PLOTnFIT: A BASIC Program for Data Plotting and Curve Fitting

U.S. Nuclear Regulatory Commission

Office of Nuclear Reactor Regulation
J. O. Schiffgens

AVAILABILITY NOTICE
 Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be evaliable from one of the following sources:

1. The NRC Public Document Room, 2120 L Street, NW, Lower Level, Washington, DC 20555
2. The Superintendent of Documents, U.S. Government Printing Office, P.O. Box 37082 , Washington, UC 20013-7082
3. The National Technical information Service, Springfieid, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents availabie for inspection and copying for a fee from the NRC Public Document foom include NRC correspondence and internal NRC memorande; NRC Office of inspection and Enforcement bulletins, circulars, information notices, inspection and investigation notices; Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following donuments in the NUREG series are available for purchase from the GPO Sales Program: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission issuances.

Documents a-ailable from the National Technicai information Service include NUREG series reports and technical reports piepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal and periodical articles, and transactions. Federal Register notices, federal and state legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are availeble for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Office of information Resources Management, Distribution Section, U.S. Nuciear Regulatory Commission, Washington, DC 20555.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesde, Maryland, and are available there for reference use by the public. Codes and standards are usually copyriahted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards institute, 1430 Broadway, New York, NY 10018.

PLOTnFIT: A BASIC Program for Data Plotting and Curve Fitting

Manuscript Completed: July 1989
Date Published: October 1989
J. O. Schiffgens

Division of Engineering and Systems Technology
Division of Operational Events Assessment
Office of Nuclear Reactor Regulation
U.S. Nuclear Regulatory Commission

Washington, DC 20555

PLOTnFIT is a EASIC program to be used with an IBM or IBM-compatible personal computer (PC) for plotting and fitting curves to measured or observed data for both extrapolation and interpolation. It uses the Least Squares method to calculate the coefficients of nth degree polynomials (e.g., up to loth degree) of Basis Functions so that each polynomial fits the data in a Least Squares sense, then plots the data and the polynomial that a user decides best represents them.

PLOTnFIT is very versatile. It can be used to generate linear, semilog, and iog- \log graphs and can automatically scale the coordinate axes to suit the data. It can plot more than one data set on a graph (e.g., up to 8 data sets) and more data points than a user is likely to put on one graph (e.g., up to 225 points). A PC diskette containing (1) READIST. PNF (a summary of this NUREG), (2) INID6891. SIS and FOLO6891. SIS (two data files), and (3) PLOTNFIT. 4TH (the latest version of the program) may be obtained from the National Energy Software Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439.
Page
ABSTRACT iii
PREFACE vii
INSTALLATION AND EXECUTION OF PLOTNFIT. 4TH ix
1 DESCRIPTION Oi PLOTnFIT 1-1
1.1 Introduction. 1-1
1.2 Some Basic Assumptions. 1-1
1.3 Theory 1-2
2 USE OF PLOTnFIT 2-1
2.1 Introduction. 2-1
2.2 INPUT 2-2
2.3 OUTPUT 2-4
3 REFERENCES 3-1

APPENDICES

A SAMPLE PROBLEM
B CHI-SQUARE DISTRIBUTION TABLE C PROGRAM OUTLINE

PREFACE

In 1984, the U.S. Nuclear Regulatory Commission (NRC) staff wrote a program, the precursor to PLOTnFIT, to plot data, with the idea of eventually adding to it curve-fitting capabilities. The work was set aside until 1987 when a paper by William G. Hood, "Polynomial Curve Fitter" (see Reference 1), came to the staff's attention. The program described in the paper is POLYFIT. BAS, copyright 1987 by William G. Hood, Conway, Arkansas. The staff recognized that the techniques presented by Hood were ideally suited to meet its initial objective and were much simpler to incorporate and faster to execute than anything it had envisioned. Subsequently, Hood's techniques were incorporated into the original program and PLOTNFIT. 1ST emerged in 1988. Since then, various useful options and safeguards have been added - not the least of which was the incorporation of the option of using Basis Functions. It is the inclusion of Basis Functions that allows for the possibility of meaningful extrapolation from complex data dependencies if you know something about how the data "should behave." The NRC staff's John Schiffgens developed PLOTnFIT and its precursor.

The description presented here specifically concerns PLOTNFIT. 4TH, the fourth in a series of programs referred to generically as PLOTnFIT, each successive version being an extension of its predecessor. The program is "user friendly" (i.e., you, the user, need only follow the prompts) and has many "error traps" to keep you from entering meaningless INPUT by mistake. PLOTNFIT. 4TH allows for the correction of erroneously entered data Doints by following simple procedures. You can choose from among five OUTPUT options, depending on the amount of detailed information you want to print.

The NRC staff is grateful to William G. Hood for permission to use portions of POLYFIT, BAS in PLOTnFIT. It is also grateful to the Literary Executor of the late Sir Ronald A. Fisher, F.R.S., to Dr. Frank Yates, F.R.S., and to the Longman Group UK Ltd., London, for permission to reprint Table IV, "Distribution of $x^{2}, "$ from their book Statistical Tables for Biological, Agricultural and Medical Research (6th Edition, 1974).

INSTALLATION AND EXECUTION OF PLOTNFIT. 4TH

This section details the hardware and software requirements and the steps involved in running PLOTNFIT. 4TH on a personal computer (PC). A basic familiarity with the PC and the DOS ervironment is assumed. No programming experience is required to run PLOTNFIT. ATH in its present form. A file labeled READIST. PNF is included on the PLOTnFIT diskette along with PLOTNFIT. 4TH and data files INIO6891. SIS and FOLO6891. SIS from the sample problem shown in Appendix A. READIST. PNF contains much of the information presented here, but has no additional information; it is included as a convenient reference for those occasions when you are at your PC and this report is not handy.

None of the versions of PLOTnFIT will run properly on a PC with a monochrome monitor; both a color/graphics monitor adapter and a color monitor are required. Also, it should be noted that the command BASICA alone (i.e., with defaults) will not provide sufficient memory for most jobs; to ensure sufficient memory for all jobs, you will need to use BASICA/C:0/F:1.

PLOTNFIT. 4TH requires the following minimum hardware:

- IBM-PC/XT/AT or IBM-compatible PC
- color monitor and color/graphics monitor adapter
- $\quad 256 \mathrm{~K}$ memory
- 8087 or 80287 math coprocessor (optional; noted here because it is highly recommended, although not actually required)
- 1 floppy drive
- printer (the printer must always be left on when PLOTNFIT, 4 Tif is operating; a PLOTnH IT jOD always produces some printed OUTPUT)

Computer-printer communication is accomplished by PLOTnFIT using BASIC printer control codes to give Epson commands. Hence, best results are obtained with an Epson printer (e.g., FX-86e/286e) in protocol mode: ESC/P. It should be noted that there is one assembly language subroutine, VARPTR(TRRAY(1)), in PLOTnFIT. This subroutine uses the shift-print screen function to send the graphics presented on the monitor to the printer.

The following software is also required:

- DOS 3.X
- PLOTnFIT diskette
- GRAPHiCS.COM (included in DOS)
- BASICA.COM (included in DOS)

PLOTNFIT. 4TH may be installed on a hard disk by following the procedure given below:
A: $C: 1$
$C: \$ Copy $A: \cdot \cdot$
switches to drive C
copies all files from the PLOTnFIT diskette to drive C
All of the files from the distribution diskette will be copied onto the root directory of the hard disk by following this procedure.

To properly execute PLOTNFIT. 4TH, you must load GRAPHICS before BASICA; that is,
A: (or $C: \$) GRAPHICS
$A:($ or $C: 1)$ BASICA/C:0/F:1.
GRAPHICS translates the computer instructions that refresh the graphics on the monitor screen for transmission to the printer. Without first loading GRAPHICS, you cannot produce printed copies of graphs displayed on the monitor. Once in BASICA, you can begin executing a job (e.g., the sample problem shown in Appendix A) by entering the following commands after the Ok prompt:
either

```
Ok
LOAD" A:(or C: \)PLOTNFIT. 4TH
Ok
RL:S
```

or
Ok
RUN A: (or C:
)PLOTNFIT, 4TH.
Of course, you may also execute and run PLOTNFIT. 4TH while in DOS through the initial BASIC command as follows:
$\mathrm{A}:($ or $\mathrm{C}: \$) BASICA PLOTNFIT, 4TH/C:0/F:1.
After the RUN Command, or the above equivalent, simply follow the prompts provided by PLOTNFIT. 4TH. INPUT may be entered either from the keyboard or from a diskette file. It is a good bookkeeping procedure to have a diskette in drive A or B, or a subdirectory on drive C, just for data files (i.e., you tend to generate many small files using PLOTnFIT), and to do all reading from it and writing to it.

It is often desirable to create data files where measurements are made (i.e., in the laboratory, in the field, out in the plant, etc.), perhaps using a "lap-top" IBM or IBM-compatible PC, and then analyze the data when you return to your office. For this reason the following description has been included of the OUTPUT format required in any program to produce a data file that PLOTnFIT can read; this is the same format used by PLOTNFIT. 4TH to save data for further analysis at a later time:

```
OPEN [storage]device:filename FOR OUTPUT AS #i
WRITE #i, dataIDname[<31 characters], ndp[# of data points]
FOR J = 0 to NDP - 1
WRITE #i, x(J)[independent variable], y(J)[dependent variabie],
    w(J)[weighting factor]
NEXT J
    [Repeat these four statements, perhaps in a FOR...NEXT loop, for each
    data set that you want to include in "filename." You must keep track
    of the number of data sets (ndsf) included in filename. A simple
    procedure suggested by PLOTnFIT for keeping track of the number of
    data sets in a file is described in Section 2.3.]
CLOSE #i
```

During a job, PLOTnFIT asks if your data will be INPUT from the keyboard or from a stored file. If you answer "from a stored file," PLOTnFIT will request the "[storage]device:filename" and the "\# of data sets, ndsf," in the file, then step through the file and read in, sequentially, those data sets you choose to use. The total number of data points per job (from all data sets) must not exceed 225 .

1 DESCRIPTIUN OF PLOTnFIT

1.1 Introduction

This program is a tool to help with understanding and interpreting numerical data. Because of uncertainties, typical data never exactly fit the model used to describe them, even when that model is correct (i.e., the "true model"). In analyses, therefore, it is generally not important for the model or curve to pass through each point; it need only come close to be of value. PLOTnFIT is useful for the analysis of such inexact data (i.e., data subject to measurement errors). In applications where there are no uncertainties in the data and the curve must pass exactly through the data points, you should use methods other than those incorporated in PLOTnFIT, such as "spline functions."

1.2 Some Basic Assumptions

Perhaps the basic assumption made, implicitly or explicitly, when technical, quantitative measurements or observations of the effect of changes in one quantity (the independent variable, x) on another (the dependent variable, y) are recorded, is that there is a true model that relates the quantities measured. That is, there is a direct physical relation between the independent and dependent variables that can be expressed mathematically. You, as an evaluator of data, want to be able to identify such models so as to improve your understanding of phenomena under investigation and your ability to predict results. Although understanding phenomena and predicting results are not independent, the former tends to focus on interpolation (i.e., describing within the range of the data analyzed) and the latter on extrapolation (i.e., going beyond the data analyzed). How you use PLOTnFIT depends on your focus.

Similarly, another basic assumption is that for any given (finite) set of such measurements there is an infinite parent distribution, of which the set is a sample, and that the set is actually the most probable set of measurements. This is the principle of maximum likelihood. The problem is that frequently we do not know, at least initially, even an approximate model, let alone the true model, or the parent distribution or all the independent variables that can have an effect on the dependent variable, let alone control them all. Furthermore, we are never able to fully eliminate errors from measurements, though we strive to eliminate systematic errors or make corrections for them (and must assume that we succeed, if we are to value our data).

The task then is to try models of y as a function of $x, P(x)$, incorporating into them as much knowledge as we have of the phenomena being analyzed, until we find one that, in our judgment, best describes the data (i.e., best correlates all the points in the data set). Suppose we are fitting in data points (x_{i}, y_{i}), $i=1, \ldots, m$, to a model that has $n+1$ adjustable parameters $C_{k}, k=1, \ldots n+1$; that is, suppose

$$
y \sim P\left(x ; C_{1}, C_{2}, \ldots, C_{n+1}\right)
$$

We may ask the question: Given a particular set of parameters, what is the probability thet this data set could have occurred, plus or minus some fixed delta y on each data point? We may then intuitively identify the probability of the data given the parameters as the likelihood of the parameters given the data. In any case, we assume that the measurements, y_{i}, contain only randotir errors [generally, each with a different parent distribution and corresponding standard deviation, (sigma) $]$, and that the x_{i} contain no errors (i.e., that the neglected uncertainty in x_{i}, which would be otherwise assumed random, is effectively included as a contributing component to the total uncertainty in y_{i}). For a good and easy to read discussion of experimiental errors and how to treat tham, see Reference 2 .

1.3 Theory

To be genuinely useful, a fitting procedure should allow for modeling flexibility and the incorporation of data uncertainties, as well as yield model parameters and a statistical measure of goodness-of-fit. PLOTNFIT. 4TH is so written as to be genuinely useful.

For our purposes, in order to determine model parameters and to estimate how well a model correlates the data, we define a set of "observation equations," the deviations

$$
d_{i}=y_{i}-P\left[x\left(x_{i}\right)\right],
$$

where $P[X(x)]$ is an nth degree polynamial chosen to model measurements of the dependent variable y_{i} as a function of x_{i}. The polynomial is linear relative to its coefficients and taken to be a function of $X(x)$, referred to as a Basis Function (see Reference 3), so that at any x_{i}

$$
\begin{aligned}
P\left[x\left(x_{i}\right)\right]= & C(1)\left[x\left(x_{i}\right)\right]^{(n)}+c(2)\left[x\left(x_{i}\right)\right]^{(n-1)}+ \\
& \ldots+c(k)\left[x\left(x_{i}\right)\right]^{(n-k+1)}+\ldots+c(n) x\left(x_{i}\right)+c(n+1)
\end{aligned}
$$

On a graph, the deviation d_{i} is the vertical distance between the data point $\left(x_{i}, y_{i}\right)$ and the point on the curve $\left(x_{i}, P\left[X\left(x_{i}\right)\right]\right)$. Since we assume that the set of measurements is the most probable set of measurements, the proper model to choose is that which gives the largest possible value to the probability of having $P\left[X\left(x_{i}\right)\right]$ fall within an interval dy of y_{i} for all m points (i.e., we apply the "principle of maximum likelihood" to d_{i}).
Least Squares fitting is a maximum likelihood estimation of the polynomial coefficients $C(k)$ if the measurement errors are independently random and normally distributed with a constant standard deviation. That is, for the set of observations $\left(x_{i}, y_{i}\right)$, the method of Least Squares selects a curve $[i, e$. , chooses $C(k)$ values] that maximizes the probability that $P[X(x)]$ will describe the data by minimizing the sum of the squares of the vertical distances

$$
\operatorname{sum}\left[d_{i}\right]^{2}=\operatorname{sum}\left(y_{i}-P\left[X\left(x_{i}\right)\right]\right)^{2} .
$$

This is referred to as the maximum likelihood estimator, where SUM symbolizes the sum over i from 1 to m . If the errors are not normally distributed, then the Least Squares estimations of the $C(k)$ coefficients are not maximum likelihood, but may still be useful in a practical sense.

The method can also be used when the observations are not all froa the same parent distribution. For example, if different observations were made by different observers, made using different instruments, or are suspect for some reason (i.e., perhaps some of the observations were made under less than optimal conditions), "outliers" may result. The problem with outliers is that they can readily render a least Squares fit, on otherwise adequate data, worthless, because their probability of occurrence in an assumed Gaussian distribution is so small that the maximum likelihood estimator is likely to distort the whole model or curve by trying to take them, mistakenly, into account (see Reference 3). To handle the problem, the deviation for each point is weighted inversely as the variance [i.e., the square of the uncertainty or standard deviation, (sigma) ${ }_{i}{ }^{2}$] of its parent distribution, which is assumed Gaussian, where the variance of each point is assumed to be that of its parent distribution. The quantity to be minimized then is

$$
\operatorname{Sum}\left[\left(y_{i}-P\left[x\left(x_{i}\right)\right]\right) /(\operatorname{sigma})_{i}\right]^{2},
$$

which is called the Chi-square.
To minimize a function of $n+1$ variables, we take the partial derivative of the function with respect to each of the variables in turn, and set each derivative equal to zero. Therefore, to minimize the weighted sum of the squares of the vertical distances, we set

Partial derivative w.r.t. $C(k)$ of $\operatorname{SUM}\left(w_{i}\left[d_{i}\right]^{2}\right)=0$,
for k from 1 to $n+1$, where the ith weighting factor is

$$
w_{i}=1 /(\text { variance })_{i}=1 /(\text { sigma })_{i}^{2} .
$$

The derivatives are evaluated to obtain $n+1$ equations, which are solved simultaneously to find the Ci,k). With this more general formulation, if the measurement errors are not known, they may all be set to the constant value, sigma ${ }_{i}=1$ (i.e., for $i=1$ to $m, w_{i}=1$ may be input to PLOTnFIT or the w_{i} may be ignored and PLOTnFIT will set them equal to 1).

