# ADVANCED LIGHT WATER REACTOR REQUIREMENTS DOCUMENT

APPENDIX A

### PRA KEY ASSUMPTIONS AND GROUNDRULES

Prepared For Electric Power Research Institute Palo Alto, California

Rev. 0, Issued 6/89

8912040162 890703 PDR PROJ PDC

#### FOREWORD

The EPRI Advanced Light Water Reactor (ALWR) Utility Requirements Document contains a set of design requirements for the ALWR. As part of the detailed design of a plant to these requirements, a probabilistic risk assessment (PRA) will be required. The primary purposes of the PRA are as follow.

- To provide a mechanism for assuring a balanced design from a risk standpoint.
- To demonstrate that the detailed plant will be capable of meeting the utility investment protection requirement frequency for core damage of ≤ 10<sup>-5</sup> per reactor year.
- To demonstrate that the detailed plant design with the plant located at a representative site will be ca, able of meeting the public risk requirement of 10<sup>-6</sup> per reactor year for releases > 25 rem.

In addition, the PRA will be used to accomplish a number of other objectives, including the following:

- To identify the leading core-damage and risk sequences.
- To identify potential vulnerabilities to core damage and containment performance for the ALWR design.
- To satisfy the NRC Severe Accident Policy Statement requirement that a PRA be conducted (Ref. 1).
- To serve as a basis for an accident-management program.

It is anticipated that the PRA will be performed in parallel with the plant detailed design and that it will be completed at the time of licensing certification package completion, thus enabling use of the PRA to support certification. For portions of the plant design which are not fully detailed for certification, interface requirements will have to be defined by the Plant Designer to allow a complete PRA. The PRA will assume that the plant will be built in accordance with the detailed design and any interfacing requirements. In order to obtain a meaningful assessment of the important contributors to core-damage frequency and risk, it is intended that the PRA use best-estimate methods, data, and assumptions, to the extent that they are available and it is practical to do so.

In order to provide guidance to be used in performing the PRA, this PRA Key Assumptions and Groundrules Document has been prepared. The purposes of this document are the following:

- Define the purposes of the PRA as discussed in the above paragraphs.
- Define the scope of the PRA, including sources of risk to be considered, types of events to be analyzed and those to be explicitly excluded, and level of detail of the analysis.

### FOREWORD (CONTINUED)

- Identify previously developed methods to be used. Most of the methods are identified by reference. Examples are NUREG/CR-2300 (Ref. 2), which is referenced extensively for analysis of external events since it has undergone comprehensive peer review, and NUREG/CR-2815 (Fef. 3), which is referenced in areas where it is considered an appropriate supplement. Identify new or improved methods where previously developed methods were determined to be lacking or better methods have recently become available. Examples are in the areas of common-cause failures and human interactions.
- Define procedulas to be used in those few cases where existing procedures are incomplete or conflicting. Examples are the definition of severe core damage and treatment of uncertainties.

This PRA Key Assumptions and Groundrules document does not define complete, detailed PRA procedures and methods but, rather, relies primarily on existing procedures and methods by reference, and supplements these where necessary.

The intention of this document is to specify an approach that will result in a comprehensive, high quality, understandable PSA. If the Plant Designer takes exception to any of the requirements [as indicated by the term 's hair'] of this document, those exceptions shall be listed in the introduction of the PRA report, and the Plant Designer shall justify the approach taken as being appropriate for the intended purpose.

# TABLE OF CONTENTS

| Section | Title                                  |    |   |    |    | -  |    |    | _  |    |   | -  |    |    |    | _ |   | _ |    | - | Page       |
|---------|----------------------------------------|----|---|----|----|----|----|----|----|----|---|----|----|----|----|---|---|---|----|---|------------|
| 1       | OVERALL SCOPE AND METHODS              |    |   |    |    |    |    |    |    |    |   |    |    |    |    |   |   |   |    |   | A.1-1      |
| 1.1     | SCOPE                                  |    |   |    |    |    |    |    |    |    |   |    |    |    |    |   |   |   |    |   | A.1-1      |
| 1.2     | DEFINITION OF CORE DAMAGE              |    |   |    |    |    |    |    |    |    |   |    |    |    |    |   |   |   |    | , | A.1-3      |
| 1.3     | POINT ESTIMATE QUANTIFICATIC           |    |   |    |    |    |    |    |    |    |   |    |    |    |    |   |   |   |    |   | A.1-5      |
| 1.4     | UNCERTAINTY TREATMENT                  |    |   |    |    |    |    |    |    |    |   |    |    |    |    |   |   |   |    |   | A.1-€      |
| 1.5     | FORM OF THE RESULTS                    |    |   |    |    |    |    |    |    |    |   |    |    |    |    |   |   |   |    |   | A.1-6      |
| 2       | PLANT MODELING                         |    |   |    |    |    |    |    |    |    |   |    |    |    |    |   |   |   |    |   | A.2-1      |
| 2.1     | MODEL STRUCTURE                        |    |   |    |    |    |    |    |    |    |   | 4  |    |    |    |   |   |   |    |   | A.2-1      |
| 2.2     | INITIATING EVENTS                      |    |   |    |    |    |    |    |    |    |   |    |    |    |    |   |   |   |    |   | A.2-1      |
| 2 .     | SUCCESS CRITERIA                       |    |   |    |    |    |    |    |    |    |   |    |    |    |    |   |   |   |    |   | A.2-2      |
| 2.4     | SEQUENCE LOGICAL IDENTITY              |    |   |    | *  |    |    |    | ,  |    |   |    |    |    |    |   |   |   |    | , | A.2-2      |
| 2.5     | QUANTIFICATION                         |    |   |    |    |    |    |    |    |    |   |    |    |    |    |   |   |   |    |   | A.2-3      |
| 2.5.1   | Truncation of Sequence Frequencies     |    |   |    |    |    |    |    |    |    | * |    |    |    |    |   |   |   |    |   | A.2-3      |
| 2.5.2   | Nested Solution Process                |    |   |    |    |    |    |    |    |    |   |    |    | •  |    |   |   |   |    |   | A.2-3      |
| 2.6     | MODELING OF DEPENDENCIES               |    |   |    |    | *  |    |    |    |    |   |    |    | •  |    |   |   |   |    |   | A.2-4      |
| 2.6.1   | Sequence Functional Dependencies       |    |   |    |    |    |    |    |    |    |   |    |    |    |    |   |   |   |    |   | A.2-4      |
| 2.6.2   | Inter-system Dependencies              |    |   |    |    |    |    |    |    |    |   |    |    |    |    |   |   |   |    |   | A.2-4      |
| 2.6.3   | Inter-component Dependencies           |    |   |    |    |    |    |    |    |    |   |    |    |    |    |   |   |   |    |   | A.2-4      |
| 2.6.4   | Dependencies Due to Human Actions      |    |   | •  |    |    |    |    | •  |    |   |    |    |    |    |   |   |   |    |   | A.2-4      |
| 2.7     | INTERACTION AND MODE ING OF            | rH | E | C  | 01 | VT | Al | NN | ΛE | NT | S | YS | TE | M  | IS |   |   | 4 | •  |   | A.2-5      |
| 2.8     | COMMON-CAUSE FAILURES                  |    |   |    |    |    |    |    |    |    |   |    |    |    | ÷  |   | ÷ |   |    |   | A.2-5      |
| 2.9     | HUMAN INTERACTION                      |    |   | •  |    |    |    |    |    |    |   |    | •  |    |    |   |   |   |    |   | A.2-7      |
| 2.10    | MISSION TIME                           |    |   |    |    |    | ÷. |    |    |    |   | 4  |    |    |    |   |   |   | 4  | , | A.2-9      |
| 2.11    | RELIABILITY DATA                       |    |   |    |    |    | 1  |    |    | ÷  |   | ÷  |    |    |    | 4 |   | 4 | ÷, |   | A.2-10     |
| 2.11.1  | Introduction                           |    |   |    |    | ,  |    |    |    |    |   |    |    | i. |    | * |   |   |    |   | A.2-10     |
| 2.11.2  | initiating-event Frequencies           |    |   |    |    |    | 4  |    |    | ÷  |   | i. |    |    |    |   |   |   |    |   | A.2-10     |
| 2.11.3  | Component Failure Data                 |    |   |    |    |    |    |    |    |    |   |    |    |    |    | * |   |   |    |   | A.2-13     |
| 2.11.4  | Common Cause Factors                   |    |   |    |    | -  |    |    |    |    |   |    |    |    |    |   |   |   |    |   | <br>A.2-18 |
| 2 11 5  | Non-recovery Data for Loss of Off-site |    | 0 | we | er |    |    |    | 1  |    | 1 |    |    |    |    |   |   |   |    |   | A.2-21     |

iii

# TABLE OF CONTENTS

| Section | Title                                                          | Page  |
|---------|----------------------------------------------------------------|-------|
| ,       | EXTERNAL EVENTS                                                | A.3-1 |
| 3.1     | INITIATING EVENTS IDENTIFICATION                               | A.3-1 |
| 3.2     | EVENTS THAT MAY BE EXCLUDED BASED ON QUALITATIVE EVALUATION    | A.3-1 |
| 3.3     | EVENTS WHICH MAY REQUIRE QUANTITATIVE ASSESSMENT FOR EACH ALWR | A.3-6 |
| 3.3.1   | Tornado Assessment (Site Strike)                               | A.3-6 |
| 3.3.2   | Earthquake                                                     | A.3-7 |
| •       | CONTAINMENT ANALYSIS                                           | A.4-1 |
| 4.1     | CORE DAMAGE SEQUENCE BINNING                                   | A.4-1 |
| 4.2     | CONTAINMENT SYSTEM AN'ALYSIS                                   | A.4-1 |
| 4.3     | CONTAINMENT ISOLATION                                          | A.4-2 |
| 4.4     | CONTAINMENT BYPASS                                             | A.4-3 |
| 4.5     | IN-PLANT SEQUENCE ASSESSMENT                                   | A.4-3 |
| 4.6     | CONTAINMENT EVENT ANALYS                                       | A.4-4 |
| 4.7     | SOURCE TERM DEFINITION                                         | A.4-6 |
| 4.8     | PLANT RELEASE CATEGORIES                                       | A.4-6 |
| 5       | OFF-SITE CONSEQUENCES                                          | A.5-1 |
| 5.1     | IMPLEMENTATION OF THE PUBLIC-SAFETY REQUIREMENT                | A.5-1 |
| 5.2     | METHOD FOR OFF-SITE CONSEQUENCE ANALYSIS                       | A.5-1 |
| 6       | REFERENCES                                                     | A.6-1 |
| ANNEX A | RELIABILITY DATA BASE FOR ALWR PRAS                            | A.A-1 |
| ANNEX B | ALWR REFERENCE SITE                                            | A.B-1 |

# List of Acronynis

| AFW   | Auxiliary Feedwater                            |
|-------|------------------------------------------------|
| ALWR  | Advanced light-water reactor                   |
| CCDF  | Complementary cumulative distribution function |
| COF   | Common-cause failure                           |
| ECCS  | Emergency core-cooling system                  |
| LCCA  | Loss-of-coolant accident                       |
| NRC   | Nuclear Regulatory Commission                  |
| PGA   | Peak ground acceleration                       |
| PRA   | Probabilistic risk assessment                  |
| PSH   | Probabilistic seismic hazard                   |
| RCIC  | Reactor-core isolation cooling                 |
| SHARP | Systematic human action reliability procedure  |
| SQUG  | Seismic Qualification Utility Group            |
| SRSS  | Square root of the sum of the squares          |

۷

|                                                                                                                                                                                                                                                                                                     | Rationale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rev.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ERALL SCOPE AND METHODS                                                                                                                                                                                                                                                                             | OVERALL SCOPE AND METHODS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| OPE                                                                                                                                                                                                                                                                                                 | SCOPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ALWR core-damage frequency requirement and the site<br>undary-dose requirement shall encompass evaluation of the<br>e damage frequency, assessment of containment response<br>d estimation of release frequencies and magnitudes, and<br>alysis of off-site consequences. In the terminology of the | A Level 3 PRA is required in order to obtain estimates of the risk measures needed to compare against the overall requirements for the ALWR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ents except sabotage. Sabotage, by either an external ned force or by an internal saboteur or group, shall be ex-                                                                                                                                                                                   | The inclusion of external events (fire, flood, earthquake, etc.)<br>as well as internal events is done to ensure that the plant<br>design provides balanced protection from all classes of<br>events that can be reasonably envisioned. The sole excep-<br>tion is sabotage. The frequency of acts of sabotage cannot<br>be meaningfully quantified, and thus the core damage fre-<br>quency from sabotage sequences cannot be estimated.<br>Plant protection from acts of sabotage will continue to be<br>provided by deterministic requirements for physical barriers,<br>security systems, security forces, etc. (The qualitative in-<br>sights gained by the performance of PRA will be used in<br>determining which deterministic means for sabotage protec-<br>tion are most effective.) | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                     | The PRA is intended to analyze design capability, as stated in<br>the casign documentation, as well as operational aspects,<br>and is not intended to be a primary means of identifying or<br>resolving design errors or construction deficiencies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                     | OPE<br>a scope of the PRA performed for use in comparing with<br>ALWR core-damage frequency requirement and the site<br>indary-dose requirement shall encompass evaluation of the<br>a damage frequency, assessment of containment response<br>a stimation of release frequencies and magnitudes, and<br>alysis of off-site consequences. In the terminology of the<br>A Procedures Guide (Ref. 2), a Level 3 PRA is required.<br>a scope of the PRA shall include internal and external<br>the force or by an internal saboteur or group, shall be ex-<br>ted force or by an internal saboteur or group, shall be ex-<br>ted force of the PRA.                                                                                                                                                | OPE       SCOPE         a scope of the PRA performed for use in consparing with a faw and product on the standary dose requirements shall encompass evaluation of the state of the risk measures needed to compare against the overall requirements of off-site consequences. In the terminology of the AProcedures Guide (Ref. 2), a Level 3 PRA is required.       A Level 3 PRA is required in order to obtain estimates of the risk measures needed to compare against the overall requirements for the ALWR.         a scope of the PRA shall include internal and external hed force or by an internal saboteur or group, shall be exitive excluded from the PRA.       The inclusion of external events (fire, flood, earthquake, etc.) as well as internal events is done to ensure that the plant design provides balanced protection from all classes of events that can be reasonably envisioned. The sole exception is sabotage. The frequency of acts of sabotage ennot be meaningfully quantified, and thus the core damage frequency from asbotage sequences cannot be estimated. Plant protection from acts of sabotage will continue to be provided by deterministic requirements for physical barriers, security systems, security forces, etc. (The qualitative insights gained by the performance of PRA will be used in determining which deterministic means for sabotage protection are most effective.)         a plant shall be assumed to be correctly designed to meet plant functional requirements, and shall be assumed to be correctly designed to meet plant functional requirements, and shall be assumed to be       The PRA is intended to analyze design capability, as stated in the casign documentation, as well as operational aspects. |

### Assumption/Groundrule

#### 1.1.4 Initiating Events - Modes of Operation

Paragraph No.

The PRA used to test against the requirements stated in Sections 1.2 and 5.1 of this document shall be limited to consideration of initiating events that occur at nominal full-power operation and of the radionuclide inventory of the fuel in the reactor vessel.

| - 54 | 21          | in   | 22  | 0 |   |
|------|-------------|------|-----|---|---|
|      | <b>G</b> 10 | 0    | PO1 | 0 |   |
| -    |             | 1000 |     | _ | - |

Rev.

0

0

#### Initiating Events - Modes of Operation

Plant-specific analyses performed to date have found that the frequency of core damage and the public health risk of initiating events that occur in states other than power operation and from sources other than the fuel in the vessel are not as significant as events originating from power operation and involving the core inventory. These studies have indicated (nat such events have been important for specific plants for which procedures, training, and administrative controls were less than optimal. For current plants, design charges were generally unnecessary for the non-power events. For the ALWR, the opportunity has been taken to address many of these non-power events in the design, although procedures, training, and administrative controls will also be necessary. The requirements for the ALWR (refer to Paragraph B.10 of Requirements Document, Chapter 5) have specifically addressed the events that have occurred in current generation plants by eliminating specific failure modes, adding additional shutdown heat removal redundancy, reducing the opportunity for such events to occur, and providing significant emphasis in the design requirements with resport to preventing these events.

| Paragraph No. | Assumption/Groundrule                                                                                                                                                                                                                  | Rationale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rev |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1.1.5         | Consequence Analysis                                                                                                                                                                                                                   | Consequence Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0   |
|               | Off-site consequences shall be calculated using meteorologi-<br>cal and demographic data for a reference site. The reference<br>site shall be bounding for most sites in the United States, and<br>shall be as defined in Section 5.2. | Use of the reference site is desired since the primary purpose<br>of the PRA is to assess the plant design relative to the overall<br>requirements. Estimation of off-site consequences for a refer-<br>ence site that bounds the majority of U.S. sites permits deter-<br>mination of whether the design should be adequate from a<br>risk standpoint, irrespective of the site at which it may be lo-<br>cated. Moreover, since the PRA will be performed at the<br>design-certification stage, no specific site will be available for<br>the analysis.                                                                                                                               | C   |
| 1.2           | DEFINITION OF CORE DAMAGE                                                                                                                                                                                                              | DEFINITION OF CORE DAMAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0   |
| 1.2.1         | "Core Damage" shall be assumed to have occurred if and only<br>if both of the following have occurred:                                                                                                                                 | A practical definition for core damage that is structured to be<br>useful to the PRA analyst is needed. This definition is in-<br>tended to represent a condition where there is extensive<br>physical damage to the core such that fuel assemblies would<br>be disfigured either by mechanical fracturing or by melting,<br>and removal of intact fuel assemblies or groups of as-<br>semblies could not be accomplished. (It is understood that<br>this definition results in some event sequences where the<br>core is overheated to a lesser extent and there may be clad<br>perforation, deformation, or ballooning of fuel rode that would<br>not i.e classified as core damage.) | C   |

Page A.1-3

| Paragraph No. | Assumption/Groundrule                                                                                                                                 | Rationale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rev. |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.2.1.1       | The collapsed level in the reactor has decreased such that ac-<br>tive fuel in the core has is an uncovered.                                          | This is a conservative condition for core damage because ac-<br>tual damage is not likely to occur until water level is lower<br>(i.e., nearer the mid-plane of the core.) However, if the core<br>remains covered, then prevention of core damage is casured.<br>This portion of the definition may allow the analyst to<br>eliminate events which do not produce core uncovering from<br>the analysis without having to use a detailed analysis. This<br>condition may be hand-calculated using reactor coolant sys-<br>tem volumes, temperatures, decay-heat levels, and heat-<br>removal rates.                                                                                                                                                                                                                                                                                                                                               | 0    |
| 1.2.1.2       | A temperature c <sup>*</sup> 2200°F or nigher is reached in any node of<br>the core as defined in a best-estimate thermal-hydraulic cal-<br>culation. | This second tier of the definition is provided so that if a probabilistically important sequence exceeds the core uncovering criterion stated in 1.2.1.1, the analyst has the option of demonstrating that the fuel temperature is acceptable. The temperature selected considers the following. At an actual temperature of about '800°F, the rate of zircaloy oxidation increases rapidly, and the exothermic reaction will proceed to rapidly heat the core further. A temperature criterion of 200°F to avoid excessive zircaloy oxidation has substantial technical basis from emergency core-cooling system (ECCS) research to date, and the practical impact of the difference between 2200°F and 2800°F with respect to the ability to obtain a meaningful estimate of core-damage frequency is expected to be negligible. The MAAP code is the currently available calculational tool that is expected to be used for such calculations. | 0    |

Page A.1-4

| Paragraph No. | Assumption/Groundrule                                                                                                                                                                                                                                                                                                                                                                                                                   | Rationale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rev |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1.2.2         | Core Damage Frequency Requirement                                                                                                                                                                                                                                                                                                                                                                                                       | Core Damage Frequency Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6   |
|               | The plant design shall be such that a realistic assessment of the mean core-damage frequency will produce a best estimate no higher than $1 \times 10^{-5}$ events/reactor year (including both internal and external events).                                                                                                                                                                                                          | This requirement minimizes the financial risk to the utility<br>from loss of the large capital investment in the generating sta-<br>tion. The mean value is the point estimate that has been<br>chosen for this comparison.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0   |
| 1.3           | POINT ESTIMATE QUANTIFICATION                                                                                                                                                                                                                                                                                                                                                                                                           | POINT ESTIMATE QUANTIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0   |
|               | For each basic event input into the PRA model, a point es-<br>timate will be derived to represent that event in calculating the frequency of event sequences. The mean value or expected value shall be the point estimate used for this purpose. These mean values shall be propagated through the PRA models, and n can frequencies shall be obtained for core damage se-<br>quences and radionuclide release categories of interest. | PRA results, in the form of estimated mean frequency of core<br>damage and estimated mean frequency of a serious<br>radionuclide release, will be used to compare against the<br>ALWR Requirements Document values given in Chapter 1,<br>Section 1.4.1. The use of mean values for quantification and<br>comparison to the ALWR Top-Level Requirements has been<br>specified for several reasons. First, the use of mean values is<br>practical, since propagation of mean values through the PRA<br>logic mo. els will yield a time mean value for the result.<br>Second, the mean value is influenced by extreme values in<br>the distribution. For example, for a lognormal distribution<br>with an error factor of 3 (a typical distribution for a basic<br>event in a PRA model) the mean value is at about the 85th<br>percentile of the distribution. Thus, the use of mean values<br>(rather than other point estimates such as median or mode)<br>for comparison against ALWR criteria provides added as-<br>surance that the design is robust, even accounting for ran-<br>dom variability in equipment or human performance, or lack<br>of precise knowledge of failure rates. | 0   |

#### Faragraph No.

#### Assumption/Groundrule

Rationale

# Rev.

0

0

0

#### 1.4 UNCERTAINTY TREATMENT

A qualitative uncertainty analysis shall be performed as part of the PRA. This analysis shall, as a minimum, involve the identification and description of the potentially important sources of uncertainty, and an assessment of the significance of these uncertainties with respect to the results and conclusions of the PRA.

#### 1.5 FORM OF THE RESULTS

The results of the PRA shall be compiled and presented in such a manner that they clearly convey the quantitative risk measures, the aspects of plant design and operation that are important contributors to those risk measures as well as those responsible for limiting risk, and the effects of important sources of uncertainty.

### UNCERTAINTY TREATMENT

Although the mean values will be used for comparison to the quantitative objectives, it is important that their context be clearly understood. Quantitative treatment of some aspects of uncertainty in PRA (e.g., completeness of models and human interactions) is considered intractable. Therefore, a qualitative uncertainty analysis is called for to aid in gaining further insights into the important contributors to risk, and into the potential for variations in the quantitative risk estimates. Quantitative sensitivity studies or other similar approaches may be employed to help to determine the significance of specific areas of uncertainty.

Section 12.3 of NUREG/CR-2300 (Ref. 2) describes methods for such analysis, and Section 12.3.2 of NSAC/60 (Ref. 4) provides an application of a qualitative uncertainty analysic.

#### FORM OF THE RESULTS

Clear explanations of the key results is crucial both to properly characterizing the comparisons of the assessed risk measures to the overall safety criteria for the plant design, as well as to understanding the significance of the results in a qualitative manner. The discussions of results should be augmented by clear tabular and graphical representations. Specific forms of presentation are discussed further in Chapter 13 of the PRA Procedures Guide (Ref. 2).

#### Assumption/Groundrule Rationale Rev 2 PLANT MODELING PLANT MODELING 0 MODEL STRUCTURE MODEL & RUCTURE 21 0 The plant shall be modeled in terms of a set of initiating These provisions are consistent with the state of the art in 0 events, event sequences composed of function or system suc-PRA methods and are appropriate to the intended use of the cess or failure, and logic models that describe combinations results. It may be necessary in some cases to perform containment-performance analyses to determine if the end state of basic events that define the possible success and failure is success or failure. states. Each end state of each event tree shall be designated either "success" or "core damage." The core-damage sequences, when combined with success or failure of containment systems, shall be categorized and grouped into plant-damage states for downstream modeling of the containment physical processes. 22 INITIATING EVENTS INITIATING EVENTS 0 The analyst shall develop a comprehensive list of potential in-An exhaustive search for possible initiating events is one of 0 the key elements in achieving an acceptable level of comitiating events for consideration in the PRA. The systematic search for initiating events shall include, as a minimum, expleteness for the PRA. The intended use of the PRA as a amination of summaries of operating experience for currentmeans for testing design adequacy and the potential that generation plants, PRAs for plants with similar design characnew design features may suggest some initiating events that are different from those that have been found to be important teristics, and review of the system designs, including the system failure models for events unique or specific to the ALWR. for current-generation plants combine to place additional burden on the analyst to be particularly vigilant in accomplishing this task.

### APPENDIX A: PRA KEY ASSUMPTIONS AND GROUNDRULES

Paragraph No.

#### Paragraph No.

#### Assumption/Groundrule

Rationale

Rev.

0

0

0

0

#### 2.3 SUCCESS CRITERIA

A definition of success and failure for each function or system represented in each event sequence shall be provided based on realistic analysis of plant response. For economy of resources the analysts may choose to use conservative criteria. In this case, the analysts shall identify where conservative assumptions have been used and review the results to ensure that such conservatism does not obscure insights from the results. The analyst shall also exercise caution to ensure that any assumption or criterion considered to be conservative in one context does not introduce a non-conservatism in some other area.

#### 2.4 SEQUENCE LOGICAL IDENTITY

The plant model and the solution and quantification techniques employed shall retain the logical identity of the basic events that comprise each sequence.

#### SUCCESS CRITERIA

PRA results are intended to be realistic, not conservative. However, conservative criteria may be applied in areas that are not important to risk to avoid the unnecessary expenditure of resources that might be required to perform more detailed realistic calculations. One problem that arises, however, is that very often an assumption that is conservative in one respect may be non-conservative in another. This is particularly true with regard to assumptions that might affect both the assessment of core-damage frequency and the treatment of containment response. Therefore, the analyst must be certain to understand all implications of conservative criteria.

#### SEQUENCE LOGICAL IDENTITY

In order to understand and check the realism of the results, it is necessary to specifically identify which basic-event combinations contribute to the frequency of the dominant event sequences. It is not considered sufficient only to calculate sequence frequencies. The specific equipment conditions must be known to determine whether recovery by the operations staff is possible and to judge how likely such recovery may be.

| Paragraph No. | Assumption/Groundrule                                                                                                                                                                                                                                                                                                                                                                                | Rationale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rev. |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2.5           | QUANTIFICATION                                                                                                                                                                                                                                                                                                                                                                                       | QUANTIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0    |
|               | The sequence models shall be quantified in an integrated fashion. The following additional groundrules apply to the quantification process.                                                                                                                                                                                                                                                          | Integrated quantification is necessary to ensure that depend-<br>encies are treated properly, and that conditions important to<br>the recovery analysis are explicitly identified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0    |
| 2.5.1         | Truncation of Sequence Frequencies                                                                                                                                                                                                                                                                                                                                                                   | Truncation of Sequence Frequencies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0    |
|               | For each functional sequence (i.e., an initiating event and the safety functions or principal systems whos.) failures and successes comprise a sequence), analysts shall retain and account for all event combinations that are higher in frequency than 1% of the highest-frequency combination for that sequence. In no case shall a truncation frequency higher than $1\times10^{-8}$ be applied. | In order to solve the plant's models for dominant sequences,<br>it may be necessary to truncate combinations of basic events<br>whose frequency is below that of interest or significance to<br>the results. Setting a sequence-dependent truncation value<br>ensures that each functional sequence is investigated, and<br>provides additional assurance that large numbers of potential-<br>ly-important contributors are not truncated. Retaining infor-<br>mation regarding low-frequency sequences may also be im-<br>portant with respect to identifying those with a relatively<br>higher potential for containment failure, as well as preserving<br>the ability to assess the effects of certain sensitive areas. | 0    |
| 2.5.2         | Nested Solution Process                                                                                                                                                                                                                                                                                                                                                                              | Nested Solution Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0    |
|               | A "nested" approach, whereby support-system models are<br>solved first, and then the failure combinations whose prob-<br>abilities are greater than a truncation value are used to repre-<br>sent the system model in the sequence quantification, is ac-<br>ceptable. In such an approach, the analyst shall use a trunca-                                                                          | System interdependencies have the potential to bypass<br>design redundancy and deserve careful attention in the quan-<br>tification process. It is therefore important that potentially-im-<br>portant failure modes associated with support systems be<br>retained in the quantification process.                                                                                                                                                                                                                                                                                                                                                                                                                         | 0    |

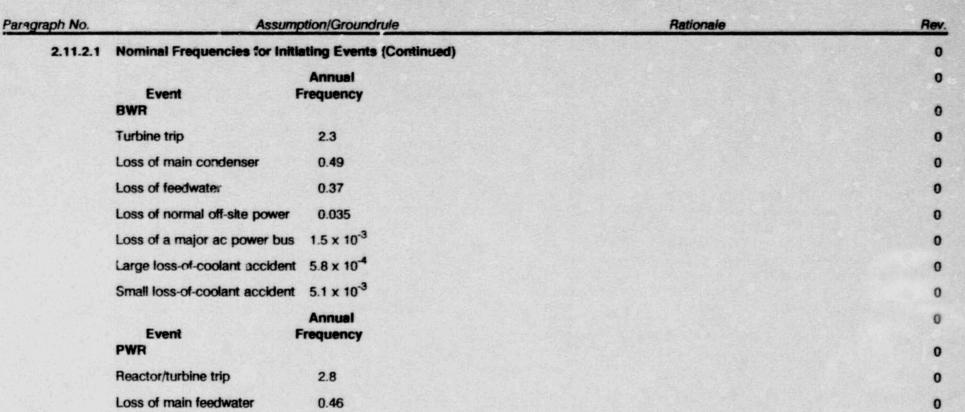
#### 2.

#### 2

tion value that is consistent with the truncation value for the relevant sequence. Treatment of inter-system dependencies is discussed further in Section 2.6.

| aragraph No. | Assumption/@~oundrule                                                                                                                                                                                                                                                                                                                | Rationale                                                                                                                                                                                                                                                                                                                                                                                                                 | R |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2.6          | MODELING OF DEPENDENCIES                                                                                                                                                                                                                                                                                                             | MODELING OF DEPENDENCIES                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|              | The potential for dependent failures shall be considered in a comprehensive manner and shall be treated quantitatively using the best available methods. The types of dependencies that shall be treated explicitly are outlined in the following paragraphs.                                                                        | Dependencies have the potential to defeat redundancy in the design, and they deserve careful attention in PRA. This is particularly true for the ALWR since the greater degree of redundancy called for in the design requirements would tend to make dependencies relatively more important. It is particularly important to understand the potential effects of such dependencies on an integrated level for the plant. |   |
| 2.6.1        | Sequence Functional Dependencies                                                                                                                                                                                                                                                                                                     | Sequence Functional Dependencies                                                                                                                                                                                                                                                                                                                                                                                          | ( |
|              | Sequence functional dependencies, which indicate the effects<br>of the status of one system or safety function on the success<br>or failure of another, shall be incorporated into the sequence<br>event trees or equivalent sequence logic.                                                                                         | This is required for proper modeling of the sequences.                                                                                                                                                                                                                                                                                                                                                                    | , |
| 2.6.2        | Inter-system Dependencies                                                                                                                                                                                                                                                                                                            | Inter-system Dependencies                                                                                                                                                                                                                                                                                                                                                                                                 | ( |
|              | Inter-system dependencies, including both hard-wired depend-<br>encies (e.g., through electric power, cooling water, interlocks,<br>permissives, etc.) and functional dependencies (e.g., ambient<br>cooling, adequate net-positive suction head, etc.) shall be in-<br>cluded explicitly in the system fault trees or other models. | Shared support systems or other inter-system dependencies<br>may result in bypassing intended redundancy or diversity in<br>the systems designed to prevent core damage.                                                                                                                                                                                                                                                  | • |
| 2.6.3        | Inter-composizent Dependencies                                                                                                                                                                                                                                                                                                       | Inter-component Dependencies                                                                                                                                                                                                                                                                                                                                                                                              | ( |
|              | Inter-component dependencies due to shared root causes of failures shall be modeled and quantified using the methods outlines in Section 2.8 below.                                                                                                                                                                                  | The potential for common-cause failure of key components<br>should be recognized and evaluated using the most recent<br>methods and data.                                                                                                                                                                                                                                                                                 | • |
| 2.6.4        | Dependencies Due to Human Actions                                                                                                                                                                                                                                                                                                    | Dependencies Due to Human Actions                                                                                                                                                                                                                                                                                                                                                                                         | ( |
|              | Dependencies involving human actions shall be considered<br>using the methods referenced in Section 2.10.                                                                                                                                                                                                                            | Human actions have the potential to result in the un-<br>availability of multiple components and, consequently, merit<br>particular attention in the assessment of human reliability.                                                                                                                                                                                                                                     | , |
|              | Page A.2-4                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                           |   |

| Paragraph No. | Assumption/Groundrule                                                                                                                                                                                                                                                                                                                                                                                                    | Rationale                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rev |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2.7           | INTERACTION AND MODELING OF THE CONTAINMENT<br>SYSTEMS                                                                                                                                                                                                                                                                                                                                                                   | INTERACTION AND MODELING OF THE CONTAINMENT<br>SYSTEMS                                                                                                                                                                                                                                                                                                                                                                                          | 0   |
|               | The delineation of the core-damage sequences shall be coor-<br>dinated with the assessment of containment response to en-<br>sure that any effects of containment systems or of contain-<br>ment phenomena on the availability of the systems needed to<br>prevent core damage are appropriately reflected in the event<br>trees.                                                                                        | The response of containment or containment systems may<br>impact the ability of the systems providing core cooling to<br>continue to operate. For example, if core cooling is $r^{-1}$ ided<br>for a long period by the reactor core isolation cooling (RCIC)<br>system in a BWR with no heat removal from the suppression<br>pool, the result may be loss of the RCIC turbine, due to high<br>backpressure, and consequential loss of cooling. | C   |
| 2.8           | COMMON-CAUSE FAILURES                                                                                                                                                                                                                                                                                                                                                                                                    | COMMON-CAUSE FAILURES                                                                                                                                                                                                                                                                                                                                                                                                                           | 0   |
| 2.8.1         | Definition                                                                                                                                                                                                                                                                                                                                                                                                               | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0   |
|               | It is assumed that direct component-to-component and sys-<br>tem-to-system functional dependencies are addressed explicit-<br>ly in the plant model. It is further assumed that common<br>cause initiating events are explicitly addressed under external<br>events and specific internal events. Only root-caused events<br>leading directly to multiple component outages from the<br>shared cause are addressed here. | Great care must be exercised not to double count events but<br>to nevertheless achieve coverage of all dependency types by<br>specific means.                                                                                                                                                                                                                                                                                                   | 0   |
| 2.8.2         | The methodology described in the joint EPRI/NUREG report<br>(Ref. 5) on common-cause analysis procedures shall be used.<br>The analyst may choose to use the common-cause factors<br>presented in Section 11 of this appendix, which were<br>developed using this methodology.                                                                                                                                           | This methodology is the culmination of research by many or-<br>ganizations worldwide and represents an industry consensus.<br>It emphasizes qualitative analysis, careful event interpretation,<br>screening, and parameter estimation. Although the source<br>data is necessarily generic for common-cause failures<br>(CCFs), this data must be interpreted in a plant-specific<br>sense to determine applicability.                          | C   |


| Paragraph No. | Assumption/Groundrule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rationale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rev |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2.8.2.1       | The simplest parametric model (i.e., the $\beta$ factor) should be<br>used in the treatment of common-cause failures, except for<br>cases in which the analyst desires specifically to investigate<br>the effects of levels of redundancy beyond two-fold, or if the<br>use of a single factor for common-cause failure of more than<br>two components within a group leads to overestimation of an<br>important sequence frequency. In these cases, the $\alpha$ factor or<br>multiple-Greek letter approach will be used. | EPRI NP-5613 (Ref. 5) Resonates a number of parametric<br>models that may be employed in implementing the common-<br>cause methodology, and allows free choice from among<br>them. The development of the failure data base is more im-<br>portant to the results than the choice of the model. There-<br>fore, the simplest model should be used whenever possible,<br>allowing attention to be focused on the data development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0   |
| 2.8.2.2       | <ul> <li>The following shall be used as primary sources of multiple-failure data:</li> <li>EPRI NP-3967, Classification and Analysis of Reactor Operating Experience Involving Dependent Events, June 1985 (Ref. 6).</li> <li>EFRI NP-5777, Defensive Strategies for Reducing Susceptibility to Common Cause Failures, Vol. 1, Defensive Strategies, Vol. 2 Data Analysis (Ref. 7).</li> </ul>                                                                                                                              | <ul> <li>NP-3967 and NP-5777 are the most recent publications in this area. Both sources incorporate a classification scheme which enables one to apply the data to the methodology described in NP-5613. The following additional sources of data are recommended; however, these documents do not contain a consistent classification scheme. Therefore, it is expected that the analyst will wish to refer to the actual event reports in order to fully evaluate the applicability of the data.</li> <li>NUREG/CR-2762. Common Cause Fault Rates for Valves, february 1983 (Ref. 8).</li> <li>NUREG/CR-3289, Common Cause Fault Rates for Pumps, May 1983 (Ref. 10).</li> <li>NUREG/CR-2098, Common Cause Fault Rates for Pumps, May 1983 (Ref. 10).</li> <li>NUREG/CR-2099, Common Cause Fault Rates for Diesel Generators, June 1982 (Ref. 11).</li> <li>These sources are less recent sources than NP-3967 and NP-5777.</li> </ul> | 0   |
|               | Page A.2-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |

| Paragraph No | Assumption/Groundrule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rationale                                                                                                                                                                                                                                                                                                                                              | Rev |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 12           | HUMAN INTERACTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HUMAN INTERACTION                                                                                                                                                                                                                                                                                                                                      | 0   |
| 2.9.1        | An approach that shows consistency, traceability, and realism<br>is needed. The EPRI Systematic Human Action Reliability Pro-<br>cedure (SHARP) analysis framework (Ref. 12) shall be used<br>for this purpose. The analysis must deal explicitly with (a)<br>definition of human actions, (b) screening for importance, (c)<br>task breakdown, (d) representation in relation to systems logic<br>models, (a) iteration between human and hardware modeling,<br>(f) quantification, and (g) documentation. | The EPRI report NP-5546, Benchmark of SHARP (Ref. 13).<br>contains an evaluation and critique of SHARP, including gestions for improvements. The SHARP steps, contained in<br>EPRI NP-3583 (Ref. 12), are important for each type of<br>human interaction. If the individual SHARP steps are fol-<br>lowed, the result is likely to be understandable. | 0   |
| 2.9.2        | The analysis requires a disposition of each of the following types of human interactions:                                                                                                                                                                                                                                                                                                                                                                                                                   | The five different types of human interaction require sig-<br>nificantly different treatments. They can all be significant to<br>plant risk.                                                                                                                                                                                                           | 0   |
|              | Type 1: test and maintenance actions;                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                        | 0   |
|              | Type 2: actions causing initiating events;                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                        | 0   |
|              | <ul> <li>Type 3: procedural actions leading to appropriate plant response;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                        | 0   |
|              | • Type 4: actions leading to inappropriate plant response;                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                        | 0   |
|              | • Type 5: recovery or use of initially unavailable equipment.                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                        | 0   |
| 2.9.2.1      | For Type 1 actions that remain after screening, an acceptable<br>approach is to use a value generated using the technique for<br>human error rate prediction (THERP, Ref. 14) for a current-<br>generation plant that is representative of the plant design<br>being analyzed.                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                        | 0   |

