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SUMMARY

This document contains the prediction of Lhe coupled system
thermal-hydraulic response for the Loss-of-Fluid Test (LOFT) system during
Loss-of -Coolant Experiment (LOCE) L3-5/L3-5A. LOCE L3-5/L3-5A is the
fourth powered experiment to be performed in the LOFT Nuclear Small Break
Test Series (Test Series L3). This experiment is divided into two distinct

parts designated as L3-5 and L3-5A.

The general programmatic objective of LOCE L3-5/L3-5A, in conjunction
with future LOCE L3-6, is to evaluate the system effects of primary coolant
pump operation during a small break loss-of-coolant accident transient.
This objective will be accomplished during the L3-5 phase of the
experiment. A secondary purpose, established with the addition of the
L3-5A phase of the experiment, is to evaluate plant recovery by isolating
the break and regaining the use of the steam generator as a heat sink. For
LOCE L3-5/L3-5A, the break will be located in the intact loop cold leg,
with the emergency core coolant injected into the reactor vessel downcomer.

Exper iment prediction (EP) analyses provide data for evaluating the EP
modeling techniques and specified operating conditions to ensure the
exper iment will meet its stated objectives without jeopardizing the safe
operation of the LOFT facility.

The EP results presented in this report were obtained using the RELAPS
computer code. The predicted results were compared to the RELAP4
calculations, which were made previously to plan the experiment events. In
addition, the sim: larity between the L3-5 phase of the experiment and LOCE
L3-1 allowed the predictions to be compared to the results from LOCE L3-1
during the initial depressurization.

The results of this analysis indicate that LOCE L3-5/L3-5A will meet
its stated objectives. The transition from the L3-5 phase to the L3-5A
phase of the experiment will occur at about 1100 s, when the primary system
pressure drops to 2.15 MPa (300 psig) and the break is isolated.



Decay heat will be removed from the core by natural loop circulation
through the steam generatur and energy removal i‘rom the break .or the first
528 s of the transient until the primary system pressure drops below the
secondary system, eliminating the steam generator as a heat sink. Reflux
flow is predicted to occur during this time. From 528 s time until
isolation of the break at approximately 1100 s, the decay heat will be
effectively removed by coolant flow from the break.

Once the break is isolated and the high-pressure injection system is
shut off, the system will repressurize until at 1316 s, when natural
circulation will be again established as the primary mode of decay heat
removal. During this second period of natural loop circulation, no reflux
flow is predicted.

Secondary feed and bleed will be initiated at 3116 s. LOCEs L3-2 and
L3-7 have shown secondary feed and bleed to be an effective procedure to
reduce primary system pressure while maintaining core cooling. The
calculation was terminated just prior to initiation of secondary feed and
bleed.
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BEST ESTIMATE PREDICTION FOR
LOFT NUCLEAR EXPERIMENT L3-5/L3-5A

1. INTRODUCTION

As part of the experiment analysis effort performed by the
Loss-of -Fluid Test (LOFT) Experimental Program, a best estimate-type
exper iment prediction (EP) of the thermal-hydraulic response of the LOFT
system during an experiment is performed prior to the experiment using
computer calculations. These predictions are performed using the best
calculational technigues available to LOFT and provide data for:

1. Determining whether a loss-of-coolant exper iment (LOCE) will meet
its stated objectives

2. Evaluating parameters that affect the safety of the LOFT facility
during the intended experiment

3. Determining event times for incorporation into the operating
procedure

4, Determining possible instrument range adjustments

5. Evaluating the capability of the modeling techniques employed in
EP analyses.

This document describes how the RELAP5 computer code was used to
simulate and predict the LOFT system responses and presents predicted
results for LOCE L3-5/L3-5A., Sections 1.1 and 1.2 of this introduction
discuss the LOCE L3-5/L3-5A objectives and provide a brief description of
the experiment and of the LOFT facility. Section 2 contains a description
of the modeling techniques employed in the EP analyses. Section 3 cortains
discussions of the calculated results. Comparisons and conclusions of the
analytical results are included in Section 4. References discussed are
listed in Section 5. Appendices provide cetailed calculational results



(Appendix A), algurithms for generation of the EP data in the data bank
(Appendix B), listings of source deck changes (Appendix C), and listings of ’
the code inputs (Appendix D).