The procedure incorporated in PLOTnFIT uses a linear combination of orthogonal polynomials so as to avoid "ill-conditioning" and to perform the task of curve fitting with single-precision arithmetic (see Reference 1). PLOTnFIT not only produces the best approximation in the Least Squares sense, but also produces a solution whose parameters $C(k)$ tend to be as small as possible. That is, when some combination of Basis Functions is irrelevant to the fit, that combination is driven down to a small value rather than pushed up to create very large, delicately canceling quantities.

After $P[X(x)]$ is fit to the data, PLOTnFIT calculates the statistic "residual variance"

$$
\begin{aligned}
R V & =[1 /(m-n-1)]\left[\operatorname{SUM}\left(w_{i}\left[d_{i}\right]^{2}\right)\right] \\
& =[1 /(m-n-1)]\left[\operatorname{SUM}\left(w_{i}\left[y_{i} \cdot P\left[X\left(x_{i}\right)\right]\right]^{2}\right)\right],
\end{aligned}
$$

where $m-n-1$ is the degree of freedom $N U(n+1$ being the number of coefficients in the polynomial determined by the data) that can be used to determine which polynomial gives the best fit. Generally, the smaller the RV the better the fit, at least when the polynomial degree, n, is much smaller than the number of data points, m. It is almost aiways desirable, however, to keep n as low as possible, consistent with a small RV, so as to keep the fitted curve free of meaningless, non-physical oscillations and to keep the model simple.

If each point has its own standard deviation (sigma) ${ }_{j}$, then the statistic of interest is Chi-square; that is,

$$
C H I^{2}=\operatorname{SUM}\left(w_{i}\left[d_{j}\right]^{2}\right)=(m-n-1) \cdot R V=N U \cdot R V .
$$

Clearly, if the measured data agree with the model exactly, then $\mathrm{CHI}^{2}=0$; but as mentioned earlier, this is very unlikely, even if the sample is taken from the assumed parent distribution. In any case, the larger CHI^{2} is, the more the data and the model disagree. The appropriate question to be answered then becomes: How large a value of CHI^{2} is reasonable for the model to be considered representative of the data?
The probability distribution for different values of CHI^{2} at its minimum can be derived analytically and is the Chi-square distribution for $N U$ degrees of freedom. The probability that the CHI^{2} should exceed a particular value by chance Q, or the probability that it should fail to exceed a particular value by chance' P, where P is the complement of Q (i.e., $P=1-Q$), is frequently tabulated in appendices to statistics books [a table of $Q=f\left(\mathrm{NU}, \mathrm{CHI}^{2}\right)$ is presented in Appendix B]. For example, for $\mathrm{NU}=10$ the probability that CHI^{2} will (1) exceed 2.558 is $Q=0.99$, (2) exceed 9.342 is $Q=0.50$, and (3) exceed 29.588 is $Q=0.001$. This means that if the model "fits" the data, there is a 99 percent chance that CHI^{2} will be 2.558 or larger because of random fluctuations, but only a 0.1 percent chance that it will be larger than 29.558 . If we calculate $\mathrm{CHI}^{2}=7$, the differences are probably due to chance; whereas if we calculate $\mathrm{CHI}^{2}=35$, then it is very unlikely that the differences are due to chance.

If $Q \leqq 0.001$ either (1) the model is not a good one, (2) the sizes of the measurement errors (sigma) ${ }_{j}$ are incorrect (i.e., were underestimated), or (3) the measurement errors are not normally distributed (i.e., there is an abundance of outlier points). If $Q>0.1$ for a model, it is generally considered believable. However, if Q is too near to 1 , most likely the measurement errors were overestimated, or perhaps the data were altered to fit the model. As a rule of thumb, a "typical" value of CHI^{2} for a "moderately" good fit is
atout NU ; that is, for large NU, CHI ${ }^{2}$ becomes normally distributed with a mean of NU and a standard deviation equal to the square roct of $2 \cdot \mathrm{NL}$ (see Reference 3).

It should be noted that when the individual measurement errors are not known, RV is no longer an independent assessment of goodness of fit, rather, it is only a quantity that can be used to estimate the uncertainty in the data provided the model $P[X(x)]$ is "known" to be close to the true model. If you do not know the individual measurement errors (sigma), you may set the (sigma), equal to 1 and take the square root of RV as the standard deviation of the data with respect to the curve $P[X(x)]$; that is,

$$
[\text { SIGMA }]=\left[[1 /(m-n-1)] \operatorname{SUM}\left(w_{i}\left[y_{i}-P\left[X\left(x_{i}\right)\right]\right]^{2}\right)\right]^{1 / 2},
$$

provided the deviations are due to measurement errors that are independently random and normally distributed [i.e., this assumes all (sigma) $=$ SIGMA].
Accordingly, the measurements y_{i} fall within + or - SIGMA, 2.SIGMA, and 3.SIGMA of $P\left[X\left(x_{i}\right)\right], 68$ percent, 95 percent, and 99.7 percent of the time, respectively. The program also calculates another statistic, the "coefficient of determination"

$$
C D=1-W D / W Y,
$$

where

$$
W D=\operatorname{SUM}\left(w_{i}\left[d_{i}\right]^{2}\right)
$$

and

$$
W Y=\operatorname{SuM}\left(w_{i}\left[y_{i}\right]^{2}\right)-\left[\left(\operatorname{SUM}\left[w_{i} y_{i}\right]\right)^{2}\right] /\left[\operatorname{SUM}\left(w_{i}\right)\right]
$$

which can be used as a measure of how much of the variation in the values y_{i} can be attributed to changes in the values x_{i} (i.e., if y_{i} are independent of x_{i}, then the curve is just a horizontal straight line and $C D=0$, while if the curve fits the data perfectly, $C D=1$). Suppose, for example, that $C D$ is 0.91 . You can then attribute 91 percent of the weighted sum of the deviations squared to changes in x. Furthermore, to the extent that $P[X(x)]$ is close to the true model, 9 percent of the weighted sum of the deviations squared would be due to random error (see Reference 1).

2 USE OF PLOTnFIT

2.1 Introduction

For ease in making changes during execution of the program, PLOTrifIT has two categories of INPUT: (1) plotting instructions and (2) data and data identification. It is possible to do more than one task (i.e., analyze more than one data set or analyze a data set more than once) during a given job; simply follow the "prompts."
(1) With regard to plotting instructions, the quantities (numbers and strings) that appear in parentheses are the variable values currently in the computer memory [Note: $N(2)$ refers to the second element in the N array; $N(=2)$ refers to the value of the variable N currently in the computer memory]. If you do not want to make a change at a variable prompt, simply press the ENTER key.
(2) With regard to data and data identification, the quantities entered for one job can be readily saved for reanalysis in a later job. Data may be entered from the computer keyboard or from a disk file. Data are INPUT from the keyboard or disk file unti? a specified number of data points are read.
(3) Data are changed easily by writing to a file (e.g., "filesave") those data sets that you are interested in saving from a job, starting a new job (without exiting PLOTnFIT, if you like), entering the data from "filesave," and then making the desired changes (i.e., keyboard additions, deletions, or corrections).

As previously stated, the portion of this program that fits curves to data is based on the method described by W. G. Hood (see Reference 1), which involves finding the coefficients of an nth degree polynomial, $P[X(x)]$, so that it fits a set of data points in a least Squares sense. When the number of data points equals $n+1$, the plot of the polynomial will pass exactly through each point, although some meaningless, non-physical oscillations that are not wanted may occur. Generally, the most meaningful results are obtained when the number of data points far exceeds the degree of the polynomia) (by at least a factor of 3 for large n), in which case the curve would probably not pass through any of the points but would be smooth (i.e., "wiggle free") within the range of the data. A common sense rule of thumb for a good fit is that "the curve should not be straining toward individual data points."
Typically, many calculations are required for intelligent interpretation of curve-fitting results, particularly when you are fitting for extrapolation. PLOTNFIT and your PC do the calculations and plot the results quickly and accurately, but in the final analysis curve fitting is an art and it is your good judgment and skill that determine the value of the results and whether PLOTnF IT was appropriately and satisfactorily used.

2.2 INPUT

You begin by identifying the job with a string of 17 chararters or less. The job may consist of up to eight tasks, where each task is a separate analysis of a data set. You then provide a brief description of the job with a string of less than 256 characters, including blanks. Next you specify a series of plotting instructions; this involves responding to essentially the following questions:
(1) Do you want your graph to be linear, semilog, or $\log -\log$?
(2) What color combinations do you want for the curves, data points, and axes and labels shown on the monitor?
(3) What labels do you want for the graph title (up to 30 characters), horizontal or x-axis (up to 22 characters), x-axis units (up to 5 characters), vertical or y-axis (up to 16 characters), and y-axis units (up to 5 characters)?
(4) Do you want to establish coordinate ranges and marking intervals yourself, or do you want to let PLOTnFIT do it for you?

These plotting instructions apply to all the tasks in a job. PLOTnFIT may be instructed to make a set of graphs for each task and/or make one graph for the job containing the main resuli of ach tisk. It is a good idea to let PLOTnFIT establish coordinate ranges and marking intervals until you become familiar with the program.

After entering the plotting instructions, you then identify and INPUT the data you want to analyze; this involves responding to essentially the following questions or instructions:
(1) How many data sets do you want to analyze (although you may enter no more than eight per job, you may INPUT the same set eight times)?
(For each data set:)
(2) Will the data come from the keyboard or from a stored file?
(3) Identify the data (a string of less than 31 characters).
(4) Enter each data point and weighting factor and make desired data changes.
(5) Choose a Basis Function (from the list provided), and specify the constant coefficients in the function.
(6) What is the lowest degree polynomial you want to consider, and how many successively higher degree polynomial fits do you want to try?
(7) Choose à symbol to represent the data points.

Repeat steps 2 through 7 until all data are entered.
The model, $P[X(x)]$, which in PLOTnFIT has the form of a polynomial in $X(x)$, may consist of a linear combination of any specified function of $x, X(x)$, where linear refers to the model's dependence on its initially unknown coefficients,
$C(k)$. Although in theory the model could be any combinatior of functions, if it were nonlinear in its unknown coefficients, solving for them would be very difficult. The arbitrary function $X(x)$, which is called the Bas is Function, may be quite nonlinear in x, but may contain only known coefficients, whether estimated from the data set (or some other data set) or determined theoretically. The list of Basis Functions provided for you to choose from is as follows:
(1) $X(x)=$ CS1 $+x$
(2) $X(x)=\operatorname{CS1}+\operatorname{EXP}(\operatorname{CO1} \cdot x) /(\operatorname{CD1}+x)$
(3) $X(x)=\left(C S 1+\operatorname{CO1} \cdot x+\operatorname{CD1} \cdot x^{2}\right) \cdot \operatorname{LOG}(x)$
(4) $X(x)=\operatorname{CS1} / x+\operatorname{CO1} \cdot \operatorname{LOG}(x)+x \cdot \operatorname{LOG}(\operatorname{CD1} \cdot x+2.71828)$
(5) $X(x)=$ CS1 $+C O 1 \cdot x^{\text {CD1 }}+$ CE1/(CF1 $+x^{\text {CG1 }}$)
(6) $X(x)=$ CS1 $\cdot \operatorname{EXP}\left(C O 1 \cdot x^{\text {CD1 }}\right)+$ CE1 \cdot EXP $\left(C F 1 \cdot \mathrm{X}^{\text {CG1 }}\right)$
(8) $X(x)=$ CSI $\cdot(C O 1+x)^{\text {CD1 }}+$ CE1 $\cdot(\text { CF1 }+x)^{\text {CG1 }}$
(9) $\quad X(x)=\operatorname{EXP}(C S 1 \cdot x) \cdot(\operatorname{CO1}+x)^{\text {CD1 }}+\operatorname{EXP}(C E 1 \cdot x) \cdot(\text { CF1 }+x)^{\text {CG1 }}$
(10) $X(x)=$ CSI $\cdot x \cdot \operatorname{SIN}(C O 1+\operatorname{CD1} \cdot x)+[C E 1 /(C D 1+x)] \cdot \operatorname{SIN}(C F 1+C G 1 \cdot x)$
(11) $X(x)=\operatorname{EXP}(C S 1 \cdot x) \cdot \$ \operatorname{IN}(C O 1+C D 1 \cdot x)+C E 1 \cdot \$ I N(C F 1+C G 1 \cdot x)$

This list contains most of the functions you are apt to need. But remember, you must provide values for the constants (i,e., CS1, CO1, CD1, CE1, CF1, and CG1) in the function you choose. Note, for Basis Functions containing arg ${ }^{c}$ terms, c must be an integer when arg is expected to have negative values.

If the Basis Function coefficients (i.e., constants) are not known initially, you may choose them by trial and error to give you a good fit to the data. However, you should keep in mind that PLOTnFIT gives you a best fit in terms of the chosen Basis Function in x, including the chosen Basis Function coefficients, not (except for Basis Function \#1) in terms of x. Note that if you choose the Basis Function coefficients to fit the data, you should include these coefficients in determining the degrees of freedom (except, of course, for those coefficients set merely to get the functional form desired).

The advantage of allowing for the use of a Basis Function [other than just $X(x)=x$] is that if you know something about "how the data go," for example, that they tend to be periodic (harmonic or damped harmonic) or logarithmic or exponential, etc., from theory, previous observation, or intuition, you can incorporate this knowledge into the model. Although $X(x)=x$ can generally give a satisfactory fit for interpolation, it tends to be unsatisfactory for extrapolation from complex data dependencies, especially when polynomials of greater than 3 rd degree are required for a good fit. In general, you need to know something about the data you are plotting (i.e., you need to be able to choose a suitable Basis Function) if you hope to extrapolate satisfactorily.

It is important to remember that once all plotting instructions and data have been INPUT, you are given an opportunity to make changes before PLOTnFIT begins to analyze and plot the data. Therefore, although mistakes may be made while entering plotting instructions (e.g., you may choose log-log when you really want your graphs to be semilog) or data sets (e.g., you may enter incorrect coordinates
or weighting factors for some of the data points), you should always continue to INPUT and not try to abort the job, : ccause before the analysis begins you can go back and make corrections.

2.3 OUTPUT

You will find PLOTnFIT OUTPUT neat, well organized, and easy to read and understand. Care was taken to arrange and group data for printing so as to provide reasonable flexibility in choosing an amount of detailed information for printing that is in keeping with the level of the analysis. For example, when doing exploratory analyses, you may choose to print as little OUTPUT as possible. For each job, by default, PLOTnFIT provides at least a one-page summary for each task and a one-page job summary.

Each task summary identifies (1) the data set, (2) the degree range investigated, (3) the Basis Function used, (4) the polynomial degree chosen by PLOTnFIT as that which best correlates the data within the set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated), and (5) your choice of the degree that best fits the data (i.e., the "best polynomial/best fit").

The job summary page (1) identifies the job and the date and time of the analyses; (2) describes the job; (3) completely characterizes the comparative plot (described below) if one was made, and if not, it shows a summary of plotting instructions; (4) lists, for each task, the task number, data identification, the degree of the "best polynomial/best fit," the type of symbol used to represent the data points, the number of data points, and the source of the data set; and (5) identifies the data sets saved (if any data are saved from the job) and the file in which they are stored.

