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ABSTRACT
s

An exact solution is derived for one dimensional radionuclide transport j

under. time-varying fluid flow conditions including radioactive decay but ;

with the approximation that all radionuclides have identical retardation |
factors. The solution is used to obtain exact expressions for the j
cumulative radionuclide mass transported past a fixed point in space over j

a given time period, and to assess the effects of a periodic perturbation j

and a step change on the fluid flow velocity and dispersion coefficient. !
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1. INTRODUCTION

In assessing the long term safety of nuclear-waste repositories, the i

validity of assuming steady state geological conditions has not been
established. For example, ovsr the regulatory time frames of interest, j

typically thousands of years, one may expect changes in the fluid flow |
rates through the repository due to changes in infiltration and recharge j

caused by intermittent rainfall. Such changes are difficult to predict, j

but that does not eliminate the need to assess how such changes may |
'

, affect results from models that rely on constant conditions.

To address part of this problem, a new exact solution is developed to |

analyze the effects of time verying conditions on the transport of a ,
'

decaying radionuclide chain in one dimensional flow. Few exact solutions
are available for time varying conditions [1, 2, 3, 4, 5), and no exact'

solutions with time varying flow rates have been found in the literature ;

that considers radioactive decay. Furthermore, for time varying
conditions, even without radioactive decay, no exact analysis has been- ,

found on the cumulative release of radionuclide past a fixed point in
space. Such an analysis is important because the performance measure in
the containment requirements of the Environmental Protection Agency's
standard for the disposal of high-level, spent fuel, and transuranic
wastes is given in terms of cumulative radionuclide releases over 10,000 .

years [6]. The analysis in this work extends available exact solutions-
*

to include the release of decaying radionuclides from a repository of
arbitrary length under time varying conditions, and may be used to
calculate the cumulative release of radionuclides past a given fixed 4

point in space.

The solution is developed for arbitrary time varying fluid-flow
velocities and dispersion coefficients. However, the solution is

constrained to radionuclides that have identical adsorption distribution
coefficients or retardation factors. Such an approximation may be used
as a conservative estimate of the fastest transport from the repository
by assuming that no radionuclide adsorbs on the porous media. Thus, the
retardation factors are all unity. In addition, a less conservative, but
more realistic approximation is that each radionuclide has a retardation
factor equal to the minimum retardation factor of all the radionuclides.
This approximation may also be used for the solution presented in this
work.

The solution is presented and discussed in Section 2 in four subsections.
The governing equation is presented in the first subsection. In the

second subsection, the derivation begins with an existing exact solution
of the migration of radionuclides from a single instantaneous injection
point in a time-varying flow, without radioactive decay [2]. In the

third subsection, a general method is derived for extending transport
solutions, such as those given in the second subsection, to include
radioactive decay. In the last subsection, exact expressions and
asymptotic limits for the cumulative mass of radionuclide

1
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pact an arbitrarp point are presented. The new contributions of this [study are a unified approach to existing exact transport solutions with
|

7

L' time varying flow, a general method for extending transport solutions to
.include radioactive decay, and an analysis for the cumulative I

radionuclide mass transported past a fixed point. [
,

! Four special cases of the solution are discussed in Sections 3 and 4.- ;
! The first case is for time-invariant flow conditions 'and serves as a base -

|. case for the three time varying flow cases. A periodic perturbation of [
- the fluid. flow velocity is used in the second and third cases, and a step 'i,

change in this velocity-is used in the fourth case. In Section 4 two
representative examples are used to demonstrate applications of the time-

[
varying solution. Finally, in Section 5 the results of this work are

,

summarized. -t
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2. ANALYTICAL SOLUTIONc
e

2.1' fgverning Ecuation'

!

[; For: time varying one dimensional convective and dispersive transport of a ;
.

.

