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ABSTRACT

In fatigue, both monotonic aud cyclic plastic zones are formed ahead
of the crack tip, inside which the strain history can be studied on
the basis of stable hysteresis Jloops and their development.
A 516 Gr. 70 piping steel was prefatigued to represent the material
structure anticipated in the process zone and in the area of the
maximum tensile stress ahead of the crack-tip. With these materials,
slow strain rate tests were performed both in bulk PWR-environments
and 1in the simulated crack-tip environments (MnS-contaminated
water) . Environment-sensitive cracking occurred in the simulated
crack tip environments and in tests where external polarization was
used to polarize the specimens to 0.0 nV(SHE) in both the MnS-
contaminated and pure PWR-water. No marked difference was observed
between as-received material and prefatigued materials. Usually the
residual hydrogen content of the gage length section was increased
after SSRT-testing, but based on the limited number of tests no clear
conclusions could be drawn,
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: INTRODUCTION

Reactor pressure vessel and piping carbon steels are known to crack in
oxygenated high temperature pure water (BWR conditions) by a stress
corrosion cracking (SCC) mechanism both in static (Ref. 1) and in
dynamic SSRT tests (Refs. 2 to 11). Also, .eactor pressure vessel
steels are known to be susceptible to SCC in high-temperatare, PWR
primary side water if the corrosion potential is raised above
<200 mV(SHE) by external potential control (Refs. 3, 12 to 14). Thus,
there seems to be both in BWR and PWR water a critical potential for
crack initiation at about -200 mV(SHE). However, there are
indications in SSRT tests that, e.g., the MnS inclusions in the
SSRT specimen surface debond from the matrix and form crevices inside
which an aggressive environment is generated by dissolution of MnS.
In these crevices, the minimum cracking potential can be lowered (for
A 508-2 steel) to about -400 mV(SKE) (Ref. 2). imilarly, Klemetti
and Hanninen, (Ref. 11), observed $CC in the ICCCR round robin test in
which the corrosion potential was decreased from the susceptible SCC
potential region into the anticipaied safe region. Sulfate additions
to high temperature water have produced a marked decrease in the
critical potential for $CC of pressure vessel steels. (Ref. 15)

Phenomenologically, environment-sensitive cracking oceurs in
SSRT testing of reactor pressure vessel and piping steels in high
temperature water with effects similar to the case of corrosion
fatigue. Marked environmental enhancement can occur in corrosion
fatigue of pressure vessel and piping steels in PWR primary water
conditions where the corrosion potential is about -700 mV(SHE), which
is much lower than the minimum stress corrosion cracking potential
obtained in SSRT tests, about -200 mV(SHE).

Speidel and Magdowski, 1987 (Ref. 1), after summarizing the
environment-sensitive crack growtih data of pressure vessel steels in
high temperature water, were able to conclude that sulfur content of
the steel has no measurable effect on the stress corrosion crack
growth rate and that there is no measurable indication of the effect
of oxygen content or corrosion potential on growth rates of stress
corrosion cracks. Only a small percentage of their fracture mechanics
specimens indicated crack growth, suggesting it was important that the
crack tip was initially located in a metallurgically inhomogeneous
region, If so, it would be probable that this region was able to
change the crack-tip conditions with respect to the bulk water, e.g.,
through dissolution of MnS sulfide particles as proposed by Hanninen
et al. (Ref. 16), and Klemetti et al. (Ref. 17). Effects of
dissolution of MnS particles on crevice chemistry have been also shown
experimentally by wusing artifical crevices by Ford et al. (Ref. 18)
and 1111 et al., (Ref. 19); therefore: when the amount of aggressive
species increases, the pH reduces, and conductivity increases.
Klemetti and Hanninen (Ref. 11), and Hanninen et al. (Ref. 20) have
shown that in simulated local crack-tip conditions, (i.e., saturated
MnS solution), pressure vessel steels are susceptible to SCC even at
very 1low corrosion potentials at £0°C, Also, the cracking
susceptibility seems to correlate with the potential dependence of
hydregen absorption into the steel in hydrogen sulfide containing



environments. However, Congleton (Ref. 21) was able to show that in
primary PWR-water ne cracking was occurring and even the existing
cracks were cathodically protected at -700 mV(SHE). These
observations suggest that once the conditions for crack growth at the
crack tip are obtained and can be sustained, cracking continues over a
wide potential range. However, the initiation of cracking in bulk
reactor water is only possible above the critical corrosion potential,
where pitting corrosion at the Mn$ inclusions occurs and local sites
for crack initiation are generated.

