RIVER WATER SAMPLE ANALYSIS

January 1980

Above mill
$\frac{1}{4} \mathrm{mi}$. below mill $\frac{1}{2}$ mi. below mill 1 mile below 5 miles below 10 miles below

U-NAT	Th230
. $00004 \times 10^{-5} \mathrm{uc} / \mathrm{ml}$. 0058×10
. $00002 \times 10^{-5} \mathrm{uc} / \mathrm{ml}$. 00035×10
. $00001 \times 10^{-5} \mathrm{uc} / \mathrm{ml}$. 0083×10^{-6}
nil	. $0049 \times 10^{-}$
1	$.0047 \times 10$
nil	. 0029×10^{-6}

February 1980

U-NAT

Above mill
$\frac{1}{4}$ mi. below mill $\frac{1}{2}$ mi. below mill 1 mile below 5 miles below 10 miles below

```
    .00004 \times10 -5 uc/ml
    .00002\times1\mp@subsup{0}{-5}{-5}\textrm{uc}/\textrm{ml}
    .00001 \times 10 5uc/ml
    nil
    nil
    nil
```

Ra226
$.036 \times 10_{-8}^{-8} \mathrm{uc} / \mathrm{ml}$
$.10 \times 10^{-8} \mathrm{uc} / \mathrm{ml}$
$.06 \times 10_{-8}^{-8 \mathrm{uc} / \mathrm{ml}}$
$.12 \times 10^{-8} \mathrm{uc} / \mathrm{ml}$
$.07 \times 10_{-8}^{-8 \mathrm{uc} / \mathrm{ml}}$
$.16 \times 10^{-8} \mathrm{uc} / \mathrm{ml}$

Gross Beta - Gamr
same as backgroun same as backgroun same as backgrour. same as backgrour same as backgroun same as backgroun

Gross Beta - Gam
same as backgrour
same as backgrour same as backgrour same as backgrour same as backgrou: same as backgrour

March 1980

Above mill
$\frac{1}{4}$ mi. below mill $\frac{1}{2} \mathrm{mi}$. below mill 1 mile below 5 miles below 10 miles below

$\frac{\text { Th230 }}{}$	

$\frac{\mathrm{Ra} 226}{10^{-8}}$
$.10 \times \mathrm{uc} / \mathrm{ml}$
$.091 \times 10^{-8} \mathrm{uc} / \mathrm{ml}$
$.14 \times 10^{-8} \mathrm{uc} / \mathrm{ml}$
$.10 \times 10^{-8}{ }^{\mathrm{uc} / \mathrm{ml}}$
$.08 \times 10^{-8} \mathrm{uc} / \mathrm{ml}$
$.06 \times 10^{-8} \mathrm{uc} / \mathrm{ml}$

Gross Beta - Ganr same as backgrour same as backgrour same as backgrou: same as backgrour same as backgrour same as backgrou:

April 1980

U-NAT	Th230	Ra 226
nil	$.0028 \times 10^{-6}{ }^{\text {uc } / \mathrm{ml}}$. $064 \times 10^{-8} \mathrm{sc} / \mathrm{ml}$
nil	$.0014 \times 10^{-6} \mathrm{6c} / \mathrm{ml}$. 512×10^{-8} uc/m1
nil	. $0023 \times 10^{-6} \mathrm{uc} / \mathrm{ml}$	$.27 \times 10^{-8} \mathrm{uc} / \mathrm{ml}$
nil	$.0014 \times 10^{-6} 6^{\text {uc/ml }}$. $022 \times 10^{-8} \mathrm{uc} / \mathrm{ml}$
nil	$.0029 \times 10_{-6}^{-6} \mathrm{uc} / \mathrm{ml}$. $07 \times 10^{-3} \mathrm{uc} / \mathrm{ml}$
nil	. $0011 \times 10^{-6} \mathrm{uc} / \mathrm{ml}$. $067 \times 10^{-8} \mathrm{uc} / \mathrm{ml}$

Gross Beta - Gamy
same as backgrou: same as backgrou: same as backgrou: same as backgrou same as backgrou: same as backgrou

May 1980

$\underline{U-N A T}$

nil
nil
nil
nil
nil
nil

$\frac{\mathrm{Th} 230}{10}$	$\frac{\mathrm{Ra} 226}{10^{-8}}$
$.0037 \times 10^{-6} \mathrm{uc} / \mathrm{ml}$	$.12 \times 10^{-8} \mathrm{uc} / \mathrm{ml}$
$.0020 \times 10^{-6} \mathrm{uc} / \mathrm{ml}$	$.47 \times 10^{-8} \mathrm{uc} / \mathrm{ml}$
$.0017 \times 10^{-6} \mathrm{uc} / \mathrm{ml}$	$.068 \times 10^{-8} / \mathrm{uc} / \mathrm{ml}$
$.0035 \times 10^{-6} \mathrm{uc} / \mathrm{ml}$	$.058 \times 10^{-8} \mathrm{uc} / \mathrm{ml}$
$.0028 \times 10^{-6} \mathrm{uc} / \mathrm{ml}$	$.62 \times 10^{-8} \mathrm{uc} / \mathrm{ml}$
$.0012 \times 10^{-6} \mathrm{uc} / \mathrm{ml}$	$.059 \times 10^{-8}$