| Paragraph No | Assumption/Grcundrule                                                                                                                                                                                                                                                                                                                                                               | Rationale                                                                                                                                                                                                                                                                                                                                                                                                                        | Rev. |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2.9.2.2      | Type 2 interactions are usually contained within the initiating<br>event data sources; however, the analyst should be alert for<br>human actions that can cause initial conditions significantly<br>more severe than the initiating events otherwise chosen for<br>analysis.                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0    |
| 2.9.7.3      | Types 3 and 5 have a strong time dependence. An accept-<br>able correlation, based on actual data, for treating these inter-<br>actions is the HCR probability-time correlation (Ref. 15).                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0    |
| 2.9.2.4      | Type 4 actions will be excluded.                                                                                                                                                                                                                                                                                                                                                    | Current symptom-based procedures greatly reduce the op-<br>portunities for serious misdiagnosis.                                                                                                                                                                                                                                                                                                                                 | 0    |
| 2.9.3        | The PRA may consider actions to recover failed functions<br>even if non-safety equipment is involved or if there is no writ-<br>ten procedure. All recovery actions proposed must be<br>screened to establish feasibility, using applicable reference<br>material (e.g., procedures, etc.), engineering drawings, design<br>specifications, or by comparison with existing designs. | Focus throughout should be on representing realistic options<br>using realistic quantification. Human interaction can<br>dominate risk. Too much conservatism or optimism in<br>human reliability treatment is very likely to lead to wrong in-<br>sights being drawn from the PRA. It will be necessary to util-<br>ize past and current operator experience to make judgments<br>regarding operator interactions for the ALWR. | 0    |
| 2.9.4        | The PRA analysts shall carefully document any assumptions regarding the content of procedures and the relative priorities of actions as established by procedures and training.                                                                                                                                                                                                     | Because of the potential importance of operator actions and<br>the dependence of the assessment of these actions or proce-<br>dures, it will be very important for the provisions the analysts<br>assume will eventually be reflected in the procedures to be<br>very thoroughly documented.                                                                                                                                     | 0    |

| Paragraph No. | Assumption/Groundrule                                                                                                                                                                                                                                                             | Rationale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2.10          | MISSION TIME                                                                                                                                                                                                                                                                      | MISSION TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 |
|               | For equipment required to remain running for successful core<br>cooling after an initiating event, and for containment<br>safeguards systems, a mission time of 24 hours will be used.<br>A mission time of less than 24 hours may be used if the actual<br>mission time is less. | If the core has been successfully cooled for 24 hours, then decay-heat levels are significantly lower than at the start of the transient. The time available for recovery actions and repair of subsequent failures is long enough that the probability of core damage from such events is not significant in comparison to core-damage events within the first 24 hours. If the containment is cooled for 24 hours, then long times exist for recovery from subsequent hardware failures. | 0 |

| RELIABILITY DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Of necessity, the PRAs for the ALWRs will utilize generic data<br>for initiating-event frequencies and component failure rates.<br>These PRAs should use the most current and representative<br>data available. This portion of the document suggests data,<br>based on a combination of assessments of industry wide<br>operating experience, generic data bases, and plant specific<br>data published in a number of PRAs. This data base can be<br>supplemented for unique components by use of additional<br>data sources as necessary. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Initiating-event Frequencies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Initiating-event Frequencies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| In estimating the frequencies for initiating events, experience<br>for current-generation plants should be examined and applied<br>to the ALWRs in an appropriate manner that reflects, to the ex-<br>tent possible, differences in the ALWR designs from current<br>plants.                                                                                                                                                                                                                                                                | Although it will be necessary to use generic data derived<br>from the operation of current-generation plants as a basis for<br>the initiating-event frequencies for ALWRs, it is possible for<br>the analyste to examine the specific events in the data base<br>with regard to their applicability to ALWRs. An example of<br>such an approach is provided in Annex A, Sections A1 and<br>A2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Nominal Frequencies for Initiating Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Nominal Frequencies for Initiating Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| For an initial, nominal set of initiating events, the analyst may use the following frequencies:                                                                                                                                                                                                                                                                                                                                                                                                                                            | The derivation of these frequencies is outlined in the first two<br>sections of Annex A. As indicated above, this treatment out-<br>lines an approach to assessing the applicability of experience<br>for current-generation plants for the ALWRs. It is expected<br>that the PRA for antual design will consider a more<br>detailed breakdown oftitating events than is reflected by<br>this set, necessitating further evaluation of their irequencies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Page A.2-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | for initiating-event frequencies and component failure rates.<br>These PRAs should use the most current and representative<br>data available. This portion of the document suggests data,<br>based on a combination of assessments of industry wide<br>operating experience, generic data bases, and plant specific<br>data published in a number of PRAs. This data base can be<br>supplemented for unique components by use of additional<br>data sources as necessary.<br><b>Initiating-event Frequencies</b> for initiating events, experience<br>for current-generation plants should be examined and applied<br>to the ALWRs in an appropriate manner that reflects, to the ex-<br>tent possible, differences in the ALWR designs from current<br>plants.<br><b>Nominal Frequencies for Initiating Events</b><br>For an initial, nominal set of initiating events, the analyst may<br>use the following frequencies: | <ul> <li>for initiating event frequencies and component halfure rates.</li> <li>These PRAs should use the most current and representative data available. This portion of the document suggests data, based on a combination of assess: ents of industry wide operating experience, generic data bases, and plant specific data published in a number of PRAs. This data base can be supplemented for unique components by use of additional data sources as necessary.</li> <li>Initiating-event Frequencies</li> <li>In estimating the frequencies for initiating events, experience for current-generation plants should be examined and applied to the ALWRs in an appropriate manner that reflects, to the extent possible, differences in the ALWR designs from current plants.</li> <li>Nominal Frequencies for Initiating Events</li> <li>For an initial, nominal set of initiating events, the analyst may use the following frequencies:</li> <li>For an initial, nominal set of initiating events, the analyst may use the following frequencies:</li> <li>Nominal Frequencies for Initiating events, the analyst may use the following frequencies:</li> <li>Nominal Frequencies for Initiating events, the analyst may use the following frequencies:</li> <li>Nominal Frequencies for Initiating events, the analyst may use the following frequencies:</li> <li>Nominal Frequencies for Initiating events, the analyst may use the following frequencies:</li> <li>Nominal Frequencies for Initiating events, the analyst may use the following frequencies:</li> <li>Nominal Frequencies for Initiating events, the analyst may use the following frequencies:</li> <li>Nominal Frequencies for Initiating events, the analyst may use the following frequencies:</li> <li>Nominal Frequencies for Initiating events, the analyst may use the following frequencies:</li> <li>Nominal Frequencies for Initiating events, the analyst may use the following frequencies:</li> <li>Nominal Frequencies for Initiating events, the analyst may use the following frequencies:</li> <li>Nominal Frequencies for In</li></ul> |



0

0

0

0

### APPENDIX A: PRA KEY ASSUMPTIONS AND GROUNDRULES

Page A.2-11

Loss of normal off-site power

Steam line break

Loss of a major ac power bus 1.5 x 10<sup>-3</sup>

Large loss-of-coolant accident 3.4 x 10-4

0.035

1.5 x 10-3

### APPENDIX A: PRA KEY ASSUMPTIC

Parad

### **ND GROUNDRULES**

| igra,    | Assum                                        | ption/Groundrule          | Rationala                           | Rev. |
|----------|----------------------------------------------|---------------------------|-------------------------------------|------|
|          | Ar ininal Frequencies for Init<br>Continued) | lating Events Frequencies |                                     | 0    |
|          | Event<br>//WR (Continued)                    | Annual<br>Frequency       |                                     | 0    |
|          | Intermediate loss-of-coolant accident        | 3.4 × 10 <sup>-4</sup>    |                                     | 0    |
|          | Small loss-of-coolant accident               | 3.0 x 10 <sup>-3</sup>    |                                     | 0    |
|          | Steam generator tube rupture                 | 6.1 x 10 <sup>-3</sup>    |                                     | 0    |
| 2.11.2.2 | Frequency of Loss of Off-site                | Power                     | Frequency of Loss of Off-site Power | 0    |

The frequency estimated for loss of all off-site power shall reflect consideration of the reserve source. A conditional probability that the reserve source of power well be unavailable (given loss of normal off-site power) of 0.22 may be applied to the frequency of loss of normal off-site power. In addition, the frequency of demand for emergency power for the advanced PWR shall account for the potential for the full 'bad rejection' capability to function to avert a need for the reserve or emergency power. A conditional probability of 0.23 may be used for the chance that the initial loss of normal off-site power could be of a nature to preclude use of the full-load rejection capability. The unavailability of the full-load rejection capability itself shall also be added to this conditional probability. A nominal unavailability of 0.1 for the full-load rejection feature may be assumed.

Chapter 11 of the Requirements Document spells out specific requirements for an independent reserve source clioff-site over and, for the advanced PWR, specifies incorporation of a full load rejection canability. Section A2 of Annex A describes in detail the assessment of off-site power experience for currementation plants used to obtain the frequency of loss of r all oid-site power and the conditional unavailabilities of r arve to wer and the full-load rejection canabilities.

| Paragraph No.           | aragraph No. Assumption/Groundrule                                                |                                                                                       | Rationale                                                                                                                                                                                             | Rev. |
|-------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2.11.3 Co               | 2.11.3 Component Failure Data                                                     |                                                                                       | Component Failure Data                                                                                                                                                                                | 0    |
| Th                      | e following component failure data are                                            | recommended:                                                                          | The component failure rates were estimated based on a survey of generic data sources and available plant specific experience. The details of the survey itself are provided in Section A3 of Annex A. | 0    |
| Component               | Failure Mode                                                                      | Failure Rate                                                                          |                                                                                                                                                                                                       | 0    |
| Motor operated valve    | Fails to operate on demand<br>Transfers closed                                    | 4.0 x 10 <sup>-3</sup> /d<br>1.3 x 10 <sup>-7</sup> /hr                               |                                                                                                                                                                                                       | 0    |
| Air operated valve      | Fails to operate on demand<br>Transfers closed                                    | 2.0 x 10 <sup>3</sup> /d<br>1.5 x 10 <sup>7</sup> /hr                                 |                                                                                                                                                                                                       | 0    |
| Check valve (other than | n stop) Fails to operate on demand<br>Transfers closed<br>Reverse leakage (gross) | $2.0 \times 10^{-4}/d$<br>$2.0 \times 10^{-7}/hr$<br>$6.0 \times 10^{-7}/hr$          |                                                                                                                                                                                                       | 0    |
| Stop check valve        | Fails to operate on demand<br>Transfers closed<br>Reverse leakage (gross)         | 1.0 x 10 <sup>-3</sup> /d<br>2.0 x 10 <sup>-7</sup> /hr<br>6.0 x 10 <sup>-7</sup> /hr |                                                                                                                                                                                                       | 0    |
| Check valve             | Internal rupture                                                                  | 5.0 x 10 <sup>-9</sup> /hr                                                            |                                                                                                                                                                                                       | 0    |
| Manual valve            | Plugs/transfers closed                                                            | 3.7 x 10 <sup>-8</sup> /hr                                                            |                                                                                                                                                                                                       | 0    |

| Paragraph No.                             | Assumption/Groundrule                       |                                                         | Rationale | Rev. |
|-------------------------------------------|---------------------------------------------|---------------------------------------------------------|-----------|------|
| 2.11.3 Component Failure Data (Continued) |                                             |                                                         |           | 0    |
| Consponent                                | Failure Mode                                | Failure Rate                                            |           | 0    |
| Pressurized safety valve (PWR)            | Fails to open on demand<br>Fails to reclose | 1.0 x 10 <sup>-3</sup> /d<br>7.0 x 10 <sup>-3</sup> /d  |           | 0    |
| Safety relief valve (BWR)                 | Fails to open on demand<br>Fails to reclose | $6.0 \times 10^{-3}$ /d<br>$6.5 \times 10^{-3}$ /d      |           | 0    |
| Pilot operated relief valve               | Fails to open on demand<br>Fails to reclose | $7.0 \times 10^{-3}/d$<br>2.5 x 10 <sup>-2</sup> /d     |           | 0    |
| Motor driven pump (all types)             | Fails to start on demand<br>Fails to run    | $2.0 \times 10^{-3}/d$<br>$2.5 \times 10^{-5}/hr$       |           | 0    |
| Motor driven pump (LPI/RHR)               | Fails to start on demand<br>Fails to run    | 2.3 x 10 <sup>-3</sup> /d<br>1.3 x 10 <sup>-5</sup> /hr |           | 0    |
| Motor driven pump (safety injection)      | Fails to start on demand<br>Fails to run    | $1.0 \times 10^{-3}$ /d<br>5.0 x 10^{-5}/hr             |           | 0    |
| Motor driven pump (omerg.<br>feedwater)   | Fails to start on demand<br>Fails to run    | $3.0 \times 10^{-3}/d$<br>1.5 x 10 <sup>-4</sup> /hr    |           | 0    |
| Motor driven pump (service water)         | Fails to start on demand<br>Fails to run    | $2.4 \times 10^{-3}/d$<br>$3.2 \times 10^{-5}/hr$       |           | 0    |
| Motor driven pump (comp.<br>cooling)      | Fails to start on demand<br>Fails to run    | 1.3 x 10 <sup>-3</sup> /d<br>5.0 x 10 <sup>-6</sup> /hr |           | 0    |
| Motor driven pump (BWR<br>CRD)            | Fails to start on demand<br>Fails to run    | 2.4 x 10 <sup>-3</sup> /d<br>2.4 x 10 <sup>-6</sup> /hr |           | 0    |
| Motor driven pump (cont.<br>spray)        | Fails to start on demand<br>Fails to run    | 5.0 x 10 <sup>-3</sup> /d<br>5.0 x 10 <sup>-5</sup> /hr |           | 0    |

| Paragraph No.               | Assumption/Groundrule                    |                                                         | Rationale | Rev |
|-----------------------------|------------------------------------------|---------------------------------------------------------|-----------|-----|
| 2.11.3 Compone              | ent Failure Data (Continued)             |                                                         |           | 0   |
| Component                   | Failure Mode                             | Failure Rate                                            |           | 0   |
| Turbine driven pump (AFW)   | Fails to start on demand<br>Fails to run | 1.5 x 10 <sup>-2</sup> /d<br>3.0 x 10 <sup>-4</sup> /hr |           | 0   |
| Turbine driven pump (RCIC)  | Fails to start on demand<br>Fails to run | 2.0 x 10 <sup>-2</sup> /d<br>4.0 x 10 <sup>-4</sup> /hr |           | 0   |
| Diesel driven pump          | Fails to start on demand<br>Fails to run | $2.0 \times 10^{-2}$ /d<br>1.0 x 10 <sup>-4</sup> /hr   |           | 0   |
| Motor driven air compressor | Fails to start on demand<br>Fails to run | $1.0 \times 10^{-2}$ /d<br>1.0 x 10 <sup>-4</sup> /hr   |           | 0   |
| Blower/ventilation fan      | Fails to start on demand<br>Fails to run | 6.0 x 10 <sup>-4</sup> /d<br>1.0 x 10 <sup>-5</sup> /hr |           | 0   |
| Room chiller unit           | Fails to start on demand<br>Fails to run | 8.1 x 10 <sup>-3</sup> /d<br>5.0 x 10 <sup>-6</sup> /hr |           | 0   |
| Motor driven strainer       | Fails to start on demand<br>Fails to run | 2.7 x 10 <sup>-5</sup> /d<br>5.0 x 10 <sup>-6</sup> /hr |           | 0   |
| Filter/strainer             | Plugs                                    | 2.0 x 10 <sup>-6</sup> /hr                              |           |     |
| Heat exchanger              | Fails while operating (leaks, plugs)     | 1.0 x 10 <sup>-6</sup> /hr                              |           | 0   |
| Tank                        | Fails catastrophically                   | 1.0 x 10 <sup>-7</sup> /hr                              |           | 0   |
| Off-site power              | Fails following reactor trip             | 1.2 x 10-3/d                                            |           | 0   |
| Diesel generator            | Fails to start and load<br>Fails to run  | 1.4 x 10 <sup>-2</sup> /d<br>2.4 x 10 <sup>-3</sup> /hr |           | 0   |
| Gas turbine-generator       | Fails to start on demand<br>Fails to run | 2.5 x 10 <sup>-2</sup> /d<br>2.9 x 10 <sup>-6</sup> /hr |           | 0   |
|                             |                                          | Page A.2-15                                             |           |     |

| Paragraph No.                   | Assumption/Groundrule                                |                                                      | Rationale | Rev |
|---------------------------------|------------------------------------------------------|------------------------------------------------------|-----------|-----|
| 2.11.3 Compone                  | nt Failure Data (Continued)                          |                                                      |           | 0   |
| Component                       | Failure Mode                                         | Failure Rate                                         |           | 0   |
| Battery                         | Fails to provide output on<br>demand                 | 5.0 x 10 <sup>-4</sup> /d                            |           | 0   |
| Battery charger                 | Fails to maintain output                             | 7.0 x 10 <sup>-6</sup> /hr                           |           | 0   |
| Circuit breaker (4 kv)          | Fails to close on demand<br>Opens spuriously         | $3.0 \times 10^{-4}/d$<br>$6.0 \times 10^{-7}/hr$    |           | 0   |
| Circuit breaker (≤ 600 v)       | Fails to close on demand<br>Opens spuriously         | $4.0 \times 10^{-4}/d$<br>5.0 x 10 <sup>-7</sup> /hr |           | 0   |
| Transformer (high voltage)      | Fails to continue operating                          | 1.2 x 10 <sup>-6</sup> /hr                           |           | 0   |
| Transformer (4 kv to 600/480 v) | Fails to continue operating                          | 7.0 x 10 <sup>-7</sup> /hr                           |           | 0   |
| Transformer (lower voltage)     | Fails to continue operating                          | 8.0 x 10 <sup>-7</sup> /hr                           |           | 0   |
| Fuse                            | Opens spuriously                                     | 5.0 x 10 <sup>-7</sup> /hr                           |           | 0   |
| Electricai buswork              | Fails during operation                               | 2.0 x 10 <sup>-7</sup> /hr                           |           | 0   |
| nverter                         | Fails during operation                               | 2.0 x 10 <sup>-5</sup> /hr                           |           | 0   |
| Relay                           | Fails to operate on demand<br>Operates spuriously    | $1.0 \times 10^{-4}/d$<br>$6.0 \times 10^{-7}/hr$    |           | ŋ   |
| Flow transmitter                | Output fails during operation                        | 6.0 x 10 <sup>-6</sup> /hr                           |           | 0   |
| Pressure transmitter            | Output fails during operation                        | 5.0 × 10 <sup>-6</sup> /hr                           |           | 0   |
| Level transmitter               | Output fails during operation                        | 5.0 x 10 <sup>-6</sup> /hr                           |           | 9   |
| Temperature transmitter         | Output fails during operation                        | 1.0 x 10 <sup>-6</sup> /hr                           |           |     |
| Pressure switch                 | Fails during operation<br>Fails to respond on demand | $3.0 \times 10^{-7}/hr$<br>2.0 x 16 <sup>-4</sup> /d |           | 0   |

Page A.2-18

-

| Paragraph No.                          | Assumption/Groundrule                                |                                                         | Rationale                                                                                                                                  | Rev. |
|----------------------------------------|------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2.11.3 Componen                        | t Failure Data (Continued)                           |                                                         |                                                                                                                                            | 0    |
| Component                              | Failure Mode                                         | Failure Rate                                            |                                                                                                                                            | 0    |
| Level switch                           | Fails during operation<br>Fails to respond on demand | 3.0 x 10 <sup>-7</sup> /hr<br>1.0 x 10 <sup>-5</sup> /d |                                                                                                                                            | 0    |
| Reactor core isclation cooling (BWR)   | Unavailable due to maint.                            | 4.9 x 10 <sup>-3</sup>                                  | Note that the maintenance unavailabilities generally reflect a philosophy of not performing on-line preventive maintenance. These are con- | 0    |
| High pressure injection train (BWR)    | Unavailable due to maint.                            | 4.0 x 10 <sup>-3</sup>                                  | sidered to be the most appropriate values available, but the analysts may need to reconsider them for the specific application in the PRA. |      |
| Low pressure injection train (BWR)     | Unavailable due to maint.                            | 2.0 x 10 <sup>-3</sup>                                  |                                                                                                                                            |      |
| Emergency service water train<br>(BWR) | Unavailable due to maint.                            | 2.0 x 10 <sup>-3</sup>                                  |                                                                                                                                            | 0    |
| Standby liquid control train<br>(BWR)  | Unavailable due to maint                             | 30-103                                                  |                                                                                                                                            | 0    |
| Turbine driven AFW train<br>(PWR)      | Unavailable due to maint.                            | 5.0 x 10 <sup>-3</sup>                                  |                                                                                                                                            | 0    |
| Motor driven AFW train<br>(PWR)        | Unavailable due to maint.                            | 2.0 × 10 <sup>-3</sup>                                  |                                                                                                                                            | 0    |
| Safety injection train (PWR)           | Unavailable due to maint.                            | 2.0 x 10 <sup>-3</sup>                                  |                                                                                                                                            | 0    |
| Residual heat removal train<br>(PWR)   | Unavailable due to maint.                            | 2.0 x 10 <sup>-3</sup>                                  |                                                                                                                                            | 0    |
| Containment spray train (PWR)          | Unavailable due to maint.                            | 2.0 x 10 <sup>-5</sup>                                  |                                                                                                                                            | 0    |
| Diese' generator                       | Unavailable due to maint.                            | 6.0 x 10 <sup>-3</sup>                                  |                                                                                                                                            | 0    |
| Gas turbine-generator                  | Unavailable due to maint.                            | 6.8 x 10 <sup>-2</sup>                                  |                                                                                                                                            | 0    |
|                                        |                                                      | Page A.                                                 | 2-17                                                                                                                                       |      |

| mon Cause Factors                                                                                                                                                                                                                                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rationale Common Cause Factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rev.<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| As an alternative to the implementation of the method for the assessment of common cause failure rates outlined in Section 2.8.2, the following nominal values may be used. The values were developed for application using the multiple-Greek letter approach. |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The common cause factors were developed using the methods described in EPRI-5613 (NUREG/CR-4730), Procedures for Treating Common Cause Failures in Safety and Reifability Studies (Ref. 5). The methods were applied to the base provided in EPRI-3967, Classification of Dependent Failures. The analyst may choose to use these values rather than expend the effort to implement the procedures in EPRI-5613, as outlined in Section 2.8.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Failure Mode                                                                                                                                                                                                                                                    | Number<br>of Failures                | Common<br>Cause Fac. or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Fails to start                                                                                                                                                                                                                                                  | 2 of 2<br>2 of 4<br>3 of 4           | 1.4 x 10 <sup>-1</sup><br>4.7 x 10 <sup>-2</sup><br>7.6 x 10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Fails to run                                                                                                                                                                                                                                                    | 2 of 2<br>2 of 4<br>3 of 4<br>4 of 4 | 8.0 x 10 <sup>-3</sup><br>7.6 x 10 <sup>-3</sup><br>1 7 x 10 <sup>-4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| mp Fails to start                                                                                                                                                                                                                                               | 2 of 4<br>3 of 4<br>4 cf 4           | 3.0 x 10 <sup>-2</sup><br>1.3 x 10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Fails to run                                                                                                                                                                                                                                                    | 2 of 4<br>3 of 4<br>4 of 4           | 3.0 x 10 <sup>-3</sup><br>2.6 x 10 <sup>-5</sup><br>7.1 x 10 <sup>-7</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                                                                 | Failure Mode<br>Fails to start       | ssment of common cause failure rates out<br>the following nominal values may be used<br>a developed for application using the multiple<br>reach.<br>Failure Mode of Failures<br>Fails to start 2 of 2<br>2 of 4<br>3 of 4<br>4 of 4<br>Fails to run 2 of 2<br>2 cf 4<br>3 of 4<br>4 of 4<br>mp Fails to start 2 of 4<br>3 of 4<br>4 of 4<br>Fails to run 2 of 2<br>2 cf 4<br>3 of 4<br>4 of 4<br>Fails to start 2 of 4<br>3 of 4<br>4 of 4<br>Fails to start 2 of 4<br>3 of 4<br>4 of 4<br>Fails to run 2 of 4<br>3 of 4<br>4 of 4<br>Fails to run 2 of 4<br>3 of 4<br>4 of 4<br>Fails to run 2 of 4<br>3 of 4<br>4 of 4 | essment of common cause failure rates outlined in Section<br>2, the following nominal values may be used. The values<br>a developed for application using the multiple-Greek letter<br>roach.<br>Failure Mode of Failures Common<br>Failure Mode of Failures Cause Fac.sr<br>Fails to start 2 of 2 $1.4 \times 10^{-1}$<br>2 of 4 $4.7 \times 10^{-2}$<br>3 of 4 $7.6 \times 10^{-3}$<br>4 of 4 $3.2 \times 10^{-3}$<br>Fails to run 2 of 2 $8.0 \times 10^{-3}$<br>Fails to run 2 of 2 $8.0 \times 10^{-3}$<br>3 of 4 $7.6 \times 10^{-3}$<br>4 of 4 $7.4 \times 10^{-6}$<br>mp Fails to start 2 of 4 $3.0 \times 10^{-2}$<br>3 of 4 $1.3 \times 10^{-3}$<br>Fails to run 2 of 4 $3.0 \times 10^{-2}$<br>3 of 4 $1.3 \times 10^{-3}$<br>Fails to run 2 of 4 $3.0 \times 10^{-2}$<br>3 of 4 $1.3 \times 10^{-3}$<br>5 Fails to run 2 of 4 $3.0 \times 10^{-2}$<br>3 of 4 $1.3 \times 10^{-3}$<br>5 Fails to run 2 of 4 $3.0 \times 10^{-3}$<br>5 Fails to run 2 of 4 $3.0 \times 10^{-3}$<br>5 Fails to run 2 of 4 $3.0 \times 10^{-3}$<br>5 Fails to run 2 of 4 $3.0 \times 10^{-3}$ | ssment of common cause failure rates outlined in Section<br>the following nominal values may be used. The values<br>a developed for application using the multiple-Greek letter<br>oach. The values are provided in EPRI-5613 (NUREG/CR-4730), Proce-<br>dures for Treating Common Cause Failures in Safety and<br>Re-i*ability Studies (Ref. 5). The methods were applied to the<br>base provided in EPRI-3967, Classification of Dependent<br>Failures Mode of Failures Common<br>The analyst may choose to use these values rather<br>than expend the effort to implement the procedures in EPRI-<br>5613, as outlined in Section 2.8.2.<br>Fails to start 2 of 2 1.4 x 10 <sup>1</sup><br>2 of 4 4.7 x 10 <sup>2</sup><br>3 of 4 7.6 x 10 <sup>3</sup><br>3 of 4 7.6 x 10 <sup>3</sup><br>3 of 4 1.3 x 10 <sup>3</sup><br>4 of 4 4.1 x 10 <sup>6</sup><br>Fails to start 2 of 4 3.0 x 10 <sup>2</sup><br>3 of 4 1.3 x 10 <sup>3</sup><br>4 of 4 4.1 x 10 <sup>6</sup><br>Fails to run 2 of 4 3.0 x 10 <sup>2</sup><br>3 of 4 2.6 x 10 <sup>5</sup> |  |

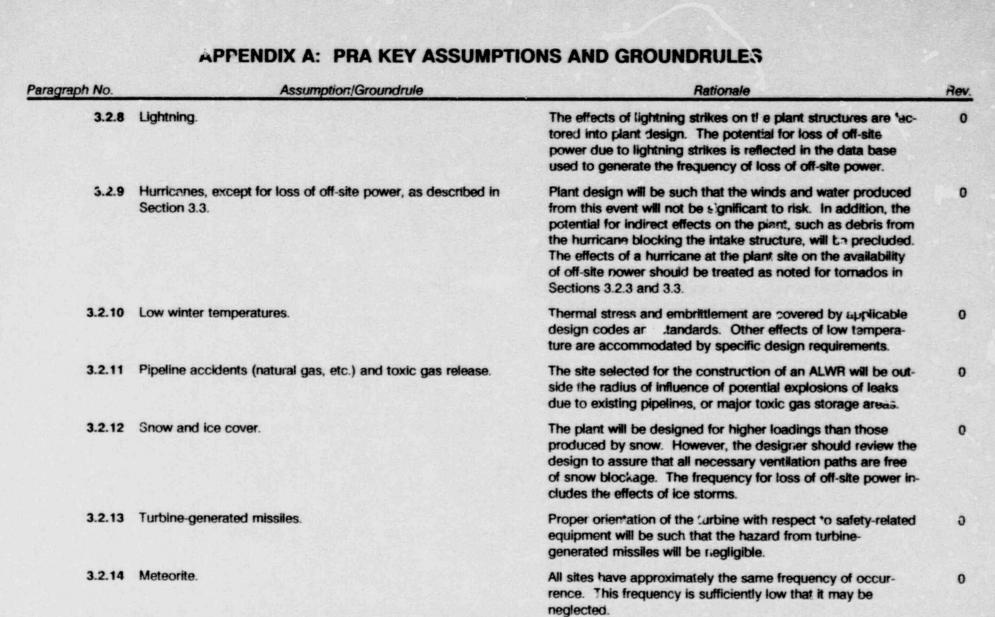
# APPENDIX A: PRA KEY ASSUMPTIONS AND GROUNDRULES

| Paragraph No.               | Assumption/Groundrule         |                                                          |                                                                                                                                | Rationale | Rev |
|-----------------------------|-------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------|-----|
| 2.11.4 Common               | Cause Fectors (Co             | ntinued)                                                 |                                                                                                                                |           | 0   |
| Component                   | Failure Mode                  | Number<br>of Failures                                    | Common<br>Cause Factor                                                                                                         |           | 0   |
| Low pressure injection pump | Fails to start                | 2 of 2<br>2 of 3<br>3 of 3                               | 1.4 x 10 <sup>-1</sup><br>5.4 x 10 <sup>-2</sup><br>1.4 x 10 <sup>-2</sup>                                                     |           | 0   |
|                             | Fails to run                  | 2 0f 3<br>2 of 3<br>3 of 3                               | 3.9 x 10 <sup>-2</sup><br>1.9 x 10 <sup>-2</sup><br>1.6 x 10 <sup>-3</sup>                                                     |           |     |
| Containment spray pump      | Fails to start                | 2 of 2                                                   | 1.3 x 10 <sup>-1</sup>                                                                                                         |           | 0   |
| Service water/CCW pump      | Fails to start                | 2 of 3<br>3 of 3<br>2 of 4<br>3 of 4<br>4 oi 4           | $5.6 \times 10^{-2}$<br>$1.7 \times 10^{-2}$<br>$3.8 \times 10^{-2}$<br>$4.9 \times 10^{-3}$<br>$2.2 \times 10^{-3}$           |           | 3   |
|                             | Fails to run                  | 2 of 3<br>3 of 3<br>2 of 4<br>3 of 4<br>4 of 4           | 3.6 x 10 <sup>-2</sup><br>3.9 x 10 <sup>-3</sup><br>2.2 x 10 <sup>-2</sup><br>1.1 x 10 <sup>-3</sup><br>1.8 x 10 <sup>-4</sup> |           |     |
| Motor operated valve        | Fails to operate<br>on demand | 2 of 2<br>2 of 3<br>3 of 3<br>2 of 4<br>3 of 4<br>4 of 1 | $6.8 \times 10^{-2}$ $3.2 \times 10^{-2}$ $4.5 \times 10^{-3}$ $2.1 \times 10^{-2}$ $1.4 \times 10^{-3}$ $2.9 \times 10^{-4}$  |           | 0   |
|                             | Transfers closed              | 2 of 4<br>3 of 4<br>4 of 4                               | $1.6 \times 10^{-2}$<br>8.5 x 10 <sup>-4</sup><br>1.4 x 10 <sup>-4</sup>                                                       |           |     |

3

| Paragraph No.    | Assumption/Groundrule Common Cause Factors (Continued) |                            |                                                                            | Rationale | Rev. |
|------------------|--------------------------------------------------------|----------------------------|----------------------------------------------------------------------------|-----------|------|
| 2.11.4           |                                                        |                            |                                                                            |           | 0    |
| Component        | Failure Mode                                           | Number<br>of Failures      | Common<br>Cause Factor                                                     |           | 0    |
| Diesel generator | Fails to start                                         | 2 of 2<br>2 of 3<br>3 of 3 | 3.8 x 10 <sup>-2</sup><br>1.9 x 10 <sup>-2</sup><br>1.3 x 10 <sup>-3</sup> |           | 0    |
|                  | Fails to run                                           | 2 of 2<br>2 of 3<br>3 of 3 | 6.8 x 10 <sup>-2</sup><br>3.2 x 10 <sup>-2</sup><br>3.8 x 10 <sup>-3</sup> |           |      |
| Dc battery       | Fails on demand                                        | 2 of 2<br>2 of 3<br>3 of 3 | $7.3 \times 10^{-2}$<br>9.2 x 10 <sup>-2</sup><br>1.0 x 10 <sup>-2</sup>   |           | 0    |




| Paragraph No. |                                                                                                                                                          | Assumption/Groundrule                  | Rationale                                                                                                                                                      | Rev. |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2.11.5        | Non-recovery Data                                                                                                                                        | for Loss of Off-site Power             | Non-recovery Data for Loss of Off-site Power                                                                                                                   | 0    |
|               | The recommended values for the conditional probability of failure to restore off-site power, as a function of time following plant trip, are as follows: |                                        | The non-recovery values are based on an assessment of ex-<br>perience for current-generation plants. This assessment is<br>described in Section A2 of Annex A. | 0    |
|               | Time (hr)                                                                                                                                                | Probability ct not<br>recovering power |                                                                                                                                                                | 0    |
|               | 0.5                                                                                                                                                      | 0.61                                   |                                                                                                                                                                | 0    |
|               | 1                                                                                                                                                        | 0.54                                   |                                                                                                                                                                | 0    |
|               | 2                                                                                                                                                        | 0.32                                   |                                                                                                                                                                | 0    |
|               | 3                                                                                                                                                        | 0.25                                   |                                                                                                                                                                | 0    |
|               | 4                                                                                                                                                        | 0.18                                   |                                                                                                                                                                | 0    |
|               | 5                                                                                                                                                        | 0.14                                   |                                                                                                                                                                | 0    |
|               | 6                                                                                                                                                        | 0.14                                   |                                                                                                                                                                | 0    |
|               | 7                                                                                                                                                        | 0.14                                   |                                                                                                                                                                | 0    |
|               | 8                                                                                                                                                        | 0.11                                   |                                                                                                                                                                | 0    |
|               | 9                                                                                                                                                        | 0.11                                   |                                                                                                                                                                | 0    |
|               | 10                                                                                                                                                       | 0.11                                   |                                                                                                                                                                | 0    |
|               | 11                                                                                                                                                       | 0.071                                  |                                                                                                                                                                | 0    |
|               | 12                                                                                                                                                       | 0.019                                  |                                                                                                                                                                | 0    |
|               | 13                                                                                                                                                       | 0.013                                  |                                                                                                                                                                | 0    |
|               |                                                                                                                                                          |                                        |                                                                                                                                                                |      |

| Parayraph No. | Assumption/Groundrule |                                        | Rationale | Rev. |
|---------------|-----------------------|----------------------------------------|-----------|------|
|               | iime (hr)             | Probability of not<br>recovering power |           | 0    |
|               | 14                    | 9.1 x 10 <sup>-3</sup>                 |           | 0    |
|               | 15                    | 6.1 x 10 <sup>-3</sup>                 |           | 0    |
|               | 16                    | 4.1 x 10 <sup>-3</sup>                 |           | 0    |
|               | 17                    | 2.7 x 10 <sup>-3</sup>                 |           | 0    |
|               | 10                    | 1.8 x 10 <sup>-3</sup>                 |           | 0    |
|               | 19                    | 1.2 x 10 <sup>-3</sup>                 |           | 0    |
|               | 20                    | 7.5 x 10 <sup>-4</sup>                 |           | 0    |
|               | 21                    | 4.8 x 10 <sup>-4</sup>                 |           | 0    |
|               | 22                    | 3.1 x 10 <sup>-4</sup>                 |           | 0    |
|               | 23                    | 1.9 x 10 <sup>-4</sup>                 |           | 0    |
|               | 24                    | 1.3 x 10 <sup>-4</sup>                 |           | 0    |

| Paragraph No. | Assumption/Groundrule                                                                                                                                                  | Rationale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rev |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 3             | EXTERNAL EVENTS                                                                                                                                                        | EXTERNAL EVENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0   |
| 3.1           | INITIATING EVENTS IDENTIFICATION                                                                                                                                       | INITIATING EVENTS IDENTIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0   |
| 3.1.1         | The external events, identified in Sections 3.2 and 3.3 and as listed in the PRA Procedures Guide (Ref. 2), will be considered in the performance or a PRA on an ALWR. | This list of potential external initiating events was taken from ANSI/ANS-2.12-1978 (Ref. 16) and is considered to be an exhaustive listing of the external initiating events which should be considered for an ALWR PRA.                                                                                                                                                                                                                                                                            | 0   |
| 3.1.2         | The methods identified in the PRA Procedure Guide (Ref. 2) will be used for screening of external events except where otherwise specified in this document.            | To ensure consistent treatment of external events in the PRAs to be performed during the ALWR design process, a single source for methodology is specified.                                                                                                                                                                                                                                                                                                                                          | 0   |
| 3.2           | EVENTS THAT MAY BE EXCLUDED BASED ON<br>QUALITATIVE EVALUATION                                                                                                         | EVENTS THAT MAY BE EXCLUDED BASED ON<br>QUALITATIVE EVALUATION                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0   |
|               | The following external events shall be reviewed to ensure that<br>they are precluded as a result of either design, siting, or low<br>frequency of occurrence.          | Some of the initiators listed in the PRA Procedures Guide<br>have been shown to be important risk contributors for older<br>plants. Many of these events can be addressed by design im-<br>provements or proper siting. The initiating events listed are<br>considered not to be important contributors based on im-<br>proved design, proper siting, and low probability. The evalua-<br>tion includes credit for design and siting regulations such as<br>regulatory guides or ANSI/ANS standards. | 0   |
| 3.2.1         | Avalanche, landslide, volcanic activity, soil shrink-swell con-<br>solidation.                                                                                         | It is anticipated that the ALWR will not be located at a site which would be vulnerable to these events.                                                                                                                                                                                                                                                                                                                                                                                             | 0   |
| 3.2.2         | Drought, low lake or river level, high summer temperature, river diversion.                                                                                            | The ultimate heat sink will be designed to account for low water level or lack of water, and will be designed for a lengthy period of operation without external makeup.                                                                                                                                                                                                                                                                                                                             | 0   |

| Paragraph No. | Assumption/Groundrule                                                                                              | Rationale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|---------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 3.2.3         | Tornacoes and extreme winds (including sandstorms), except<br>for loss of off-site power, as noted in Section 3.3. | Tornadoes encompass these initiators. The design of the<br>ALWR will eliminate the concern over this initiator. Building<br>materials, strengths, and missile barrier design will be such<br>that the impact to the plant of tornadoes will, at worst, only<br>generate a loss of off-site power. Losses of off-site power<br>which arc caused by tornadoes away from the site (i.e.,<br>through grid upsets) are included in the loss of off-site power<br>data. Therefore, only the contribution to core damage at-<br>tributed to an extended loss of off-site power oue to a site<br>strike needs to be addressed. A simplified methodology for<br>this analysis is p asented in Section 3.3. | 0 |
| 3.2.4         | Forest fire.                                                                                                       | The plant design requires that the site be cleared and that<br>adequate fire-protection provisions to mitigate the effects of a<br>forest fire be provided. The frequency of this event is also in-<br>cluded in the frequency loss of off-site power to account for<br>the potential consequential failure of off site sources.                                                                                                                                                                                                                                                                                                                                                                  | 0 |
| 3.2.5         | Frost.                                                                                                             | Snow and ice encompass this initiator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 |
| 3.2.6         | Hell.                                                                                                              | Other missiles, such as those resulting from extreme winds, are more serious and govern.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 |
| 3.2.7         | industrial or military facility accidents.                                                                         | The site shall be in compliance with regulations which require<br>that the site be outside the radius of influence of potential ex-<br>plosions due to existing industrial or military facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 |