As you begin to zero in on a satisfactory model, you will most likely want to print more and more OUTPUT (i.e., to see more of the details). You are given five options from which to select the level of detail desired in the printed OUTPUT; they are as follows:
(1) You may print the polynomial coefficients $C(k)$, the residual variance (RV), and the coefficient of determination (CD) for each of the curves fit to each data set, as well as the coordinates and weighting factor for each data point $\left(x_{i}, y_{i}, w_{i}\right)$, the corresponding $P\left[X\left(x_{i}\right)\right]$ value and deviation d_{i}, and either the root-residual variance (standard deviation SIGMA) or the CHI^{2}.
(2) For each data set you may print a set of graphs containing plots of all polynomials fit to the data set. The first graph will show a plot of the lowest degree polynomial considered, the second graph will show plots of the lowest and next higher degree polynomial considered, anu so on. Such graphs show the evolution of a model as you proceed to a higher and higher polynomial degree.
(3) You may print a graph containing plots of all data sets, each set with or without a corresponding "best polynomial/best fit" curve. Since this is the most significant graph, if you choose to print it, it is placed on the job summary page (which, as described above, always contains the complete identification of the information presented on this graph, whether the graph is printed or not).
(4) You may print values of key program variables lieeded to help you select coordinate ranges and marking intervals should you anticipate making additional graphs of the same data at a later time and not have PLOTnFIT do the selecting for you. The program parameters listed pertain to coordinate information (except for TNDP); each parameter that refers to the x-axis has a counterpart that refers to the y-axis. Hence, it is sufficient here to define only those parameters pertaining to the x-axis (except where otherwise noted).

TNDP : Total number of data points from all data sets (TNDP must $\leqq 225$).
XMIN : Minimum x-coordinate from among all job data, when you default to PLOTnFIT (or you may choose some other value for XMIN).

XMAX : Maximum x-coordinare from among all job data, when you default to PLOTnFIT (or you may choose some other value for XMAX).

DEX: Length of a marking interval (i.e., distance between small hashmarks) in units of the data (you may choose the value for DEX).

LJX: Number of marking intervals between large hashmarks.
LIX: Number of large hashmarks considered minus one (and number of values of x to be printed along the x-axis); all may not be used.

CX: Initial estimate of the maximum number of marking intervals needed.
[The next three parameters refer to x-coordinates of points on the monitor screen (where the x^{-}, y-coordinates of the upper-left-rost point are 0,0 and of the lower-right-most point are 319,199).]

XS : Lowest horizontal point on the graph.
XE : Highest horizontal point on the graph.
XO : Horizontal point (sometimes not on the graph) at which the x-datacoordinate would be zero.

NXS : Lowest value on the x-axis (initially XMIN), as shown on the graph, divided by DEX.

NKE : Highest value on the x-axis (initially $X M A X$), as shown on the graph, divided by DEX.

NKT : Total number of x-axis marking intervals (small hashmarks) on the graph [where NXT $=$ NXE - NXS must initially be $\leqq 36$ (Note: similarly, NYT must initially be $\leqq 27$), otherwise, DEX (and/or DEY) must be increased].
[The following five parameters, including XLL and XUL, have significance only when the x^{-}(or y^{-}) coordinate axis is presented on a \log scale.]

IXLL : Exponent of the lowest value of x (i.e., XLLL) shown on the x-axis (with one figure to the left of the decimal).

IXUL : Exponent of the highest value of x (i.e., XUL) shown on the x-axis (with one figure to the left of the decimal).

NKC : Number of cycles on the x-axis [NCX must be $\leqq 9$ (Note: similarly, NYC must be §9)].

UX(I) : Array containing values of x printed aiong the x-axis.
SX(I) : Array containing character locations (columns, 1-40) of the first digit in the corresponding UX(I) [Note: similarly, SY(I) contains locations of rows (1-24) for values stored in corresponding UY(I)].

This option also provides, for each data set, a table containing some or all of the points that fall on each "best polynomial/best fit" curve (as shown on your monitor screen, in both units of the data $x, P[X(x)]$ and units of the monitor XPI, YPI), the derivative at each point, and the integral from the point on the curve just below XMIN up to each point, where each total integral covers the entire data range for all sets analyzed (up to just above XMAX). For Basis Function \# $1, X(x)=x+$ CS1, PLOTnFIT analytically calculates the derivative and integral and presents the coefficients of two new polynomials, one for the derivative and the other for the integral, should you want to plot them at a later time. For all other Basis Functions, PLOTnFIT analytically calculates the derivative, but numerically calculates the integral; the last column (IT) shows the number of intervals, between successive points on the curve as shown on your monitor screen, used in a simple "trapezoidal rule" algorithm. Differences between analytical and numerical integrations, by PLOTnFIT, of the same function tend to be less than 0.1 percent. (IT is zero for Basis Function \#1.)
(5) For illustration you may choose to make a plot of a polynomial with any Basis Function from the list provided specifying all coefficients for presentation on the graph described under option 3 ; this plot is to be for comparison purposes only and appears as a dashed curve.

PLOTnFIT can also be directed to send data OUTPUT to a disk file for later use. Since entering coordinate data is the tedious aspect of using PLOTnFIT, it is recommended that you save all the data you analyze on the chance that you may want to reanalyze it at a later time. PLOTnFIT prepares a default "filename" for data you want to save; the name itself provides a convenient method for keeping track of the number of data sets in the file, as well as a clue as to what job first analyzed the data and when it did so. The default "filename" format used by PLOTnFIT is as follows:

AAAMMYY\#. ZZZ

AAA : The first three characters from Job Identification.
MMYY: The month (MM) and year (YY) the file was made.
\# : The number of data sets in the file, ndsf.
$Z 22$: The last three characters from Job Identification.
You, of course, have the option of choosing some other "filename" if you like.

3 REFERENCES

1. William G. Hood, "Polynomial Curve Fitter," Byte, p. 155, June 1987.
2. Hugh D. Young, Statistical Treatment of Experimental Data, McGraw-Hill Book Company, Inc., New York, 1962.
3. William H. Press et al., Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, MA, 1986.

APPENDIX A

SAMPLE PROBLEM

SAMPLE PROBLEM

As a sample problem, to give you an idea of how PLOTNFIT. 4TH can be used, we present a three-part analysis of some Charpy data. These real data are taken to be from a fictitious company identified by the acronym RC-2. We will assume that the company claims an uncertainty for its Charpy energy measurements of + or - $5 \mathrm{ft}-1 \mathrm{~b}$. It should be noted that, for regulatory purposes, the NRC staff is not recommending the specific procedure followed here for the analysis of Charpy data nor does it suggest or imply that this sample problem should be used as a model analysis for such purposes.

Part 1. To get a feel for the data given below, we will fit curves to them, using Basis Function \# 1, X $(x)=C S 1+x$, with CS1 = 0 , for polynomial degrees $\mathrm{n}=1$ through 6 :

Data Point (\#)	Temperature $(\operatorname{deg} F)$	Charpy Energy (ft-lb)
1	-19.0	25.0
2	-16.5	17.0
3	8.5	21.5
4	11.5	18.0
5	35.5	21.5
6	46.0	30.5
7	54.0	19.0
8	72.0	40.5
9	80.0	28.5
10	98.0	41.5
11	98.0	46.0
12	109.5	55.5
13	122.0	64.5
14	136.5	58.0
15	150.0	65.0
16	162.5	66.5
17	191.5	64.5
18	207.5	68.5

Part 2. To get rid of the negative value of the independent variable and decrease its magnitude, we modify the data by converting the temperature units to the Rankine scale (i.e., $\operatorname{deg} R=\operatorname{deg} F+459.67$ deg F) and normalize (i.e., Normalized Temperature $=\operatorname{deg} R / 459.67$ deg F), as shown below:

Data Point (\#)
1
2
3
4

Normalized Temperature $(R / 459.67 \mathrm{~F})$	Charpy Energy $(\mathrm{ft}-1 \mathrm{D})$
0.9587	25.0
0.9641	17.0
1.0185	21.5
1.0250	18.0

Data Point $(\#)$	Normalized Temperature $(R / 459.67 \mathrm{~F})$	Charpy Energy $(\mathrm{ft}-1 \mathrm{D})$
5	1.0772	21.5
6	1.1001	30.5
7	1.1175	19.0
8	1.1566	40.5
9	1.1740	28.5
10	1.2132	41.5
11	1.2132	46.0
12	1.2382	55.5
13	1.2654	64.5
14	1.2970	58.0
15	1.3263	65.0
16	1.3535	66.5
17	1.4166	64.5
18	1.4514	68.5

We will then fit curves to the modified data a) using the Basis Function \# 1, $X_{a}(x)=$ CS1 $+x$, with CS1 $=0$, for polynomial degrees $n=3$ through 5 , and b) using the Basis Function \# $6, X_{b}(x)=C S 1 \cdot \operatorname{EXP}\left(C O 1 \cdot x^{\text {CD1 }}\right)+$ CE1 $\cdot \operatorname{EXP}\left(C F 1 \cdot x^{\text {CG1 }}\right)$, with CS1 $=0, C O 1=0, C D 1=0$, and $C E 1=1$, for polynomials of degree $n=1$, while varying the parameters CFI and CGI so as to match the value of $P\left[X_{a}(x)\right]$ at the inflection point $x_{\text {ip }}$ [i.e., we arbitrarily chose the point where $d P[X(x)] / d x$ is maximum as a "pinning point" for the purpose of comparing curves; $P\left[X_{a}\left(x_{i p}\right)\right]=$ $\left.P\left[X_{b}\left(x_{i p}\right)\right]\right]$ and approximate the shape of the data. The reason we chose to continue our analysis with the function $X_{b}(x)$, Basis Function $\# 6$, is that either term in the sum can be used to produce a monotonic transition curve, of essentially any desired slope, between two plateaus, which from experience we know is characteristic of Charpy energy versus temperature data. Finally, c) we will refine the results obtained in b).

Part 3. a) To check the sensitivity of the results of Part 2.c) to the specific values of parameters used in the Basis Function, we will repeat the process of curve fitting using the Basis Function of Part 2.b) with the same values for the parameters CS1, CO1, CD1, and CE1, while varying CF1 and CG1 around the values that gave the best fit in Part 2.c). b) We will make a final plot of the data with the "best polynomial/best fit" curve from Part 3.a), considering higher order polynomials, and compare the results with the "best polynomial/best fit" from Part 2.a).

Part 1 INPUT

Remember, when you seu no apparent response to a prompt, it is because the ENTER key was used to enter a negative response or accept the default. In this part of the analysis, we will fit polynomials of degree $n=1$ through 6 , with Basis function \#1, to the data. At this time we want to produce the minimum printed OUTPUT. We will enter the uncertainties (sigma) ${ }_{i}$ later.

```
LOAD"a:plotnfit.rec
O
RUN
```

 PLOTnFIT / NUREG - \#\#\#\#
 PLOTnFIT was prepared for an agency of United States Government.
 Neither the United States Government nor any agency thereof, nor any of
 their employees, makes any warranty, expressed or implied, or assumes
 any legal llability or responsibility for any third party's use, or
 the results of such use, of any protion of this program or represente
 that its use by euch third party would not infringe privately owned
 righte.
    ```
This version of PLOTnFIT (i.e., PLOTNFIT. 4TH) will not run
properly on a PC with a monochrome mon'tor. If this PC does
not have a color/graphice card or this is not a color monitor,
type yes or y at the EXIT (y/n)? prompt, otherwise type no or n
and continue (NOTE: If GRAPHICS.COM waB not loaded before
BASICA.COM, HARD COPIES of graphs can ant be made. Now is the
time to EXIT this job and reload if it 1s desirable to print
graphs and GRAPHICS.COM has not been pre-loaded.).
THE PRINTER MUST BE KEPT ON WHILE PLOTNFIT IS OPERATING.
```

 EXIT \((y / n)\) ?
 Number of Bits not being used at the START of this job \(=10486\)
 For default purposes, what Disk Drive (e.g., A:) would you most likely
 wail to WRITE to (include subdirectory if applicable - e.g., C: \SUBDIR
 ? A:
**
*

* PLOTnFIT
$*$
IF YOU ARE 'NOT' ALREADY FAMILIAR WITH THIS PROGRAM, you ehould probably
ENTER yee at the 'EXIT (y / n)? ? prompt, and run the program 'READIST. PNE'
Exit (y / n) ?

```
Identify your job (INITIAL ARALYSIS):
    FORMAT - a string of less than }18\mathrm{ characters (where BASIC
    fllename rules apply to first 3 and last 3 characters) -
Describe your job (This analyeis is to get a feel for the data.):
    FORMAT - a comma-less' string of lese than 256 characters -
```


PLOTTING INSTRUCTIONS

```
What kind of graphe would you like to generate:
    1. LINEAR
    2. SEMI-LOG (Y-8xib,LOG; X-8xib,LINEAR)
    3. LOG-LOG
NT(=1)=
\begin{tabular}{llll} 
Whet palette do you want: & & \\
FOR NP \(=1\) & FOR NP \(=2\) & FOR NOP & FOR NOP \(=2\) \\
GREEN & MAGENTA & CURVES' & CURVES \\
RED & CYAN & DATA POINTS & DATA FIELD \\
BROWN & WHITE & AXES AND LABELS & DATA POINTS, AXES, \\
& & & AND LABELS'
\end{tabular}
\(N P(=1)=\)
Regardles of the NOP value you enter here, if you later choose to make HARD COPIES of the data and ourves plotted on the screen, PLOTnFIT will automatioally make NOP=1.
\(\operatorname{NOP}(=2)=\)
What background color do you want:
1. BLACK
2. GRAY
3. LIGHT BLUE
4. WHITE
5. LIGHT CYAN
6. LIGHT MAGENTA
\(N Q(=2)=4\)
Would you like graph labels different from those shown in ()?
(TITLE) - 30 characters maximum - \((\mathrm{y} / \mathrm{n})\) :
(X-AXIS) Horizontal - 22 characters maximum - \((y / n)\) :
(units) for x-axis - 5 characters maximum - \((y / n)\) :
(Y-AXIS) Vertioal - 16 characters maximum - \((y / n)\) :
(un'ta) for \(y\)-axis - 5 characters maximum - \((y / n)\) :
What coaling procedure (NS) would you like to use?
1. SPECIFY COORDINATE RANGES AND MARKING INTERVALS FOR THE AXES (USE ONLY AFTER EXPERIENCE WITH 'PLOTEFIT')
2. ALLOW 'PLOTEFIT' TO ESTABLISH COORDINATE RANGES AND MARRING INTERVALS BASED ON THE DATA RANGES
\(\operatorname{NS}(=2)=\)
```


DATA AND DATA IDENTIFICATION

How many Taske will there be in this job $(1<=\operatorname{NDS}<=8)$? $\operatorname{NDS}(=1)=$
What INPUT device (NE) would you like to ure to
enter your Data for Task \#1 ?

1. The KEYBOARD
2. A STORED EILE
$\mathrm{NE}(=1)=$
What identification name would you like for the Data in Task \# 1 ?
FORMAT - a string of less than 31 char, - CHARPY DATA from CRC-2
The number of Data Pointe is $\operatorname{NDP}(1)=18$
Is the dats to be weighted $(\mathrm{y} / \mathrm{n})$?
x, and $y=-18,0,25,0$
x, and $y=-16,5,17,0$
x, and $y=8.5,21.5$
x, and $y=11.5,18,0$
x, and $y=35,5,22,5$
```
6 x
7 8 x, and y }y=54,0,19,
8 x, and }y=72,040,
?Redo from etart
                    x, and }y=72,0,40,
    8 }x\mathrm{ , and }y=80.0,28.
    10 x, and }y=98,0,41,
    11 }x\mathrm{ , and }y=88,0,46,
    12 x, and }y=108,5,55,
?Redo from etsrt
            x, and }y=1018,5,55.
    1 3
    1 4
    x, and }y=122,0,64,
    x, and }y=136,5,58,
    x, and }y=150,0,65,
    x, and }y=162.5,664
    x}\mathrm{ , and }y=191,5,64,
    x, and }y=207.5,68.
```

 Do you want to fit ourvee to your Data Pointe \((y / n)\) ? y
 Whioh of the following BASIS FUNCTIONS do you want to use for this Data
Set (YOU MUST supply velues for coefficiente CS1, CO1, CD1, CE1, CF1 \& CG1):

1. $X(x)=\operatorname{Cs} 1+\mathrm{x}$
2. $X(x)=\operatorname{CS1}+\operatorname{EXP}(\operatorname{CO1*} \mathrm{x}) /(\mathrm{CD} 1+\mathrm{x})$
3. $X(x)=\left(C S 1+\operatorname{CO1} * x+\operatorname{CD} 1 * x^{\wedge} 2\right) * \operatorname{LOG}(x)$
4. $X(x)=$ CS1 $/ x+\operatorname{CO1} \operatorname{LOG}(x)+x * \operatorname{LOG}(C D 1 * x+2,718)$
5. $\mathrm{X}(\mathrm{x})=\mathrm{CS} 1+\mathrm{CO} \mathrm{F}^{*} \mathrm{x}^{\wedge} \mathrm{CD} 1+\mathrm{CE} 1 /\left(\mathrm{CF} 1+\mathrm{x}^{\wedge}\right.$ CG1 $)$
6. $\mathrm{X}(\mathrm{x})=\mathrm{CS} 1 * \mathrm{EXP}(\mathrm{CO1*x}$ CD1 $)+\mathrm{CE} 1 * \mathrm{EXP}(\mathrm{CF} 1 * \mathrm{x}$ * CG1)
7. $\mathrm{X}(\mathrm{X})=\mathrm{CS} 1 * \operatorname{EXP}(\operatorname{CO1*X})+\mathrm{CD} 1 * \operatorname{EXP}(\mathrm{CE} 1 * \mathrm{X})+\mathrm{CE} 1 * \mathrm{EXP}(\mathrm{CG} 1 * \mathrm{x})$
8. $X(x)=\operatorname{CS1*}(C O 1+x)^{\circ}$ CD $1+$ CE1* (CF1 +x$)^{\prime C} \mathrm{CG1}$
9. $\mathrm{X}(\mathrm{x})=\operatorname{EXP}(\mathrm{CS} 1 * \mathrm{x}) *(\mathrm{CO} 1+\mathrm{x})$ CD1 $\mathrm{EXP}(\mathrm{CE} 1 * \mathrm{x}) *(\mathrm{CF} 1+\mathrm{x})$-CG1
10. $X(x)=C S 1 * x * S 1 N(C O 1+C D 1 * x)+(C E 1 /(C D 1+x)) * S I N(C F 1+C G 1 * x)$
11. $\mathrm{X}(\mathrm{x})=\mathrm{EXP}(\mathrm{CS} 1 * \mathrm{x}) * \operatorname{SIN}(\mathrm{CO} 1+\mathrm{CD} 1 * \mathrm{x})+$ CE1*SIN $(\mathrm{CF} 1+\mathrm{CG} 1 * \mathrm{x})$

If the default value of a coefficient is not zero and you wioh it to be zero, you must enter an ineignificant, small number (perhaps, 1E-7*XHIN), since entering 0 would be interpreted by PLOTnFIT as acceptance of the default value