Gross Beta - Gam
same as backgrou same as backgrou

June 1980

Above mill
$\frac{1}{6}=$ i. below mill
$\frac{1}{2}=$ i. below mill
1 =ile below
5 ziles below 10 ailes below
nil
nil
nil
nil
nil
nil
$.0035 \times \frac{\text { Th230 }}{10^{-6}} \mathrm{uc} / \mathrm{ml} \quad .17 \times \frac{\operatorname{Ra} 226}{10^{-8}}$
$.0031 \times 10^{-6} \mathrm{uc} / \mathrm{ml} \quad .32 \times 10^{-8} \mathrm{uc} / \mathrm{ml}$
$.0038 \times 10_{-6}^{-6} \mathrm{uc} / \mathrm{ml}$
$.0044 \times 10^{-6} \mathrm{uc} / \mathrm{ml}$
$.0041 \times 10^{-6} \mathrm{uc} / \mathrm{ml}$
$.0037 \times 10^{-6} \mathrm{uc} / \mathrm{ml}$
$.099 \times 10^{-8} \mathrm{uc} / \mathrm{ml}$
$.17 \times 10^{-8} \mathrm{uc} / \mathrm{ml}$
$.14 \times 10_{-8}^{-8} \mathrm{uc} / \mathrm{ml}$
$.16 \times 10^{-8} \mathrm{uc} / \mathrm{ml}$

Cross Beta - Gar
same as backgrou same as backgro:

MPC

$$
2 \times \frac{\mathrm{U}-\mathrm{NAT}}{10^{-12} \mathrm{uci} / \mathrm{ml}}
$$

Location

\#1	Jan.	. $0046 \times 10^{-11} \mathrm{uci} / \mathrm{ml}$
\$2	Jan.	. 0023×10^{-11} uci/ml
\#3	Jan.	$.00094 \times 10^{-11} \mathrm{uci} / \mathrm{ml}$
\#4	Jan.	$.00069 \times 10^{-11}$ uci/m1
\#1	Feb.	$.0052 \times 10^{-11} \mathrm{uci} / \mathrm{ml}$
\#2	Feb.	. $0029 \times 10^{-11} \mathrm{uci} / \mathrm{ml}$
43	Feb.	$.0019 \times 10^{-11} \mathrm{uci} / \mathrm{ml}$
14	Feb.	$.0009 \times 10^{-11}$ uci/ml
\#1	March	. $0044 \times 10^{-11} \mathrm{uci} / \mathrm{nl}$
\#2	March	$.0032 \times 10^{-11} \mathrm{uci} / \mathrm{ml}$
43	March	$.0012 \times 10^{-11} \mathrm{uci} / \mathrm{ml}$
14	March	$.0011 \times 10^{-11} \mathrm{uci} / \mathrm{ml}$

Ra-226
$4 \times \frac{\mathrm{Pb}-210}{10^{-12}}$
Sample Assays
4.48×10^{-14} uci $/ \mathrm{ml}$
$3.47 \times 10^{-14} \mathrm{uci} / \mathrm{ml}$
$2.46 \times 10^{-14} \mathrm{uci} / \mathrm{ml}$
3.58×10^{-14} uci/ml
$3.59 \times 10^{-14} \mathrm{uci} / \mathrm{ml}$
$2.37 \times 10^{-14} \mathrm{uci} / \mathrm{ml}$
$5.15 \times 10^{-14} \mathrm{uci} / \mathrm{ml}$
$2.51 \times 10^{-14} \mathrm{uci} / \mathrm{ml}$
$3.7 \times 10_{-14}^{-14} \mathrm{uci} / \mathrm{ml}$
$2.2 \times 10_{-14}^{-14}$ uci/ml
$1.5 \times 10^{-14} \mathrm{uci} / \mathrm{ml}$
$2.3 \times 10^{-14} \mathrm{uci} / \mathrm{ml}$

RN-222
30×10^{-10} uci/ml
$4.2 \pm .15 \times 10_{-10}^{-10} \mathrm{uci} / \mathrm{ml}$ $2.0 \frac{\mp}{\mp} .13 \times 10^{-10} 0^{\text {uci } / \mathrm{ml}}$
$5.8 \div .18 \times 10^{-10} \mathrm{uci} / \mathrm{m} 1$
$.55 \pm .22 \times 10^{-10} \mathrm{uci} / \mathrm{ml}$
$2.7 \pm .18 \times 10_{-10^{-10}}^{\mathrm{uci} / \mathrm{ml}}$ $4.0 \mp .18 \times 10^{-10} \mathrm{uci} / \mathrm{ml}$ $2.9 \pm .22 \times 10_{-10}^{-10^{\mathrm{uci}} / \mathrm{ml}}$ $1.5 \pm .15 \times 10^{-10}$ uci $/ \mathrm{ml}$ $4.2 \ddagger .13 \times 10^{-10} \mathrm{uci} / \mathrm{ml}$
$2.4 \mp .20 \times 10^{-10} \mathrm{uci} / \mathrm{ml}$ $6.5 \mp .16 \times 10_{-10}^{-10} \mathrm{uci} / \mathrm{ml}$ $1.8 \pm .20 \times 10^{-10} \mathrm{uci} / \mathrm{ml}$