Page A.3-2



| Paragraph No. | Assumption/Groundrule                                                                                                                                                                                                            | Rationale                                                                                                                                                                                                                                                                                                                                                                                                     | Rev |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 3.2.15        | Release of chemicals in on-site storage.                                                                                                                                                                                         | It is anticipated that the amounts of chemicals stored on-site<br>will be kept at a level such that it will not impact plant risk. In<br>addition, the chemical form will be such that gaseous<br>releases will be precluded.                                                                                                                                                                                 | 0   |
| 3.2.16        | Transportation accidents (including aircraft, ground transporta-<br>tion, and water transportation).                                                                                                                             | The location of the plant site with respect to airpoits and air<br>traffic results in a negligible contribution to core damage.<br>Plant security and other barriers preclude any significant con-<br>tribution from other transportation accidents. The use of<br>closed cycle cooling systems will eliminate the potential for<br>boat or barge impact.                                                     | 0   |
| 3.2.17        | External flooding (including coastal erosion, high tide, high<br>lake level, high river stage, flooding due to intense rainfall or<br>snow melt, flooding due to ice blockage, seiche, storm surge,<br>tsunami and wave action). | The site selection process will eliminate many of these in-<br>dividual sources of external flooding. During the site selec-<br>tion process, the maximum heights of the listed water levels<br>must be deterministically calculated to ensure that the safety<br>structures are located above projected flood level. Proper<br>placement of these structures will eliminate the risk due to<br>these events. | 0   |
| 3.2.18        | Fog                                                                                                                                                                                                                              | Fog may impact occurrence frequency for transportation acci-<br>dents. However, these effects are contained in the accident<br>data.                                                                                                                                                                                                                                                                          | 0   |

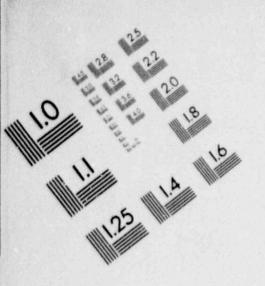
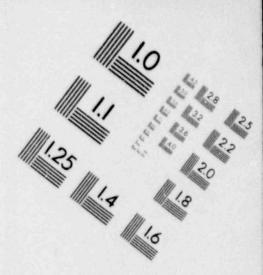
| Paragraph No.           | Assumption/Groundrule | Rationale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rev. |
|-------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 3.2.19 Internal fire    |                       | Internal fire is not expected to be a major contributor to core<br>damage frequency due to design improvements. Chapter 6,<br>Section 2.3.3 of the EPRI Requirements Document provides<br>requirements for separation and three-hour fire barriers. The<br>implementation of these requirements is expected to provide<br>a level of fire protection such that, at most, a single safety<br>train will fail. This is an improvement over the plant perfor-<br>mance that has been observed in prior plant PRAs. These<br>PRAs have identified the potential for total system failures<br>due to inadequate barriers or separation. Given the low in-<br>itiating event frequency of internal fire and its expected conse-<br>quences, transient sequences (such as a loss of an electrical<br>bus) are expected to encompass the impact of internal fire<br>events. Therefore, a detailed probabilistic assessment is not<br>required. | 0    |
| 3.2.20 Internal floodir | ng                    | The requirements contained in Chapter 6, Section 2.3.6 pro-<br>vide for significant plant protection from internal flooding.<br>For reasons similar to those discussed for internal fire, a<br>detailed assessment of internal flooding is not required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0    |

Fage A.3-5

| Paragraph No. | Assumption/Groundrul                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rationale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rev. |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 3.3           | EVENTS WHICH MAY REQUIRE QUANTITATIVE<br>ASSESSMENT FOR EACH ALWR                                                                                                                                                                                                                                                                                                                                                                                                                            | EVENTS WHICH MAY REQUIRE QUANTITATIVE<br>ASSESSMENT FOR EACH ALWR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0    |
|               | Some of the external initiating events listed in the PRA Proce-<br>dures Guide (Ref. 2) may not be able to be excluded based<br>on a qualitative evaluation. These events may require a site-<br>specific quantitative evaluation. Past PRAs have shown the fol-<br>lowing external initiating events to require additional analysis.<br>Therefore, it is very important that the evaluation be well docu-<br>mented as to whether a qualitative or quantitative evaluation is<br>performed. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0    |
| 3.3.1         | Tornado Assessment (Site Strike)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tornado Assessment (Site Strike)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0    |
|               | The tornado assessment will be performed using a simplified loss of off-site power model.                                                                                                                                                                                                                                                                                                                                                                                                    | Because ALWR structures will be reinforced concrete and<br>careful attention will be paid to physical separation of<br>divisions of safety systems, the frequency of a tornado strike<br>or event involving high wind that could cause sufficient<br>failures to lead to core damage is extremely low. The most<br>serious potential effect is likely to be a loss cf off-site power,<br>with restoration of power more difficult than would usually be<br>the case for other causes. Therefore, a simplified model is<br>sufficient, providing that it addresses appropriate combina-<br>tions of random failures (e.g., of diesel generators) in conjunc-<br>tion with an extended loss of off-site power. | 0    |
| 3.3.1.1       | Independent random failures of equipment can be excluded if the failure rate is less than 10 <sup>-3</sup> .                                                                                                                                                                                                                                                                                                                                                                                 | This probability level will result in simplifying the model. Be-<br>cause the initiator frequency is low, it is not expected that<br>events less than 10 <sup>-3</sup> would impact the result.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0    |
| 3.3.1.2       | The probability of failure to recover from a loss of off-site<br>power within 24 hours following a tornado site strike will be as-<br>sumed to be 1.0.                                                                                                                                                                                                                                                                                                                                       | This is a conservative assumption for the analysis. However, to address the significant uncertainty about the ability to restore ac power, this assumption will be made.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0    |
|               | Page A.3-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |

| Paragraph No. | Assumption/Groundrule                                                                        | Rationale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rev. |
|---------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 3.3.1.3       | The plant site area used to determine the frequency of site strike will be .14 square miles. | Tornado effects are typically important for a region equivalent<br>to a square 2000 ft on a side. This distance is typically used<br>to define the plant site when determining the plant site strike<br>frequency. Based on prior PRA analyses, tornado missiles<br>are not important at distances beyond 2000 feet. This value,<br>when multiplied by the tornado frequency, in units of tor-<br>nadoes/square mile - year, yields the annualized site-strike fre-<br>quency.                                                                                                                                                                                                                                               | 0    |
| 3.3.2         | Earthquake                                                                                   | Earthquake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0    |
|               | A seismic risk analysis shall be performed as part of the PRA.                               | The objectives of the seismic risk portion of the PRA are to<br>assure that the standardized plant at the certification stage<br>has a balanced design from a seismic risk standpoint as well<br>as to demonstrate that the ALWR Requirements Document<br>risk requirements can be met. This is consistent with the<br>basic purpose of the overall PRA as expressed in the<br>Foreword to this Appendix A, PRA Key Assumptions and<br>Groundrules. The emphasis of the seismic PRA at the cer-<br>tification stage will be on the system's contributions to seis-<br>mic risk. It is considered that there is significant value to a<br>disciplined review of seismic risk considering seismic and<br>non-seismic failures. | 0    |

| Paragraph No. | Assumption/Groundrule       | Rationale               | Rev. |
|---------------|-----------------------------|-------------------------|------|
| 3.3.2.1       | Seismic Hazard Analysis     | Seismic Hazard Analysis | 0    |
|               | To be completed by 8/15/89. |                         | 0    |

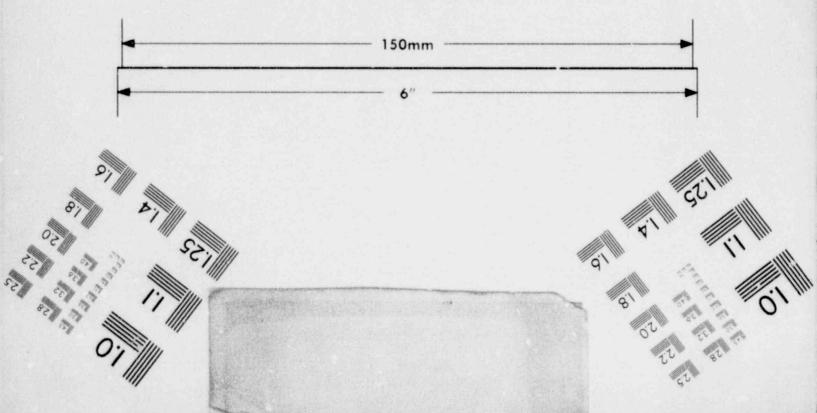
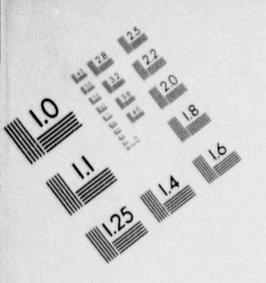
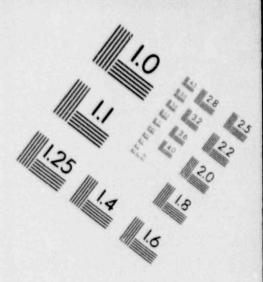




IMAGE EVALUATION TEST TARGET (MT-3)










01

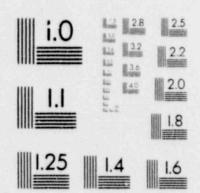
-

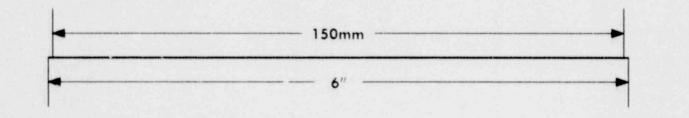
SZ

IMAGE EVALUATION TEST TARGET (MT-3)



çi


1)


0

Y

3

gi





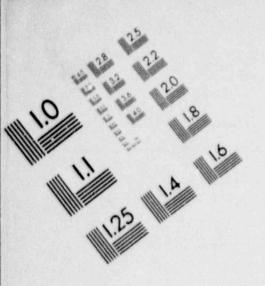
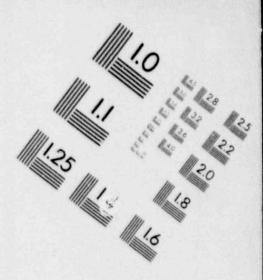
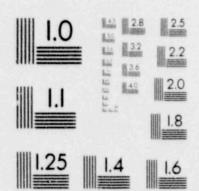
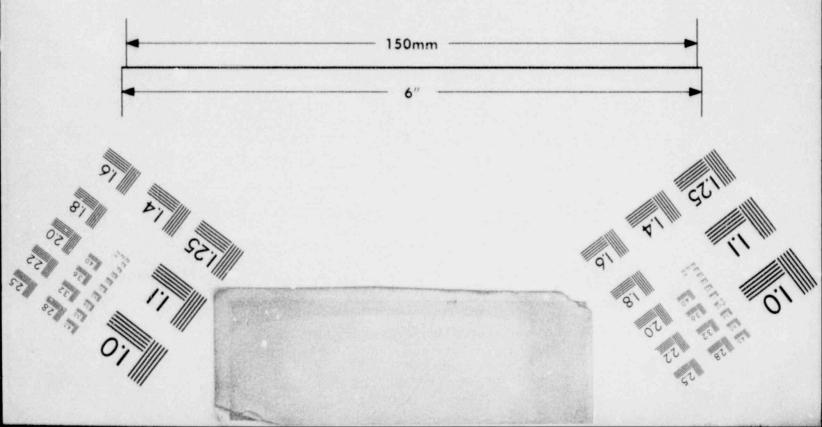
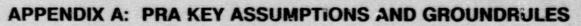







IMAGE EVALUATION TEST TARGET (MT-3)









| Paragraph No. | Assumption/Groundrule       | Rationale                 | Rev. |
|---------------|-----------------------------|---------------------------|------|
| 3.3.2.2       | ALWR Seismic Hazard Input   | ALWR Seismic Hazard Input | 0    |
|               | To be completed by 8/15/89. |                           | 0    |

| Paragraph No. | Assumption/Groundrule       | Rationale             | Rev. |
|---------------|-----------------------------|-----------------------|------|
| 3.3.2.3       | Uncertainty Treatment       | Uncertainty Treatment | 0    |
|               | To be completed by 8/15/89. |                       | 0    |





| Paragraph No. | Assumption/Groundrule       | Rationale                | Rev. |
|---------------|-----------------------------|--------------------------|------|
| 3.3.2.4       | Ground Response Spectrum    | Ground Response Spectrum | 0    |
|               | To be completed by 8/15/89. |                          | 0    |

| Paragraph No. | Assumption/Groundrule       | Rationale                  | Rev. |
|---------------|-----------------------------|----------------------------|------|
| 3.3.2.5       | Hazard/Fragility Interface  | Hazard/Fragility Interface | 0    |
|               | To be completed by 8/15/89. |                            | 0    |



| Paragraph No. | Assumption/Groundrule       | Rationale          | Rev. |
|---------------|-----------------------------|--------------------|------|
| 3.3.2.6       | Fragility Analysis          | Fragility Analysis | 0    |
|               | To be completed by 8/15/89. |                    | 0    |

| Paragraph No. | Assumption/Groundrule       | Rationale        | Rev. |
|---------------|-----------------------------|------------------|------|
| 3.3.2.7       | Systems Analysis            | Systems Analysis | 0    |
|               | To be completed by 8/15/89. |                  | 0    |



| Paragraph No. | Assumption/Groundrule                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rationale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rev |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4             | CONTAINMENT ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CONTAINMENT ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0   |
| 4.1           | CORE DAMAGE SEQUENCE BINNING                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CORE DAMAGE SEQUENCE BINNING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0   |
|               | Core damage sequences are expected to be binned (grouped).<br>If core damage bins are used, they shall be defined such that<br>all sequences within a particular bin lead to similar effects with<br>respect to containment sequence and source term<br>phenomena. The definition of the bins shall provide a means<br>to ensure that the delineation of core damage sequences is<br>discriminated sufficiently to afford the proper level of coordina-<br>tion with the containment analysis. | Binning of similar sequences provides a means of managing<br>the number of accident sequences. In addition, it provides a<br>means of gaining information needed for the in-plant analysis<br>task.                                                                                                                                                                                                                                                                                                          | 0   |
| 4.2           | CONTAINMENT SYSTEM ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CONTAINMENT SYSTEM ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0   |
| 4.2.1         | A containment systems analysis shall be developed such that<br>it will explicitly account for any common failures between the<br>core damage prevention systems and the containment sys-<br>tems.                                                                                                                                                                                                                                                                                              | Conditional probability of failure of containment systems<br>must be determined by correctly accounting for depend-<br>encies between "upstream" events in the core damage se-<br>quence (such as support system failures) and the causes of<br>failure of the containment systems.                                                                                                                                                                                                                          | 0   |
| 4.2.2         | If binning of accidents, including the status of containment sys-<br>tems, is used prior to the in-plant analysis, the frequency<br>dominant accident sequence for each plant damage state<br>shall be used to define in-plant phenomenological analysis<br>parameters for use in determining containment performance<br>source terms.                                                                                                                                                         | This simplifying assumption is made in order to reduce the<br>number of deterministic analysis runs necessary to develop<br>the containment event tree branch point probabilities. It is im-<br>portant to note that the plant damage states must be suffi-<br>ciently and uniquely defined to ensure that they adequately<br>reflect the characteristics important to the containment<br>response and release magnitudes, in order to avoid introduc-<br>ing uncertainties that could otherwise be avoided. | 0   |
|               | Page A.4-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |

| Paragraph No. | Assumption/Groundrule                                                                                                                                       | Rationaie                                                                                                                                                                                                                                                                                                            |   |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 4.3           | 4.3 CONTAINMENT ISOLATION CONTAINMENT ISOLATION                                                                                                             |                                                                                                                                                                                                                                                                                                                      | 0 |
| 4.3.1         | Containment penetrations shall be accounted for in the evalua-<br>tion of containment leakage paths.                                                        | The potential for releases to occur due to failure of some<br>penetrations to be isolated or properly sealed has been<br>found to be important in previous studies. In particular, large<br>leakage paths may be available. For example, equipment<br>hatches that are left open may result in a large leakage path. |   |
| 4.3.2         | Containment penetrations can be screened from the analysis if they can meet one of the following criteria:                                                  | If Not all containment penetrations have the potential to be im-<br>portant pathways for releases from containment. In order to<br>focus the PRA effort on the penetrations that are most likely<br>to be important, screening criteria may be applied.                                                              |   |
|               | <ul> <li>Conditional probability of failure is small (i.e., less than about 10<sup>-3</sup>/event);</li> </ul>                                              | <ul> <li>Failure of penetrations at a frequency of less than</li> <li>1.0 x 10<sup>-3</sup> are not expected to significantly contribute to<br/>risk and are excluded from the analysis.</li> </ul>                                                                                                                  | 0 |
|               | <ul> <li>Low consequence (e.g., release that must take place<br/>through a line that will remain filled with water throughout<br/>the accident);</li> </ul> | <ul> <li>The consequences resulting from a release through<br/>water are not significant.</li> </ul>                                                                                                                                                                                                                 | 0 |
|               | Closed loop;                                                                                                                                                | <ul> <li>Any system which starts and terminates in the contain-<br/>ment without any release path to the environment can<br/>be excluded from the containment penetration model,<br/>provided that its design against external event hazards<br/>is adequate.</li> </ul>                                             | 0 |
|               | <ul> <li>Small in size (e.g., instrumentation lines).</li> </ul>                                                                                            | <ul> <li>Small lines typically tend to become plugged quickly<br/>and are generally not important potential release path-<br/>ways.</li> </ul>                                                                                                                                                                       | 0 |

Page A.4-2

#### Paragraph No. Assumption/Groundrule Rationale Rev. 4.4 CONTAINMENT BYPASS CONTAINMENT BYPASS 0 Containment bypass sequences shall be assessed and shall in-Containment bypass sequences can result in significant 0 clude all connections to the reactor coolant system. releases from containment and have the potential to be important risk contributors. Past PRAs have identified the following bypass sequences as important: Steam generator tube rupture (PWR only): 0 Residual heat removal isolation failure: 0 High-pressure coolant injection (BWR only); 0 Core spray (BWR only); Feedwater and main steam (BWR only). 0 4.5 IN-PLANT SEQUENCE ASSESSMENT IN-PLANT SEQUENCE ASSESSMENT 0 4.5.1 The containment ultimate strength calculation shall be made The evaluation of containment ultimate strength shall include 0 using the method discussed in Chapter 5, Section 6.6.2.2, of all features necessary to maintain containment integrity, inthe Requirements Document. Calculation of containment cluding the containment shell, hatches, personnel locks, capability shall consider the phenomena identified in Section seals, penetrations, and valves. The phenomena to be con-6.6.2.3. sidered include the potential for bypass of the suppression pool (BWR), effects of direct contact of core debris, and consideration of dynamic loading of the containment during containment-flooding scenarios. 4.5.2 The MAAP code shall be the primary tool used to assess ther-In order to adequately model the processes involved, an in-0 mal-hydraulic and other physical processes and phenomena tegrated model of the core melt and containment is required such as core heat-up, containment loading, release of to address generation, effects of steam inerting, containment radionuclides, and combustible gas generation and ignition for geometry, and containment pressurization. use in establishing accident progression. Other computer codes and analysis methods may be used to supplement the MAAP code, or may be used in place of the MAAP code with

APPENDIX A: PRA KEY ASSUMPTIONS AND GROUNDRULES

Page A.4-3

appropriate justification.

| Paragraph No. | Assumption/Groundrule                                                                                                                                 | Rationale                                                                                                                                                                                                                                                                                                       |   |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 4.8           | CONTAINMENT EVENT ANALYSIS                                                                                                                            | CONTAINMENT EVENT ANALYSIS                                                                                                                                                                                                                                                                                      |   |
| 4.6.1         | A containment event tree shall comprise the important<br>phenomenological issues associated with containment loading<br>and/or source term evolution. | A containment event tree provides an excellent means to<br>identify and quantify important phenomena. Elements which<br>have been addressed in past large, dry containment PWR<br>and in BWR PRAs and which should be considered for the<br>ALWR in the development of the containment event tree in-<br>clude: | 0 |
|               |                                                                                                                                                       | Potential for early and late hydrogen burns;                                                                                                                                                                                                                                                                    | 0 |
|               |                                                                                                                                                       | <ul> <li>Pressure and temperature loadings on the cavity/drywell<br/>following reactor vessel failure;</li> </ul>                                                                                                                                                                                               | 0 |
|               |                                                                                                                                                       | <ul> <li>Containment loadings due to noncondensible gas<br/>generation and gas generation during corium-concrete<br/>interaction;</li> </ul>                                                                                                                                                                    | 0 |
|               |                                                                                                                                                       | <ul> <li>Potential for direct interaction between corium and con-<br/>tainment;</li> </ul>                                                                                                                                                                                                                      | 0 |
|               |                                                                                                                                                       | <ul> <li>Availability of containment scrubbing, pool scrubbing,<br/>and containment/pool heat removal;</li> </ul>                                                                                                                                                                                               | 0 |
|               |                                                                                                                                                       | Venting availability;                                                                                                                                                                                                                                                                                           | 0 |
|               |                                                                                                                                                       | Standby gas treatment system operability (BWR);                                                                                                                                                                                                                                                                 | 0 |
|               |                                                                                                                                                       | Fire suppression system operability (BWR);                                                                                                                                                                                                                                                                      | 0 |
|               |                                                                                                                                                       | Containment inertability (BWR);                                                                                                                                                                                                                                                                                 | 0 |
|               |                                                                                                                                                       | <ul> <li>Ability to flood and replenish the cavity/drywell region of<br/>the containment;</li> </ul>                                                                                                                                                                                                            | 0 |
|               |                                                                                                                                                       | Hydrogen generation rates and core blockage model;                                                                                                                                                                                                                                                              | 0 |
|               |                                                                                                                                                       | Adiabatic burn temperature;                                                                                                                                                                                                                                                                                     | 0 |
|               | Page A.4-4                                                                                                                                            |                                                                                                                                                                                                                                                                                                                 |   |

| Paragraph No. | Assumption/Groundrule                                                                                                               | Rationale                                                                                                                                                             | Rev. |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|               |                                                                                                                                     | Debris coolability (amount of water required);                                                                                                                        | 0    |
|               |                                                                                                                                     | Location and size of containment break;                                                                                                                               | 0    |
|               |                                                                                                                                     | <ul> <li>Size and timing of containment failure prior to RPV melt through;</li> </ul>                                                                                 | 0    |
|               |                                                                                                                                     | Hydrogen concentration in secondary building (BWR);                                                                                                                   | 0    |
|               |                                                                                                                                     | Suppression pool scrubbing (BWR);                                                                                                                                     | 0    |
|               |                                                                                                                                     | Operation of the standby gas treatment system (BWR);                                                                                                                  | 0    |
|               |                                                                                                                                     | <ul> <li>Revaporization and composition of Iodine (CSOH and CSI);</li> </ul>                                                                                          | 0    |
|               |                                                                                                                                     | Variation of iodine compounds.                                                                                                                                        | 0    |
| 4.6.2         | Potentially important phenomena which are not currently ad-<br>dressed in the MAAP code shall also be considered.                   | Some phenomena that have been found to be important in previous risk analyses are not currently explicitly treated using MAAP. These phenomena include the following: | 0    |
|               |                                                                                                                                     | Direct containment heating;                                                                                                                                           | 0    |
|               |                                                                                                                                     | Steam explosions;                                                                                                                                                     | 0    |
|               |                                                                                                                                     | <ul> <li>Hydrogen deflagration due to equipment or operator<br/>failures;</li> </ul>                                                                                  | 0    |
|               |                                                                                                                                     | Failure of vapor suppression (BWR).                                                                                                                                   | 0    |
| 4.6.3         | The quantification of containment event trees shall be per-<br>formed using best estimate values.                                   | This is consistent with the guidance provided for the core damage assessment.                                                                                         | 0    |
| 4.6.4         | The basis and supporting information used to determine con-<br>tainment event tree probability shall be thoroughly docu-<br>mented. | In order to ensure traceability of this process, it should be well documented.                                                                                        | 0    |

| Paragraph No. | Assumption/Groundrule                                                                                                                            | Rationale                                                                                                                                                                                                                                |   |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 4.7           | SOURCE TERM DEFINITION                                                                                                                           | SOURCE TERM DEFINITION                                                                                                                                                                                                                   | 0 |
|               | The most current version of MAPP shall be used for source<br>term calculations. Alternative codes may be used if justifica-<br>tion is provided. | In order to adequately model the processes involved, an in-<br>tegrated model of the core melt and containment is required<br>to address generation, effects of steam inerting, containment<br>geometry, and containment pressurization. | 0 |
| 4.8           | PLANT RELEASE CATEGORIES                                                                                                                         | PLANT RELEASE CATEGORIES                                                                                                                                                                                                                 | 0 |
|               | Similar end points of the containment analysis may be<br>grouped into release categories for use in the ex-plant conse-<br>quence analysis.      | Past PRAs have shown that containment event tree end<br>points may be grouped to simplify the analysis. This reduces<br>the number of ex-plant runs required. Elements to be con-<br>sidered during the grouping process include:        | 0 |
|               |                                                                                                                                                  | Time of release;                                                                                                                                                                                                                         | 0 |
|               |                                                                                                                                                  | Duration of release;                                                                                                                                                                                                                     | 0 |
|               |                                                                                                                                                  | Energy of rolease;                                                                                                                                                                                                                       | 0 |
|               |                                                                                                                                                  | Types and amounts of isotope fractions released.                                                                                                                                                                                         | Û |
|               |                                                                                                                                                  |                                                                                                                                                                                                                                          |   |

P

Page A.4-6

| Paragraph No. | Assumption/Groundrule                                | Rationale                                            |   |
|---------------|------------------------------------------------------|------------------------------------------------------|---|
| 5             | OFF-SITE CONSEQUENCES                                | OFF-SITE CONSEQUENCES                                | 0 |
| 5.1           | IMPLEMENTATION OF THE PUBLIC-SAFETY REQUIRE-<br>MENT | IMPLEMENTATION OF THE PUBLIC-SAFETY REQUIRE-<br>MENT | 0 |

A mean complementary cumulative distribution function (CCDF) for whole-body dose shall be developed for a half-mile radius. This shall include all core-damage sequences with a mean frequency greater than 10<sup>-8</sup> yr<sup>-1</sup> from both internal and external initiators. The design shall be considered to have met the risk requirement if this CCDF falls outside the region bounded by a lower limit for frequency at 1x10<sup>-6</sup>/year and by a lower limit for consequences of 25 rem whole-body dose at one-half mile, as shown in Figure A.5-1.

#### 5.2 METHOD FOR OFF-SITE CONSEQUENCE ANALYSIS

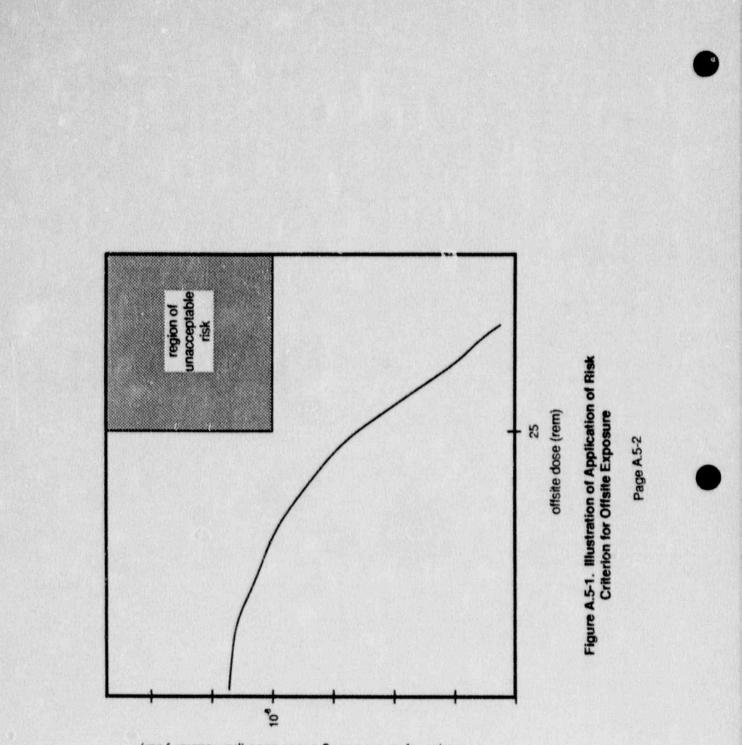
A "reference site" with the characteristics listed in Annex B 5.2.1 shall be used for calculating off-site consequences for the ALWR.

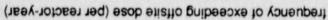
The CCDF is a well accepted method of visually displaying risk curves. A composite CCDF, including the contributions from all release categories, will be developed based on bestestimate source terms and will include all core-damage sequences with frequencies greater than 10<sup>-8</sup> yr<sup>-1</sup>. This will provide a visual display which shows that the ALWR meets the off-site consequence risk requirement. The mean curve is the curve used for this demonstration, consistent with the Rationale described in Section 1 above.

#### METHOD FOR OFF-SITE CONSEQUENCE ANALYSIS

The primary purpose of the PRA is to assess the plant design, and use of a reference site permits determination of whether the design should be adequate, irrespective of the site at which it may be located. Moreover, it is anticipated that this PRA will be performed at the time of design certification in the licensing process. Hence, an actual site will not vet be identified, and a reference site is therefore specified. This "reference site" represents the consequences of most potential sites. Factors which affect consequences include: (1) climatography, (2) demography, (3) topography, and (4) evacuation and sheltering.

Characteristics of 91 U.S. reactor sites are tabulated in the NRC document, NUREG/CR-2239 (Ref. 36). Based upon the data presented in NUREG/CR-2239, the "reference site," as modified, is estimated to equal the 80th percentile or above for those characteristics which are correlated to high off-site consequences.


Page 4.5-1


## APPENDIX A: PRA KEY ASSUMPTIONS AND GROUNDRULES

# 0

0

0





| Paragraph No. | Assumption/Groundrule                                                                                                                                                                                                                                                                                                                                                                         | Rationale<br>The computer code CRAC2 is the best tool presently avail-<br>able for performing off-site consequence calculations. It has<br>been shown through benchmark studies to give acceptable<br>results when compared with other consequence codes. The<br>application of the CRAC2 input file, ALWR Reference Site,<br>provides a basis for consistency among the users of the<br>code. |   |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 5.2.2         | The off-site consequences calculations shall be performed<br>using either CRAC2 (Ref. 37) or MACCS (Ref. 38). The<br>CRAC2 input file, ALWR Reference Site, shall be used for this<br>purpose (Reference 40).                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 5.2.3         | It will be assumed that there will be no evacuation for 24<br>hours following the release. Cloud and ground shielding fac-<br>tors for normal activity should be used. These assumptions<br>are <b>only</b> for the purposes of comparison against the require-<br>ment stated in 5.1 above. For estimation of public health risk,<br>realistic estimates for these parameters shall be used. | Calculating 24 hours of exposure with no emergency<br>response provides a check against the requirement stated in<br>Section 5.1, above, independent of future emergency plan-<br>ning requirements.                                                                                                                                                                                           | 0 |

Page A.5-3

| Reference No. | Title                                                                                                                                                                                                                                                                           | Rev. |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|               | REFERENCES                                                                                                                                                                                                                                                                      | 0    |
| ۱.            | "Policy Statement on Severe Reactor Accidents." Federal Register<br>Volume 50, p.32138, U.S. Nuclear Regulatory Commisison, August 8,<br>1985.                                                                                                                                  | 0    |
| 2.            | American Nuclear Society and Institute of Electrical and Electronic En-<br>gineers. PRA Procedures Guide: A Guide to the Performance of Prob-<br>abilistic Risk Assessments for Nuclear Power Plants. U.S. Nuclear<br>Regulatory Commission Report NUREG/CR-2300, January 1983. | 0    |
| 3.            | Papazoglou, I.A., et al. Probabilistic Safety Analysis Procedures Guide.<br>U.S. Nuclear Regulagory Commission Report NUREG/CR-2815 (Vol. 1),<br>Brookhaven National Laboratory, August 1985.                                                                                   | 0    |
| •             | Sugnet, W.R., et al. Oconee PRA: A Probabilistic Risk Assessment of<br>Oconee Unit 3. Nuclear Safety Analysis Center Report NSAC/60, June<br>1984.                                                                                                                              | 0    |
| 5.            | Mosleh, A., et al. Procedures for Treating Common Cause Failures in<br>Safety and Reliability Studies. U.S. Nuclear Regulatory Commission<br>Report NUREG/CR-4780 and Electric Power Research Institute Report NP-<br>5613, January 1988.                                       | 0    |
| 6.            | Fleming, K.N., et al. Classification and Analysis of Reactor Operating Ex-<br>perience Involving Dependent Events. Electric Power Research Institute<br>Report NP-3967 (Interim Report), June 1985.                                                                             | 0    |
| 7.            | Crellia, G.L., et al. Defensive Strategies for Reducing Susceptibility to<br>Common Cause Failures. Electric Power Research Institute Report NP-<br>5777 (Volumes 1 and 2), June 1988.                                                                                          | 0    |
| 8.            | Steverson, J.A., and C.L. Atwood. Common Cause Fault Rates for In-<br>strumentation and Control Assemblies. U.S. Nuclear Regulatory Commis-<br>sion Report NUREG/CR-2770, EG&G Idaho, Inc., February 1983.                                                                      | 0    |
| 9.            | Meachum, T.R., and C.L. Atwood. Common Cause Fault Rates for In-<br>strumentation and Control Assemblies. U.S. Nuclear Regulatory Commis-<br>sion Report NUREG/CR-3289, EG&G Idaho, Inc., May 1983.                                                                             | 0    |
| 10.           | Atwood, C.L. Common Cause Fault Rates for Pumps, U.S. Nuclear<br>Regulatory Commission Report NUREG/CR-2098, EG&G Idaho, Inc., June<br>1982.                                                                                                                                    | 0    |
| 11.           | Atwood, C.L., and J.A. Steverson. Common Cause Fault Rates for Diesel<br>Generators. U.S. Nuclear Regulatory Commission Report NUREG/CR-<br>2099, EG&G Idaho, Inc., June 1982.                                                                                                  | 0    |

Page A.6-1

| Reference No | 0.  | Title                                                                                                                                                                                                                             | Rev. |
|--------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1            | 2.  | Hannaman, G.W., and A.J. Spurgin. Systematic Human Action Reliability<br>Procedure (SHARP). Electric Power Research Institute Report NP-3583<br>(Interim Report), June 1984.                                                      | 0    |
| 1            | 3.  | Spurgin, A.J., et al. Benchmark of SHARP. Electric Power Research In-<br>stitute Report NP-5546, December 1987.                                                                                                                   | 0    |
| 1            | 4.  | Swain, A.D., and H.E. Guttmann. Handbook for Human Reliability<br>Analysis with Emphasis on Nuclear Power Applications. U.S. Nuclear<br>Regulatory Commission Report NUREG-CR-1278, Sandia National<br>Laboratories, August 1983. | 0    |
| 1            | 5.  | EPRI RP-2847-1 Interim Report (HCR probability-time correlation).                                                                                                                                                                 | 0    |
| 1            | 6.  | American Nuclear Society Guidelines for Combining Natural and Man-<br>Made Hazards at Power Reactor Sites, an American National Standard.<br>ANSI/ANS-2.12-1978.                                                                  | 0    |
| 1            | 7.  | Corneli, C. A. "Engineering Seismic Risk Analysis," Bull., Seism. Soc.<br>Am., vol. 58, pp. 1583-1606, 1968.                                                                                                                      | 0    |
| 1            | 8.  | Cornell, C. A., "Probabilistic Analysis of Damage to Structures Under Seis-<br>mic Loads," in <i>Dynamic Waves in Civil Engineering</i> . Chapter 27, edited<br>by D. A. Howells, I. P. Haigh, and C. Taylor, 1971.               | 0    |
| 1            | 9.  | Algermissen, S. T., et al. Probabilistic Estimates of Maximum Accelera-<br>tion and Velocity in Rock in the Contiguous United States. U.S. Geologi-<br>cal Survey Open-File Report 82-1033, p. 99, 1982.                          | 0    |
| 2            | :0. | Bernreuter, D. L., et al. Seismic Hazard Characterization of the Eastern<br>United States, vol. 1: Methodology and Results for Ten Sites. Lawrence<br>Livermore National Laboratory Report, UCID-20421, April 1985.               | 0    |
| 2            | 1.  | McCann, M. W. Jr., (ed.). Seismic Hazard Methology for the Central<br>and Eastern United States, Vol. 1, Theory. Electric Power Research In-<br>stitute Report NP-4726, 1988.                                                     | 0    |
| 2            | 2.  | McGuire, R. K., et al. Seismic Hazard Methodology for the Central and<br>Eastern United States, vol. 1, Methodology. Electric Power Research In-<br>stitute Report NP-4726, 1988.                                                 | 0    |
| 2            | 3.  | McCann, M. W. Jr., et al. Probabilistic Safety Analysis Procedures Guide.<br>U.S. Nuclear Regulatory Commission Report NUREG/CR-2815 (Vol 2),<br>Brookhaven National Laboratory, 1985.                                            | 0    |
| 2            | 4.  | McCann, M. W. Jr., and J. W. Reed (ed.). Proceedings of the EPRI<br>Workshop on the Engineering Characterization of Small-Magnitude<br>Earthquakes. Electric Power Research Institute, 1988.                                      | 0    |

Page A.6-2

| Reference | No. | Title                                                                                                                                                                                                                                      | Rev. |
|-----------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|           | 25. | Newmark, N. W., and W. J. Hall. Development of Criteria for Seismic<br>Review of Selected Nuclear Power Plants, N. M. Newmark Consulting En-<br>gineering Services, U.S. Nuclear Regulatory Commission Report,<br>NUREG/CR-0098, May 1978. | 0    |
|           | 26. | McGuire, R. K., G. R. Toro and W. J. Silva. Engineering Estimates of<br>Earthquake Ground Motion for Eastern North America. Electric Power Re-<br>search Institute Report NP-6074, 1988.                                                   | 0    |
|           | 27. | American Society of Civil Engineers, ASCE Standard, Seismic Analysis of<br>Safety-Related Nuclear Structures and Commentary on Standard for Seis-<br>mic Analysis of Safety-Related Nuclear Structures, New York, New York,<br>1986.       | 0    |
|           | 28. | NUREG/CR-3558.                                                                                                                                                                                                                             | 0    |
|           | 29. | Campbell, R. D., et al. Compilation of Fragility Information From Available<br>Probabilistic Risk Assessments. Lawrence Livermore Laboratory, UCID-<br>220571, September 1985.                                                             | 0    |
|           | 30. | NUREG/CR-4334.                                                                                                                                                                                                                             | 0    |
|           | 31. | NTS Engineering et al. Evaluation of Nuclear Power Plant Seismic Mar-<br>gin, prepared for Electric Power Research Institute, Technical Report No.<br>1551.05 (DRAFT), March 1987.                                                         | 0    |
|           | 32. | Prassinos, P. G., et al. Seismic Margin Review of the Maine Yankee<br>Atomic Power Station – Summary Report. U.S. Nuclear Regulatory Com-<br>mission Report, NUREG/CR-4826, vol. 1, March 1987.                                            | 0    |
|           | 33. | Ravindra, M. K., et al. Seismic Margin Review of the Maine Yankee<br>Atomic Power Station – Fragility Analysis. U.S. Nuclear Regulatory Com-<br>mission Report, NUREG/CR-4826, vol. 3, March 1987.                                         | 0    |
|           | 34. | Harrison, D.G., Generic Component Fragilities for the GE Advanced BWR<br>Seismic Analysis. Department of Energy Advanced Reactor Severe Acci-<br>dent Program Task 11.4, September 1988.                                                   | 0    |
|           | 35. | Harrison, D.G., Generic Component Fragilities for the Combustion En-<br>gineering Advanced PWR Seismic Analysis. Department of Energy Ad-<br>vanced Reactor Severe Accident Program Task 11.4, (to be published).                          | 0    |
|           | 36. | Aldrich, D.G., et al. <i>Technical Guidance for Siting Criteria Development</i> .<br>U.S. Nuclear Regulatory Commission Report NUREG/CR-2239, Sandia Na-<br>tional Laboratories. December 1982.                                            | 0    |

| Reference No. Title                                                                                                                                                                               | Rev. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <ol> <li>Ritchie, L.T., et al. CRAC2 Model Description. U.S. Nuclear Regulatory<br/>Commission Report NUREG/CR-2326, Sandia National Laboratories, 1984.</li> </ol>                               | 0    |
| <ol> <li>Alpert, D.J. et al. MELCOR Accident Consequence Calculation Code<br/>System. U.S. Nuclear Regulatory Commission Report NUREG/CR-4691,<br/>Sandia National Laboratories, 1987.</li> </ol> | 0    |
| <ol> <li>McCann, M.W. Jr., et al. Development of Seismic Hazard Input for the Advanced Light Water Reactor Seismic PRA. Electric Power Research Institute (to be published).</li> </ol>           | 0    |
| 40. EPRI ALWR Program, Nuclear Power Division, CRAC2 Input File for ALWR<br>Reference Site. Electric Power Research Institute.                                                                    | 0    |

# **RELIABILITY DATA BASE FOR ALWR PRAS**

This annex describes the development of the initiating-event frequencies and component reliability data that are summarized in Section 2.11. Section A1 outlines the methods used in obtaining initiating-event frequencies for loss-of-coolant accidents (LOCAs) and for most transient events. The treatment of the frequency and recovery of losses of off-site power is described in somewhat more detail in Section A2. Section A3 summarizes the sources of data used to arrive at the recommended hardware failure rates, maintenance unavailabilities, and common-cause factors.

