating the chug and
1s the chug source. This source is dependent on several factors, some
of which are highly random. As a result, the nature of the source is
also random. For example, if local conditions permit the steam-water
interface to extend sufficiently far into the pool, the resulting
condensation event can impulsively excite the pool acoustic
vibrational modes. Or the chug source may include multiple
condensation events which will not always excite the pool acoustics.
These multiple condensation events appear to be driven by the acoustic
vibrational modes of the vent.

To be able to develop a completely analytical description of chugging,

1t is obvious that we need an analytic model of the condensation and

intertace collapse. A model of steam bubble collapse is given by

3-2
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Figure 3-1 The Observed Sequence of Events During Chugging

33

G 1002382067



NEDO-24822

Florscheutz and Chaolo.

This model treats the mechanics of the
collapse uuder spherically symmetrical conditions to ascertain the
relative importance of the dominant mechanisms controlling the
collapse: liquid inertia and heat transfer. Florscheutz and Chao
conclude that when the coliapse is inertia controlled, collapse rates
are high and increase as the collapse proceeds. In contrast, when the
collapse 1s heat-transfer controlle , the collapse rates are low and
decrease as the collapse proceeds. An integral component of the
Florscheutz and Chao model is the use of a calculational result
obtained by Plesset and Zwickll. In their article on bubble dynamics
and cavitation, Plesset and Prosperettilz express doubts as to the
applicability of this result to collapsing steam bubble . In their
opinion, no entirely satisfactory theoretical results are available
for the modeling of steam bubble collapse under conditions in which
thermal effects play a significant role.

Because of this disagreement between notable workers in this field and
also because the conditions at the vent exit which effect the chug
source are random, we will not rely entirely on any theoretical model
for an analvtical description of the chug source. Instead, we will
develop a semiempirical chug source. Wherever possible, the 4T data
will be used to develop the source. Where the data cannot be used,
theory will be employed. Since it is necessary to have a transfer
function in order to relate wall pressure data to source behavior, we
will only be able to describe the source in terms of unknown constants
in this chapter. Following the derivation of the transfer function,
these constants will be evaluated.

From che examination of the 4T data in Chapter 2, we saw that there
are essentially two kinds of chugs: Category I and Category II. A
Category III chug can be treated as a Category Il chug terminated by

a Category I chug. Thus, two different chug sources are necessary.

An analysis of the Category I chugs in Chapter 2 reveals the pressure
response to be that of the acoustic ringout of the 4T tank-water

system. This type of response would be generated by an inertia
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controlled steam=-bubble collapse. To simulate a chug, Anaret
Laboratories, during an experimental study of the 4T fluid-structure
interactions, imploded an evacuated bell jar placed at the 4T vent
eXit. The pressure time-history at the tank bottom-center during one
of those tests 1s shown in Fig. 3-2. The similarity between the
pressure response of the simulated chug and actual Category I chugs is
apparent.

Since the collapse of the void created by crushing the bell jar is
inertia controlled, we can roughly estimate the general shape or

time dependence of a Category I source from Rayleigh's treatment of
13

bubble collapse’~. Th.s yields an acoustic source whose strength
. 14
may be written
3
p R
S(t) = 3n =2 [—2 - 4R(¢)]. (3.1)
P OR(y)"

Here R(t) 1s the radius of the cavity at time t, Ro is 1ts
initial value, ard p, 1s the static fluid pressure. Note that at
extremely small values of R(t)/Ro. for which this expression for the
source tends to +x, the classical Rayleigh solution is not appiicable
because it neglects the opposing internal pressure due to compression
of the vapor inevitably present and the presence of the vent into
which the void collapses. Guided by Eq. (3.1), we will approximate the
impulse delivered to the pool by an inertia controlled bubble collapse
oy a single impulse. We defer until Chapter 6 the demonstration that
this approximation will generate a pressure response similar to that
shown in Fig. 3-2. The inertia controlled collapse also exciis an
acoustic vent response which serves as a source of long-term acoustic
energy for the pool. Therefore, we could approximate the total 4T
Category I source empirically by

N
5;(t) = - Ao,\(f—‘ RIRED D A e ™0t sin wt, (3.2)
n=1

3-5
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where
1 - |x]  |x] <1
his) 8 (3.3)
0 x| > 1
The impulse ar . .qe Ao and duration T as well as the amplitudes An,

damping constant o, and frequencies w, of the vent response will be
determined empirically from the 4T data in Chapter 6.

An examination of the Category II chugs shows that the pool is not
responding in its transient acoustic modes but rather at the acoustic
frequencies of the vent. Each Category II chug has a time duration
that is consistent with the cpinion that a Category II chug is a
succession of condensation events the frequency of which function

is being driven in a steady state fashion, it is transparent to the
Category II source. Thus, the general time dependence of the source
{s given by the Category II chugs themselves, and we therefore could

approximate the Category I7 source empirically by

N
Sp(t) = u(T-t) Z: B, sin (ut), (3.4)
n=0

where u(x) is the Heaviside step function.

3.2 Fluid Equations of Motion

The state of a fluid is completely determined once we specify the
fluid velocity ¢ and any two of the thermodynamic properties
pertaining to the fluid as functions of space and time. MHence, the
motions of a fluid medium are governed by four equations. The first

equation 1s a continuity equation expressing the conservation of mass

g% *V () =0 . (3.5)

37
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The second equat:ion 1s a force equation expressing the conservation of
momentum

Y

pg'.:g-p(ﬁ-vw.vlwpo-(n+§p)v-:1-pVxVxG. (3.6)

where y and n are the coefficients of shear and bulk viscosity and ¢

A

1s a potential enrrgy causea ', . force per unit mass. The third
equation 1is a heat exchange equation expressing the comnservation of

energy
p‘rg%:-p‘r;-vsfv-(("!')f-{:va, (3.7)

where T is the viscous-stress tensor, K the thermal conductivity, and
s the specific entropy. The last equation can be ome of several
equations expressing the constitutive relations that characterize the

fluid and its response to thermal or mechanical stress

P = P(p,s)

T(p,s)

(3.8)
T

The above four equations form the governing set of equations for the
fluid. We have made the implicit assumption that the fluid properties
(bulk modulus, viscosity, thermal conductivity) are everywhere conmstant.
To obtain a unique solution for a particular fluid geometry, we need
to impose some boundary conditions. Normally ve require that the tluid
pressure equal its equilibrium value at a free surface and that the
fluid cannot penetrate a solid surface. Since these solid surfaces are
tormed by structures that are seldom perfectly rigid, a fluid-structure
interaction (FSI) must be considered. This is accomplished by simply
requiriug the normal component of fluid velocity to equal the structure
velocity at the fluid-structure interface. Thus, we must augment the
governing set of fluid equations with the equat on of motion for the
structure represented symbolically as
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BZU

My s N =, (3.9)

at

where w is the boundary displacement, M is the local mass per unit
area, and LN 1S a space operator of order N describing the local

structural restraining force per unit area.

Upon inspection, it is readily apparent that analytical solutions to
the above set of coupled nonlinear partial differeatial equations
would be such a formidable task that such solutions would be rare.
Therefore, in general we rely on numerical techniques in the form of
finite-difference or finite-element computer programs. Numerical
solutions are in principle juite adequate. Hovever, in practice they
do nmot contain all the physical insight to which one is accustomed
from analytical solutions. It will be shown that if certain
assumptions are made this set of equations will collapse to a single
equation of acoustic fluid motion which will have a straightforward
analytic solution for Mark II and 4T suppression pool geometries. If
these assumptions can be justified, we will obtain the physical
insight and at the same time maintain an adequate representation of

chugging.

3.3 Assumptions and their Justification

The theory of sound deals with systematic motions of a fluid relative
to an equilibrium state. Such perturbations of state can be described
by incremental or rscoustic variables and approximate equa ions
governing them can be obtained by linearizing the general equations of
motion given above. These results, as well as higher order
dpproximations, can be derived in an orderly way by invoking a modified

perturbation analysisls’lb.

Th. . consists of replacing the dependent
variables appearing in Eqs. (3.5, .hrough (3.9) with the sum of their
equilibrium or zero-order values .nd their first- and second-order
variational components and then for. ‘ng the separate equations that
must be satisfied by the variables of each order. The resulting

first-order equations, with the assumption of isentropic behavior of

3-9
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the ticid, yield the scalar wave equation of classical acoustics which
has ana!vtic solutions. The second-order equations, however, have no
general solution but are useful for making approximations and
investigating some second-order phenomena that cannot be predicted by
the first-order equations alone. If an analytic solution is sought,
some rationale must be given to show that the second-order effects can
safely be neglected.

Thus, we proceed in the same spirit as the modified perturbation
analysis except we explicitly make three a priori assumptions:

(1) the fluid motion 1s isentropic, (2) the change in the fluid
pressure 1s proportional to the change in the fluid density, and
(3) the velocity of the fluid particles is small compared with the
velocity of sound. In addition, we also implicitly assume average
values for the fluid properties and that the fluid is at rest. To
Justity these assumptions, we first separate the fluid pressure and

density into an equilibrium value olus a small 2coustic part
F=p *+p p=p 6, (3.10)
and then proceed as follows:

(1) Isentropic Fluid Motion (g% = 0)
We write the general equation of heat transfer expressing the

conservation of energy (Eq. (3.7)) in the following form:

TE=pr FE+i-U)=v. D +i:v . (3.11)
For reversible adiabatic or isentropic fluid motion, the above
equation vanishes. To be able to approximate the fluid as an
isentropic fluid, we must show that thermal conductivity and viscosity
are unimportant, i.e., the fluid is ideal. The left-hand side of Eq.
(3.11) 1is the quantity of heat gained per unit volume per unit time at

the expense of the mechanical energy of a sound wave. Therefore, the



NEDO-24822

sound wave is damped out in time. This subject is treated extensively

in the literature\7‘20

whereby one can calculate the rate of acoustic
energy loss to be so slight as to warrant the neglect of viscosity and

thermal conducticn.

Therefore, to a good approximation, the fluid may be considered as
ideal, i.e., the effects of viscosity and thermal conductivity can be
neglected. Therefore,, ds/dt = 0 and the fluid is said to be

isentropic.

(2) First-Order Equation of State, [p = (55) 6]

Since the fluid is isentropic, the equation of state is a function of
the fluid density only and can obviously be expanded in a Taylor
series in the term 6/p0 (called the "condensation")

5 .3
v (5;) L, (3.12)

2
o

= IR T
P = P, * A (5;) ' 37 (

6
Po
where A = Py c2 since (dP/dp)s z c2. By application of thermodynamic
formulae for the isentropic derivatives of the pressure with respect
to density, the ratios B/A and C/A can be computedZI. For water, the
numerical values for these ratios are B/A < 6 and C/A < 39 where P, <
24.5 MPa (3553 psiz) and T = 30°C (86°F). Keeping only the linear
term in Eq. (3.12), we write

Yy me®§ . (3.13)

[f this first-order equation of state is used instead of the Taylor
§eries expansion, it can be quickly shown that we are in error by no
more than 1% when the condensation 6/p° 1s less than 0.0032. A
condensation this large would produce an acoustic pressure P 1n excess
of 73 atm (7.4 MPa or 1073 psi) == iar larger than any chug possible
in a Mark Il boiling water reactor (BWR).

3-11
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(3) Linear Equation of Motion (u << ¢)

Since the assumption of isentropic fluid motion ’s tantamount to
neglecting fluid viscosity and thermal co uctivity, the equation of
motion (Eq. (3.6,) reduces to Euler's equa' .on

”
Tr@-nu o= -l . v (3.14)
We now explore under what conditions it is justified to omit the
nonlinear term (u * V)u compared with the other two terms. We are
interested 1in the relative order of magnitude of the terms of

Eq. (3.14) in connection with the propagation of sound waves.

Therefore, we introduce for the characteristic time and length over

which the sound wave changes appreciably the period T and the length A

of the wave, so that 3/t ~ 1/T and V ~ 1/A. Then, to obtain the
relative orders of magnitude of the different terms, we use the

property of plane waves that p = pcu. Thus, the relative orders of
magnitude of “he terms in Eq. (3.14) are: 1, u/c, 1. The condition,

then, that the fluid equation of motion be linear is u << ¢.

To establish the validity of this assumption (and the previous one
concerning the condensation 6/90), we resort to a numerical solution
of the conservation equations for mass, momentum, and energy in a
rigid circular tank similar to the 4T facility. We use a nationally
available computer code K-FIX22 to solve the above system of equations
subject to the specified boundary conditions. The K-FIX computer code
uses a two-fluid model to simulate transient, two-dimensional,
two-phase flow. The two phases have different densities, velocities,
and temperatures determined by s2parate mass, momentum, and energy
equations. The conservation equations are written in finite
difference form for their numerical solution. The nonlinear finite
difference equations are solved iteratively using 2 point relaxation
technique. The geometric region of interest is divided into many

finite-size, space-fixed cells that collectively form the computing
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mesh. In cylindrical geometry, the cells are toroids with rectangular
cross section. Tie pressure, density, and internal energy are
computed at the cell center while the componeats of the velocity are
computed at the cell boundary. The K-FIX model of a tank-vent system
18 shown in Fig. 3-3. This is an axisymmetric model. Only the wate:
in the tack and the steam in the vent are modeled; the air above the
water is neglected.

