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ABSTRACT

Current pressure vessel safety assessment methods are based largely
on Sects., IIl and X1 of the American Society of Mechanical Engineers
Boiler and Pressure Vessel Code (ASME B&PVC)., These documents take the
position that the fracture toughness correlations cannot be assumed for
a crack-arrest toughness value >220 MPa:/m for light-water-reactor (LWR)
pressure vessel steels. This limit is imposed largely because, until
recently, essentially no crack-arrest toughness (Kln) data existed at or
above this level and because Charpy tests show that impact energy levels
exnibit an upper-shelf behavior. In making assessments for LWR pressure
vessels undergoing thermal transients with low accompanying pressure
levels, the limit on crack-arrest toughness does not present diffi-
culties, However, certain pressurized-thermal-shock scenarios could
lead to condiLions under which the driving force (KI) on a propagating
crack increases to levels higher than the ASME limit.

The Heavy-Section Steel Technology (HSST) Program at the Oak Ridge
National Laboratory, under the sponsorship of the U.8, Nuclear Regula-
tory Commission, is conducting analytical and experimental studies aimed
at understanding the circumstances that would initiate the growth of an
existing crack in a reactor pressure vessel and the conditions that
would lead to the arrest of a propagating crack. Objectives of these
studies are to determine (1) whether the material will exhibit crack=
arrest behavior when the driving force on a crack exceeds the ASME
limit, (2) the relationship between K;  and temperature, and (3) the
interaction of fracture modes (arrest, stable crack growth, unstable
crack growth, and tensile instability) when arrest occurs at high tem-
peratures. In meeting these objectives, crack-arrest data are being
developed over an expanded temperature range through tests involving
large thermally shocked cylinders, pressurized thermally shocked
vessels, stub-panel specimens, and wide-plate specimens. The thick=-
vessel tests have very high crack-tip restraint and produce indisputably
valid fracture data. The wide-plate specimens provide the opportunity
to obtain a significant number of data points at reasonable costs.
These tests are designed to measure fracture toughness near or above the
onset of the Charpy upper-shelf regime in a rising toughness region and
with an increasing driving force.

The HSST wide-plate crack-arrest tests are being performed at the
National Institute of Standards and Technology, Caithersburg, Maryland,
in a 27-MN-capacity testing machine. This report contains results for
two tests thar used A 533 grade B class | material supplied by Combus-
tion Engineering, Inc. Each test used a 1 x 1 x 0.1 m thick single-edge
notched plate (a/w = 0,2) that was subjected to a linear thermal gradi-
ent along the ‘plane of crack propagation., The thermal gradient was
applied to the specimen by cooling the notched edge and heating the
other edge. By varying the crack-tip temperature and transverse Lem=
perature profile, the initiation load and depth of crack propagation
were changed from test to test. During each test, strain and tempera-
ture measurements were obtained as functions of position and time.
Load, crack-opening displacement, and accelerometer data were also
obtained as functions of time.
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These tests have shown crack-arrest toughness values well above the
limit recognized by the current ASME B&PVC guidelines, with arrests
occurring at 58 to 95°C above the material's reference nil-ductility
temperature (RTy, = =35°C) and up to 10°C higher than that for the
material's onset of Charpy V-notch upper-shelf energy (USE) (onset
USE = 50°C). Crack propagation has been by cleavage until arrest
occurred, and, even for very high driving forces, ductile tearing
occurred only after arrest. The fracture data support (1) the use of
fracture-mechanics conrcepts to analyze cleavage run-arrest events, (2)
the treatment of cleavage run/arrest and ductile fracture modes as
separate events, and (3) the fact that cleavage arrest occurs above the
ASME limit,
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1. INTRODUCTION

Limitations imposed by the ASM® H&PVC, as well as issues that must
be addressed in making safety assessments for RPVs, are discussed.
Objectives of the crack-arrest studies and program goals are presented.

2. BACKGROUND

Prior crack-arrest studies and ctheir limitations are discussed. A
summary of large-specimen, crack-arrest toughness data is presented in
Flg. 2.1.

3. MATERIAL CHARACTERIZATION

A description of the A 533 grade B ¢lass | material used in the
WP-CE test series is provided., Drop-weight (Table 3.,1), Charpy V-notch
(Table 3.2), and tensile (Table 3.5) properties are provided. Equations
(3.1) and (3.2) present the relations for K, and K, , respectively,
that were used for planning the tests,

4, SPECIMEN PREPARATION, INSTRUMENYATION, AND
TESTING PROCEDURE

Procedures used tor precracking and assembling the test articles
are outlined. Instrumentation used Lo obtain pertinent data during a
test (load, strain, temperature, crack-opening=displacement, dynamic
displacement), as well as the dala acquisition system, are described.
The heating, cooling, and insulation systems used Lo produce the desired
specimen transverse temperature profile are delinealed. The technique
used Lo conduct a wide-plate crack-arrest test (Fig., 4.9) is presented.

5. SUMMARY OF WIDE-PLATE CRACK-ARREST
TESTS WP-CE-1 AND WP-CE-2

Ceneral test conditions (Table 5.1) for each wide-plate test are
delineated, and transverse temperature profiles for each test are sum=
warized (Fig. 5.1). The highlights for each tes., as well as pertinent
Lest data, are reilerated. iracture surfaces for each specimen are pro-
vided (Fig., 5.2).
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6. POSTTEST ANALYSES, CRACK-ARREST TOUCHNESS RESULTS,
AND COMPARISON OF DATA WITH OTHER
LARCE-SCALE TEST RESULTS

Posttest static and dynamic fracture analyses conducted for each
wide-plate crack~arrest test are described. Crack-arrest toughness
results determined by static and dynamic analyses, as well as by hand~-
book techniques, are presented (Table ©.4). The relationship between
fixed-load, generation-mode, crack-arrest toughness values for tests
WP-CE~1 and -2, as well as for other tests that used A 533 grade B class
I materials (WP-]1 Series), and the Kla curve of the ASME B&PVC is shown
(Fig, 6.22). The wide-plate data are compared with other large~scale
test results (Fig., 6.23),

7. CONCLUSIONS

Results of the investigation are summarized. Primary conclusions
are that (1) crack arrest can and does occur at temperatures up to and
above that which corresponds to the onset of Charpy upper-shelf behavior
and (2) measured Kia values extend above the limit set in the ASNE
B&PVC,



SEN WIDE-PLATE CRACK-ARKEST TESTS USING
A 533 CRADE B CLASS | MATER!AL:
WP-CE TEST SERIES
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B. R. Bass R. deWit