In corrosion fatigue crack growth, hydrogen sulfide has been proven to
be the principal species responsible for observed enhancement of the
fatigue crack growth rates in light water reactor conditions. Van Der
Sluys and Emanuelson (Ref. 22) demonstrated this by injection of
ppm levels of hydrogen sulfide into the corrosion fatigue crack tip of
a low sulfur steel. Earlier it had been well esteblished that the
sulfur content of the pressure vessel steels is one of the major
variables in determining the corrosion fatigue crack growth in LWR
environments (Ref. 26, 23 *o 26). Recently by using modern
spectroscopic techniques it has been shown that sulfur which dissolves
from MnS inclusions also stays inside the crack and is present in the
corrosion product as iron sulfide (Ref. 27). Iron sulfide is also
soluble in the crack-tip environment and can supply the hydrogen
sulfide necessary to sustain enhanced crack growth, as happened in the
case of Van Der Sluys and Emaanuelson’'s experiment [Ref. 22), where
high crack growth rate continued even after irjection of hydrogen
sulfide into the crack tip of low sulfur pressure vessel steel had
ceased. In order to understand mechanistically the role of sulfur in
corrosion fatigue crack growth, the effects of sulfur in both anodic
dissolution and in hydrogen uptake has been studied and discussed
(Refs. 28 to 32). Mechanistically, the problem is complex because the
chemistry and electrochemistry inside the crack seem to favor both
reactions (Ref, 28, 33-35).



B WORKING HYPOTHESIS

Crack-tip strain and strain rate are the critical parameters affecting
fatigue, corrosion fatigue, as well as stress corrosion crack growth
rates, Estimates of crack-tip strain rates are generally performed
under conditions of cyclically loaded long cracks in small scale
yielding or monotonically loaded short cracks in large scale general
yielding. Crack-tip strain rate hLas often been considered as the
unifying parameter between corrosion fatigue (CF) and stress corrosion
cracking (8CC) especially when slow strain rate testing technique
{8SRT) 1is used as a link between the two. Crack-tip strain rate can
also be wused for correlating crack growth data obtained under
different testing conditions. Fundamentally, if the strain rate at
the growing crack tips of short SCC cracks in the SSRT specimens and
of long CF cracks in the compact tension fracture mechanics specimens
satisfies the required similitude, then similitude of the chemistry
and electrochemistry inside the cracks of both types of tests must
also be assured.

When the crack-tip strain rates from SSRT tests relating to short
crack propagation in fully plastic material are correlated with the
linear elastic fracture mechanics specimens used in corrosion fatigue
testing, the cyclic strain history of the material ahead of the
fatigue crack tip is not considered. Ahead of the corrosion fatigue
crack tip, ecyeclic strain is occurring inside the cyclic plastic zone,
which affects the metallurgical structure of this region by producing
a cyclically stabilized deformation structure consisting of a
dislocation cell structure, where the size of the cells corresponds to
the amount of strain. Therefore, the flow properties inside this
cyclic plastic zone are very different from the as-received materials
typically used in SSRT tests. When the SSRT results are correlated
with the CF data, this difference should be considered more carefully.

SSRT testing in normal PWR conditions has not produced SCC cracking,
but often in CF testing marked environmental effects have been
observed in the crack growth rate. The reason for this discrepancy is
that at low corrosion potentials typical for PWR conditions, SCC
cracks do not initiate or grow, but inside the CF cracks the crevice
chemistry conditions prevail and the local environment at the crack
tip can be very different from the bulk environment. It has been
shown that local dissolution of MnS inclusions of the steel injects
sulfur species into the crack-tip environment, including sulfides
which even at ppm levels produce marked enhancement of the crack
growth rate. This should be taken into account when SSRT tests are
used for predicting the crack growth rates in reactor conditions,

In this SSRT testing program of A 516 Gr. 70 piping steel, the above
mentioned discrepancies are avoided as much as possible in order to
more accurately simulate the corrosion fatigue crack-tip conditions.
Instead of wusing as-received material, prefatigued materials were
used, which represent the material structure anticipated in the crack-
tip process zone and in the area of maximum tensile stress ahead of
the crack tip. The SSRT tests are performed both in the inert and
bulk PWR environments as well as in the simulated crack-tip
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environment corresponding to equilibrium dissolution of Mn$S in PWR-
conditions, Both smooth and notched specimens are used so as to
produce the multiaxial stress state which exists at the crack tip.
The maximum possible crack growth rates are expected to be obtained
for the material having the strain history of the corrosion fatigue
crack tip subjected to the chemical and electrochemical conditions
simulating the real crack tip as well as possible.

