PDR 40-8697

July 31, 1980

UNITED STATES NUCLEAR REGULATORY CONTESSION Fuel Processing & Fabrication Branch KECEIVED Division of Fuel Cycle & Material Sheety AUG 1 1 1980

ATTN: William Crow

Dear Sir:

RE: Quarterly Report, License No. SUA-1338,

Docket No. 40-8697

AUG 1 1 1980 DOCKETED USING AUG 1 1 1030 DOCKET CLERK
LCEASE No. SUA-1338,

Pursuant to License Condition No. 29, the Rocky Mountain Energy Company's Reno Creek In-Situ Test Facility is submitting the Quarterly Report covering the period of April through June, 1980.

Restoration continued on Pattern I during the quarter. Results obtained from the production well during the restoration period beginning in January, 1980, are shown in Table I.

As mentioned in the previous Quarterly Report, a water treatment circuit was installed to neutralize excess acid and produce a near neutral pH water for reinjection. The water treatment circuit removes most of the heavy metals and radionuclides, producing a relatively clean solution with a pH of 7.5 to 8.5. The underflow containing the majority of the contaminants was discharged into the lined evaporation reservoir for eventual disposition.

Results during the groundwater sweep, prior to the installation of the treatment circuit, show that groundwater quality underwent dramatic improvement during this early stage of water removal. Free acid levels dropped to 331 mg/l, while pH levels rose to 3.17. Sulfates, conductivity, uranium (as uranium oxide), iron, calcium, and vanadium dropped to 1701 mg/l, 3300 micromhos/cm, 4.1 mg/l, 63 mg/l, 150 mg/l, and 0.3 mg/l, respectively.

Data obtained during the chemical injection phase of restoration indicate a less dramatic improvement in water quality; however a recent significant decrease in the concentration of free acid in the groundwater suggests that chemical breakthrough may be imminent. We expect to see additional significant improvement in groundwater quality when this occurs.

NRC - Mr. William Crow July 31, 1980 Page 2

To summarize, significant restoration progress has been accomplished in Pattern I at the Reno Creek site (see Table 2). The most recent values of 140 mg/1, 100 mg/1, and 85 mg/1 indicate a downward trend in free acid concentrations, and a continued inprovement in groundwater conditions as a result of the current restoration activities.

Work continues on modification of the plant for the Pattern II carbonate leach test. Expected startup date for the new test pattern is mid-August. Verbal approval of the Carbonate License Amendment Request was received July 30, 1980.

Air quality data and groundwater surveillance for the second quarter demonstrate that operations have not caused an environmental impact to the area. The attached tables summarize second quarter operations.

Very truly yours,

"trick Spieles

conmental Supervisor

ISL Jperations

PS/ph/J

cc:

USNRC, C/O Document Management Branch

USNRC, Region IV

WDEQ, Land Quality Division (Permit 479)

WDEQ, District IV Office

D. Gardner

R. Hynes

M. Neumann

R. Iwanicki

J. Rothfleisch

K. Loest

D. Murphy

TABLE I
RESTORATION RESULTS FOR PATTERN I, RENO CREEK PROJECT

1/1/80	2/1/80	3/1/80	4/1/80	5/1/80	6/1/80	6/30/80	7/5/80	7/12/80	7/16/80
319	466	331	114	219	112	151	140	100	85
3.21	3.19	3.17	4.30	3.17	4.11	4.33	4.30	4.30	4.40
2470	2435	1701	1614	1669	1771	1794	1822	1828	1635
3300	4100	3300	2000	2300	1900	2200	2200	2000	2000
8.9	5.7	4.1	3.8	2.8	2.8	4.2	4.2	3.9	4.3
159	133	63	. 65	30	76	67	84	83	84
371	308	150	173	230	245	268	246	231	249
3.0	1.0	0.3	1.0	0.2	<0.1	1.1		0.9	0.8
	319 3.21 2470 3300 8.9 159 371	319 466 3.21 3.19 2470 2435 3300 4100 8.9 5.7 159 133 371 308	319 466 331 3.21 3.19 3.17 2470 2435 1701 3300 4100 3300 8.9 5.7 4.1 159 133 63 371 308 150	319 466 331 114 3.21 3.19 3.17 4.30 2470 2435 1701 1614 3300 4100 3300 2000 8.9 5.7 4.1 3.8 159 133 63 65 371 308 150 173	319 466 331 114 219 3.21 3.19 3.17 4.30 3.17 2470 2435 1701 1614 1669 3300 4100 3300 2000 2300 8.9 5.7 4.1 3.8 2.8 159 133 63 65 30 371 308 150 173 230	319 466 331 114 219 112 3.21 3.19 3.17 4.30 3.17 4.11 2470 2435 1701 1614 1669 1771 3300 4100 3300 2000 2300 1900 8.9 5.7 4.1 3.8 2.8 2.8 159 133 63 65 30 76 371 308 150 173 230 245	319 466 331 114 219 112 151 3.21 3.19 3.17 4.30 3.17 4.11 4.33 2470 2435 1701 1614 1669 1771 1794 3300 4100 3300 2000 2300 1900 2200 8.9 5.7 4.1 3.8 2.8 2.8 4.2 159 133 63 65 30 76 67 371 308 150 173 230 245 268	319 466 331 114 219 112 151 140 3.21 3.19 3.17 4.30 3.17 4.11 4.33 4.30 2470 2435 1701 1614 1669 1771 1794 1822 3300 4100 3300 2000 2300 1900 2200 2200 8.9 5.7 4.1 3.8 2.8 2.8 4.2 4.2 159 133 63 65 30 76 67 84 371 308 150 173 230 245 268 246	319 466 331 114 219 112 151 140 100 3.21 3.19 3.17 4.30 3.17 4.11 4.33 4.30 4.30 2470 2435 1701 1614 1669 1771 1794 1822 1828 3300 4100 3300 2000 2300 1900 2200 2200 2000 8.9 5.7 4.1 3.8 2.8 2.8 4.2 4.2 3.9 159 133 63 65 30 76 67 84 83 371 308 150 173 230 245 268 246 231