1.1 LOCE L3-5/L3-5A Objectives and Description

LOCE L3-5/L3-5A is the fourtn powered experiment to be conducted as
part of the LOFT Nuclear Small Break Test Series L3. This experiment is
divided into two distinct parts designated as L3-5 and L3-5A. The
experiment objectives and descriptions for Test Series L3 are discussed in
detail in Reference 1. The objectives for LOCE L3-5/L3-5A are given in
Section 1.1.1. LOCE L3-5/L3-5A is described in Section 1.1.2.

1.1.1 LOCE L3-5/L3-5A Objectives

The general programmatic objective of LOCE L3-5/L3-5A, in conjunction
with the future LOCE L3-6, is to evaluate the system effects of primary
ccolant pump operation during a small break loss-of-coolant (LOCA)
transient, This objective will be accomplished during the L3-5 phase of '
the experiment. A secondary purpose, established with the addition of the
L3-5A phase of the experiment, is to evaluate plant recovery by isolating
the bredak and regaining the use of the steam generator. The specific LOCE
L3-5/L3-5A objectives are as follows:

1. Objectives for the L3-5 phase of the experiment are:

a. To conduct a small break depressurization in the LOFT
facility with a 16.19-nm (0.6374-in.) diameter break orifice
in the intact loop cold leg between the primary pump and the
reactor vessel, with primary coolant pump trip at rupture,
with the high-pressure injection system (HPIS) injecting
into the reactor vessel downcomer, and witk the scaled
accumulator isolated from the loop.

-



b. To measure the primary system coolant inventory and system
mass distribution as a function of time during the
depressurization using available instrumentation.

2. Objectives for the L3-5A phase of the experiment are:

a. To reestablish the steam generator as a primary system heat
sink by isolating the break, allowing the primary system
pressure to increase to above *he secondary system pressure,
and using operator controlled secondary “feed and bleed"
coo ldown.

b. To obtain flow and density measurements in the intact loop
hot leg and fluid temperature difference data associated
with the steam generator to investigate the primary coolant
loop flow modes and steam generator heat transfer modes
following reestablishment of the steam generator as a
primary system heat sink.

¢. To reestablish primary coolant conditions associated with
complete LOFT facility recovery, with the break isolated,

and with the LOFT accumulator inactive.

For this experiment, the objectives of the L3-5 phase are considered
primary objectives, while those of the L3-5A phase are considered secondary.

1.1.2 LOCE L3-5/L3-5A Description

LOCE L3-5/L3-5A will utilize a new break piping configuration to
provide for a small break in the intact loop cold leg rather than the
broken loop piping. The break orifice diameter will be 16.19 mn (0.6374
in.) corresponding to a 2.5% break in the primary coolant loop of a large
commercial plant. In addition, the HPIS injection point will be into the
reactor vessel downcomer for the L3-5 phase. The remaining system
configuration will be unchanged from that used for LOCE L3-1.2



The initial conditions for LOCE L3-5/L3-5A will be nominally unchanged
from those of LOCE L3-1. Primary system pressure will be 14,95 MPa ‘
(2156 psig) measured in the hot leg. Primary coolant mass flow will be
478.8 kg/s (3.8 x 106 Ibm/hr) at a temperature measured in the cold leg
of 556.8 K (542.5°F). The core power level will be 50 MW. These
conditions should produc2 a core temperature difference of about 19 K
(34%).

The following paragraphs provide a descriptive scenario of the LOCE
L3-5/L3-5A transient as planned.