Also, the common wuse of as-received, unstrained materials in
laboratory test programs does not take into account that the materials
under plant operation are subjected to long and complex load
histories. Therefore the laboratory data may not efficiently
represent the in-service material properties. This study also
addresses this issue.



3. EXPERIMENTAL METHODS

3.1 Test Material

The piping steel studied was A 516 CGr. 70 steel pipe [940 mm x 83 mm
(37 in. x 3.25 in.] with chemical composition shown in Table 1. The
mechanical properties of the piping steel are presented in Table 2. A
generalized cutting diagram of A 516 Gr. 70 piping steel specimens is

presented in Fig. 1.

Table 1 Chemical Composition (wt. %) of the A 516 Gr. 70 Steel Pipe

C Mn P S 5 1 Ni Cr Mo Cu v Al

0.260 1.060 0.009 0.012 0.220 0.093 0.600 0.022 0.130 0.003 \.028

Table 2 Mechanical Properties of the A 516 Cr. 70 Piping Steel
at Different Temperatures

Specimen Orientation Temp Yield Stress UTs Area Red. Elongation
1D

°c) (MPa) (MPa) (%) (%)
F34-1 Longitudinal 22 257.0 499.0 18 24
F34-2  Longitudinal 22 270.0 514.0 18 24
F34-3 Longitudinal 149 241.0 451.0 67 29
F34-4 Longitudinal 149 237.0 446.0 67 29
BL-12 Longitudinal 288 230.2 484 .4 64 33
BL-M2  longitudinal 288 210.4 509.5 60 31
BL-02 Longitudinal 288 263.8 494 .4 64 30
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Cutting diagram for prefatigue and SSRT specimens from A 516 Gr.

70 pipe section.
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3.2 Cyclic Prestraining

Cyclic prestraining was performed by using large panel specimens on
two MTS test systems rated to 550 kN (110 kip) and 2500 kN (500 kip)
(Fig. 2). The cyclic straining tests were conducted at 288°C (550°F)
in a stroke-controlled mode in case of high cyclic strain range and in
a strain-controlled mode in case of low cyclic strain range. Axial
strain was measured in the case of low cyclic strain range by a high
temperature clip gage attached to the specimen, The load vs. strain/
stroke data were plotted by an XY plotter.

Specimens were prefatigued in fully reversed axial strain cycles using
a sinusoidal wave form. The maximun strain (i.e., the cyclic strain
amplitude) was either 20% or 2%, and the corresponding mean strain
values were 10% or 1%. As a cyclic frequency, 0.017 Hz (one cycle per
minute) was used, The appliedaavcgfgc strain tntez fotithe prefatigue
tests were equal to 6.7 x 107”7 s7* and 6.7 x 1077 8" respectively.
No buckling took place in the specimens even in high cyclic strain
range fatigue. However, in this case slight necking in the gage
length was observed after fatigue. The number of applied cycles for
the materials fatigued in the high cyclic strain was 25, and in the

low strain range it was 100, Both materials were essentlally
cyclically stable after five initial cycles, and after that the
maximum load increased only slightly. It can be considered that in

case of high strain range, 25 cycles re-resent about the middle of the
fatigue life, since one piping steel panel specimen cracked after
34 cycles, but in this case, the fatigue crack initiated from a
thermocouple spot weld, which was erroneously placed on the gage
length; a second trial piping steel specimen cracked after 50
cycles. Prefatigue was stopped at zero strain, i.e., in maximum
compression, and the specimens were then unloaded. 1In case of high
strain range, where stroke was used as controlling the fatigue
process, the actual strains may be smaller than intended values, since
some slipping of the specimen in the grips was taking place under high
stresses. The magnitude of slipping could not be traced back, and its
effects on strain and strain range values are not exactly known.

3.3 S8SRT-Specimen Preparation

Following cyclic prestraining, the panel specimen was machined into
SSRT specimens (Fig. 3). From each prefatigued panel specimen six
SSRT specimens were obtained. The reduced gage section and the notch
in the SSRT specimens are centered in the fully plasticized pgage
length of a prefatigued panel specimen. The type of notch used was
that shown in Figure 3, with a 60 angle and a 0.007-in. notch root
radius, giving a K, factor of about 2 according to Peterson,
(Ref, 36).