#### A1 FREQUENCY OF INITIATING EVENTS

The selection of initiating events to be subjected to detailed analysis is one of the key tasks of the PRA effort. Clearly, it is not possible to obtain a set of initiator frequencies without first establishing the events to be evaluated. The development of frequencies in this annex corresponds to the set of initiating events derived for preliminary PRAs of an advanced BWR and an advanced PWR (Refs. 1 and 2), which were based almost entirely on the Requirements Document, Chapters 1 through 5. It is expected that the actual PRAs will each define a set of initiating events that represents a different and more detialed breakdown than that obtained in these preliminary PRAs. Consequently, the frequencies presented here and in Section 2.11.2 will require revision. However, this assessment provides some guidance with respect to the reasonable frequencies to be used and methods to use in developing them. The events from the preliminary PRAs are listed in Table A1-1 (the designators are provided solely for ease of reference).

| BWR                                                           |                            | PWR                |                                                                                                                                                |  |
|---------------------------------------------------------------|----------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Designator                                                    | Event                      | Designator         | Event                                                                                                                                          |  |
| <b>T</b> 1                                                    | Reactor/turbine trip       | T1                 | Reactor/turbine trip                                                                                                                           |  |
| T <sub>2</sub>                                                | Loss of condenser          | T <sub>2</sub>     | Loss of main feedwater                                                                                                                         |  |
| T <sub>3</sub>                                                | Loss of feedwater          | T3                 | Loss of offsite power                                                                                                                          |  |
| T4                                                            | Loss of offsite power      | T4                 | Steam-line break                                                                                                                               |  |
| T <sub>5</sub>                                                | Loss of major ac power bus | T5                 | Loss of major ac power bus                                                                                                                     |  |
| A Large loss-of-coolant acci<br>S Small loss-of-coolant accid |                            | A<br>S1<br>S2<br>R | Large loss-of-coolant accident<br>Intermediate loss-of-coolant ac-<br>cident<br>Small loss-of-coolant accident<br>Steam-generator tube rupture |  |

| Table A1-1                       |     |           |
|----------------------------------|-----|-----------|
| INITIATORS FOR WHICH FREQUENCIES | ARE | SUGGESTED |

# ANNEX A RELIABILITY DATA BASE FOR ALWR PRAS

The design requirements for ALWRs incorporate a number of features aimed at reducing the frequencies of plant transients in order to provide further improvements in both safety and plant availability. The overall design requirements include a limit of 1.0/year for the frequency of plant trips, and this level appears to be attainable, based on recent experience for some U.S. and foreign plants. Therefore, although the initiating-event frequencies must be estimated based on the operating experience for current-generation plants, it was deemed appropriate to account in some manner for the improvements required for ALWRs. Two measures were taken to achieve this objective for the more frequently-occurring transient events:

- Only recent operating experience (i.e., 1984 through August 1988) was used, to reflect the increased reliability that many current plants appear to be exhibiting relative to earlier years; and
- The specific events in the base of operating experience were reviewed to determine applicability to the ALWRs. Events that should be precluded for the ALWRs based on the design requirements were deleted.

It should be noted that the second measure requires that the analyst exercise particular caution so that no events that could be representative of initiating failures for the ALWRs are deleted. Furthermore, the potential exists that the designs will introduce the possibility of new initiating events, especially during the early years of operation, that would not have been experienced in current plants. Nevertheless, provided that care is taken, this appears to be an appropriate approach in order to provide the most realistic assessment for ALWRs.

The first step was to map the transient initiators into the categories of events provided in NUREG/CR-3862 (Ref. 3), which is an update of a data base originally developed fc: EPRI. A number of the requirements are aimed at reducing the potential for some types of transients, and it was therefore judged desirable to eliminate such events from the data base reflecting past experience. The corresponding trip categories deleted for the ALWRs are presented in Table A1-2. For those that are deleted due to design requirements, references to the appropriate requirement are provided in brackets.

# ANNEX A RELIABILITY DATA BASE FOR ALWR PRAS

## Table A1-2 INITIATOR CATEGORIES DELETED FROM CONSIDERATION FOR THE ALWR

|     | EPRI Category                             | Reason for Deletion                                                                                                                          |  |
|-----|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| BWR |                                           |                                                                                                                                              |  |
| 6.  | Closure of one main-steam isolation valve | Reactor would not necessarily trip on closure of one valve [3.5.4.A.2].                                                                      |  |
| 16. | Trip of one recirculation<br>pump         | Plant must be designed not to trip for this event [3.5.3.D.4].                                                                               |  |
| 21. | Loss of a feedwater heater                | Loss of a single train must not cause a trip [2.4.2.A.4].                                                                                    |  |
| 23. | Trip of a feed or conden-<br>sate pump    | Loss of a single train will not cause a trip [2.4.2.4.4].                                                                                    |  |
| 25. | Feed increasing flow during startup       | New electric-driven feed pumps should eliminate                                                                                              |  |
| 26. | Feed decreasing flow<br>during startup    | New electric-driver: feed pumps would likely<br>eliminate this as a trip concern.                                                            |  |
| 28. | Rod withdrawal at startup                 | Event has limited impact and frequency low<br>enough that there are no occurrences.                                                          |  |
| 36. | Manual scram                              | This category includes many non-significant tran-<br>sients, such as test of the scram system when<br>lowering power for a scheduled outage. |  |
| PWR |                                           |                                                                                                                                              |  |
| 23. | Loss of condensate pumps<br>(one loop)    | Plant must be designed not to trip for this event [3.4.2.A.4].                                                                               |  |
| 36. | Manual scram                              | This category includes many non-significant tran<br>sients, such as test of the scram system when<br>lowering power for a scheduled outage.  |  |
| 41. | Fire within plant                         | Fires will be considered separately, as external initiating events.                                                                          |  |

## **RELIABILITY DATA BASE FOR ALWR PRAS**

The data base developed by the institute for Nuclear Power Operations (INPO) for reactor trips was then reviewed to determine the number of events that have occurred for the remaining categories. The data base covers the period from 1984 to the present (i.e., through August, 1988), and was judged to provide the most up-to-date and representative summary of current operating experience for the more frequent types of tansients. The frequencies (per reactor-year) are as follows:

| Event          |                        | Frequency (/reactor-year) |  |
|----------------|------------------------|---------------------------|--|
| BWR            |                        |                           |  |
| T1             | Turbine trip           | 2.3                       |  |
| T <sub>2</sub> | Loss of main condenser | 0.49                      |  |
| T <sub>3</sub> | Loss of feedwater      | 0.37                      |  |
| PWR            |                        |                           |  |
| Tı             | Reactor/turbine trip   | 2.8                       |  |
| T <sub>2</sub> | Loss of main feedwater | 0.46                      |  |
|                |                        |                           |  |

For other, less frequent initiators, the INPO data base was judged not to cover a sufficient period of operating experience to provide an adequate basis for quantification. For both the advanced PWR and the advanced BWR, the frequency of the loss of normal off-site power is estimated in the next section to be 0.035/yr. For the loss of a major ac power bus (event Ts for both plants), the frequency is estimated based on extending the hourly failure rate for such a bus over a year (accounting for the capacity factor of 87% for the unit):

•(T5) =(2.0 x 10-7/hr)(8760 hr)(0.87)

- 1.5 x 10-3/yr

For LOCAs and the steam-generator tube rupture, the frequencies were estimated based on available information. Although there have been no pipe ruptures that have constituted LOCAs in either PWRs or BWRs, there have been some operational events that are similar in nature to small LOCAs. The evidence used to characterize the frequencies of these events was as follows:

- BWR: no large LOCAs 2 equivalent small LOCAs 390 plant-years of relevant experience
- PWR: no large or intermediate LOCAs 2 equivalent small LOCAs 3 steam-generator tube ruptures 1 steamline break 660 plant-years of relevant experience

# ANNEX A RELIABILITY DATA BASE FOR A! WR PRAS

For the cases of the large (and intermediate) LOCAs, the frequencies were estimated based on the  $\chi^2$  variate at the 50% cumulative probability level, using the following expression:

$$\phi(A) = \frac{\chi_{50}^{c}(2n+1)}{2T}$$

The frequencies of the LOCA initiators were therefore calculated as follows:

BWR

 $(A) = \frac{0.455}{2.390}$ = 5.8 x 10<sup>-4</sup>/yr = 5.1 x 10<sup>-3</sup>/yr

PWR

$$\Phi(A) = \Phi(S_1) = \frac{0.455}{2 \cdot 660} \qquad \Phi(S_2) = \frac{2}{660} \\ = 3.4 \times 10^{-4}/\text{yr} \qquad = 3.0 \times 10^{-3}/\text{yr} \\ \Phi(R) = \frac{3}{660} \qquad \Phi(T_4) = \frac{1}{660} \\ = 4.5 \times 10^{-3}/\text{yr} \qquad = 1.5 \times 10^{-3}/\text{yr} \\ \end{tabular}$$

The results for all initiating events for both plants are summarized in Table A1-3. It should be noted that the ALWR requirements specify that the design result in a total frequency of reactor trips of not more than 1.0 per year, and that the frequencies presented in Table A1-3 exceed that figure for both types of plant. The nature of this particular design requirement is such that it will not be possible to demonstrate conclusively that it has been met in the absence of actual operating experience. The reliance on recent experience of current generation plants, with trip frequencies reduced to reflect specific design requirements and other considerations, is considered to be the most appropriate approach to the development of initiator frequencies for the PRAs for the ALWRs.

# **RELIABILITY DATA BASE FOR ALWR PRAS**

| Event          | Description                           | Suggested<br>Frequency |
|----------------|---------------------------------------|------------------------|
| BWR            |                                       |                        |
| T1             | Turbine trip                          | 2.3                    |
| T2             | Loss of main condenser                | 0.49                   |
| Тз             | Loss of feedwater                     | 0.37                   |
| T4             | Loss of normal offsite power*         | 0.035                  |
| T5             | Loss of a major ac power bus          | 1.5 x 10 <sup>-3</sup> |
| A              | Large loss-of-coolant accident        | 5.8 × 10 <sup>-4</sup> |
| s              | Small loss-of-coolant accident        | 5.1 x 10 <sup>-3</sup> |
| PWR            |                                       |                        |
| T1             | Reactor/turbine trip                  | 2.8                    |
| T2             | Loss of main feedwater                | 0.46                   |
| T <sub>3</sub> | Loss of normal offsite power*         | 0.035                  |
| T4             | Steamline break                       | 1.5 x 10 <sup>-3</sup> |
| T5             | Loss of a major ac power bus          | 1.5 x 10 <sup>-3</sup> |
| A              | Large loss-of-coolant accident        | 3.4 x 10 <sup>-4</sup> |
| S1             | Intermediate loss-of-coolant accident | 3.4 x 10 <sup>-4</sup> |
| S2             | Small loss-of-coolant accident        | $3.0 \times 10^{-3}$   |
| R              | Steam-generator tube rupture          | 6.1 x 10 <sup>-3</sup> |

Table A1-3 SUGGESTED INITIATOR FREQUENCIES FOR ALWRS

\* For total loss of off-site power, the conditional unavailability of the reserve supply (0.22) must also be multiplied by this value. In addition, for the advanced PWR the frequency of demand for emergency power must also reflect the conditional unavailability of the full-load rejection capability.

## **RELIABILITY DATA BASE FOR ALWR PRAS**

#### A2 Loss of Off-site Power

Because of the potential importance of sequences involving failures of off-site and on-site ac power, it was considered desirable to examine the available sources of information to obtain the most appropriate characterization of the frequency of losses of off-site power as initiating events, as well as the conditional probability of restoring off-site power as a function of time following the event. NSAC/144 (Ref. 4) contains an excellent summary of all of the partial and complete losses of off-site power that have occurred at nuclear power plants through 1988, and is the most up-to date source of information available in this area. However, the treatment of some events required some modification in order to ensure that the data are applied in a manner consistent with the nature of the models in a PRA for the ALWR designs.

Chapter 11 of the Requirements Document provides requirements for the arrangement of off-site power supplies that go beyond the features generally found in current-generation plants. Among those features likely to be most important for the PRAs for ALWRs are the following:

- The use of a generator-output breaker is specified so that, upon tripping of the main turbine-generator, off-site power is continuously supplied from the main switchyard via the auxiliary transformers, with no switching required.
- A reserve transformer must be provided that is fed from a separate substation that
  is, to the extent practical, independent of the portion of the grid feeding the main
  switchyard. If possible, the feed to the reserve transformer is to be underground,
  providing further protection against severe-weather phenomena. The reserve
  transformer would normally be in a standby mode and, upon deenergization of
  the buses, would pick up the loads before a signal is generated to start the emergency diesel generators.
- For the advanced PWR, a full-load rejection capability is required. Therefore, upon loss of the normal off-site power supply, the reactor and main turbine-generator should run back to a nominal power level sufficient to continue to supply the plant auxiliary loads. For the advanced BWR, the ability to sustain operation following a loss of load up to 40% of full power is specified.



## **RELIABILITY DATA BASE FOR ALWR PRAS**

These features combine to present an arrangement that is potentially much more reliable than might be reflected in a generic assessment of operating experience for current-generation plants. For current plants, it is required that two different off-site supplies to plant loads be provided. However, this requirement is met in many different ways by different plants. For example, some plants have two different supplies from the same main switchyard. Others have transformers fed from two different switchyards on-site, but with substantially less independence between the switchyards than is called for for the ALWRs. Only one existing plant has a full-load rejection capability that has been successfully used. For some plants, the auxiliary transformer is deener-gized upon a plant trip, and switching to an alternative transformer is required. Still other plants normally use the startup transformer to supply some or all plant loads during normal operation. While this reduces the potential for a loss of power following a plant trip, it also limits the ability to use the main switchyard for auxiliary loads in the event that the switchyard feeding the startup transformer is lost.

Therefore, it was necessary to examine the events in NSAC/144 in more detail in order to assess their relationships to the features required for the ALWRs. The first step was to reclassify the events according to the following factors:

- Whether or not the event corresponded to a loss of the normal off-site supply for an ALWR;
- Whether or not a supply at least roughly analogous to the reserve transformer was provided, and whether or not the event constituted a loss of this equivalent reserve supply alone or in addition to the loss of normal power; and
- Whether or not the event itself could have precluded the use of full-load rejection, if it had been provided (e.g., due to a failure in the step-up or auxiliary transformer).

In general, the switchyard connected to the main generator was considered analogous to the main switchyard for the ALWR, and if a supply was also provided from a separate (although not necessarily independent) switchyard, it was considered to be analogous to the ALWR's reserve transformer.

#### **RELIABILITY DATA BASE FOR ALWR PRAS**

Only the experience for the ten years, 1978 through 1988, was examined. This was done primarily to reflect improvements in off site power reliability that have been exhibited by current plants in recent years, as a result of upgrading switchyards and off-site grids. The reclassification of the events is provided as Table A2-1. The table also includes the original NSAC/144 classifications for reference purposes. These categories are as follows:

- 1. No off-site power available and unit trip;
- Loss of backup off-site power, but if on line, the unit remained connected to the normal off-site system and the plant received auxiliary power from the unit transformer or its equivalent; and
- 3. Loss of normal off-site power but backup off-site power available.

It should be noted that the experience for two plants was deleted from the data base. The two losses of off-site power that have occurred at Palo Verde were determined to be due to a unique arrangement and plant-specific switching considerations, and were judged not to apply directly to the consideration of loss of off-site power for the ALWR. Therefore, both the events and the operating years were removed from the data base. The other plant that was not included was Turkey Point. Turkey Point had previously experienced a number of unique problems with off-site power, but has taken substantial steps to resolve them. The limited experience since these steps were taken indicates that they appear to have been successful. Therefore, it was judged that the plant was not representative for the ALWR, and the corresponding experience for Turkey Point was also removed.

The relevant results of the data review are as follows:

- In approximately 630 site-years, there have been 22 events corresponding to loss
  of normal off-site power, for an annual frequency of 0.035.
- Of the 22 events, the failures that occurred would have precluded the use of fullload rejection in 5 cases; this results in a contribution to the conditional unavailability of full-load rejection of 0.23 (which does not include the probability that full-load rejection itself would not function when demanded).
- Of the 22 events, 18 occurred at sites at which there was a source roughly analogous to the reserve transformer for the ALWRs. Of these 18, there were 4 events in which the reserve feed was also unavailable. This yields a contribution to the conditional unavailability of the reserve source of 0.22 (which does not include unavailability of the transformer itself or failure of breakers, etc.).

| Plant                | Date     | NSAC<br>category | Loss of<br>normal<br>off-site power? | Full-load<br>rejection<br>precluded? | Site has<br>reserve<br>transformer? | Loss of<br>reserve<br>power? | Duration |
|----------------------|----------|------------------|--------------------------------------|--------------------------------------|-------------------------------------|------------------------------|----------|
| Arkansas Nuclear One | 4/7/80   | 3                | yes                                  | no                                   | yes                                 | no                           | 0:22     |
|                      | 6/24/80  | 3                | yes                                  | no                                   | yes                                 | no                           | unknown  |
| Browns Ferry         | 3/1/80   |                  | no                                   | -                                    | yes                                 | yes                          | unknown  |
| Calvert Cliffs       | 7/23/87  | 1                | ves                                  | no                                   | yes                                 | yes                          | 1:58     |
| Connecticut Yankee   | 8/1/84   | 1                | no                                   | -                                    | yes                                 | no                           | -        |
| Cook                 | 2/1/86   | 3                | yes                                  | yes                                  | yes                                 | no                           | unknown  |
| Cooper               | 1/29/84  | 3                | yes                                  | yes                                  | yes                                 | no                           | 1:49     |
| Crystal River-3      | 6/16/81  | 3                | no                                   | -                                    | yes                                 | yes                          | unknown  |
|                      | 2/28/84  | 3                | no                                   | -                                    | yes                                 | yes                          | 0:00:05  |
| Davis-Besse          | 10/15/79 | 1                | yes                                  | yes                                  | no                                  | -                            | 0:26     |
| Diablo Canyon        | 7/17/88  | 1                | no                                   | -                                    | yes                                 | yes                          | 0:38     |

#### Table A2-1 SUMMARY OF EVENTS INVOLVING LOSSES OF OFF-SITE POWER\*

\* This summary is based on information provided in NSAC/144 for events i the 10 years, 1979 through 1988.

•



Table A2-1 SUMMARY OF EVENTS INVOLVING LOSSES OF OFF-SITE POWER\*

| Plant          | Date    | NSAC<br>category | Loss of<br>normal<br>off-site power? | .5ull-load<br>rejection<br>precluded? | Site has<br>reserve<br>transformer? | Loss of<br>reserve<br>power? | Duration |
|----------------|---------|------------------|--------------------------------------|---------------------------------------|-------------------------------------|------------------------------|----------|
| Dresden        | 8/16/85 | 1                | cu                                   | -                                     | yes                                 | no                           | -        |
| Farley         | 10/8/83 | 1                | no                                   | -                                     | yes                                 | yes                          | 2:45     |
| Ft. St. Vrain  | 5/17/83 | 1                | yes                                  | no                                    | no                                  | -                            | 1:45     |
| Ginna          | 4/18/81 | 2                | no                                   | -                                     | yes                                 | yes                          | unknown  |
| Indian Point-2 | 6/3/80  | 1                | no                                   | -                                     | yes                                 | yes                          | 1:45     |
| Indian Point-2 | 10/4/83 | 3                | no                                   | -                                     | yes                                 | yes                          | 0:15     |
| Indian Point-3 | 7/12/84 | 3                | yes                                  | yes                                   | yes                                 | no                           | unknown  |
| Maine Yankee   | 4/25/83 | 2                | no                                   | -                                     | yes                                 | yes                          | 2:45     |
|                | 7/2/83  | 2                | no                                   | -                                     | yes                                 | yes                          | 0:04     |
| McGuire        | 8/21/84 | 1                | yes                                  | no                                    | no                                  | -                            | 0:20     |
| Millstone      | 9/27/85 | 1                | yes                                  | no                                    | yes                                 | yes                          | 3:31     |
| Monticello     | 4/27/81 | 1                | no                                   | -                                     | yes                                 | no                           | -        |

| Plant           | Date     | NSAC<br>category | Loss of<br>normal<br>off-site power? | Full-load<br>rejection<br>precluded? | Site has<br>reserve<br>transformer? | Loss of<br>reserve<br>power? | Duration |
|-----------------|----------|------------------|--------------------------------------|--------------------------------------|-------------------------------------|------------------------------|----------|
| Nine Mile Point | 2/7/82   | 2                | no                                   | -                                    | yes                                 | yes                          | 0:00:10  |
|                 | 12/26/88 | 1                | no                                   | -                                    | yes                                 | yes                          | 0:00:00  |
| Oyster Creek    | 11/14/83 | 2                | no                                   | -                                    | yes                                 | yes                          | 4:00     |
| Palisades       | 7/14/87  | 1                | no                                   | -                                    | yes                                 | yes                          | 7:26     |
| Pilgrim         | 7/27/79  | 3                | yes                                  | no                                   | yes                                 | no                           | 0:14     |
|                 | 8/28/79  | 3                | yes                                  | no                                   | yes                                 | no                           | unknown  |
|                 | 10/12/82 | 3                | yes                                  | no                                   | yes                                 | no                           | 11:33    |
|                 | 2/13/83  | 3                | yes                                  | no                                   | yes                                 | no                           | unknown  |
|                 | 11/19/86 | 3                | yes                                  | no                                   | yes                                 | no                           | 3:14     |
|                 | 12/23/86 | 3                | yes                                  | no                                   | yes                                 | no                           | 0:27     |
|                 | 11/12/87 | 1                | yes                                  | no                                   | yes                                 | yes                          | 11:00    |
| Prairie Island  | 7/15/80  | 1                | yes                                  | yes                                  | yes                                 | yes                          | 1:02     |
| Quad Cities     | 6/22/82  | 3                | no                                   | -                                    | yes                                 | no                           | -        |
| River Bend      | 1/1/86   | 1                | yes                                  | no                                   | no                                  | -01                          | 0:46     |
| Robinson        | 1/28/86  | ,                | no                                   |                                      | yes                                 | yes                          | 1:40     |

#### Table A2-1 SUMMARY OF EVENTS INVOLVING LOSSES OF OFF-SITE POWER\*





Table A2-1 SUMMARY OF EVENTS INVOLVING LOSSES OF OFF-SITE POWER\*

| Plant       | Date     | NSAC<br>category | Loss of<br>normal<br>off-site power? | Full-load<br>rejection<br>precluded? | Site has<br>reserve<br>transformer? | Loss of<br>reserve<br>power? | Duration |
|-------------|----------|------------------|--------------------------------------|--------------------------------------|-------------------------------------|------------------------------|----------|
| San Onofre  | 11/22/80 | 1                | yes                                  | no                                   | yes                                 | no                           | 0:00:15  |
|             | 11/21/85 | 1                | no                                   | -                                    | yes                                 | yes                          | 0:04     |
| Susquehanna | 7/15/84  | 3                | yes                                  | no                                   | yes                                 | no                           | unknown  |
|             | 7/26/84  | 1                | -                                    | -                                    | (intentional test)                  | -                            | - 1      |
| WNP-2       | 1/31/85  | 3                | yes                                  | no                                   | yes                                 | no                           | unknown  |
| Totals      |          |                  | 22                                   | 5                                    |                                     | 20                           | -        |

There were an additional 16 events that involved loss of only the reserve feed, and this information could be used to estimate an additional unavailability contribution. However, because the average duration of these outages is less than 2 hours, this contribution is very small compared to the likelihood of failure in common with the normal supply.

Another point worth noting is the potential that the failure mode might be of such a nature that it could affect both the normal and reserve feeds, as well as preclude use of the full-load rejection capability. Such an event might be postulated, for example, due to the propagation of some bus fault that did not clear before the reserve source attempted to close in. In the data base, there was one event that involved failure of both sources and that would have precluded the use of full-load rejection. The conditional unavailability of both full-load rejection and the reserve source based on this limited data would be 0.056. This compares very favorably to the combined conditional probabilities obtained when treating the full-load rejection and reserve source as independent  $(0.22 \times 0.23 = 0.051)$ . This provides some level of check on this aspect of the data treatment.

Finally, the times reported for initial recovery of off-site power were evaluated to derive a distribution of non-recovery probability as a function of time. In examining the recovery times, it was noted that, for the four events involving a loss of both the normal and reserve supply, three involved severe-weather phenomena away from the site (i.e., hurricane, tornado, etc.). Furthermore, the recovery times for these four events were all at or above the average recovery time for all events considered together. Therefore, the guestion of what data constituted an appropriate set to use for analysis of recovery of a total loss of off-site power arose. It was concluded that the four data points alone were not sufficient to support a recovery-time distribution. The use of only the recovery times for events involving severe weather was also considered. However, that distribution is strongly affected by two long events (both of which occurred at Pilgrim), neither of which involved a loss of the reserve source. In addition, the requirements for the reserve feed should tend to reduce the effects of severa-weather events somewhat, although it is difficult to characterize the degree to which this will be realized. Finally, the recovery-time distribution for all events and that for only weather-related events are relatively close to each other in probability (within a factor of two). Therefore, it was decided to develop a single recovery-time distribution to be used for all losses of off-site power.

The resulting distribution is provided as Table A2-2. Entries for times beyond 12 hours are taken from a curve fit based on a gamma distribution, which has previously been shown to provide a relatively good fit to these data (Ref. 5).

It should be pointed out that this data treatment is useful only for considering events initiated from power operation. During cold shutdown, and especially during extended refueling outages, less stringent restrictions regarding the outages of transformers and other key equipment typically apply; this could correspond to increased frequency of total losses of off-site power and/or longer durations of the outages.

Ĵ.

0

.

#### RELIABILITY DATA BASE FOR ALWR PRAS

Two other points are also important. First, this data treatment may be somewhat conservative, in the sense that the degree of independence for the off-site sources for the ALWRs is greater than that generally found for current sites. Furthermore, it is reasonable to assume that an actual advanced reactor will employ grid connections comparable to the better and more recent of the current-generation plants. Therefore, overall, this treatment of the available data is considered to be appropriate.

#### A3 COMPONENT FAILURE DATA

-

As a result of the desire to recommend a consistent set of reliability data to be used in the ALWR PRAs, several data sources were reviewed, and a representative set of failure rates was compiled. For each component type and failure mode, the failure rates were extracted from the available sources, and a suitable value was selected based on judgment regarding applicability to the anticipated ALWR designs. The primary sources of generic data examined included the following:

- The Oconee PRA (Ref. 6), whose generic data base represents the synthesis of data from a variety of generic sources;
- The Seabrook Probabilistic Safety Study (PSS) (Ref. 7), which reflects both earlier generic sources such as those that led to the Oconee PRA data base, and detailed data from a number of individual plants;
- Data estimated from licensee-event reports, and reported in NUREG/CR-1363 for valves (Ref. 8), NUREG/CR-1205 for pumps (Ref. 9), and NUREG/CR-1362 for diesel generators (Ref. 10);
- Additional data complied for diesel generators and reported in NUREG/CR-2989 (Ref. 11);

## RELIABILITY DATA BASE FOR ALWR PRAS

| Time (hr) | Probability of not<br>recovering power | Time (hr) | Probability of not<br>recovering power |
|-----------|----------------------------------------|-----------|----------------------------------------|
| 0.5       | 0.61                                   | 13        | 0.013                                  |
| 1         | 0.54                                   | 14        | 9.1 x 10 <sup>-3</sup>                 |
| 2         | 0.32                                   | 15        | 6.1 x 10 <sup>-3</sup>                 |
| 3         | 0.25                                   | 16        | 4.1 x 10 <sup>-9</sup>                 |
| 4         | 0.18                                   | 17        | 2.7 x 10 <sup>-3</sup>                 |
| 5         | 0.14                                   | 18        | 1.8 x 10 <sup>-3</sup>                 |
| 6         | 0.14                                   | 19        | 1.2 x 10 <sup>-3</sup>                 |
| 7         | 0.14                                   | 20        | 7.5 x 10 <sup>-4</sup>                 |
| 8         | 0.11                                   | 21        | 4.8 × 10 <sup>-4</sup>                 |
| 9         | 0.11                                   | 22        | 3.1 x 10 <sup>-4</sup>                 |
| 10        | 0.11                                   | 23        | 1.9 x 10 <sup>-4</sup>                 |
| 11        | 0.071                                  | 24        | 1.3 x 10 <sup>-4</sup>                 |
| 12        | 0.019                                  |           |                                        |

#### Table A2-2 CUMULATIVE NON-RECOVERY PROBABILITIES

- The data for diesel generators reported in NSAC/108 (Ref. 12);
- The data base complied for the Accident Sequence Evaluation Program (Ref. 13), which is based largely on data from the Reactor Safety Study (Ref. 14);
- The data provided for the Northeast Utilities system, as reported in the draft version of the ALWR PRA Key Assumptions and Groundrules Document (Ref. 15);
- Military data for non-nuclear installations reported in NPRD-2 (Ref. 16);
- The data for some electrical components and instrumentation reported in IEEE-500 (Ref. 17);
- The Browns Ferry PRA (Ref. 18);
- The PSA Procedures Guide (Ref. 19);
- . The elicitation of expert opinion obtained for NUREG-1150 (Ref. 20); and
- Data collected by Ontario Hydro for combustion turbine-generators (Ref. 21).

In addition, raw data were extracted from available sources for several specific plants. These sources included the following:

- The plant-specific experience summarized in the Oconee PRA (Ref. 6);
- The data reported for Indian Point Units 2 and 3 in the Indian Point PSS (Ref. 22);
- The operating experience for Zion reported in the Zion PSS (Ref. 23);
- Experience described for Millstone in a recent paper (Ref. 24);
- . The experience for Browns Ferry reported in the Browns Ferry PRA (Ref. 18);
- The data compiled for a particular PWR for which a PRA is currently underway (designated as PWR X), and

#### **RELIABILITY DATA BASE FOR ALWR PRAS**

 The evidence of relief-valve reliability for LaSalle provided to the Risk Methods Integration and Evaluation Program (Ref. 25).

It is recognized that there is overlap among some of these data sources, and that none (with the possible exception of NPRD-2) is completely independent of all of the others. An attempt was made to take these factors into account in selecting the recommended values. The values extracted from surveying these sources are tabulated in the forms provided at the end of this annex. The results are summarized in Table A3-1. For each component type and failure mode, a reference is provided to the entry in the survey sheets.

It was also judged to be desirable to provide suggested values to be used for maintenance unavailabilities. A limited survey was conducted of available PRAs, and maintenance unavailabilities were estimated on a train level for selected systems. In addition to the sources noted above for failure data, some maintenance unavailabilities for BWRs were extracted from the Shoreham PRA (Ref. 26). The maintenance unavailabilities are summarized in Table A3-2 for BWRs and Table A3-3 for PWRs.