Prior to test initiation:

1. The reactor will be operated at 50 MW until a decay heat level
corresponding to 40 h of previous full-power operation is reached.

g5 The accumulators will be isolated from the primary coolant loop.

3. The required preblcwdewn conditions will be established in the .
primary coolant loop.

Initiation of blowdown (L3-5 phase):

4. The transient will be initiated by opening the break isc'z ion
valve, scramming the plant and, upon verification of scram,
opening the break initiation valves of the new intact loop break
piping. The scram sigual wi'l also trip off the steam generator
main feedwater flow and shut the steam control valve.

5. Also upon verification of scram, the primary coolant pumps will
be tripped and will ccast down under the influence of the primary
loop coolant flow and the insta’led flywheels until the field
breakers trip at ap -~vimately 12.5 Hz. Combined primary coolant
pump injection of ', + 0,02 1/s (1.25 + %.25 gpm) will be used
to cool the pump bearings.



6.

A few seconds into the transient, initiated by a 13.15 MPa
(1896 psig) hot leg pressure trip, emergencCy core coolant (ECC)
injection from HPIS Pump A to the reactor vessel downcomer will
begin at a rate of 0.3 1/s (5 gpm).

At 60s after scram, one auxiliary feedwater pump will be started,
filling the steam generator secondary at a rate of about

0.50 1/s (8 gpm).

At a primary system pressure of 2.15 MPa (300 psig) (chosen to
ensure that the primary system achieves a minimum system mass
inventory) the mixture level in the upper plenum will be
determined, if possible. The break line isolation valve will be
closed, and HPIS injection into the reactor vessel downcomer and
primary coclant pump injection will be terminated.

Initiation of Recovery (L3-5A phase):

9.

10.

1.

12.

After isolating the break, the primary system will be allowed to
repressurize until it stabilizes at a value near the steam
generator secondary pressure.

When the increasing primary system pressure reaches that of the
secondary system or at 30 min after scram, whichever comes first,
the auxiliary feedwater flow to the steam generator will be
terminated.

The system will be allowed to stabilize for a minimum of 30 min
to observe the primary system cooling mode.

“Feed and bleed"” cooldown of the secondary will begin after the
30-min period of stabilization at a rate of 40 to 50 K/h (70 to
90°F/hr) ind continue until the experiment is terminated.
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Figure 1. LOFT intact loop thermo-fluid instrumentation.
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Figure 3. LOFT broken loop thermo-fluid instrumentation.
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* Station numbers are a dimensionless measure of
relative elevation within the reactor vesse:. They
are assigned in increments of 254 mm with
Station 300.00 defined at the core barrel support
ledge inside the reactor vessel flange
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Figure 7. LOFT reactor vessel upper plenum drag disc-turbine and coolant level transducers and
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2. COMPUTER SIMULATION

The RELAP5/MOD"1" computer code? was used to simulate the transient
thermal-hydraulic responses for the LOFT system aguring LOCE L3-5/L3-5A.
The RELAPS code uses a two-fluid, thermal nonequilibrium, hydraulic model.
The specific application of the code to the LOCE L3-5/L3-5A simulation is
discussed in this section.

2.1 Nodalization

The nodalization used for the LOCE L3-5/L3-5A RELAPS calculation,
presented in this section, is based on the standard nodalization presented
in Reference 4 with changes where necessary to represent the LOFT system
configuration for LOCE L3-5/L3-5A and to reflect experience gained in use
of the code. The nodalization scheme is shown on Figure 8. A brief
description of each component is given in Table 2.

The following changes were made to the base nodalization4 for this
LOCE L3-5/L3-5A EP analysis:

l. The break location was moved from the broken loop cold leg to the
intact loop cold leg and the new break spool piece was modeled.

-9 The accumulator was removed from the model.

3. Primary coolant pump injection flows were added to properly
account for the system mass inventory.

4. Heat slabs were added to the outside of the steam generator steam
dome and downcomer to allow calculation of ambient heat losses.

a. This analysis was performed using Cycle 160, an experimental version of
the RELAP5/MOD"1" code which is filed under Idaho National Engineering
Laboratory Configuration Control Number HO119858.