3.4 SSRT-Testing Conditions

SSRT testing was conducted in small autoclaves made of zirconium

(Fig. 4). ‘lhe specimens were electrically isolated from the autoclave
body by using oxidized (550°C for 6 h) 2Zr retaining rings for the
seals, This made the external potential control possible during
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Fige 2 Specimen used to cyclically prestrain the piping steel. This
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SSRT testing. In all the measurements, the corrosion potential was
measured by external Ag/AgCl reference electrodes. As a counter
electrode, a wire-form electrode made of Pt-Rh alloy (Engelhard,
Carteret, NJ) was used (Fig. 4). For controlled-potential testing,
EGaC Princeton Applied Resvarch potentiostat Model 362 was used. The
experiments were performed in deoxygenated PWR primary water (Table 3)
and in MnS§ contaminated PWR primery water, which contained the
equilibrium solubility of MnS at the test temperature and
conditions. MnS was packed into a crevice formed by heat-shrink
Teflon up to abouv 3/4 of the gage length so that the notch in the
middle of the gage length was covered by MnS. This ensured electrical
contact between the steel and the MnS as is the case inside the CF
crack when MnS$ inclusions are uncovered. A deoxygenated aqueous
eavironment was obtained by evacuating the piping and autoclave, which
were then filled with deoxygenated water from the water make-up tank,
which was under nitrogen gas pressure,

Most of 7the1 SSRT tests were carried out gt the strain rate of
3.5 x 10" 8", but in some tests also 7 x 10"/ s8"* was used. Strain-
ing was started when a low stable corrosion potential value was
obtained,

Table 3 Nominal Water Chemistry Specification

Boron (as boric acid) 1000 ppm
Lithium (as lithium hydroxide) 1 ppm
Chloride ions < 0.15 ppm
Fluoride ions < 0.10 ppm

Dissolved oxygen ~ 1 _ppb
Dissolved hydrogen (saturation) 30 to 50 cms/kg water

All other metallic or ionic species should be at about
trace levels. Some iron, both in solid and soluble form
is the inevitable result of a corroding specimen.

3.5 Analysis of the Test Results

SSRT-test results werve analyzed in the same way as tensile test
results. Elongation to fracture (A) was obtained from nominal strain
rate and the test time. Before starting the SSRT tests, the nominal
strain rate obtained from the motor speed and gear ratios was cali-
brated with an LVDT and a clip gage which were in good agreement with
each other. Reduction of area (Z) was measured directly from smooth
specimens by using a traveling microscope; in the case of notched
specimens, SEM pictures of the fracture surfaces were used to_compute

i The equivalent plastic strain at fracture initiation, ¢ ¥, was
also calculated (1p (8,/8)) where S, and § are the initial and final
projected surface area. In case of notched specimens, no attempts

were made to calculate the notch opening, the change in the notch root
radius of curvature or the change in the notch angle, parameters which
could have been also used in estimation of the equivalent plastic

strain at fracture. The yield stress, o,, and the ultimate tensile
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strength, o, , values were obtainec directly from the load-time curves
plotted by an XY plotter. opecause of the relatively low resolution of
this large strain plot, the vield stivss vas detcrmined from the load
where the curve deviated from the Hookean law straight line. For
notched spocimens, the s.resses are net section stresses calecvlated
for tue area at the bottom of the notch. This was thoug': t e a
reasonable approximation for the stress, since the stress concentra-
tion factor zan only be uscd to calculate the aaximum stress in the
noteh root, and it does not provide any infeimation abou the stress
distribution in the cross-section of the notch r.0t region,

The microstructure of the prefatigued specimens was deternlacd by
using trunsmission electron microscopy (TEM). After SSRT testing, the
specimens were studied fractographically to reveal the fracture
mode. In cases of SCC crack growth, the maximum crack length was
measured and the crack srowth rate vas determined by anticipating thr*
the crack growth started from the notch root at the yleld stres..
This procedurs is believed te result in & reasonable estimate of
max'mum crack growth rate in different materials in the simulated
crack-tip environments and under controlled electrochemical potentials
(EaP). AMter SSRT-testing (about 6 months later) the residual
hydrogen contents were measured in some specimens by utting a sample
containing tne fracture surface and most of the pgage length. For
measurement \ Leybold-Hereaus Model H2A 2002 test system opased on
thermal conductivity was used.