!' radionuclide chain through an adsorbing porous media, the governing. |

equation for a chain of a radionuclides is [1, 7, 8, 9, 10),p ;

r 2
8C _ -SC aC ;

g 1
g + U(t) 3, ()

- D(t) -ox2 iii+ i 1 1-1 1-1;R *

g gg

I_ where = < x < e, j
' i - 1, ... , m, ,

- 0, {
-

_A,is time,-,

|- t
,

C is the molar concentration in solution of the i-th radionuclide,
,

,R -is the retardation factor of the~1.th radionuclide, and
A is the radioactive decay rate of the i th radionuclide,'

To model time varying flow, the fluid flow velocity U(t) and dispersion'

c coefficient D(t) are assumed to be time dependent. It is also assumed
that the adsorbed radionuclide concentration on the porous media is
proportional to C . The so called retardation factor is then given byg

R -1o (2)
g j

is the adsorptionwhere d is the porosity, p is the bulk density and Kdi
-distribution coefficient fo,r the i-th radionuclide,

2.2 Exact Solution Without Radioactive Decay

The initial and boundary conditions for a point source of radionuclide i
of mass-per unit area given by M . released at-t - O and x - 0 into an
infinite domain initially.containing no radionuclide are

(3)C (x,0) - 6(x)Mg1

(4)'C (x,t) dx - Mgg
. . -

C (x - .,t) - 0 (5)
g

where 6(x) is the Dirac delta function defined by

6(0) - = (6)''

6(x) - 0 for x v 0 (7)

3
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;

,

:
!
t

;' 6(x) dx - 1 (8) !
| |

'"

Equation (4) constrains the solution such that all radionuclides in the. 5

initial point source remain for all time in the domain -a < x < a. >

i !

The solution to Equation (1) without radioactive decay, satisfying "

i. Equations.(3),-(4), and (5) is given by the Creen's function [2),
,

l.

r M (x U t)g
C (x,t) - exp<

_ (9)- , .
g

I 4ns t 4D t
g .,

t i * '
9

!

where the time averaged species velocity and retarded dispersion ;
coefficient are given respectively by

.t

U(r) dr
- o'
Ug- Rt (10)

g
'and

.t

D(r) dr
#

Dg- Rt }
g

The solution for arbitrary initial conditions may be constructed from -

Equation (9) by. summing point sources over the region of nonzero initial *

radionuclide' concentration. For a repository of len5th h releasing
radionuclide in the region -h s x s 0, the limi t of the summation process
results in

,

.x+h
-((-U t)y _

, _

L C
g', g .

C (x,t) - exp
_ d( (12) :g

4x6 t 4D t !
g,

g
x'

where C is the initial concentration of the i-th radionuclide due to a '

g

point sou,,rce located at a distance ( from x. C is assumed to have a
iconstant value in the repository over the region sh s x s 0. Integrating

Ecuation (12) results in [4), ,

'

-4-
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V

C x+h U t xUtg g g g ;

C ~I' **f **# " (13) j
1,sc. 4D t 4D t j, g g,

> . .a

where erf is the error function defined by j
!

.g y
Y erf(f) - e'0 dB (14)

'

W i

o ;

j

-
?

[ As h * = Equation (13) reduces to j
'

i i
-

3

C **"it !

1 1

a c ~i' I * 'If '(15)'
.1,s -

4D tg ;,

. ..
,

;

This special limit for a repository of infinite length was obtained j

previously by using a Fourier Transform in x [1, 5). !
'

:

'L Although the solution is |for an infinite domain, the solution may also be j
usedito model the semi infinite domain x h 0. For a semi-infinite domain ,

that initially does not contain any radionuclide, the initial and .

boundary conditions'are, '

C (x,0) - 0 x>0 (16) *

g

C (x * ,t) - O ta0 (17)g

. .,

C (0,t)
_

Utg g g

C y< 1 + erf t>0 (18)
,

I'" 45 t,
;

From Equation (18) we see that the concentration at the boundary x - 0 '

'
as t * a. The solution to Equation (1)increases asymptotically to C1

-for these boundary and initial,c,onditions is given by Equation (15).
This solution may be used as a test case for numerical solutions of
Equation (1) since numerical solutions are better suited for semi-
infinite domains, than for infinite domains.