15
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TABLE 2. DESCRIPTION OF NODALIZATION COMPONENTS
Number
Component  Component  Volume of
Number Type  Number Junctions Composition
100 Branch 1 2 Core barrel nozzle, vessel
nozzle, and half of flow device.
105 Branch 1 1 Half of flow device, 45-degree
elbow, pipe to pressurizer
connection.
110 Branch 1 1 Pipe from pressurizer
connection and venturi,.
115 Pipe 1 12 90-degree elbow, pipe section,
and half of reducer.
2 Half of reducer, 38-degree
elbow, and pipe section.
3 Steam generator inlet plenum.
4 Vertical steam generator tubes.
5 Vertical steam generator tubes.
6 90-degree elbow of steam
generator tubes.
7 90-degree elbow of steam
generator tubes.
8 Vertical steam generator tubes.
9 Vertical steam generator tubes.
10 Steam generator outlet plenum.
11 52-degree elbow and half of
reducer.
12 Half of reducer and pipe
section.
13 90-degree elbow.
120 Branch 1 3 Pipe section anuy inlet pipe of

pump suction tee.

17



TABLE 2. (continued)
Number
Component  Component  Volume of
Number Type Number  Junctions Composition

125 Branch 1 2 Half of pump suction tee,
90-degree elbow, and half of
reducer.

130 SNGL VOL 1 0 Half of reducer and primary
coolant Pump 1 inlet pipe.

135 Pump 1 2 Primary coolant Pump 1.

140 Branch 1 0 Primary coolant Pump 1 outlet
pipe and 45-degree elbow.

145 Branch 1 2 Pipe section, reducer, and haif
of pump outlet tee.

150 Branch 1 2 Half of pump outlet tee and
pipe section.

155 Branch 1 l Half of pump suction tee,
90-degree elbow, and half of
reducer.

160 SNGL VOL 1 0 Half of reducer and primary
coolant Pump 2 inlet pige.

165 Pump 1 2 Primary coolant Pump 2.

170 Branch 1 1 90-degree elbow and inlet of
pump outlet tee.

175 Pipe 1 1 90-degree elbow.

2 Pipe section and 45-degree
elbow.

180 Branch 1 1 Pipe section to ECC connection.

185 Branch 1 2 Pipe section from EC
connection, vessel nozzle, and
vessel filler.

200 Branch 1 2 Upper part of inlet annulus
distributor.

205 Branch 1 1 Lower part of inlet annulus
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TABLE 2. (continued)
Number
Component  Component  Volume of
Number Type Number  Junctions _Composition
210 Pipe 1 3 Downcomer.
2 Downcomer.
3 Downcomer,
4 Downcomer.
215 Branch 1 3 Upper part of the lower plenum.
220 SNGLVOL 1 0 Lower part of the lower plenum,
225 Branch 1 2 Lower core support structure.
230 Pipe 1 2 Active core lower part.
2 Active core central part,
3 Active core upper part.
235 Pipe 1 2 Core bypass.
2 Core bypass.
3 Core bypass.
240 Branch 1 2 Upper core support structure.
245 Branch 1 1 Uppe~ flow skirt region.
246 Branch 1 1 Dead end of fuel modules.
250 Branch 1 2 Nozzle region of upper plenum.
255 SNGLVOL 1 0 Upper part of upper plenum.
300 Branch 1 2 Core bLarrel nozzle and vessel
nozzle.
305 Branch 1 1 45-degree elbow and half of
reflood assist bypass system
(RABS) tee hot leg.
310 Branch 1 2 Half of RABS tee hot leg, pipe
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section, Flange 1, and half of
Orifice XR0-85.