11



4. RESU' TS

4.1 Cyelic Prestraining

The cyclic stress-strain curves of A 516 Gr. 70 piping steel are
presented in Figures 5a and 5b. VWhen the number of cycles increases,
the cyclic stress-strain curve is higher, as compared to previous
curves or first c¢ycle, indicating characteristics of cyclic
hardening. Cyclic hardening is more evident in the case of the small
2% strain amplitude, Figure 5a. In the case of high strain amplitude
(nominally 20%), the lower values of stress when strain is small are
most probably due to slipping of the large specimens ir the grips.
When the strain is high, slight cyclic hardening can be observed.
Possible slipping in the gripe reduced the maximum strain achieved
during “atigue of high cyclic strain panel s,ecimens where stroke-
control was used for applying and measuring the «*lain. hewever, the
amount of this was very difficult to estimate,.

4.2 Microstructures

The metallographic structures of as-processed (unstrained) and
cyclically prestrained A 516 Cr. 70 specimens are shown in Figure 6.
Following cyclic prestraing no details of the microstructure in
optical micrographs do appear more distinguished, as compared to as-
processed unstrained material. The typical ferritic-pearlitic
microstructure can be ‘served with ferrite grain size of ASTM No. 8
corresponding to an ave.age grain size of 22 um.

Irensmission electron microscopy (TEM) studies indicated that
unstrained A 516 Gr. 70 steel had a low dislocation density in the
ferrite, Figure 7a to 7¢, and the dislocations were straight and
showed some knitting into dislocation networks. Inside pearlite the
cementite lamellae seemed to pin dislocation lines which formed
straight lines between th( cementite lamellae, Figure 7d. This
structure is typical for carbon steels after slow-cooling heat
treatment .

Maximum cyclic strain of % produced an equiaxed (average cell size
0.7 ym to 1 um) dislocation cell structure through the ferrite phase,
Figures 7e and 7g. Almost all dislocations were tangled into the cell
walls and inside the dislocation cells only very few dislocations were
present., Duriag cyclic loading individual dislocations are only able
to propagate distances of the order of the cell wall spacing, in this
case of the order of 1 um, Inside pearlite the dislocation density
had only s=lightly increased, Figures 7f and 7h. Cementite lamellae
have pinned more dislocations, which can be seen especially at the
phase boundaries in Figure 7h.

High maximum cyclic strain, nominally 20%, had resulted in highly
dislocated microstructure, Figures 71 and 7j. In this case both
ferrite and pearlite had deformed. In the ferrite, the cell size
(where it is discernable) had decreased to 0.5 um to 0.7 um. However,
there were areas in the microstructure which contained high amounts eof
evenly distributed dislocations through the matrix. Also the cell
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walls in this material were much thicker, as compared to 2% maximum
strain material. This material also contains cells which were not
usually equiaxed, but exhibited the structure of an elongated cube,
Figures 7§ and 7k. Inside regions of pearlite the spacings between
cementite lamellae were now full of tangled dislocations the density
of which showed some local differences. No clear dislocation cell
structure could be discerned in the pearlite, Fig. 71.

4.3 Slow Strain Rate Tests

The SSRT-test results in helium, pure water, bulk and MnS-contaminated
PWR water for A 516 Gr. 70 piping steel in the as-received condition
and in prefatigued conditions are presented in Table 4. It can be
seen from this table that the notch with K, = 2 markedly increased the
yield stress and the ultimate tensile stress of the specimens and
reduced the elongation to fracture. The best mechanical properties
wvere obtained in helium, where prefatigued notched specimens with 10%
mean strain showed the highest elongation to fracture of all the
notched specimens. In pure and PWR-water the stress and the elonga-
tion values behaved similarly with respect to the level of
prefatigue., It seems that prefatigue does not affect the material
mechanical properties in the SSRT-tensile test in conditions where £CC
is not taking place.

In as-received, unstrained condition, A 516 Gr. 70 piping steel failed
in a ductile manner in both deoxygenated pure and in deoxygenated PWR-
water, Figs., 8 and 9. In MnS-saturated PWR-water, SCC took place,
Fig. 10.