```
BF}(=1)
    CS1(=0)=
        For each Data Set in the job, the program etarta with
        the lowest degree polynomial you want to consider and
        fits it tu the data foints; the program then fits,
        seguentially and in assending order, as many higher
        degree polynomiala as you apedify (the ourrent degree
        limit is 10).
    What is the lowest degree polynomial (LDP) you want to consider
    for this Data Set ( 
    How many polynomial fite (NPE) do you want to
    try - including the LDP - (1< < NPE <= 10)? NPF (=1)=6
        What eymbol (M) wokld you like to use to represent
            the Data for Task #1?
\begin{tabular}{ll} 
1. & I \\
2. CROSS & 5. DIAMOND \\
3. & X
\end{tabular}
        3. X 7. TRIANGLE - DOWN
        4. H 8. SQUARE
        M(=1)=
        What symbol size (MM) would you like?
            1. emall
            2. LARGE
MM(=1)=
```

```
            ALL PLOTTING INSTRUCTIONS AND DATA HAVE BEEN ENTERED
        Would you like to make changes in your Plotting Instructions;
        values ourrently in the computer appear in parenthesis (y/n)?
        Would you like to make a few changes in one or more of your Data
        Sets [most useful when most data are from the KEYBOARD] (y/n)? y
    YOU MUST STORE YOUR DATA - END THE JOB - THEN CHANGE THE DATA WHEN THEY ARE
READ INTO A NEW JOB
    How many Data Sete will you eave (O<=DSE<=1)? DSS=1
    Do you want other than the default Location and Name
    for the FILE containing these (weighted) coordinate data
    (A:IN106881.SIS) (y/n)?
    Do you want to bave data from Task # 1 (y/n)? y
Number of Bits not being used at
the END of this job = 0
Do you want to do another job and plot
other graphe ueing ALL or SOME of the
data and/or instructions in memory
(y/n)?
\(y\)
Identify your job (INITIAL ANALYSIS):
FORMAT - a string of less than 18 characters (where BASIC filename rules apply to first 3 and last 3 characters) -
Describe your job (This analysis is to get a feel for the data.): FORMAT - s 'comma-less string of less than 256 characters -
```


PLOTTING INSTRUCTIONS

```
Whet kind of graphe would you like to generate:
1. LINEAR
2. SEMI-LOG (Y-axde,LOG; X-axde,LINEAR)
3. LOG-LOG
\(N T(=1)=\)
What palette do you want:
\begin{tabular}{llll} 
FOR NP \(=1\) & FOR NP =2 & FOR NOP \(=1\) & FOR NOP \(=2\) \\
GREEN & MAGENTA & CURVBS & CURVES \\
RED & CYAN & DATA POINTS & DATA FIELD \\
BROWN & WHITE & AXES AND LABELS & DATA POINTS, AXES, \\
& & &
\end{tabular}
\(N P(=1)=\)

> Regardlese of the NOP value you enter here, if you later choose to make HARD COPIBS of the data and curves plotted on the screen, PLOTnFIT will automatioally make NOP \(=1\).
> \(\operatorname{NOP}\left(=\begin{array}{c}2 \\ 2\end{array}\right)=\)
What background color do you want:
1. BLACK
2. GRAY
3. LIGHT BLUE
4. WHITE
5. LIGHT CYAN
6. LIGHT MAGENTA
\(N Q(=2)=4\)
```

```
Would you like graph labels different from those shown in O?
    TITLE (TITLE Xy/n): y
What is your choice? DETERMINATION of RTndt
    X-AXIS
    X-AXIS)(y/n): y
What is your chodoe? Temperature
    units
What is your choloe? deg E
    (Y-AXIS)(y/n): y
What se your chodce? Charpy Energy
    units (undte Xy/n): y
What is your choice? ft-1b
What scaling p;ocedure (NS) would you like to use?
    1. SPECIFY COORDINATE RANGES AND MARKING INTERVALS EOR
        THE AXES (USR ONLY AFTER EXPERIENCE WITH PLOTINFTT')
        2. ALLOW PLOTIFIT TO ESTABLISH COORDINATE RANGES AND
        MARKING INTEEVALS BASED ON THE DATA RANGES
NS(= 2)=
```


DATA AND DATA IDENTIFICATION

How many Taske will there be in this job $(1<=\operatorname{NDS}<=8)$? $\operatorname{NDS}(=1)=$

```
    What INPUT device (NE) would you like to use to
    enter your Data for Task $1 ?
            1. The KEYBOARD
            2. A STORED FILE
NE(=2)=2
What is the location and name of the FILE containing Data for Task # 1 ?
    FORMAT - (storage)device:filename - a;ini06881.bie
How many Data Seta are in this II:B?
    NDSF(=1)=
    Do you want to INPUT Data Set # I from FILE aini06S91.eie
    [i.e., that identified aB : CHARPY DATA from RC-2;
    with (NDP=) 18 data pointe] (y/n)? y
    Do you want to INPUT the stored weighting fractors (y/n)?
    Do you want to change ANY data in this Data Set (y/n)? y
    Do you want to change ONLY welghting factore (y/n)?
    What identification name would you like for this Data in Task # & 
    (EOR EACH VARIABLE, PRESS ENTER FOR NO CHANGE)?
        FORMAT - a string of lese than 31 chr. -
    Do you want to change the number of Data Points, NDP (y/n)?
1 x=-19 y= y=25 Change (y/n)?
        x=-16.5 y=17 Change (y/n)?
        x=8.5 y=21.5 Change (y/n)?
        x=11.5 y=18 Change (y/n)?
        x=35.5 y=21.5 Change (y/n)?
        x=46 y=30.5 Change ( }y/n\mathrm{ )?
        x=54 y=19 Change (y/n)?
        x=72 y=40.5 Change (y/n)?
        x=80 y=28.5 Change ( }\textrm{y}/\textrm{n})\mathrm{ ?
        x=88 y= 41.5 Change ( }y/n)\mathrm{ ?
        x=98 y=46 Change (y/n)?
        x=109.5 y= 55.5 Change (y/n)?
        x=122 y=64.5 Change (y/n)?
        x=136.5 y= 58 Change (y/n)?
        x=150 y=65 Change (y/n)?
        x=162.5 y=665 Change (y/n)? y
```

```
    Delete (y/n)?
        x, y =162.5,66.5
i=17 (ll
    Do you want to fit curves to your Data Pointe (y/n)? y
Which of the following BASIS FUNCTIONS do you want to use for this Data
Set (YOU MUST supply valuee for coefficiente CS1, CO1, OD1, CE1, CF1 & CG1):
1. }X(x)=\operatorname{cs1+x
2. }\textrm{X}(\textrm{x})=\mp@subsup{\textrm{CSO}}{2}{+EXP}(\textrm{CO1*x})/(CD1+\textrm{x}
3. }\textrm{X}(\textrm{x})=(\mathrm{ CS1 +CO1* x+CD1*x-2)*LOG(x)
4. X(x)=CS1/x+CO1*LOG(x)+x*LOG(CD1*x+2.718)
5. X(x)=CS1+CO1*x CD1+CE1/(CE1 + x 'CG1)
6. }\textrm{X}(\textrm{x})=\textrm{CE1*EXP(CO1*x^CD1)+CE1*EXP(CE1*x^ CG1)
7. X(x)=CS1*EXP(CO1*x)+CD1*EXP(CE1*x)+CF1*EXP(CG1*x)
8. }\textrm{X}(\textrm{x})=\textrm{CS1*(CO1+x)
9. }\textrm{X}(\textrm{x})=\mathrm{ EXP(CS1*x)*(CO1+x) - CD1+EXP(CE1*x)*(CE1+x) - CG1
10. X(x)=CS1*x*SIN(CO1 +CD1*x)+(CE1/(CD1 + x ))*SIN(CF1+CG1*x)
11. X(x)=EXP(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x
```

If the default value of a coefficient is not zero atd you wish it to be zero,
you must enter an insignificant, small number (perhape, $1 \mathrm{E}-7 * \mathrm{XMIN}$), since
entering 0 would be interpreted by PLOTnFIT as acceptance of the default value.

```
BF(=1)=
    CS1(= 0)=
        For each Data Set in the job, the program starte with
        the lowest degree polynomial you want to consider and
        fits it to the data points; the program then fits,
        sequentially and in assending order, as many higher
        degree polynomials as you specify (the ourrent degree
        limit is 10).
    What is the lowest degree polynomial (LDP) you want to consider
    for this Data Set (1 < L LDP <= 10) ? LDP(=1)=
    How many polynomial fits (NPF) do you want to
    try - Including the LDP - (1 <= NPF << 10)? NPF}(=1)=
        What symbol (M) would you like to use to represent
        the Data for Task # 1 ?
            1. 1 5. DIAMOND
            2. CROSS 6. TRIANGLE - UF
            3. X 7. TRIANGLE - DOWN
            4. H 8. SQUARE
        M(=1)=
            What symbol size (MM) would you like?
            1. emall
            2. LARGE
        MM(= 1)=
        ALL PLOTTING INSTRUCTIONS AND DATA HAVE BEEN ENTERED
    Would you like to make changes in your Plotting Instructions;
    values currently in the computer appear in parenthesis (y/n)?
    Would you like to make a few changes in one or more of your Data
    Sets [most useful when most data are from the REYBOARD] (y/n)?
    Would you like to completely RE-INPUT your Coordinate Data
    [most useful when most data are from STORED FILES] (y/n)?
```

Number of Bits not being used at this time, for this job $=3110$ Would you like to PRINT values of the Polynomial
Coefficients for all the curves fit to each Data Set,
along with the corresponding Residual Variances and Coefficients of Determination (y / r) ?

Would you like to make HARD COPIES of graphs of ALL the Date Sets, one set of graphe for each Data Set, showing ALL the polynomial ourves fit to EACH Data Set (y / n) ?

Would you like to make 'a' HARD COPY graph containing ALL the Date Sete, each Data Set with it's corresponding BEST POLYNOMIAL/BEST FIT' curve (y / n) ? y

Would you like to PRINT values of key program variables and a Table of some of the pointe which fall on each BEST POLYNOMIAL/BEST FIT curve plotted $(\mathrm{y} / \mathrm{n})$?

Would you like to INPUT a function to be plotted with your data (y / n) ?

Would you like to save your DATA for later use (y / n) ? y

How many Data Sets will you save $(0<=D S S<=1)$? $\quad D S S=1$
Do you want other than the default Location and Name for the FILE containing these (weighted) coordinste data (AINI06891.SIS) (y / n)?

Do you want to save data from Task $\%(y / n)$? y

Part 1 Comments on INPUT

1. On page $\mathbf{A}-4$, we neglected to enter the proper graph labels bu "went back" to do so later, as shown on page $A-7$.
2. Note, as shown on page $A-4$, when INPUT format errors are made on entering data, BASIC asks you to "? Redo from start," then repeats the prompt.
3. As mentioned above, we "went back" to enter graph labels, but since we made an error when entering data (see data point 16 , on page $A-5$) and needed to correct it, there was no need to "go back" just to change plotting instructions (see page A-6), since when you go to correct data you automatically have the opportunity to change plotting instructions (see pages A-7 and A-8).
```
    SUMMARY OF TASK # 1
This task investigated Polynomials of degree 1 through 6 fit to the Data Set,
                CHARPY DATA from RC-2, using the
                        BASIS FUNCTION: X(x)=0+x
```

The polynomial of degree 3 produces the largest fractional decrease in RV (note, its RV $=30.06752$), hence, is taken as the BEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from anong the polynomala with the specifically chosen Basis Function and within the degree range investigated). PLOTnFIT suggests that it is a polynomial of high enough degree that it should cowe clobe to the "true function", i, e., the 'true nodel', yet low enough that it 'averages out rando errors.

Do you agree with PLOTnPIT B choice for the polynonial degree that yielde the most atiafactory correlation of the data (y / n) ? n

What degree polynomial do you think best representa this Data Set?
$\mathrm{n}=5, \quad \mathrm{RV}=30.58583$

JOB DRSCRIPTION
This analyeis is to get a feel for the data
BACH CURVE IS A BEST RIT WITH AN nth DEGREE POLYNOMIAL $P[X(x)]=C(1) X(x)^{n} n+C(2) X(x)^{n}(n-1)+\ldots+C(n ; Z(x)+C(n+1)$

PLOTTING INSTROCTIONS
Generate (color) HKDIUM resolution, LINEAR grephs with PLOTnEIT DETERMINED COORDINATE RANGBS AND KARKING INTERVALS

* These DATA SETS were OUTPOT to flle A:INI06891.SIS.

DETERMINATION of RTIDt

Part 1 Comments on OUTPUT

1. PLOTnFIT suggests that degree $n=3$ produces the "best polynomial/best fit" curve (see page $\mathrm{A}-11$). We chose the polynomial of degree $n=5$, although it produces a slightly "less good" fit ($\mathrm{RV}=30.59$ compared with 30.07), since, within the data range, it suggests the existence of plateaus or shelves (i.e., "lower shelf" and "upper shelf" energies), which from experience we know are associated with such data (see page A-12).
2. If our model is at all close to the true model, the company's claim of + or - $5 \mathrm{ft}-\mathrm{lb}$ data uncertainty is not unreasonable (i.e., the square root of RV is about 5.5).
3. The job summary page, $A-12$, shows that the data came from file INI06891. SIS rather than from the keyboard. The reason for this is that after initial data entry, the data were saved in this file then re-entered for correction before the job was completed. Note also that the corrected data were saved under the same "filename."

Part 2.a) INPUT

We will enter the data directly from the keyboard - although we could have, perhaps just as easily, entered the data by reading in data saved from Part 1 (i.e., the data in file INI06891. SIS) and then changed the x-coordinates and entered the weighting factor $\left(w_{i}\right)$ [i.e., $1 /(\text { sigma })_{i}{ }^{2}=1 / 5^{2}=0.04$ for all points]. From Part 1 OUTPUT, the polynomial of degree $n=5$, with Basis Function \# 1, was taken as the "best polynomial/best fit." In this part of the analysis, we will fit polynomials of degrees 3 through 6 , with Basis Function \# 1, to the data and increase the amount of OUTPUT, since we not only want the polynomial coefficients for later use (i.e., for making comparative plots), but We also want a table of all the values plotted so that we can estimate the "lower shelf" and "upper shelf" energies (in a generally definable way) and identify the inflection point accurately for use in Part 2.b) (although there is actually nothing sacred about the inflection point for curve-fitting purposes).

RUN

PLOTnFIT / NUREG - \#\#\#\#

PLOTnFIT was prepared for an agency of United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal Liability or reeponsibility for any third party's use, or the results of such use, of any protion of this program or represente that its use by such third party would not infringe privately owned righte.

This version of PLOTnFIT (i.e., PLOTNEIT. 4TH) will not run properly on a PC with a monochrome monitor. If this PC doee not have a color/graphios card or this is not a color monitor, type yes or y at the EXIT $(\mathrm{y} / \mathrm{n})$? prompt, otherwise type no or n and continue (NOTE: If GRAPHICS.COM was not loaded before BASICA.COM, HARD COPIES of graphs can not be made. Now is the time to EXIT this job and reload if it is desirable to print graphs and GRAPHICS.COM has not been pre-loaded.).
THE PRINTER MUST BE KEPT ON WHILE PLOTNEIT IS OPERATING.
$\operatorname{EXIT}(\mathrm{y} / \mathrm{n})$?
Number of Bits not being used at the START of this job $=10486$
For default purposes, what Disk Drive (e.g., A:) would you most likely want to WRITE to (include subdirectory if applicable - e.g., C:\SUBDIR

IF YOU ARE 'NOT ALREADY EAMILIAR WITH THIS PROCRAM, you should probably ENTER yee at the 'EXIT (y / n)? prompt, and run the program 'READIST.PNF'.