The problem is now sufficiently specified to obtain a solution using
K-FIX. All that remains is a description of the chug source as input
to K-FIX. We choose to simulate a Category I chug because this type
of chug has the largest pressure excursicns and will be the most
severe test of our assumptions. We will assume the collapse of ar
isolated steam bubble for conservatism. in principle, the source could
be specified with K-FIX by modeling the collapse of a cavity. This
1s not practical, however, because of the large number of computationa:
cells required to track the collapse. Instead, we specify the pressure
time-history in the cells immediately adjacent to the steam-water
interface at the vent exit. Using the Florscheutz and Chao model with
increased heat transfer rates due to the turbulent conditions at the
vent exit yields the bubble pressure time-histories shown in Fig. 3-4.
The Florscheutz and Chao model treats the collapse of a spherically
symmetric steam bubble in an infinite sea. The calculated flow field,
therefore, will not conform to the actual flow field in 4T. Thus, the
pressure time-history in Fig. 3-4 serves only to obtain a plausitble
time-history shape. Other choices such as an impulse yield the same
conclusions. Since the collapse time relative to the acoustic ringout
1s short, the precise shape is not vital and we shall idealize the

pressure source given in Fig. 3-4 with
p(t) = pl A(Zt/tl -1) ¢ pz A (——— -]) (315)

where A(x) is given by Eq. (3.3). This pressure source has the time
dependence shown in Fig. 3-5.
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By reviewing the pressure transients in the vicinity of the vent
observed during the Anamet bell jar testss, values for the constants

Pyr Pys Ty Ty in Equation (3.15) can be obtained. A collapse time for
the bell jar was observed when the air space above the water was vented
to the atmosphere. Foll-wing the collapse, a pressuve transducer in the
vent reccrded a transient. When the air space has the same pressure as
that during the 4T Phase I, II, and III tests the collapse time would be

less. In the absenc2 of an experimental measurement, we can

crudely estimate the collapse time corresponding to a pressurized air
space as follows. We learn from the collapse of a spherical void in
an 1afirite sea that the collapse time is proportional to the inverse
of the square root of the ambient pressurel3. For an overpressure
of 275.79 kPa (40 psia), the collapse time should be roughly 50 ms.
Thus, we choose o= 50 ms and T, = 56 ms. These values compare
favorably with Fig. 3-4 when one considers that it can be shown that
collapse in a confined geometry takes longer than in an infinite sea.
we choose Py = =5.24 kPa (-0.76 psid) and P, = 32.82 kPa (4.76 psid)
to simulate tank bottom=-center and vent pressure amplitudes.

We apply Eq. (3.15) to the cell locate! in the water at the vent exit.
Since the source also excites the vent, Eq. (3.15) is also applied
simultaneously to the first cell in the vent adjacent to the
steam-water interface. These two cells are indicated in Fig. 3-3 with
a black dot. The tank bottom-center pressure and the vent midpoint
pressure computed by K-FIX are shown in Fig. 3-6 and their respective
power spe.cral densities (PSDs) in Fig. 3-7. The computation mesh
was examined to find that [§] < 0.01 kg m.s (6.24 x 10-“ 1bm/ft3) and
ful € 0.02 m/s (0.8 in/s). The damping exhibited in Fig. 3-6 has no
physical basis because the boundary conditions in this calculation are
rigid wall boundary conditions and viscosity and heat conduction have
been neglected. Rather, the damping is due to "numerical diffusion”
arising from the solution method chosen in K-FIX. Since we are not

drawing conclusions related to damping, it is of no consequence.
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Thus, we conclude from the K-FIX calculation:

(1) The linear fluid equations of motion are an excellent
approximation because u << ¢ and § << Py

(2) The vent and tank are not strongly acoustically coupled, i.e.,
each responds at its own eigenfrequency.

(3) The vent serves as an acoustic source to the tank in addition to
the chug impulse.

We have now verified our three assumptions; thus, the conservation
equations reduce to the acoustic wave equation. To show this, we

rewrite the conservation equations subject to our assumptions

g{-’opov-ﬁzo (3.16a)
v (3.16b)
o ot P y

where the enecgy conservation equation vanishes since ds/dt = 0, and
we have implicitly assumed that V x u = 0.

This reduces to the a2r .stic wave equation
o L
Cp=vp-=5<L =9 (3.17)
cz at”

For the case where sources of acoustic energy are present, such as

impulsive steam bubble collapse and the vent response to that collapse,
the wave equation becomes

o®p(T,t) = -4nq(F,t), (3.18)

P . 3
where g(r,t) represents the acoustic sources.

3-20
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&. ACOUSTIC MODEL OF CHUGGING

Having demonstrated the acoustic nature of chugging in Chapters 2 and
3, we must now develop a theoretical model that accounts for the
observed phenomena in the 4T tests. Numerical codes (such as K-FIX
and NASTRAN) are very costly, and an anulyi.cal solution would result
in more reasonable computer costs. Additionally, analytical solutions
permit a better understanding of the physics of the problem. Thus,
using the results of the numerical code K-FIX and the bell jar tests,
simplifying assumptions can be made which reduce the complexity of the
problem and permit an analytical solution. The code IWEGS
(Inhomogeneous Wave Equation Green's function Solution) was developed
to obtain the numerical results of the analytical solution. The form
nf the analytical solution is such that extension from the simple
cylindrical geometry of the 4T to the more complicated annular
geometry of the Mark II is straightforward, as will be seen later in
Section 4.2.

4.1 Wave Equation Solution in 4T Geometry

The development of the acoustic chugging model is based on two

assumptions substantiated by the results of the previous chapter:

(1) The linear wave equation applies and
(2) The vent 1is not acoustically coupled to the pool.

The results of the previous section indicate that the linearized
equations of motion which lead to the wave equation may be emploved.
Nonlinear effects, such as wave shape steepening or shock waves, were
not observed in the Anamet or K-FIX results. This is consistent with
another large amplitude phenomenon, water hammer, the analysis of

which has been successfully accomplished by the wave equation.
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The results of K-FIX calculations of pressure in the 7ent show these
oscillations to be at the vent natural frequencies ind independent of
the natural frequency of the pool pressure oscillations. Hence, the
vent may be considered to be acoustically decoupled from the pool and
its effect included in the source.

Forced wave motion in compressible fluids is described by the inhomo-
geneous wave equation

o?p(t,t) = ~4nq(F,t) (4.1)
where
p = acoustic pressure
PR -
0=V = 3 =3 D'Alembertian operator
S|

q(;.t) = source density distribution function describing
spatial ard temporal distribution of the
driving force.

The solution of Eq. (4.1) 1s obtained in a straightforward manner by
b
the Green's function method‘S’Za as represented by the following

volume and surface integrals

+
t

p(r,t) = f dt /::Wo u(r.tlro.to)q(ro.to)
0 v

(4.2)

L2

“+
£l
o\.r’

dt f ¢ - [c(r.ziro,zo)vop(io,co) - p\;o,LO)VoG(;,tl;o.to)]
S

for a fluid which 1s initially at rest. By the symbol t’ we mean
t + &€ where ¢ is arbitrarily small. This limit is employed in order

to avoid terminating the integration at the apex of a delta function.
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The time-dependent Green's function G = G(;.ti;o,to) 18 the solution of
UZG(r.tlto,to) = -6n8(f - ¥ ) 8t -t ) . (4.3)

We see that the source in Eq. (4.3) is an impulse at t = t, located at

r=r,. G(;,tl;o,?o) then gives the description of the effect of this

impulse as it propagates away from r= ;o during the course of time.

The first integral on the right of Eq. 74.2) represents the effect of
th= sources; the second represents the effect of the boundary
conditions on the space boundaries. We wish to use Eq. (4.2) to
describe the pressure field in the fluid region of a perfectly rigid
4T. The solution for flexible wall geometries will be given in
Chapter 5. For the collapse of a steam bubble attached to the 4T
vent, we could, in principle, apply Eq. (4.2) with q(;.t) £ 0. The
bubble surface is a complicated part of the boundary enclosing the
tluid region. Only that part of the surface integral of Eq. (4.2) at
the bubble-water interface will contribute to p(;.t) in our idealized
rigid 4T. Thus, a description of the interface motion is required ==
something we have been trying to avoid. Also, the solution of Eq.
(4.3) 1in the 4T geometry will require the Joining of the two solutions
in the regions above and below the vent exit. Such a solution for G
is not ttactablezs. For these reasons, we will approximate the 4T
geometry in the fluid region of Fig. 4-1 with the simpler geometry
shown in Fig. 4-2. We neglect the presence of the 4T vent and treat
the collapsing steam bubble as a point source:

q(?.t) = pé(? - ?0) S(t) . (4.4)

This is an excellent approximation because both the vent and bubble
are small compared to the tank diameter and the wave length of the
resulting pressure wave. This is evident trom a simple calculation.
The maximum bubble diameter is believed to be equal to one vent
diameter, 508 or 610 mm (20 or 24 in.). The tank diameter is 2.13 m
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(7 ft) or at least 3.5 times larger thau the bubble or vent. The wave
length of a 25 Hz standing pressure wave is 28 m (92 ft) (using ¢ =
701 m,/s or 2300 fps), or 46 times larger than the bubble. Thus, we
add a third assumption to those previously enumerated:

(3) The source can be represented by a point source.

Under these approximations, the solution of Eq. (4.1) is given by

t+
- - > -
p(r,t) = fdto ﬁVOG(r.tIro,to)q(ro,to) ’ (4.5)
0 v

If we define the Fourier transform (in time) of the time dependent

Green's function via

>
L 1 > » -iw(t=-t )
G(r,tlro,to) . ./ﬂ Gk(r,ro) e 1w o) dw , (4.6)
-

expanding Gk in a series of normal modes for the 4T geometry results

in

Qn(ro) Gn(r)

G (r,r ) = 4n z: . 5 ey (4.7)
VA [k - (=) ]
n n'‘n c
where the Qn are the eigenfunctions of the Helmholtz equation,
v2 2
Qn + kn " ., (4.8)
The boundarv conditions for the rigid wall cylinder are:
aon
At r = a raghe 0 (rigid wall) (4.9)
Pon
At z = 0 B - 0 (rigid bottom) (4.10)
At z =1L .. " 0 (water surface). (4.11)

4-6
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Eq. (4.8) 1is solved inm cylindrical coordinates with boundary

conditions, Eqs. (4.9), (4.10), and (s4.11), resulting in

no

N a mn sin
On(r) of t:r—-r)

Cos (mh) cos[(2 + %) g z]

where n represents the quantum number trio n,m,{ which has integer

values equal to 0,1,2, The 2igenfunctions on satisfy the

orthonormal condition

fom(r) 0,(F) v = VA &

where Gmn 1s the Kronecker delta. The normalization constant An is

given by
5 2,12
na m
VA = VA % [1-( ) N (ra_ ),
n n,m 2¢ a m°mn
gt -1 . . ,
where e 2(1*60m) The eigenvalue a0 1S defined by

Jm(namn) =0,

where Jé is the derivative of Jln with respect to it argument. A few

values of « are
mn

= = 7 = 2
000 0.0000 QU: 1.2197 002 £:4331
= = 7 = 4
alo 0.5861 a11 1.0970 dl: 2.7140
aqo = 0.9722 071 = 2.1346 aqz = 3.1734
o 1 lm - > m<n > 1
mn 2 4

&~
'

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)



NLDOU-24822
Eq. (4.5), together with Eqs. (4.4) and (4.7), yield

*

t
p(r,t) = : f S(t,) sin[wn(t-to)]dt
(o]

- -

8 c2 5n QN(ro) QN(I)

agL w [1-(=2)%] 3% (na o*
n n na.n m mn

(4.17)
where
b "amn 1, n
Qn(r) = J.( = r) cos[(R + i) i z] (4.18)
* no.n 1. R
Q(r)=J (= r,) cos[n(G-Oo)] cos[(2 + 3 i zo} (4.19)
w /e = (a/a)? + 2+ DD (4.20)

Applying Eq. (4.17) to the 4T with a single source on the tank

centerline, " 0, 60 = 0, the acoustic pressure field is given by

r racds N 1. R’
) 8 2 Jo(naon ;) cos[(ﬂ#z) [ z) cos[(2+§) i zol
RO S 3> q
a“L w J(na )
n £ n o' on
*
t
. f S(to) sin[wn(t-to)]dto. (4.21)

)

This equation presents no computational difficulties providing the
integral and sum are evaluated accurately. Tables of the roots of
JO(x) are available in the literatur327. A note of caution, however,
1s in order. When evaluating the sum over £ in Eq. (4.21), enough

terms must be 1included to ensure convergence to a desired level of
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accuracy. Eq. (4.7) is a "retarded"” Green's function. That is, for
values of t such that ct < |r - ;o" the double sum in Eq. (4.21) 1is
zero. This expresses the fact of a finite propagation time from
source to observation point. For times on the order of % It - ;o"
many terms in the sum cver £ are necessary to demonstrate this effect.
As t increases such that ct > |r = ;ol, the number of terms in the
£-sum to obtain a reasonable estimate of the unbounded sum is on the

order of ten.