^{*} All parameters listed are given in milligrams per liter, except pH (standard units) and conductivity (micromhos/cm).

TABLE II
SUMMARY OF RESTORATION PROGRESS
PATTERN I
RENO CREEK PROJECT

Parameter ¹	Baseline Condition ² (5/15/78 through 9/20/78)	Water Quality During Mining (10/3/80)	Current Restoration Values (7/16/80)
Free Acid		626	85
pH	9.1 ± 1	2.33	4.40
504	806 ± 93	3202	1635
Conductivity	1516 ± 116	5800	2000
U ₃ O ₈	0.64 ± 0.4	15.9	4.3
Fe	1.6 ± 1.7	286	34
Ca	90 ± 6.7	399	249
٧	2.03 ± 3	7.9	. 0.8

All parameters listed are given in milligrams per liter, except pH (standard units) and conductivity (micromhos/cm).

² Mean plus or minus one standard deviation.

TABLE III

RENO CREEK

MAXIMUM AIRBORNE PARTICULATES (1)

April - June 1980

Sample Station	TSP (3)	Ra ²²⁶ (2)	<u>Th</u> ²³⁰ (2)	Uranium (2)
Upwind Control (#12)	70	0.03	0.02	0.18
Upwind Restricted Area Boundary (#8)	64	0.03	0.01	0.18
Downwind Restricted Area Boundary (#10)	79	0.08	0.07	0.31

- (1) Sample collected with a high volume air sampler
- (2) Concentrations in microcuries per m1 \times 10⁻¹⁶
- (3) Total suspended particulates in micrograms per cubic meter

TABLE IV RENO CREEK MAXIMUM OBSERVED RADON GAS CONCENTRATION April - June 1980

Sample Station	Rn-222 in uCi/ml		
Upwind Control (#12)	0.44×10^{-9}		
Upwind Restricted Area Boundary (#8)	0.39×10^{-9}		
Downwind Restricted Area Boundary (#10)	0.23×10^{-9}		

TABLE V

RENO CREEK

PATTERN I MONITOR WELLS

MAXIMUM OBSERVED VALUE APRIL - JUNE VS. (CONTROL LIMIT)

MONITOR WELLS (1)

	<u>M-1</u>	<u>M-2</u>	M-3	<u>M-4</u>	<u>USM-1</u> (2)	LSM-1 (3)
рН	(6.5)	(6.5)	(6.5)	(6.5)	(6.5)	(6.5)
	7.8	7.8	8.3	8.2	7.7	11.2
Conductivity	(1980)	(1952)	(2200)	(2090)	(781)	(3080)
(µmhos/cm)	1770	1715	1785	2050	745	2300
U ₃ O ₈	(0.61)	(0.99)	(1.21)	(2.20)	(1.20)	(2.20)
(mg/1)	0.038	0.021	0.107	0.505	0.011	0.013
Calcium	(200)	(131)	(124)	(128)	(26)	(223)
(mg/l)	96	101	100	117	19	127
Sulfate	(825)	(946)	(998)	(1048)	(165)	(675)
(mg/1)	814	916	891	804	160	26

⁽I) Perimeter monitor wells located in each cardinal direction and in the same aquifer were sampled monthly

⁽²⁾ Located in aquifer above leaching zone

⁽³⁾ Lacated in aquifer below leaching zone

TABLE VI MASS BALANCE SUMMARY April - June 1980

Month	Pregnant Solution Produced	Lixiviant Solution Injected	Net (1) Produced	Waste (2) to Pond
April	889533	621136	268397	269522
May	730750	574096	156654	157423
June	455742	358620	87122	88421

- (I) Net Produced = Pregnant minus lixiviant
- (2) Waste = Net produced plus plant waste