```
Exdt (y/n)?
```

```
IdentIfy your job (INITIAL ANALYSIS)
    FORMAT - atring of lese than 18 characters (where BASIC
    fllename rules apply to first 3 and last 3 characters) - FOLLOWUP ANALYSIS
Describe your job (This analysis is to get a feel for the data.):
    FORMAT - a 'COMma-leBB' etring of IGBE than 256 characters -
This is a follow-up to job INITIAL ANALYSIS--06/25/89: This analyeis will use the date
be expressed in normalized Rankine unite - R/459.67F),
```

PLOTTING INSTRUCTIONS
What kind of graphs would you like to generate:

1. LINEAR
2. SEMI-LOG (Y-axis,LOG; X-axis,LINEAR)
3. LOG-LOG
$\mathrm{NT}(=1)=$
What palette do you want:

$N P(=1)=3$
The value(s) INPUT for this (these) variable(s) is (are) not within an allowable range. Try again, please.
$\mathrm{NP}(=1) \approx 2$
Regardlese of the NOP value you enter here, if you later choose to make HARD COPIES of the asta and curves plotted on the screen, PLOTnEIT will automatically make $N O P=1$.
$N O P(=2)=$
What background color do you want:
4. BLACK
5. GRAY
6. LIGHT BLUE
7. BROWN
8. YELLOW
9. LIGHT GREEN
$\left.N Q_{1}=3\right)=4$

Wo ald you like graph labels different from those shown in ()?
(TITLE) - 30 characters maxioum - $(y / n): y$
What is your cholce? DBTERMINATION of PTndt
(X-AXIS) Horizontal - 22 characters maximum - $(y / n): y$
What is your choice? Normalized Temperaturg
(unite) for x-axis - 5 characters maximum - (y / n) : y
What is your choice? R/460
(Y - AXIS) Vertical - 16 characters maximum - $(y / n): y$
What is your choice? Charpy Bnergy
(units) for y -axis - 5 characters maximum - $(\mathrm{y} / \mathrm{n}): \mathrm{y}$
What is your choice? $\mathrm{ft}-\mathrm{lb}$
What scaling procedure (NS) would you like to ure?

1. SPECIVY COORDINATE RANGES AND MARKING INTERVALS FOR

THE AXES (USE ONLY AFTER EXPERIENCE WITH 'PLOTnFIT')
2. ALLOW 'PLOTnFIT' TO ESTABLISH COORDINATE RANGES AND MARKING INTERVALS BASED ON THE DATA RANGES
$\mathrm{NS}(=2)=$

DATA AND DATA IDENTIEICATION

How many Taske will there be in this job $(1<=\operatorname{NDS} c=8)$? $\operatorname{NDS}(=1)=$
What INPUT device (NE) would you like to ure to enter your Data for Task \#1?

1. The KEYBOARD
2. A STORED FILE
$\mathrm{NE}(=1)=$
What identification name would you like for the Data in Task \# 1 ? FORMAT - string of lese than 31 char. . Mod. CHARPY DATA from RC-2
The number of Data Pointe is $\operatorname{NDP}(1)=18$
Is the data to be weighted (y / n) ? y
x, y, and $w=.9587,25,0,0.04$
x, y, and $w=96,9641,17,0,0,04$
x, y, and $k=1.0185,21.5,0.04$
x, y, and $w=1.0250,18,0,0.04$
x, y, and $w=1.0772,21.5,0.04$
x, y, and $w=1.1001,30.5,0.04$
x, y, and $w=1.1175,19.0,0.04$
x, \because, and $w=1.1566,40,5,0.04$
x, y, and $w=1.1740,28,5,0.04$
x, y, and $w=1.2132,41.5,0.04$
x, y, and $s=1.2132,46,0,0.04$
x, y, and $w=1.2382,55.5,0.04$
x, y, and $w=1.2654,64.5,0.04$
x, y, and $w=1.2970,58,0,0.04$
x, y, and $w=1.3263,65,0,0.04$
x, y, and $w=1.3535,66.5,0.04$
x, y, and $w=1.4166,64.5,0.04$
x, y, and $w=1.4514,68.5,0.04$
Do you want to fit ourvee to your Data Points $(\mathrm{y} / \mathrm{n})$? y

Which of the following BASIS FUNCTIONS do you want to use for this Data
Set (YOU MUST supply values for coefficients CS1, CO1, CD1, CE1, CF1 \& CG1):

1. $X(x)=\operatorname{CS} 1+x$
2. $X(x)=C S 1+E X P(C O 1 * x) /(C D 1+x)$
3. $\mathrm{A}, \mathrm{x})=\left(\mathrm{CS} 1+\operatorname{CO1} * x+\right.$ CD1* $\left.\mathrm{x}^{\wedge} 2\right) * \operatorname{LOG}(\mathrm{x})$
4. $X(x)=$ CS1 $/ x+$ CO1*LOG $(x)+x *$ LOG(CD1 $* x+2.718)$
5. $X(x)=C S 1+$ CO1* $x^{*} C D 1+C E 1 /\left(C E 1+x^{\wedge}\right.$ CG1)
6. $X(x)=$ CS1*EXP $\left(C O 1 * x^{-}\right.$CD1 $)+$CE1*EXP(CF1* x^{-}CG1)
7. $\mathrm{X}(\mathrm{x})=\mathrm{CS1} * \operatorname{EXP}(\mathrm{CO} 1 * \mathrm{x})+\mathrm{CD} 1 * \operatorname{EXP}(\mathrm{CE} 1 * \mathrm{x})+\mathrm{CE} 1 * \operatorname{EXP}(\mathrm{CG} 1 * \mathrm{x})$
8. $\mathrm{X}(\mathrm{x})=\mathrm{CS1*}(\mathrm{CO} 1+\mathrm{x})^{\wedge} \mathrm{CD} 1+\mathrm{CE} 1 *(\mathrm{CF} 1+\mathrm{x})^{\wedge} \mathrm{CG} 1$
9. $X(\mathrm{x})=\mathrm{EXP}(\mathrm{CSI} * \mathrm{x}) *(\mathrm{CO} 1+\mathrm{x})^{\wedge} \mathrm{CD} 1+\mathrm{EXP}(\mathrm{CE} 1 * \mathrm{x}) *(\mathrm{CE} 1+\mathrm{x})^{\wedge} \mathrm{CG1}$
10. $\mathrm{X}(\mathrm{x})=\mathrm{CS1} * \mathrm{x} * \operatorname{SIN}(\mathrm{CO1}+\mathrm{CD} 1 * \mathrm{x})+(\mathrm{CE} 1 /(\mathrm{OD} 1+\mathrm{x})) * \operatorname{SIN}(\mathrm{CF} 1+\mathrm{CG1} * \mathrm{x})$
11. $\mathrm{X}(\mathrm{x})=\operatorname{EXP}(\mathrm{CS1} * \mathrm{x}) \cdot \operatorname{SIN}(\mathrm{CO} 1+\mathrm{CD} 1 * \mathrm{x})+$ CE1*SIN(CF1+CG1*x

If the default value of a coefficient is not zaro and you wish it to be zero, you muct enter an insignificant, small number (perhaps, 1E-7*XMIN), since entering 0 yould be interpreted by PLOTnFIT as acceptance of the default value.

```
BE(=1)=
    CS1(=0)=
```

 For each. Data Set in the job, the program starts with
 the lowest degree polynomial you want to consider and
 fite it to the data pointe; the program then fits,
 sequentially and in assending order, as many higher
 degree polynomials as you specify (the current degree
 limit is 10)
 What is the lowest degree polynomial (LDP) you want to consider
 for thas Data Set \((1<=\operatorname{LDP}<=10)\) ? \(\operatorname{LDP}(=1)=3\)
    ```
How wany polynomial fite (NPF) do you want to
try - including the LDP - (1 << NPE }<=8)? NPF (=1)=
What symbol (M) would you like to use to represent
the Data for Task $1 ?
    1. I 5. DIAMOND
    2. CROSS 6. TRIANGLE - UP
    3. X 7. TRIANGLE - DOWN
    4. H 8. SQUARE
M(= 1)=2
What symbol size (MM) would you like?
    1. emall
    2. LARGE
MM(= 1)=
ALL PLOTTING INSTRUCTIONS AND DATA HAVE BEEN ENTERED
Would you like to make changes in your Plotting Instructions; values currently in the computer appear in parenthesis \((y / n)\) ?
Would you like to make a few changes in one or more of your Data Sets [most useful when most data are from the KEYBOARD] \((\mathrm{y} / \mathrm{n})\) ?
Would you like to completely RE-INPUT your Coordinate Data [most useful when most data are from STORED FILES] \((\mathrm{y} / \mathrm{n})\) ?
```

```
Number of Bits not being used at this time, for this job = 3184
```

```
Number of Bits not being used at this time, for this job = 3184
```

```
Would you lHe to PRINT values of the Polynomial
```

Would you lHe to PRINT values of the Polynomial
Coefficients for all the curves fit to each Data Se%,
Coefficients for all the curves fit to each Data Se%,
along with the corresponding Residual Variances and
along with the corresponding Residual Variances and
Coefficients of Determination (}\textrm{y}/\textrm{n})\mathrm{ ? y
Coefficients of Determination (}\textrm{y}/\textrm{n})\mathrm{ ? y
Would you like to make HARD COPIES of graphe of ALL
Would you like to make HARD COPIES of graphe of ALL
the Data Sets, one set of graphs for each Data Set,
the Data Sets, one set of graphs for each Data Set,
ehowing ALL che polynomial curves fit to EACH Data
ehowing ALL che polynomial curves fit to EACH Data
Set (y/n)?
Set (y/n)?
Would you like to make 'a" HARD COPY graph containing
Would you like to make 'a" HARD COPY graph containing
ALL the Data Sets, each Data Set with it's corresponding
ALL the Data Sets, each Data Set with it's corresponding
BEST POLYNOMIAL/BEST FIT' curve (}y/n)\mathrm{) y
BEST POLYNOMIAL/BEST FIT' curve (}y/n)\mathrm{) y
Would you like to PRINT values of key program variables
Would you like to PRINT values of key program variables
and a Table of Bome of the points which fall on each
and a Table of Bome of the points which fall on each
BEST POLYNOMIAL/BEST FIT' curve plotted (y/n)? y
BEST POLYNOMIAL/BEST FIT' curve plotted (y/n)? y
...a Table of 'all' the points (y/n)? y
...a Table of 'all' the points (y/n)? y
Would you like to INPUT a function to be plotted
Would you like to INPUT a function to be plotted
with your data (y/n)?
with your data (y/n)?
Would you like to save your DATA for later use (y/n)? y
Would you like to save your DATA for later use (y/n)? y
How many Data Sets will you save (0<=DSS <=1)? DSS=1
How many Data Sets will you save (0<=DSS <=1)? DSS=1
Do you want other than the default Location and Name
Do you want other than the default Location and Name
for the FILE containing these (weighted) coordinate data
for the FILE containing these (weighted) coordinate data
(A:FOL06891.SIS) (y/n)?
(A:FOL06891.SIS) (y/n)?
Do you want to save data from Task \#1 (y/n)? y

```
Do you want to save data from Task #1 (y/n)? y
```

1. Note the comment on page A-14, "Number of Bits not being used at the START of this $j 0 b=10486$." To be confident that you have sufficient "available" computer memory for your jobs, you should keep this quantity larger than 10000.
2. Concerning "error traps" on INPUT variables with a specific range [e.g. $N P(=1)$ where 1 is the default value and the variable can only take values 1 or 2], if you enter a value outside the range [in this example, say $N P(=1)=3]$, PLOTnFIT will reject the value and repeat the prompt, as shown on page $\mathrm{A}-15$.
3. Note the comment on page A-17, "Number of Bits not being used at this time, for this job $=3184 .{ }^{\prime \prime}$ If, after plotting instructions and data have been entered, the number of bits not being used drops below about 1000, you could encounter problems with exceeding available computer memory; this is most likely to occur when entering a second job without exiting PLOTnFIT after the first.

Part 2.a) OUTPUT

PL.OTnFIT - $4 t h$

JOB: FOLLONUP ANALYSIS-06/26/89
tine - 17:29:03
THE FOLLOWING ARE DATA RESOLTING FROM FITTING POLYNOMIALS
TO THE VARIOOS DATA SETS

TASK 1: ANALYSIS OF 'Yod. CHARPY DATA from RC-2'
Degree of Polynomial, $\mathrm{P}[\mathrm{X}(\mathrm{x})], \mathrm{n}=3$
BASIS FUNCTION: $X(x)=0+x$
Coefficient of Determination, $C D=.834965$
Residual Variance, $\mathrm{RV}=1.202892$
4 Coefficients (the last coefficient is the constant term in the polynonial): $\mathrm{C}(1)=-1800.705 \quad \mathrm{C}(2)=6868.957 \quad \mathrm{C}(3)=-8071.413$ $C(4)=3121.686$

1	x	y	$\mathrm{P}[\mathrm{X}(\mathrm{x})]$	Deriation	*
1	. 9587	25	22. 12012	2. 879883	04
2	. 9641	17	21.39502	-4.39502	04
3	1.0185	21.5	18.25342	3.246582	. 04
4	1.025	18	18.33399	-. 3339844	04
5	1.0772	21.5	21.85523	-. 3552246	. 04
6	1. 1001	30.5	24.7461	5.753907	. 04
7	1.1175	19	27.36694	-8.366943	. 04
8	1. 1566	10.5	34.26392	6. 236084	. 04
9	1.174	28.5	37.64258	-9.142578	04
10	1. 2132	41.5	45.55127	-4.05127	. 04
11	1.2132	46	45.55127	. 4487305	. 04
12	1. 2382	55.5	50.55908	4.940918	. 04
13	1.2654	64.5	55.7312	8,768799	. 04
14	1. 297	58	61.07959	-3.07959	. 04
15	1.3263	65	65.10669	-. 1060895	. 04
16	1.3535	66.5	67.78516	-1.285156	. 04
17	1. 4166	64.5	68.77344	-4.273438	. 04
18	1.4514	68.5	65.38428	3.115723	. 04

The CHI"2 (to be used with Chi square Distribution Table) is 16.84049 .