' TABLE 2. (continued)

Number
Component  Component  Volume of
Number Type Number  Junctions ~ Composition

366 Valve -- - Break orifice.

370 Branch 1 1 RABS hot leg single pipe.

375 SNGLVOL 1 0 RABS hot leg paralle! pipes.

380 SNGLVOL 1 0 RABS cold leg parallel pipes.

385 Branch 1 1 RABS cold leg single pipe.

400 Branch 1 2 Pressurizer surge line, primary
coolant system side.

405 SNGLVOL 1 0 Pressurizer surge line,
pressurizer side.

415 Pipe 1 7 Pressurizer inlet.

2 Pressurizer vessel water space.
. 3 Pressurizer vessel water space.
4 Pressurizer vessel vapor space.
5 Pressurizer vessel vapor space.
6 Pressurizer vessel vapor space.
7 Pressurizer vessel vapor space.
8 Pressurizer vessel vapor space.

420 Branch 1 1 Pressurizer outlet.

500 Branch 1 3 Qutlet of primary separator
(top of volume is at top of
shroud).

505 SNGLVOL 1 -- Volume between bottom of
Component 500 and top of feed
ring.

510 Branch 1 2 Top of volume is feed ring

elevation; bottom of volume is

‘ at narrow portion of downcomer.
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TABLE 2. (continued)
Number
Component  Component  Volume of
_Number Type Number  Junctions ___Composition
515 Pipe i 7 Narrow section of downcomer.

2 Narrow section of downcomer,
3 Narrow section of downcomer.
4 Volume between shroud and tubes.
5 Volume between shroud and tubes.
6 Volume between shroud and tubes.
7 Volume between shroud and tubes.
8 Lower part of iiser.

520 Branch 1 i Top of riser, inlet to primary
separator.

525 Branch 1 1 Bottom of steam dome between
primary separator outlet and
mist extractor inlet.

530 Pipe 1 1 Top of steam dome between mist
extractor and outlet pipe.

2 Qutlet pipe to steam flow
control valve.

535 SNGL VOL 1 -- Steam generator outlet pipe
between steam flow control
valve and air-cuoled condenser.

540 TMDPVOL 1 - Air-cooled condenser,

545 TMDPVOL 1 -- Demineralized water storage
tanks.

546 Valve -~ -- Steam control valve bypass
valve.

547 TMDPVOL 1 -- Air-cooled condenser.

548 T™NPJUN - - Feedwater valve for feed and
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TABLE 2. (continued)
Number
Component  Component  Volume of
Number Type  Number Junctions ~ Composition o
550 Valve -- -- Main steam contro' valve.
554 TMDPVOL 1 -- Demineralized water storage
tanks.
555 SNGLJUN - -- Condenser inlet valve.
560 TMDPJUN -- -- Feedwater valve.
600 Branch 1 - Pipe between cold leg and low
pressure injection pump tee,
620 TMDPVOL 1 -- Borated water storage tank.
625 TMDPVOL 1 -- Borated water storage tank.
630 Valve -- -- ECC valve.
635 TMDPJUN -- -- LPIS.
640 TMDPJUN -- -- HPIS "A".
650 TMDPJUN -- -- HPIS “B".
655 TMDPVOL 1 - Borated water storage tank.
805 TMDPVOL 1 - Suppression tank.
901 TMDPJUN -- - Primary coolant Pump 1
injection.
902 TMDP JUN - -- Primary coolant Pump 2
injection.
910 TMDPVOL 1 -- Borated water storage tank.
911 TMDPVOL 1 -- Borated water storage tank,
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5 The reactor vessel wall heat slabs were modified to allow heat

transfer to ambient. ‘

6. The number of volumes in the pressurizer was increased to provide

a better calculation for pressurizer level.

I Heat slabs were added to account for heat transfer from the

pressurizer walls to the fluid.

8. Modeling of tees was changed from a two-dimensional branch to a
one-dimensional branch. The RELAP5 computer code developers
recommended using this modeling change until the momentum
interaction term is included for a multiple junction branch.