*

);

-5-
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i

2.3 Exact Solution Vith' Radioactive Decav i

If the adsorption distribution coefficient of all radionuclides is -

approximated as being equal, then Kdi - K f r all 1, the time averaged'_
species velocities and dispersion coefficients are independent of the
radionuclide, and the subscript i may be dropped from these variables,,

i Then the solutions for different radionuclides given by Equation (13),
differ only.in the initial radionuclide concentrations. To construct t

what will be called in this work the fundamental transport solution, '

which is not radionuclide specific, C in Equation (13)-is replaced by ;C,aunitmeasureofconcentration.gIththisreplacement,E Q the
fundamental transport solution is the solution for the problem of an-

!: instantaneous release resulting in an initial unit radionuclide
concentration. This fundamental transport solution is given by

x+h Ut xC (x,t) - erf f,

f

46t
_ 46t. .

, ,,

for a repository of finite length, and by

" * *C (x,t) - 1 erf (20)g

46t. ,
,,

for a repository of infinite length.

The general solution to Equation (1) may be obtained by assuming that it
is a product of the fundamental transport solution and an unknown time
dependent factor that is radionuclide specific, E (t) Thusg

C (x,t) - E (t)C (x,t) -(21) ig g f

Substituting Equation (21) into Equation (1) results in the Bateman
equations [11), given by the following coupled set of ordinary
differential equations for E (t):g

d3
3 _

dt l1 (22)~~

_

dC
_ _

i>1 (23)
y

dt 1 1 1-1 ' ^i i~

6-
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For C (x,t)',' given: by Equation (21) - to reduce to Equation: (13) without-"
[3 . gradioacti're' decay, the initial conditions for Equations (22) And (23) are i

-

Cg - C ,, t - 0, i' E 1 (24)
g j

a ;

. Since each radionuclide has a distinct decay rate, the i-th eigenvalue of~ 'f
i- the system of equations is equal to the-decay. rate of the i-th-

; radionuclide,'A .- The solution to Equations.(22)'and-(20) is'
g

-

=i

' ,. _i .

) e)bfd}exp( A t)( ia1 (25)-'C-g

-j-1 ]
,

where the'eigenvectors are given by>

f' .0 i<j

b ) -. 1 i-j (26)
_

<

i-1 A

d i>j
3 ,3

k-j k+1 j
,

and
- a

(27)
g -C,,o g

11- 1

C ,,, - ) a)bfd) i>1 (28)
~

o gg
'

'

j-1
i
*

Therefore, the general solution is given by substituting Equations (19)
"

-and.(25) into Equation (21) to give
>

, . . , i

)exp(-A)t)C(x,t):-f< ' * (29)ab
g -

erf - erf -

.J 4Dt , , 4 D t. , j-1.,

- where C,has been dropped from Equation (29) since by definition it is
i.un ty. o

,

Equation (29) is the new general. solution for instantancots releases of a 1

decaying radionuclide chain transported by time-varying convection and i

dispersion processes, but with uniform retardation factors. The

,

7--

w '
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- repository length, initial release concentrations of each radionuclide,
and the chain. length are arbitrary.

2.4 Cumulative Release of Radionuclides Pas ,_a Fixed Poi.nl

As' discussed earlier, a primary concern for nuclear waste repositories is
the cumulative radionuclide mass reaching the accessible environment.
This quantity for one-dimensional transport of the i-th radionuclide past
the point x - L is given by the cross-sectional area for flow times

.t

U(r)C (L,r) D(r) SC (L,r)g
f (t) - ' ( }g R R ax

1 io.

where L is taken as the location of the accessible environment, and f (t)
gis the cumulative sum of the convective and dispersive mass fluxes of

radionuclide 1. Since U(r) and D(r) are arbitrary functions of time, the
integral in Equation (30) can not be evaluated until these functions are
specified. Furthermore, numerical integration may be required since
C (L,r), U(r), and D(r) may be given in terms of complicated functions1
that are not explicitly integrable.