#### A4 COMMON-CAUSE FACTORS

Common-cause factors were evaluated according to the procedures presented in the EPRI report NP-5613 (Ref. 27). This procedure involves reviewing specific events that have occurred to determine whether or not similar events could occur at the plant of interest. Common-cause factors are then estimated from the relative frequencies of multiple failures compared to overall failures, including independent faults. The events summarized in EPRI NP-3967 (Ref. 28) served as the input data base for the review. In this assessment, the multiple-Greek letter approach was utilized to obtain common-cause parameters for failure of component combinations of interest. The systems analyst must select the component groups to which the common-cause factors should be applied.

| Component                          | Failure Mode                  | Failure Rate                                             | Survey |
|------------------------------------|-------------------------------|----------------------------------------------------------|--------|
| Motor-operated valve               | Falls to operate on<br>demand | 4.0 x 10 <sup>-3</sup> /d                                | ۱      |
|                                    | Transfers closed              | 1.4 x 10 <sup>-7</sup> /hr                               | 2      |
| Air-operated valve                 | Fails to operate on<br>demand | 2.0 x 10 <sup>-3</sup> /d                                | 3      |
|                                    | Transfers closed              | 1.5 x 10 <sup>-7</sup> /hr                               | 4      |
| Check valve (other<br>than stop)   | Fails to operate on<br>demand | 2.0 x 10 <sup>-4</sup> /d                                | 5      |
|                                    | Transfers closed              | 2.0 x 10 <sup>-7</sup> /hr                               | 6      |
|                                    | Reverse leakage (gross)       | 6.0 x 10 <sup>-7</sup> /hr                               | 7      |
| Stop-check valve                   | Fails to operate on<br>demand | 1.0 x 10 <sup>-3</sup> /d                                | 8      |
|                                    | Transfers closed              | 2.0 x 10 <sup>-7</sup> /hr<br>6.0 x 10 <sup>-7</sup> /hr | 9      |
|                                    | Reverse leakage (gross)       |                                                          | 10     |
| Check valve                        | Internal rupture              | 5.0 x 10 <sup>-9</sup> /nr                               | 11     |
| Manual valve                       | Plugs/transfers closed        | 3.7 x 10 <sup>-8</sup> /hr                               | 12     |
| Pressurizer safety valve<br>(PWR)  | Fails to open on<br>demand    | 1.0 x 10 <sup>-3</sup> /d                                | 13     |
|                                    | Fails to reclose              | 7.0 x 10 <sup>-3</sup> /d                                | 14     |
| Safety/relief valve<br>(BWR)       | Fails to open on<br>demand    | 6.0 x 10 <sup>-3</sup> /d                                | 15     |
|                                    | Fails to reclose              | 6.5 x 10 <sup>-3</sup> /d                                | 16     |
| Pilot-operated relief valve        | Fails to open on<br>demand    | 7.0 x 10 <sup>-3</sup> /d                                | 17     |
|                                    | Fails to reclose              | 2.5 x 10 <sup>-2</sup> /d                                | 18     |
| Motor-driven pump (all types)      | Fails to start on demand      | 2.0 x 10 <sup>-3</sup> /d                                | 19     |
|                                    | Fails to run                  | 2.5 x 10 <sup>-5</sup> /hr                               | 20     |
| Motor-driven pump<br>(LPI/RHR)     | Fails to start on demand      | 2.3 x 10 <sup>-3</sup> /d                                | 21     |
|                                    | Fails to run                  | 1.3 x 10 <sup>-5</sup> /hr                               | 22     |
| Motor-driven pump<br>(safety inj.) | Fails to start on demand      | 1.0 x 10 <sup>-3</sup> /d                                | 23     |
|                                    | Fails to run                  | 5.0 x 10 <sup>-5</sup> /hr                               | 24     |

#### Table A3-1 COMPONENT FAILURE DATA

| Survey Component Failure Mode Failure Rate Entry |                                          |                                                         |          |  |  |  |  |
|--------------------------------------------------|------------------------------------------|---------------------------------------------------------|----------|--|--|--|--|
| Component                                        | Failure Mode                             | Failure Hate                                            | Entry    |  |  |  |  |
| Motor-driven pump<br>(emerg. feed)               | Falls to start on demand                 | 3.0 x 10 <sup>-3</sup> /d                               | 25       |  |  |  |  |
| (                                                | Fails to run                             | 1.5 x 10 <sup>-4</sup> /hr                              | 26       |  |  |  |  |
| Motor-driven pump<br>(service water)             | Fails to start on demand                 | 2.4 x 10 <sup>-3</sup> /d                               | 27       |  |  |  |  |
|                                                  | Fails to run                             | 3.2 x 10 <sup>-5</sup> /hr                              | 28       |  |  |  |  |
| Motor-driven pump<br>(comp. cooling)             | Fails to start on demand                 | 1.3 x 10 <sup>-3</sup> /d                               | 29       |  |  |  |  |
|                                                  | Fails to run                             | 5.0 x 10 <sup>-6</sup> /hr                              | 30       |  |  |  |  |
| Motor-driven pump<br>(BWR CRD)                   | Fails to start on demand                 | 2.4 x 10 <sup>-3</sup> /d                               | 31       |  |  |  |  |
|                                                  | Fails to run                             | 2.4 x 10 <sup>-6</sup> /hr                              | 32       |  |  |  |  |
| Motor-driven pump<br>(cont. spray)               | Fails to start on demand                 | 5.0 x 10 <sup>-3</sup> /d                               | 33       |  |  |  |  |
|                                                  | Fails to run                             | 5.0 x 10 <sup>-5</sup> /hr                              | 34       |  |  |  |  |
| Turbine-driven pump<br>(AFW)                     | Fails to start on demand                 | 1.5 x 10 <sup>-2</sup> /d                               | 35       |  |  |  |  |
|                                                  | Fails to run                             | 3.0 x 10 <sup>-4</sup> /hr                              | 36       |  |  |  |  |
| Turbine-driven pump<br>(RCIC)                    | Fails to start on demand                 | 2.0 x 10 <sup>-2</sup> /d                               | 37       |  |  |  |  |
|                                                  | Fails to run                             | 4.0 x 10 <sup>-4</sup> /hr                              | 38       |  |  |  |  |
| Diesel-driven pump                               | Fails to start on demand                 | $2.0 \times 10^{-2}/d$                                  | 39       |  |  |  |  |
|                                                  | Fails to run                             | 1.0 x 10-4/hr                                           | 40       |  |  |  |  |
| Motor-driven air<br>compressor                   | Fails to start on demand                 | 1.0 x 10 <sup>-2</sup> /d                               | 41       |  |  |  |  |
|                                                  | Fails to run                             | 1.0 x 10 <sup>-4</sup> /hr                              | 42       |  |  |  |  |
| Blower/ventilation                               | Fails to start on demand<br>Fails to run | 6.0 x 10 <sup>-4</sup> /d<br>1.0 x 10 <sup>-5</sup> /hr | 43<br>44 |  |  |  |  |
| Room chiller unit                                | Fails to start on demand                 | 8.1 x 10 <sup>-3</sup> /d                               | 45       |  |  |  |  |
|                                                  | Falls to run                             | 5.0 x 10 <sup>-6</sup> /hr                              | 46       |  |  |  |  |
| Motor-driven strainer                            | Fails to start on demand                 | 2.7 x 10 <sup>-5</sup> /d                               | 47       |  |  |  |  |
|                                                  | Fails to run                             | 5.0 x 10 <sup>-6</sup> /hr                              | 48       |  |  |  |  |
| Filter/strainer                                  | Plugs                                    | 2.0 x 10 <sup>-6</sup> /hr                              | 49       |  |  |  |  |

Table A3-1 COMPONENT FAILURE DAT

#### Table A3-1

#### COMPONENT FAILURE DATA

| Failure Mode                             | Failure Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fails while operating (leaks, plugs)     | 1.0 x 10 <sup>-6</sup> /hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Fails catastrophically                   | 1.0 x 10 <sup>-7</sup> /hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Fails to start and load<br>Fails to run  | 1.4 x 10 <sup>-2</sup> /d<br>2.4 x 10 <sup>-3</sup> /hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52<br>53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Fails to start on demand<br>Fails to run | 2.5 x 10 <sup>-2</sup> /d<br>2.0 x 10 <sup>-6</sup> /hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Fails to provide output<br>on demand     | 5.0 x 10 <sup>-4</sup> /d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Fails to maintain output                 | 7.0 x 10 <sup>-6</sup> /hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Fails to close on<br>demand              | 3.0 x 10 <sup>-4</sup> /d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Opens spuriously                         | 6.0 x 10 <sup>-7</sup> /hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Falls to close on<br>demand              | 4.0 x 10 <sup>-4</sup> /d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Opens spuriously                         | 5.0 x 10 <sup>-7</sup> /hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Fails to continue operat-<br>ing         | 1.2 x 10 <sup>-6</sup> /hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Fails to continue operat-<br>ing         | 7.0 x 10 <sup>-7</sup> /hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Fails to continue operat-                | 8.0 x 10 <sup>-7</sup> /hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Opens spuriously                         | 5.0 x 10 <sup>-7</sup> /hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Fails during operation                   | 2.0 x 10 <sup>-7</sup> /hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Fails during operation                   | 2.0 x 10 <sup>-5</sup> /hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Fails to operate on demand               | 1.0 x 10 <sup>-4</sup> /d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Operates spuriously                      | 6.0 x 10 <sup>-7</sup> /hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Output fails during operation            | 6.0 x 10 <sup>-6</sup> /hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Output fails during operation            | 5.0 x 10 <sup>-6</sup> /hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                          | Fails while operating<br>(leaks, plugs)Fails catastrophicallyFails to start and loadFails to start and loadFails to start on demandFails to runFails to provide output<br>on demandFails to provide output<br>on demandFails to close on<br>demandOpens spuriouslyFails to close on<br>demandOpens spuriouslyFails to close on<br>demandOpens spuriouslyFails to close on<br>demandOpens spuriouslyFails to continue operating<br>ingFails to continue operating<br>ingFails to continue operating<br>ingFails to continue operating<br>opens spuriouslyFails to continue operating<br>operationFails to continue operation<br>ingFails to continue operation<br>ingFails to operate on<br>demand<br>Operates spuriouslyOutput fails during<br>operation<br>Output fails during<br>operation<br>Output fails during | Fails while operating<br>(leaks, plugs) $1.0 \times 10^{-6}/hr$ Fails catastrophically $1.0 \times 10^{-7}/hr$ Fails to start and load $1.4 \times 10^{-2}/d$ Fails to start on demand $2.4 \times 10^{-3}/hr$ Fails to run $2.4 \times 10^{-3}/hr$ Fails to start on demand $2.5 \times 10^{-2}/d$ Fails to run $2.0 \times 10^{-6}/hr$ Fails to provide output $5.0 \times 10^{-4}/d$ on demand $7.0 \times 10^{-6}/hr$ Fails to close on $3.0 \times 10^{-4}/d$ demand $0$ pens spuriouslyOpens spuriously $6.0 \times 10^{-7}/hr$ Fails to close on $4.0 \times 10^{-4}/d$ demand $0$ pens spuriouslyOpens spuriously $5.0 \times 10^{-7}/hr$ Fails to continue operating $7.0 \times 10^{-7}/hr$ ingFails to continue operation $0$ pens spuriously $5.0 \times 10^{-7}/hr$ Fails to continue operation $2.0 \times 10^{-7}/hr$ fails to continue operation $2.0 \times 10^{-7}/hr$ fails to continue operation $2.0 \times 10^{-7}/hr$ fails during operation $2.0 \times 10^{-7}/hr$ Fails to operate on $1.0 \times 10^{-7}/hr$ Fails to operate on $1.0 \times 10^{-7}/hr$ Fails to operate on $1.0 \times 10^{-4}/d$ demand $0$ perates spuriously $0$ perates spuriously $6.0 \times 10^{-7}/hr$ Fails during operation $2.0 \times 10^{-7}/hr$ fails during $6.0 \times 10^{-6}/hr$ operat |

Table A3-1

| COMPONENT FAILURE DATA  |                               |                                                         |                 |  |  |
|-------------------------|-------------------------------|---------------------------------------------------------|-----------------|--|--|
| Component               | Failure Mode                  | Failure Rate                                            | Survey<br>Entry |  |  |
| Temperature transmitter | Output fails during operation | 1.0 x 10 <sup>-6</sup> /hr                              | 73              |  |  |
| Pressure switch         | Falls during operation        | 3.0 x 10 <sup>-7</sup> /hr<br>2.0 x 10 <sup>-4</sup> /d | 74              |  |  |
|                         | Fails to respond on<br>demand | 2.0 x 10 <sup>-4</sup> /d                               | 75              |  |  |
| Level switch            | Falls during operation        | 3.0 x 10 <sup>-7</sup> /hr<br>1.0 x 10 <sup>-5</sup> /d | 76              |  |  |
|                         | Fails to respond on<br>demand | 1.0 x 10 <sup>-5</sup> /d                               | 77              |  |  |

#### Table A3-2

| System                         | Shoreham PRA           | Train Unavailability<br>NUREG/CR-4550 | Value Selected         |
|--------------------------------|------------------------|---------------------------------------|------------------------|
| Reactor-core isolation cooling | 1.1 x 10 <sup>-2</sup> | 3.5 x 10 <sup>-3</sup>                | 4.0 x 10 <sup>-3</sup> |
| High-pressure injection        | 4.0 x 10 <sup>-3</sup> | 3.5 x 10 <sup>-3</sup>                | 4.0 x 10 <sup>-3</sup> |
| Low-pressure injection         | 4.0 x 10 <sup>-3</sup> | 1.9 x 10 <sup>-3</sup>                | 2.0 x 10 <sup>-3</sup> |
| Emergency service water        | 2.0 x 10 <sup>-3</sup> | 1.9 x 10 <sup>-3</sup>                | 2.0 × 10 <sup>-3</sup> |
| Standby-liquid control         | 2.5 x 10 <sup>-3</sup> | 3.5 x 10 <sup>-3</sup>                | 3.0 x 10 <sup>-3</sup> |
| Diesel generator*              | -                      | 6.0 x 10 <sup>-3</sup>                | 6.0 x 10 <sup>-3</sup> |
| Gas turbine-generator**        | ·                      |                                       | 6.8 x 10 <sup>-2</sup> |

#### MAINTENANCE UNAVAILABILITIES FOR THE BWR

#### Table A3-3

|                        | Train Unava            | ilability              |                        |                        |  |
|------------------------|------------------------|------------------------|------------------------|------------------------|--|
| System                 | Oconee<br>PRA          | Seabrook<br>PSS        | NUREG/CR-4550          | Value<br>Selected      |  |
| Turbine-driven AFW     | 3.8 x 10 <sup>-3</sup> | 4.6 x 10 <sup>-3</sup> | 6.0 x 10 <sup>-3</sup> | 5.0 x 10 <sup>-3</sup> |  |
| Motor-driven AFW       | 1.5 x 10 <sup>-3</sup> | 1.8 x 10 <sup>-3</sup> | 1.9 x 10 <sup>-3</sup> | 2.0 x 10 <sup>-3</sup> |  |
| Safety injection       | 6.3 x 10-4             | 1.8 × 10-3             | 1.9 x 10 <sup>-3</sup> | 2.0 x 10 <sup>-3</sup> |  |
| Residual-heat removal  | 2.0 x 10-3             | 2.3 x 10 <sup>-3</sup> | 1.9 x 10 <sup>-3</sup> | 2.0 x 10 <sup>-3</sup> |  |
| Containment spray      | 2.0 x 10 <sup>-3</sup> | 1.8 x 10 <sup>-3</sup> | 1.9 x 10 <sup>-3</sup> | 2.0 x 10 <sup>-3</sup> |  |
| Diesel generator*      | -                      | 4.6 x 10 <sup>-3</sup> | 6.0 x 10 <sup>-3</sup> | 6.0 x 10 <sup>-3</sup> |  |
| Gas turbine-generator* | •                      | -                      | -                      | 6.8 x 10 <sup>-2</sup> |  |

#### MAINTENANCE UNAVAILABILITIES FOR THE PWR

\*The unavailability for diesel generators was taken from NUREG/CR-2989, which was also the source for NUREG/CR-4550.

\*\*Total maintenance unavailability (forced outages plus preventive maintenance) is based on 90 generator years of experience with emergency combustion generators from Ontario Hydro system.

## RELIABILITY DATA BASE FOR ALWR PRAS

| Component                   | Failure Mode   | Number of<br>Failures | Survey<br>Entry        |
|-----------------------------|----------------|-----------------------|------------------------|
| Safety-injection pump       | Fails to start | 2 of 2                | 1.4 x 10-1             |
|                             |                | 2 of 4                | 4.7 x 10-2             |
|                             |                | 3 of 4                | 7.6 x 10 <sup>-3</sup> |
|                             |                | 4 or 4                | 3.6 x 10 <sup>-3</sup> |
|                             | Fails to run   | 2 of 2                | 8.0 x 10-3             |
|                             |                | 2 of 4                | 7.6 x 10 <sup>-3</sup> |
|                             |                | 3 of 4                | 1.7 × 10-4             |
|                             |                | 4 of 4                | 7.4 x 10 <sup>-6</sup> |
| Emergency feedwater pump    | Fails to start | 2 of 4                | 3.0 x 10-2             |
|                             |                | 3 of 4                | 1.3 x 10 <sup>-3</sup> |
|                             |                | 4 of 4                | 4.1 x 10 <sup>-5</sup> |
|                             | Fails to run   | 2 01 4                | 3.0 x 10-3             |
|                             |                | 3 of 4                | 2.6 x 10 <sup>-5</sup> |
|                             |                | 4 of 4                | 7.1 x 10 <sup>-7</sup> |
| Low-pressure injection pump | Fails to start | 2 of 2                | 1.4 x 10 <sup>-1</sup> |
| proven a second party       |                | 2 of 3                | 5.4 x 10 <sup>-2</sup> |
|                             |                | 3 of 3                | 1.4 x 10 <sup>-2</sup> |
|                             | Fails to run   | 2 of 2                | 3.9 x 10 <sup>-2</sup> |
|                             |                | 2 of 3                | 1.9 x 10 <sup>-2</sup> |
|                             |                | 3 of 3                | 1.6 x 10 <sup>-3</sup> |
| Containment-spray pump      | Fails to start | 2 of 2                | 1.3 x 10 <sup>-1</sup> |
|                             | Fails to run   | 2 of 2                | (no evidence)          |
| Service-water/CCW pump      | Fails to start | 2 of 3                | 5.6 x 10 <sup>-2</sup> |
|                             |                | 3 of 3                | 1.7 × 10 <sup>-2</sup> |
|                             |                | 2 of 4                | 3.8 x 10 <sup>-2</sup> |
|                             |                | 3 of 4                | 4.9 x 10 <sup>-3</sup> |
|                             |                | 4 of 4                | $2.2 \times 10^{-3}$   |
|                             | Fails to run   | 2 of 3                | 3.6 x 10 <sup>-2</sup> |
|                             |                | 3 of 3                | 3.9 x 10 <sup>-3</sup> |
|                             |                | 2 of 4                | 2.2 x 10 <sup>-2</sup> |
|                             |                | 3 of 4                | 1.1 x 10 <sup>-3</sup> |
|                             |                | 4 of 4                | 1.8 x 10-4             |

Table A3-4

| Component            | Failure Mode               | Number of<br>Failures | Survey<br>Entry        |
|----------------------|----------------------------|-----------------------|------------------------|
| Motor-operated valve | Fails to operate on demand | 2 of 2                | 6.8 x 10-2             |
|                      |                            | 2 01 3                | 3.2 × 10-2             |
|                      |                            | 3 of 3                | 4.5 x 10-3             |
|                      |                            | 2 of 4                | 2.1 x 10-2             |
|                      |                            | 3 of 4                | 1.4 x 10-3             |
|                      |                            | 4 01 4                | 2.9 x 10-4             |
|                      | Transfers closed           | 2 of 4                | 1.6 x 10-2             |
|                      |                            | 3 of 4                | 8.5 x 104              |
|                      |                            | 4 of 4                | 1.4 x 10-4             |
| Diesel generator     | Fails to start             | 2 of 2                | 3.8 x 10 <sup>-2</sup> |
|                      |                            | 2 of 3                | 1.9 x 10 <sup>-2</sup> |
|                      |                            | 3 of 3                | 1.3 x 10 <sup>-3</sup> |
|                      | Fails to run               | 2 of 2                | 6.8 x 10 <sup>-2</sup> |
|                      |                            | 2 of 3                | 3.2 × 10-2             |
|                      |                            | 3 of 3                | 3.8 x 10 <sup>-3</sup> |
| Dc battery           | Fails on demand            | 2 of 2                | 7.3 x 10 <sup>-2</sup> |
|                      |                            | 2 of 3                | 9.2 × 10-2             |
|                      |                            | 3 of 3                | 1.0 x 10-2             |

#### Table A3-4 (continued) COMMON-CAUSE FACTORS

| 1. Motor-operated<br>Generic Sources |                                                                                        |         | Failure Rate (/d) |
|--------------------------------------|----------------------------------------------------------------------------------------|---------|-------------------|
| NUREG/CR-4550                        |                                                                                        |         | 3.0E-3            |
| NUREG/CR-1363                        |                                                                                        |         | 4.0E-3            |
| Oconee PRA                           |                                                                                        |         | 4.0E-3            |
| Seabrook PSS                         |                                                                                        |         | 4.3E-3            |
| Five plants (below)                  |                                                                                        |         | 4.6E-3            |
| Arithmetic Avera                     | ge                                                                                     |         | 4.0E-3            |
| Geometric Avera                      | age                                                                                    |         | 3.9E-3            |
| Plant-Specific Evic                  | ence                                                                                   |         |                   |
|                                      | Failures                                                                               | Demands | Failure Rate      |
| Oconee                               | 42                                                                                     | 6,725   | 6.2E-3            |
| Zion                                 | 31                                                                                     | 14,677  | 2.1E-3            |
| Indian Point                         | 3                                                                                      | 1,505   | 2.0E-3            |
| Millstone                            | 60                                                                                     | 11,732  | 5.1E-3            |
| PWR X                                | 69                                                                                     | 10,052  | 6.9E-3            |
| Total:                               | 205                                                                                    | 44,691  | 4.6E-3            |
| Value selected:                      | 4.0E-3                                                                                 |         |                   |
| Rationale:                           | Value is representative of both generic data sources and plant-specific failure rates. |         | data sources and  |

| 2. Motor-operated   | valves: transfer close                        | ed                                 |                   |
|---------------------|-----------------------------------------------|------------------------------------|-------------------|
| Generic Sources     |                                               |                                    | Failure Rate (/hr |
| NUREG/CR-4550       |                                               |                                    | 1.3E-7            |
| NUREG/CR-1363       |                                               |                                    | 5.7E-8            |
| NUREG/CR-2815       |                                               |                                    | 2.0E-7            |
| Oconee PRA          |                                               |                                    | 2.3E-7            |
| Seabrook PSS        |                                               |                                    | 9.3E-8            |
| Fourplants (below)  |                                               |                                    | 1.4E-7            |
| Arithmetic Avera    | ige                                           |                                    | 1.4E-7            |
| Geometric Aven      | age                                           |                                    | 1.4E-7            |
| Plant-Specific Evid | ence                                          |                                    |                   |
|                     | Failures                                      | Hours                              | Failure Rate      |
| Oconee              | 0                                             | 1,890,000                          | 1.8E-7            |
| Zion                | 0                                             | 3.220,000                          | 1.0E-7            |
| Indian Point        | 0                                             | 1,429,000                          | 2.3E-7            |
| PWR X               | 1                                             | 817,399                            | 1.2E-6            |
| Total               | 1                                             | 7,356,399                          | 1.4E-7            |
| Value selected:     | 1.4E-7                                        |                                    |                   |
| Rationale:          | Value is representa<br>plant-specific failure | tive of both generic i<br>e rates. | data sources and  |

### ALWR COMPONENT FAILURE DATA SURVEY

| 3. Air-operated valves: failure to operate on | demand            |
|-----------------------------------------------|-------------------|
| Generic Sources                               | Failure Rate (/d) |
| NUREG/CR-4550                                 | 3.0E-3            |
| NUREG/CR-1363                                 | 6.6E-4            |
| Oconse PRA                                    | 9.0E-4            |
| Seabrook PSS                                  | 1.5E-3            |
| Five plants (below)                           | 6.2E-3            |
| Four plants (below, not X)                    | 1.6E-3            |
| Arithmetic Average with X                     | 2.5E-3            |
| Geometric Average with X                      | 1.8E-3            |
| Arithmetic Average without X                  | 1.5E-3            |
| Geometric Average without X                   | 1.3E-3            |

#### Plant-Specific Evidence

|                 | Failures                                                                                                                                                  | Demands | Failure Rate        |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|
| Oconee          | 3                                                                                                                                                         | 1,349   | 2.2E-3              |
| Zion            | 3                                                                                                                                                         | 1,540   | 1.9E-3              |
| Indian Point    | 1                                                                                                                                                         | 1,440   | 6.9E-4              |
| Millistone      | -                                                                                                                                                         |         |                     |
| PWR X           | 35                                                                                                                                                        | 2,433   | 1.4E-2              |
| Total:          | 42                                                                                                                                                        | 6,762   | 6.2E-3              |
| Value selected: | 2.0E-3                                                                                                                                                    |         |                     |
| Rationale:      | Value is consistent with most data sources. PWR repetitive failures in the past that have apparently rected, and are of guestionable applicability for Al |         | pparently been cor- |

### ALWR COMPONENT FAILURE DATA SURVEY

| 4. Air-operated va  | lves: transfer closed                            |                                                                                                                  |                      |
|---------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------|
| Generic Sources     |                                                  |                                                                                                                  | Failure Rate (/hr    |
| NUREG/CR-4550       |                                                  |                                                                                                                  | 1.3E-7               |
| NUREG/CR-1363       |                                                  |                                                                                                                  | 1.0E-7               |
| Oconee PRA          |                                                  |                                                                                                                  | 2.3E-7               |
| Seabrook PSS        |                                                  |                                                                                                                  | 2.7E-7               |
| Four plants (below) |                                                  |                                                                                                                  | 9.0E-8               |
| Arithmetic Avera    | ge                                               |                                                                                                                  | 1.6E-7               |
| Geometric Avera     | age                                              |                                                                                                                  | 1.5E-7               |
| Plant-Specific Evid | ence                                             |                                                                                                                  |                      |
|                     | Failures                                         | Hours                                                                                                            | Failure Rate         |
| Oconee              | 0                                                | 194,000                                                                                                          | 1.7E-6               |
| Zion                | 0                                                | 2,130,000                                                                                                        | 1.6E-7               |
| Indian Point        | 0                                                | 444,000                                                                                                          | 7.5E-7               |
| PWR X               | 0                                                | 954,171                                                                                                          | 3.5E-7               |
| Total               | 0                                                | 3,722,171                                                                                                        | 9.0E-8               |
| Value selected:     | 1.5E-7                                           | in of example source                                                                                             | an and size reflects |
| Rationale:          | Value is representativ<br>plant-specific experie | and the second |                      |

| 5. Check valves (             | other than stop-check):                      | failure to operate | on demand             |
|-------------------------------|----------------------------------------------|--------------------|-----------------------|
| Generic Sources               |                                              |                    | Failure Rate (/d)     |
| NUREG/CR-4550                 |                                              |                    | 1.0E-4                |
| NUREG/CR-1363                 |                                              |                    | 1.1E-4                |
| Oconee PRA                    |                                              |                    | 1.0E-4                |
| Seabrook PSS                  |                                              |                    | 2.7E-4                |
| Five plants (below)           |                                              |                    | 3.4E-4                |
| Arithmetic Avera              | ge                                           |                    | 1.8E-4                |
| Geometric Avera               | age                                          |                    | 1.6E-4                |
| Plant-Specific Evid           | ence                                         |                    |                       |
|                               | Failures                                     | Demands            | Failure Rate          |
| Oconee                        | 1                                            | 6,279              | 1.6E-4                |
| Zion                          | 0                                            | 6,968              | 4.8E-5                |
| Indian Point                  | 0                                            | 1,444              | 2.3E-4                |
| Millstone                     | 3                                            | 3,896              | 7.7E-4                |
| PWR X                         | 3                                            | 1,923              | 1.6E-3                |
| Total                         | 7                                            | 20,510             | 3.4E-4                |
| Value selected:<br>Rationale: | 2.0E-4<br>Value reflects more r<br>perience. | ecent generic data | and plant-specific ex |

| 6. Check valves (                                                                                          | other than stop-chec                           | k): transfer closed                       |                                                                      |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------|
| Generic Sources<br>Oconee PRA<br>Seabrook PSS<br>Two plants (below)<br>Arithmetic Avers<br>Geometric Avers |                                                |                                           | Failure Rate (/hr)<br>2.3E-7<br>1.0E-8<br>9.5E-7<br>4.0E-7<br>1.3E-7 |
| Plant-Specific Evid                                                                                        | ence                                           |                                           |                                                                      |
|                                                                                                            | Failures                                       | Hours                                     | Fallure Rate                                                         |
| Oconee                                                                                                     | 0                                              | 387,000                                   | 8.6E-7                                                               |
| PWR X                                                                                                      | 1                                              | 665,016                                   | 1.5E-6                                                               |
| Total                                                                                                      | 1                                              | 1,052,016                                 | 9.5E-7                                                               |
| Value selected:<br>Rationale:                                                                              | 2.0E-7<br>Rare mode, very<br>from plant-specif | uncertain failure rate; li<br>ic sources. | mited available data                                                 |

| 7. Check valves (   | other than stop-check) | : reverse leakage                           |
|---------------------|------------------------|---------------------------------------------|
| Generic Sources     |                        | Failure Rate (/hr)                          |
| NUREG/CR-1363       |                        | 6.6E-7                                      |
| Seabrook PSS        |                        | 5.4E-7                                      |
| Arithmetic Avera    | ice                    | 6.0E-7                                      |
| Geometric Aven      |                        | 6.0E-7                                      |
| Plant-Specific Evid | ence                   |                                             |
| Not available.      |                        |                                             |
| Value selected:     | 6.0E-7                 |                                             |
| Rationale:          |                        | le. Current expert opinion is that failure  |
|                     | rate for sufficient le | akage to constitute gross rupture is lower. |

|                     | ves: failure to open |                                                    |                   |
|---------------------|----------------------|----------------------------------------------------|-------------------|
| Generic Sources     |                      |                                                    | Failure Rate (/d) |
| NUREG/CR-4550       |                      |                                                    | 1.0E-4            |
| NUREG/CR-1363       |                      |                                                    | 1.1E-4            |
| Oconee PRA          |                      |                                                    | 1.0E-4            |
| Seabrook PSS        |                      |                                                    | 9.1E-4            |
| Two plants (below)  |                      |                                                    | 5.7E-3            |
| Arithmetic Avera    | ge                   |                                                    | 1.4E-3            |
| Geometric Avera     | age                  |                                                    | 3.6E-4            |
| Plant-Specific Evid | ence                 |                                                    |                   |
|                     | Failures             | Demands                                            | Failure Rate      |
| Oconee              | 1                    | 572                                                | 1.7E-3            |
| PWR X               | 5                    | 476                                                | 1.1E-2            |
| Total               | 6                    | 1,048                                              | 5.7E-3            |
| Value selected:     | 1.0E-3               |                                                    |                   |
| Rationale:          |                      | sources did not disting<br>eric sources were there |                   |

| 9. Stop check val             | ves: transfer closed |                                                    |                        |
|-------------------------------|----------------------|----------------------------------------------------|------------------------|
| Generic Sources               |                      |                                                    | Failure Rate (/hr)     |
| Oconee PRA                    |                      |                                                    | 2.3E-7                 |
| Seabrook PSS                  |                      |                                                    | 1.0E-8                 |
| Two plants (below)            |                      |                                                    | 4.9E-7                 |
| Arithmetic Avera              | ge                   |                                                    | 2.4E-7                 |
| Geometric Aven                | age                  |                                                    | 1.1E-7                 |
| Plant-Specific Evid           | ence                 |                                                    |                        |
|                               | Failures             | Hours                                              | Failure Rate           |
| Oconee                        | 0                    | 342,000                                            | 9.7E-7                 |
| PWR X                         | 0                    | 345,047                                            | 9.7E-7                 |
| Total                         | 0                    | 687,047                                            | 4.9E-7                 |
| Value selected:<br>Rationale: |                      | data, no failures in p<br>t with that for other cl | lant-specific evidence |

| 10. Stop check val                                                                                   | ves: reverse leakage |                                                            |
|------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------|
| Generic Sources<br>NUREG/CR-1363<br>Seabrook PSS<br>Arithmetic Avera<br>Geometric Avera              |                      | Fallure Rate (/hr)<br>6.6E-7<br>5.4E-7<br>6.0E-7<br>6.0E-7 |
| Plant-Specific Evid                                                                                  | ence                 |                                                            |
| None available.<br>Value selected: 6.0E-7<br>Rationale: Limited applicable da<br>other check valves. |                      | Value is also consistent with that for                     |
| 11. Check valves:                                                                                    | internal rupture     |                                                            |
| Generic Sources                                                                                      |                      | Failure Rate (/hr)                                         |
| NUREG/CR-5116                                                                                        |                      | 5.0E-9                                                     |
| NUREG/CR-2815                                                                                        |                      | 1.0E-7                                                     |
| Arithmetic Avera                                                                                     |                      | 5.3E-8                                                     |
| Geometric Aven                                                                                       |                      | 2.2E-8                                                     |
| Plant-Specific Evid                                                                                  | ence                 |                                                            |
| None available.<br>Value selected:<br>Rationale:                                                     |                      | ew by experts for NUREG-1150;<br>a very rare failure mode. |

| 12. Manual valves:                                                                                          | plug/transfer closed                            |                    |                                                                                |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------|--------------------------------------------------------------------------------|
| Generic Sources<br>Oconee FRA<br>Seabrook PSS<br>Four plants (below)<br>Arithmetic Avera<br>Geometric Avera |                                                 |                    | Failure Rate (/hr)<br>3.4E-8<br>4.2E-8<br>3.5E-8<br>3.7E-8<br>3.7E-8<br>3.7E-8 |
| Plant-Specific Evid                                                                                         |                                                 |                    |                                                                                |
|                                                                                                             | Failures                                        | Hours              | Fallure Rate                                                                   |
| Oconee                                                                                                      | 1                                               | 3,090,000          | 3.2E-7                                                                         |
| Zion                                                                                                        | 0                                               | 7,870,000          | 4.2E-8                                                                         |
| Indian Point                                                                                                | 0                                               | 8,270,000          | 4.0E-8                                                                         |
| PWR X                                                                                                       | 0                                               | 9,510,241          | 3.5E-8                                                                         |
| Total                                                                                                       | 1                                               | 28,740,241         | 3.5E-8                                                                         |
| Value selected:<br>Rationale:                                                                               | 3.7E-8<br>Data sources in very<br>failure mode. | close agreement, c | despite rare nature of                                                         |

| 13. Pressurizer saf           | ety valves (PWR): ta                 | ilure to open on dem     | and                   |
|-------------------------------|--------------------------------------|--------------------------|-----------------------|
| Generic Sources               |                                      |                          | Failure Rate (/d)     |
| NUREG/CR-1363                 |                                      |                          | 6.2E-3                |
| Oconee PRA                    |                                      |                          | 2.7E-4                |
| Seabrook PSS                  |                                      |                          | 3.3E-4                |
| Two plants (below)            |                                      |                          | 1.5E-2                |
| Arithmetic Avera              | ge                                   |                          | 5.5E-3                |
| Geometric Avera               | ige                                  |                          | 1.7E-3                |
| Plant-Specific Evid           | ence                                 |                          |                       |
|                               | Failures                             | Demands                  | Fallure Rate          |
| Oconee                        | 0                                    | 10                       | 3.3E-2                |
| PWR X                         | 0                                    | 12                       | 2.8E-2                |
| Total                         | 0                                    | 22                       | 1.5E-2                |
| Value selected:<br>Rationale: | 1.0E-3<br>Plant-specific dat<br>ces. | a of limited use, wide r | ange in generic sour- |

| 14. Pressurizer saf                                                                                                                                                                                          | ety valves (PWR):                             | failure to reclose on de                               | mand                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Generic Sources<br>NUREG/CR-4550<br>Ocones PRA (steam<br>Ocones PRA (water<br>Seabrook PSS (stea<br>Seabrook PSS (stea<br>Seabrook PSS (water<br>Two plants (below)<br>Arithmetic Avera<br>Geometric Average | )<br>um)<br>er)<br>age<br>age<br>(steam only) |                                                        | Fallure Rate (/d)<br>1.0E-2<br>4.9E-3<br>1.0E-1<br>2.9E-3<br>1.0E-1<br>1.5E-2<br>3.9E-2<br>1.7E-2<br>8.2E-3 |
| Geometric Average                                                                                                                                                                                            |                                               |                                                        | 1.0E-2                                                                                                      |
| Plant-Specific Evid                                                                                                                                                                                          | ence                                          |                                                        |                                                                                                             |
| Oconee<br>PWR X                                                                                                                                                                                              | Failures<br>0<br>0                            | Demands<br>10<br>12                                    | Failure Rate<br>3.3E-2<br>2.8E-2                                                                            |
| Total                                                                                                                                                                                                        | 0                                             | 22                                                     | 1.5E-2                                                                                                      |
| Value selected:<br>Rationale:                                                                                                                                                                                | 7.0E-3<br>Plant-specific da                   | ata again of limited use.<br>should be eliminated in / |                                                                                                             |
|                                                                                                                                                                                                              |                                               |                                                        |                                                                                                             |
| 15. Safety/relief val                                                                                                                                                                                        | wes (BWR): fail to                            | open on demand                                         |                                                                                                             |
| Generic Sources                                                                                                                                                                                              |                                               |                                                        | Failure Rate (/d)                                                                                           |

| Generic Sources<br>NUREG/CR-1363                                                                    |                             |                         | Failure Rate (/d)<br>7.9E-3          |  |
|-----------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|--------------------------------------|--|
| Plant-Specific Evid<br>Browns Ferry PRA<br>One plant (below)<br>Arithmetic Avera<br>Geometric Avera | ge                          |                         | 8.0E-3<br>3.4E-3<br>6.4E-3<br>6.0E-3 |  |
| Plant-Specific Evid<br>Browns Ferry                                                                 | ence<br>1                   | 290                     | 3.4E-3                               |  |
| Value selected:<br>Rationale:                                                                       | 6.0E-3<br>Value selected is | representative of all s | ources.                              |  |

| 16. Safety/relief val                                                                                                             | ives (BWR): tail to re-                     | close                  |                                                                               |  |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------|-------------------------------------------------------------------------------|--|
| Generic Sources<br>NUREG/CR-4550<br>NUREG/CR-1363<br>Browns Ferry PRA<br>One plant (helow)<br>Arithmetic Avera<br>Geometric Avera |                                             |                        | Fallure Rate (/d)<br>1.0E-2<br>4.5E-3<br>5.0E-3<br>6.9E-3<br>6.6E-3<br>6.3E-3 |  |
| Plant-Specific Evid                                                                                                               |                                             |                        |                                                                               |  |
| Browns Ferry                                                                                                                      | 2                                           | 290                    | 6.9E-3                                                                        |  |
| Value selected:<br>Rationale:                                                                                                     | 6.5E-3<br>Available values re<br>sentative. | aasonably close; value | selected is repre-                                                            |  |

| 17. Pilot-operated r          | elief valves: failure     | to open on demand        |                    |
|-------------------------------|---------------------------|--------------------------|--------------------|
| Generic Sources               |                           |                          | Failure Rate (/d)  |
| Oconee PRA                    |                           |                          | 8.0E-3             |
| Seabrook PSS                  |                           |                          | 4.3E-3             |
| Two plants (below)            |                           |                          | 8.5E-3             |
| Arithmetic Avera              | ge                        |                          | 6.9E-3             |
| Geometric Avera               |                           |                          | 6.6E-3             |
| Plant-Specific Evid           | ence                      |                          |                    |
|                               | Failures                  | Demands                  | Failure Rate       |
| Oconee                        | 0                         | 31                       | 1.1E-2             |
| PWR X                         | 0                         | 8                        | 4.2E-2             |
| Total                         | 0                         | 39                       | 8.5E-3             |
| Value selected:<br>Rationale: | 7.0E-3<br>Sources are gui | te close together, value | is representative. |

| 18. Pilot-operated r                                                                                       | elief valves: | failure to reclose                 | on deman         | nd                                                                  |  |
|------------------------------------------------------------------------------------------------------------|---------------|------------------------------------|------------------|---------------------------------------------------------------------|--|
| Generic Sources<br>Oconee PRA<br>Seabrook PSS<br>Two plants (below)<br>Arithmetic Avera<br>Geometric Avera |               |                                    |                  | Failure Rate (/d)<br>5.0E-3<br>2.5E-2<br>5.1E-2<br>2.7E-2<br>1.9E-2 |  |
| Plant-Specific Evide                                                                                       | ence          |                                    |                  |                                                                     |  |
| Oconee<br>PWR X                                                                                            | Failures      | Der                                | mands<br>31<br>8 | Failure Rate<br>3.2E-2<br>1.3E-1                                    |  |
| Total                                                                                                      | 2             |                                    | 39               | 5.1E-2                                                              |  |
| Value selected:<br>Rationale:                                                                              |               | ecific evidence and<br>her weight. | more rece        | nt generic source                                                   |  |

| 19. Motor-driven pu              | imps (all): failure t       | o start on demand       |                             |  |
|----------------------------------|-----------------------------|-------------------------|-----------------------------|--|
| Generic Sources<br>NUREG/CR-4550 |                             |                         | Failure Rate (/d)<br>3.0E-3 |  |
| NUREG/CR-1205                    |                             |                         | 4.2E-4                      |  |
| Oconee PRA                       |                             |                         | 5.0E-4                      |  |
| Seabrook PSS, stan               | dby                         |                         | 2.4E-3                      |  |
| Seabrook PSS, norm               | nally-operating             |                         | 3.3E-3                      |  |
| Northeast Utilities              |                             |                         | 1.3E-3                      |  |
| Six plants (below)               |                             |                         | 2.0E-3                      |  |
| Arithmetic Avera                 | ge                          |                         | 2.0E-3                      |  |
| Geometric Avera                  | ige                         |                         | 1.5E-3                      |  |
| Plant-Specific Evide             | ence                        |                         |                             |  |
|                                  | Failures                    | Demands                 | Failure Rate                |  |
| Oconee                           | 4                           | 972                     | 4.1E-3                      |  |
| Zion                             | 7                           | 3,600                   | 1.9E-3                      |  |
| Indian Point                     | 9                           | 1,593                   | 5.6E-3                      |  |
| Millstone                        | 22                          | 5,129                   | 4.3E-3                      |  |
| Browns Ferry                     | 13                          | 8,330                   | 1.6E-3                      |  |
| PWR X                            | 2                           | 835                     | 2.4E-3                      |  |
| Total                            | 57                          | 20,459                  | 2.8E-3                      |  |
| Value selected:<br>Rationale:    | 2.0E-3<br>Value is consiste | ent with most available | sources of data.            |  |