4.2 Wave Equation Solution in Mark II Geometry

This section will describe how the theoretical acoustic mode!
developed in Section 4.1 is extended to the multivent annular geometry
of the Mark II containment. The code developed to perform the Mark II
computations 1s called IWEGS/MARS (Multivent, Annular System).

As in the cylindrical acoustic model described in Section 4.1, the

Mark Il acoustic model rests on the same three basic assumptions:

(1) The linear wave equition applies,
(2) The vent is not acoustically coupled to the pool, and

(3) The sources can be represented by a point source.

The Mark Il acoustic model is also used for the solution of the
inhomogeneous wave equation, Eq. (4.1). Only the geometry and number
of sources are changed (see Fig. 4-3). The point of departure is the
solution of the Helmholtz equation, Eq. (4.8), for the annular

geometry,
2 B il .
v 9, * kn o, ' (4.22)

The boundary conditions specified by the annular problem are:

20
At r = a 5;9 =0 (rigid outer wall) (4.23)

4-9
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30
At r = b -2 =z (rigid inner wall) (4.24)
ar

a0
At z = 0 5;9 =0 (rigid bottom) (4.25)
At z =1 °n =0 (water surface). (4.26)

Equation (4.22) is solved in cylindrical coordinates with boundary
conditions, Egs. (4.23), (4.24), (4.25), and (4.26), resulting in

05(F) = Lo (0) 508 (@) cos[(24]) T 2) (4.27)

where, as before, n represents the quantum number trio n,m,2 which
has integer values equal to 0,1,2, .... The eigenfunctions on satisfy
Eq. (4.13) which determines the normalization constant VAn (see

Eq. (4.13)). The radial function Cmn(r) is

J'(ny_b/a) ny r
}  e—t N_( :‘" Y: (4.28)

Nm(nymnb/a)
where the eigenvalues MY 3T defined by the roots of

In(Migg) No(my, b/a) = Jn(ny, b/a) Ni(ny ) =0 , (4.29)

J; and N& being the derivatives of Jm and N vith respect to their

arguments. The roots f Eq. (4.29) are also available in the
)

28
literature® .

For multiple sources of strength Sj(to) located at coordinates (rj.

Oj. zj), the source distribution function becomes

> . - 1 I d (y o
q(r, t) = p ; S;()) 2 8(r, = r,) 8(8 8,) 8(z, = z)), (4.30)

4-11
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where
SJ(‘o) et - tj) u(t - tj) :

.th

j source. The source function So(t) is the Mark Il chugging source

derived from the 4T chugging source and assumed to occur at each vent

exit.

Eq. (4.30), together with the Fourier transform of Eq. (4.7), are
inserted into Eq. (4.5), resulting in

f
p(r,t) = 2'lpc2 Z iy ‘ Z Q (r ) _/ Sj(to) sin[wn(t-to)] dto,

where

Qn(F) = ;mn(?> cos[(2 +

0o e
S
= |
—

Qn(;J) = Cmn(rj) cos[m(® GJ)] cos[(2 + %) g z.]

<
b
"

my
y B mn, 2 | A
(;‘) (';—-) + (L + f) ([) .

Eq. (4.32) is evaluated numerically by the code IWEGS/MARS. Note that

the roots of Eq. (4.29) are dependent on the containment diameter
ratio b/a. Thus, the natural frequencies predicted by Eq. (4.36)

will be different for each of the Mark Il containments. Table &4-1

lists the five lowest frequencies for the Susquehanna containment.

Notice that the first transverse mode has a frequency only 7 Hz
greater than the fundamental.

4=12

u(t) is the unit step function, and tj is the initiation time of the

% 3 22 22 :
0 ® T gy = @) L) - (B (@) - L )]
mn

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)
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Table 4-1

T

SUSQUEHANNA SUPPRESSION POOL NATURAL FREQUENCIES

Transverse Root,

Frequency, Hz(l)
(

(MYn) ang’
0. 54.35
1.54512 61.12
2.93655 76.02
4.16609 92.96
4.88471 103.79

Mode
fundamental
lst tangential
2nd tangential
3rd tangential

1st radial

Solving Equation (4.29) with the following parameters:

¢ = 1524 m/s
a=13.4m
b=4.42m
L=7.01m

m index corresponds to azimuthal direction

n index corresponds to radial direction

(5000 ft/s)
(43.96 ft)
(14.5 ft)
(23.0 ft)

£ index corresponds to axial direction

4-13/4-14
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5. YTREATMENT OF FLUID-STRUCTURE INTERACTION

In the previous two chapters, we have dealt with two of the three
chugging elements: the chug source and the transfer fuanction from that
source through the fluid to the boundary. We now treat the remaining
element of chugging: the fluid-structure interaction. In the exact
technical sense, there will be an interaction between the fluid and
the structure whenever the fluid is disturbed regardless of structure
rigidit *. This is a consequence of Newton's third law of motion.
However, the term "fluid-structure interaction" (FSI) has come to mean
the alteration of a rigid boundary pressure field by the response of
the structure to that field. Thus, when we say there is no FSI we
mean the structure is sufficiently rigid so that the pressure field is
unaltered. This condition is seldom realized in practice and
therefore the effects of FSI must be included in the structural

assessment of chugging.

5.1 Separability of the Fluid-Structure Interaction Problem

We have explicitly assumed that the solution of the set of equations
governing the behavior of the fluid and the structure could be
obtained in two steps. First, the fluid equations would be solved for
the case of rigid boundaries. We define rigid boundaries to be those
where the normal component of fluid velocity (or equivalently pressure
gradient) is zero. Next, the resulting rigid wall pressure Py would
be 1nput to the set or coupled equations which govern the structure
and the fluid

/e

N .
L(w) + Pg ¥ =P, * D, .

sz

]
o

2

where I.N 1s a spatial differential operator of order N, Pg is the
structural mass per unit area, and w is the boundary displacement.
These equations are coupled by way of (3p.,)/(8n)|s = pw evaluated at

the fluid-structure interface: is the pressure tield generated by
Py P B )

a1

(5.
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the motion of that interface. Equations (5.1) and (5.2) are usually

extensive and are solved by a fluid-structure computer program such as
NASTRAN%?732

problem is illustrated in Fig. 5-1.

This method of solution of a coupled fluid-structure

33 has

established the validity of this method of solution of the coupled

In work sponsored by the Nuclear Regulatory Commission, Sonin

fluid-structure problem subject to assumptions of small amp itudes and
linearity. Because of the importance of the method of separability in
obtaining Mark Il chugging responses which ‘nclude fluid-structure
interaction effects, we include his paper in Appendix C.

To demonstrate the application of this method of separability, we
performed the following calculation using NASTRAN. A triangular
vmnulse of strength 25.4 m/52 (1000 in/szj and duration 36 ms was
placed at the vent exit in the 4T NASTRAN FSI model shown in Fig. 5-2.
The spectral density of the resulting ac.eleration at the bottom-center
of the flexible tank is shown in Fig. 5-3a. This corresponds to the
le2fthand illustration at the top of Fig. 5-1. Next, the same impulse
was 1nput to the 4T NASTRAN model where e walls were constrained to
be rigid. This yielded the rigid wal pressure field p, at the
boundary, represented by the middle ili stration in Fig. 5-1. This
rigid wall pressure field was input to the same NASTRAN mo« =1 without
a source to obtain the flexible wall acceleration response 's pictured
in the righthand illustration in Fig. 5-1. The resulting spectral
density of this acceleration is shown in Fig. 5-3b. The acc:leration
response spectra in Fig. 5-3 are 1identical, verifying the meihodology
and demonstrating its applicability to source strengths repres.ntative
of any of the largest chugs in the 4T data base.

5.2 Solution of the Acoustic Equation with Flexible Boundaries

We have now established that the descriplions of fl'id and structure
motions are indeed separable. The description of fluid motion in
either a cylindrical or annular geometry is given by the rigid wall

solution of the acoustic equation in Chapter 4. To obtain the

L L
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structural response, we aust ul.lize a structural computer program
with compressible fluid elements. Such computer p:.grams are both
complex and expensive to execute even though we have introduced a
simplification via separability which makes the chugging problem
tractable. We will now explore the feasibility of obtaining a flexible
wall solution of the acoustic equation. 3Such a solution, if obtainable,
would yield no small savings since it would then be possible to use a
much simpler structural computer program such as ANSYS3A-36, without
fluid, to determine containment response to chugging. Thus, for the

same computer cost we could obtain a more extensive containment analys:s.

Suppose the containment walls are locally reacting®* so that to a good
approximation we can assign a specific acoustic admittance
B(w,;s) = - i0 = pf(un/p). where u is the normal velocity at the
N

boundary, to each point rg on the wall surface for each frequency
w/2n. & and 0 are the specific acoustic conductance and susceptance
respectively. The acoustic response to a source can be expressed in
terms of the normal modes of the fluid W(u,;) where, as betore, Wn are

the eigenfunctions of the Helmholtz equation

2 2 _
v Wn + Kn Wu =0 (5.3)
f'#‘n(w,r) Wm(w.r)d\' s V/\“(m)émn ; (5.4)
v

*The acoustic pressure acts on the surface of the structure and tends
to make it move. If any fluid motion normal to the surface is
possible, there will be wave motion in the material forming the
surface. The motion of the surface at one point will be related to
motion at another point of the surface by the wave motion inside the
material as well as by the incident and reflected pressure waves. If
the various parts of the surface are not strongly coupled together and
we can consider that the motion, normal to the surface, of one portion
of the surface is dependent only on the acoustic pressure incident on
that portion and independent of the motion of any other part of the

area, then we say that the surface 1s one of local reaction.

5<6
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Wn must satisfy the boundary condition that, for each point ;s on
the boundary, the normal componeant of the gradient of *n in the
outward-pointing direction is equal to i(w/c)B(w,?s) times the value
of Wn at that point

a - - . oA - -
5as*n(w.rs) i 1(E)B(W.rs) Wn(w,rs) . (5.5)

The index n stands for a trio of quantum numbers, as required for a
three-dimensional standing wave. If any portion of the boundary has a
nonzero conductance £, the eigenvalues Kn(w) will be complex with
negative-imaginary parts. Suppose a root of the equation cKn(w) = wis
W, " iAn, with wo and An positive quantities. Because of the symmetry
of the admittance function S(u.;s) about the 1imaginary w axis,
there will be another root at W - i?n so that the two roots of the

equation an(w) = w are

w = t“n - 1An = cKn(:wn - i%n), (5.0)

with An usually much smaller than W

As usual, the first task 1s to calculate the Green's function Gw(;';o)
representing the spatial distribution of the radiation from a point

- > . . .
source of frequency w/2n at a point £, The Green's function satisfies

[V2 + (?)2] Gw(?l?o) = -ané(?-;o) - (5.7)

Expanding Gw in a series of the normal modes or eigenfunctions of the

flexible wall, we can solve for the ccefficients and cbtain

L ¥ (w,r )¥ (w.r)
6, (FIT,) = 4n a ’ e —
VA K W)= (D] . (5.8)

This then is the flexible wall Green's function.
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Very close to the source, this series approaches the free-space
Green's function & eikR/R where R = I?-;ol; farther away, it37
differs from 8, because of the waves reflected from the boundaries™ .
There will be a resonance when w/c 1s equal to the real part of one of
the eigenvalues Kn(w). At the ath resonance the Wn term predominates,
having an amplitude inversely proportional to the imaginary part of

Kn(w) for that frequency.