$. R, Low 111
1. INTRODUCTION

Current light-water-reactor (LWK) pressure-vessel safety assessment
methods are based largely on Sects, 111 and X! of the American Society
of Mechanical Engineers Boiler and Pressure Vessel Code [ASNE B&PVC).,
In pressurized-thermal~shock (P1S) scenarios, flaws on the inner surface
of a reactor pressure vessel (RPV) have the greatest propensity to
propagate because they are in the region of highest thermal stress,
lowest temperature, and greatest irradiation damage., If such a flaw
begins Lo propagate radially through the vessel wall, it will extend
into a region of higher fracture toughness because of the higher tem-
peratures and lesser irradiation damage. Although the thermal stresses
Mmay decrease with increasing crack propagation depth, the stress-inten=-
sily factor caused by the elevated-pressure loading will increase.
Assessment of the integrity of an RPV under such a postulated crack run=
arrest scenario requires prediction of the arrest location, potential
reinitiation, stable and unstable ductile crack growth, and structural
instability of the remaining vessel wall ligament,

The fracture Loughness correlations contained in the ASME BEPVC
clearly show that one cannot assume a crack-arrest toughness value (Kl )
2220 MPa/m for LWR pressure-vessel steels. The imposition of this
limit is based primarily on the facts that (1) no K,, data existed at or
above this level and (2) Charpy tests showed that impact energy levels
exhibit an upper-shelf beliavior. Therefore, the nature of crack-arrest
behavior and Kjq €xtrapolations to temperatures higher than that at
which this limit occurred could not be presumed.

The ASME limit does not impose difficulties in making assessments
for LWR pressure vessels undergoing thermal shock Lransients with low
accompanying pressure levels, However, certain PTS scenarios could lead
to conditions under which the driving force on a propagating crack
increases to levels well over the current ASME 1limit. Thus, safety
assessment methods for this type of condition would require an under-
standing of the following points.

l. 1t the driving force on a crack exceeds 220 MPa:/m by a significant
margin, can the material exhibit crack-arrest behavior?

2. If the material exhibits high Kia values with increasing tempera-
ture, what is the relationship between Kia @nd temperature? That
is, does a temperature limit exist above which cleavage crack pro-
pagation cannot continue regardless of the magnitude of the driving
force?



3. 1t crack arrest. does occur at high temperatures, al which the mate~
rial behavior is typically dominated by ductile behavior, then which
interactions exist between the various fracture modes, including
arrest, stable crack growth, unstable crack growth, and tensile
instability?

Because wide-plate tests have the ability to provide a signitficant num=
ber of data points at reasonable cost, they were selected for use in the
investigation,

The primary objective ot the wide-plate crack-arrest studies under
the Heavy-Section Steel Technology (HSST) Program is 10 generate data
and associated analysis methods for understanding the crack-arrest
behavior of prototypical RPV steels at temperatures near and above the
onsel ot the Charpy upper=-shelf region. Program goals include (1) ex=
tending the existing Kig data bases to include values above those
associated with the upper limit in the ASME BsPvCy (2) clearly estab-
lishing that crack arrest occurs before fracture-mode conversionj and
(3) validating the predictability of crack arrest, stable tearing,
and/or unstable tearing sequences for ductile materials. The wide-plate
tests and analyses provide bases for oblaining and interpreting dynamic+
fracture data (with relatively long crack runs) and bases for validating
viscoplastic fracture models and analysis methods. In the study dis-
cussed in this report, the program objectives and goals were investi=
pated for one material, American Society for Testing and Materials
(ASTM) A 533 grade B class 1 steel supplied by Combustion Engineering,
Inc. (CE).



2.  BACKGROUND

Under the HSST Program, crack-arrest data have been generated over
an expanded temperature range in tests involving large thermally shocked
cylinders'y? (18Cs), pressurized thermally shocked vessels (PTSVs), 3,
and wide-plate specimens. ¢ The TSCs and PTSVs also provide data under
multiaxial transient and high restraint loadings for validation of frac-
ture models and analysis methods. Although the thermal=-shock experi=
ments (TSEs) have generated & significant number of data points, the
driving force in these experiments has been thermal stress only, and,
consequent ly, crack-arrest data have not ranged above ~150 MPa:vm. An
important conclusion of the TSEs is that the K, data from these highly
restrained propagations fall well within the range of K,  data from the
small laboratory specimens and above the ASME reference toughness (KIR)
curve, which provides a lower bound of crack arrest (K].) and dynamic
fracture toughness (K, ) as a function of the temperature relative to
the nil=ductility temperature (NDT). The HS8ST pressurized-thermal=~shock
experiments (PTSEs) can provide higher K, - values under similar highly
restrained conditions, as shown by the tivst two PISEs, which produced
Kia data as high as 420 MPa:vm at temperatures up to -90°C above the
drop=weight NDT for the vessel insert material (-75°C)., Crack-arrest
tests that used wide-plate specimens fabricated from A 533 grade B class
| material (HSST Plate 13A) have produced K;, data >500 MPa:/m (fixed~
ioad, generation-mode analysis) at temperatures up to 115°C above the
Mleri.l “TND-I ('2»‘.C)0

Large~specimen, high=temperature, crack-arrest data have also been
developed by testing (1) moment=modified compact=tension (MMCT) speci=
mens at CE under an Electric Power Research Institute (EPRI) program,
Research Program Ri-2180-3,’ (2) wide~plate and ESS0 specimens in
Japan,®=!% and (3) TSEs in France.'" A summary of K, data for the HSST
Program TSEs, PTSEs, and wide-plate tests (A 533 grade B material)j the
CE/EPR] MMCT tests; the Japanese testsi and the French TSEs is presented
in Fig., 2.1.
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3. MATERIAL CHARACTERIZATION

3.1  INTRODUCTION

The steel plate used' to fabricate wide-plate specimens WP-CE~l and
«2 conforms to the specifications of ASME SA 533 grade B class 1. A
limited amount of material characterization was performed at the Oak
Ridge National Laboratory (ORNL) Lo delermine various paramelers re~
quired to analyze the wide-plate testo.* One of these parameters is
reference temperature nil-ductility=transition (RTNDT)° In accordance
with Subarticle NBE=2330 of the ASNE Boiler and Pressure Vessel Code,
Sect. 111, RType is the higher of the drop-weight NDT temperature and
(1-33)°C, where T is defined as the temperature at which, for T-L orien-
tation Charpy V=notch (CVN) specimens, both 68 J and & lateral expansion
of 0.89 mm are attained. For this study, CVN impact tests in the L-T
and T-L orientations have been performed. The wide-plate tests were
performed such that the crack propagation orientation is LT, The Lests
in the T-L orientation were performed to allow the tests reported in
Ref. 1 Lo be compared and to determine the RTy, .. For completeness, the

tensile properties extracted from Ref. 1 have been included,
3.2 MATERIAL DESCRIPTION AND ALLOCATION