TASK \# 1: ANALYSIS OF Mod. CHARPY DATA from RC-2.

> Degree of Polynomial, $P[X(x)), n=4$
> BASIS FUNCTION: $X(x)=0^{n}+x$
> Coefficient of Deternination, $C D=935174$
> Residual Variance, $R V=1.29126$

5 Coefficients (the last coefficient is the constant term in the polynomial)

$\begin{array}{ll}C(1 \\ C(4)=844.7538 & C(2)=-5958.323 \\ 4 & C(5)=-13802.83\end{array} C(3)=14127.81$

1	x	y	$\mathrm{P}[\mathrm{X}(\mathrm{x}) \mathrm{]}$	Deviation	\%
1	. 8587	25			
2	. 9641	17		2.561035 -4.592774	04
3	1. 0185	21.5	17.85693	-4.592774	04
4	1. 025	18	17.92627	3.643067	04
5	1. 0772	21.5	21. 60547	7. $373047 \mathrm{E}-02$	04
6	1. 1001	30.5	24.6377	- 1054658	04
7	1.1175	19	27. 36768	5.862305	04
8	1. 1566	40. 5	27.36768	-8.367676	04
9	1.174	28.5	34.46728	6.032715	04
10	1.2132	41.5	37.80283	-9.402832	04
11	1.2132	46	45.82862	-4.328614	04
12	1. 2382	55.5	45.82862	1713867	04
13	1.2654	64.5	50.77051	4.729492	04
14	1. 297	64.5	55.81006	8.689941	04
15	1. 3263	58	60.95655	-2.856543	04
	1.3263	65	64.79053	2094727	4
16	1.3535	66.5	67.33584	-. 8359375	04
17	1. 4166	64.5	68.52295	-4. 022949	4
18	1. 4514	68.5	65.81495	-4.022949	04
			65.81495	2.585059	04

The CHI ${ }^{-2}$ (to be used with Chi-square Distribution Table) is 16.78637
TASE \# 1: ANALYSIS OF Mod. CHARPY DATA fron RC-2.
Degree of Polynomial, $P[X(x)], n=5$
BASIS FUNCTION: $X(x)=0+x$
Coefficient of Determination, CD $=.943212$
Reridual Variance, $\mathrm{RV}=1.225407$
6 Coefficienta (the last coefficient is the constant term in the polynomial):

| $\mathrm{C}(1)=43618.66$ | $\mathrm{C}(2)=-261180.2$ | $\mathrm{C}(3)=620427.2$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{C}(4)=-730689.8$ | $\mathrm{C}(5)=426694.9$ | $\mathrm{C}(6)=-98849.59$ |

1	x	y	$\mathrm{P}[\mathrm{X}(\mathrm{x})]$	Devistion	*
1	. 9587	25	20.83594		
2	. 3641	17	21.14844	4.164063 -4.148438	04
3	1. 0185	21.5	20. 46094	-4.148438 1.039063	04
4	1. 025	18	20.26563	-2. 265625	04
5	1. 0772	21.5	20.90625	-2.265625	04
6	1. 1001	30.5	22.96094	7.539063	04
7	1.1175	19	25.29688	-6.296875	04
8	1.1566	40.5	32.69531	-6. 2968	04
9	1.174	28.5	36. 6875	7.804688	04
10	1.2132	41.5	46. 468844	-8.1875	04
11	1.2132	46	46.14844	-4.648438 $-\quad 1484375$	04
12	1. 2382	55.5	51.87657	-1404375 3.523438	04
15	1. 2654	64.5	57.59375	6. 90625	04
14	1. 297	58	62.34375	-4.34375	04
15	1.3263	65	64.80625	-4.34375	04
16	1.3535	66.5	65.66406	8359375	04
17	1.4166	64.5	65.07813	-. 578125	04
18	1. 4514	68.5	67.85156	6484375	04

The CHI-2 (to be used with Chi-square Distribution Table) is 14.70488

SUMMARY OF TASK \#1

This task investigated Polynomiala of degree 3 through 5 fit to the Data Set, Mod. CHARPY DATA from RC-2, using the

BASIS FUNCTION: $\mathbf{X}(\mathrm{x})=0+\mathbf{x}$

The polynowial of degree 3 produces the largest fractional decrease in RV (note, ita RV = 1.202892), hence, is taken as the BEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomiale with the specifically chosen Basis Function and within the degree range investigated). Plotnfit suggesta that it is a polynalal of high enough degree that it should come close to the true function', 1.e., the 'true model', yet low enough that it 'averages out' rando errors.

Do you agree with PLOTnFIT s choice for the polynowlal degree that yielde the mont astiafactory correlation of the data (y / n) ? ? n n

What degree polynonial do you think best represents this Data Set?

```
? n}=5,\quad\textrm{RV}=1.22540
```


PLOTRFIT - 4th

JOB: ROLLONUP ANALYSIS-06/26/8:
time $-17: 32: 41$
KKY PROGRAM PARAMRTERE AND OUTPUT DATA

XMIN $=.9587$

YMIN $=17$
$\mathrm{LJX}=10$
$\mathrm{L} . J Y=10$
$X S=75$
$Y S=12$
NYS $=40$
NYS $=0$

$I Y L L=0$	$I Y O L=0$
$I X L L=0$	$I X O L=0$
$I=0$	$U X=8$
$I=1$	$U X=1$
$I=2$	$U X=1.2$
$I=3$	$U X=1.4$
$I=4$	$U X=1.6$

$T N D P=18$
$\mathrm{XMAX}=1.4514 \quad \mathrm{DKX}=.02$

YKAX $=68.5$
LIX $=4$
$L I Y=4$
$X E=315$
$Y B=162$
NXE $=74$
NXT= 34
$N Y E=36$
NYT $=36$

NYC $=0$	$Y L L=0$	$Y U L=0$
NXC $=0$	$X L L=0$	$X U L=0$
$S X=9$	$U Y=0$	$S Y=21$
$S X=18$	$U Y=20$	$S Y=16$
$S X=27$	$O Y=40$	$S Y=10$
$S X=35$	$U Y=60$	$S Y=5$
$S X=0$	$U Y=80$	$S Y=0$

TASK \# 1
Bvery Point On The Best Polynomial Curve Best Fit To Kod. JHARPY DATA from RC-2':

Coefficients of the Derivative:
$C(1)=218093.3$
$C(2)=-1044721$
$C(3)=1861282$
$C(4)=-1461380$
$C(5)=426684.9$
$C(6)=0$
Coefficiente of the Integral:
C(1) $=7269.777$
$C(4)=-243563.3$

125	. 8406667	18.79688	123	169.4688	0
126	. 9435001	19.21875	12.2	150.5625	0
127	. 9463334	19.64844	122	132.8438	0
128	. 8481667	20	121	116.1875	0
129	. 952	20.28125	120	100.5938	0
130	. 9548334	20.57031	120	86.09375	0
131	. 8576667	20.78125	119	72.46875	0
132	. 9605	20.97656	119	59.84375	7.617188E-02
133	. 8633334	21.13281	118	48.15625	. 1269531
134	. 9661668	21.23438	118	37.4375	. 1835938
135	. 9680001	21.32813	118	27.53125	. 25
136	. 9718334	21.42188	118	18.58375	. 2988281
137	. 9746667	21.45313	118	10.25	. 3671875
138	. 9775	21.47656	118	2.84375	. 4199219
139	. 9803334	21.46875	118	-3.84375	. 484375
140	. 9831667	21.42968	118	-9.6875	. 5605469
141	. 8860001	21.406E\%	118	-14.90625	. 5976563
142	. 9888334	21.35156	118	-19.4375	. 6542969
143	. 9816667	21. 3125	118	-23.21875	. 7226563
144	. 8945001	21.23438	118	-26.40625	. 7871094
145	. 6973334	21.14063	118	-28.9375	. 8671875
146	1.000167	21.07031	119	-31	. 9179688
147	1. 003	20.97656	118	-32.40625	9648438
148	1.005833	20.875	119	-33.35	1.017578
149	1.008667	20.77344	119	-33. 59375	1. 089844
150	1.0115	20.67188	119	-33.34375	1. 144531
151	1.014333	20.61719	120	-32.71875	1. 220703
152	1.017167	20.47656	120	-31.65625	1. 275391
153	1. 02	20.40625	120	- 30.125	1.314453
154	1.022833	20.35156	120	-28.03125	1.375
155	1.025667	20.25	120	-25.78125	1. 4375
156	1.0285	20.21875	120	-22.96875	1.5
157	1.031333	20.14063	121	-19.96875	1. 5625
158	1.034167	20.10156	121	-16.5625	1.595703
159	1.037	20.03125	121	-12.78125	1. 65625
160	1.038833	2.0	121	-8.6875	1.714844
161	1.042667	19.96875	121	-4.375	1.771484
162	1. 0455	19.97656	121	. 15625	1.828125
163	1.048333	20.00781	121	4.9375	1.896484
164	1.051167	20.02344	121	8.875	1.947266
165	1. 054	20.02344	121	15.21875	1. 992188
166	1.056833	20.07813	121	20.5625	2.072266
167	1.058667	20.16406	120	26.25	2.117188
168	1. 0625	20.25	120	31.90625	2. 181641
169	1.065333	20.33594	120	37.75	2. 230469
170	1.068167	20.45313	120	43.8125	2.28711
171	1.07?	20.58594	120	49.78125	2.353516
172	1.073833	20.75781	119	56.03125	2. 410156
173	1.076667	20.875	119	62.28125	2. 470703
174	1.0795	21.07813	119	68.59375	2.513672
175	1.082333	21.28125	118	74.90625	2.563985
176	1.085167	21.53906	118	81.21875	2. 642578
177	1. 083	21.76563	117	87.71875	2.720703
178	1.090833	22.01563	117	94.03125	2.785156
179	1. 083667	22.3125	116	100.5938	2.841797
180	1.0865	22.57031	115	107	2. 902344
181	1.089333	22.90625	115	113.3438	2.978516
182	1.102167	23.19531	114	118.5625	3.015625
183	1. 105	23.5625	113	125.875	3.083985
184	1.107833	23.94531	113	132.0313	3. 16211
185	1.110667	24.32031	112	138.1563	3. 236328
186	1.1135	24.71875	111	144.1875	3. 289063
187	1.116333	25.13281	110	150.1563	3.369141
188	1.119167	25.57031	109	155.8063	3. 449219
189	1. 122	26.02344	108	161.6563	3.511718
190	1.124833	26.45313	107	167.1875	3.611328

191	1.127667	26.96875	106	172.5313	3.679688	0
182	1.1305	27.50781	105	177.9375	3.740235	0
183	1.183333	28	104	182.9688	3. 820818	0
184	1.136167	28.50781	103	188.0938	3. 90625	0
185	1. 139	29.0625	102	182.7188	3.878516	0
196	1.141833	29. 60156	101	197.4063	4. 074218	0
197	1. 144667	30.14844	100	201. 9063	4.074218	0
198	1.1475	30.70313	99	206.0938	4. 25.3907	0
198	1.150333	31.34375	97	210.1875	4.253907	0
200	1. 153167	31.96875	96	214.125	4.328125	0
201	1.156	32.55469	85	217.8438	4. 435547	0
202	1.158833	33.1875	93	221.125	4. 511718	0
203	1.161667	33.83584	92	224.4688	4.589844	0
204	1. 1645	34.46875	81	224.4688 227.4375	4.69336	0
205	1.167333	35.07031	89	230.1875	4. 871084	0
206	1.170167	35.75	88	232.6875	4.984375	0
207	1.173	36.36719	87	235.125	5.091797	0
248	1.175883	37.07031	85	237.2813	5.210938	0
209	1.178667	37.70313	84	239.0938	5. 292969	0
210	1.1815	38.45313	82	240.6563	5. 408203	0
211	1.184333	39.09375	81	242.0313	5.513672	0
212	1.187167	39.83594	80	243.3438	5. 63086	0
213	1.19	40.48219	78	244.0513	5.75	0
214	1. 182833	41.14063	77	244.8125	5.853516	0
215	1.195667	41.86719	75	245.0998	5.866797	0
216	1. 1985	42.57813	74	245.1563	6.09375	0
217	1. 201333	43.27344	72	245.0625	6. 228516	0
218	1.204167	43.98438	71	244.7819	6.358375	0
218	1. 207	44.58375	70	244.25	6.484375	0
220	1.209838	45.35938	68	243.1063	6. 608375	0
221	1.212667	46.03125	67	242.4063	6.734375	5
222	1. 2155	46.75	65	240.9375	6. 859375	0
223	1.218333	47.4375	64	239.5	7	0
224	1.221167	48.07813	62	237.625	7.134766	0
225	1. 224	48.76563	61	235.6563	7. 28711)
228	1. 226838	49.42969	60	233.3125	7.110157	0
227	1. 229667	50.03827	58	230.75	7.542969	0
228	1. 2825	50.71875	57	228.0938	7.6875	0
228	1. 235334	61.39063	55	225.1563	7.830078	0
230	1.238167	52.02344	54	222.0938	7.870703	0
231	1.241	52.60157	53	218.5	8.125	0
232	1. 243833	53.23438	52	215	8.291016	0
233	1. 246667	53.89063	50	211.2813	8.445312	0
234	1. 2495	54.38282	49	207.375	8.578125	0
235	1. 262333	55	48	203.1563	8.75	0
236	1. 255167	55.58594	47	198.75	8.880858	-
237	1. 258	56.21875	45	194.1563	9.050781	0
238	1. 260833	56.71875	44	189.4375	9.214844	0
239	1.263667	57.28907	43	184.7188	9.373047	
240	1. 2665	57.76563	42	179.5938	9.546875	
241	1. 268338	58.25	41	174.4063	9.710938	
242	1. 272167	58.70313	40	169	9.867188	0
243	1. 275	59.25782	39	163.8125	10.02148	0
244	1. 277833	59.61719	38	158.0625	10.19531	c
245	1. 280667	60.09375	37	152.4688	10.3847%	0
246	1. 2835	60.57032	36	146.6875	10.53125	0
247	1.286333	60.91407	36	140.7813	10.71289	0
248	1.289167	61.32032	35	134.875	10.89649	0
249	1.282	61.6875	34	128.75	11.0625	0
250	1.294833	62.125	33	122.8125	11.25977	0
251	1. 297667	62.375	33	116.625	11.41787	0
252	1. 3005	62.74219	32	110.5313	11.59375	0
253	1. 303333	63.02344	31	104. 2188	11.77734	0
254	1.306167	63.30469	31	98.03125	11.94727	0
255	1.309	63.60157	30	91.90625	12.13281	0
256	1.311833	63.82813	30	85.65625	12.32227	0