Location

$1.64 \times 10_{-12}^{-12} \mathrm{uci} / \mathrm{ml}$
$.1209 \times 10^{-14}$ uci/ml
$.211 \times 10^{-12} \mathrm{uci} / \mathrm{ml}$
$.13 \times 10_{-14}^{-14} \mathrm{uci} / \mathrm{ml}$
$1.02 \times 10^{-12} \mathrm{uci} / \mathrm{ml}$
$.038 \times 10^{-12} \mathrm{uci} / \mathrm{ml}$

Th-230

Sample Assays

\#1	$1.64 \times 10^{-12} \mathrm{uci} / \mathrm{ml}$	$.1209 \times 10^{-14} \mathrm{uci} / \mathrm{ml}$
$\# 2$	$.211 \times 10^{-12} \mathrm{uci} / \mathrm{ml}$	$.13 \times 10^{-14} \mathrm{uci} / \mathrm{ml}$
73	$1.02 \times 10^{-12} \mathrm{uci} / \mathrm{ml}$	$.13 \times 10^{-14} \mathrm{uci} / \mathrm{ml}$
44	$.038 \times 10^{-12} \mathrm{uci} / \mathrm{ml}$	$.11 \times 10^{-14} \mathrm{uci} / \mathrm{ml}$

MUNITOR NET., \#1

Gamma	$=.408 \times 10^{-6} \mathrm{uci} / \mathrm{ml}$
U NAT	$=.036 \times 10^{-5} \mathrm{uci} / \mathrm{ml}$
Ra 226	$=.88 \times 10^{-8} \mathrm{uci} / \mathrm{ml}$
Th 230	$=.0045 \times 10^{-12} \mathrm{uci} / \mathrm{ml}$
Pb 210	$=0.0 \times 10^{-9}$ uci/ml
Po 210	$=.029 \mathrm{pci} / \mathrm{ml}$
K^{+}	$=210 \mathrm{ppm}$
Na^{+}	$=6300 \mathrm{ppm}$
Cl^{-}	$=3152 \mathrm{ppm}$

SO_{4}	$=833 \mathrm{ppm}$
NO_{3}	$=37 \mathrm{No} / \mathrm{L}$
Fe	$=\langle .1 \mathrm{ppm}$
Mn	$=3.7 \mathrm{ppm}$
As	$=\langle .01 \mathrm{ppm}$
Se	$=\langle .1 \mathrm{ppm}$
TDS	$=22,023 \mathrm{ppm}$
Conductivity	$=29,400 \mathrm{micromhos}$
Ph	$=7.4 \mathrm{Ppm}$
Cu	$=\langle .1 \mathrm{ppm}$

MONITOR WELL \#2

MONITOR WELL \#3

Gross Beta \& Gamma	$=2.02 \times 10^{-6} \mathrm{uci} / \mathrm{ml}$
\cup NAT	$=.043 \times 10^{-5} \mathrm{uci} / \mathrm{ml}$
Ra 226	$=.50 \times 10^{-8} \mathrm{uci} / \mathrm{ml}$.
Th 230	$=.0044 \times 10^{-12}$ uci $/ \mathrm{ml}$
Pb 210	$=0.0 \times 10^{-9}$ uci $/ \mathrm{ml}$
Po 210	$=.013 \mathrm{pCi} / \mathrm{ml}$
K^{+}	$=150 \mathrm{ppm}$
Na^{+}	$=975 \mathrm{ppm}$
Cl^{-}	$=2457 \mathrm{ppm}$

SO_{4}	$=397 \mathrm{ppm}$
NO_{3}	$=4 \mathrm{NO}_{3} / \mathrm{L}$
Fe	$=5.1 \mathrm{ppm}$
Mn	$=2.6 \mathrm{ppm}$
As	$=\frac{5.01 \mathrm{ppm}}{\mathrm{Se}}$
Se	$=\langle .1 \mathrm{ppm}$
TDS	$=5563 \mathrm{ppm}$
Conductivity	$=7400 \mathrm{micromhos}$
Ph	$=7.4 \mathrm{K.1} \mathrm{ppm}$
Cu	$=$

RIVER 1 MILE, BELON MILL

Groun	
H-H7	
सि.-226	\%
\% T -30	
Pb 210	$=3.9 \times 10^{-9}$ uci $/ \mathrm{ml}$
Po 210	$=-\frac{.00064 ~ p c i / m l ~}{\text { che }}$
K^{+}	$=-6 \mathrm{ppm}$
Na^{+}	$=135 \mathrm{ppm}$
Cl^{-}	$=31.91 \mathrm{ppm}$