The two test sections used in the wide-plate tests were machined
rom an ~5600 » 2800 « 244 mm plate of SA 533 grade B class 1 steel,
The location of the wide-plate test sections in the plate stock is shown
shaded in Fig. 3.1, The plate stock wes supplied by CE. The sections
tor the wide-plate tests were obtained by sawing the 244-mm-thick plate
into two halves, each ~120 mm thick, as shown in Fig, 3.2,

Because some of the wide-plate test section material originated
from near the surface of Lthe plate stock, tests were pertformed Lo deter=
mine whether the material properties varied through the plate thickness.
Posttest characterization was performed on material machined from a
section flame cut from the broken halves of specimen WP-CE-2, The
approximate location in the overall test section of the material used
for posttest characterication is shown in Fig. 3.3, Specimens were
obtained from each of 4 layers and are identified as "layer 1," "layer
2," Mayer 3," etc. The layout of the specimens is shown in Figs. 3.4
and 3.5,

3.3 DETERMINATION OF RTy. 0

Drop=weight testing was performed according to the ASTM Procedure
for Conducting Drop-Weight Test to Determine Nil-Ductility Transition

*Reference | presents more detailed information on characterization
of the plate material,
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Temperature of Ferritic Steels (E 208-87a). A specimen type P-3 with a
single-pass crack starter weld bead was used, and the test results are
shown in Table 3.1. The drop-weight NDT temperature can be considered
to be =3%°C because a 5 K difference found between layer 4 and the other
three layers is not considered to be significant, This result also
agrees with the ~34.,4°C (~30°F) drop-weight NDT value reported in Ref, 2
for material characterization blocks 6 and 10, (Characterization blocks
6 and 10, shown in Fig. 3., were obtained from a location in the plate
stock that was in close proximity to the position where material was
provided by CE for fabrication of specimens WP-CE~] and -2, As noted iu
Ref, 1, some variation in material properties occurs along the 5600~mm
length of the plate stock,)

CVN impact tests were performed using specimens with a T-L orien~
tation obtained from each of the four layers at a temperaturz of -2°C
(NDT « 33°C). The 68-J energy and 0.89-mm lateral expansion require~
ments of ASME Subarticle NB-2330 were both fulfilled. More details on
the test results are given next in the section on CVN testing in the T-L
orientation, Accordingly, the RTy,. is =35°C.

3.4 CVN TESTINC IN THE L-T AND T-L ORISNTATIONS

The results of the CVN impact testing in the L=T orientation are
given in Table 3.2, The test results, together with a regression=fit
hyperbolic tangent, have also been plotted in Figs. 3.6 to 3.9, The
upper shelf energy (USE) for layer 1 is ~350 J., The onset of upper
shelf, as indicated by 100X shear, is at 50°C, and if judged from the
lateral expansion, it is at 25°C. The USEs for the other three layers
are only slightly less, ranging from ~320 to 335 J.

The regression-fit hyperbolic tangent curves were used to compare
the CVN impact energy results from all four layers (Fig. 3.10), The
hyperbolic tangent curve fit parameters for the four layers tested in
the L=T orientation are given in Table 3.3, These curves reflect the
somewhat higher CVN toughness of layer | compared with the other three
layers in the upper transition and upper-shelf regions. Al some temper=
atures, such as the upper transition, there is about a 25% difference in
CVN impact energy between the various layers. Layer 3 also indicated
slightly elevatrd upper transition and upper=shelf CVN impact toughness
when compared with layers 2 and 4. Assuming the NDT temperature to be
~35°C, the energy level at the NDT temperature is at least 46 J. The
CVN impact toughness at the NDT Lemperature increases from 46 J in layer
1 to 69 J in layer 4. As calculated from the regression fit, there is a
consistent decrease in both the 4l- and 68-) temperatures of 24 and
14 K, respectively, from layers 1 to 4, To analyze the results of the
large wide-plate specimen tests, an average curve was derived by fitting
the hyperbolic tangent curve to all the CVN-impact energy test data in
the L=T orientation., The resultant regression parameters have been in-
cluded in Table 3.3 and are labeled "average." Note that the parameters
are almost the same as those for layer 3. This "average" curve is shown
in Fig. 3.10(b).

The results of the CVN impact tests in the T-L orientation are
given in Table 3.4. The curve fit parameters are given in Table 3.3.
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Table 3.1 Results of drop-weight testing on
A 533 grade B class | material for samples
taken at various depths of specimen WP-CE-2

Test results

Test
Specimen temperature N
© o NDT
(‘c) Break fads (*c)
Layer 1
CE2108 =50 v
CE2107 40 v
CE2106 -30 v
CE2101 =35 v
CE2103 -~35 v
CE2104 ~30 7
-3%
Layer 2
CE2207 -35 v
CE2206 -30 v
CE2202 -30 v
-35
Layer 3
CE2305 ~35 v
CE2307 =40 7
CE2306 ~35 v
CE2304 =30 v
CE2301 -30 v
-35
Layer 4
CE2405 ~20 v
CE2407 -30 v
CE2402 =50 7
CE2403 -35 v
CE2406 -35 v
CE2408 =40 %

40
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Table 3.2 CVN impact test results in L-T orientation
for material obtained from specimen WP-CE-2

\ Test CVN Lateral Fracture

'p;:"°" temperature energy expansion appearance
s (‘c) (J) (mm) (%)

Layer 1
CE2116 =15 6 0.08 0
CE2104 =50 15 0.23 13
CE2108 -25 47 0.76 18
CE2112 =25 79 1.17 24
CE2107 ~25 60 0.97 18
CE2110 0 121 1.60 47
CE2105 0 161 2.06 52
CE2115 0 153 1.88 48
CE2101 23 179 2.31 70
CE2102 23 166 2,01 60
CE2100 23 1 2.11 62
CE2113 50 284 2.11 100
CE2106 50 263 2.13 100
CE2114 75 353 2.13 100
CE2111 100 34) 1.83 100
CE2120 150 343 2.06 100
CE2103 150 347 1.93 100
CE2118 200 340 1.80 100
CE2121 200 331 1.57 100
CE2119 250 339 1.70 100
CE2117 300 335 1.70 100
Layer 2