However, the cumulative mass of radionuclide i past a point L, per unit
cross-sectional area may be evaluated explicitly and is given by,

a a

F (t) - C dx - C (t) C (x,t) dx (31)t g g g

Without radioactive decay, f (r) and F (t) are equal, and the cumulativeg t
activity reaching the accessible environment may be computed using either

,

expression. With radioactive decay, f (t) may not be equal to F4(t).
t'f (t) accounts for the rsdionuclide mass in the region x 2 L due^tog

convection and dispersio.4, but not due to radioactive decay. However,
- F (t) does account for radioactive decay in this region.t

F,(t) may be evaluaterl explicitly by substituting Equation (29) into
Eijuation (31), and using the intepal representation for the crror
functio given by Equation (14) to give

|-

|
1

r

I

8

3.
,
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.

x+h Ut

45t,
,
. -

6 2

F(t) d e'0 dp dx (32)
1

5 '. .

b
| x-Ut

45t,

The double integral in Equation (32) is over an upward slopinb semi-
infinite strip in the (x,$) plane. This region may be integrated in two
parts by reversing the order of integration to give

x+h-Ut

' 0' .U+ '.p,45t + Ut '

.= .

5 2 2 2
3 e'0 dx d (33)gd e'0 dx dp +F

5 5
'

L+h'Ut b ' bp,45t - h + Ut -

46t 45t
'

,,

Since the integrands are independent of the inner integration variable,
the inner integrals may be evaluated to give -

- ,

L+h-Ut

45t,

,
. .

I 5 2 3
' '

2
d B,4Dt + Ut -L e"0 d (34)gk he'0 dA +

'

l F

5 5
' '

L+h -Ut L-Ut

45t 46t,,

Evaluating the single integrals in Equation (34) results in

I -9-
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*
g- h[1 crf(z)) + (L Ut)[erf(y)-erf(z)] +'. e'7 - e'* (35)F < -

, .

where

'
y- (36)

45t,

t

and

z- (37)

45t,

For an infinitely long repository, F - in Equation (35) reduces tog

P 9

g- ( N t)[erf(y) - 1] + e (38)F < -

,

. .

The asymptotic values of F (t) are given in Table 1. These asymptotic
i

limits may be'obtained by using the following approximation for the error
function (12),.

2
*y.

erf(y) * 1 - (y >> 1) (39)
yf

As t * = for finite values of L of a finite repository, all the
radionuclides must pass x L. Thus, in this limit, F (t) must be equal

1
to all the radionuclide mass per unit area formed or decayed by nuclear
-reactions. As given in column one and row one of Table 1, this quantity
is the decayed initial radionuclide concentration times the length of the
repository. For an infinite repository, as t * e, the radionuclides
transported past a fixed point are given by the effective travel distance'

past x - L, times the decayed initial radionuclide concentration. This
quantity approaches infinity for an infinite repository, as given in
Table 1. Also shown in Table 1 is that the asymptotic limits for F (t)

t
as L * -= are identical to those limits given for t * =. This is because
in both asymptotic limits, all the radionuclides are contained in the
region of integration of Equation (31). Notice from Table 1 that for
long times, F is independent of the dispersion coefficient. This longg
time behavior will bc demonstrated in Section 4 with an example problem.

- 10 -
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Table 1-

. Asymptotic Values of F (t), the Cumulativeg

Radionuclide Mass Per Unit Area for x E L.

Limiting Conditions Finite Repository Infinite Repository

(h > 0) (h'* =)

( t -* =) hE E (Ut - L)
t i

(L finite)

( L -, -.) h3 E (Ut - L)
1 t

(t 2 0)
(t finite)

E is given by Equation (25),
t

U is the time-averaged species velocity,
h is the length of the repository,

t is time, and

L is the point beyond which the cumulative radionuclide mass per unit area is ;

-determined,

.

- 11 -
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-3. SPECIAL CASES

'One can not predict with absolute ce.rtainty future geological conditions I
<

that may influence flow'through a repository. The sensitivity,of models-
to cht.nging geological conditions is therefore of interest. To study _ .'
this sensitivity for one dimensional models, the solutions given in.the
previous section were developed for arbitrary time dependent functional.
forms of the fluid flow velocity and dispersion coefficient. We may now :

.use these solutions to determine'how much the constant flow solution,

differs from a solution obtained using a time-varying perturbation or a-
-step change on the parameters. To evaluate this difference, four speciel !i

_

cases are considered in this sectica. Table 2 summarizes the conditions
<

for each case. !