The Fourier transform of Eq. (4.2) 1is
. " - - -
pw(r) = thvo Gk(rlro)qw(ro)
v

(5.9)
1 > - - . - >
* J‘}go . [Gk(rlro)Vopw(to) - pw(ro)VOGk(rlro)].
S

where R, and q,, are the Fourier transforms of the pressure field and
source distribution respectively and Gk is given by Eq. (4.6). Note
that Gk 1s the Fourier transform of the Green's function defined by
the wave equation (see Eq. (4.3)). Until subject to specific boundary
conditions, Gk and thus Eq. (5.9) are completely general. If we
specify flexible wall boundary conditions to be satisfied by the
Green's function, then Gk - Gw and, using the definition of the
specific acoustic admittance B = pc(un/p) and Eq. (5.5), the Fourier
transform of the flexible wall pressure field given by Eq. (5.9)

becomes

pw(;) = fdvocw(?u?o)qw(?o). (5.10)
Vv

Inspection of Egqs. (5.8) and (5.10) reveal that pw(;) is simply an
expansion of the pressure field in terms of the flexible wall

2 . 4
eigeniunctions Wn(w.r),

Do a ¥ (w7 (5.11)
nn

n

pw(?)
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where

an
a W(wr) (r)M-
LR [w (w)=(2) o J(. b

To compute Py (r), we must first determine the W (w, t). This we shall
do using the eigenfunction o, (r) for the rxgxd wall containment.
These eigenfunctions were obtaxned in Chapter 4 from the following

equations:

(@ +n2) 0 () =0, (5.12)

ga 0,(F) = 0, (5.13)

where ;s is a point on the rigid wall and cn, s uﬁ the rigid wall
eigenfrequency. Note the slight change in notation for the rigid wall

eigenvalue Ny The rigid wall eigenfunctions were normalized according to
f (£)0_(7)dv = VA® & (5.14)
Qm !')Qn(l' = tn an’ »

The most direct - of determining changes in the eigenfunctions and
eigenvalues produced when the boundary surface S is no longer rigid is
by use of a Green's funciion of the general form of Eq. (5.8) but for
rigid walls. We wish to use this Green's function to obtain a set of
solutions of Eqs. (5.3) and (5.4) for a frequency w/2n = ck/2n = cKN/Zn
where KN 1s a flexible wall eigenvalue. The defining equation for the

Green's function is therefore

(7 + xi)cx(?;?o) = - 4nb(F-r,) (5.15)

subject to the boundary condition

3= G (F 1F) =0 . (5.16)

>
Expressing this Green's function in terms of the eigenfunctions on(r),
we find that

3=9
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. -
On(ro)on(r)

cx(a?o) = 4n Z (5.17)

O/ 8 &
n VAn(nn KN)
The equation for the flexible wall pressure field 5, in terms of this
rigid wall Greens function GK is obtained from Eq. (5.9) by setting
G, = GK and utilizing Eq. (5.16).

o - - - 1 . > - -
p(r) = f dVO GK(rIro)qw(ro) ‘o f d§° GK(rIro)Vopw(ro). (5.18)
v S

The first term on the right is the rigid wall pressure response to a
source q and designated Py in Fig. 5-1 and Appendix C. The second
term 1s the pressure field due to fluid-structure interaction and
designated P, Since we are primarily interested in the fluid-
structure interaction pressure field Py, we shall omit the source 9,
in the following development. Once the flexible wall eigenfunctiuns
Wn have beer determined, the effects of the source q,, can be determined
via Eq. (5.10). Thus, for the present the volume integral does not
occur and Eq. (5.18) reduces to

ap .
-9_1 > > W ik - > > -
pw(r) o Jﬂax(rlro) 5;; dSo = RJ‘;K(rIro)B(w,ro)pw(ro)dSO. (5.19)

where the boundary conditions which p, Must satisfy have been introduced.
Since in Eq. (5.11) pw(;) is expressible in a series of flexible wall

eigenfunctions Wn(w.;), Eq. (5.19) can be transformed intc

‘ » k - - - -+
riwd) = B o F1F )pG,E, 0w, F s, (5.20)
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for a particular vibrational mode N. This is a homogeneous integral
equation, which includes both the differential equation and the
boundary conditions which WN must satisfy. Its exact solution yields
the correct form for the eigenfunction WN and also the correct value
of the corresponding eigenvalue KN' Unless KN has this value, the
only possible solution of Eq. (5.20) is WN = 0 everywhere.

The general properties of this equation and its solution can be more
clearly demonstrated by a modification of its form. We separate out

the term n = N in the series for GK and write Eq. (5.20) as

j‘;“(t )B(w, T )W (w, r ) ds .
¥y (w, r) = ik[ ] oy(r)
v (fl
W - (5.21)

+ zﬁ G (rlr )B(w, r )W (w, r )as,
where
. (r )0 (r)
Gy(FIT,) = 4n Z (5.22)

a2N VAV(H
and, as before, ;s 1s a point on the boundary.

The equation is homogeneous so WN can be multiplied by any constant
factor and still be a solution. For convenience, we choose that
tactor which allows the expression in square brackets to be equal to
1/1k. Thus,

- - ) B V\S . 2
jﬁ;N(rs)B(w.rs)WN(w.rs)dS ot (nN - KN) (5.23)
and
*, - 1k - : . -
WN(u,r) = QN(r) * 5 JﬁEN(rl.s)ﬁ(w.rs)WN(w.rs)dS. (5.24)

a*13
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If B is small, Eq. (5.24) can be solved approximately by expansion in

38,39

a perturbation series to any order desired. A first-order approxi-

mation soluti~n yields

Vo, D) = 0y(F) + 1% jﬂ;N(?u?s)a(w.?s)ox(?s)as (5.25)
and
2 @ nb ik 2% *
KN(w) = ﬂN - —5 .foN(rs)B(w,rs)dS . (5.26)

My

The resonance frequency Wy and damping AN for free vibration of the
Nth standing wave are obtained by solving Eq. (5.6) using the KN(u)
of Eq. (5.26). To first order, therefore

2 e n 702 [ 2 i 2 *
wN -» )\N - (l»s) - \'—\2 f‘QN (rs)[wxo(w,rs) * Ang(w,rs)]ds (527)
Ay ¥ —S f@é[g(w.? ) - b o(w,r_)}ds (5.28)
h ZV"\O- : S UJN s

N

if we assume that the locally reactive boundary (see footnote, page
5-6) behaves as a simple-harmonic oscillator. The acoustic impedance

z(w) for a simple-harmonic oscillator is given by"o

2
w
z(w) = pc/B(w) = R + 1n(w—s - w) (5.29)

where M = psh 1s the effective mass per unit area and h is the boundary
thickness, R = ZCSHus 1s the mechanical resistance of the boundary,
and Hui 1s the effective boundary stiffness. We define a spatial
average acoustic admittance B(w) via

B(w) fmé (F)dS = ﬁﬁ(?s)s(u.?s) ds. (5.30)
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Since B(w) = E(w) - io(w), the spatial average conductance f(w) and

susceptance 0(w) also have identical definitions.

We can obtain the

spatial average admittance for locally reactive boundaries from
Eq. (5.29) by replacing w which is complex with w - iAN. For stiff

walls where

B(w) reduces to

and

1

~~
©
|5

a(w)

Hence, to first order, the eigenfrequency Wy and damping factor AN

be ‘Lme

and

kw =
h

where we have set

~

ULN

26

S

i

2 o
“lNoll"zec Iq] 1/2

pS hws

(‘%)(?J[l v g BELy

s's ° pshws

Z (2 - aua®
f:”,\' (rg)ds = 2VAL I

(5.

(5

(5

(5

(5.

(5.

(5

31)

.32)

.33)

.34)

35)

36)
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for simplicity. We note that for a cylindrical geometry I = (1/L + 1/a).

We see that the rigid wall eigenfrequencies wﬁ are shifted by a

constant amount independent of frequency. The rigid wall fundamental
frequency (N = 0) in both 4T and Mark Il is given by wg = nc/2L. If
we define w = nc' /2L, then Eq. (5.36) is tantamount to an apparent

reducticn in the sonic speed, namely

b
c'scf1+2 9‘—‘7}'”2 . (5.38)
pshws

That such a reduction exists for acoustic signals traveling in flexible

=43 and 1s discussed in Appendix B. As

wall enclosures is well knowna
a matter of fact, we can quite accurately compute this reduction in 4T
based on agreement between observed and calculated fundamental frequen-
cies as shown in Chapter 2. This is based on the effective increase
in fluid compressibility due to the volume flexibility per unit volume
6 of the coutainment““ and the relationship between sonic speed and

compressibility

3= —35* 5. (5.39)

we see that, to a first approximation, the change in the eigenfrequency
and the occurence of damping is due to B # 0. This shift in eigenfre-
quency wy - w§ and the value of the damping constant AN is propor=
tional to the average value of 0 and { over the boundary surface
weighted by °§ so that those parts of the surface where the Nth stand-
ing wave 1s large are emphasized. The effectiveness of the flexible
walls 1n coupling other normal modes to the Nth one is measured by
the magnitudes of the integrals ¢ QnBoNdS entering ¢ GNBONdS in the
expression for WN in Eq. (5.25). If B is nearly uniform, most of the
integrals ¢ 0 BoydS(n # N) will be quite small and ¥, will not differ

N
much from the rigid wall eigenfunction Oy

5-14
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We have thus succeeded in obtaining a solution to the acoustic wave
equation with flexible boundaries in terms of the specific acoustic
admittance ﬂ(w,;s). If the functional dependence of B(u,;s) on
frequency w/2n and wall location N is known, we can completely
determine the total pressure field which includes the effects of the
fluid-structure interaction. The structura! response would then be
calculated using a structural model without the fluid ("dry contain-
ment"”) and applying the total pressure field to the boundary. All
that is required is that B(w.;s) be small to permit a perturbation
series expansion of Eq. (5.25). This is not an unreasonable expec-
tation for containments with fairly rigid boundaries. In summary, we

46,47 the fluid-structure interaction effects are threefold:

see that
(1) Mixing of the rigid wall normal modes as shown by Eqs. (5.25)
and (5.26),

(2) A reduction in the rigid wall eigenfrequencies wg shown by
Eqs. (5.27) and (5.35), and

(3) Damping of the free vibrations of the standing waves as given
by Eq. (5.36).

It is noteworthy to mention that this method of describing the

response of a fluid in a cavity with flexible walls to a source or
sources, which has been called chugging in the Mark II program, 1is
that which has been used successfully by physicists and engineers

active in the field of acoustics for over three decadesas.

To verify that the acoustic fluid-structure interaction methodology

correctly gives the flexible wall eigenfrequency Wy, we shall compare
the fundamental eigenfrequency w, as computed from Egq. (5.35) with

that computed by other methods and with experimental results.

We have already made the reasonable assumption that B(u,;s) was small

enough to permit a first-order perturbation solution of Eq. (5.24).

We further assume that B(w.;s) is sufficiently uniform over the

=15
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boundary, resulting in no appreciable coupling of the rigid wall
normal modes ow(;) such that, to a good approximation,

‘PN(w.;) x °u‘;" (5.40)

We shall begin with the 4T using the nominal structure and fluid
properties given in Table 5-1. We assume the 4T to be structurally
composed of two parts: a steel cylindrical shell of thickness hs

and a base plate of thickness h From a structural point of view,

b
this 1s an extreme simpliflcation, but for our purposes it will
suffice as we shall demonstrate. The surface integral in Eq. (5.27)
is to be evaluated over the shell and base plate resulting in the

following modification to Eq. (5.35).

2
hbwb hsws

ro

S

The fundamental flexible wall eigenfrequency wo/2n computed by the

above 1s 26.9 Hz where the rigid wall eigenfrequency wﬁ/Zn = 36.9 Hz.

we can also compute ug/Zn using the method described in Appendix B.
First, the acoustic speed is reduced from its nominal value by the
distensibility of the 4T shell. The effective acoustic speed is
obtained using Eq. (B.8) and the values in Table 5-1. The effect of
the base plate is calculated from Eq. (B.18) using this value for c.
The fundamental flexible wall eigenfrequency turns out to be

w /2n = 26.8 Hz.

Finally, we examine the results of a NASTRAN calculation for an
impulsive source given in Fig. 5-3a. The eigenfrequency wofln as
calculated by NASTRAN 1s 23.8 + 0.1 Hz. The 4T NASTRAN model had a
"simply supported” base plate; thus, Eq. (5.41) gives wo/2n = 23.2 Hz.

The experimental results against which we wish to compare are the

Anamet 4T bell jar and impact testss. The average fundamental

5-16
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Table 5-1

NOMINAL 4T STRUCTURE AND FLUID PROPERTIES USED IN THE VERIFICATION OF
THE ACOUSTIC FLUID-STRUCTURE INTERACTION METHODOLOGY

1.0668 m (3.5 ft) = tank radius

7.0104 m (23 ft) = nominal water depth

6.2484 m (20.5 ft) = water depth for Anamet test
101.6 mm (4 in) = base plate thickness

15.875 mm (5/8 in) = shell thickness

1185.6 S”) = base plate vibrational frequency *
1

1373.6 §~
676.1 §~1
4913.8 A shell vibration frequency

3 (470.7 1bm £t°3)

7700 kgm = steel density

19.5 (1010) Pa (28.3 Mpsi) = steel elastic modulus
0.28 = Poisson's ratio for steel

1000 k;g,mm-3 (62.4 1lbm ft-3) = water density

1036 m/s (3400 fps) = acoustic speed

Observed in Anamet 4T FSI study

. o S
P =™V (clamped plate)
S
"y 2,-1,1/2
7 lyzp~ (1=¢%) 7177 (simply supported plate)
a S
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e1genfrequency for these tests was w°/2n = 33.4 + 1.6 Hz. We assume
an acoustic speed of 1478 m/s (4849 fps) corresponding to an assumed
water temperature of 18.3°C (65°F) and overpressure of 101.325 kPa
(14.7 psi). The average water depth was 6.2484 m (20.5 ft) Hz. Using

the observed value for w, given in Table 5-1, Eq. (5.41) gives wo/Zn =
364.0 Hz.