SO_{4}	$=\frac{8 \mathrm{ppm}}{\mathrm{NO}_{3}}$
Fe	$=\frac{4 \mathrm{NO}_{3} / \mathrm{L}}{}=\frac{1 \mathrm{ppm}}{}$
Mn	$=\langle .1 \mathrm{ppm}$
As	$=\langle .01 \mathrm{ppm}$
Se	$=\langle .1 \mathrm{ppm}$
TDS	$=790 \mathrm{ppm}$
Conductivity	$=1050 \mathrm{micromhos}$
Ph	$=8.0$
Cu	$=\langle .1 \mathrm{ppm}$

RIVER 5 MILES BELOW MILL

SO_{4}	$=10 \mathrm{ppm}$
NO_{3}	$=4 \mathrm{NO}_{3} / \mathrm{L}$
Fe	$=\langle .1 \mathrm{ppm}$
Mn	$=\langle .1 \mathrm{ppm}$
As	$=\langle .01 \mathrm{ppm}$
Se	$=\langle .1 \mathrm{ppm}$
TDS	$=786 \mathrm{ppm}$
Conductivity	$=1050 \mathrm{micromhos}$
Ph	$=8.0$
Cu	$=\langle .1 \mathrm{ppm}$

RIVER 10 MILES BELOW MILL

RIVER ABOVE MLLL

RIVER $1 / 4$ MILE BELOW MILL

RIVER $1 / 2$ MILE BELOW MILL

$$
2 \times \frac{\frac{\mathrm{U}-\mathrm{NAT}}{-10^{-12} \mathrm{uci} / \mathrm{ml}}}{}
$$

Location Month

\#1	April	$.0092 \times 10^{-11}$ uci/ml
\#2	April	. 0060×10^{-11} uci/ml
\$3	April	$.0022 \times 10^{-11}$ uci/ml
134	April	. 0014×10^{-11} uci/ml
\#1	May	. 0086×10^{-11} uci/ml
\#2	May	. 0034×10^{-11} uci/ml
43	May	. 0026×10^{-11} uci/ml
\$4	May	$.0016 \times 10^{-11} \mathrm{uci} / \mathrm{ml}$
\#1	June	. $032 \times 10^{-12} \mathrm{uci} / \mathrm{ml}$
\#2	June	$.029 \times 10-12^{\text {uci } / \mathrm{ml}}$
\#3	June	. $016 \times 10^{-12} \mathrm{uci} / \mathrm{ml}$
\# 4	June	$.009 \times 10^{-12} \mathrm{uci} / \mathrm{ml}$

$4 \times \frac{\mathrm{Pb}-210}{10^{-12}}$
Sample Assays
$5.3 \times 10_{-14}^{-14}$ uci $/ \mathrm{ml}$
$2.4 \times 10_{-14}^{-14} \mathrm{uci} / \mathrm{ml}$ $2.2 \times 10^{-14} \mathrm{uci} / \mathrm{ml}$ 2.2×10^{-14} uci $/ \mathrm{ml}$
$4.3 \times 10_{-14}^{-14} \mathrm{uci} / \mathrm{ml}$
$1.7 \times 10^{-14} \mathrm{uci} / \mathrm{ml}$ 2.1×10^{-14} uci/ml 1.2×10^{-14} uci/ml $30 \times \frac{\mathrm{RN}^{-222}}{10^{-10_{\mathrm{uci} / \mathrm{ml}}}}$
$\underline{\mathrm{Ra}-226}$
Th-230

Sample Assays

Location

$$
\begin{aligned}
& .00 \mathrm{e} \times 10^{-12} \mathrm{uci} / \mathrm{ml} \\
& .001 \times 10^{-12} 2^{\mathrm{uci} / \mathrm{ml}} \\
& .004 \times 10^{-12} \mathrm{uci} / \mathrm{ml} \\
& .001 \times 10^{-12} \mathrm{uci} / \mathrm{ml}
\end{aligned}
$$

$.97 \times 10^{-14} \mathrm{uci} / \mathrm{ml}$

$$
.47 \times 10^{-14}
$$

$$
.47 \times 10^{-14} \mathrm{uci} / \mathrm{ml}
$$

$.42 \times 10^{-14}$ uci/ml

$$
\begin{aligned}
& 3.6 \frac{\ddagger}{\ddagger} .16 \times 10^{-10}{ }^{\text {uci } / m 1} \\
& 1.1 \ddagger .20 \times 10_{-10}^{-10} \mathrm{uci} / \mathrm{ml} \\
& 2.4 \pm .20 \times 10^{-10} \mathrm{uci} / \mathrm{ml} \\
& .7 \pm .13 \times 10^{-10} \mathrm{uci} / \mathrm{ml} \\
& 4.4 \pm .18 \times 10^{-10} 0^{\text {uci } / \mathrm{ml}} \\
& 1.5 \pm .16 \times 10^{-10} \mathrm{uci} / \mathrm{ml} \\
& 4.5 \mp .22 \times 10^{-10} \text { uci } / \mathrm{ml} \\
& 1.6 \pm .22 \times 10^{-10} \text { uci } / \mathrm{ml} \\
& 5.1 \times 10^{-10} \text { uci } / \mathrm{ml} \\
& 3.1 \times 10^{-10} \mathrm{uci} / \mathrm{ml} \\
& 3.6 \times 10_{-10^{-10}}^{\text {uci } / \mathrm{ml}} \\
& 2.0 \times 10^{-10_{\text {uci } / m l}^{u l}}
\end{aligned}
$$