There are several core bypass flow paths in the LOFT system. These
bynass flow paths are shown on Figure 9 with the arrows showing the flow
direction at experiment initiation. The p-essurizer continuous spray
bypass is considered minor and was not simuicted in this calculation. The
lower plenum to upper plenum bypass and the inlet annulus to upper plenum ‘
bypass were modeled with 2 and 3% of full intact loop flow, respectively.
The reflood assist bypass valve (RABV) leakage bypass was not quantified
prior to the initiation of this analysis; consequently, it is not included.

Examination of data from LOFT Experiments L3-7b and L6-56
indicated a leakage through the main steam control valve of approximately
0.2 kg/s (3.2 gpm) when the valve was in its fully closed position at a
pressure of 6.2 MPa (887 psig). This computer simulation for LOCE
L3-5/L3-5A included the steam valve leakage.
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3. CALCULATIONAL RESULTS
This section gives a general overview of the transient simulation and
summarizes the calculational results on natural loop circulation including

reflux flow.

3.1 General Overview of Transient Simulation

The LOCE L3-5/L3-5A transient simulation is characterized by the
pressure history shown in Figure 10 for the reactor vessel upper plenum.
The transient was initiated by reactor scram at time zero. After scram
verification at about 2 s, the break initiation valves were actuated, the
primary coolant pumps were tripped, the main feedwater pump was turned off,
and the main steam control valve started to close. The main steam control
valve closes at the rate of 5%/s and was closed at 14 s. Depressurization
of the primary system was very rapid for the first approximately 60 s. At
6.5 s, the HPIS was initiated as the primary system pressure dropped to
13.18 MPa (1900 psig). Liquid flashed to vapor as early as 17 s, and by
about 60 s, enough vapor had been generated in the reactor vessel upper
pienum and intact loop hot leg that the upper plenum controlled system
pressure and the depressurization rate decreased. The pressurizer was
calculated to be empty of liquid at 65 s. The primary system pressure
dropped below secondary pressure at 528 s, eliminating the steam generator
as a decay heat removal sink.

Depressurization continued with the break serving as the primary means
of heat removal until at 1119 s, when the pressure had dropped to 2.15 MPa
(300 psig) and the break was isolated and HPIS flow was terminated as
specified. Isolation of the break signaled completion of the L3-5 phase
and the initiation of the L3-5A phase,

Primary system pressure began to increase because of the luss of the
steam generator as a heat sink until at 1316 s, when the primary pressure
became equal to secondary pressure and natural circulation was
reestablished. Pressure in the primary and secondary systems continued to
rise slowly for the next 30 min of the transient until secondary feed and
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Figure 10. Pressure in reactor vessel upper plenum.



bleed was initiated at 3216 s. The computer simulation was terminated at
this time. Previous calculations of secondary system feed and bleed for
LOCEs L3-2 and L3-7 showed that primary pressure followed specified
secondary pressure; consequently, it was not felt necessary to simulate the
feed and bleed operation in LOCE L3-5/L3-5A.

Figure 11 shows the calculated pressure response for the secondar;
system during the transient. The mass flow out of the break is Shown in
Figure 12, and the primary system coolant mass inventory is shown in
Figure 13, The increase in mass shown after break isclation is due,
primarily, to mass error in the code. Figure 14 shows the calculated fuel
rod cladding temperature at the core midplane elevation. The cladding
surface temperature basically follows the saturation temperature of the
fluid throughout the entire transient.

Because of the similarity of the initial portion of the L3-5 phase of
this experiment with the previously conducted LOCE L3--1,2 a comparison of
primary pressure was made with this calculation and the data for LOCE L3-1
for about the first 1000 s and is shown in Figure 15. Also shown in this
comparison are the results of an earlier RELAP4 calculation for L3-5.
lhese pressure histories are very similar, giving confidence in the RELAPS

predicted response.