We shall next examine how accurately the acoustic fluid-structure
interaction methodology determines the flexible wall eigenfrequency
w, in a Mark II suppression pool. Because of the complex nature of the
Mark II suppression po.l boundary, it is not as straightforward to
determine the spatial average acoustic admittance B(w) as for 4T.

[f we instead use the distensibility & for the Mark Ji, the correction

factor to the rigid wall eigenfrequency w§/2n can be obtained by equating
Eqs. (5.38) and (5.39)

= I
6 = 5 (5.42)

The flexible wall eigenfrequency u°/2n is then given by Eq. (5.41) as
betore. To verify this method for Mark II, we again use NASTRAN.
The NASTRAN model of the Limerick-Susquehanna containment used is
shown in Fig. 5-4. The volume flexibility VS, which is defined as
the .ncrease in containment volume per unit of applied pressure, was
determined to be V& = 1.061(107>) m/kPa (0.252 ft3/psi). It was
computed from the Mark II boundary pressures resulting from an
actuation of the safety relief valves (SRV,. This boundary pressure
has 1ts principal frequency in the range 7 through 12 Hz. This value
for V& 1s the sum of separate volume flexibilities for the basemat,
wall, and pedestal. From Table 4-1, the volume of water is computed
to be V = 3504.8 m>. Thus, & = 302.7(10"'%) m/N (2.09 x 10"%/psi).
We input the water densityv p and sonic speed ¢ to the NASTRAN model as
1000 kg/m°

quency for the same trisngular impulse used befor- was mz/Zn = 37 Hz

and 1036 m/s. The computed rigid wall fundamental fre-
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as shown in Fig. 5-5, whi.e for flexible walls it was wo/Zn = 32 Hz as
shown in Fig. 5-6. Using Eq. (5.36) we find that w°/2n = 32.1 Hz,
which compares quite well with 32 iiz.

Thus, we conclude from these comparisons that the flexible wall solu-
tion of the acoustic wave equation is capable of predicting the
eigenfrequency wo to within 3%.

we need now to determine either the specific acoustic conductance or,
48-51 AN' Unfortunately, here

3 that the
value of the fluid damping factor { = AN/wN for a welded steel struc-
ture such as 4T of 0.045 1s reasonable. Indeed this is about the
value obtained from the 4T Category I chugs. For the Mark II contain-
ment, the value of [ which will be used is set by regulatory guidesa.

equivalently, the damping constant

we have no theory te guide ussz. but experience suggests

wWhat now remains is to verify the assumption that B(w, r ) is suffi-
ciently uniiorm that ON(r) is a good approximation to W (w r) for the
Nth vibrational mode. This we shall do by comparing the mode shape
of the pressure response obtained during the Anamet tests with that
computed by the flexible wall acoustic theory. This comparison can
easily be effected using the 4T acoustic transfer function Hw' The

defining equation for Hw is
. = -b'-o .
pw(r) Hw(r.ro)sw(ro).
The transfer function Hu(;l;o) 1s given by

o I . - * oo 2 2 2,2 2,21=1/2 _i¢,
H,(riru! = 4nctp :E: WN(r)WN(ro)l(wN + \N -w)® - G AN] < o9

- 3 ' Y -
and 0y = tan I[ZwAN(wQ + A§ - w) 1]
where ¢V(w.F) x WV(;) as we shall demonstrate.

320

(5.43)

(5.44)

(5.45)
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Upon inspection of Eq. (5.17), it is immediately obvious that
Hw(?l;o) = pGK(?I;o) for the case when VN = ‘N To denoixsfrate
the effect of fluid-struc.ure interaction, we compare Hm‘tlro) in
Fig. 5-7 for both a rigid wall and flexible wall 4T.

The flexible wall case corresponds to a sonic speed ¢ = 701 m/s and a
fluid damping factor { = 0.045. Note that an effect of wall flexi-
bility is to increase the spectral density of the pressure in some
frequency ranges. We alsoc see that the 4T responds ("rings out")
primarily in the fundamental mode N = O for an impulsive source. Thus,
under our assumption that B(w.?s) 1s uniform, the fundamental mode is
described by *0(;) = oo(;) and depends on z as cos(nz/2L) as is seen
from Eq. (4.12). The comparison between the mode shape obtained from
the Anamet test results and cos(nz/2L) is shown in Fig. 5-8.

We have thus been able to solve the acoustic wave equation in
geometries of interest with flexible walls. That we were able to do
$0 was, 1in principle, not in question. What is significant, however,
s that these solutions are no more complex than ‘he rigid wall
solutions provided certain assumptions hold. These assumptions
circumscribe the fluid-structure interaction which is described by
the specific acoustic admittance ﬁtw.?s) or, equivalently, by & and ¢.
Specifically:

(1) B(w,;s) must be sufficiently small such that Eq. (5.25) is valid,

(2) B(u.?s) must be sufficiently uniform such that the surface
integral of Eq. (5.25) may be neglected so that WV(;) z °N(;)'

(3) The boundary must be locally reactive with an acoustic impedance
z(w) given by Eq. (5.29).

Hence, we are able to compute the total flexible wall pressure field

P =Py *tp, (Fig. 5-1) via Eq. (5.10) where the Green's function Gw
becomes

5-23
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Figure 5-8 Normalized Mode Shape for 30 HZ as Estimated from
Anamet Blttle Test No. 1 as a Function of Elevation

(GENERAL ELECTRIC COMPANY PROPRIETARY)
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(r)O(r)

2
G, (r] = 4nc : (5.46)
; VA [w E (uﬁl)\n) ]

The rigid wall eigenfunctions 9, are given by Eq. (4.12) for 4T or by
Eq. (4.27) for Mark II. The flexible wall rigenfrequencies w, are
calculated from either Eq. (4.20) for 4T or Eq. (4.36) for Mark II
where the speed of sound used is that given by Eq. (5.40). The
damping constant An - Cwn is obtained either by experiment, from a
regulatory guide, or from a NASTRAN calcula ion.

Essentially, we have reduced the description of the fluid-structure
interaction to the perameters § and { controlling the fraquency shift
and damping respectively. We have already demonstrated that §
adequately describes the speed of sound and thus the eigenfrequency
both in 4T and Mark II via Eq. (5.40). However, to provide further
verification of this method of treating fluid-structure interaction
without considering the structure per se, we again compare the predic-
tions of flexible wall acoustic theory with the results of a flexible
wall NASTRAN calculation for our 4T model. Both IWEGS and NASTRAN
used essentially the same chug source shown in Table 5-2, which is a
variant of the design source. For use in the NASTRAN computer program,
however, the source had to be converted from a volume acceleration to
a linear acceleration. This conversion was accomplished by a multi-
plication constant which was obtained by requiring the peak pressures
calculated by IWEGS and NASTRAN to agree in a rigid wall 4T. The speed
of sound was chosen to be ¢ = 1036 m/s (3400 fps). For IWEGS, the
effective speed of sound used to account for shift in eigenfrequency
15 ¢ =650 m/s (2131 fps) and is computed from Eq. (5.41) in the same
manner that Eq. (5.38) was obtained from Eq. (5.35), viz:

HIEY. P— (”L v Yoy V2 (5.47)
s bwb hsws
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Table 5-2

CHUGGING SOURCE PARAMETERS (GE125) USED IN COMPARISON
OF IWEGS AND NASTRAN IN 4T

S(t) = - ANE - 1)+ Z A, sin(u;t)

3,204 1
i A, (m7/s%) w,/2n (H,)
0 3.2 (t = 36 ms)
1 0.73 5.0
2 0.43 12.6
3 0.13 20.9
4 0.10 28.7
5 0.23 39.1
6 0.48 45.6
7 1.30 56.1
8 0.29 63.9

To convert the source strengths A which are in terms of
volume accelerations (m’ls ) to 11near accelerations (1n/s )
suitable for NASTRAN .-\1 » (16/60;Al
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Values for the various constants are found in Table 5-1. Since the
NASTRAN model treats the base plate as simply supported, we set

W, = 647.1 S™!*  NASTRAN used a structural damping of 0.045 which was
manifest as a fluid damping factor of { = 0.03. The comparison of the
IWEGS and NASTRAN results are shown in Fig. 5-9.
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6. COMPARISON OF CHUGGING NETHODOLOGY WITH 4T DATA

In the preceding chapters we have discussed in detail a chugging
methodology which separates the chugging phenomenon into three parts:
source, transfer function, fluid-structure interaction. We argued
that the chug source was an impulse or series of impulses delivered
to the pool by the collapse of steam bubbles. Since we did not model
the vent, the source had to include the vent response felt by the pool.
We showed in some detail that, to an excellent approximation, the pool
transfer function can be represented by the acoustic wave equation.

Finally, we determined that the fluid-structure interaction could be

3 or by

incorporated either via "separability" as shown by Sonin
38,39

simply solving the acoustic wave equation with flexible boundaries
The rflexible boundary solution required kmowing how to obtain the

appropriate frequency shift wy - w§ and damping constant AN. and we
have demonstrated that such "know-how" is available. These, then,
form the elements of the Mark II Improved Chugging Methodology.

In this chapter we shall demonstrate the utility of this methodology
by comparison with the 4T data. For this comparison we will incorpor-
ate the 4T fluidestructure interaction via the flexible wall solution

of the acoustic wave equation.

6.1 Source Investigations

Preliminary investigations of the chugging phenomena in the 4T were
made using simple source density functions with IWEGS. Two types of

source functions were used:

(1) Impulse, or triangular shape, and

(<) Simple harmonic, or sine waves.

All runs made were for the 4T geometry using the parameter values

shown in Table 6-1.
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Table 6-1

IWEGS INPUT FOR 4T PROBLEM

Pool Depth = 7.01 m (23 ft)

Pool Diameter - 2.13 m (7 ft)

Sonic Velocity = 1524 m/s (5000 fps)
Damping = 0.0%

3.66 m (12 ft)
1000 kg/m> (62.4 lbm/ft>)

Source Elevation

"

Density of Fluid
6.1.1 Impulse Source

The triangular shaped impulse source function of 10 ms duratioc and
5.2 m3/sz amplitude was first employed. The results are shown in
Fig. 6-1. Part (a) is the source strength time-history, part (b) is
the pressure response at the bottom-center of the tank, and part (c)
1s the spectral density of the pressure response. The spectrum
density shows peaks near 55, 160, and 270 Hz. From Eq. (4.20) using

parameter values from Table 6-1, the longitudinal normal modes are:

Fun amental - 54.35 Hz
1st Harmonic -~ 163.04 Hz
2nd Harmonic - 271.74 Hz

which agree very well with the spectrum peaks of Fig. 6-1(c). Again
using Eq. (4.20), using ¥y, = 1.2197, the first radial mode 1is
872.91 Hz. Because the width of the impulse is relatively long and
the response has a factor of wn'3, the amplitude of this mode will ke
very small. Hence, for the 4T, the wave motion may be considered
entirely one-dimensional, or longitudinal. As we shall see later, we
do not expect this to be necessarily true for the Mark II annular
geometry.
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A triangular shaped impulse source function of 20 ms duration was next
employed. The results are shown in Fig. 6-2. As can be seen from the
spectral denrity, part (c), the results are similar to the 10 ms tri-
angle test. This is not an unexpected result. In gemeral, if Sw(;o)
represents the Fourier transform of the time dependence of a point
source, the Fourier transform of the resulting pressure field pw(;) is
given by

p(F) = H (TIT)S (T ), (6.1)

where Hw(;l;o) is the transfer function from ;o to r and is the Green's
function multiplied by the fluid density (see Eq. (5.44)).

Thus, we expect the p, to contain spectrum peaks in proportion to the
eigenvalue content of Sw. The spectral densities of thc 10 ms and

20 ms triangles are shown in Fig. 6-3. Examination of this figure

reveals that each source fun-tion exhibits power at the normal modes,
although the power of the 20 ms triangle is somewhat less than the

10 ms triaugle. As we shall see later, this type of analysis can be
used to tailor the source 1.. _cion to adequately represent the test

data.

6.1.2 Harmonic Source

A simple harmonic, or sine wave source function with a frequency of 5 Hz
and 5.2 n3/s2 amplitude was next employed. The results are shown in
Fig. €=4. A 10 Hz sine wave source function of the same amplitude was
also employed and the results are shown in Fig. 6-5. In both cases,
the results were similar; the output pressure response was a sine wave
at the same frequency as the input function. The spectrum densities
show very small peaks at the pool fundamental mode. This is comsistent
with acoustical theory. If a system is driven at a frequency lower
than the fundamental mode, the system will oscillate at the driver

frequency with some excitation of the normal modes.