MONLTOR WILL, A1

Gross Beta \& Gamma	$1.90 \times 10^{-6} \mathrm{uci} / \mathrm{ml}$
U NAT	. 031×10^{-5} uci/ml
Ra 226	1.77×10^{-8} uci $/ \mathrm{ml}$
Th 230	. 0017×10^{-12} uci/m1
Pb 210	
Po 210	. $024 \mathrm{pci} / \mathrm{ml}$
K^{+}	175 PPM
Na^{+}	5500 PPM
Cl^{-}	4230.38 PPM

SO_{4}	$=856 \mathrm{PPM}$
NO_{3}	$=\frac{10.35 \mathrm{~g} \mathrm{NO}}{3} / \mathrm{1}$
Fe	$=\frac{6.1 \mathrm{PPM}}{\mathrm{Mn}}$
As	$=\frac{1.65 \mathrm{PPM}}{\mathrm{Se}}$
TDS	$=\frac{6.1 \mathrm{PPM}}{34200 \mathrm{PPM}}$
TDPM	
Conductivity	$=45,000$ micromhos
Ph	$=7.3$
Cu	$=\langle .1 \mathrm{PPM}$

MONITOR VELL ${ }^{3} 2$

Gross Beta \&

SO_{4}	$=\frac{434 \mathrm{PPM}}{\mathrm{NO}_{3}}$
Fe	$=1.37 \mathrm{~g} \mathrm{NO} / 1$
Mn	$=\frac{2.1 \mathrm{PPM}}{3.80 \mathrm{PPM}}$
As	$=\langle .01 \mathrm{PPM}$
Se	$=\langle .1 \mathrm{PPM}$
TDS	$=10486 \mathrm{PPM}$
Conductivity	$=14,000 \mathrm{micromhos}$
Ph	$=7.3$
Cu	$=\langle .1 \mathrm{PPM}$

MONITOR WELL \#3

 Gamma	$=\frac{1.30 \times 10^{-6} \mathrm{uci} / \mathrm{ml}}{.042 \times 10^{-5} \mathrm{uci} / \mathrm{ml}}$
U MMT	$=\frac{.62 \times 10^{-8} \mathrm{uci} / \mathrm{ml}}{\mathrm{ut}}$
Ra 226	$=.0031 \times 10^{-12} \mathrm{uc} / \mathrm{ml}$
Th 230	$=$
Pb 210	$=.0049 \mathrm{pci} / \mathrm{ml}$
Po 210	$=120 \mathrm{PPM}$
K^{+}	$=865 \mathrm{PPM}$
Na^{+}	$=2726.07 \mathrm{PPM}$
Cl^{-}	

RIVER 1 MILE BELOW MILL

SO_{4}	$=2.00 \mathrm{PPM}$
NO_{3}	$=\frac{.0082 \mathrm{~g} \mathrm{NO}}{3} / 1$
Fe	$=\langle .1 \mathrm{PPM}$
Mn	$=\langle .1 \mathrm{PPM}$
As	$=\langle .01 \mathrm{PPM}$
Se	$=\langle .1 \mathrm{PPM}$
TDS	$=380 \mathrm{PPM}$
Conductivity	$=500$ micromhos
Ph	$=7.9$
Cu	$=\langle .1 \mathrm{PPM}$

RIVER 5 MILES BELOW MILL
Gross Beta \&

Gamma	$=$
U NAT	$=$
Ra 226	$=$
Th 230	$=$
Pb 210	$=$
Po 210	$=.0014 \mathrm{pci} / \mathrm{ml}$
K^{+}	$=3.10 \mathrm{PPM}$
Na^{+}	$=4.05 \mathrm{PPM}$
Cl^{-}	$=88.65 \mathrm{PPM}$

RIVER 10 MILES BELOW MILL

Gross Beta $\&$ Gamma	$=$
U NaT	$=$
Ra 226	$=$
Th 230	$=$
Pb 210	$=$
Po 210	$=.00064 \mathrm{pci} / \mathrm{ml}$
K^{+}	$=3.10 \mathrm{PPM}$
Na^{+}	$=4.05 \mathrm{PPM}$
Cl^{-}	

SO_{4}	$=2.23 \mathrm{PPM}$
NO_{3}	$=\frac{.0083 \mathrm{~g} \mathrm{NO}}{3} / 1$
Fe	$=\langle .1 \mathrm{PPM}$
Mn	$=\langle .1 \mathrm{PPM}$
As	$=\langle .01 \mathrm{PPM}$
Se	$=\langle .1 \mathrm{PPM}$
TDS	$=380 \mathrm{PPM}$
Conductivity	$=500 \mathrm{micromhos}$
Ph	$=8.0$
Cu	$=\langle .1 \mathrm{PPM}$

RIVER ABOVE MILL

Gross Be-ta \&

Gamma	$=$
U NAT	$=$
Ra 226	$=$
Th 230	$=$
Pb 210	$=$
Po 210	$=$
K^{+}	$=$
Na^{+}	$=\frac{.00064 \mathrm{Pci} / \mathrm{ml}}{}$
Cl^{-}	$=8.10 \mathrm{PPM}$