### ALWR COMPONENT FAILURE DATA SURVEY

| 20. Motor-driven pu                                                                                                                                                 | mps (all): failure to                                                        | o run                                                                                                                |                                                                                                          |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|
| Generic Sources<br>NUREG/CR-4550<br>NUREG/CR-1205<br>Oconee PRA<br>Seabrook PSS<br>Northeast Utilities<br>Six plants (below)<br>Arithmetic Avera<br>Geometric Avera |                                                                              |                                                                                                                      | Failure Rate (/hr)<br>3.0E-5<br>6.0E-6<br>2.0E-5<br>3.4E-5<br>4.0E-5<br>2.0E-5<br>2.5E-5<br>2.1E-5       |  |
| Plant-Specific Evide                                                                                                                                                | ence                                                                         |                                                                                                                      |                                                                                                          |  |
| Oconee<br>Zion<br>Indian Point<br>Millstone<br>Browns Ferry<br>PWR X<br>Total<br>Value selected:<br>Rationale:                                                      | Failures<br>3<br>1<br>9<br>20<br>9<br>0<br>42<br>2.5E-5<br>Value is consiste | Hours<br>98,120<br>340,412<br>258,684<br>953,038<br>284,134<br>191,577<br>2,126,145<br>ent with all of the available | Failure Rate<br>3.1E-5<br>2.9E-6<br>3.5E-5<br>2.1E-5<br>3.2E-5<br>1.7E-6<br>2.0E-5<br>e sources of data. |  |
| 21. Motor-driven LF<br>Generic Sources<br>Northeast Utilities<br>Four plants (below)<br>Arithmetic Avera<br>Geometric Avera                                         | ge                                                                           | ure to start on demand                                                                                               | Failure Rate (/d)<br>2.0E-3<br>2.5E-3<br>2.3E-3<br>2.3E-3                                                |  |

Plant-Specific Evidence

|                               | Failures                   | Demands                  | Failure Rate |
|-------------------------------|----------------------------|--------------------------|--------------|
| Oconee                        | 0                          | 223                      | 1.5E-3       |
| Millstone                     | 3                          | 259                      | 1.2E-2       |
| Browns Ferry                  | 3                          | 1,688                    | 1.8E-3       |
| PWRX                          | 0                          | 199                      | 1.7E-3       |
| Total                         | 6                          | 2,369                    | 2.5E-3       |
| Value selected:<br>Rationale: | 2.3E-3<br>Available source | es of data agree reasona | ibly well.   |

|                      | PI/RHR pumps: tallu | ure to run                                                               |                    |
|----------------------|---------------------|--------------------------------------------------------------------------|--------------------|
| Generic Sources      |                     |                                                                          | Fallure Rate (/hr) |
| Northeast Utilities  |                     |                                                                          | 9.6E-6             |
| Stx plants (below)   |                     |                                                                          | 1.7E-5             |
| Arithmetic Avera     | 90                  |                                                                          | 1.3E-5             |
| Geometric Avera      | ge                  |                                                                          | 1.3E-5             |
| Plant-Specific Evide | ence                |                                                                          |                    |
|                      | Fallures            | Hours                                                                    | Fallure Rate       |
| Oconee               | 1                   | 11,287                                                                   | 8.9E-5             |
| Zion                 | 0                   | 32,500                                                                   | 1.0E-5             |
| Indian Point         | 2                   | 8,065                                                                    | 2.6E-4             |
| Millstone            | 0                   | 15,050                                                                   | 2.2E-5             |
| Browns Ferry         | 0                   | 88,900                                                                   | 3.7E-6             |
| PWR X                | 0                   | 17,211                                                                   | 1.9E-5             |
| Total                | 3                   | 173,013                                                                  | 1.7E-5             |
| Value selected:      | 1.0E-5              |                                                                          |                    |
| Rationale:           |                     | / reflects available sound<br>/pe of pump. Plant-spe<br>by Indian Point. |                    |

| 23. Motor-driven a<br>Generic Sources<br>Northeast Utilities<br>Four plants (below)<br>Arithmetic Avera<br>Geometric Avera | ge       | s: failure to start on d                             | Fallure Rate (/d)<br>2.0E-3<br>3.1E-4<br>1.2E-3<br>7.8E-4 |  |
|----------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------|-----------------------------------------------------------|--|
| Plant-Specific Evide                                                                                                       | ence     |                                                      |                                                           |  |
|                                                                                                                            | Failures | Demands                                              | Fallure Rate                                              |  |
| Oconee                                                                                                                     | 1        | 530                                                  | 1.9E-3                                                    |  |
| Millstone                                                                                                                  | 0        | 954                                                  | 3.5E-4                                                    |  |
| Browns Ferry                                                                                                               | 0        | 1,631                                                | 2.0E-4                                                    |  |
| PWRX                                                                                                                       | 0        | 134                                                  | 2.5E-3                                                    |  |
| Total                                                                                                                      | 1        | 3,249                                                | 3.1E-4                                                    |  |
| Value selected:<br>Rationale:                                                                                              |          | reflects limited available<br>for this type of pump. | e sources of data                                         |  |

| 24. Motor-driven se                                                               | fety-injection pump | s: failure to run                                   |                                                  |
|-----------------------------------------------------------------------------------|---------------------|-----------------------------------------------------|--------------------------------------------------|
| Generic Sources<br>Northeast Utilities<br>Five plants (below)<br>Arithmetic Avera | ge                  |                                                     | Fallure Rate (/hr)<br>8.0E-5<br>2.6E-5<br>5.3E-5 |
| Geometric Aven                                                                    | age                 |                                                     | 4.5E-5                                           |
| Plant-Specific Evid                                                               | ence                |                                                     |                                                  |
|                                                                                   | Failures            | Hours                                               | Failure Rate                                     |
| Oconee                                                                            | 0                   | 38,787                                              | 8.6E-6                                           |
| Zion                                                                              | 0                   | 46                                                  | 7.2E-3                                           |
| Indian Point                                                                      | 1                   | 124                                                 | 8.1E-3                                           |
| Browns Ferry                                                                      | 0                   | 78                                                  | 4.3E-3                                           |
| PWR X                                                                             | 0                   | 67                                                  | 5.0E-3                                           |
| Total                                                                             | 1                   | 39,102                                              | 2.6E-5                                           |
| Value selected:<br>Rationale:                                                     |                     | reflects limited availat<br>y for this type of pump |                                                  |

| Generic Sources         | eneric Sources                                    |                                                  |                                            |  |
|-------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------|--|
| Northeast Utilities     |                                                   |                                                  | Failure Rate (/d)<br>1.3E-3                |  |
| One plant (below)       |                                                   |                                                  | 8.6E-3                                     |  |
| Arithmetic Avera        | ge                                                |                                                  | 5.0E-3                                     |  |
| Geometric Avera         |                                                   |                                                  | 3.3E-3                                     |  |
| Plant-Specific Evidence |                                                   |                                                  |                                            |  |
|                         | Failures                                          | Demands                                          | Failure Rate                               |  |
| Zion                    | 4                                                 | 464                                              | 8.6E-3                                     |  |
| Value selected:         | 3.0E-3                                            |                                                  |                                            |  |
| Rationale:              | Limited available<br>Value influenced<br>general. | data applying directly<br>more by value for moto | to this type of pump<br>or-driven pumps in |  |

| 26. Motor-driven er                    | mergency feedwater                               | pumps: failure to ru                | n                            |  |
|----------------------------------------|--------------------------------------------------|-------------------------------------|------------------------------|--|
| Generic Sources<br>Northeast Utilities |                                                  |                                     | Failure Rate (/hr)<br>8.0E-5 |  |
| Two plants (below)<br>Arithmetic Avera | ge                                               |                                     | 2.0E-4<br>1.4E-4             |  |
| Geometric Aven                         |                                                  |                                     | 1.3E-4                       |  |
| Plant-Specific Evid                    | ence                                             |                                     |                              |  |
|                                        | Failures                                         | Hours                               | Failure Rate                 |  |
| Zion                                   | 1                                                | 3.800                               | 2.6E-4                       |  |
| Indian Point                           | 1                                                | 6,320                               | 1.6E-4                       |  |
| Total                                  | 2                                                | 10,120                              | 2.0E-4                       |  |
| Value selected:<br>Rationale:          | 1.5E-4<br>Plant-specific dat<br>value is from WA | ta given more weight, s<br>SH-1400. | since only generic           |  |

| 27. Motor-driven se                                                                                  | ervice-water pumps | : failure to start on de                                | mand                                                      |  |
|------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------|-----------------------------------------------------------|--|
| Generic Sources<br>Northeast Utilities<br>Three plants (below<br>Arithmetic Avera<br>Geometric Avera | ige                |                                                         | Failure Rate (/d)<br>1.5E-3<br>7.7E-3<br>4.6E-3<br>3.4E-3 |  |
| Plant-Specific Evid                                                                                  | ence               |                                                         |                                                           |  |
|                                                                                                      | Failures           | Demands                                                 | Failure Rate                                              |  |
| Oconee                                                                                               | 0                  | 61                                                      | 5.5E-3                                                    |  |
| Millstone                                                                                            | 9                  | 1,085                                                   | 8.3E-3                                                    |  |
| Browns Ferry                                                                                         | 9                  | 4,387                                                   | 2.1E-3                                                    |  |
| PWRX                                                                                                 |                    | 160                                                     | 6.3E-3                                                    |  |
| Total                                                                                                | 19                 | 5.693                                                   | 3.3E-3                                                    |  |
| Value selected:<br>Rationale:                                                                        |                    | y reflects limited availab<br>ly for this type of pump. | le sources of data                                        |  |



| 28. Motor-driven se | ervice-water pumps: | failure to run           |                     |
|---------------------|---------------------|--------------------------|---------------------|
| Generic Sources     |                     |                          | Failure Rate (/hr)  |
| Northeast Utilities |                     |                          | 3.8E-5              |
| Five plants (below) |                     |                          | 2.6E-5              |
| Arithmetic Avera    | ge                  |                          | 3.2E-5              |
| Geometric Avera     | age                 |                          | 3.2E-5              |
| Plant-Specific Evid | ence                |                          |                     |
|                     | Failures            | Hours                    | Failure Rate        |
| Oconee              | 2                   | 47,991                   | 4.2E-5              |
| Zion                | 0                   | 152,000                  | 2.2E-6              |
| Indian Point        | 5                   | 122,000                  | 4.1E-5              |
| Browns Ferry        | 9                   | 195,000                  | 4.6E-5              |
| PWRX                | 0                   | 87,072                   | 3.8E-6              |
| Total               | 16                  | 604,063                  | 2.6E-5              |
| Value selected:     | 3.2E-5              |                          |                     |
| Rationale:          | Value reasonably    | reflects limited availab | ble sources of data |
|                     |                     | y for this type of pump  |                     |

| 29. Motor-driven co | omponent-cooling | water pumps: failure to   | o start on demand |
|---------------------|------------------|---------------------------|-------------------|
| Generic Sources     |                  |                           | Failure Rate (/d) |
| Northeast Utilities |                  |                           | 1.8E-3            |
| Two plants (below)  |                  |                           | 8.9E-4            |
| Arithmetic Avera    | ge               |                           | 1.3E-3            |
| Geometric Avera     | ige              |                           | 1.3E-3            |
| Plant-Specific Evid | ence             |                           |                   |
|                     | Failures         | Demands                   | Failure Rate      |
| Millstone           | 0                | 915                       | 3.6E-4            |
| PWR X               | 1                | 209                       | 4.8E-3            |
| Total               | 1                | 1,124                     | 8.9E-4            |
| Value selected:     | 1.3E-3           |                           |                   |
| Rationale:          | Value reasonabl  | y reflects available data | sources.          |

| 30. Motor-driven co  | omponent-cooling w | ater pumps: failure to                               | run                |
|----------------------|--------------------|------------------------------------------------------|--------------------|
| Generic Sources      |                    |                                                      | Failure Rate (/hr) |
| Northeast Utilities  |                    |                                                      | 1.0E-5             |
| Three plants (below) |                    |                                                      | 1.3E-6             |
| Arithmetic Avera     | ge                 |                                                      | 5.7E-6             |
| Geometric Avera      | age                |                                                      | 3.6E-6             |
| Plant-Specific Evid  | ence               |                                                      |                    |
|                      | Failures           | Hours                                                | Fallure Rate       |
| Zion                 | 0                  | 76,000                                               | 4.4E-6             |
| Indian Point         | 0                  | 122,096                                              | 2.7E-6             |
| PWR X                | 0                  | 52,232                                               | 6.4E-6             |
| Total                | 0                  | 250,328                                              | 1.3E-6             |
| Value selected:      | 5.0E-6             |                                                      |                    |
| Rationale:           |                    | lable suggests relatively<br>lected represents avera |                    |

| 31. Motor-driven c                                                                                 | ontrol-rod drive pumps:                                                                                             | failure to start of | n demand                                                  |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------|
| Generic Sources<br>Northeast Utilities<br>One plant (below)<br>Arithmetic Avera<br>Geometric Avera |                                                                                                                     |                     | Fallure Rate (/d)<br>1.8E-3<br>2.9E-3<br>2.4E-3<br>2.3E-3 |
| Plant-Specific Evidence                                                                            |                                                                                                                     |                     |                                                           |
|                                                                                                    | Failures                                                                                                            | Demands             | Fallure Rate                                              |
| Millstone                                                                                          | 1                                                                                                                   | 342                 | 2.9E-3                                                    |
| Value selected:<br>Rationale:                                                                      | 2.4E-3<br>Limited data available, significant (if no<br>data sources. Value is consistent with<br>pumps in general. |                     |                                                           |



| 32. Motor-driven co | ontrol-rod drive pum | ps: failure to run         |                    |  |
|---------------------|----------------------|----------------------------|--------------------|--|
| Generic Sources     |                      |                            | Failure Rate (/hr) |  |
| Northeast Utilities |                      |                            | 1.6E-6             |  |
| One plant (below)   |                      |                            | 3.3E-6             |  |
| Arithmetic Avera    | ae                   |                            | 2.4E-6             |  |
| Geometric Aver      |                      |                            | 2.3E-6             |  |
| Plant-Specific Evid | ence                 |                            |                    |  |
|                     | Failures             | Hours                      | Failure Rate       |  |
| Millstone           | 0                    | 101,652                    | 3.3E-6             |  |
| Value selected:     | 2.4E-6               |                            |                    |  |
| Rationale:          | Limited data ava     | ilable, significant overla | p in sources.      |  |

| 33. Motor-driven co | ontainment-spray pu | mps: failure to start                           | on demand         |
|---------------------|---------------------|-------------------------------------------------|-------------------|
| Generic Sources     |                     |                                                 | Failure Rate (/d) |
| Northeast Utilities |                     |                                                 | 1.0E-3            |
| One plant (below)   |                     |                                                 | 2.1E-2            |
| Arithmetic Avera    | ge                  |                                                 | 1.1E-2            |
| Geometric Avera     |                     |                                                 | 4.6E-3            |
| Plant-Specific Evid | ence                |                                                 |                   |
|                     | Failures            | Demands                                         | Failure Rate      |
| Oconee              | 3                   | 140                                             | 2.1E-2            |
| Value selected:     | 5.0E-3              |                                                 |                   |
| Rationale:          |                     | able, wide spread in va<br>geometric mean of av |                   |

### **ALWR COMPONENT FAILURE DATA SURVEY**

| 34. Motor-driven co           | ontainment-spray p | umps: failure to run                                                          |                    |  |
|-------------------------------|--------------------|-------------------------------------------------------------------------------|--------------------|--|
| Generic Sources               |                    |                                                                               | Failure Rate (/hr) |  |
| Northeast Utilities           |                    |                                                                               | 1.5E-5             |  |
| Three plants (below)          |                    |                                                                               | 1.9E-3             |  |
| Arithmetic Avera              | ae                 |                                                                               | 9.3E-4             |  |
| Geometric Avera               |                    |                                                                               | 1.7E-4             |  |
| Plant-Specific Evid           | ence               |                                                                               |                    |  |
|                               | Failures           | Hours                                                                         | Failure Rate       |  |
| Oconee                        | 0                  | 40                                                                            | 8.3E-3             |  |
| Zion                          | 0                  | 66                                                                            | 5.1E-3             |  |
| Indian Point                  | 0                  | 74                                                                            | 4.5E-3             |  |
| Total                         | 0                  | 180                                                                           | 1.9E-3             |  |
| Value selected:<br>Rationale: | sources due to     | allable, very limited valu<br>limited experience and<br>ed Northeast data mos | no failures. Value |  |

| 35. Turbine-driven  | auxiliary feedwater | pumps: failure to star                               | rt on demand      |
|---------------------|---------------------|------------------------------------------------------|-------------------|
| Generic Sources     |                     |                                                      | Failure Rate (/d) |
| NUREG/CR-4550       |                     |                                                      | 3.2E-3            |
| NUREG/CR-1205       |                     |                                                      | 9.6E-3            |
| Oconee PRA          |                     |                                                      | 4.0E-3            |
| Seabrook PSS        |                     |                                                      | 3.3E-2            |
| Northeast Utilities |                     |                                                      | 2.3E-2            |
| Four plants (below) |                     |                                                      | 2.1E-2            |
| Arithmetic Avera    | ige                 |                                                      | 1.64-2            |
| Geometric Aver      | age                 |                                                      | 1.1E-2            |
| Plant-Specific Evid | ence                |                                                      |                   |
|                     | Failures            | Demands                                              | Failure Rate      |
| Oconee              | 6                   | 113                                                  | 5.3E-2            |
| Zion                | 6                   | 231                                                  | 2.6E-2            |
| Indian Point        | 0                   | 57                                                   | 5.8E-3            |
| PWR X               | 2                   | 260                                                  | 7.7E-3            |
| Total               | 14                  | 661                                                  | 2.1E-2            |
| Value selected:     | 1.5E-2              |                                                      |                   |
| Rationale           |                     | ata sources tended to u<br>ted is more consistent of |                   |

## ALWR COMPONENT FAILURE DATA SURVEY

| 36. Turbine-driven            | auxiliary feedwater p                | umps: failure to run                                                                            |                    |
|-------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------|--------------------|
| Generic Sources               |                                      |                                                                                                 | Failure Rate (/hr) |
| NUREG/CR-4550                 |                                      |                                                                                                 | 1.3E-4             |
| NUREG/CR-1205                 |                                      |                                                                                                 | 4.3E-5             |
| Oconee PRA                    |                                      |                                                                                                 | 2.0E-5             |
| Seabrook PSS                  |                                      |                                                                                                 | 1.0E-3             |
| Northeast Utilities           |                                      |                                                                                                 | 7.6E-6             |
| Four plants (below)           |                                      |                                                                                                 | 2.0E-3             |
| Arithmetic Average            |                                      |                                                                                                 | 5.5E-4             |
| Geometric Avera               | age                                  |                                                                                                 | 1.1E-4             |
| Plant-Specific Evid           | ence                                 |                                                                                                 |                    |
|                               | Failures                             | Hours                                                                                           | Failure Rate       |
| Oconee                        | 1                                    | 94                                                                                              | 1.1E-2             |
| Zion                          | 0                                    | 1,900                                                                                           | 1.8E-4             |
| Indian Point                  | 1                                    | 1,240                                                                                           | 8.1E-4             |
| PWR X                         | 5                                    | 194                                                                                             | 2.6E-2             |
| Total                         | 7                                    | 3,428                                                                                           | 2.0E-3             |
| Value selected:<br>Rationale: | perience is much<br>PWR X experience | ailable sources of data<br>better than general in<br>te is much worse than<br>to be reasonable. | dustry experience. |

| 37. Turbine-driven  | RCIC pumps: failu | re to start on demand                                |                   |
|---------------------|-------------------|------------------------------------------------------|-------------------|
| Generic Sources     |                   |                                                      | Failure Rate (/d) |
| NUREG/CR-4550       |                   |                                                      | 3.2E-3            |
| NUREG/CR-1205       |                   |                                                      | 1.2E-2            |
| Browns Ferry PRA    |                   |                                                      | 4.0E-2            |
| One plant (below)   |                   |                                                      | 3.4E-2            |
| Arithmetic Avera    | ge                |                                                      | 2.2E-2            |
| Geometric Aven      | aye               |                                                      | 1.5E-2            |
| Plant-Specific Evid | ence              |                                                      |                   |
|                     | Failures          | Demands                                              | Failure Rate      |
| Browns Ferry        | 21                | 614                                                  | 3.4E-2            |
| Value selected:     | 2.0E-2            |                                                      |                   |
| Rationale:          |                   | lly agree, except for NU<br>Value selected is repres |                   |

| 38. Turbine-driven  | RCIC pumps: failu | ire run                                             |                    |  |
|---------------------|-------------------|-----------------------------------------------------|--------------------|--|
| Generic Sources     |                   |                                                     | Failure Rate (/hr) |  |
| NUREG/CR-4550       |                   |                                                     | 1.3E-4             |  |
| Browns Ferry        |                   |                                                     | 4.1E-4             |  |
| One plant (below)   |                   |                                                     | 4.4E-3             |  |
| Arithmetic Avera    | ge                |                                                     | 1.6E-3             |  |
| Geometric Avera     | ige               |                                                     | 6.2E-4             |  |
| Plant-Specific Evid | ence              |                                                     |                    |  |
|                     | Failures          | Hours                                               | Failure Rate       |  |
| Browns Ferry        | 0                 | 76                                                  | 4.4E-3             |  |
| Value selected:     | 4.0E-4            |                                                     |                    |  |
| Rationale:          |                   | nt-specific data availabl<br>RA given greater weigh |                    |  |



| 39. Diesel-driven p           | umps: failure to sta                          | art on demand            |                        |
|-------------------------------|-----------------------------------------------|--------------------------|------------------------|
| Generic Sources               |                                               |                          | Failure Rate (/d)      |
| NUREG/CR-1205                 |                                               |                          | 3.0E-2                 |
| Northeast Utilities           |                                               |                          | 3.1E-3                 |
| Two plants (below)            |                                               |                          | 2.6E-2                 |
| Arithmetic Avera              | ge                                            |                          | 2.02-2                 |
| Geometric Avera               | age                                           |                          | 1.3E-2                 |
| Plant-Specific Evid           | ence                                          |                          |                        |
|                               | Failures                                      | Demands                  | Failure Rate           |
| Zion                          | 1                                             | 183                      | 5.5E-3                 |
| Millistone                    | 8                                             | 158                      | 5.1E-2                 |
| Total                         | 9                                             | 341                      | 2.6E-2                 |
| Value selected:<br>Rationale: | 2.0E-2<br>Available source<br>representative. | es are generally consist | ent, value selected is |

| 40. Diesel-driven p                                                          | umps: failure to run | Real Production                                   |                                                                                                                 |
|------------------------------------------------------------------------------|----------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Generic Sources<br>NUREG/CR-1205<br>Northeast Utilities<br>One plant (below) |                      |                                                   | Failure Rate (/hr)<br>2.6E-5<br>8.0E-5<br>6.1E-2                                                                |
| Arithmetic Avera<br>Geometric Avera<br>Plant-Specific Evid                   | age                  |                                                   | 2.0E-2<br>5.0E-4                                                                                                |
| Plant-Specific Evid                                                          | Failures             | Hours                                             | Failure Rate                                                                                                    |
| Zion                                                                         | 2                    | 33                                                | 6.1E-2                                                                                                          |
| Value selected:<br>Rationale:                                                |                      | is very different from g<br>ted heavily toward ge | A CARD AND A CARD AND A CONTRACT OF A CARD AND A CARD A |

### ALWR COMPONENT FAILURE DATA SURVEY

| 41. Air compress  | ors: failure to start on demand     |                       |  |  |
|-------------------|-------------------------------------|-----------------------|--|--|
| Generic Sources   |                                     | Failure Rate (/d)     |  |  |
| NUREG/CR-4550     |                                     | 5.3E-2                |  |  |
| Oconee PRA        |                                     | 5.0E-3                |  |  |
| Seabrook PSS      |                                     | 3.3E-3                |  |  |
| Arithmetic Ave    | rage                                | 2.0E-2                |  |  |
| Geometric Av      | erage                               | 9.6E-3                |  |  |
| Plant-Specific Ev | idence                              |                       |  |  |
| Not available.    |                                     |                       |  |  |
| Value selected:   | 1.0E-2                              |                       |  |  |
| Rationale:        | Wide range in values; value selecte | ed is representative. |  |  |
|                   |                                     |                       |  |  |
| 42. Air compress  | ors: failure to run                 |                       |  |  |
| Generic Sources   |                                     | Failure Rate (/hr)    |  |  |
| NUREG/CR-4550     |                                     | 4.8E-5                |  |  |
| NPRD-2            |                                     | 2.1E-5                |  |  |
| Oconee PRA        |                                     | 2.9E-4                |  |  |
| Seabrook PSS      |                                     | 9.8E-5                |  |  |
| Arithmetic Ave    | rage                                | 1.1E-4                |  |  |
| Geometric Ave     |                                     | 7.3E-5                |  |  |
| Plant-Specific Ev | idence                              |                       |  |  |
|                   |                                     |                       |  |  |

Not available.

Value selected:

Rationale:

1.0E-4 Most values are reasonably close; value selected is representative.

| 43. Blower/ventilati          | ion fans: failure to                    | start on demand        |                      |
|-------------------------------|-----------------------------------------|------------------------|----------------------|
| Generic Sources               |                                         |                        | Failure Rate (/d)    |
| N'JREG/CR-4550                |                                         |                        | 3.8E-4               |
| Oconee PRA                    |                                         |                        | 5.0E-4               |
| Seabrook PSS                  |                                         |                        | 4.8E-4               |
| Four plants (below)           |                                         |                        | 1.1E-3               |
| Arithmetic Avera              | ge                                      |                        | 6.1E-4               |
| Geometric Avera               | age                                     |                        | 5.6E-4               |
| Plant-Specific Evid           | ence                                    |                        |                      |
|                               | Failures                                | Demands                | Failure Rate         |
| Oconee                        | 3                                       | 237                    | 1.3E-2               |
| Zion                          | 2                                       | 1,155                  | 1.7E-3               |
| Indian Point                  | 0                                       | 45                     | 7.4E-3               |
| PWR X                         |                                         | 4,086                  | 2.4E-4               |
| Total                         | 6                                       | 5,523                  | 1.1E-3               |
| Value selected:<br>Rationale: | 6.0E-4<br>Most values are<br>sentative. | reasonably close; valu | e selected is repre- |

| 44. Ventilation fans          | a tallure to run                     |                        |                      |
|-------------------------------|--------------------------------------|------------------------|----------------------|
| Generic Sources               |                                      |                        | Failure Rate (/hr    |
| NUREG/CR-4550                 |                                      |                        | 1.3E-5               |
| NPRD-2                        |                                      |                        | 2.6E-6               |
| Oconee PRA                    |                                      |                        | 1.9E-5               |
| Seabrook PSS                  |                                      |                        | 7.9E-6               |
| Four plants (below)           |                                      |                        | 9.6E-6               |
| Arithmetic Avera              | ge                                   |                        | 1.0E-5               |
| Geometric Avera               | age                                  |                        | 8.6E-6               |
| Plant-Specific Evid           | ence                                 |                        |                      |
|                               | Failures                             | Hours                  | Failure Rate         |
| Oconee                        | 1                                    | 81,351                 | 1.2E-5               |
| Zion                          | 0                                    | 152,000                | 2.2E-6               |
| Indian Point                  | 2                                    | 122,000                | 1.6E-5               |
| PWR X                         | 1                                    | 60,723                 | 1.6E-5               |
| Total                         | 4                                    | 416,074                | 9.6E-6               |
| Value selected:<br>Rationale: | 1.0E-5<br>Most values are sentative. | reasonably close; valu | e selected is repre- |

| 45. Room chiller unit:                                                    | failure to start on demand                                                                                                                       |                             |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Generic Sources<br>Seabrook PSS                                           |                                                                                                                                                  | Failure Rate (/d)<br>8.1E-3 |
| Plant-SpecMic Evidenc<br>Not available.<br>Value selected:<br>Rationale:  | 8.1E-3<br>Only value readily available.                                                                                                          |                             |
| 46. Room chiller unit:                                                    | fails to continue operating                                                                                                                      |                             |
| Generic Sources                                                           |                                                                                                                                                  | Failure Rate (/hr)          |
| NPRD-2                                                                    |                                                                                                                                                  | 1.0E-6                      |
| Seabrook PSS                                                              |                                                                                                                                                  | 7.9E-6                      |
| Arithmetic Average                                                        |                                                                                                                                                  | 4.4E-5                      |
| Geometric Average                                                         |                                                                                                                                                  | 2.8E-6                      |
| Piant-Specific Evidenc<br>Not available.<br>Value selected:<br>Rationale: | e<br>5.0E-6<br>Limited data available; greater<br>since it reflects nuclear power p<br>reflects significant level of oper<br>nuclear experience. | plant experience. NPRD-2    |
| 47. Strainer: fails to st                                                 | art                                                                                                                                              |                             |
| Generic Sources                                                           |                                                                                                                                                  | Fallure Rate (/d)           |
| IEEE-500                                                                  |                                                                                                                                                  | 2.7E-5                      |
| Plant-Specific Evidenc<br>Not available.                                  | •                                                                                                                                                |                             |
| Value selected:                                                           | 2.7E-5                                                                                                                                           |                             |
| Rationale:                                                                | Only value readily available. Va to other motor-driven component                                                                                 |                             |

| 48. Strainer: fails t | o continue operating                          |                               |
|-----------------------|-----------------------------------------------|-------------------------------|
| Generic Sources       |                                               | Failure Rate (/hr)            |
| IEEE-500              |                                               | 3.8E-6                        |
| Seabrook PSS          |                                               | 6.2E-6                        |
| Arithmetic Avera      | ge                                            | 5.0E-6                        |
| Geometric Avera       | ige                                           | 4.9E-6                        |
| Plant-Specific Evid   | ence                                          |                               |
| Not available.        |                                               |                               |
| Value selected:       | 5.0E-6                                        |                               |
| Rationale:            | Generic values are quite close,<br>sentative. | value selected is very repre- |

| 49. Strainer or filter | r: plugs                                        |                                                 |
|------------------------|-------------------------------------------------|-------------------------------------------------|
| Gerieric Sources       |                                                 | Failure Rate (/hr)                              |
| NPRD-2                 |                                                 | 3.0E-6                                          |
| Seabrook PSS           |                                                 | 1.1E-6                                          |
| Arithmetic Avera       | ige                                             | 2.0E-6                                          |
| Geometric Aven         | age                                             | 1.9E-6                                          |
| Plant-Specific Evid    | ence                                            |                                                 |
| Not available          |                                                 |                                                 |
| Value selected:        | 2.0E-6                                          |                                                 |
| Rationale:             | Limited data available<br>selected is represent | e. Generic values are quite close, value ative. |

| 50. Heat exchange             | : fails while operation                   | ng (severe leakage, p    | lugging)           |
|-------------------------------|-------------------------------------------|--------------------------|--------------------|
| Generic Sources               |                                           |                          | Failure Rate (/hr) |
| NPRD-2                        |                                           |                          | 9.0E-7             |
| Seabrook PSS                  |                                           |                          | 2.0E-6             |
| Two plants (below)            |                                           |                          | 6.9E-7             |
| Arithmetic Avera              | ge                                        |                          | 1.2E-6             |
| Geometric Avera               | ige                                       |                          | 1.1E-6             |
| Plant-Specific Evid           | ence                                      |                          |                    |
|                               | Failures                                  | Hours                    | Failure Rate       |
| Zion                          | 0                                         | 236,000                  | 1.4E-6             |
| Indian Point                  | 0                                         | 244,000                  | 1.4E-6             |
| Total                         | 0                                         | 480,000                  | 6.9E-7             |
| Value selected:<br>Rationale: | 1.0E-6<br>Values are reason<br>sentative. | nably close, value selec | ted is very repre- |

| 51. Tanks: fall cats | strophically               |                                   |
|----------------------|----------------------------|-----------------------------------|
| Generic Sources      |                            | Fallure Rate (/hr)                |
| NPRD-2               |                            | 1.6E-6                            |
| Seabrook PSS         |                            | 2.7E-8                            |
| Arithmetic Avera     | ge                         | 8.2E-7                            |
| Geometric Avera      |                            | 2.1E-7                            |
| Plant-Specific Evid  | ence                       |                                   |
| Not available.       |                            |                                   |
| Value selected:      | 1.0E-7                     |                                   |
| Rationale:           | Wide spread in sources, u  | ncertain and rare failure rate.   |
|                      | Value selected weights Se  | abrook more heavily due to uncer- |
|                      | tainty in nature of NPRD-2 | data.                             |

| 52. Diesel Generat                  | ors: fail to start on                                                                                                                                                                                                                                                                                                                            | demand  |                   |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|--|
| Generic Sources                     |                                                                                                                                                                                                                                                                                                                                                  |         | Failure Rate (/d) |  |
| NUREG/CR-4550                       |                                                                                                                                                                                                                                                                                                                                                  |         | 3.8E-2            |  |
| NUREG/CR-1362                       |                                                                                                                                                                                                                                                                                                                                                  |         | 4.4E-2            |  |
| NUREG/CR-2989                       |                                                                                                                                                                                                                                                                                                                                                  |         | 3.3E-2            |  |
| NSAC-108*                           |                                                                                                                                                                                                                                                                                                                                                  |         | 1.4E-2            |  |
| Seabrook PSS**                      |                                                                                                                                                                                                                                                                                                                                                  |         | 3.8E-2            |  |
| Northeast U.ilities                 |                                                                                                                                                                                                                                                                                                                                                  |         | 7.0E-3            |  |
| Four plants (below)                 |                                                                                                                                                                                                                                                                                                                                                  |         | 1.3E-2            |  |
| Arithmetic Avera                    | ige                                                                                                                                                                                                                                                                                                                                              |         | 2.7E-2            |  |
| Geometric Aven                      |                                                                                                                                                                                                                                                                                                                                                  | 2.2E-2  |                   |  |
| *Includes some failu                |                                                                                                                                                                                                                                                                                                                                                  |         |                   |  |
| dominant.                           |                                                                                                                                                                                                                                                                                                                                                  |         |                   |  |
| **Includes failure to<br>operation. | run during first hou                                                                                                                                                                                                                                                                                                                             | r of    |                   |  |
| Plant-Specific Evid                 | ence                                                                                                                                                                                                                                                                                                                                             |         |                   |  |
|                                     | Failures                                                                                                                                                                                                                                                                                                                                         | Demands | Failure Rate      |  |
| Zion                                | 30                                                                                                                                                                                                                                                                                                                                               | 1,693   | 1.8E-2            |  |
| Indian Point                        | 6                                                                                                                                                                                                                                                                                                                                                | 609     | 9.9E-3            |  |
| Miletone                            | 3                                                                                                                                                                                                                                                                                                                                                | 652     | 4.6E-3            |  |
| PWR X                               | 5                                                                                                                                                                                                                                                                                                                                                | 502     | 1.0E-2            |  |
| Total                               | 44                                                                                                                                                                                                                                                                                                                                               | 3,456   | 1.3E-2            |  |
| Value selected:                     | 1.4E-2                                                                                                                                                                                                                                                                                                                                           |         |                   |  |
| Rationale:                          | NSAC-108 provides extensive review of recent operating e<br>perience, reflecting most current maintenance practices, a<br>accounting well for actual demands. Failure rate reflects<br>some failures in load/run phases of operation, but these ar<br>not expected to impact the result substantially. Therefore,<br>NSAC-108 value recommended. |         |                   |  |

| 53. Diesel Generate           | ors: fail to run                        |                                                                                                                                  |                                             |
|-------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Generic Sources               |                                         |                                                                                                                                  | Failure Rate (/d)                           |
| NUREG/CR-4550                 |                                         |                                                                                                                                  | 1.3E-3                                      |
| NUREG/CR-1362                 |                                         |                                                                                                                                  | 2.6E-2                                      |
| NUREG/CR-2989                 |                                         |                                                                                                                                  | 2.4E-3                                      |
| Seabrook PSS                  |                                         |                                                                                                                                  | 2.5E-3                                      |
| Northeast Utilities           |                                         |                                                                                                                                  | 1.5E-3                                      |
| Four plants (below)           |                                         |                                                                                                                                  | 3.9E-3                                      |
| Arithmetic Avera              | ge                                      |                                                                                                                                  | 6.3E-3                                      |
| Geometric Avera               | age                                     |                                                                                                                                  | 3.3E-3                                      |
| Plant-Specific Evid           | ence                                    |                                                                                                                                  |                                             |
|                               | Failures                                | Demands                                                                                                                          | Failure Rate                                |
| Zion                          | 6                                       | 1,340                                                                                                                            | 4.5E-3                                      |
| Indian Point                  | 0                                       | 408                                                                                                                              | 8.2E-4                                      |
| Millstone                     | 1                                       | 1,018                                                                                                                            | 9.8E-4                                      |
| PWR X                         | 7                                       | 846                                                                                                                              | 8.3E-3                                      |
| Total                         | 14                                      | 3,612                                                                                                                            | 3.9E-3                                      |
| Value selected:<br>Rationale: | immediately after<br>(e.g., 24-hr) miss | ces include failures to lo<br>er starting that are not a<br>sion times. NUREG/CR<br>long-duration tests; val<br>er data sources. | ppropriate for long<br>-2989 collected data |

| 54. Energy combus   | stion turbine-generate | ors: failure to start o                              | n demand          |
|---------------------|------------------------|------------------------------------------------------|-------------------|
| Generic Sources     |                        |                                                      | Failure Rate (/d) |
| Ontario Hydro syste | m                      |                                                      | 2.5E-2            |
| One plant (below)   |                        |                                                      | 3.4E-2            |
| Arithmetic Avera    | ge                     |                                                      | 2.9E-2            |
| Geometric Avera     |                        |                                                      | 2.9E-2            |
| Plant-Specific Evid | ence                   |                                                      |                   |
|                     | Failures               | Demands                                              | Failure Rate      |
| Millstone           | 28                     | 834                                                  | 3.4E-2            |
| Value selected:     | 2.5E-2                 |                                                      |                   |
| Rationale:          |                        | quite similar; Ontario I<br>pr-yr of experience, and |                   |

| 55. Emergency cor   | nbustion turbine-gen | nerators: failure to ru  | in                  |
|---------------------|----------------------|--------------------------|---------------------|
| Generic Sources     |                      |                          | Failure Rate (/hr)  |
| Ontario Hydro syste | m                    |                          | 1.7E-6              |
| One plant (below)   |                      |                          | 1.8E-4              |
| Arithmetic Avera    | ge                   |                          | 8.9E-5              |
| Geometric Avera     | age                  |                          | 1.7E-5              |
| Plant-Specific Evid | ence                 |                          |                     |
|                     | Failures             | Hours                    | Failure Rate        |
| Millstone           | 1                    | 5,697                    | 1.8E-4              |
| Value selected:     | 2.0E-6               |                          |                     |
| Rationale:          | Data sources ver     | y different; Ontario Hyd | dro data represents |
|                     | 90 generator-yr o    | of experience, and weig  | phed more heavily.  |



| Generic Sources      | re of output on dema |                                                     | Failure Rate (/d) |
|----------------------|----------------------|-----------------------------------------------------|-------------------|
| NUREG/CR-4550        |                      |                                                     | 1.4E-3            |
| NUREG-0666           |                      |                                                     | 3.3E-4            |
| Oconee PRA*          |                      |                                                     | 3.2E-5            |
|                      |                      |                                                     | 4.8E-4            |
| Seabrook PSS         |                      |                                                     | 1.6E-4            |
| NPRD-2*              |                      |                                                     | 1.5E-3            |
| Three plants (below) |                      |                                                     |                   |
| Arithmetic Avera     |                      |                                                     | 6.6E-4            |
| Geometric Avera      | ige                  |                                                     | 3.5E-4            |
| Plant-Specific Evid  | ence                 |                                                     |                   |
|                      | Failures             | Hours                                               | Failure Rate      |
| Oconee               | 0                    | 96,426                                              | 3.5E-6            |
| Zion                 | 0                    | 202,000                                             | 1.7E-6            |
| Indian Point         | 2                    | 167,800                                             | 1.2E-5            |
| Total                | 2                    | 466,226                                             | 4.3E-6            |
| Total (/d)*          |                      |                                                     | 1.5E-3            |
| *Assuming monthly    | testing.             |                                                     |                   |
| Value selected:      | 5.0E-4               |                                                     |                   |
| Rationale:           |                      | ally quite close, and va<br>rdy vs. monthly testing |                   |

| 57. Battery charger           | : failure to maintain                    | output                   |                         |  |
|-------------------------------|------------------------------------------|--------------------------|-------------------------|--|
| Generic Sources               |                                          |                          | Failure Rate (/hr)      |  |
| NUREG/CR-4550                 |                                          |                          | 4.0E-6                  |  |
| NUREG-0666                    |                                          |                          | 2.8E-6                  |  |
| Oconee PRA                    |                                          |                          | 3.1E-6                  |  |
| Seabrook PSS                  |                                          |                          | 1.9E-5                  |  |
| Four plants (below)           |                                          |                          | 1.1E-5                  |  |
| Arithmetic Avera              | ge                                       |                          | 8.0E-6                  |  |
| Geometric Avera               | age                                      |                          | 5.9E-6                  |  |
| Plant-Specific Evid           | ence                                     |                          |                         |  |
|                               | Failures                                 | Hours                    | Failura Rate            |  |
| Oconee                        | 1                                        | 96,426                   | 1.0E-5                  |  |
| Zion                          | 0                                        | 202,000                  | 1.7E-6                  |  |
| Indian Point                  | 2                                        | 167,800                  | 1.2E-5                  |  |
| Millstone                     | 5                                        | 229,488                  | 2.2E-5                  |  |
| Total                         | 8                                        | 695,714                  | 1.1E-5                  |  |
| Value selected:<br>Rationale: | 7.0E-6<br>Values are gener<br>sentative. | ally quite close, and va | alue selected is repre- |  |

| 58. Circuit breaker                                                                                                                                    | (4 kv): fails to clos | e on demand                                            |                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Generic Sources<br>NUREG/CR-4550<br>Northeast Utilities St<br>Oconee PRA<br>Seabrook PSS<br>Five plants (below)<br>Arithmetic Avera<br>Geometric Avera | ystem                 |                                                        | Failure Rate (/d)<br>1.3E-4<br>3.4E-4<br>4.3E-5<br>1.6E-3<br>6.2E-5<br>4.4E-4<br>1.8E-4 |
| Plant-Specific Evid                                                                                                                                    | ence                  |                                                        |                                                                                         |
|                                                                                                                                                        | Failures              | Demands                                                | Failure Rate                                                                            |
| Oconee                                                                                                                                                 | 2                     | 1,192                                                  | 1.7E-3                                                                                  |
| Zion                                                                                                                                                   | 0                     | 202,000                                                | 1.7E-6                                                                                  |
| Indian Point                                                                                                                                           | 2                     | 167,800                                                | 1.2E-5                                                                                  |
| Millstone                                                                                                                                              | 3                     | 34,333                                                 | 2.7E-5                                                                                  |
| PWR X                                                                                                                                                  | 18                    | 1,144                                                  | 1.6E-2                                                                                  |
| Total                                                                                                                                                  | 25                    | 406,469                                                | 6.2E-5                                                                                  |
| Value selected:<br>Rationale:                                                                                                                          |                       | rally close; experience f<br>pes of breakers, and is t |                                                                                         |