6-4
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6.2 4T Sources

We have investigated briefly the behavior of the acoustic model with
several very simple sources. An impulse source was shown to excite
the pool fundamental frequency and the response from a simple
low-frequency sine wave source was found to be relatively unchanged at
the wall. We now attempt to reproduce the major chug types in the 4T
data by devising more sophisticated sources for input to the acoustic
model. We look at the Category I and II chugs for this comparison
since they are the basic types of 4T chugging data. Category III chugs
can be made by combining chugs from Categories I and II, and Category
[V chugs are bounded in amplitude by Categories I and II.

The objective of this investigation was to find the source giving an
acoustic model response which best represents the available test data.
In Chapter 3 we argued that the chug source is either a single large
impulse, a series of smaller impulses, or a combination of the two.
It 1s not our intention to develop a chug source theoretically.
According to experts in bubble collapse, no satisfactory theory
currently existslz. Instead, we choose to create a source semiempiri-
cally, using the 4T chugging data base, and let ourselves be guided

bv theory whenever necessary.

If pw(;) 1s known, Sw(;o) can be empiricaliy obtained via
S (r) = H (FIT)p (D)/1H (F17))? (6.2)
W' To) = B(rlr)p, (r)/1H (clx )] :

: 2 = "
where Hw 1s the complex conjugate of Hm and l"w' - HwHw' Eq. (6.2)
states that the source is that function which, when operated on by the
transfer function, produces the observed pressure response. It is a
perfectly proper way in which a source function for a complicated

phenomenon can be obtained. However, besides being somewhat difficult

6-9
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to carry out, a source definition via Eq. (6.2) has the added disad-
vantage that it is not obvious how to perform the necessary vent-
frequency transformation when transporting sw(?o) from 4T to Mark II.
Thus, we decided to construct a far simpler source from iepulses and
sines with adjustable constauts having values obtained from the data
being simulated. Transporting these sources to Mark II would present
no special preblem since that part of the source associated with vent
frequencies is clearly indicated.

6.2.1 Category I Source

A Category I source is presumed to be composed >f an impulse to repre-
sent steam bubble collapse plus a damped harmor ic series to represent
the influence of the vent response to that impulse on the pool. For
impulse shape, we are guided by the inertia collapse of a spherical

cavity (Rayleigh collapse)13’16

because this type of collapse produces
a pressure response indicative of a Category I chug (see Fig. 3-2).
The acoustic source produced by such collapse, however, becomes
inapplicable as the collapse proceeds. This is due, in addition to
the reasors stated in Chapter 3, to the fart that the cavity can

collapse into the vent, as in the case of the Anamet bell jar tests.

We proceed 1in an 4¢ hoc fashion as follows to obtain an approximate
impulse shape of an inertially controlled steam bubble collapse 1nto

a vent. Initially, the bubble radius is assumed to have a radius equal
to that of the vent. As the collapse proceeds, the acoustic source
strength is given heuristically by Eq. (3.1) until the surface area of
the bubble (ZRRz) 1s equal tc the cross-sectional area of the vent.
Thence, the source is equal to 22ro. The resuiting source and a com=-
parable triangular impuise are pictured in Fig. 6-0a and the corres-
ponding spectral densities in Fig. 6-6b. Although the preceding is
only a plausibility argument for representing an inertially controlled
bubble collapse with a triangular impulse, this must be close to the
true source shape because, when input to the transfer function Hw(;';o)'
the resulting pressure response compares well with the Anamet bell jar

tests as shown below. In fact, due to the similarity of the Fourier

6-10
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transform for a number of functional shapes, we could have ejually well

chosen a rectangular or haversine i-pu13356.

In addition to the impulse, the Category I source must include the
response of the vent. This is shown by the results of our K-FIX
simulation (see Fig. 3-7). The vent response is a damped harmonic
series as 1s clearly shown by a low pass filtering of the test data as
shown in Fig. 6-7. Thus, the complete Category I source is given by

N
5,(t) = - AOA(2—§ -1+ 3 A et sinw o), (6.3)
n=1

where the w are the vent acoustic frequencies. The constants Ao' An'
T, &, and the number of vent frequencies N are obtained from the test
data and given in Table 6-2. The comparisons of our general Category
I source with the Anamet bell jar test, Chug #30, and Chug #71 with test

data are shown in Figs. 6-8, 6-9, and 6-10.

6.3 Category Il Source

A Category Il source is presumed to be composed of a series of small
impulsive bubble collapses. The frequency of these "minichugs" is
controlled by the vent acoustic frequencies (see Table 2-3). Thus,
we represent a Category Il source with

N
S;p(t) = u(T-t) 2 B, sin(u t), (6.4)
n=0

where u(x) is the Heaviside step function. The constants T and Bn are
obtained from the test data and given in Table 6-3. The comparisons of

our general Category 1l source with representative Category Il chugs,
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Figure 6-7 Chug #30 Low-Pass Filtered ot 17 Hz
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Table 6-2

CATEGORY I SOURCE PARAMETERS FOR
ANAMET BELL JAR TEST, 4T CHUG #30 AND CHUG #71

N
S(t) = - AOA(Q% - 1)+ }E: An e lin(wnt)
n=1
Anamet Chug #30
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Chug #71
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The following Figures are GENERAL ELECTRIC COMPANY PROPRIETARY

and have beon removed from this document in their entirety.

6-9 Comparison with Data = Chug No.30

6~10 Comparison with Data - Chug No. 71

|
|
|
|
|
|
|
6=8 Comparison with Anamet Bell Jar Test No.8
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Table 6-3

CATEGORY II SOURCE PARAMETERS FOR
4T CHUG #11 AND CHUG #57

S;p(t) = u(T=t) 2 B, sin(wt)
o

Chug #11

b-16

Chug #57
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Chug #11 and Chug #57, are shown in Figs. 6-11 and 6-12.

Using the flexible wall solution to the acoustic wave equation, we
postulated a Category I and Il source function which contained ad-
justable constants. These constants in general vary from chug to
chug due to the random nature of the chugging phenomenon. For appro=
priate choices of these constants, sonic velocity, and pool damping,
any chug can be simulated with either the Category I source, the
Category Il source, a combination of the two, or, ultimateiy, a source
defined by Eq. (6.2). The advantage of our Category I and I] sources
15 that they are tractable and can be combined in such a manner to
obtain a design source with relative ease. The sources clearly
identify which parts are related to the vent acoustic frequencies and
are transportaole from 4T to Mark Il in a trivial fashion.
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The following Figures are GENERAL ELECTZIC COMPANY PROPRIETARY

and have been removed from this document in their entirety.

6-11 Comparison with Data - Chug No.ll
6-12 Comparison with Data = Chug ¥¢.57
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7. MARK 1T DESIGN SOURCE APPLICATION

7.1 Introduction

The strategy will be to find a volumetric acceleration time dependent
point source at the 4T vent exit which produces a pressure signal at
the 4T bottom-center that fulfills certain signal strength, frequency,
amplitude, and decay criteria. A single source representative of
actua’ random sources will be found. This source will be regarded as
Cuaracteristic of chugging and associated system responses so that,
after frequency modification for the vent length element of the system
and considering a range of pool acoustic speeds, it can be used in
Mark II. The signal will be subject to a different damping criterion
from source to pool boundar inm Mark Il than in 4T. The distribution
of source strengths in 4T 1s considered to be applicable to Mark II
plants because of the prototypical nature of the 4T geometry and test

conditions.

Two loading cases will be provided: symmetric and asymmetric. For
the symmetric case, the source will be applied synchronized at all
vents. For the asyvmmetric case, the waveform of the symmetric case
source will be increased and decreased in amplitude and each will be
applied synchronized at all vents in each half of the pool. The
criteria and source history for the symmetric case will now be

described.

7.2 Symmetric Load Case

For the symmetric loading case, the design source found is to
correspond to a Mark Il suppression pool boundary forcing function
which 1s suitably conservative with respect to its anticipated
structural consequences on the basis of the maximum average pressure
over the pool boundary; that is, maximum in time and average
spatially. Thus, conservatism with respect to responses due mainly to
vertical floor modes and symmetric shell modes is provided for. It is
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assumed that a maximum average pressure criterion will be
conservatively implemented by considering that all vents chug
synchronously. And, it is assumed that chugs which occurred
sequentially at the 4T vent can occur simultaneously at plant vents on
the bases of (1) lack of trend with time into test of chug strength,
as shown in Fig. 7-1 which shows chug RMS by time into test, and (2)
actual chug strengths depending on local steam-water interface
conditions at vent exits, which will differ among vents. The source
for a suitably conservative maximum average pool boundary pressure in
Mark II will produce a pressure history at bottom-center of 4T which
meets criteria for signal strength, frequency content, peak and final
amplitudes, and decay rate. These criteria will now be described.

(1) Criterion for Signal Strength

Overall signal strength will be characterized by the mean square 4T
bottom-center pressure (BCP) signal taken over 0.768 seconds, chosen
as discussed in Section 2. Since the average effect of all vents
chugging with different actual chugs is anticipated to be applicable
in Mark II, one might adopt the mean mean square of the 137 chugs in
the data base, which was 110.3 kP32 (2.32 psiz). But conservatism was
introduced by assuming that only Category I and III (higher strength)
chugs might occur in a Mark II pool instead of essentially the same
distribution among chug categories as in the data base and adopting as
the design objective mean square that of the mean of the 39 Category I
and III chugs. This is 181.6 kPa2 (3.82 psiz).

(2) Criterion for Frequency Content
There are three parts to the criterion for frequency content.
First, the strong 5 and 13 Hz components are taken as fundamental and

first harmonic of the vent acoustic response. These frequencies,
increased in the Mark II application by the ratio of 4T vent length

~d
'
ro
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Chug rms versus Time into Test
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to plant vent length, are to be applied in the source as 0.768-second
sinusoids with zero phase. As to strength, the 4T BCP PSD of these
frequencies must bound the mean PSD of these frequencies for the

137-chug data base.

Second, the strong signals in the 20 to 30 Hz rauge are taken as pool
response reinforced by the second harmonic of vent response varying in
frequency because of changes in pool acoustic speed. The mean PSD in
this range for Categories I and III is bounded by the 4T BCP from the
design source. To cause this BCP signal, an initial negative
triangular impulse 1s used in the design source, the acoustic pool
model producing the appropriate frequency at 4T BCP using a selected
pool acoustic speed following correction for fluid-structure
interaction. This frequency will be modified in Mark II by requiring
that a range of pool acoustic speeds from 732 to 1311 m/s (2400 to
4300 fps) be used. (These values are without the 4T fluid-structure
interaction correction.) The source impulse does not change, however.
A source base width of 0.036 seconds is chosen based on the observed
duration of prechug underpressure in 4T.

And third, higher frequencies are 1introduced in the 0.768-second
zero-phase sinusoids in the source at discrete higher vent harmonics
having strength sufficient to bound the mean PSD of the 137-chug data
base from 30 to 80 Hz. The frequencies of these signals are also to
be increased by the vent length ratio.

(3) Criteria for Peak and Final Amplitudes

while 1t is assumed that any signal waveform fulfilling the mean
square and frequency criteria will cause similar structural responses,
two 4T BCP amplitude criteria are also adopted. First, it is required
that the 4T BCP signal from the design source have a peak positive
overpressure (POP) at least equal to the mean POP of Category I and
ITI chugs. This is 55.9 kPa (+8.1 psi). It is required to occur on
the first positive cycle, as in the 4T waveforms. And second, it was

required that the final cycle have peak amplitudes of *20.7 kPa

7-4
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(£3 psi), values conservatively representative of 4T BCP signal
amplitudes at the end of the 0.768-second period.

(4) Criterion for Decay

The 4T data exhibit a decaying waveform in both the vent and the pool
for the Category I and III chugs. It is expected that the Mark II
will display similar decaying waveforms; however, the rate of decay 1is
not expected to emulate that observed in 4T. Thus, for conservatism,
it is required that the signal associated with the 4T vent waveforms
be incorporated into the source as unattenuated (undamped) sinusoids.
The only damping allowed will be that originating from structural
damping specified by regulatory guide as Mark II unique. That damping
characteristic of Category I and III chugs in 4T corresponds to 4.5%
in the fluid. To ensure that there has been no error toward
nonconservatism, the Mark Il chugging design source will be
constructed using a value of damping in the 4T fluid of 6%. This
requires a stronger source to produce the same BCP in 4T than

otherwise would be the case.