Low-strain, prefatigued A 516 Cr. 70 piping steel failed in deoxygen-
ated, pure PWR-conditions at free corrosion potential always in a
ductile manner, Fig. lla. Cathodic polarization to -1500 mV(SHE)
produced also ductile fracture, Fig. 1lb, with reduced elongation to
fracture &nd reduction of area. Anodic polacization to 0.0 mV(SHE)
ceused SCC in pure deoxygenated PWR-water Figs. llc and 11d. Four
SSRT tests were performed for low strain prefatigued A 516 Gr. 70
piping steel in MnS-saturatea deoxygenated PWR-water. The corrosion
potential wus varying in each test; SCC occurred in three specimens,
Figs. 12a to 12¢ are exampies, but did not occur in the specimen hav-
ing the lowest corrosion potentiais (E = -680 mV(SHE)), Fig. 12d. Also
the crack growth rate of specimen having corrosion potential, £ = -660
mV(SHE), was markedly lower than in case of the two other specimens
which showed clear SCC, The SCC fracture surface was typical of
environment-sensitive cracking of low allor steels, Figs. 13 and 14.
Pelarization to 0.0 mV(SHE) in MnS-saturated PWR-water resulted in the
highest crack growth rate in this testing series. 1In this case the
fracture surface was strongly attacked, Figs. 15a to 15c. Cathodic
polarization to -1500 mV(SHE) caused ductile fracture with reduceu
vwlongation to fracture and reduction of area, Fig. 15d.

High strain prefatigued A 516 Gr. 70 piping steel was very ductile in
helium as well as in deoxygenated PWR-water at 288°C, Fig. 16. This
material condition showed SCC both in MnS-saturated, deoxygenated PWR-
water at free corrosion potential, E = -570 mV(SHE), Fig. 17, and
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under external anodic polarization to 0.0 mV(SHE), Fig. 18. At the
high potential the specimen was markedly attacked by the environment,
Fig. 18b.

Stress corrosion occurred either in MnS-saturated PWR-water, or in
pure PWR-water when specimens were anodically polarized to 0.0
mV(SHE). In Table & SCC can be seen as a short elongation to fracture
(A) and especially low values of reduction of area (Z) and equivalent
plastic strain at fracture. The fracture surfaces of most of the
specimens were shown in Figs. 8 to 18,

The observed SCC crack growth rates are summarized in Table 5. It can
be seen that at lower potentials cracking occurs only in MnS-
saturated conditions, where corrosion potential is between -510 to
-650 mV(SHE); lowering corrosion potential reduces the crack growth
rate. When the specimen is polarized to 0.0 mV(SHE), the crack growt)
rate is about the same in pure PWR-conditions, as compared to MnS-
saturated PWR-water. Based on these results there are no marked
differences between unstrained and prefatigued materials.

The crack growth rate values in Table 5 are based on the premise that
the initiation of cracks takes place when the yield stress, determined
from the load-time curve, is exceeded. 1f initiation takes place
later, the crack growth rate is then correspondingly higher. These
crack growth rates are about the same as the time-based crack growth
rates generally determined for pressure vessel steels from tests with
large fracture mechanics specimens in reactor water; typically thg
maximum crack growth rate from both cyclic and SSRT-tests is 7 x 10°
m/s (Ref. 37), 1In this case the supply of needed sulfur comes from
the randomly distributed MnS-inclusions of the steels. It can now be
stated that the above mentioned wvalue of crack growth rate is a
reliable estimate for worst case situations for environmentally
enhanced, time-based crack growth of carbon and low alloy steels.
Also it can be observed that the prefatigued materials do not show
higher crack growth rates than the as-received virgin material. This
also clarifies the similar behavior of environmentally enhanced crack
growth rates in cyclic loading, where the crack tip material can be
considered to correspond the material used in this study, as compared
to SCC tests.

Another important factor was that the average external corrosion
potential in MnS-saturated PWR-water experiments was -590 mV(SHE) and
it generally was -750 to -850 mV(SHE) in the pure PWR-water
experiments. On the basis of Pourbaix diagrams these higher potential
values are in the areas of H,S, FeS, and FeS which are stable
corrosion products in this case. It can be argued that in corrosion
fatigue testing of steels in typical reactor water, the crack tip
environment which produces the high crack growth rate is similar to
that created in this study, in other words, the MnS-saturated PWR-
water This means that in BWR-water, where the external potential is
high, the crack-tip potential is lower than the external corrosion
potential and in PWR-water where the external potential is low the
crack-tip potential can be higher near dissolving Mnf inclusions.
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Teble 5 The SCC crack growth rates for notched A 516 Gr. 70 piping
steel specimens, when the crack initiation stage is estimated
to be while passing the yield point.