CE2114 -15 9 0.10 0
CE2208 =50 17 0.25 1l
CE2215 -2% 48 0.74 23
CE2216 -25 50 0.76 20
CE2203 -25 59 0.86 23
CE2211 0 123 1.63 25
CE2212 0 110 1,50 30
CE2204 0 110 1.42 18
CE2201 23 145 1475 50
CE2202 23 179 2.08 70
CE2209 23 153 1.80 55
CE2206 50 229 2.29 100
CE2207 100 262 2.06 100
CE2218 150 303 1,80 100
CE2213 150 310 1.65 100
CE2219 200 321 1.52 100
CE2220 200 322 1.2 100
CE2221 250 346 1.63 100

CE2217 300 304 1.42 100
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Table 3.2 (continued)

Test CVN Lateral Fracture

.’::‘.'" temperature energy expansion  appearance
. (‘c) (N (mm) (%)

Layer 3
CE2301 -715 8 0.00 0
CE2307 =50 19 0.30 10
CE2310 -2% 67 0.94 28
CE2312 -25 82 1.17 25
CE2308 -25 b4 0.97 21
CE2302 0 114 1.60 20
CE2316 0 146 1.80 46
CE2306 0 127 1.65 38
CE2305 23 170 2.01 65
CE2311 23 176 1.96 50
CE2314 23 180 2.24 n
CE2315 50 248 2.31 100
CE2303 100 315 2.01 100
CE2318 150 318 2,01 100
CE2317 150 323 1.70 100
CE2320 200 339 1.68 100
CE232] 200 340 1.50 100
CE2309 250 320 1.52 100
CE2319 300 323 1.65 100
Layer 4

CE2411 -71% 10 0,13 0
CE2401 =50 36 0.48 18
CE2413 -50 45 0.71 13
CE2414 -29 105 1.42 30
CE2404 ~2% 91 1.30 27
CE2407 «2% 12 1.04 21
CE2405 0 122 1479 45
CE2406 0 111 1.50 52
CE2415 0 145 1.93 50
CE2416 23 163 2.03 40
CE2403 23 166 2.11 52
CE2412 23 162 2,18 15
CE2409 50 219 2.29 100
CE2402 150 285 1.96 100
CE2420 150 305 1.55 100
CE242) 200 342 1.63 100
CE2418 200 326 1.60 100
CE2417 250 337 1,68 100

CE2419 300 341 1.65 100
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Table 3.3 Ftorm of hyperbolic tangent equalion used in
the regression analysis and the resulting curve fit
parameters for material obtained from four
layers of specimen WP-CE-2 in the L-T and
T-L orientations (NDT = =35°C)

E = (A/2) (1+tanh|[B(T=C)))? Temperature
Layer E? at (°c)
No. A B C NDT ————
(J) (*c1) {*C) 41 J 68 J

L~T orientation

1 345 0.01878 15 46 -38 ~22
2 317 0.01537 23 46 40 ~20
3 330 0.0161% 17 53 ~44 -25
4 KRV 0.01143 24 69 -62 ~-36
Average 330 0.01616 17 52 43 -25
T-lL orientation
1 233 0.C1783 8 42 ~35 =17
2 240 0.01561 13 44 -38 -17
3 273 6.01197 18 60 =54 -28
4 228 0.01419 -3 64 =56 -32
Averape 244 0.01453 9 53 ~46 ~24

@K = CVN energy at temperature T (°C)
A = USE
B = related to slope of curve in transition region

C = temperature corresponding to energy equal t> one-half
of USE

The CVN results for each of the four layers have been plotted in
Figs., 3,11-3.14, Comparisons of the regression curve fits are shown in
Fig. 3.15. The through=thickness variations between the varvious layers
in the T-L orientalion are consistent with those exhibited in the L-T
orientation, The CVN-impact energy level at NDT increased from 42 J in
layer 1 to 64 J in layer 4, Similarly, the 41~ and 68-) temperatures
decreased 21 and 15 K, respectively., An "average' regression curve was
fitted to al! the CVYN-impact energy test data in the T-L orientatiion,
The regression~fit parameters are included in Table 3.3, and the curve
is shown in Fig. 3.15(b).

Testing in the T-L orientation was not performed at temperatures
>200°C, Moreover, in view of the scatter at these higher temperatures
in some of the layers, more testing is needed to provide a better sta-
tistical basis for judging the USE, Test results at 200°C imply that
the upper-shelf CVN impact energy has not yet been reached., The CVN
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Table 3.4 CVN impact test results in T-L orientation
tor material obtained from specimen WP-CE-2

Specimen Test CVN Lateral Fracture

No. temperature energy expansion  appearance
(‘c) J) (mm) (%)

Layer 1
CE2134 =15 3 0.08 0
CE2131 =50 7 0.10 0
CE2143 -50 9 0.15 0
CE2132 -25 55 0.86 13
CE2149 -25 70 0.99 22
CE2135 -2 91 1.42 29
CE2144 -2 104 1.63 38
CE2147 -2 113 1.97 33
CE2138 0 88 1,24 26
CE2141 0 95 1.45 34
CE2140 23 154 2.03 59
CE2150 23 163 2.03 52
CE2145 50 176 2.16 92
CE2137 50 179 2,11 86
CE2146 75 208 2.24 100
CE2133 75 225 .16 100
CE2136 100 198 2.11 100
CE2142 150 208 2.13 100
JE2148 150 222 1.83 100
CEZ139 200 290 1.65 100
Layer 2

CE2233 -75 ; 0.13 0
CE2:42 =50 11 0.23 0
CE2243 =50 16 0.28 0
CE2247 ~-29 46 0.71 13
CE2248 -25 52 0.74 18
CE2244 -2 97 1.45 33
CE2237 -2 97 1.42 37
CE2238 -2 119 1.65 43
CE2234 0 89 1.30 33
CE2235 0 S 1.45 38
CE2236 23 146 1.93 62
CE2231 23 156 1.83 50
CE2249 50 176 1.96 79
CE2250 50 178 2,08 92
CE2241 75 197 2.21 100
CE2232 75 207 221 100
CE2246 100 194 2.18 100
CE2245 150 236 1.96 100
CE2240 150 241 1.91 100

CE2239 200 272 2,01 100



Table 3.4 (continued)

Specimen Test CVN thergl Fracture

No temperalure  energy  expansion appearance

a (°c) (J) (mm) (2)
Layer 3
CE2333 =75 10 0.18 0
CE2346 ~50 17 0.28 0
CE2339 =50 39 0.6l 11
CE2347 ~25 36 0.66 11
CE2336 -25 80 1.12 217
CE2337 -2 116 1.60 42
CE2331 -2 119 1.68 45
CE2348 -2 128 1.52 43
CEZ2341 0 102 1.47 31
CE2349 0 112 1.60 40
CE2334 23 150 1.80 60
CE2350 - § 155 1.91 53
CE2340 50 19¢ 2,26 100
CE2332 50 201 2.39 100
CE2338 75 195 2.18 100
CE2344 15 212 2:21 100
CE2345 100 201 2.16 100
CE2343 150 206 2.03 100
CE2342 150 296 2.26 100
CE2335% 200 320 1.97 100
Layer 4