The design source found meets all of these criteria. It can be

expressed by the equation

8
s - at | -
S(t) = AO,\( 3 1) + z: An sm(annRt) (7.1)
n=1

where S(t) is the volumetric point source acceleration, m3/52. and

U = 0.036 second is the duration of the impulse. The triangular
impulse function A is defined by Eq. (3.3). Values for the design
chug source parameters are given in Table 7-1. Note that this source
1s made unique for each Mark II via the parameter R which is defined
as the ratio of the 4T vent length 28.65 m (94 ft) to that of a
specific Mark II.
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Table 7-1
DESIGN CHUG SOURCE PARAMETERS

3,.2
8 fn (Hz) An (m/s%)
0 - 5.2
1 5 0.70
2 12.6 0.44
3 20.9 0.10
4 28.7 0.08
5 39.1 0.14
6 45.6 .25
7 56.1 0.25
8 63.9 0.13

On criterion (1), the mean square of the design source signal at 4T
BCP is 291.4 kPa2 (6.13 psiz), while the objective was 182.1 kP32 (3.82
psiz). The excess is a consequence of fulfilling the other criteria.

On criterion (Z), the PSD of the 4T BCP signal from the design source
is compared to the mean PSD of all 137 chugs in the data base in
Fig. 7-2. It 1s compared to the mean PSD of each chug category in
Fig. 7-3 and to the mean PSD of Categories I and III in Fig. 7-4.
The pool response peak at 25 Hz corresponds to an assumed acoustic
speed of 701 m/sec (2300 fps) following adjustment for fluid-structure
interaction and air content.

On criterion (3), the POP of the design source at 4T BCP is 75.1 kPa
(10.9 psi) exceeding the criterion of 55.8 kPa (8.1 psi). The final
amplitudes exceed +20.7 kPa (23 psi).

The design source history is shown in Fig. 7-5; impulse, sinusoids,
and nel signal are shown. The signal from it at 4T BCP is shown in

Fig. 7=0.

Further indications of the degree of conservatism of the 4T BCP signal
from the design source are that the mean square of 291.4 kPaz
(6.13 psiz) exceeds that of 91% of the chues in the data base and the
POP of 75.1 kPa (10.9 psi) exceeds that of 91% of the chugs in the

data base.







SOURCE AMPLITUDE (M3/s2)

SOURCE AMPLITUDE (M3/52)

SOURCE AMPLITUDE (M3/52)

G1002820 9

(al IMPULSE PART

0.80

2
0
-2
-4
-8
0.00 0.10 0.20 030 0.40 0.50 0.60 0.70 0.80
TIME (S)
(b) SINE WAVES PART
2
- Aha A \ AA
WV Wl
-2
- |
0.00 0.10 0.20 0.30 0.40 050 - 0.60 0.70 0.80
TIME(S)
2 (c) COMPLETE SOURCE
T T
| | |
' |
0 A'mv Aj A
LA AT v
- T
il -
-6
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70
TIME (S)

Figure 7-5 Design Source Time-History

7-8



NEDO-24822

080

040

jue], L jo 18jua)-wojjog je asuodsay ainssal? aoinog ubisa(] g7 ainbiyg

090 0s

(S) 3w

0

ovo 0E0

oLo

e ] )

05—

0s

(Bd¥) IHNSSIYd

LR OZBI00L D



NEDO-24822

Throughout this analysis, the 4T BCP signal mean square and PSD have
been the principal bases for evaluating total signal stremgth and
signal strength by frequency. Let us examine whether these are the

measures most pertinent to structural consequence.

One alternative would be to use peak overpressure alone; but no
frequency iafermation 1is conveyed. Another alternative would be to
use response spectra which evaluate the peak response of single degree
of freedom (SDOF) "structures" for these highly transient chug eventc:.

For low frequencies having few but constant-amplitude cycles during
the chug event, the reduced response due to shortage of cycles to
achieve steady state response would he properly reflected in the
response spectrum. With the PSD, this problem is overcome by using
the same time duration for application as was used for test
evaluation. With response spectra, there is the question of whether
the mean (peak) response at each frequency is a suitable profile for a
mean "total" (all-frequency) response since there is no measure of
total signal response. With the PSD, however, there is a single
measure of total signal strength, the total mean square, and it 1is
arithmetically equal to the area under the mean PSD values at all
frequencies. Response spectra vary depending on the critical damping
chosen, a factor not affecting PSDs. However, when it is required
that a synthesized signal correspond to a target signal using response
spectra, this is ordinarily done at two different damping values so

that waveform by frequency 1s better matched.

In the case of chugging, as transient as many of the signals are,
signal root-mean-square (&M, by frequency from PSDs is very closely
correlated with the 2% response spectrum by frequency. This is shown

-

in Fig. 7-7 through 7-10 for four different frequency ranges by there
being little scatter of points aoout the lines. (The slopes of the
four lines are also nearly identical because the measured response
spectrum values were adjusted to steady state response by dividing by

the fraction of steady state response achieved in th: number of cycles
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of the particular peak frequency which occurs in the 0.768-second
interval. This fraction of steady state cycles for 2% damping systems
appears in Fig. 7-11.) Thus, the PFSD method reliably reflects
structural consequence by frequency, even for events as transient as
chug response signals. Nevertheless, to ensure that any possible
special effect of waveform on structural response is considered, peak

and final amplitudes are included in the criteria.

The symmetric case fulfills the Newmark-Kennedy criteria for combining
response peaks by the square root of the sum of the squares (SRSS)
method. Two of the criteria deal with forcing function peak
amplitudes. One is that the design peak amplitude exceeds the upper
84% point in the distribution of peak amplitudes among recurrences of
the event. For “he symmetric case, the mean mean square is 110.3 kPa2
(2.32 psxz) and the variance among mean squares is 1763 kPa“ (0.78 psi“)
for a standard deviation of 42.3 kPa2 (0.89 psiZJ. Taking the
distribution of mean squares as approximately normal out to a least
one standard deviation, che upper B84% point is at mean plus one
standard deviation, which is 152.1 kPa2 (3.20 psiz). Because the 4T
BCP mean square of the design source is 291.4 kP32 (6.13 psiz), it
clearly meets this Newmark-Kennedy criterion since probability points
for both peak amplitude and mean square will correspond for similar
overall waveforms. The other Newmark-Kennedy criterion on peak
amplitude is that the ratio of design to median peak amplitude is at
least 1.15. Using the mean mean square for the median, the ratio of
peak amplitudes for similar waveforms can be found from the square
172 2 1.63, which
exceeds 1.15. Thus, the design objective mean square for the

root of the ratio of mean squares, (6.13/2.32)
sympetric case meets the two Newmark-Kennedy peak amplitude criteria.
Other criteria on signal duration, waveform, and zero mean must also

be met by examination of forcing function histories.

7.3 Asymmetric Load Case

Attention will now be turned to the asvmmetric load case.
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In principle, chu,,ing could produce some lateral force or ov-rturning
moment on the pool boundary as well as a symmetric force. This could
be due to unequal strengths among chugs or to pool boundary signals
which are not exactly in phase throughout the pocl. To account for
this possibility, an asymmetric load case will also be provided. It
will be defined in terms of vertical moment on the floor, and it will
be assume! that the source pattern developed will also have essen-
tially the same conservatism for other characterizations of asymmetric
loading such as containment lateral force, etc. The criterion will be
in terms of a quantity called RMS-moment. Compared to maximum actual
floor moment, which is the integral of the pressure-area-moment arm
product taken at an instant when there is an unfavorable combination
of pressure values over the floor, the RMS-moment is the sum of
products of RMS values at 4T BCP of randomly chosen chugs and the
moment arm of a point beneath each vent. The RMS-moment is selected
because its probability distribution is much easier to evaluate than
that or the actual moment, yet a chosen asymmetric pattern of sources
will be equally conservative in its effect in both distributions as to
having a selected small exceedance probability. That is, the values
in the probability distributions of RMS-moment and maximum actual

moment are assumed to be simply proportional to each other.

A number of general aspects of the RMS-moment will be touched on,
followed by further details on some assumptions, and then a derivation
of the 1 + a and 1 - a adjustment factors required.

Maximum actual floor moment will have plaat-specific values and will
depend on the nature of pool modal response. To provide an appro-
priate generic asymmetric set of sources, however, the view is taken
that a source will cause a 4T BCP single-cell pressure history over a
region beneath each vent, the region for each vent having the same
area. In actuality, if pool boundary pressures are not synchronized
over the pool and/or result from varying source strengths, the fact
that identical instantaneous single cells would not be formed over
the pool could be expected to lead to decreased pressures where high

pressures were expected and increased pressures where low pressures

7=14
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where expected with the result that maximum actual moments could
easily be less tnan implied by the spatial distribution of their
sources. Thus, it is regarded as either appropriate or comservative
to characterize a possible asymmetric effect o. chugging in terms of
sources which would produce a chosen 4T BCP RMS-moment over the floor.
By considering the probability distribution of 4T BCP RMS values, we
can proceed with a method which assumes that such RMS values occur
randomly over the pool, from which, by statistical methods, we can
characterize the probability distribution of RMS-moment, select an
upper probability point, devise any one simple actual deployment of
RMS values such that they provide the desired RMS-moment, and make a
corresponding deployment of source strengths at the vents.

There is evidence that thé foregoing approach is valid regardless of
the detailed phasing relationship among pool boundary signals. That
1s, for all signals in phase but of a different strength over the
pool or randomly separated signals in their degree of synchronization,
sensitivity testing using potential flow shows that virtually the
same value of maximum instantaneous containment lateral force is
achieved - at a chosen small exceedance probability - regardless of
the exact synchronization of the chug signals from fully synchronized
to random variation up to cne-third of the 0.768-second chug duration.
Greater desynchronization leads to a decreased asymmetric effect.
Thus, for simplicity, sources may be applied synchronized for the
asymmetric case, as for the symmetric case, and still provide a suit-

ably conservative asymmetric pressure effect.

This completes the assumption of the method. A number of aspects will
now be discussed in detail, following which the equations will be

derived for calculating the two required chug source strengths.

Since appropriate source strength by frequency was used in the
symmetric case, the same source history waveform is used for the
symmetric case except it is reduced and increased in amplitude for

application to the two halves of the pool. Thus, the asymmetric case

~
!
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1s just as conservative in its symmetric effect as the symmetric case
itself but it addi ‘orally provides a conservative asymmetric
excitation.

If it is assuwed that all vents may not chug at near the same time,
the spatial listribution of vents not chugging is regarded as random
“h the effect that the floor moment would simply be reduced in
magnitude. Accordingly, it is assumed that all vents chugging will

provide the * 5t floor moment.

Under random assignment of chug strengths to vents, it is surprisinog
to note that exact chug synchronization - and thus simultaneous
occurrence of peak pressure values on the pool boundary - leads to the
same asymmetric effect at some small nonexceedance probability as do
vi.rious degrees of random nonsynchronization. A study using actual 4T
chug bottom-center pressure histories showed that, in 50 trials of
assigning randomly chosen 4T BCP histories to vent exits in a Mark II
configuration under potential flow conditions, the maximum value of
peak 1instantaneous lateral force on the containment portion of the
pool boundary was very nearly the same for the cases of all chugs

synchronized as it was for chugs occurring at random with a uniform

probability distribution. This pattern is shown in Fig. 7-12. In the
synchronized case, the lateral force was due to a relatively high positive
pressure at one side of the containment together with a relatively low
positive pressure at the other side. With nonsynchronization, positive

and negative parts of the waveform can occur simultaneously; this feature
tended to hzve a balancing effect so that the maximum peak lateral force

was due ot a relatively high positive pressure on ons side of the containment
and a relatively low negative pressure on the other side. . 1is assumed
that Mark II pool beundary chug wave forms would show a ¢ effect;
therefore, the criterion for the asymmetric case deals witbh tne distribution
of peak pool boundary pressures occuring simultaneously-implemented in the
distribution of the rms-monent-without the need to consider random phasing

as well.
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The asymmetric case criterion will be in terms of an exceedance
probability of RMS-moment. The corresponding value of RMS-moment will
be found on the basis that the distribution of RMS-moment is normal.
This assumption 1s anticipated .~ be reasonable because, while the
distribution of 4T chug RMS is skewed (long-tailed) to the right, the
RMS-moment is determined by the sum of products of RMS .lues and
moment arms, particularly moment arms to vents opposite each other and
most distaant from the axis of rotation. The moment arms are lipear
multipliers. Provisions of the central limit theorem apply. 1lhis
theorem states that the distribution of the sum of several randomly
chosen values from even an arbitrary distribution tends to normality
as the number of values is increased and as the distribution of the
underlying population of individual values is closer to normality.
(The tendency of s:uple means from an arbitrary distribution to be
normally distributed is a well-known illustration of the central limit
theorem.) Thus, a value of RMS-moment chosen by normality to fulfill
a criterion for exceedance probability is considered to be likely to
actually have that probability in application. Even under a departure
from normality, the chosen RMS-moment will have only a slightly
different exceedance probability from the one in the criterion.