Material Condition Crack growth rate, m/s
As-received PWR + MnS, E = -650 mV(SHE) 2.1 x 108
Low strain prefatigue PWR 4 MnS, E = -510 mV(SHE) 2.5 % 10°8
Low strain prefatigue PWR 4+ MnS, E = -580 mV(SHE) 2.7 x 1078
Low strain prefatigue PUR + MnS, E = -660 mV(SHE) 2.8 x 1077
Low strain prefatigue  PWR + MuS, E (spplied) = 0.0 mV(SHE) 3.3 x 10°®
Low strain prefatigue PWR-Water, E (applied) = 0.0 mV(SHE) 2.5 x 10’8
High strain prefatigue PWR + MnS, E = -570 mV(SHE) 1.2 x 10°8

High strain prefatigue PWR + MnS, E (applied) = 0.0 mV(SHE) 2.5 x 108
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4.4 Residual Hydrogen Contents

In :der to evaluate the role of absorbed hydrogen in environment-
sensi*ive cracking of these SSRT specimens sou* specimens were
selected ‘or residual hydrogen analysis. Table 6 show: tue results
obtained 7 om A 516 Gr. 70 piping steel specimens ev: ‘uated more than
half & ynar following completion of actual SsK™-testing. The
reference lhydrogen content was 2.2 ppm, and most of the specimens
showa@ ‘ncreased hvArogen contents after exposure to envivonments.
Some . arisons between gage cection and the thicker section uf the
specimen which had been exposed to the same autoclave environment
showed that the gige length was showing higher hydrogen contents. No
clear differences between SSRT specimens of unstrained material and
prefatigued materials could be seen. A before and after effect was
observed when oxide removal was applied to ARSN-10 specimen, but it
sould not be adequately explained. Many of the gage length specimens
had experienced oxi”?: removal 2 significant time before hydrogen
content measurement, in order tc prepare the fracture surface for SEM
examination.
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Table 6 Residual Hydrogen contents of the A 516 Gr. 70 specimens after

SSRT-testing

Specimen Corrosion Location H-content
Potential
(mV) (ppm)
Reference Material ceee seee 2.2
(Unexposed)
PFSPN-6, PWR-water sees gage length 4.3 8.8
PFSPN-6, PWR-water “en thick section 2.1
PFSN-12, PWR-water 0 gage length 3.3 88
PFSN-12, PWR-water 0 thick section el
PFSN-15, PWR + MnS$ -510 gage length ) BRE B
PFSN-15, PWR + Mn$ =510 thick section 1.8
PFSN-17, PWR-water -1500 gage length 2.9; 3.3
PFSN-17, PWR-water =1500 thick section 2.0
ARSN-10, PWR + Mn$ <650 thick section YL
with oxide
ARSN-10, PWR + MnS -650 thick section 0.6; 0.4
after oxide removal
ARSN-10, PWR + Mn$S <650 gage length 4.9
PFSN-13, PWR + Mn$ -660 gage length 3.5
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- DISCUSSION

Ahead of the corrosion fatigue crack-tip, the most important mechanism
for the accomodation of large strains is the formation of the

dislocation cell structure. Just ahead of the crack-tip at high
strains an equiaxed cell size is formed, where cell walls are
impenetrable by dislocations due to high misorientation. Similar

metallurgical conditions have been simulated in this study in order to
understand the micromechanisms of environmentally enhanced c¢rack
growth and in order to obtain maximum possible crack growth rate
values, SSRT-tests with as-received materials as well as prefatigued
materials showed that prefatigue affected only the yield and ultimate
tensile stress values, increasing them due to cyclic hardening of the
material. In tests where SCC did not occur, elongation to fracture
and reduction of area were even .igher in highly prefatigued material
as compared to as-received material.

lLiaw and Landes (Refs. 38 and 39) have studied the effects of previous
load histories on fracture toughness properties of 4340 steel and AISI
31v stainless steel. They observed that the effects of cyclic
prestrain on fracture toughness could ve related to cyclic softening
characteristies of the 4340 steel and cyclic hardening of AISI 316
steel, respectively. Cyclic softening ircreased the fracture
toughness of 4340 steel and decreased that of AISI 316 steel, i.e.,
the toughness behavior could be rationalized by material strength
levels. The results of this study indicate that in case of A 516 Gr.
70 steel, which showed slight cyclic hardening, the mechanical
properties are improved in SSRT-tests.

When SCC was taking place in MnS-contaminated PWR-water or in pure as
well as MnS-contaminated PWR-water under external polarizatiom to 0.0
mV(SHE), the effect of microstructure (as-received or prefatigued) did
not seem to play any major role as far as the effects on the maximum
crack growth rates are considered. Also the fracture surfaces were
identical and nc signs of prefatigue dislocation cell structure can be
discerned from the SCC fracture surfaces. This explains also why the
environment-enhanced brittle-like corrosion fatigue fracture surface
is similar to SCC fracture surface (Figs. 15 and 17) obtained e.g., in
conventional SSRT-tests. Therefore, one can expect that there must be
some kind of mechanism leading to breakdown of the dislocation cell
structure formed ahead of the advaucing corrosion fatigue crack-tip
which then leads to similar deformation mechanisms which can take
place in as-received material in a conventional SSRT-type of test.