CE2431 ~100 $ 0.03 J
CE2440 -15 12 0.25 0
CE2433 =50 40 0.64 3
CE2444 =50 44 0.66 13
CE2440 ~25 79 117 23
CE2438 -25 88 1.24 16
CE2443 -7 107 1.52 43
CE2434 -7 109 1.66 45
CE2450 -7 114 1.60 42
CE2432 0 107 1.47 52
CE2442 0 111 1.55 43
CE2435 23 154 1.98 67
CE2447 23 172 220 16
CE2448 50 180 2413 100
CE2449 50 206 23l 100
CE2437 75 183 2.16 100
CE2439 75 189 221 100
Cr2445 100 202 213 100
CE244! 150 204 2:11 100
200 1.93 100

CE2436

276
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upper-shelf impact energies in the T-L orientation from this study are
significantly higher than those reported in Ref. 1. For instance,
Ref. 1 reported USEs in the range 183 to 203 J, and the present results
range from 228 to 273 J. Also, the 68-J transition temperature reported
in Ref. 1 is ~18°C, whereas present results from the various layers
range from -17 to -32°C,

The RTyny of the SA 533 grade B class ] material tested is -35°C
and was governed by the drop-weight NDT temperature. No significant
differences in the CVN impact toughness for the various layers in either
of the two orientations tested were found. The average upper-shelf
toughness in the L-T orientation for all four layers tested is ~330 J.
In the L-T orientation, the onset of upper-shelf as determined by the
1002 ductile fracture criterion is ~50°C, and the average 68-J) transi-
tion temperature for all four layers is -25°C,

The tensile properties from Ref. 1 are given in Table 3.5. The
data originated from blocks numbered as 6 and 10 in Ref. 1 (see
Fig. 3.1). As mentioned previously, some variation of properties occurs
along the 5600~mm length of the plate, and characterization blocks 6 and
10 are the closest to the location where wide-plate specimens WP-CE-1
and -2 were obtained.

3.5 FRACTURE-TOUCHNESS RELATIONS

Fracture-toughness relations for crack initiation and arrest were
assumed to be of the same form as those developed for the WP~1 test
series that also used A 533 grade B class | material but from another
heat?; that is,

L) b P
Kyo = 51,28 + 51,90e0.036 e (3.1)

(T=RTyna)
Kia = 49.96 + 16.88e0.020  NOT' (3.2)

with units of K and T being megapascals per root meter and degrees
Celsius, respectively. As noted previously, drop-weight and CVN test
data resulted in an RTy,. of ~35°C for the WP-CE material.

The dynamic fracture-toughness relation for the plate material is
written as

Kip = Ky, * A(T)a? (3.3)
where K; is given by Eq. (3.2). For
T o RTNDT > -1319°C y

A(T) = [329.7 + 16.25 (T - RTypy) ] * 10=6 MPa:s<.m=3/2 |



Table 3.5 Room- end elevated-temperature tensile properties
of SA 533 grade B class | material?

Test Strength
Block  Location  Specimen tikpralere Elongation Reduction
No . () code ?fc) . Yield Ultimate (2) ()
(MPa) (MPa)

6 1/4 253 RT 399 561 29 69
6 3/4 256 RT 390 553 32 74
6 3/4 251 66 423 552 29 71
6 3/4 252 66 401 530 29 72
6 1/4 254 93 404 538 29 70
6 3/4 255 93 421 546 31 70
b 1/4 2517 12} 395 524 29 73
6 1/4 25A 121 390 517 29 65
10 3/4 2K6 RT 400 554 27 67
10 1/4 2KD RT 394 555 30 71
10 1/4 2K7 49 382 533 28 73
10 3/4 2KC 49 395 542 29 72
10 1/4 2KE 66 410 558 28 70

10 3/4 2KB 66 422 555 26 68

“From EPRI NP-5121SP (No. 130), Test and Analyses of Crack Arrest in Reactor
les<el Materials, Appendix G, "Materia! Characterization."”
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and for

A(T) = [121.7 + 1.2962 (T = RTypy)] x 106 MPa-s2-m=3/2 ,

Units for KID' 4, and T are megapascals per root meter, meters per
second, and degrees Celsius, respectively. The form of the Kip expres-
sion in Eq. (3.3) and relations for A(T) are derived from Ref. 3 by
estimating that RTy,. = -6.1°C for the material used in that study.

Much of the data used in Ref. 3 are presented in Ref. 4.
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4. SPECIMEN PREPARATION, INSTRUMENTATION,
AND TESTING PROCEDURE

4.1 SPECIMEN PREPARATION

The WP-CE-1 and -2 test articles (1 x 1 x 0.1 m), shown schematic~
ally in Fig. 4.1, were machined and precracked by ORNL before they were
sent to the National Institute of Standards and Technology (NIST). The
precracking was done by hydrogen charging an electron-beam (EB) weld
(Fig. 4.2) located at the base of a premachined notch.' The notch
(a/w ~ 0.2) is composed of a 25.4-mm-wide gap that is machined to a
depth of 187 mm ("X" in Fig. 4.1) plus the EB weld-generated crack that
has a depth of ~12.7 mm at the end of the gap. Each face of the speci-
men is side-grooved to a depth equal to 12.5% of the plate thickness,
and the grooves nhave a 0.025-cm-root radius. The initial crack is
perpendicular to the rolling direction, The crack front of each speci-
men is then cut into a truncated chevron configuration, shown in Fig.
4.3, to reduce the tensile load required io achieve crack initiation.
Table 4,) presents dimensions for test articles WP-CE-1 and -2.

Upon receipt of the test article from ORNL, NIST welded it to pull
plates, which were nominally 103 mm thick. The pull tabs at the end of
the pull plates were strengthened by being 152 mm thick. Figures 4,4(a)
and (b) give dimensions for each of the test specimens. Before applica-
tion of the axial load, the out-of-plane deviation of each of the wide-
plate assemblies was determined as a function of axial position from the
top load pin; the results are presented in Figs. 4.5(a) and (b).

4.2 INSTRUMENTATION

To obtain pertinent data during each test, the specimens werc
instrumented with five types of devices: thermocouples, strain gages,
crack-opening-displacement (COD) gages, accelermometers, and a displace-
ment transducer. Reference 2 gives more detailed information on speci-
men instrumentation than that presented below.