257	1.314667	64.03906	28	79.5625	12.48242	0
258	1.3175	64.35156	28	73.34375	12.6582	0
259	1.320333	64.5	28	67.40625	12.8418	0
260	1.323167	64.60156	28	61.40625	13.05664	0
261	1. 326	64.78906	28	55.46875	13.19727	0
262	1.328833	65.02344	27	49.65625	13.44141	0
263	1.331667	65.15625	27	44.15625	13.60142	0
264	1.3345	65. 21875	27	38.3125	13.77734	0
265	1.337334	65.3125	26	33.15625	13.97461	0
266	1.340167	65.39063	26	27.65625	14.1875	0
267	1.343	65. 546888	26	22,71875	14.34766	0
268	1.345833	65.54688	26	17.71875	14.50781	0
269	1.348667	65.53806	26	12.96875	14.69336	0
270	1. 3515	65.59375	26	8.71875	14.92774	0
271	1.354333	65.58594	26	4.5	15.05469	0
272	1.357167	65.72656	26	78125	15.27344	0
273	1.36	65.625	26	-3.125	15.42578	0
274	1. 362833	65.61718	26	-6.40625	15.63672	0
275	1.365667	65.60938	26	-9.4375	15.8418	0
276	1.3685	65.58598	26	-11.84375	15.99805	0
277	1.371333	65.57812	26	-14.21875	16.20703	0
278	1.374167	65.5	26	-16.03125	16.37695	0
279	1. 377	65.48438	26	-17.53125	16.58984	0
280	1. 379833	65,4375	26	-18,78125	16.75	0
281	1.382667	e5. 88063	26	-19.25	16.82774	0
282	1. 3855	65.28125	26	-19.4375	17.125	0
283	1.388333	65.25	27	-18.9375	17. 30859	0
284	1. 381167	65.17969	27	-18.21875	17.51953	0
285	1.394	65.16406	27	-16.75	17.66016	0
286	1.396833	65.07031	27	-14.71875	17.83984	0
287	1.399667	65.07031	27	-12.25	18.06641	0
288	1. 4025	65.00781	27	-8.78125	18.22656	0
289	1.405333	64.96875	27	-5.3125	18.41406	0
290	1.408167	64.92188	27	-. 46875	18.59961	0
291	1. 4111	65.09125	27	4. 5625	18.80859	0
292	1. 413833	65.0625	27	10.53125	18.88438	0
283	1.416667	65.04688	27	16.96875	19.15625	0
294	1. 4195	65.16406	27	24.53125	19.3457	0
295	1.422333	65.25	27	32.71875	18.49024	0
296	1. 425167	65.25781	27	41.625	19.71875	0
297	1. 428	65.47656	26	51.4375	19.90625	0
298	1.420833	65.65625	26	62.03125	20.06641	0
299	1. 433667	65.83594	25	73.8125	20.24024	0
300	1. 4365	66.04688	25	86.09375	20.46094	0
301	1.439334	66.34375	24	89.625	20.662:1	0
302	1.442167	66.59375	26	114.0313	20.81055	0
s03	1.445	66.9375	23	129.375	21.01172	0
304	1.447833	67.33584	22	146.0938	21.21485	0
305	1. 450667	67.82813	21	163.4688	21.4043	0
306	1. 4535	68.17188	20	182.3438	21.5918	0
307	1.456333	68.85156	19	202.1563	21.5918	0
308	1. $459{ }^{167}$	68.46094	18	223.0938	21.5918	0
309	1. 462	70.10156	16	244.9688	21.5918	0
310	1. 464833	70.74219	15	268.6563	21.5918	0
311	1.467667	71.60156	13	292.9063	21.5918	0
312	1.4705	72.5	11	318.9688	21.5918	0
313	1. 473333	73.46094	9	346.25	21.5818	0
314	1.476167	74.38281	8	374.75	21.5918	0
315	1.479	75.5	5	404.6875	21.5818	0

The Total Integral of $\mathrm{P}[\mathrm{X}(\mathrm{x})] \mathrm{dx}$ is From .9576667 To 1.4535 and the Constant of Intergration is -18925.81

JOB DRSCRIPTION
This is a follow-up to job INITIAL ANALYSIS--06/26/89. This analysis will wee the data (in modified fors) frow that job (i.e. the tewperature will be expressed in normalized Rankine units - R/459.67\%).

EACH CURVR IS A 'BEST FIT' WICH EN nth DEGREK POLYNOMIAL $P[X(x)]=C(1) X(x){ }^{n}+C(2) X(x)^{-}(n-1)+\cdots+C(n) X(x)+C(n+1)$

PLOTTING INSTROCTIONS
Generate (color) MEDIOM resolution, LINEAR gryphe with PLJTIRFIT DETERNINED COORDINATE RANGES AND MAREING INTERVALS

* These DATA SKTS were OUTPUT to file A:FOL06891.SIS.

DETERMINATION of RTHdt

Part 2.a) Comments on UuiTPUT

1. The CHI^{2} is 14.705 for the polynomial of degree $n=5$ (for which $R V$ is 1.2254; see page $A-20$). Interpoiating the Chi-square distribution table in Appendix B, with the degrees of freedom $N U=18-6=12$, we see that, if the model is approximately "correct," there is about a 26 percent chance that CHI^{2} will be 14.7 or larger because of random fluctuations. Hence, we can say that the differences between the data points $\left(x_{i}, y_{i}\right)$ and the curve $\left(x_{i}, P\left[X\left(x_{i}\right)\right]\right)$ are probably due to chance and that the model gives a reasonably good correlation of the data in this data set.
2. From the table showing $x, P[X(x)]$, and $d P[X(x)] / d x$ (see pages $A-22$ through $A-25)$, we see that the inflection point is at $x_{\text {ip }}=1.1985$ and $P\left[X\left(x_{i p}\right)\right]=$ 42.57813 (from experience we know that the inflection points associated with "lower shelf" and "upper shelf" energies have no physical significance but, rather, are merely the resuit of the limited number of data points in each region and the nature of the Basis Function used).
3. From the same table referred to above, we can estimate the lower and upper shelf energies by calculating the average $P[X(x)]$ over the maximum to minimum of curve "wiggle" in each range (i.e., over the ranges, 0.9775 $\leqq x \leqq 1.0455$ and $1.357 \leqq x \leqq 1.411$) to obtain $20.7 \mathrm{ft}-1 \mathrm{~b}$ and $65.3 \mathrm{ft}-1 \mathrm{~b}$, respectively.

Part 2.b) INPUT

From Part 2.a) OUTPUT, the inflection point was fourd to be at $x_{i p}=1.1985$ and $P\left[X\left(X_{i p}\right)\right]=42.57813$. To estimate the combination of coefficients CF1 and CG1 that produce a curve of desired shape, we assumed that as x approaches relatively large values, $P\left[X_{b}(x)\right]$ approaches $65.3 \mathrm{ft}-1 \mathrm{~b}$ (the "upper shelf" energy) and as x approaches very small values, $P\left[X_{b}(x)\right]$ approaches $20.7 \mathrm{ft}-1 \mathrm{~b}$ (the "lower shelf" energy). We then solved the equation $(65.3-42.57813) /(65.3-20.7)=$ $0.50946=\operatorname{EXP}\left[C F 1 \cdot(1.1985)^{\text {CG1 }}\right]$ for values of CG1 $=5,10,15,20,25$, and 30 to obtain values of CF1 $=-0.273,-0.110,-0.0446,-0.0180,-0.00729$, and -0.00295 , respectively.

In the job for this part of the analysis, we will fit polynomials of degree $n=1$ to the modified data using Basis Function \# 6 (with CS1 $=0, C 01=0$, $C D 1=0$, and CE1 $=1$) in six tasks, where a different combination of coefficients CGI:CF1 taken from the above list is used in each task. It should be noted that although approximate "upper shelf" and "lower shelf" energies were used to obtain the relation between CF1 and CG1 at the "pinning point" (i.e., the inflection point), PLOTnFIT will, with this Basis Function and $n=1$, calculate new polynomial coefficients that are directly related to the "upper shelf" energy, $C(2)$, and the "lower shelf" minus the "upper shelf" energies, $C(1)$, so as to give a best fit to all the data points for the given CF1:CG1 combination.

PLOTnFIT / NUREG - \&ะき\&

PLOTnFIT was prepared for an agency of Dnited States Goverrment.
Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expreseed or implied, or aseumes any legal liability or responsibility for any third party e uee, or the reeults of such use, of any protion of this prograp or represente that its use by euch third party would not infringe privately owned righte.

```
This vereion of PLOTnF1T (i.e.. PLOTNFIT, 4TH) will not run
properly on a PC with a monochrome monitor. If this PC does
not have a color/graphice card or this is not a color monitor,
type yes or y at the EXIT (y/n)? prompt, otherwise type no or n
and continue (NOTE: If GRAPHICS.COM was not loaded before
BAS:CA.COM, HARD COPIES of graphe can not be made. Now is the
tine to EXIT this job and relood if it is desirable to print
graphe a:d GRAFHICS.COM has not been pre-loaded.).
THE PRINTER MUST BE KEPT ON WHILE PLOTNFIT IS OPERATING.
```

EXIT $(\mathrm{y} / \mathrm{n})$?

Number of Bite not being used at the START of this job $=10486$
for default purposes, what Diek Drive (e.g., $h:$) would you most likely
want to WRITE to (include subdirectory if applicable - e., C:\SUBDIR
)
? A.

IF YOU ARE NOT ALREADY FAMILIAR WITH THIS PROGRAM, you Bhould probably ENTER yee at the 'EXI' (y / n) ?' prompt, and run the program 'READIST. PNF'

Exit (y / n) ?

```
Identify your job (INITIAL ANALYSIS)
    FORMAT - a string of less than }18\mathrm{ characters (where BASIC
Desoribe your job (This analyeis is to get a 'feel' for the data.):
    FORMAT - a comma-less string of less than 256 characters.
                            PLOTTING INSTRUCTIONS
What kind of graphs would you like to generate
    1. LINEAR
    2. SEMI-LOG (Y-axi6,LOG; X-axis,LINEAR)
    3. LOG-LOG
NT(z 1)=
```

 filenate rules apply to first 3 and lat 3 characters) - OHARPYA RC-2 CONT 1
 Tinis is a continuation of the analyeis begun with job INITIAL ANALYSIS - 06/26,
689. tHThis job will use Basis Function $\$ 6$ in the polynomial fit to the modidit

```
    What palette do you want:
    FOR NP=1 FOR NP=2
    GREEN MAGENTA
    RED CYAN
    BROWN WHITE
    NP(=1
\(N P(=1)=\)
\begin{tabular}{|c|c|}
\hline FOR NOP \(=1\) & FOR NOP \(=2\) \\
\hline CURVES & CURVES \\
\hline DATA POINTS & DATA FIELD \\
\hline AXES AND LABELS. & DATA POINTS, AXES AND LABELS: \\
\hline
\end{tabular}
Regardles of the NOP value you enter here, if you later choose to make HARD COPIES of the data and curves plotted on the ecreen, PLOTnFIT will automatioaliy make NOP=1.
\(\operatorname{NOP}(=2)=\)
What background color do you want:
1. BLACK
2. GRAY
3. LIGHT BLUE
4. WHITE
5. LIGHT CYAN
6. LIGHT MAGENTA
\(N Q(=2)=5\)
```

```
Would you like graph labels different from those shown in ()?
```

Would you like graph labels different from those shown in ()?
(TITLE) - 30 characters maximum - (y/n):Y
(TITLE) - 30 characters maximum - (y/n):Y
What is your choice? DETERMINATION of RTndt
What is your choice? DETERMINATION of RTndt
(X-AXIS) Horizontal - 22 characters maximum - (y/n): y
(X-AXIS) Horizontal - 22 characters maximum - (y/n): y
What is your choice? Normalized Temperature
What is your choice? Normalized Temperature
(units) for x-axis - 5 charactere maximum - (y/n): y
(units) for x-axis - 5 charactere maximum - (y/n): y
What is your choice? R/460
What is your choice? R/460
(Y-AXIS) Vertical - }16\mathrm{ characters taximum - (y/n):y
(Y-AXIS) Vertical - }16\mathrm{ characters taximum - (y/n):y
What is your choice? Charpy Energy
What is your choice? Charpy Energy
(unite) for y-axib - 5 charactere maximum - (y/n):y
(unite) for y-axib - 5 charactere maximum - (y/n):y
What is your choice? ft-1b
What is your choice? ft-1b
What scalligg procedure (NS) would you like to use?
What scalligg procedure (NS) would you like to use?
1. SPECIFY COORDINATE RANGES AND MARKING INTERVALS FOR
1. SPECIFY COORDINATE RANGES AND MARKING INTERVALS FOR
THE AXES (USE ONLY AFTER EXPERIENCE WITH 'PLOTVFIT')
THE AXES (USE ONLY AFTER EXPERIENCE WITH 'PLOTVFIT')
2. ALLOW 'PLOTNFIT' TO ESTABLISH COORDINATE RANGES AND
2. ALLOW 'PLOTNFIT' TO ESTABLISH COORDINATE RANGES AND
M\&RKING INTERVALS BASED ON THE DATA RANGES
M\&RKING INTERVALS BASED ON THE DATA RANGES
NS(=2)=
NS(=2)=
DATA AND DATA IDENTIFICATION
How many Taske will there be in thin job $(1<=\operatorname{NDS}(z 8)$? NDS $(=1)=6$

```
```

What INPUT device (NE) would you like to use to

```
What INPUT device (NE) would you like to use to
enter your Data for Taek % & ?
enter your Data for Taek % & ?
    1. The KEYBOARD
    1. The KEYBOARD
    2 A STORED FILE
    2 A STORED FILE
NE}(=1)=
NE}(=1)=
What is the location and name of the FILE containing Data for Task # i ?
What is the location and name of the FILE containing Data for Task # i ?
    FORMAT - (etorage)device:f1lename - a:fol06891.ele
    FORMAT - (etorage)device:f1lename - a:fol06891.ele
How many Data Sets are in this EILE?
How many Data Sets are in this EILE?
    NDSF(=1)=
    NDSF(=1)=
Do you want to 1NPUT Data Set w 1 from FILE a:fol06891. sie
Do you want to 1NPUT Data Set w 1 from FILE a:fol06891. sie
[i.e., that identified as : Mod, CHARPY DATA from RC-2;
[i.e., that identified as : Mod, CHARPY DATA from RC-2;
with (NDP=) 18 dota points) (y/n)? y
with (NDP=) 18 dota points) (y/n)? y
Do you want to INPUT the etored weighting factors (y/n)? y
Do you want to INPUT the etored weighting factors (y/n)? y
Do you want to change ANY data in this Data Set (y/n)?
Do you want to change ANY data in this Data Set (y/n)?
Do you want to fit ourves to your Data Foints (y/n)? y
```

Do you want to fit ourves to your Data Foints (y/n)? y

```
```

Which of the following BASIS FUNCTIONS do you want to uee for this Data

```
Set (YOU MUST supply values for coefficiente CS1, CO1, CD1, CE1, CF1 \& CG1):
```

1. X(x)=C51+x
2. }X(x)=CS1+EXP(CO1*x)/(CD1+x
3. }X(x)=(CS1+\operatorname{CO1*x+CD1*x-2)*LOG(x)
4. }X(x)=\operatorname{CS1/x+CO1* LOG(x) +x*LOG(CD1*x+2.718)
5. }\textrm{X}(\textrm{x})=CO1+C01*\mp@subsup{x}{}{-}\mathrm{ CD1 +CE1/(CF1+ ('CG1)
6. }X(x)=CS1*EXP(CO1*x CD1) +CE2*EXP(CE1*x*CG1)
7. X(x)=CS1*EXP (CO1*x +CD1*EXP (CE1*x)+CF1*EXP(CO1*x)
B. X(x)=CS1*(CO1+x)*CD1+CE1* (CF1+x)*CO1
8. X (x) =EXP(CS1*x)*(CO1+x)*CD1+EXP(CE1*x)*(CF1+x)*CO1
9. }X(x)=CS1*x*S1N(CO1+CD1*x)+(CE1/(CD1+x))*SIN(CF1+CG1*x
10. }\textrm{X}(\textrm{x})=E\textrm{EXP}(CS1*x)*S1N(CO1+CD1*x)+CE2*SIN(CF1+CG1*x
If the default value of a coefficient is not gero and you wish it to be eero,
you tust enter an insignificant, emall number (perhape, 1E-7*XMIN), eince
entering 0 would be interpreted by PLOTnFIT as acceptance of the default value
BF}(=1)=
cs1(=0)=
CO1(= 0) =
CD1(= 0) =
CE1(= 0) =1.
CF1(=0) =-0.273
CG2(= 0)=5
For each Data Set in the job, the program etarte with
the lowest degree polynomial you want to consider and
fits it to the dats pointe; the program then fite,
eequentially and in sesending order, es many higher
degree polynomials as you epecify (the current degree
limit is 20).
What is the lowest degree polynowisi (LDP) you want to consider
```