RIVER $1 / 4$ MILE BELOW MILL

RIVER $1 / 2$ MILE BELOW MILL

U NAT	=
Ra 226	=
Th 230	$=$
Pb 210	$=$
Po 210	. $0013 \mathrm{pci} / \mathrm{ml}$
K^{+}	$=3.10 \mathrm{PPM}$
Na^{+}	$=4.05 \mathrm{PPM}$
Cl^{-}	$=88.65 \mathrm{PPM}$


```
1/17/80
        08:00
    speed - 1 mph
direction - out of the south 180
1/17/80 15:00
speed - 1 mph
direction - out of the southwest 2100
1/18/80 08:30
speed - 2 mph
direction - out of the southeast 140
1/18/80 15:00
speed - 3 mph
direction - out of the southeast 120员
1/19/80
                                    08:30
speed - 2 mph
direction - out of the south 190
1/19/80 15:30
speed - }8\mathrm{ mph
direction - out of the west 250%
1/20/80 08:00
speed - }15\textrm{mph
direction - out of the southeast 150
1/20/80 15:00
speed - 4\frac{1}{2} mph
direction - out of the south 170 
1/21/80 08:00
speed - 4\frac{1}{2} mph
direction - out of the south 150
1/21/80 15:30
speed - 4\frac{1}{2}}\textrm{mph
direction - Out of the south 150
1/22/80 08:00
speed - 4\frac{1}{2}}\textrm{mph
direction - out of the south 180
1/22/80 15:00
speed - 4\frac{1}{2}}\textrm{mph
direction - out of the south 180
```

```
1/23/80
    08:00
speed - 4\frac{1}{2}}\mathrm{ mph 
1/23/80 15:30
speed - 4\frac{1}{2}}\textrm{mph
direction - out of the south 2000
1/24/80 08:30
speed - 3 mph
direction - out of the southwest 230
1/24/80 15:00
speed - 3 mph
direction - out of the east 1000
1/25/80 08:00
speed - 1 mph
direction - out of the northwest 330
1/25/80 15:00
speed - 2\frac{1}{2}}\textrm{mph
direction - out of the southeast 1200
1/26/80 08:30
speed - 1 mph
direction - out of the north 360%
1/26/80 15:30
speed - 2 mph
direction - out of the west 250
1/27/80 08:30
speed - 1 mph
direction - out of the southeast 150
1/27/80
15:30
speed - 1\frac{1}{2}}\mathrm{ mph
direction - out of the east 90
1/28/80 08:30
speed - 1 mph
direction - out of the southeast 140
1/28/80 15:30
speed - 1 mph
direction - out of the east 100 
1/29/80 08:00
speed - 4 mph
direction - out of the southwest 2500
```

```
2/1/80
        08:00
speed - 1 mph
direction - out of the southwest 200 
2/1/80 15:00
speed - 1\frac{1}{2}}\textrm{mph
direction - out of the south 180
2/2/80 08:00
speed - 1 mph
direction - out of the south 180 
2/2/80 15:00
speed - 1 mph
direction - out of the south 180
2/3/80 08:00
speed - 1 mph
direction - out of the west 270
2/3/80 15:00
speed - }7\mathrm{ mph
direction - out of the east 900
2/4/80 08:00
speed - 5 mph
direction - out of the south 180
2/4/80 15:00
speed - 4 mph
direction - out of the southeast 120
2/5/80 08:00
speed - 3 mph
direction - out of the south 180
2/5/80 15:00
speed - 3 mph
direction - out of the southwest 210
2/6/80 08:00
speed - 1 mph
direction - out of the south 180
2/6/80 15:00
speed - 3\frac{1}{2}}\mathrm{ mph
direction - out of the east 90
```

```
2/7/80 08:00
speed - 15 mph
direction - out of the southeast }15\mp@subsup{0}{}{\circ
2/7/80 15:30
speed - 6 mph
direction - out of the south 170
2/8/80 08:30
speed - 7 mph
direction - out of the southwest 240
2/8/80 15:00
speed - 3 mph
direction - out of the north 340
2/9/80 08:00
speed - 9 mph 
2/9/80 15:00
speed - }5\textrm{mph
direction - out of the southeast }17\mp@subsup{0}{}{\circ
2/10/80 08:30
speed - 3 mph
direction - out of the west 270
2/10/80 15:00
speed - 3 mph
direction - out of the west 270
2/11/80 08:00
speed - 3 mph
direction - out of the west 270
2/11/80 15:00
speed - 3 mph
direction - out of the west 270
2/12/80 08:00
speed - 3 mph
direction - out of the west 270
2/12/80 15:00
speed - 3 mph
direction - out of the west 270
```