This concludes discussion of the assumptions in the method for the
asymmetric cases. We proceed now to state the criterion, and derive

the equations for calculating the two chug source strengths required.

[he criterion for the asymmetric case is that a value of RMS-moment is
to be found such that it is exceeded in no more than one poolwide chug
per hour of chugging. With poolwide chugs assumed to occur at the
same rate as in 4T, which is approximately every two seconds, the
probability criterion for one per hour is 1/1800, found in one tail of
the absolute-valued half-normal distribution for RMS-moment - and
therefore at the 1/3600 ordinate in one tail of the complete normal

distribution - which is at 3.45 standard deviations above the mean.

~
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To find the RMS-moment corresponding to this criterion, we first
require the equation for RMS-moment as a random variable so that its
mean (expectation) and variance can be calculated and used to

characterize its distribution.

The RMS-moment is computed by applying randomly chosen 4T BCP RMS
values to the pool floor beneath each vent, as

L, (Ppyg)y (7.2)

rets

"
o
ul[‘j -]

where

"R

RMS-moment, kFa-m, a random variable

moment arm to centerline of xtb vent, positive and negative
values about the axis of rotation, ft

e
"

R. cos ©_ where
1 1
Ri = radius to centeiline of ith vent, ft

€. = angular location of i th vent, where 0° is normal to the
axis of rotation on the side haviang positive L values,
as illustrated in Fig. 7-13

). = RMS at 4T BCP of chug at 1th vent, kPa, a random variable

(Pems)

number of vents.

=
"

Since PRHS 1s a random variable, "RHS is also a random variable taking

on different values 1s differeat groups of n PRMS values occur.

We require the expected value (mean) and variance of WRMS'

{PRHS] Z I'i’ by applying the expectstion operator (7.3)

4 .
RNS to the MRHS equation.

0 if vents are symmetric about the axis, due to Z:Li =0

7=19
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n
ViMpue) = V[PRHS} E L.z. by the propagation of errcors method (7.4)

=1 Y and independence of PRMS values among

- the veats.

From the 137-chug data base, EIPRHS] = 9.65 kPa (1.4 psi) and V[PRHS]
= 19.02 kPa® (0.4 psi’).

Assume that is normally distributed. The design value of -
MRus y 8 MRits

designated Mpmg+ at the upper 1/3600 point of the HRHS distribution
is found at 3.45 standard deviations above the mean; thus,

Mers = Elpyg] + 3.5 (VMg DV2 . (7.5)

Use the positive E[MRMS] if it is not 0.

”;MS can be made to occur due to a *APRHS applied beneath all vents on
one side of the axis and .APRHS applied beneath all vents or. the other

side. APRHS in kPa can be computed for one side, on a plant-specific

basis, by
H*
_ RMS 2 v
Pems = 7 L. - 3T k)
1+ &=
one side, other side,
positive Li+ negative Li-
To find the proportional basis for adjusting the source, define
g ffgns (7.7)
*Rs,D.$

£ the RMS of the design source at 4T BCP, kPa

(291.4)% = 17.1 kPa (2.5 psi)

¥

- o

"

-

L 3
g’ﬂ
w
o
w
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a = APRHS(kPa)/l7.l (7.8)

and the amplitude adjustment factors on the symmetric source for a
plant are 1 + @ and 1 - a.

The Mark Il source used for the symmetric load case is adjusted in

amplitude to obtain two new sources

Sl(t)
Sz(t)

(1 + a) S(t) (7.9)
(1 - a) S(t), (7.10)

where o is calculated as shown in Eq. (7.8). Sl(t) is applied to all
vents on one side of the diameter chosen as the axis of rotation, and
Sz(t) 1s applied to all vents on the other side. They are applied
simultaneously.

The same considerations for calculating pool boundary forcing functions
are to be made for this case as for the symmetric case.

-~
]=
-



APPLICATION TO THE MARK II CONTAINMENT

As discussed in Chapter 5, two equivalent methods can be used to
calculate the Mark Il containment response due to chugging. These

methods are briefly outlined in Figs. 8-1 and 8-2.

8=1 shows the flexible wall application method wherein the
dppropriate damping and corrected sonic velocity are used with the
lesign source distribution in IWEGS/MARS to calculate the total
flexible wall pressure field in the Mark II containment. The total
tlexible wall pressure field is then applied to a containment
structural model without water for the calculation of the containment
response The sonic velocity input to IWEGS/MARS in this method is

corrected from its rigid wall pure water value by use of Eg. B.1. The

, — - , , 54
damping vaiue input to IWEGS/MARS is specified by regulatory guide

for the type of structure under consideration (e.g., steel, reinforced

concrete, prestressed concrete

Fig. 8-2 shows the rigid wall application method wherein the
appropriate sonic velocity is used with the design scurce distributicn
in IWEGS/MARS to calculate the rigid wall pressure field. The rigid-
will pressure field is then applied to a coupled fluid-structure
containment model for the calculation of the containment response.
The sonic velocity input to IWEGS/MARS in this method 1s selected from
the range of values specified in Chapter 7. Eq. B.l can be used for

this calculation if the distensibility & is set equal to zero.

Details of the selection of sonic veloci ¥, damping, and the design

source distribution are discussed in Sections 8.2, 8.3, and 8.4
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8.1 The Mark II Containment and Vent Geometry

The geometry of the Mark Il containment selected for use in this sample
calculation is shown in Figs. 8-3 and 8-4. The downcomers are set on
four radii at approximately 15° intervals in a somewhat irregular
pattern. The .owncomer exits are all at the same elevation z (3.65 m,
12 ft) and the pool deptn, z, = L is 7.39 m (24.25 ft). The origin of
the IWEGS/MARS annular coordinate system is on the containment
centerline on top of the basemat as shown in Figs. 8-3 and 8-4

8.2 Selection of Sonic Speed and Damping

The calculation of rigid wall pressure time-histories corresponding to
the improved Mark II chugging methodology requires, as a parameter,
the speed of sound in the suppression pool water. The characteristic
vibration frequencies of the suppression pool water are directly
proportional to the sonic speed. It was observed, during 4T testing,
that the vibration frequency of the wetwell water generally increased
over the course of a given test. This is believed to be due to the
fact that air was being driven from the water with increasing water
temperature. To account for this frequency shift in a Mark Il analysis,
it wili be necessary to perform the calculations over a range of sonic
speeds. Zach result must then be regarded as an equally likely

consequence of the chugging phase of a postulated loss of coolant
accident (LOCA).

In the absence of a direct measurement of the sonic speed during the
4T tests, it is necessary to infer an appropriate range from the
measured vibration frequencies of the wetwell liquid. This is done
with the use of the well-known formula relating the vibration frequency

to the sonic speed:

(6.1)

&‘lﬂ
 »
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where:

-
"

vibration frequency, Hz

sonic speed, m/s

. o
"

water depth, m.

This formula applies to the case of one-dimensional fluid vibration
in a rigid cylinder container with a free surface. A modification
1s required to account for the effect of container flexibility.
Appendix B shows that for the 4T material and dimensions this effect
reduces the frequency by 42%. Thus, for the 4T, the relationship

between sonic speed and frequency becomes:

£ = Q%%Ls (8.2)

The range of sonic speeds was determined from the observed range of
pool vibraticr frequencies for Category I and III chugs. These 39
chugs represent the fraction of the 4T data base for which the chug
impulse imparted to the pool was of sufficient strength to excite its

natural vibration mode.

The ringout frequency is determined to be between 17 and 27 Hz. Thus,

the range of sonic speeds for chugging due to the presence of air is

732 m/s (2400 fps) < ¢ < 1311 m/s (4300 fps) (8.3)

It the method of separability is selected to assess for fluid-structure
interaction (see Fig. 5-1), then IWEGS/MARS will be used to generate
rigid wall pressures (pl) and the sonic speed is to be selected from
the range in Eq. (8.3). However, if IWEGS/MARS is required to generate
flaxible wall pressures (p1 + pz), then the range of sonic speeds in
Eq. (8.3) 1is further modified tc account for containment flexibility

Via
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¢' =¢ 2 (8.4)

Y1+ pcé

where the distensibility &, when multiplied by the gross supression
pool volume, 1is the volume flexibility. The volume flexibility V6 is
a measure of the increase of volume per unit pressure applied and is
containment unique.

8.3 Selection of Damping Factor

As demonstrated in Chapter 5, the damping of the pressur: response is
essentially due to energy dissipation in the structure (see Eq.
(5.28)); for design, structural damping values are specified by
regulatory guidesz. The proper damping value to be used in IWEGS/MARS
depends on how the fluid-structure interaction is to be treated. Thus,
tvo choices are possible. If IWEGS/MARS is to provide rigid wall
pressures which in turn will be used as input to a suitahle structural
analysis model with compressible fluid elements, then of course the
damping factor { = AN/“N = 0. On the other hand, if IWEGS/MARS is
used to provide total flexible wall pressures which are to be used in
conjunction with a structural model without water, i.e., a "dry
containment,” then the proper damping factor to use is that which
produces a damped pressure response comparable with the response
generated by a fluid-structural model. Fur example, an impulse input
to the NASTRAN Mark Il model shown in Fig. 5-4 yields the flexible
wall pressure response given in Fig. 5-6. The average value of the
damping constant { given either by an average of the logarithmic
decrements or exponential fits yields { = 0.093 + 0.005. The value of
the damping factor input to the model was 0.02 for the structure.
The soil-structure interaction was considered and significantly
contributed to {. For the following example, a nominal value of

{ = 0.04 was used in IWEGS/MARS.

8-8
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8.4 Calculation of the Asymmetry Tactor

For design, two load cases are considered: symmetric and asymmetric.
The symmetric case needs no {urther elaboration. However, for the
asymmetric case, we obviously cannot use the same source at all vents.
Instead, all sources are adjusted by the source asymmetry factor oa.
Given a specified vent pattern, & is calculated from Eq. (7.8). For our
prototypical Mark II containment a = 0.167. Asymmetric sources Sl(t)
and Sz(t) are then computed via Eq. (7.9) and applied at vent locations
described in Fig. 7-13.

8.5 Results

Using the design source described in Chapter 7 and the sonic velocity,
damping, and asymmetry factor discussed in the previous sections, the
flexible wall pressure field in the sample Mark Il containment was

generated.

Figs. 8<5 and 8-6 show the pressure time-histories in a radially-
oriented plane at 0° for the symmetric load case. The eight pressure
transients shown in these figures are for points Pl through P8 as shown
in Fig. 8-4. Fig. 8-7 shows flexible wall pressure time-histories at
the intersection of the containment wall and basemat at five different
angles from 0° to 180° for the symmetric load case. Figure 8-8 shows
five pressure time-histories at the intersection of the pedestal and
basemat for angies between 0° and 180° for the symmetric load case.

As can be seen from these figures, all the pressure traces are very
similar in appearance. The peak overpressure on the basemat is on the
order of 20 to 28 kPa (3 to 4 psid). Peak underpressures are of a
similar magnitude. Pressures near the pool surface are less than those
on the basemat, as expected. Decay of pressure occurs in all the
pressure traces after 0.768 sec, which is the time at which the source
ceases to act. The initial portion of the pressure time-histories
shows no decay. This is due to the fact that the damping constant for

the vent sine waves in the design source is conservatively assiicl to

8-9
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be zero. A spectral analysis of a typical flexible wall pressure time-
history is shown in Fig. 8-9. Contribution from the pool axial
fundamental at 25 Hz can be seen along with a contribution from the vent
fundamental at 10 Hz.

Asymmetric load case results can be seen in Fig. 8-10 where flexible
wall pressures at the intersection of the containment wall and basemat
at 0% and 180° are shown. The pressure time-history at 0° is in the
middle of the "high side"” of the pool where the design source strength
has been multiplied by (1 + «). The pressure time-history at 180° is
in the middle of the "low side" of the pool where the design source has
been multiplied by (1 - o). These two traces show that the limit of
the asymmetry in the asymmetric chugging load is less than 14 kPa

(2 psi). A comparison of the asymmetric load case peak overpressure
and peak underpressure with the bounding load specification is showu
in Fig. 8-11.

The symmetric load case flexible wall pressure field was then applied
to the Mark Il containment structural model shown in Fig. 8-12. This
structural model is an ANSYS finite element model of a typical
reinforced concrete Mark I] containment. Flat shell elements are used
to model the reinforced concrete containment structure and the reactor
vessel. Pipe elements are used to model the columns supporting the
drywell floor. The ANSYS program uses stiffness-proportional-damping.

A damping value corresponding to a structural modal damping value of
approximately 4% was used.

Acceleration response spectra for various important nodes in the
containment are shown in Figs. 8-13 through 8-17. Results for the
improved chugging load (shown as solid lines) are compared to the
Dynamic Forcing Function Information Report (DFFR) bounding load
(dashed iines). The four curves shown for each load definition
correspond to spectral damping values of 0.5%, 1.0%, 2.0%, and 5.0%.
The improved chugging loa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>