First, a base case.is defined in terms of a constant species velocity u, [
andconstantretardeddispersioncoefficient-d,+d|u|, These parametersy

are defined such that d and di are nonnegative constants.o

The second and. third cases in Table 2 are for a periodic perturbation of
the species velocity given by

U(t)/R - u + ccos(wt) (40)-

where're is a nonnegative constant. For c - 0, the species velocity for-
,

the second and third cases reduce to that for the first case in which the
flow conditions are constant. _To maximize the early time difference

'between the base case and the time varying case, the cosine function was
chosen instead of the sine function in Equation (40). As will be shown
in section 4, even with this maximum difference in the fluid flow
velocity at t-0, the time-varying solution rapidly approaches the base
case solution.

For the fourth case, the species velocity will change from u to ut at
time t This case may be used to model an abrupt change in, geologicaly.

*

conditions.

The retarded dispersion coefficient is often related to the species
-velocity. For the second and fourth cases this relationship is given by ,

( 13 ] -,

D(t)/R-d,+d|U(t)/R| (41)y

and for the third case the relationship is given by

(d /u)[U(t)/R]2 (42)D(t)/R - d + yo,

I
g-

I |

,
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- . .. .

I u d,+d u ig' .u
'
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3
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s y
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2- d dc
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Note that the constants u, d .and di are chosen such that as c * 0, theo. perturbed cases reduce to_the constant condition case.

The new general solutions for the concentration profile in Equations (?9)
and the cumulative mass per unit area in Equations (35) and (38) are!

expressed-in terms of time-averaged quantities given by Equations-(10)
and (11). The time averaged quantities for the four cases are given in
Table 2.

- iFrom Table 2 we see that for cases 2 and 3 in the limit of long times
(i.e. wt * =), the time averaged species velocity approaches the constant
value of u.

For case 2. the long time time averaged retarded dispersion coefficient
approaches a constant value of d +d u, which is identical to that for

icase 1. However, due to the qua0ratic model used in case 3, the long
time time averaged retarded dispersion coefficient is not equal to that
for case 1.

-

4

- 14 -

__ _ _ . _ _ _ .



~ __

o

4. EXAMPLE PROBLEMS

Two example problems are used to demonstrate the significance of time-
varying flow conditions for an_ infinite repository. Table 3 lists the
parameters for the example problems. In the first example, a periodic

fluid-flow velocity is used with the linear and the quadratic models for
the retarded dispersion coefficent. The parameter c was chosen
, arbitrarily'such that the fluid flow velocity would oscillate with a 1006

. variation about u for the first example, as shown in Figure 1. 'he
'

frequency.of oscillation was also chosen arbitrarily, but for specific
sites one may wish to use a different value of w (14]. In the second
example, an order of magnitude step change in the fluid-flow velocity
hglfwaythroughthesimulationisused. For both examples d - 0.03o
m / year, di - 10 m and L - 5,000 m. From these values, the base case

speciesvelocityanddispersioncoefficientare1m/yearand10.03
m / year, respectively.

The cumulative mass of radionuclide past'L - 5,000 m for time-varying
conditions relative to that for constant conditions is shown in Figure 2
for Example 1, and in Figure 3 for Example 2. This ratio is independent

of the radionuclide decay rate and the initial radionuclide
concentration. Deviations from unity of this ratio indicate deviations
of the time varying solution from the constant flow solution. The lines
in the Figures were generated using Equation (38) for both the time-
varying and constant flow conditions. Also' plotted in Figure 2 as
discrete points is the same ratio calculated based on the asymptotic
formula given in Table 1. For a periodic fluid-flow velocity given by
Equation (40), the asymptotic value of the ratio is given by

.