When the corrosion fatigue crack-tip conditions were simulated by MnS-
addition to the test environment, the significant effect was an
increase of the corrosion potential from a range of -750 to -850
mV(SHE) to a range of -510 to -650 mV(SHE), i.e., into the area in the
potential-pH diagrams where H,S and FeS,/FeS are stable phases. This
increase in potential may be explained by the acidification of the
environment if the corrosion potential follows the hydrogen line in
thie diagram. Only one specimen exposed to MnS-saturated water did not
show cracking in these tests and in this case for some unknown reason
the corrosion potential was an unexpectedly low -680 mV(SHE). Another
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specimen having a corrosion potential of -660 mV(SHE) exhibited minor
cracking compared to cracking in other specimens at higher free

corrosion potentials. Therefore even in these MnS-contaminated
conditions there may be a corrosion potential threshold for
environment-sensitive cracking to occur, When specimens were

cathodically polarized to -1500 mV(SHE) only reduced ductility with
ductile cracking could be observed and MnS did not seem to show any
affect. After polarizing to 0.0 mV(SHE) all the specimens cracked at
about the same rate and again MnS-contamination did not jlay any major
role, as compared with pure PWR-water. It may be concluded that MnS-
contamination in PWR-conditions reduces the threshold potential for
environment-sensitive cracking, as compared to pure PWR-water (-~ -200
mV(SHE)). The lowest corrosion potential exhibiting cracking in MnS-
contaminated PWR-water was -660 mV(SHE), whereas at -680 mV(SHE) no
cracking was observed in this study. Mechanistically it is still
unclear if a threshold potentiul for cracking really exists and which
are the controlling parameters for that phenomenon.

A first attempt was made to measure the residual hydrogen contents of

ae SSRT-test specimens, in order to understand if the conditions
causing cracking also enhance markedly hunydrogen wuptake into test
specimens, Increased residual bydrogen contents were clearly
observed, but since the measurements were performed more than half a
year after actual testing, there has been plenty of time for hydrogen
to diffuse out of the specimens. In the future specimens should be
tran. ferred directly from the autoclave into a hydrogen analysis
instrument 1in order to obtain more rveliable wvalues for absorbed
hydrogen.

Mechanistically, cracking was thought to occur by hydrogen-induced
mechanism, where critical parameters are hydrogen-enhanced plastici.y
and strain localization at shear bands at the mnotch root, which causes
the breakdown of the dislocation cell structure in pre-fatigued
materials., The fact of similar crack growth rates in both as-received
and pre-fatigued materials is not in favor of a slip dissolution-type
mechanism, because deformation processes in as-received and cyclically
stabilized materials are very different.

By using this technique we expect that the measured crack growth
values are tine maximum values for this material environment system.
The major unknoin factor in determining these growth rate values is
the initiation of ~racking which may occur after the yield point even
in notched specimens. Such a revaluation would change the results
obtained only slightly. This kind of testing could be used in the
future, for instance for measuring the activation energy for cracking,
the dependence of crack growth on applied potential, and for hydrogen
uptake in crack-tip conditions.



6.

CONCLUSIONS

The following conclusions may be derived from this study:

In conditions where SCC did not occur, prefatigue clearly
improved the mechanical properties of A 516 Gr. 70 piping steel.

Environment-sensitive cracking occurred in MnS-saturated PWR-
water conditions and under anodic polarization to (0.0 mV(SHE)
even in pure PWR-water,

MnS raised the electrochemical potential of the steel to the
range of -510 to -650 mV(SHE) in PWR primary water, {.e., in the
stability areas of FeS,, FeS and H,S. This level of
polarization is also expected to develop inside the cracks due
te solubilizing MnS-inclusions.

Crack growth rate was_about the same in prefatigued materials,
(i.e. ~2 to 3 x 10" m/s,) as in as-received material. The
estimated crack growth rates are of the same order of magnitude
as the highest measured valueg for fracture mechanics specimens
of low alloy steels, ~ 7 x 10°° m/s.

Mechanistically, cracking was thought to ocecur by hydrogen-
induced mechanism, where critical parameters are hydrogen-
enhanced plasticity and strein localization at shear bands at
the notch root, which causes the breakdown of the dislocation
cell structure in prefatigued materials.
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