Forty thermocouples were positioned on each specimen, as shown in
Fig. 4.6. The thermocoup!'es were attachea by inserting and gluing them
into 1.5-mm~diam by 3-mm-dcep holes that had been drilled in each speci-
men . The hole and thermecouple were then covered with a protective
silicone coating. Additional thermocouples, not indicated in Fig. 4.6,
were used to control heating and cooling of the wide-plate specimen,
All thermocouple lead wires were connected to copper lead wires in an
insulated junction box whose temperature was measured by a resistance
temperature detector that was monitored by a digital ohmmeter and data
logger. The thermocouples were sequentially monitored periodically and
corrected for room tempersture, and the results were both recorded on
magnetic tape and displayed on the computer screen. During the heating
and cooling processes, the 20 thermocouples ad jacent to the crack plane
(0-19 in F'g. 4.6) were displayed graphically in real time to indicate
the relationship between the actual and desired thermal gradient across
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Fig. 4.1. Schematic of HSST wide-plate crack-arrest specimen.
Table 4.1, Detailed dimensions of wide-plate
crack-arrest specimens WP-CE-1 and -2
Dimension
Specimen a (mm)
feature $ymbol
WP-CE~] WP=-CE~2
Initial crack length a, 200 201
Thickness B 101.7 101.8
Notch thickness By 76.3 716.2
Chevron thickness Be 40.0 40.4
(thickness at a,)
Width wb 1000 999.5

4See Fig. 4.3 for definitions of symbols.

Phot shown in Fig. 4.3.
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the specimen width. The other 20 thermocouples were used to indicate
the temperature distribution at other positions on the specimen and pull
plates during a test for use in posttest analysis.

Twenty-five strain gages were positioned on each specimen Lo pro-
vide dynamic strain-field measurements tor determination of crack veloc-
ity and to provide far-field strain measurements for assessing boundary
conditions. Strain-gage locations used for tests WP-CE-1 and -2 are
gshown i- "'g. 4,7, The crack-line gages (1-20 in Fig. 4,7) were two=
element, - stacked, 3500 Karma alloy (nicke!-chromium alloy) gages on
a polyimide backing, Outputs of these gages were proportional to the
difference between the longitudinal and transverse strains., Near~ and
far-field strain gages were uniaxial 350-0 constantan alloy gages on a
polyimide backing. The gages were attached to the plates by using an
elevated-temperature-cured epoxy. All gages were connected to low-
reactance bridges (half-bridge configuration for crack-line gages), the
imbalances of which were amplified by wide-band differential amplifiers.
The strain-gage signals were recorded by a multichannel, wide-~band, fre=-
quency-modulated, magnetic tape recorder, shown schematically in
Fig. 4.8.

Additional instrumentation included capacitance-based COD gages
mounted on the plate front and back faces at a/w = 0.15. The gages
measured the displacement between puvints 30 mm above and 30 mm below the
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crack plane. Accelerometers were installed 3.697 m above and 3.711 m
below the crack plane on the centerline of specimen WP-CE-]1 and 3.714 m
above and 3.710 m below the crack plane on the centerline of specimen
WP~CE-2, In addition, a displacement gage was mounted in the same
location as the lower accelerometer on specimen WP-CE~1, For specimen
WP-CE-2, the displacement gage was mounted on the specimen centerline
5 mm above the lower accelerometer, The displacement gage measured the
movement of the point on the specimen where it was attached relative to
that of the large columns of the testing machine.

4.3 HEATINC, COOLINC, AND INSULATION SYSTEMS

After the specimen was instrumented, it was placed into the NIST
testing machine, as she'm in Fig. 4.9, and eight individual electric~
risistance strip heate.s were attached to the back edge of the plate.
Each heater was 2.8 cm wide with a heating element length of 61 cm and
was rated at 1.9 W/ em?, The heaters were attached to the plate in pairs
and were backed with l.3-cm-thick sheets of insulating board (Marinite
1) to hold the heaters against the plate surface and to provide insula-
tiecn, The heating level during a test was controlled by two means:
(1) a Variac transtormer, which adjusted the power level or output of
each heater, and (2) separate on/off temperature controllers, which
interacted with thermocouples at the edge of the plate to regulate two
zones of heating., The primary heating zone was formed by two pairs of
heaters attached to the specimen edge above and below the fracture
plane. The second heating zone, consisting of the areas on either side
of the first zone, was heated by two cutward pairs of heaters. Trmpera-
ture levels in the two zones were independently controlled to better
achieve and maintain a linear thermal gradient across the specimen.

One edge of the specimen was cooled by spraying liquid nitrogen
(LN,) onto the specimen's notched edge. A 2.6-m-long insulated chamber
was affixed to the edge, equally spanning both sides of the notch.
The LN, was pumped into the chamber and sprayed directly onto the speci~
men surface through a copper-tube manifold consisting of sprayers at 18-
cm increments. The cooling level could be controlled by two methods.
Initially, when establishing a linear thermal gradient, the temperature
was controlled by adjusting the LN, flow rate by manually setting a hand
valve, When the desired temperature was achieved, that level was main-
tained by controlling the LN, flow with an on/off temperature controller
interfaced with a thermocouple at the cold edge of the specimen. The
temparature controller powered an electric solenoid gas valve that regu-
lated the flow of LN, into the cold chamber.

Two types of thermal insulation were used to insulate the front and
back faces of the specimen. On the hot side of the plate, 5S~cm-thick,
6l-cm-wide mineral wool bats were used. The bats were positioned on the
specimen face at the vertice! centerline of the specimen and extended
beyord the heated edge and the strip heaters. The cold side of the
plate was insulated with 6l-cm-wide, S-cm-thick styrofoam sheets, which
butted up against the mineral wool at the specimen center and extended
beyond the cooled edge or to the cold chamber. The cold chamber was
insulated with 2,5-cm-thick styrofoam sheets. All insulation was held
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tight against the plate surface and, in total, covered an area 3 m above
and 3 m below the fracture plane on both the front and back faces.
Additional mineral wool and styrofoam insulation were placed on the
specimen edges above and below the heaters and cold chamber to cover the
same length on the specimen as the back and front face insulation,

4.4 TESTING PROCEDURE

After insulating the specimen, all instrumentation was attached to
the data acquisition systems and checked out to demonstrate that all
systems were operational. A temperature gradient was imposed across the
plate by cooling the notched edge with LN, while heating the other
edge.* Liquid nitrogen flow and power to the heaters were continuously
adjusted to obtain the desired thermal gradient, Final calibrations of
strain gages, COD gages, and the load cell were completed just before
beginning specimen loading. Tensile load was then applied to the speci-
men at a rate of 9.6 to 24 kN/s until fracture occurred. Details of
each test are presented in the next chapter,
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*Specimen WP-CE~2 was warm prestressed before imposing the thermal
gradient. Details are presented in Sect. 5.1.2.