### **ALWR COMPONENT FAILURE DATA SURVEY**

| Generic Source<br>NPRD-2<br>Northeast Utilit |                                  |                           |                              |  |
|----------------------------------------------|----------------------------------|---------------------------|------------------------------|--|
|                                              |                                  |                           | Failure Rate (/hr)<br>6.8E-7 |  |
| Vortheast Utilit                             |                                  |                           |                              |  |
|                                              | 1.3E-6                           |                           |                              |  |
| Doonee PRA                                   |                                  |                           | 1.6E-7                       |  |
| Seabrook PSS                                 |                                  |                           | 8.3E-7                       |  |
| our plants (be                               | 3.7E-7                           |                           |                              |  |
| Arithmetic Average                           |                                  |                           | 6.7E-7                       |  |
| Geometric                                    | Average                          |                           | 5.3E-7                       |  |
| Plant-Specific                               | Evidence                         |                           |                              |  |
|                                              | Failures                         | Hours                     | Failure Rate                 |  |
| Doonee                                       | 0                                | 888,000                   | 3.8E-7                       |  |
| Zion                                         | 0                                | 910,000                   | 3.7E-7                       |  |
| ndian Point                                  | 1 March 1                        | 732,000                   | 1.4E-6                       |  |
| PWR X                                        | 0                                | 191,577                   | 1.7E-6                       |  |
| Tot                                          | al 1                             | 2,721,577                 | 3.7E-7                       |  |
| Value selecte                                | d: 6.0E-7                        |                           |                              |  |
| Rational                                     | e: Values are gene<br>sentative. | rally close, and value se | lected is repre-             |  |

Plant-Specific Evidence

Not available. Value selected: 4.0E-4 Rationale:

Value selected reasonably reflects the available sources.

| Generic Sources               |          |                          | Failure Rate (/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------|----------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NPRD-2                        |          |                          | 6.8E-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Northeast Utilities Sy        | stem     |                          | 1.3E-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Oconee PRA                    |          |                          | 1.6E-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Seabrook PSS                  |          |                          | 2.7E-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| One plant (below)             |          |                          | 6.6E-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Arithmetic Avera              | ge       |                          | 6.1E-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Geometric Avera               | ige      |                          | 4.8E-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Plant-Specific Evid           | ence     |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               | Failures | Demands                  | Failure Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Oconee                        | 2        | 3,040,000                | 6.6E-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Value selected:<br>Rationale: | 5.0E-7   | easonably reflects the a | and the balance of th |

| 62. Transformer (hi           | igh voltage): fails to                            | continue operating                   |                    |
|-------------------------------|---------------------------------------------------|--------------------------------------|--------------------|
| Generic Sources               |                                                   |                                      | Failure Rate (/hr) |
| Oconee PRA                    |                                                   |                                      | 1.7E-6             |
| Seabrook PSS                  |                                                   |                                      | 1.6E-6             |
| IEEE-500                      |                                                   |                                      | 3.2E-7             |
| Three plants (below)          |                                                   |                                      | 1.4E-6             |
| Arithmetic Avera              | ge                                                |                                      | 1.3E-6             |
| Geometric Avera               | age                                               |                                      | 1.1E-6             |
| Plant-Specific Evid           | ence                                              |                                      |                    |
|                               | Failures                                          | Hours                                | Failure Rate       |
| Oconee                        | 0                                                 | 81,900                               | 4.1E-6             |
| Zion                          | 1                                                 | 301,000                              | 3.3E-6             |
| Indian Point                  | 0                                                 | 313,000                              | 1.1E-6             |
| Total                         | 1                                                 | 695,900                              | 1.4E-6             |
| Value selected:<br>Rationale: | 1.2E-6<br>Available data so<br>selected is repres | urces are reasonably c<br>sentative. | lose, and value    |



| 63. Transformer (4            | kv to 600/480 v): fa                             | ils to continue operat  | ing                |
|-------------------------------|--------------------------------------------------|-------------------------|--------------------|
| Generic Sources               |                                                  |                         | Failure Rate (/hr) |
| Oconee PRA                    |                                                  |                         | 9.1E-7             |
| Seabrook PSS                  |                                                  |                         | 6.9E-7             |
| EEE-500                       |                                                  |                         | 3.4E-7             |
| Three plants (below)          |                                                  |                         | 9.5E-7             |
| Arithmetic Avera              | ige                                              |                         | 7.2E-7             |
| Geometric Aven                |                                                  |                         | 6.7E-7             |
| Plant-Specific Evid           | ence                                             |                         |                    |
|                               | Fallures                                         | Hours                   | Failure Rate       |
| Oconee                        | 0                                                | 434,000                 | 7.7E-7             |
| Zion                          | 1                                                | 301,000                 | 3.3E-6             |
| Indian Point                  | Ũ                                                | 313,000                 | 1.1E-6             |
| Total                         | 1                                                | 1,048,000               | 9.5E-7             |
| Value selected:<br>Rationale: | 7.0E-7<br>Available data so<br>selected is repre | ources are reasonably c | lose, and value    |

| 64. Transformer (lo           | wer voltage): fails                              | to continue operating    | 中國的意志和認知能          |
|-------------------------------|--------------------------------------------------|--------------------------|--------------------|
| Generic Sources               |                                                  |                          | Failure Rate (/hr) |
| Oconee PRA                    |                                                  |                          | 1.1E-6             |
| Seabrook PSS                  |                                                  |                          | 1.6E-6             |
| IEEE-500                      |                                                  |                          | 2.4E-7             |
| Three plants (below)          |                                                  |                          | 7.0E-7             |
| Arithmetic Avera              |                                                  |                          | 9.0E-7             |
| Geometric Avera               |                                                  |                          | 7.3E-7             |
| Plant-Specific Evid           | ence                                             |                          |                    |
|                               | Failures                                         | Hours                    | Failure Rate       |
| Oconee                        | 0                                                | 820,000                  | 4.1E-7             |
| Zion                          | 1                                                | 301,000                  | 3.3E-6             |
| Indian Point                  | 0                                                | 313,000                  | 1.1E-6             |
| Total                         | 1                                                | 1,434,000                | 7.0E-7             |
| Value selected:<br>Rationale: | 8.0E-7<br>Available data so<br>selected is repre | ources are reasonably cl | ose, and value     |

| uriously                                                       |                                 |
|----------------------------------------------------------------|---------------------------------|
|                                                                | Fallure Rate (/hr)              |
|                                                                | 1.0E-6                          |
|                                                                | 1.4E-7                          |
|                                                                | 9.2E-7                          |
|                                                                | 1.5E-7                          |
| ge                                                             | 5.5E-7                          |
|                                                                | 3.7E-7                          |
| ance                                                           |                                 |
|                                                                |                                 |
| 5.0E-7                                                         |                                 |
| Available data sources are some<br>selected is representative. | ewhat close, and value          |
|                                                                | Available data sources are some |

| 66. Electrical busw  | ork: fails during ope | ration                                           |                       |  |
|----------------------|-----------------------|--------------------------------------------------|-----------------------|--|
| Generic Sources      |                       |                                                  | Failure Rate (/hr)    |  |
| Oconee PRA           |                       |                                                  | 3.6E-6                |  |
| Seabrook PSS         |                       |                                                  | 5.0E-7                |  |
| IEEE-500             |                       |                                                  | 1.2E-7                |  |
| Three plants (below) |                       |                                                  | 4.6E-8                |  |
| Arithmetic Avera     | ge                    |                                                  | 1.1E-6                |  |
| Geometric Avera      | age                   |                                                  | 3.2E-7                |  |
| Plant-Specific Evid  | ence                  |                                                  |                       |  |
|                      | Failures              | Hours                                            | Failure Rate          |  |
| Oconee               | 0                     | 2,604,000                                        | 1.3E-7                |  |
| Zion                 | 0                     | 3,030,000                                        | 1.1E-7                |  |
| Indian Point         | 0                     | 1,575,000                                        | 2.1E-7                |  |
| Total                | 0                     | 7,209,000                                        | 4.6E-8                |  |
| Value selected:      | 2.0E-7                |                                                  |                       |  |
| Rationale:           |                       | reported failure rates.<br>-specific experience. | Value selected is in- |  |

| 67. Inverter: fails d         | luring operation |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------|------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Generic Sources               |                  |                                                  | Failure Rate (/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Oconee PRA                    |                  |                                                  | 1.3E-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Seabrook PSS                  |                  |                                                  | 1.8E-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Three plants (below)          |                  |                                                  | 1.6E-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Arithmetic Avera              | ae               |                                                  | 5.5E-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Geometric Avera               |                  |                                                  | 3.4E-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Plant-Specific Evid           | ence             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                               | Failures         | Hours                                            | Failure Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Oconee                        | 9                | 337,000                                          | 2.7E-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Zion                          | 3                | 304,000                                          | 9.9E-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Indian Point                  | 1                | 167,800                                          | 6.0E-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total                         | 13               | 808,800                                          | 1.6E-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Value selected:<br>Rationale: |                  | ell, except for Oconee<br>ienced by caher source | The second |

| 68. Relay: fails to | operate on demand                                         |                                                                |
|---------------------|-----------------------------------------------------------|----------------------------------------------------------------|
| Generic Sources     |                                                           | Failure Rate (/d)                                              |
| Oconee PRA          |                                                           | 2.4E-4                                                         |
| Seabrook PSS        |                                                           | 2.4E-4                                                         |
| IEEE-500            |                                                           | 4.5E-6                                                         |
| Arithmetic Aver     | 80e                                                       | 1.6E-4                                                         |
| Geometric Ave       |                                                           | 6.4E-5                                                         |
| Plant-Specific Evid | lence                                                     |                                                                |
| Not available.      |                                                           |                                                                |
| Value selected:     | 1.0E-4                                                    |                                                                |
| Rationale:          | Limited sources; IEEE-500 v<br>sources. Other two sources | value is not consistent with other<br>s weighted most heavily. |

| 69. Relay: failure to | o operate (par hr)                      |                                       |
|-----------------------|-----------------------------------------|---------------------------------------|
| Generic Sources       |                                         | Failure Rate (/hr)                    |
| NPRD-2                |                                         | 1.4E-6                                |
| Oconee PRA            |                                         | 8.1E-7                                |
| Seabrook PSS          |                                         | 4.2E-7                                |
| IEEE-500              |                                         | 6.0E-6                                |
| Arithmetic Avera      | ge                                      | 6.8E-7                                |
| Geometric Avera       |                                         | 4.1E-7                                |
| Plant-Specific Evid   | ence                                    |                                       |
| Not available.        |                                         |                                       |
| Value selected:       | 6.0E-7                                  |                                       |
| Rationale:            | Available sources are si<br>much lower. | imilar, except for IEEE-500, which is |

| 70. Flow transmitte | r: output fails during operation                    |                         |
|---------------------|-----------------------------------------------------|-------------------------|
| Generic Sources     |                                                     | Failure Rate (/hr)      |
| Oconee PRA          |                                                     | 2.6E-6                  |
| Seabrook PSS        |                                                     | 6.3E-6                  |
| NPRD-2              |                                                     | 8.4E-6                  |
| Arithmetic Avera    | ge                                                  | 5.7E-6                  |
| Geometric Avera     | age                                                 | 5.7 <b>E-6</b>          |
| Plant-Specific Evid | ence                                                |                         |
| Not available.      |                                                     |                         |
| Value selected:     | 6.0E-6                                              |                         |
| Rationale:          | Available sources are similar, and vi<br>sentative. | alue selected is repre- |



| 71. Pressure transm | nitter: output fails during ope                  | ration                           |
|---------------------|--------------------------------------------------|----------------------------------|
| Generic Sources     |                                                  | Failure Rate (/hr)               |
| Oconee PRA          |                                                  | 1.4E-5                           |
| Seabrook PSS        |                                                  | 7.6E-6                           |
| IEEE-500            |                                                  | 8.8E-7                           |
| NPRD-2              |                                                  | 2.6E-6                           |
| Arithmetic Avera    | ge                                               | 6.3E-6                           |
| Geometric Avera     | ige                                              | 4.0E-6                           |
| Plant-Specific Evid | ance                                             |                                  |
| Not available.      |                                                  |                                  |
| Value selected:     | 5.0E-6                                           |                                  |
| Rationale:          | Available sources are some<br>is representative. | what similar, and value selected |

| 72. Level transmitte                   | er: output fails during operation                                  |                   |
|----------------------------------------|--------------------------------------------------------------------|-------------------|
| Generic Sources                        | Fa                                                                 | ailure Rate (/hr) |
| Oconee PRA                             |                                                                    | 3.2E-6            |
| Seabrook PSS                           |                                                                    | 1.6E-5            |
| IEEE-500                               |                                                                    | 1.4E-6            |
| Arithmetic Avera                       | ge                                                                 | 6.8E-6            |
| Geometric Avera                        | ge                                                                 | 4.1E-6            |
| Plant-Specific Evide<br>Not available. | ence                                                               |                   |
| Value selected:                        | 5.0E-6                                                             |                   |
| Rationale:                             | Seabrook value is higher than other sources.<br>is representative. | Value selected    |

| 73. Temperature tra | ansmitter: output fails during operation                            |                       |
|---------------------|---------------------------------------------------------------------|-----------------------|
| Generic Sources     |                                                                     | Failure Rate (/hr)    |
| Oconee PRA          |                                                                     | 5.7E-6                |
| IEEE-500            |                                                                     | 1.6E-7                |
| Arithmetic Avera    | gə                                                                  | 2.9E-6                |
| Geometric Avera     | age                                                                 | 9.5E-7                |
| Plant-Specific Evid | ence                                                                |                       |
| Value selected:     | 1.0E-6                                                              |                       |
| Rationale:          | Limited data available, and sources are selected is representative. | not very close. Value |

| 74. Pressure switch | 1: failure during operation                                             |                    |
|---------------------|-------------------------------------------------------------------------|--------------------|
| Generic Sources     |                                                                         | Failure Rate (/hr) |
| Oconee PRA          |                                                                         | 3.4E-7             |
| NPRD-2              |                                                                         | 9.8E-7             |
| IEEE-500            |                                                                         | 7.0E-8             |
| Arithmetic Avera    | as .                                                                    | 4.6E-7             |
| Geometric Avera     |                                                                         | 2.9E-7             |
| Plant-Specific Evid | ence                                                                    |                    |
| Not available.      |                                                                         |                    |
| Value selected:     | 3.0E-7                                                                  |                    |
| Rationale:          | Limited sources available; value i<br>weight given to nuclear plant sou |                    |

| 75. Pressure switch | h: fails to respond on demand                                    |                           |
|---------------------|------------------------------------------------------------------|---------------------------|
| Generic Sources     |                                                                  | Failure Rate (/d)         |
| Oconee PRA          |                                                                  | 2.4E-4                    |
| Seabrook PSS        |                                                                  | 2.7E-4                    |
| IEEE-500            |                                                                  | 1.4E-7                    |
| Arithmetic Avera    | ge                                                               | 1.7E-4                    |
| Geometric Aven      |                                                                  | 2.1E-5                    |
| Plant-Specific Evid | ence                                                             |                           |
| Not available.      |                                                                  |                           |
| Value selected:     | 2.0E-4                                                           |                           |
| Rationale:          | IEEE-500 data seems very low for d<br>sources given more weight. | emand failure rate. Other |

| 76. Level switch: f | ilure during operation                                                                                                                                                            |                    |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Generic Sources     |                                                                                                                                                                                   | Fallure Rate (/hr) |
| Oconee PRA          |                                                                                                                                                                                   | 3.4E-7             |
| NPRD-2              |                                                                                                                                                                                   | 5.3E-6             |
| IEEE-500            |                                                                                                                                                                                   | 2.0E-7             |
| Arithmetic Average  |                                                                                                                                                                                   | 1.9E-6             |
| Geometric Average   |                                                                                                                                                                                   | 7.1E-7             |
| Plant-Specific Evid | ence                                                                                                                                                                              |                    |
| Not available.      |                                                                                                                                                                                   |                    |
| Value selected:     | 3.0E-7                                                                                                                                                                            |                    |
| Rationale:          | NPRD-2 value is much higher than others, and reflects only<br>non-nuclear experience (although the experience is substan-<br>tial). Greater weight is given to the other sources. |                    |

|                     | ails to respond on demand |                                                                           |
|---------------------|---------------------------|---------------------------------------------------------------------------|
| Generic Sources     |                           | Failure Rate (/d)                                                         |
| Oconee PRA          |                           | 2.4E-4                                                                    |
| IEEE-500            |                           | 3.3E-7                                                                    |
| Arithmetic Avera    | ge                        | 1.2E-4                                                                    |
| Geometric Aver      | ige                       | 8.9E-6                                                                    |
| Plant-Specific Evid | ence                      |                                                                           |
| Not available.      |                           |                                                                           |
| Value selected:     | 1.0E-5                    |                                                                           |
| Rationale:          |                           | ble. IEEE-500 value again seems<br>failure rate, but both sources must be |

### **RELIABILITY DATA BASE FOR ALWR PRAS**

### References

- Boyd, G.J., et al. Interim Probabilistic Assessment of the EPRI Requirements for Advanced Boiling Reactors. U.S. Department of Energy Advanced Reactor Severe Accident Program Task 4.3, July 1988.
- Boyd, G.J., et al. Interim Probabilistic Assessment of the EPRI Requirements for Advanced Pressurized Water Reactors. U.S. Department of Energy Advanced Reactor Severe Accident Program Task 4.3, July 1988.
- Mackowiak, D. P., et al. Development of Transient Initiating Event Frequencies for Use in Probabilistic Risk Assessments. U.S. Nuclear Regulatory Commission Report NUREG/CR-3862, Idaho National Engineering Laboratory, May 1985.
- Wyckoff, H. Losses of Off-Site Power at U.S. Nuclear Power Plants: All Years Through 1988. Electric Power Research Institute Report NSAC/144 (to be published February 1989).
- Iman, R.L., and S.C. Horn. Modeling Time to Recovery of Loss of Offsite Power at Nuclear Power Plants. U.S. Nuclear Regulatory Commission Report NUREG/CR-5032, Sandia National Laboratories, December 1987.
- Oconee PRA: A Probabilistic Risk Assessment of Oconee Unit 3. Duke Power Company and Electric Power Research Institute Report NSAC/60, June 1984.
- Seabrook Station Probabilistic Safety Study. Public Service Co. of New Hampshire and Yankee Atomic Electric Company, December 1983.
- Hubble, W. H., and C. F. Miller. Data Summaries of Licensee Event Reports of Valves at U.S. Commercial Nuclear Power Plants. U.S. Nuclear Regulatory Commission Report NUREG/CR-1363, EG&G Idaho, June 1980.
- Trojovsky, M. Data Summaries of Licensee Event Reports of Pumps at U.S. Commercial Nuclear Power Plants. U.S. Nuclear Regulatory Commission Report NUREG/CR-1205, EG&G Idaho, January 1982.
- Poloski, J. P., and W. H. Sullivan. Data Summaries of Licensee Event Reports of Diesel Generators at U.S. Commercial Nuclear Power Plants. U.S. Nuclear Regulatory Commission Report NUREG/CR-1362, EG&G Idaho, March 1980.
- Battle, R. E., and D. J. Campbell. Reliability of Emergency AC Power Systems at Nuclear Power Plants. U.S. Nuclear Regulatory Commission Report NUREG/CR-2989, Oak Ridge National Laboratory, July 1983.
- Wyckoff, H. The Reliability of Emergency Diesel Generators at U.S. Nuclear Power Plants. Electric Power Research Institute Report NSAC/108, September 1986.

### RELIABILITY DATA BASE FOR ALWR PRAS

### References (Continued)

- Kolaczkoswki, A. M., et al. Analysis of Core Damage Frequency from Internal Events: Peach Bottom Unit 2. U.S. Nuclear Regulatory Commission Report NUREG/CR-4550, Volume 3 (Draft), Sandia National Laboratories, May 1986.
- Reactor Safety Study: An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants. U.S. Nuclear Regulatory Commission Report WASH-1400 (NUREG-75/014), October 1975.
- Advanced Light Wate: Reactor Requirements Document, Appendix A: PRA Key Assumptions and Groundrules. First Draft, Electric Power Research Institute, July 1987.
- Arno, R. G. Nonelectronic Parts Reliability Data. Reliability Analysis Center Report NPRD-2, Rome Air Development Center 1981.
- IEEE Guide to the Collection and Presentation of Electrical, Electronic, Sensing Component and Mechanicet Equipmont Reliability Data for Nuclear Power Generating Stations. IEEE Standard 500-1064, The Institute of Electrical and Electronic Engineers, Inc., December 1982.
- Browns Ferry Unit: 1 Probabilistic Risk Assessment. Tennessae Valley Authority, September 1987.
- Papazoglou, I.A., et al. Probebilistic Safety Analysis Procedures Buide U.S. Nuclear Regulatory Commission Report NUREG/CR-28-5, Brookheven National Laboratory, 1985.
- Wheeler, T.A., et al. Results of the Expert Opinion Elicitation on Internal Event Front-End Issues for NUREG-1150: Expert Panel. U.S. Nucleal Regulatory Commission Report NUREG/CR-5116, Vol. 1 (Draft), April 1988.
- 21. Ontario Hydro.
- Indian Point Probabilistic Safety Study. Power Authority of the State of New York and Consolidated Edison Company of New York, Inc., 1982.
- Zion Probabilistic Safety Study. Commonwealth Edison Company, December 1981.
- Bickel, J. H., et al. "Analysis of Millstone Unit 1 System Failure and Maintenance Data," Proceedings: International Topical Meeting on Probabilistic Safety Methods and Applications. Electric Power Research Institute Report NP-3912-SR, February 1985.
- Wheeler, T. A. Risk Methods Integration and Evaluation Program (RMIEP) Parameter Estimation Analysis. Sandia National Laboratories (Draft), 1987.

### **RELIABILITY DATA BASE FOR ALWR PRAS**

### References (Continued)

- Probabilistic Risk Assessment: Shoreham Nuclear Power Station. Long Island Lighting Company, June 1983.
- Mosleh, A., et al. Procedures for Treating Common Cause Failures in Safety and Reliability Studies, Volume 1: Procedural Framework and Examples. Electric Power Research Institute Report NP-5613 and U.S. Nuclear Regulatory Commission Report NUREG/CR-4780, February 1988.
- Fleming, K. N., et al. Classification and Analysis of Reactor Operating Experience Involving Dependent Events. Electric Power Research Institute NP-3967, June 1985.

The ALWR reference site is expected to conservatively represent the consequences of most potential sites. Characteristics of 91 U.S. reactor sites are tabulated in the NRC document, *Technical Guidance for Siting Criteria Development* (NUREG CR-2239). Below are listed several of these characteristics which are correlated with high off-site consequences. The values for the ALWR reference site are shown, as well as the approximate percentile for the values:

| PARAMETER                      | ALWR VALUE   | PERCENTILE |
|--------------------------------|--------------|------------|
| Population density 0-200 miles | 182/sq. mi.  | 80         |
| Population density 0-20 miles  | 370/sq. mi.  | 90         |
| Population center 5-10 miles   | 1600/sq. ml. | 90         |
| Population center 10-20 miles  | 2700/sq. mi. | 95         |
| Rainfall - hourn annually      | 540 hours    | 80         |

The following ALWR "reference site" characteristics are required as input to the CRAC2 computer code:

- Mateorological Data (see Table A.B-1);
- Population Data (see Table A.B-2);
- Evac. ation and Sheltering Data (see Tate A.E-3).

### Meteorologica! Data

CRAC2 requires a file of hourly meteorological data consisting of wind speed, wind direction, atmospheric stability category, and intensity of precipitation. A CRAC2 meteorological data file contains data for one year, which consists of 8760 entries for a 365-day year. The weather data assessment is done by sorting the file into weather categories. The categories must provide a realistic representation of the year's weather without overlooking those kinds of weather that are instrumental in producing major consequence impacts. A set of 29 weather categories has been selected for the CRAC2 model to reflect these requirements.

The entire year of data, \$760 hourly recordings, are sorted into the 29 weather categories. Each sequence is examined to determine (1) the first occurrence of rain within 30 miles of the site, or (2) the first occurrence of a wind speed slowdown within 30 miles of the accident site, or (3) the stability category and wind speed at the start of the sequence. The first of these conditions that is satisfied by the sequence determines the weather category to which it is assigned. Following the assessment process, the start hour of each weather sequence will have been assigned to one and only one weather category. Each of the weather categories then includes a set of weather sequences representing the corresponding weather type. The probability of occurrence of that weather type is the ratio of the total number of weather sequences in the year's data set.

The sampling procedure now has two key items of information available to it: (1) the category of each weather sequence and (2) the probability of occurrence of each category of weather. A sample consists of a set of weather sequences selected from each of the categories. Four sequences are selected from each category by the "Latin hypercube" sampling scheme [1]. With this sampling method, random samples are drawn from sets evenly spaced within the weather category. This assures that the model uses an event representation of the weather data over the full year.

Rather than present the entire file in CRAC2 input format, the summary tables are attached for review. These tables give statistics for 29 bins derived from the 8760 hours of data.

Sine 1 through 7 represent cases where rain occurs over the distance intervals 0 (site), 0-5, 5-10, 10-15, 15-20, 20-25, and 25-30 miles, respectively.

Sine 8 through 12 represent cases where slowdowns (periods of low wind speed) occur over the distance intervals 0-10, 10-15, 15-20, 20-25, and 25-30 miles, respectively.

Bins 13 and 14 represent cases with stability class A, B, or C and initial wind speeds of  $\leq$  3 and > 3 meters/sec, respectively.

Bins 15 through 19 represent cases with stability class D and initial wind speeds of < 1, 1-2, 2-3, 3-5, and > 5 meters/sec, respectively.

 Inman, R.L. and Conover, W.J. (1982) Short Course on Sensitivity Analysis Techniques, NUREG/CR-2350, SAND81-1978.

Bins 20 and 24 represent cases with stability class E and initial wind speeds of < 1, 1-2, 2-3, 3-5, and > 5 meters/sec, respectively.

Bins 25 and 29 represent cases with stability class F and initial wind speeds of < 1, 1-2, 2-3, 3-5, and > 5 meters/sec, respectively.

All bins are further divided to provide statistics for the 16 different wind directions corresponding to 22.5-degree sectors. The first of these sectors is centered on due north, the second 22.5 degrees east of north, and so on.

(Page 1 of 7)

ACCUMULATED RAIN MEASUREMENTS TOTALED 47.64 INCHES FOR THE YEAR. METEOROLOGICAL DATA FILE CONTAINS 513 HOURS OF OBSERVED RAIN DATA. HOLZWORTH AFTERNOON MIXING HEIGHT 1500 METERS.

\*\*\* METEOROLOGICAL BIN SUMMARY \*\*\*

**BIN PRIORITIES** 

R - PAIN WITHIN INTERVALS

S - SLOWDOWNS WITHIN INTERVALS

CDEF - STABILITY CATEGORIES

1 (0-1), 2 (1-2), 3 (2-3), 4 (3-5), 5 (GT 5) - WIND SPEED INTERVALS (M/S)

WIND DIRECTION

| PERCENT  | 5.8662 | 0.7991 | 1.6667 | 1.3584 | 1.2785 | 1.1416 | 1.0845 | 0.6735 | 0.4566 |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| TOTAL    | 513    | 8      | 146    | 119    | 112    | 100    | 8      | 8      | 6      |
| 2        | 0.041  | 0.014  | 0.034  | 0.034  | 0.080  | 0.020  | 0.011  | 0.136  | 0.075  |
| 15       | 0.035  | 0.071  | 0.041  | 0.017  | 0.045  | 0:030  | 0.011  | 0.102  | 0.025  |
| Ŧ        | 0.019  | 0.029  | 0.007  | 0.017  | 0.018  | 0.010  | 0.0    | 0.119  | 0.050  |
| 13       | 0.029  | 0.057  | 0.027  | 0.008  | 0.036  | 0.010  | 0.011  | 0.017  | 0.175  |
| 5        | 0.029  | 0.043  | 0.027  | 0:050  | 0.027  | 0.020  | 0.042  | 0.051  | 0.075  |
| =        | 0.068  | 0.029  | 0.082  | 0:020  | 0.089  | 0.070  | 0.116  | 0.051  | 0.075  |
| 16       | 0.107  | 0.086  | 0.137  | 0.118  | 0.116  | 0.100  | 0.126  | 0.153  | 0:030  |
|          | 0.078  | 9.057  | 0.062  | 0.109  | 0.089  | 0.140  | 0.147  | 0.017  | 0.025  |
| ••       | 100.0  | 0.114  | 0.068  | 0.092  | 0.098  | 0.110  | 0.074  | 0.0    | 0.025  |
| •        | 0.049  | 0.100  | 0.110  | 5.084  | 0.107  | 0.080  | 0.084  | 0.0    | 0.0    |
| •        | 0.021  | 0.029  | 0.052  | 0.042  | 0.009  | 0.070  | 0.063  | 0.017  | 0.025  |
| ŝ        | 0.041  | 0.114  | 0.075  | 0.067  | 0.027  | 0.040  | 0.063  | 0.0    | 0.0    |
| 4        | 0.047  | 0.014  | 0.034  | 0.059  | 0.045  | 0.060  | 0.0    | 0.051  | 0.075  |
| e        | 0.090  | 0.043  | 0.082  | 0.076  | 0.116  | 0.090  | 0.074  | 0.068  | 0.100  |
| 8        | 0.111  | 0.086  | 0.075  | 0.101  | 0.045  | 0.070  | 0.116  | 0.136  | 0.050  |
| METBIN 1 | 0.136  | 0.114  | 0.075  | 0.076  | 0.054  | 0.080  | 0.063  | 0.085  | 0.175  |
| NIE      | 0      | ŝ      | 10     | 15     | 20     | 25     | 30     | 10     | 13     |
| MET      | 1 R 0  | 2 R    | 2 H    | 4 R 15 | 5 8    | 6 8    | 7 R    | 8 S 10 | 9 5 15 |

(Page 2 of 7)

| 233 |                |                           |                                |
|-----|----------------|---------------------------|--------------------------------|
| 188 |                |                           |                                |
| 122 | 80 h           |                           |                                |
| 233 |                |                           |                                |
| 18  | 0.8            |                           |                                |
| 88  |                |                           |                                |
| 翻   |                |                           |                                |
| 88  |                |                           | v.                             |
| -88 |                |                           | -                              |
| 38  |                |                           | •                              |
| 88  |                |                           | 5                              |
| 82  |                |                           | ñ                              |
| 325 |                |                           |                                |
| 58  |                |                           | ш.                             |
| 88  |                |                           | -                              |
| 100 |                | S                         | 7                              |
| 200 |                | -1                        | -                              |
| 223 |                | -                         | -                              |
| 諁   |                | 25                        | 2                              |
| 88  |                | >                         | -                              |
| 綴   |                | CT.                       | 1                              |
| 慾   |                | m                         | -                              |
| 385 |                | -                         | 1                              |
|     |                |                           |                                |
| 200 |                | -                         | -                              |
| 8   |                | Ξ                         | 5                              |
| 8   |                | Z                         | S                              |
|     |                | NIN                       | N SP                           |
|     |                | IN IN                     | N SN                           |
|     |                | INI NI                    | N SNN                          |
|     |                | UNI NIH                   | W SINNI                        |
|     |                | THIN INIT                 | W SNWO                         |
|     |                | INI NIHLIS                | N SNMOC                        |
|     |                | INI NIHLIN                | N SNMOD                        |
|     |                | INI NIHLIM I              | N SNWOON                       |
|     | s              | INI NIHLIM N              | N SNNOQMO                      |
|     | S              | INI NIHLIM NI             | N SNMOQMO                      |
|     | IES            | INI NIHTIN NIA            | N SNMOQMOT                     |
|     | TIES           | RAIN WITTHIN INI          | N SIMOQMO IS                   |
|     | ITTES          | RAIN WITTHIN INT          | N SIMOOMO IS                   |
|     | RITIES         | - RAIN WITTHIN IN         | N SIMOOMOIS -                  |
|     | DRITIES        | R - RAIN WITHIN INI       | N SNMOQMOIS - S                |
|     | IORITIES       | R - RAIN WITHIN INTERVALS | S - SLOWDOWNS WITHIN INTERVALS |
|     | RIORITIES      | R - RAIN WITHIN INI       | N SNMOQMOIS - S                |
|     | PRIORITIES     | R - RAIN WITHIN INI       | N SNMOQMOIS - S                |
|     | PRIORITIES     | R - RAIN WITHIN INI       | N SNMOQMOIS - S                |
|     | N PRIORITIES   | R - RAIN WITHIN INI       | N SNMOQMOIS - S                |
|     | IN PRIORITIES  | R - RAIN WITHIN INI       | N SNMOQMOTS - S                |
|     | BIN PRIORITIES | R - RAIN WITHIN INI       | N SNMOQMOTS - S                |

CDEF - STABILITY CATEGORIES 1 (0-1), 2 (1-2), 3 (2-3), 4 (3-5), 5 (GT 5) - WIND SPEED INTERVALS (M/S)