2/13/80	08:00 chart repaired
$\begin{aligned} & \text { speed - } \\ & \text { directior } \end{aligned}$	of the west 250°
2/13/80	15:00 chart repaired
$\begin{aligned} & \text { speed - } \\ & \text { directio } \end{aligned}$	of the southwest 230°
2/14/80	08:00
$\begin{aligned} & \text { speed - } \\ & \text { directio } \end{aligned}$	of the north 90°

speed - 4 mph
direction - out of the southwest 2100
3/14/80 15:00
speed - 1.5 mph
direction - out of the west 290
3/15/80 08:00
speed - 4 mph
direction - out of the west 270
3/15/80 15:00
speed - 7 mph
direction - out of the west 320

```
3/16/80 ..... 08:00
speed - 5 mph
direction - out of the north \(360^{\circ}\)
\(3 / 16 / 80\) ..... 15:30
speed - 3 mph
direction - out of the north \(360^{\circ}\),
\(3 / 17 / 80\) ..... 08:30
speed - 2 mph direction - out of the east \(100^{\circ}\)
\(3 / 17 / 80\) ..... 15:00
speed - 1 mph
direction - out of the east \(110^{\circ}\)
3/18/80 09:00
speed - 2 mph
direction - out of the south ..... \(150^{\circ}\)
\(3 / 18 / 80\) ..... 15:00
speed - 2 mph
direction - out of the south \(180^{\circ}\)
3/19/80 ..... 08:00
speed - 1 mph
```direction - out of the east \(80^{\circ}\)
```

3/19/80 ..... 15:30
speed - 1 mph
direction - out of the east $80^{\circ}$
speed - 3 mph
direction - out of the north $10^{\circ}$
$3 / 20 / 80$
15:30
speed - 4.5 mph
direction - out of the northeast $50^{\circ}$
3/21/80 08:30
speed - 10 mph
direction - out of the south $170^{\circ}$
3/21/80 15:30
speed - 7 mph
direction - out of the south $170^{\circ}$
3/22/80 08:00
speed - 2 mph
direction - out of the southwest $210^{\circ}$
3/22/80 15:30
speed - 2 mph
direction - out of the southwest $210^{\circ}$
3/23/80 08:30
speed - 3 mph
direction - out of the west $250^{\circ}$
3/23/80 17:00
speed - 3 mph
direction - out of the west $260^{\circ}$
3/24/80 08:00
speed - 3 mph
direction - out of the north $350^{\circ}$
3/24/80 15:30
speed - 3 mph
direction - out of the north $350^{\circ}$
3/25/80 08:30
speed - 3 mph
direction - out of the north $350^{\circ}$
3/25/80 15:30
speed - 3 mph
direction - out of the north $350^{\circ}$

```
3/26/80
speed - 3 mph
direction - out of the north \(350^{\circ}\)
3/26/80 15:30
speed - 3 mph
direction - out of the north \(350^{\circ}\)
3/27/80 09:00
speed - 3 mph
direction - out of the north \(350^{\circ}\)
3/27/80 14:30
speed - 3 mph
direction - out of the north \(350^{\circ}\)
```

```
4/11/80 08:00
speed - 8 mph
direction - out of the northwest 340
4/11/80 15:00
speed - 8 mph
direction - out of the north 360
4/12/80 08:00
speed - 2 mph
directinn - out of the north 360%
4/12/80 15:00
speed - 6 mph
direction - out of the north 350
4/13/80 08:00
speed - 3 mph
direction - out of the northeast }3\mp@subsup{0}{}{\circ
4/13/80 15:30
speed - }3\mathrm{ mph
direction - out of the south 180
4/14/80 08:30
speed - 1 mph
direction - out of the northeast 60%
4/14/80 15:00
speed - 1 mph
direction - out of the southesst }15\mp@subsup{0}{}{\circ
4/15/80
 08:00
speed - 1 mph
direction - out of the east 90
4/15/8C 15:00
speed - 2 mph
direction - out of the southeast }13\mp@subsup{0}{}{\circ
4/16/80 08:00
speed - 1 mph
direction - out of the southeast 150
4/16/80
 15:30
speed - }3\mathrm{ mph
direction - out of the northwest 200%
4/17/80 08:00
speed - 1 mph
direction - out of the southeast 150
4/17/80 15:30
speed - 2 mph
direction - out of the southwest 250%
```

```
4/18/80
 08:00
speed - 1 mph
direction - out of the east 90
4/18/80 15:30
speed - 2 mph
direction - out of the northwest 290
4/19/80 08:30
speed - 1 mph
direction - out of the northeast 50
4/19/80
 15:00
speed - 3 mph
direction - out of the northeast 40
4/20/80 08:00
speed - 1 mph
direction - out of the northeast }8\mp@subsup{0}{}{\circ
4/20/80 15:00
speed = 9 mph
direction - out of the southeast 150
4/21/80 08:00
speed - 2 mph
direction - out of the south 180
4/21/80
15:30
speed - 8mph
direction - out of the southeast }15\mp@subsup{0}{}{\circ
4/22/80
 08:30
speed - 1/\frac{1/2 mph}{}
direction - out of the northeast }6\mp@subsup{0}{}{\circ
4/22/80 15:00
speed - 16 mph
direction - out of the southeast 160
4/23/80 08:00
speed - 4 mph
direction - out of the southwest 140
4/23/80 15:30
speed - 2 mph
direction - out of the northwest 270
4/24/80 08:00
speed - 1 mph
direction - out of the southeast 150%
4/24/80 15:30
speed - 2 mph
direction - cut of the southeast 160
```