5. SUMMARY OF WIDE-PLATE CRACK-ARREST
TESTS WP-CE~1 AND -2

Table 5.1 summarizes the general conditions for wide-plate crack-
arrest tests WP-CE~] and -2 (test specimen dimensions were presented in
Table 4.1), Transverse temperature profiles at the approximate time of
crack-initiation events are summarized in Fig., 5.1, Figure 5.2 presents
the fracture surface for each specimen. The remainder of this section
is a brief summary of each test and pertinent results,

5.1 TEST DESCRIPTION SUMMARY

5.1.1 Test WP-CE-1l

Test WP-CE-] was the first wide-plate crack-arrest test that used
the A 533 grade B class ] material provided by CE.! After obtaining a
satisfactory thermal gradient (Fig. 5.3), the specimen was loaded at an
average rate of 24 kN/s. At a load of 10,14 MN, cleavage crack propaga-
tion initiated with a stable arrest occurring at a/w = 0.37 on the plate
front tace and at a/w = 0.42 on the plate back face. After holding the
load constant for 150 s, loading was reinitiated at 24 kN/s. At a load
of 15.26 MN, fibrous crack propagation began and was then followed by a
rapid drop in load to ~4.4 MN (Fig. 5.4). After maintaining the load at
this value for ~30 s, loading was reinitiated at 24 kN/s until at a load
of 6.34 MN, complete separation of the plate occurred. Examining the
fracture surface and strain-gage records indicated that one cleavage
crack run-arrest event occurred before the onset of ductile tearing.

5.1.2 Test WP-CE-2

Before testing, specimen WP-CE-2 was warm prestressed at room tem-
perature (~25°C) by slowly loading it to l4 MN, holding the load con-
stant at this value for 5 min, and slowly reducing the load to 5 MN.
Figure 5.5 presents the load history and load vs COD results during warm
prestressing. While maintaining the load constant at 5 MN, the thermal
gradient was developed. After obtaining a satisfactory temperature
protile (Fig. 5.6), the specimen was loaded at an average rate of 9.6
kN/s. At a load of 14.6 MN, cleavage crack propagation initiated, and
within a 4-ms interval, three crack run-arrest events occurred. After
the third crack run-arrest event, the load rapidly decreased to 7.9 MN,
followed by a slow continued drop in load with time, as shown in Fig.
Sels While the load was slowly decreasing, an attempt was made to
increase specimen loading; however, ductile tearing occurred. Final
separation of the plate occurred 55 s after the three crack run-arrest
events,



Table 5.1. Summary of HSST wide-plate crack-arrest test conditions
for A 533 grade B class 1 steel: tests WP-CE-1 and -2

Seat Crack Crack-tip Initiation Arrest Arrest Arrest
o location temperature load location temperature T = RTypr
No. o °
{cm) {*c) (MN) {cm) (°c) °c)
WP-CE-1 20.02 ~-34 10.14 42.0° 36 71
WP-CE-2A  20.03-€ —40 14.60 46.69 2 77
WP-CE-2B  46.6 42 14.60 50.49 53 88
WT-CE-2C  50.4 53 14.60 52.59 60 95

4Crack front cut to truncated chevron configuration.

bplate back-face location. The arrest location at the plate front face was at
a/w = 0.37 where T — RTypr = 58°C.

“Specimen was warm prestressed to 14 MN at 25°C.

dplate front-face location.

SY
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5.2 TEST RESULT SUMMARY

5.2.1 Test WP-CE-1

Figure 5.2 shows the fracture surface of specimen WP-CE-1l. Note
that one cleavage crack run-arrest event occurred during the test, with
clear delineation of the cleavage arrest. Also note that the fibrous
fracture appearance for this material more closely resembles that
obtained with the WP-2 series material (low-upper-shelf)? than with the
WP=1 series material (A 533 grade B class 1).%,% The entire fracture
surface produced by this test remained in the plane of the side grooves.
The reduction-in=thickness contour map for the specimen is presented in
Fig. 5.8. As noted in the figure, the greatest reduction-in-thickness
measured was (0%, the largest value obtained so far in any of the wide-
plate crack-arrest tests. Also, as previous tests have shown, signifi-
cant reductions=in-thickness occur only after the location corvesponding
to the arrest point (i.e., a/w > 0.37 for test WP-CE-1),

Figures 5.9 and 5.10 presc it strain histories for companion crack-
line gages mounted on the front and oack surfaces of the plate. Figure
5.9 shows the cleavage crack passing strain gages l-4 and 13-16. Figure
5.10 shows the crack arresting betore reaching strain gage 5 at the
plate front ftace and passing strain gage 17 but arresting before reach-
ing strain gage 18 at the plate back face. Figure 5.11 presents highly
ampl:fied strain histories for crack-line pgages 9-12 mounted on the
plate front face. Strain histories tor near- and far-field gages 21-24
are presented in Fig. 5.12. Long-time (60-ms) strain histories for
near- and far-field gages 21-24 are presented in Fig. 5.13. Short- (6~
ms) and long~ (60-s) time strain output from far-field gage 25 is pre-
sented in Fig. 5.14. Long-time (60-ms) records for strain gages 5-8 in
Fig. 5.15 and strain gages 17-20 in Fig. 5.16 provide some indications
of reinitiation and arrest events, but the fracture surface does not
clearly retlect their cccurrence. Figures 5.17-5.2]1 present strain
histories for selected pgages for the period of ductile tearing.
(Results for strain gages 5-10, 15, and 17-20 are not available because
of the large amount of plasticity that occurred following arrest to
render the gages either inoperable or uninterpretable.) Note that
although the time scales in Figs. 5.17-5.2]1 have been synchronized, the
time zero does not necessarily correspond to the onset of ductile frac-
ture because it could not be unambiguously identified.