3.2 Natural Loop Circulation

Natura! loop circulation is a flow mode in which energy is transferred
from the nuclear core to the steam generator without the addition of
mechanical energy. Energy addition from the core and removal in the steam
generator combined with the elevation difference between the source and
heat sink will provide the thermal driving head for this fiow.

Natural loop circulation can occur for both single- and two-phase
¢conditions, and both single- and two-phase flow can exist in different
parts of the loop at the same time. Reflux flow is a special case of

two-phase natural loop circulition.
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In single-phase natural loop circulation, the fluid density gradients
are achieved by changes in fluid temperature. Consequently, a significant
temperature increase from the inlat to the outlet of the core and a
corresponding temperature decrease from the inlet to the outlet of the
steam generator will be observed. Heat transfer from the core to the fluid
and from the fluid to the stecm generator tubes is not particularly
efficient and quite dependent on flow velocity, which will be quite low.
Consequent 1y, temperature differences of several degrees wili exist across
the fluid-wall interfaces.

Juring two-phase natural loop circulation, both the vapor and liquid
will be at saturation temperature and the density gradients will be
achieved by a change from liquid to vapor in the core and vapor to liquid
in the steam generator, giving much larger density gradients t an in single
phase. Heat transfer from the fuel rods to the coolant will be by nucleate
boiling and from the fluid to the steam generator tubes by condensatior,
both very efficient heat transfer mechanisms resulting in fluid-wall
interface temperature differences as low as 1 or 2°. Because of the
efficiency of the two-phase natural loop circulation, the temperature
difference between the primary and secondary systems will be very small,

In the simplest form of two-phase natural loop circulatlion, the fluid
will be two-phase around the entire loop which will be characterized by no
temperature difference from the core inlet to outlet or from the steam
generator inlet to outlet. It is possible, especially under trancient
conditions, for the vapor to superheat at the core outlet or for subcooled
liquid to exist at the steam generator cutlet. In either case, a
temperature difference will then exist across the core and steam generator.

Reflux is a1 special case of two-phase natural loop circulation that
eccurs when the two-phase fluid is condensed on the steam generator inlet
Side and the ligquid falls back down the inlet side. If continuous
counter-current flow i1s established in the hot leg with vapor flowing
toward the steam generator in the top of the pipe and liquid flowing in the
bottom of the pipe toward the reactor vessel, then reflux flow is
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establiished. During reflux flow, some vapor may still be condensed on the
outiet side of the steam generator, and the liquid flow will continue
around the loop.

LOCE L3-5/L3-5A is very interesting because it exibits severa) of the
above modes of natural loop circulation with very smooth transitions
between these modes.

Figure 16 shows an overlay of predicted primary system pressure and
secondary system pressure for the LOCE L3-5/L3-5A transient. This figure
shows the two time periods when natural loop circulation is possible, that
is, when the primary system saturat.on pressure is greater than the
secondary system saturation pressure.

Single-phase natural loop circulation occurred very briefly after the
pumps stopped at 14 s and before significant saturation occurred in the
intact loop hot leg and reactor vessel upper plenum at about 60 s. As the
system pressure dropped, more vapor was generated, and two-phase natural
loop circulation was established. Figure 17 shows the liguid and vapor
velocitir 2 intact loop hot leg. At wt 140 s, the liquid velocity
was nega...., while the vapor velocity rema - . positive, indicating the
establishment of reflux flow. There was a definite cessation of reflux
flow at 465 s, just 60 s before natural loop circulation terminated as the
primary pressure dropped below the secondary pressure.

Natural loop circulation was again established after 1320 s, but
during this period, reflux flow was not indicated by the prediction.
Figure 18 shows the liquid and vapor velocities in the inlet side of the
steam generator. Note that in this vertical position, negative liguid flow
was indicated along with positive vapor flow, but the liquid did not
continue to flow into the hot leg.