```
5/7/80
 09:00
speed - 3 &ph
direction - out of the northeast 60,
5/7/80 15:00
speed - 3 mph
direction - out of the north 30
5/8/80 08:00
speed - 1 mph
direction - out of the east }8\mp@subsup{0}{}{\circ
5/8/80 15:30
speed - 1 mph
direction - out of the northeast 40
5/9/80 08:00
speed - 4 mph
direction - out of the northeast 40
5/9/80 15:00
speed - }15\textrm{mph
direction - out of the southeast 150
5/10/80 08:00
speed - 5 mph
direction - out of the southeast 150
5/10/80 15:00
speed - 6 mph
direction - out of the southeast 150
5/11/80
 08:30
speed - 6 mph
direction - out of the southeast 150
5/11/80 15:30
speed - 6 mph
directzun - out of the southeast 150
5/12/80 08:00
speed - }7\textrm{mph
direction - out of the southeast 150
5/12/80 15:00
speed - 4 mph
direction - out of the southwest 2400
5/13/80 08:00
speed - 1 mph
direction - out of the east 90%
5/13/80 15:30
speed - 2 mph
direction - out of the northeast 60%
```

```
5/14/80 08:00
speed - 1 mph
direction - out of the northeast 40
5/14/80 15:00
speed - 3 mph
direction - out of the northeast 50.
5/15/80 08:30
speed - 1 mph
direction - out of the northeast }5\mp@subsup{0}{}{\circ
5/15/80 15:00
speed - 8 mph
direction - out of the southeast 140
5/16/80 08:00
speed - 1 mph
direction - out of the northeast 60%
5/16/80 15:00
speed - 8 mph
direction - out of the southeast 150
5/17/80 08:00
speed - 3 mph
direction - out of the southeast 150
5/17/80 15:30
speed - 4 mph
direction - out of the southeast 140
5/18/80 08:00
speed - 6 mph
direction - out of the southeast 110
5/18/80 15:00
speed - 3 mph
direction - out of the northeast 60%
3/19/80 08:00
speed - 1 mph
direction - out of the northeast }6\mp@subsup{0}{}{\circ
5/19/80 15:00
speed - 3 mph
direction - out of the southeast }14\mp@subsup{0}{}{\circ
5/20/80 08:00
speed - 1 mph
direction - out of the southeast 150
5/20/80
 15:00
speed - 2 mph
direction - out of the north 360
```

```
6/12/80
 08:30
speed - 1 mph
direction - out of the east }10\mp@subsup{0}{}{\circ
6/12/80 15:00
speed - 1 mph
direction - out of the east 90
6/13/80 08:00
speed - 1 mph
direction - out of the east }8\mp@subsup{0}{}{\circ
6/13/80 15:00
speed - 4 mph
direction - out of the east 90
6/14/80 08:00
speed - 1 mph
direction - out of the northwest }33\mp@subsup{0}{}{\circ
6/14/80
 15:00
speed - 3 mph
direction - out of the southeast 150
6/15/80
 08:00
speed - 1 mph
direction - out of the west 290
6/15/80
 15:00
speed - }15\mathrm{ mph
direction - out of the southeast 150
6/16/80 08:00
speed - 1 mph
direction - out of the east }9\mp@subsup{0}{}{\circ
6/16/80 15:00
speed - 11 mph
direction - out of the southeast 130
```

$6 / 17 / 80$ ..... 08:30
speed - 1 mph

```
direction - out of the northeast }6\mp@subsup{0}{}{\circ
6/17/80 15:00
speed - 5 mph
direction - out of the southeast 150
6/18/80
 09:00
speed - }7\textrm{mph
direction - out of the south 180
6/18/80
 15:00
speed - 1 mph
direction - out of the southeast 140
```

```
6/19/80
 08:30
speed - 9 mph
direction - out of the south 180
6/19/80 15:30
speed - 4 mph
direction - out of the southeast 150
6/20/80 08:00
speed - 1 mph
direction - out of the northeast }5\mp@subsup{0}{}{\circ
6/20/80 15:00
speed - 4 mph
direction - out of the southeast 140
6/21/80 08:30
speed - }3\textrm{mph
direction - out of the northeast 50
6/21/80 15:30
speed - }10\mathrm{ mph
direction - out of the southeast 150
6/22/80 08:30
speed - 1 mph
direction - out of the northwest 340%
6/22/80 15:00
speed - 1 mph
direction - out of the southeast }12\mp@subsup{0}{}{\circ
6/23/80 08:30
speed - 1 mph
direction - out of the southeast 120
6/23/80 15:30
spced - 2 mph
direction - out of the south 180
6/24/80 08:00
speed - 1 mph
direction - out of the southeast 130
6/24/80 15:00
speed - 3 mph
6/25/80 09:00
speed - 8 mph
direction - out of the southwest 240%
 6/25/80 15:00
 speed - }4\textrm{mph
 direction - out of the north 360
```