-* 1 + ' 8 ) (43)Ftime-varying /Fconstant

The solid and dashed lines in Figure 2 are for the linear and the
quadratic models of the dispersion coefficient, respectively. Notice
that little difference was found between using a linear or a quadrat * *.
model for the dispersion coefficient as given by Equations (41) and (42),
respectively. As can be seen from Figure 2, the asymptotic expression in
Equation (43) provides an excellent approximation at long times.
Furthermore, as expected from the asymptotic analysie given in section
2.4, ' F is not sensitive to the model used for the dispersion

7coefficient. Notice that although there is a 100% variation in the flow
conditions, the oscillations dampen quickly after one or two cycles in
the fluid-flow rate. Thus, although the analysis in section 3 shows that
for lon6 times the solution should approach that for constant conditiens,
this example demonstrates that the constant flow solution may be a good
approximation in this case after only one cycle in the fluid-flow
velocity.

- 15 -



- . . ,. . . =
,

' -

j, ,
-

,

-; j,,

, y
,

j
|

|c.+

.. ) -

>

'

Table 3 :i
J,

Parameters _in' Example Problems'1 I,

i

No. ' Fluid Flow: -Parameters Time Period'(years) Figures -:.
'

1

~ 1. Periodic- 'w -f2w/10 000 year"1 100,000-- '1, 2'
*~ '

,
.

- u -.'1 m/ year,
.

,

c :1'm/ year i

J

. 21 Steo Change z ug - 0.1 m/ year' 10,000' 3
4

u1 - 1 m/ year
' '

~u - 0.55 m/ year
'

t1 - 5,000_ years |
,

2For both examples, d, - 0.03 m / year, d '- 10 m and L --5,000 m.y

,: .
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In Figure 3 the cumulative mass ratio is shown for Example 2. In this

example, for constant conditions, the fluid flow velocity is 0.55 m/ year,
which is the average fluid flow velocity over 10,000 years. Thus, for
the first 5,000 years, the fluid flow velocity for constant conditions-
greatly exceeds the initial fluid-flow velocity of 0.1 m/ year for time-
varying conditions. Therefore, the ratio shown in Fi ure 3 is much less5
than unity for about the first 8,500 years. However, the cumulative
fluid flows are equal for.the constant and time-varying cases at 10,000

. years. At_that time the ratio shown in Figure 3 is unity, which
, indicates for this example that at 10,000 years the cumulative

radionuclide release is not affected significantly by the step change in
the fluid-flow velocity.

|
,

1

-

|
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. 5. SUMMARY.AND CONCLUSIONS '

An exact solution has'been obtained for radionuclide transport under
.

'
s

time varying-fluid-flow-velocities and dispersion coefficients, including |~

radioactive decay. The solution was based 1onia unified treatment,of
previously. reported- transport: solutions without rautoactive decay. New
exact ~expressiona were.obtained for the cumulative.radionuclide mass per
uniti arca past a: fir.ed point in the flow. These new: expressions were

-

used to determine the effects of a periodic perturbation and a step j

change of the fluid-flow rate on'the cumulative radionuclide mass per-,

t . unit area past a fixed point.

For the example presented of a periodic variation in the fluid flow rate,
~

the time-varying solution for the cumulative radionuclide mass past a
:

L fixed point-dampened rapidly, and approached the constant flow solution '

- regardless of the model for the dispersion coefficient.
(

For the example presented of a step change in the fluid-flow velocity, '
'

the-cumulative radionuclide mass past a fixed point reached that'for the ;7' constant flow solution when the cumulative fluid-flows were identical.

.The. examples demonstrated that the solutions presented in this work are *

1c useful for assessing the effects of timo-varying flow, but are limite(1 to :
,

radionuclide chains.with uniform retardation factors. Numerical 4

solutions may be required to account for nonuniform ~ retardation factors.
These numerical solutions may be tested by using the exact solutions in-

L this work for cases when the, retardation factors'are uniform, ,

f

*
.

.'
.

1

+

I

|

1

~
.

|

|
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Figure 2. Ratio of cumulative radionuclide mass past L - 5,000 meters for the
first example problem, where the solid and dashed lines are for the linear and
quadratic models of the dispersion coefficients, respectively, as given by
Equations (41) and (42), respectively. .The discrete. points were calculated
using the asymptotic approximation given by Equation (43).
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