Figure 19 shows the heat transfer from primary side to secondary side
across che steam generator. The negative heat transfer between 500 and
1300 s indicates heat flow from the secondary system to the primary system
during that time period, when the primary pressure was lower than the
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APPENDIX A

DETAILED TEST PREDICTION DATA FOR LOFT LOCE L3-5/L3-5A

Detailed test prediction data for Loss-of-Coolant Experiment (LOCE)
L3-5/L3-5A are provided in Figures A-1 through A-49 in this appendix.
These figures are computer plots of the variables calculated for LOCE
L3-5/L3-5A using RELAPS, and these data have been transmitted to the LOFT
Data Bank for future comparison with experiment results. The calculated

variables and figure numbers are as follows:

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

broken loop cold leg.

broken loop hot leg.

intact loop cold leg.
intact loop hot leg.

broken loop cold leg.

broken loop hot leq.

intact loop cold leg.

intact loop hot leg.

pressurizer surge line.

core inlet.

core outlet.

steam flow.

feedwater flow.

break.

Tevel
level
level
Tevel
Tevel
level

A-1. Average densit,
A-2. Average density
A-3. Average density
A-4. Average density
A-5. Mass flow rate -
A-6. Mass flow rate -
A-7. Mass flow rate -
A-8. Mass flow rate -
A-9. Mass flow rate -
A-10. Mass flow rate -
A-11. Mass flow rate -
A-12, Mass flow rate -
A-13. Mass flow rate -
A-14., Mass flow rate -
A-15. Volumetric flow rate -
A-16. Collapsed liquid
A-17. Collapsed liquid
A-18. Collapsed liquid
A-19. Collapsed liquid
A-20. Collapsed iligu'd
A-21. Collapsed ligquid
A-22.
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high-pressure injection system,

-

loop seal inlet.

loop seal outlet.

reactor vessel downcomer.
reactor vessel core.

steam generator secondary.
pressurizer.

Differential pressure - primary coolant pump.



Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

A-23.
A-24,
A-25.
A-26.
A-27.
A-28.
A-29.
A-30.
A-31.
A-32.
A-33.
A-34,
A-35.
A-36.
A-37.
A-38.
A-39.
A-40.
A-41.
A-42,
A-43.
A-44,
A-45,
A-46.
A-47.
A-48.
A-49.

Differential pressure - steam generator.

Differential pressure - reactor vessel.

Pressure -
Pressure -
Pressure -
Pressure -
Pressure -
Pressure -
Pressure -
Pressure -
Pump speed
Pump speed

broken loop cold leg.

broken loop hot leg.

intact loop cold leg.

intact Toop hot legq.

pressuriz
steam lir
upper ple
steam gen
- primary

- primary

Cladding temperature

Cladding temperature

Cladding temperature

Fluid
Fluid
Fluid
Fluid
Fluid
Fliuid
Fluid
Fluid
Fluid
Fluid
Fluid

Fluid

temperature
tempcrature
temperature
temperature
temperature
temperature
temperature
temperature
temperature
temperature

temperature -

temperature

er.
e,
num,
erator steam dome.
coolant Pump 1.
coolant Pump 2.
- lower third of cure.
- middle third of core.
- upper third of core.
broken loop cold leg.
broken loop hot leg.
intact loop cold leg.
intact loop hot leg.
lower plenum,
inlet annuius.
reactor vessel downcomer,
upper plenum,
steam generatur inlet.
steam generator outlet.
sleam generator downcomer.
pressurizer liquid.
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APPENDIX C

RELAPS UPDATE INPUT DATA

A listing of the input data for updating RELAPS is provided on
microfiche in the pouch on the inside of the report back cover. The Idaho
National Engineering Laboratory configuration control numbers “or the
RELAPS source deck and update input data deck used in this prediction

analysis are as follows:

1. The RELAP5/MOD"1" source deck is stored under Configuration
Contral Number HO119858.

™~
.

The RELAP5/MOD"1" update input data deck is stored under
Configuration Control Number HO117858.

. The RELAPS input deck is stored under Configuration Control
Number HO118858.
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