The strain-gage records and fracture surface were used Lo deduce
the crack length (apparent position of crack front) during the fracture
process, and the results are summarized in Table 5.2. In the table, the
strain-gage positions are modified from those shown in Fig. 4.7 to
account for the fact that the peak strain occurs at an angle of 72° in
front of the crack tip., Figure 5.22 presents a plot of crack position
vs time derived from the front-face and back-face strain-gage results up
to the Lime corresponding to arrest of the cleavage crack propagation,
(Because of the large amount of plasticity that occurred after arrest,
many strain gages became inoperative or uninterpretable; therefore, the
crack=front position vs time could not be evaluated during fibrous frac-
ture.) Results (a/w » 0.229) indicate that the crack front advance at
comparable elapsed times during the cleavage crack run-arresl event was
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Table 5.2. Crack position vs tLime and
velocity: test WP-CE-l

A Position Time Velocityb
F a
PRk i (mm) (ms) (m/s)

Front-face measurements

Initial crack 200 0
853
SCl 229 0.034
741
§C2 269 0.088
690
SC3 309 0.146
526
SG4 349 0.222
244
Cleavage arrest 370 0.308
Back-face measurements
Initial crack 200 0
853
§C13 229 0.034
1538
SCl4 269 0.060
952
§C15 309 0.102
913
$Clé 349 0.180
435
SG17 389 0.272
337
Cleavage arrest 420 0.364

9Strain gage positions in the table are all
reduced by 21 mm from the actual gage position
shown in Fig. 4.7 to account for the fact that
the peak strain occurs at an angle of 72° in
front of the crack Lip.

byelocity is an average calculated velocity
for crack propagation between indicator points.

more rapid near the back tace of the plate than near the front face. As
noted earlier, no results are available for the period of ductile tear-
1ng.

Front= and back-ftace COD (F- and B=COD) histories for both short
(6-ms) and long (6U-ms) times are presented in Fig. 5.23. Longitudinal
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accelerations recorded by "damped" accelerometers mounted on the speci=
men's centerline at 3.714 m above (top) and 3.710 m below (bottom) the
crack plane are presented in Figs. 5.24 and 5.25, respectively. Dynamic
displacement of the specimen, relative to that of the large columns of
the testing machine, as measured 3.710 m below the crack plane, is
presented in Fig. 5.26 tor several time resolutions.

5.2.2 Test WP-CE-2

Figure 5.2 shows the fracture surface of specimen WP-CE-2, There
are three distinct cleavage crack run-arrest events, with the third
event being composed of two events (i.e., one event ai the plate front
and one at the plate back face). As the crack propagated, it deviated
from the side grooves, reaching ~1 cm from the plane of the side grooves
at the turthest extent of cleavage crack propagation., After loss of
cleavage, crack propagation returned to the plane of the side grooves.
Figure 5.27 is the posttest reduction-in-thickness contour map.

Figure 5.28 presents strain histories for companicn crack-line
gages mounted on the front and back taces of the specimen. The strain
page recoerds show cleavage crack propagation past the companion crack=
line pages. Figure 5,29 shows the cleavage crack passing gages 5 and 6
on the plate front face and gages 17 and 18 on the back face. Strain
histories for gapes 6 and 18 also show arrest of cleavage crack pro-
pagation just past the gages, as well as evidence of additional cleavage
crack run-arrest events. Reinitiation of cleavage crack propagation at
t = 2 ms with the crack propagating past gages 7 and 19 with arrest
occurring before gages 8 and 20 is shown in Fig. 5.30. Also shown in
the figure 18 reinitiation of cleavage crack propagation at t ~ 4 ms at
the back face. The crack appears to pass gages 8 and 20 before arrest-
ing, but interpretation of the strain results is difficult because of
plasticity effects. Long-time strain histories (70 s) presented in Fig.
5.3]1 for companion crack-line gages 7-8 and 19-20 show that the strain
levels indicated for these gages were fairly constant before reloading
and the occurrence of ductile tearing. Short-time records for pgages
6-12 shown in Fig. 5.32 indicate that gages 9-11 broke sequentially
severa! milliseconds after the last arrest, apparently because of the
occurrence of an extensive plastic zone. GCage 12 however, did not break
until ~24 s after the arrest event, with the break occurring during
reloading while ductile tearing was taking place. Figure 5.33 (a) and
(b) presents the strain histories for intermediate-field gage 21 during
the cleavage c¢rack run-arrest events and while ductile tearing was
occurring. Figure 5.34 presents strain histories for far-field gages
22-25 during the cleavage crack run-arrest events, and Fig. 5.35 pre-
sents strain histories for these gages while ductile tearing was taking
place,

The strain-gage records and fracture surface were used to deduce
the crack length (apparent position of crack front) during the fracture

process, and the results are summarized in Table 5.3, In the table, the
strain-gage positions are modified from those shown in Fig. 4.7 to
account for the fact that the peak strain occurs at an angle of 72° in
front of the crack tip. Figure 5.36 presents a plot of strain-gage-
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Table 5.3, Crack position vs time
and velocityt test WP=CE-2

Position Time Velocivy?

1sdinatord () (o) (w/s)

Front-face measurements

Initial crack 201 0

1333

8C1 229 0.021
2500

sG2 269 0.0
976

$C3 309 0.078
il

8C4 349 0,114
851

8C5 389 0.16]
14

8Ce 429 0.217
451

First arrest 4so 0.299
0

Reinitiation 466 1.899
100

sC? 4e9 1.929
$30

Second arrest 504 1.99%
e

Reinitiation 504 3.153
7

SCE 509 3823
118

Third arrest 525 3.91)

Back-face mvcasurements

Initial ecrack 201 0

823

$C1) 229 0.034
2857

SCl4 69 0.048
952

$C15 109 0.090
114}

SCie 349 0.125
8313

sC17 389 0.173
83)

8C18 429 0.221
35

First arrest 456 0.293
0

Reinitiation 456 1,927
464

8C19 469 1.95%
875

Secont arrest 504 1.993
0

Reinitiation 504 7.961
167

8C20 509 7.99]
2410

Third arrest S46 B8.141

“Sirain-gage positions in the table are all
reduced by 21 mm from the actual gage position
shown in Fig, 4,7 to account for the fact that
the peak strain occurs at an angle of 72° in
front ot the crack Lip.

Byelocity is an average calculated velocity
for track propagation between indicator points.
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derived crack-front position ve time from the front-face and back-face
strain-gage results up to the time <orresponding to arrest of the third
cleavage crack propagation, This figure .ndicates that the crack front
advance was consistent at the two plate faces up to arrest of the second
cleavage crack propagaiion, Also as noted in the figure, rein ation
of crack propagation after the svcond cleavage crack run-arre:. event
occurred first at the plate front face.

F=COD and B=COD histories at two time resolutions ares presented in
Fige 5.37. Longitudinal accelerations recorde! by “damped" accelerom-
eters mounied on the specimen's centerline at 3.697 m above (top) and
2.711 m below (bottom) the crack plane are presented in .i1g. 5.38.
Dynamic displacement of th~ specimen, relative to that of the large
columns of the testing machine, as measured 3.706 m be'ow the crack
plane, is presented in Fig, 5.39 for several time resolutions.
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