### WIND DIRECTION

| 5       |        | -      | 6      |         |         | N      | -      |        |        |        |        |        |
|---------|--------|--------|--------|---------|---------|--------|--------|--------|--------|--------|--------|--------|
| PERCENT | 0.5534 | 0.5251 | 0.5306 | 12.8539 | 12.9680 | 1.0502 | 5.5251 | 6.3813 | 6.3242 | 2.5457 | 1.9521 | 7.1575 |
| TOTAL   | \$     | \$     | 53     | 1126    | 1136    | 32     | 484    | 559    | 199    | 223    | 5      | 627    |
| 2       | 0.122  | 0.130  | 0.212  | 0.028   | 0.066   | 0.076  | 0.035  | 0.032  | 0.040  | 060:0  | 0.047  | 0.053  |
| \$      | 0.184  | 0.109  | 0.135  | 0.023   | 0.072   | 0.066  | 0.031  | 0.023  | 0.029  | 0.072  | 0.047  | 0.029  |
| 2       | 0.020  | 0.0    | 0.019  | 0.044   | 0.063   | 0.065  | 0.027  | 0.032  | 0.007  | 0.0    | 0.047  | 0.038  |
| 5       | 0.061  | 0.022  | 0.038  | 0.059   | 0.039   | 0.054  | 0.056  | 0.027  | 0.016  | 0.004  | 0.041  | 0.064  |
| 5       | 0.061  | 0.022  | 0.058  | 0.056   | 0.085   | 0.065  | 0.064  | 0.063  | 0.034  | 0.045  | 0.076  | 0.072  |
| =       | 0.041  | 0.217  | 960.0  | 0.131   | 0.246   | 0.054  | 0.099  | 0.125  | 0.144  | 0.229  | 0.088  | 0.152  |
| 10      | 0.122  | 0.065  | 0.135  | 0.091   | 0.116   | 0.065  | 0.110  | 0.154  | 0.200  | 0.:35  | 0.047  | 0.153  |
| •       | 0.061  | 0.022  | 0.038  | 0.067   | 0.029   | 0.033  | 960.0  | 0.063  | 0.069  | 0.094  | 0.070  | 0.089  |
| •       | 0.320  | 0.022  | 0.358  | 0.073   | 0.031   | 0.033  | 6.052  | 0.057  | 0.036  | 0.031  | 0.047  | 0.086  |
| *       | 0.0    | 0.022  | 0.0    | 0.076   | 0.019   | 0.043  | 0.048  | 0.041  | 0.007  | 0.00.  | 0.076  | 0.041  |
| •       | 0.020  | 0.022  | 0.019  | 0.053   | 0.002   | 0.087  | 0.064  | 0.032  | 0.0    | 0.0    | 0.064  | 0.019  |
| \$      | 0.0    | 0.043  | 0.058  | 0.069   | 0.018   | 0.098  | 0.076  | 0.057  | 0.011  | 0.0    | 0.058  | 0.035  |
| •       | 0.0    | 0.0    | 0.0    | 0.052   | 0.026   | 0.065  | 0.052  | 0.048  | 0.023  | 0.0    | 0.035  | 0.019  |
| •       | 0.061  | 0.109  | 0.038  | 0.067   | 0.052   | 0.087  | 0.074  | 0.116  | 0.117  | 0.018  | 0.076  | 0.038  |
| 8       | 0.041  | 0.109  | 0.038  | C.058   | 0.079   | 0.043  | 0.062  | 0.081  | 0.137  | 0.215  | 0.058  | 0.041  |
| -       | 0.184  | 0.087  | 0.058  | 0.952   | 0.057   | 0.065  | 0.056  | 0.048  | 0.128  | 0.063  | 0.123  | 0.070  |
| Z       | 8      | 25     | 30     | 0       | 4       | -      | 2      | 3      | 4      | 5      | -      | ~      |
| METBIN  | 10 S   | 11 S   | 12 S   | 13 C    | 14 C    | 15 D   | 16 D   | 17 D   | 18 D   | 19 D   | 20 E   | 21 E   |
|         |        |        |        |         |         |        |        |        |        |        |        |        |

| 200.000 |  | and the second |
|---------|--|----------------|
|         |  | (Pi            |

### BIN PRIORITIES

Page 3 of 7)

R - RAIN WITHIN INTERVALS S - SLOWDOWNS WITHIN INTERVALS

CDEF - STABILITY CATEGORIES

1 (0-1), 2 (1-2), 3 (2-3), 4 (3-5), 5 (GT 5) - WIND SPEED INTERVALS (M/S)

### WIND DIRECTION

| METE  | BIN | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | TOTAL | PERCENT |
|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|
| 22 E  | 3   | 0.135 | 0.055 | 0.045 | 0.022 | 0.012 | 0.010 | 0.015 | 0.075 | 0.077 | 0.185 | 0.137 | 0.055 | 0.050 | 0.035 | 0.035 | 0.057 | 401   | 4.5776  |
| 23 E  | 4   | 0.155 | 0.082 | 0.034 | 0.010 | 0.007 | 0.0   | 0.0   | 0.082 | 0.103 | 0.258 | 0.117 | 0.021 | 0.003 | 0.0   | 0.052 | 0.076 | 291   | 3.3219  |
| 24 E  | 5   | 0.081 | 0.210 | 0.032 | 0.0   | 0.0   | 0.0   | 0.016 | 0.032 | 0.355 | 0.145 | 0.065 | 0.016 | 0.0   | 0.0   | 0.032 | 0.016 | 62    | 0.7078  |
| 25 F  | 1   | 0.078 | 0.073 | 0.065 | 0.039 | 0.057 | 0.035 | 0.071 | 0.043 | 0.092 | 0.082 | 0.086 | 0.057 | 0.065 | 0.049 | 0.057 | 0.051 | 510   | 5.8219  |
| 26 F  | 2   | 0.103 | 0.057 | 0.021 | 0.006 | 0.013 | 0.005 | 0.025 | 0.057 | 0.112 | 0.149 | 0.169 | 0.113 | 0.072 | 0.042 | 0.021 | 0.034 | 793   | 9.0525  |
| 27 F  | 3   | 0.107 | 0.020 | 0.008 | 0.004 | 0.004 | 0.0   | 0.0   | 0.055 | 0.091 | 0.154 | 0.154 | 0.091 | 0.134 | 0.059 | 0.043 | 0.075 | 253   | 2.8881  |
| 28 F  | 4   | 0.213 | 0.115 | 0.016 | 0.016 | 0.0   | 0.0   | 0.0   | 0.0   | 0.213 | 0.016 | 0.049 | 0.0   | 0.033 | 0.082 | 0.098 | 0.148 | 61    | 0.6963  |
| 29 F  | 5   | 0.0   | 0.250 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.250 | 0.500 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 16    | 0.1826  |
| 30 AI | ш   | 0.085 | 0.078 | 0.063 | 0.031 | 0.037 | 0.024 | 9.040 | 0.059 | 0.079 | 0.131 | 0.138 | 0.062 | 0.046 | 0.036 | 0.041 | 0.050 | 8760  |         |
| 30 AI | ш   | 0.085 | 0.078 | 0.063 | 0.031 | 0.037 | 0.024 | 0.040 | 0.059 | 0.079 | 0.131 | 0.138 | 0.062 | 0.046 | 0.036 | 0.041 | 0.050 | 8760  |         |

**BIN PRIORITIES** 

R - RAIN WITHIN INTERVALS

S - SLOWDOWNS WITHIN INTERVALS

CDEF - STABILITY CATEGORIES

1 (0-1), 2 (1-2), 3 (2-3), 4 (3-5), 5 (GT 5) - WIND SPEED INTERVALS (M/S)

### WIND DIRECTION

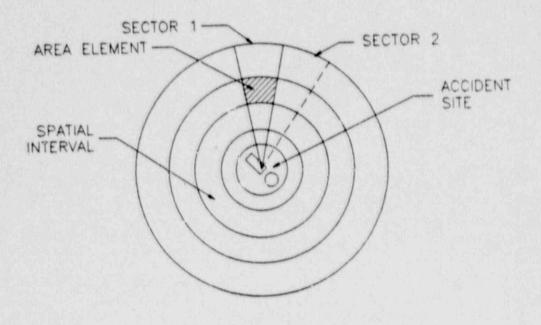
| METBI  | N    | 1 | 2  | 3  | 4  | 5  | 8  | 7  | 8  | ,  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | TOTAL | PERCENT |
|--------|------|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-------|---------|
| 1 8    | 0 70 | D | 57 | 46 | 24 | 21 | 11 | 25 | 50 | 40 | 55 | 35 | 15 | 15 | 10 | 18 | 21 | 513   | 5.8562  |
| 2 R    | 5 1  | B | 6  | 3  | 1  | 8  | 2  | 7  | 8  | 4  | 6  | 2  | 3  | 4  | 2  | 5  | 1  | 70    | 0.7991  |
| 3 R 1  | 0 1  | 1 | 11 | 12 | 5  | 11 | 9  | 16 | 10 | 9  | 20 | 12 | 4  | 4  | 1  | 6  | 5  | 146   | 1.6667  |
| 4 R 1  | 5 1  | 9 | 12 | 9  | 7  | 8  | 5  | 10 | 11 | 13 | 14 | 6  | 6  | 1  | 2  | 2  |    | 119   | 1.3584  |
| 5 R 2  | 0    | 6 | 5  | 13 | 5  | 3  | 1  | 12 | 11 | 10 | 13 | 10 | 3  | 4  | 2  | 5  | 9  | 112   | 1.2785  |
| 6 R 2  | 5 1  | B | 7  | 9  | 6  | 4  | 7  | 8  | 11 | 14 | 10 | 7  | 2  | 1  | 1  | 3  | 2  | 100   | 1.1416  |
| 7 R 3  | 0    | 6 | 11 | 7  | 0  | 6  | 6  | 8  | 7  | 14 | 12 | 11 | 4  | 1  | 0  | 1  | 1  | 95    | 1.0845  |
| 8 S 1  | 0    | 5 | 8  | 4  | 3  | 0  | 1  | 0  | 0  | 1  | 9  | 3  | 3  | 1  | 7  | 6  | 8  | 59    | 0.6735  |
| 9 S 1  | 5    | 7 | 2  | 4  | 3  | 0  | 1  | 0  | 1  | 1  | 2  | 3  | 3  | 7  | 2  | 1  | 3  | 40    | 0.4566  |
| 10 S 2 | 20   | 9 | 2  | 3  | 0  | 0  | 1  | 0  | 1  | 3  | 6  | 2  | 3  | 3  | 1  | 9  | 6  | 49    | 0.5594  |
| 11 S 2 | 25   | 4 | 5  | 5  | 0  | 2  | 1  | 1  | 1  | 1  | 3  | 10 | 1  | 1  | 0  | 5  | 6  | 46    | 0.5251  |

Page A.B-7

(Page 4 of 7)

| 5       | - RAIN | S<br>N WITHII<br>WDOWr<br>- STAI<br>2 (1-2), 3 | NS WITH | IN INTE | RIES | - WINE | SPEED   | INTER | /ALS (M/ | S)    |     |    |    |    |    |    | (Pag  | je 5 of 7) |
|---------|--------|------------------------------------------------|---------|---------|------|--------|---------|-------|----------|-------|-----|----|----|----|----|----|-------|------------|
|         |        |                                                |         |         |      | WIND D | IRECTIC | N     |          |       |     |    |    |    |    |    |       |            |
| METBIN  | 1      | 2                                              | 3       | 4       | 5    |        | 7       | 8     |          | 10    | 11  | 12 | 13 | 14 | 15 | 16 | TOTAL | PERCENT    |
| 12 S 30 | 3      | 2                                              | 2       | 0       | 3    | 1      | 0       | 3     | 2        | 7     | 5   | 3  | 2  | 1  | 7  | 11 | 52    | 0.5936     |
| 13 C 13 | 59     | 65                                             | 76      | 58      | 78   | 60     | 86      | 82    | 75       | 103   | 148 | 63 | 66 | 49 | 26 | 32 | 1126  | 12.8539    |
| 14 C 4  | 65     | 90                                             | 59      | 29      | 21   | 2      | 22      | 35    | 33       | 132   | 279 | 97 | 44 | 71 | 82 | 75 | 1136  | 12.9680    |
| 15 D 1  | 6      | 4                                              | 8       | 6       | 9    | 8      | 4       | 3     | 3        | 6     | 5   | 6  | 5  | 6  | 6  | 7  | 92    | 1.0502     |
| 16 D 2  | 27     | 30                                             | 36      | 25      | 37   | 31     | 23      | 25    | 46       | 53    | 48  | 31 | 27 | 13 | 15 | 17 | 484   | 5.5251     |
| 17 D 3  | 27     | 45                                             | 65      | 27      | 32   | 18     | 23      | 32    | 35       | 86    | 70  | 35 | 15 | 18 | 13 | 18 | 559   | 6.3813     |
| 18 D 4  | 71     | 76                                             | 65      | 13      | 6    | 0      | 4       | 20    | 38       | 111   | 80  | 19 | 9  | 4  | 16 | 22 | 554   | 6.3242     |
| 19 D 5  | 14     | 48                                             | 4       | 0       | 0    | 0      | 1       | 7     | 21       | 30    | 51  | 10 | 1  | 0  | 16 | 20 | 223   | 2.5457     |
| 20 E 1  | 21     | 10                                             | 13      | 6       | 10   | 11     | 13      | 8     | 12       | 8     | 15  | 13 | 7  | 8  | 8  | 8  | 171   | 1.9521     |
| 21 E 2  | 44     | 26                                             | 24      | 12      | 22   | 12     | 26      | 54    | 56       | 96    | 95  | 45 | 40 | 24 | 18 | 33 | 627   | 7.1575     |
| 22 E 3  | 54     | 22                                             | 18      | 9       | 5    | 4      | 6       | 30    | 31       | 74    | 55  | 22 | 20 | 14 | 14 | 23 | 401   | 4.5776     |
| 23 E 4  | 45     | 24                                             | 10      | 3       | 2    | 0      | 0       | 24    | 30       | 75    | 34  | 6  | 1  | 0  | 15 | 22 | 291   | 3.3219     |
|         |        |                                                |         |         |      |        |         |       | Page     | A.B-8 |     |    |    |    |    |    |       |            |

| BIN PRI | ORI        | ITIES   |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 6.355800 |        |        |         |     |     |    |    |    |    |    | (Par  | e 6 of 7) |
|---------|------------|---------|------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|--------|--------|---------|-----|-----|----|----|----|----|----|-------|-----------|
|         | <b>R</b> - | RAIN    | WITHI      | INTER      | and the second sec | RVALS  |          |        |        |         |     |     |    |    |    |    |    |       | ,         |
|         |            |         |            | BILITY C   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |          |        |        |         |     |     |    |    |    |    |    |       |           |
|         | 1 (0       | 0-1), 2 | 2 (1-2), 3 | 3 (2-3), 4 | (3-5), 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (GT 5) | - WIND   | SPEED  | INTERV | ALS (M) | (S) |     |    |    |    |    |    |       |           |
|         |            |         |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |          | RECTIO | N      |         |     |     |    |    |    |    |    |       |           |
| METBIN  | 4          | 1       | 2          | 3          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5      | 6        | 7      |        | 9       | 10  | 11  | 12 | 13 | 14 | 15 | 16 | TOTAL | PERCENT   |
| 24 E 5  |            | 5       | 13         | 2          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0      | 0        | 1      | 2      | 22      | 9   | 4   | 1  | 0  | o  | 2  | 1  | 62    | 0.7078    |
| 25 F 1  | 4          | 40      | 37         | 33         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29     | 18       | 36     | 22     | 47      | 42  | 44  | 29 | 33 | 25 | 29 | 26 | 510   | 5.8219    |
| 26 F 2  | 8          | 82      | 45         | 17         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10     | 4        | 20     | 45     | 89      | 118 | 134 | 90 | 57 | 33 | 17 | 27 | 793   | 9.0525    |
| 27 F 3  | 2          | 27      | 5          | 2          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1      | 0        | 0      | 14     | 23      | 39  | 39  | 23 | 34 | 15 | 11 | 19 | 253   | 2.8881    |
| 28 F 4  | 1          | 13      | 7          | 1          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0      | 0        | 0      | 0      | 13      | 1   | 3   | 0  | 2  | 5  | 6  | 9  | 61    | 0.6963    |
| 29 F 5  |            | 0       | 4          | 0          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0      | 0        | 0      | 0      | 4       | 8   | 0   | 0  | 0  | 0  | 0  | 0  | 16    | 0.1826    |


| 5      | - RAI | WDOW  | N INTERN<br>NS WITH<br>BILITY C/<br>3 (2-3), 4 | IN INTE |     | - WINC | ) SPEED |     | /al.s (m/ | S)     |     |     |     |     |     |     | (Pag  | je 7 of 7) |
|--------|-------|-------|------------------------------------------------|---------|-----|--------|---------|-----|-----------|--------|-----|-----|-----|-----|-----|-----|-------|------------|
|        |       |       |                                                |         |     | WIND D | RECTIC  | N   |           |        |     |     |     |     |     |     |       |            |
| METBIN | 1     | 2     | 3                                              | 4       | 5   | 6      | 7       |     |           | 10     | 11  | 12  | 13  | 14  | 15  | 16  | TOTAL | PERCENT    |
|        | •• SL | MMARI | ES • • •                                       |         |     |        |         |     |           |        |     |     |     |     |     |     |       |            |
| R      | 118   | 109   | 99                                             | 48      | 61  | 41     | 86      | 108 | 104       | 130    | 83  | 37  | 30  | 18  | 40  | 43  | 1155  | 13.1849    |
| s      | 28    | 19    | 18                                             | 6       | 5   | 5      | 1       | 6   | 8         | 27     | 23  | 13  | 14  | 11  | 28  | 34  | 246   | 2.8082     |
| с      | 124   | 155   | 135                                            | 87      | 99  | 62     | 108     | 117 | 108       | 235    | 427 | 160 | 110 | 120 | 108 | 107 | 2262  | 25.8219    |
| D      | 145   | 203   | 178                                            | 71      | 84  | 57     | 55      | 87  | 143       | 286    | 254 | 101 | 57  | 41  | 66  | 84  | 1912  | 21.8265    |
| E      | 169   | 95    | 67                                             | 30      | 39  | 27     | 46      | 113 | 151       | 262    | 203 | 87  | 68  | 46  | 57  | 87  | 1552  | 17.7169    |
| F      | 162   | 98    | 53                                             | 27      | 40  | 22     | 56      | 81  | 176       | 208    | 220 | 142 | 125 | 78  | 63  | 81  | 1633  | 18.6415    |
| 1      | 70    | 51    | 55                                             | 34      | 53  | 38     | 57      | 34  | 64        | 57     | 69  | 50  | 47  | 41  | 43  | 41  | 804   | 9.1781     |
| 2      | 174   | 114   | 104                                            | 63      | 107 | 75     | 107     | 163 | 230       | 301    | 306 | 184 | 146 | 92  | 56  | 88  | 2310  | 26.3699    |
| 3      | 143   | 124   | 133                                            | 72      | 73  | 53     | 73      | 118 | 123       | 267    | 278 | 123 | 111 | 72  | 58  | 81  | 1902  | 21.7123    |
| 4      | 174   | 163   | 130                                            | 42      | 27  | 2      | 24      | 76  | 105       | 296    | 323 | 101 | 49  | 60  | 75  | 92  | 1739  | 19.8516    |
| 5      | 39    | 99    | 11                                             | 4       | 2   | 0      | 4       | 12  | 56        | 70     | 128 | 32  | 8   | 20  | 62  | 57  | 604   | 6.8950     |
|        |       |       |                                                |         |     |        |         |     | Page      | A.B-10 |     |     |     |     |     |     |       |            |

.

### **Population Data**

The population data which describes the ALWR reference site is contained in the Site Data file. The population distribution around the reactor site was assigned to elements of a grid defined by sixteen 22.5-degree sectors and thirty-four annuli. The first of these sectors is centered on due north, the second 22.5 degrees east of north, and so on. These directions correspond to the wind rose generated from the meteorological file, with the wind blowing **toward** the given directions. The annuli have the following radii in miles: 0.47, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 30.0, 40.0, 50.0, 55.0, 60.0, 65.0, 70.0, 85.0, 100.0, 150.0, 200.0, 350.0, 500.0.

Attached is the population distribution for the ALWR reference site. Information on format can be obtained from the CRAC2 Computer Code Users Manual.



Representation of the CRAC2 Geometry

|                                  |     |     |       |       |       |      | (Pag | e 1 of 6) |
|----------------------------------|-----|-----|-------|-------|-------|------|------|-----------|
| Sector                           | #1  | #2  | #3    | #4    | #5    | **   | #7   | **        |
| Distance<br>Intervals<br>(miles) |     |     |       |       |       |      |      |           |
| 0.0-0.47                         | 0   | 0   | 0     | 0     | 0     | 0    | 0    | 0         |
| 0.47—1.0                         | 3   | 6   | 0     | 3     | 3     | 15   | 0    | 0         |
| 1.0-2.0                          | 44  | 30  | 35    | 41    | 11    | 75   | 27   | 7         |
| 2.0-3.0                          | 76  | 31  | 38    | 19    | 50    | 935  | 229  | 256       |
| 3.0-4.0                          | 819 | 113 | 70    | 89    | 156   | 566  | 726  | 465       |
| 4.0-5.0                          | 435 | 461 | 100   | 139   | 219   | 146  | 413  | 777       |
| 5.0-6.0                          | 255 | 161 | 178   | 71    | 376   | 300  | 406  | 1279      |
| 6.0-7.0                          | 223 | 189 | 173   | 87    | 140   | 603  | 2025 | 4563      |
| 7.0-8.0                          | 237 | 188 | 52    | 59    | 638   | 2762 | 414  | 6780      |
| 8.0-9.0                          | 435 | 377 | 25925 | 25409 | 472   | 2188 | 254  | 4277      |
| 9.0—10.0                         | 537 | 542 | 1054  | 257   | \$108 | 852  | 255  | 6276      |
| 10.0-11.0                        | 731 | 704 | 1587  | 1634  | 1156  | 216  | 661  | 2530      |

### TABLE A.B-2. ALWR CRAC2 REFERENCE SITE - POPULATION DATA

•

TABLE A.B-2. ALWR CRAC2 REFERENCE SITE - POPULATION DATA

|                                  |       |       |        |        |       |       | (Pag  | e 2 of 6) |
|----------------------------------|-------|-------|--------|--------|-------|-------|-------|-----------|
| Sector                           | #1    | #2    | #3     | #4     | #5    | *6    | #7    | #8        |
| Distance<br>Intervals<br>(miles) |       |       |        |        |       |       |       |           |
| 11.0-12.0                        | 2305  | 783   | 2160   | 5760   | 2508  | 525   | 752   | 1300      |
| 12.0-13.0                        | 4946  | 1588  | 4516   | 8019   | 2037  | 556   | 503   | 697       |
| 13.0-14.0                        | 7747  | 2001  | 8474   | 9310   | 399   | \$77  | 935   | 431       |
| 14.0-15.0                        | 5996  | 2542  | 15120  | 10564  | 205   | 224   | 1738  | 771       |
| 15.0-16.0                        | 6818  | 2955  | 17177  | 8195   | 436   | 417   | 217   | 304       |
| 16.0—17.0                        | 6422  | 5506  | 21995  | 12552  | 2217  | 444   | 231   | 323       |
| 17.0-18.0                        | 2761  | 4247  | 22467  | 12366  | 1729  | 471   | 245   | 343       |
| 18.0—19.0                        | 3071  | 3052  | 23250  | 12254  | 783   | 497   | 260   | 362       |
| 19.0-20.0                        | 1717  | 2452  | 23709  | 12438  | 1101  | 524   | 274   | 382       |
| 20.0-30.0                        | 29136 | 25042 | 143872 | 104941 | 56858 | 18654 | 51951 | 2771      |
| 30.0-40.0                        | 27439 | 39969 | 132594 | 21792  | 42640 | 14732 | 30022 | 15879     |
| 40.0-50.0                        | 48856 | 40643 | 64239  | 24214  | 17771 | 20822 | 19065 | 3685      |

|                                  |         |         |          |         |        |        | (Pa    | ge 3 of 6) |
|----------------------------------|---------|---------|----------|---------|--------|--------|--------|------------|
| Sector                           | #1      | #2      | #3       | #4      | #5     | **     | #7     | -          |
| Distance<br>Intervals<br>(miles) |         |         |          |         |        |        |        |            |
| 50.0-55.0                        | 52079   | 45879   | 72858    | 47698   | 12162  | 7242   | 1954   | 790        |
| 55.0-60.0                        | 25051   | 19981   | 40315    | 21113   | 18059  | 9587   | 5288   | 19660      |
| 60.0-65.0                        | 24084   | 19444   | 18256    | 8228    | 9979   | 11453  | 7197   | 46008      |
| 65.0-70.0                        | 11886   | 22036   | 56997    | 10456   | 6983   | 14747  | 10546  | 8927       |
| 70.0-85.0                        | 121342  | 213636  | 238550   | 70567   | 97396  | 70866  | 99108  | 71870      |
| 85.0 - 100.                      | 37489   | 328113  | 556800   | 79135   | 94778  | 86191  | 211826 | 135627     |
| 100. – 150.                      | 329656  | 430709  | 907321   | 1215270 | 801702 | 447183 | 278209 | 284248     |
| 150. – 200.                      | 656250  | 965756  | 328122   | 780078  | 594809 | 377605 | 140354 | 738702     |
| 200. – 350.                      | 1425219 | 860867  | 3388006  | 1565834 | 368272 | 2738   | 0      | 0          |
| 350. – 500.                      | 7457921 | 2880548 | 11226251 | 17599   | 0      | 0      | 0      | 0          |

### TABLE A.B-2. ALWR CRAC2 REFERENCE SITE - POPULATION DATA

•

TABLE A.B-2. ALWR CRAC2 REFERENCE SITE - POPULATION DATA

|                                  |      |     |     |      |     |      | (Pag | e 4 of 6) |
|----------------------------------|------|-----|-----|------|-----|------|------|-----------|
| Sector                           | #9   | #10 | #11 | #12  | #13 | #14  | #15  | #16       |
| Distance<br>Intervals<br>(miles) |      |     |     |      |     |      |      |           |
| 0.0-0.47                         | 0    | 0   | 0   | 0    | 0   | 0    | 0    | Ð         |
| 0.47-1.0                         | 9    | 0   | 3   | 6    | 3   | 0    | 0    | 0         |
| 1.0-2.0                          | 11   | 31  | 0   | n    | 15  | 68   | 61   | 30        |
| 2.u-3.0                          | 113  | 236 | 73  | 39   | 0   | 15   | 27   | 30        |
| 3.0-4.0                          | 290  | 265 | 184 | 39   | 60  | 69   | 36   | 119       |
| 4.0-5.0                          | 595  | 392 | 85  | 39   | 90  | 74   | 262  | 80        |
| 5.0-6.0                          | 834  | 386 | 126 | 130  | 103 | 100  | 180  | 152       |
| 6.0-7.0                          | 2156 | 607 | 271 | 157  | 120 | 145  | 163  | 279       |
| 7.0-8.0                          | 2317 | 432 | 201 | 115  | 140 | 255  | 333  | 350       |
| 8.0-9.0                          | 3278 | 105 | 260 | 205  | 275 | 498  | 290  | 343       |
| 9.0-10.0                         | 4199 | 353 | 110 | 2146 | 375 | 2263 | 238  | 215       |
| 10.0-11.0                        | 2479 | 530 | 160 | 3135 | 320 | 2037 | 150  | 3232      |

|                                  |       |       | 1     |       |        |       | (Pa   | ge 5 of 6) |
|----------------------------------|-------|-------|-------|-------|--------|-------|-------|------------|
| Sector                           | **    | #10   | #11   | #12   | #13    | #14   | #15   | #16        |
| Distance<br>Intervals<br>(miles) |       |       |       |       |        |       |       |            |
| 11.0-12.0                        | 1053  | 220   | 225   | 1427  | 389    | 171   | 451   | 2241       |
| 12.0-13.0                        | 629   | 175   | 250   | 340   | 346    | 230   | 1567  | 2046       |
| 13.0-14.0                        | 512   | 215   | 190   | 197   | 215    | 290   | 1265  | 7624       |
| 14.0-15.0                        | 331   | 177   | 155   | 133   | 200    | 339   | 2111  | 11128      |
| 15.0-16.0                        | 257   | 325   | 116   | 247   | 225    | 107   | 1507  | 13046      |
| 16.0-17.0                        | 274   | 345   | 124   | 263   | 239    | 114   | 1465  | 15289      |
| 17.0-18.0                        | 290   | 366   | 132   | 279   | 254    | 121   | 2517  | 7189       |
| 18.0-19.0                        | 307   | 387   | 139   | 295   | 269    | 127   | 1694  | 4992       |
| 19.0-20.0                        | 323   | 408   | 147   | 310   | 283    | 134   | 8411  | 3369       |
| 20.0-30.0                        | 4453  | 37878 | 5618  | 3593  | 14417  | 34231 | 47823 | 35411      |
| 30.0-40.0                        | 4145  | 3906  | 35154 | 16059 | 59503  | 75906 | 29496 | 56468      |
| 40.0-50.0                        | 19643 | 5506  | 17736 | 44895 | 126121 | 54872 | 16930 | 113123     |

### TABLE A.B-2. ALWR CRAC2 REFERENCE SITE - POPULATION DATA

Page A.B.12

TABLE A.B-2. ALWR CRAC2 REFERENCE SITE - POPULATION DATA

|                                  |         |        |         |            |         |         | (Pa     | ige 6 of 6) |
|----------------------------------|---------|--------|---------|------------|---------|---------|---------|-------------|
| Sector                           | #9      | #10    | #11     | <b>F12</b> | #13     | #14     | #15     | #16         |
| Distance<br>Intervals<br>(miles) |         |        |         |            |         |         |         |             |
| 50.0-55.0                        | 11545   | 1900   | 2808    | 17413      | 119787  | 33333   | 6987    | 94554       |
| 55.0-60.0                        | 9375    | 9720   | 10567   | 22609      | 42633   | 19489   | 48768   | 70357       |
| 60.0-65.0                        | 31158   | 36735  | 44829   | 9934       | 43459   | 10529   | 27050   | 52473       |
| 65.0-70.0                        | 227613  | 16251  | 24852   | 354%       | 76259   | 8241    | 41715   | 43795       |
| 70.0-85.0                        | 522468  | 53220  | 72841   | 234790     | 361906  | 142008  | 49147   | 26493       |
| 85.0 - 100.                      | 55514   | 41546  | 88142   | 239710     | 133399  | 327358  | 62105   | 98301       |
| 100 150.                         | 266650  | 746697 | 145073  | 450692     | 176912  | 347401  | 788962  | 487580      |
| 150 200.                         | 289005  | 236081 | 264759  | 1505636    | 273317  | 1346685 | 497565  | 662998      |
| 200. – 350.                      | 1039589 | 620871 | 1097589 | 3070938    | 1631176 | 1364143 | 2600059 | 1976559     |
| 350 500.                         | 2698919 | 673150 | 1081859 | 1280638    | 1435912 | 1629589 | 2988924 | 5122181     |
|                                  |         |        |         |            |         |         |         |             |

### **Evacuation and Sheltering Data**

The ALWR off-site consequences analysis requires six distinct evacuation schemes in order to adequately represent evacuation time estimates for the permanent resident population, the transient population, and the special facility population (schools, hospitals, etc.). The evacuation data includes an evacuation scheme that assumes 5 percent of the population would delay evacuation for 24 hou/s after being warned to evacuate. This very conservative assumption is used so that the ALWR risk estimates can be compared with the IDCOR and NUREG-1150 analyses which both use this assumption.

Cloud and ground shielding factors are based on information given in WASH-1400. Breathing rate data is obtained from the PRA Procedures Guide.

|            | Т   | able A.B-3. |      |          |
|------------|-----|-------------|------|----------|
| Evacuation | and | Sheltering  | Data | (Normal) |

|             |                                    | (Page 1 of 3) |
|-------------|------------------------------------|---------------|
| EVCONI(1.1) | FROBABILITY OF STRATEGY (0-1)      | 5.000E-02     |
| EVCONI(2.1) | TIME DELAY BEFORE EVACUATION (HRS) | 2.400E+01     |
| EVCONI(3.1) | EVACUATION SPEED (M/S)             | 4.470E+00     |
| EVCONI(4.1) | MAXIMUM DISTANCE OF EVACUATION (M) | 1.609E+04     |
| EVCONI(5.1) | DISTANCE MOVED BY EVACUEES (M)     | 3.219E+04     |
| EVCONI(6.1) | SHELTERING RADIUS (M)              | 8.047E+04     |
| EVCONI(7.1) | EVACUATION SCHEME (1 OR 2)         | 2.000E+00     |
| EXPD(1)     | EXPOSURE DURATION (DAYS)           | 1.000E+00     |
| EVCONI(1.2) | PROBABILITY OF STRATEGY (0-1)      | 5.600E-01     |
| EVCONI(2.2) | TIME DELAY BEFORE EVACUATION (HRS) | 1.000E+00     |
| EVGONI(3.2) | EVACUATION SPEED (14/5)            | 4.4792+90     |
| EVCONI(4.2) | MAXIMUM DISTANCE OF EVACUATION (M) | 1.609E+04     |
| EVCONI(5.2) | DISTANCE MOVED BY EVACUEES (M)     | 3.219E+04     |
| EVCONI(6.2) | SHELTERING RADIUS (M)              | 8.047E+04     |
| EVCONI(7.2) | EVACUATION SCHEME (1 OR 2)         | 2.000E+00     |
| EXPD(2)     | EXPOSURE DURATION (DAYS)           | 1.000E+00     |
| EVCONI(1.3) | PROBABILITY OF STRATEGY (0-1)      | 3.400E-01     |
| EVCON!(2.3) | TIME DELAY BEFORE EVACUATION (HRS) | 1.500E+00     |
| EVCONI(3.3) | EVACUATION SPEED (M/S)             | 4.470E+00     |
| EVCONI(4.3) | MAXIMUM DISTANCE OF EVACUATION (M) | 1.609E+04     |
| EVCONI(5.3) | DISTANCE MOVED BY EVACUEES (M)     | 3.219E+04     |
| EVCONI(6.3) | SHELTERING RADIUS (M)              | 8.047E+04     |
| EVCONI(7.3) | EVACUATION SCHEME (1 OR 2)         | 2.000E+00     |
| EXPD(3)     | EXPOSURE DURATION (DAYS)           | 1.000E+00     |

Table A.B-3. Evacuation and Sheltering Data (Normal)

|               |                                    | (Page 2 of 3) |
|---------------|------------------------------------|---------------|
| EVCONI(1.4)   | PROBABILITY OF STRATEGY (0-1)      | 3.000E-02     |
| EVCONI(2.4)   | TIME DELAY BEFORE EVACUATION (HRS) | 2.000E+00     |
| EVCONI(3.4)   | EVACUATION SPEED (M/S)             | 4.470E+00     |
| EVCONI(4.4)   | MAXIMUM DISTANCE OF EVACUATION (M) | 1.609E+04     |
| EVCONI(5.4)   | DISTANCE MOVED BY EVACUEES (M)     | 3.219E+04     |
| EVCONI(6.4)   | SHELTERING RADIUS (M)              | 8.047E+04     |
| EVCONI(7.4)   | EVACUATION SCHEME (1 OR 2)         | 2.000E+00     |
| EXPD(4)       | FXPOSURE DUPATION (DAYS)           | 1.000E+C0     |
| EVCONI(1.5)   | PROBABILITY OF STRATEGY (0-1)      | 1.000E-02     |
| EVCONI(2.5)   | TIME DELAY BEFORE EVACUATION (HRS) | 2.500E +00    |
| EV(2014)(3.5) | ZVI. CUATION SPEED (M/S)           | 4.4775+00     |
| EVCONI(4.5)   | MAXIMUM DISTANCE OF EVACUATION (M) | 1.805E +04    |
| EVCONI(5.5)   | DISTANCE MOVED BY EVACUEES (M)     | 3.219E+04     |
| EVCONI(6.5)   | SHELTERING RADIUS (M)              | 8.047E+04     |
| EVCONI(7.5)   | EVACUATION SCHEME (1 OR 2)         | 2.000E+00     |
| EXPD(5)       | EXPOSURE DURATION (DAYS)           | 1.000E+00     |
| EVCONI(1.6)   | PROBABILITY OF STRATEGY (0-1)      | 1.000E-02     |
| EVCONI(2.6)   | TIME DELAY BEFORE EVACUATION (HRS) | 3.000E+00     |
| EVCONI(3.6)   | EVACUATION SPEED (M/S)             | 4.470E+00     |
| EVCONI(4.6)   | MAXIMUM DISTANCE OF EVACUATION (M) | 1.609E+04     |
| EVCONI(5.6)   | DISTANCE MOVED BY EVACUEES (M)     | 3.219E+04     |
| EVCONI(6.6)   | SHELTERING RADIUS (M)              | 8.047E+04     |
| EVCONI(7.6)   | EVACUATION SCHEME (1 OR 2)         | 2.000E+00     |
| EXPD(6)       | EXPOSURE DURATION (DAYS)           | 1.000E+00     |



Table A.B-3. Evacuation and Sneltering Data (Normal)

|            |                                             | (Page 3 of 3) |
|------------|---------------------------------------------|---------------|
| SHFAC(1.1) | CLOUD SHIELDING - STATIONARY PEOPLE         | 8.300E-01     |
| SHFAC(2.1) | CLOUD SHIELDING MOVING EVACUEES             | 8.300E-01     |
| SHFAC(3.1) | CLOUD SHIELDING - SHELTERING                | 7.100E-01     |
| SHFAC(4.1) | CLOUD SHIELDING - NO EMERGENCY ACTION       | 7.400E-01     |
| SHFAC(1.2) | GROUND SHIELDING - STATIONARY PEOPLE        | 4.300E-01     |
| SHFAC(2.2) | GROUND SHIELDING - MOVING EVACUEES          | 4.300E-01     |
| SHFAC(3.2) | GROUND SHIELDING - SHELTERING               | 2.500E-01     |
| SHFAC(4.2) | GROUND SHIELDING NO EMERGENCY ACTION        | 3.100E-01     |
| BRATE(1)   | BREATHING BATE STATIONARY EVACUEES          | 2.660E~04     |
| BRATE(2)   | BREATHING RATE MOVING EVACUEES              | 2.830E-04     |
| BRATE(3)   | BREATHING HATE SHELTERING REGION ONE        | 1.330E04      |
| BRATE(4)   | BREATHING RATE SHELTERING REGION TWO        | 2.660E-04     |
| EVCOST(1)  | RADIUS OF CIRCULAR AREA EVAC NEAR REACTOR   | 1.609E+04     |
| EVCOST(2)  | WIDTH OF EVACUATED ARC (DEGREES)            | 9.000E+01     |
| EVCOST(3)  | EVACUATION DIRECT COST (3/EVACUEE/DAY)      | 1.650E+02     |
| EVCOST(4)  | MAX DURATION OF RELEASE FOR KEY SHAPED EVAC | 3.000E+00     |
| IEXPD      | DURATION OF EXPOSURE SWITCH                 | 1             |