```

 HCW many polynomial fit.s (NPF) do you want to
 try - including the LDP - (}<=\operatorname{NPF}<=10)% NFF(=1)
 What symbol (M) would you like to use to represent
 the Data for Taek $ 1?
 1. I 5. DIAMOND
 2. CROSS 6. TRIANGLE - UP
 3. X 7. TRIANGLE - DOWN
 4. H B. SQUARE
 M(=1)=3
 What symbol size (MM) would you like?
 1. gmall
 2. LAROB
 MM(=1)=
 What INPUT device (NE) would you like to use to
 enter your Data for Task # 2 ?
 1. The REYBOARD
 2. A STORED FILB
 NE(=2)=
 What is the location and name of the FILE containing Data for Tagk # 2 ?
 FORMAT - (storage)device:filensme (a:fol06881.61s) -
 How many Data Sets are in thic FILE?
 NDSF(=1)=
    ```
```

 Do you want to INPUT Deta Set e I from F1LE a:fol06891.sis
 [i.e.., that identified as Mod. CHARPY DATA fron RC-2;
 with (NDPz) }18\mathrm{ deta points) (y/n)? y
Do you vant to INPUT the etored welghting factors (y/n)? y
Do you want to change ANY data in this Data set (g/n)?
Do you vant to fit ourves to your Data Fointe (y/n)? y
Which of the following BAS18 FUNCTIONS do you want to use for this Data
Set (YOU M"ST eupDly values for coefficients CS1, CO1, CD1, CE1, CF1 \& CG1)
1. }X(x)=C51+
2. }X(x)=\operatorname{CS1+EXP}(\operatorname{CO1*x})/(OD1+x
3. }X(x)=(CS1+CO1*x+CD1*x'2)*LOQ (x
4. X(x)=C81/x+CO1*LOG(x)+x*LOG(CD1*x+2.718)
5. }X(x)=0%1+CO1* * CD1+CE1/(CF1+\mp@subsup{x}{}{*}\mathrm{ CG1)
6. }X(x)*CB1*EXP(CO1*x*CD1)+CE1*EXP(CF1*x*CQ1)
7. X(x)=C81*EXP(CO1*x) +CD1*EXP(CE1*x) +CF1*EXF(CO1*x)
8. }X(x)=C51*(001+x)*CD1+CE1*(CF1+x)*CG1
9. }\textrm{X}(\textrm{x})=\operatorname{EXP}(\textrm{CS1*x})*(CO1+\textrm{K})*CD1+EXP(CE1*X)*(CF1+X)*CG
10. X(x)=CS1*x*S1N(CO1+CD1*x) +(CE1/(CD1 + K) *S1N(CF1+CG1*x)
12. X(x)=EXP}(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CO1*x
If the default value of a coefficient le not gero and you wleh if to be zero,
you must enter an ineignificant, small number (perhaps, 1E-7*XMIN), since
entering Q would be interpreted by PLOTnFIT ae acceptance of the default value

```
```

BF(=6)=

```
BF(=6)=
    Cs1(= 0)=
    Cs1(= 0)=
    cos(=0)=
    cos(=0)=
    CD1(=0)=
    CD1(=0)=
    CE1(% 0) = =1.
    CE1(% 0) = =1.
    CF1(z 0) =-0.110
    CF1(z 0) =-0.110
    CG1(=0)=10.
    CG1(=0)=10.
            For each Deta Set in the Job, the program etarte with
            the lowest degree polynomial you want to consider and
            fite it to the data pointe; the program then fits,
            sequentially and in sseending order, ap many higher
            degree polynomiale as you epecify (the current degree
            2init is 10).
    What is the lowest degree polynonial (LDF) you want to consider
    for this Date Set (1 c% LDP s= 10)? LDP(=1)=
    How many polymomiel fits (NPE) do you want to
    try - including the LDP - (1 <=NPF }==10)? NPF(=1)
            What symbol (M) would you like to use to represent
            the Dats for Tabk # 2 ?
            1. I 5. DIAMOND
            2. CROSS 6. TRIANGLE - UP
            3. X 7. TRIANGLE - DOWN
            4. H 8. SQUARE
            M(=4)=3
            What eymbol eize (MM) would you like?
                    1. small
                    2. LARGE
            MM(=1)=
    What INPUT device (NE) would you like to use to
    enter your Data for Task & 3 ?
            1. The KEYBOARD
            2. A STORED FILE
    NE}(=2)
```

```
What is the location and name of the FILE contalning lista for Task & 3 ?
        FORMAT - (etorage)device:filename (s:fo206891.6is) -
How many Dat.a Sete are in thie FILE?
        NDSF(= 1 1 ) =
    Do you want to INPOT Dats Set & 1 fron FILE &:fol06891.616
    [1.e.., thet identified as : Mod. CHAREY DATA from RC-2;
    with (NDP=) 18 dete pointe) (y/n)? y
    Do you want to INPOT the etored veighting factore (y/n)? y
    Do you want to Change ANY data in this Data Set (y/n)?
    Do you want to fit eurves to your Dets Pointe (y/n)? y
Whioh of the following BASIS FUNCTIONS do you want to use for thie Dots
Set (YOU MUST Bupply values for coefflciente CB1, CO1, CD1, CE1, (F1 & CG1)
```

```
1. }x(x)=\operatorname{cos}+
```

1. }x(x)=\operatorname{cos}+
2. X(x)=CS1+EXP(CO1*x)/(CD1+x)
3. X(x)=CS1+EXP(CO1*x)/(CD1+x)
4. X(x)=(CS1+CO1*x+CD1*x*2)*LOG(x)
5. X(x)=(CS1+CO1*x+CD1*x*2)*LOG(x)
6. }X(x)=CS1/x+CO1*LOO(x)+x*LOO(CD1*x+2, I18
7. }X(x)=CS1/x+CO1*LOO(x)+x*LOO(CD1*x+2, I18
8. }X(x)=C81+CO1* * CD1 +CE1/(CF1+\mp@subsup{x}{}{*}CG1)
9. }X(x)=C81+CO1* * CD1 +CE1/(CF1+\mp@subsup{x}{}{*}CG1)
10. }X(x)=CS1*EXF(CO1* * CD1) +CE1*EXP(CF1*x*CG1)
11. }X(x)=CS1*EXF(CO1* * CD1) +CE1*EXP(CF1*x*CG1)
12. X(x)=CS1*EXP(CO1*x) +CD1*EXP(CE1*x) +CF1*EXP(CO1*x)
13. X(x)=CS1*EXP(CO1*x) +CD1*EXP(CE1*x) +CF1*EXP(CO1*x)
B. }X(x)=CB1*(CO1+x)*CD1+CE1* (CF1+x)*CG1
B. }X(x)=CB1*(CO1+x)*CD1+CE1* (CF1+x)*CG1
14. X(x)=EXP;CS1*x)*(CO1+x)*CD1+EXP(CE1*x)*(CF1+x)*CG1
15. X(x)=EXP;CS1*x)*(CO1+x)*CD1+EXP(CE1*x)*(CF1+x)*CG1
16. }\textrm{X}(\textrm{x})=C51*x*SIN(CO1+CD1*x)+(CE1/(CD1+x) *SIN(COF1+CO1*x
17. }\textrm{X}(\textrm{x})=C51*x*SIN(CO1+CD1*x)+(CE1/(CD1+x) *SIN(COF1+CO1*x
18. X(X)=EXP(CS1*x)*S1N(CO1+CD1*x)+CE1*S1N(CF1+CG1*X)
19. X(X)=EXP(CS1*x)*S1N(CO1+CD1*x)+CE1*S1N(CF1+CG1*X)
If the default value of a coefficient is not sero and you wish it to be zero,
If the default value of a coefficient is not sero and you wish it to be zero,
you must enter an ineignificant, emall number (perhape, IE-7*XMIN), since
you must enter an ineignificant, emall number (perhape, IE-7*XMIN), since
entering 0 would be interpreted by FLOTnF1T se acceptance of the default value
entering 0 would be interpreted by FLOTnF1T se acceptance of the default value
$B E(=6)=$
$B E(=6)=$
$B E(=6)=$
CS1 $(=0)=$
CS1 $(=0)=$
CS1 $(=0)=$
$\cot (=0)=$
$\cot (=0)=$
$\cot (=0)=$
$\operatorname{CD1}(=0)=$
$\operatorname{CD1}(=0)=$
$\operatorname{CD1}(=0)=$
CE1 $(=0)=1$
CE1 $(=0)=1$
CE1 $(=0)=1$
CE1 $(=0)=-0.4460446$
CE1 $(=0)=-0.4460446$
CE1 $(=0)=-0.4460446$
CG1 ($=0)=15$
CG1 ($=0)=15$
CG1 ($=0)=15$
For each Data Set in the job, the program starte with
For each Data Set in the job, the program starte with
For each Data Set in the job, the program starte with
the lowest segree polyncaial you want to consider and
the lowest segree polyncaial you want to consider and
the lowest segree polyncaial you want to consider and
fite it to the data pointa; the program then fite,
fite it to the data pointa; the program then fite,
fite it to the data pointa; the program then fite,
sequentisily and in assending order, as many higher
sequentisily and in assending order, as many higher
sequentisily and in assending order, as many higher
degree polynomials as you epecify (the current degree
degree polynomials as you epecify (the current degree
degree polynomials as you epecify (the current degree
ifmit is 10)
ifmit is 10)
ifmit is 10)
What is the lowest degree polynomial (LDP) you want to consider
What is the lowest degree polynomial (LDP) you want to consider
What is the lowest degree polynomial (LDP) you want to consider
for thie Data set $(1<=\operatorname{LDP}<=10)$? $\operatorname{LDP}(=1)=$
for thie Data set $(1<=\operatorname{LDP}<=10)$? $\operatorname{LDP}(=1)=$
for thie Data set $(1<=\operatorname{LDP}<=10)$? $\operatorname{LDP}(=1)=$
How many polynomial fite (NPE) do you want to
How many polynomial fite (NPE) do you want to
How many polynomial fite (NPE) do you want to
try - including the LDP - $(1<=\operatorname{NPF}<=10) ? \operatorname{NPF}(=1)=$
try - including the LDP - $(1<=\operatorname{NPF}<=10) ? \operatorname{NPF}(=1)=$
try - including the LDP - $(1<=\operatorname{NPF}<=10) ? \operatorname{NPF}(=1)=$
What symbol (M) would you like to use to represent
What symbol (M) would you like to use to represent
What symbol (M) would you like to use to represent
the Data for Task \# 3 ?
the Data for Task \# 3 ?
the Data for Task \# 3 ?
I 5. DIAMOND
I 5. DIAMOND
I 5. DIAMOND
CROSS 6. TRIANGLE - UP
CROSS 6. TRIANGLE - UP
CROSS 6. TRIANGLE - UP
X 7. TRIANGLE - DOWN
X 7. TRIANGLE - DOWN
X 7. TRIANGLE - DOWN
4. H 8. SQUARE
4. H 8. SQUARE
4. H 8. SQUARE
$M(=4)=3$
$M(=4)=3$
$M(=4)=3$
What symbol sise (MM) would you like?
What symbol sise (MM) would you like?
What symbol sise (MM) would you like?
1. emall
1. emall
1. emall
2. LARGE
2. LARGE
2. LARGE
$M M(=1)=$
```
            \(M M(=1)=\)
```

 \(M M(=1)=\)
    ```
```

What INPUT device (NE) would you like to use to
enter your Data for Task |f 4 ?
1. The REYBOARD
2. A STORED EILE
NE(=2)=
What is the location and name of the FlLE containing Data for Task ; 4 ?
FORMAT - (etorage)device:filensme (a:fol06891.8is) -
How many Dats Sets are in this FILE?
NDSF (z 1) =
Do you want to INPUT Data Set y I from FILE a:fo106881. sis
[1.e., that identified es : mod. CHARPY DATA from RC-2;
with (NDP=) 18 data pointe) (y/n)? y
Do you want to INPUT the etored weighting factore $(y / n) ? y$ Do you want to change ANY data in thie Data Set (y / n) ? Do you want to fit ourves to your Data Pointe (y / n) ? y
Which of the following BASIS FunCTIONS do you want to use for this Data
Set (YOU MUST supply valuee for oceffioiente CS1, CO1, CD1, CE1, CF1 \& CG1):

1. }X(x)=\operatorname{CS2}+
2. }X(x)=\operatorname{CS1}+EXP(\operatorname{CO1*x})/(CD1+x
3. }x(x)=(C51+CO1*x+CD1*x'2)*\operatorname{LOG}(x
4. }X(x)=CS1/x+CO1*LOG(x)+x*LOG(CD1*x+2.718
5. }X(x)=CS1+CO1*\mp@subsup{x}{}{-}CD1+CE1/(CE1+X CO1)
6. X(x)=CS1*EXP(CO1* X 'CD1)+CE1*EXF(CF 1* * 'CG1)
7. X(X)=CS1*EXP}(CO1*X)*CD1*EXP(CE1*X)+CF1*EXP(CG1*X
8. X(x)=CS1*(CO1+x)*CD1+CE1* (CF1+X)'CO1
9. X(X)=EXP(CS1*x)*(CO1+x)'CD1+ EXP(CEE1*X)*(CF1+X)-CO1
10. }X(x)=CS1*x*S1N(CO1+CD1*x)+(CE1/(CD1*x))*S1N(CF1+CG1*x
11. }\textrm{X}(\textrm{x})=\textrm{EXP}(\textrm{CS1*x})*SIN(CO1+CD1*x)+CE1*SIN(CE1+CG1*x
If the defaul: value of a coefficient is not zero and you Wibh it to be zero,
you must enter on incignificant, emall number (perhape, 1\&-7*XMIN), sinoe
entering 0 would be interpreted by PLOTnFIT as acceptance of the default value
```
```

BF(=6)=

```
BF(=6)=
    csi(=0)=
    csi(=0)=
    COL(= 0) =
    COL(= 0) =
    CD1(= 0) =
    CD1(= 0) =
    CK2(= 0) =1.
    CK2(= 0) =1.
    CE1(= 0) =-0.0180
    CE1(= 0) =-0.0180
    CO1(=0)=20
    CO1(=0)=20
            For each Dats Set in the job, the program etarte with
            the lowest degree polynomisi you want to consider and
            fits it to the dats points; the progras then fite,
            saguentialiy and in aseending order, as many higher
            degree polynomisls as you specify (the current degree
            11mit is 10).
    What is the lowest degree polynomial (LDP) you want to consider
```



```
    How many polynomial fits (NPF) do you want to
    try - including the LDP - (1 <z NPF <z 10)? NPF}(=1)
```

```
    What symbol (M) would you like to use to represent
    the Dats for Task is 4 ?
    1. 1 5. DIhMOND
    2. CROSS
    6. TRIANGLE - UP
    7. TRIANGLE - DOWN
    8. SQUARE
    M(=4)=3
    What symbol size (MM) would you like?
    1. Emall
    2. LARGE
    MM(=1)=
What INPUT device (NE) would you llke to use to
enter your Data for Task # 5 ?
    1. The KEYBOARD
    2. A STORED FILE
NE(=2)=
What is the locstion and name of the FILE containing Data for Task & 5 ?
    FORMAT - (etorage)device:fllename (a:fol06891.eie) - y
How many Data Sets are in this FILE?
    NDSF(= 1)=
        *** ERROR ***
        File Not Found
What is the location and nate of the F1LE containing Data for Task & 5 ?
    FORMAT - (Etorara)device filename (y) - a:fol06881. E1B
How wany Data Sets are in this EILE?
        NDSF(=1)=
    Do you want to INPUT Data Set # 1 from FILE a: fol06891 sie
    [i.e., that identified as : Mod. CHARPY DATA from RC-2;
    with (NDP=) }18\mathrm{ data pointe) (y/n)? y
    Do you want to INPUT the gtored weighting factore (y/n)? y
    Do you want to chance ANY data in this Data Set (y/n)?
    Do you want to fit ourvee to your Data Points (y/n)? y
Which of the zollowing BASIS FUNCTIONS do you want to use for this Data
Set (YOU MUET supply values for coeffieients CS1, CO1, CD1, CE1, CF1 & CG1):
    1. }X(x)=\operatorname{CS1+x
2. }X(x)=CS1+EXP(CO1*x)/(CD1+x
3. }X(x)=(CS1+CO1*x+CD1*x-2)*LOG(x
4. }x(x)=C81/x+\operatorname{CO1*LOG(x)+x*LOG(CD1*x+2.718)
5. }\textrm{X}(\textrm{x})=C\mathrm{ CS1+CO1* - CD 1+CE1/(CF1+X*CQ1)
6. }\textrm{X}(\textrm{x})=\textrm{CS1*EXP}(CO1*\mp@subsup{x}{}{*}CD1)+CE1*EXP(CF1*x*CG1)
7. X(x)=CS1*EXP (CO1*X)+CD1*EXP (CE1*X)+CE 1*EXP(CO1*x)
8. }X(x)=CS1*(CO1+x)*CD1+CE1*(CE1+x)*CO1
9. X(x)=EXP}(CS1*x)*(CO1+x)*CD1+EXP (CE1*X)*(CE1+x)*CG1
10. }X(x)=CS1*x*S1N(CO1+CD1*x)+(CE1/(CD1+x))*S1N(CF1+CO1*x
11. X(X)=EXP (CS1*x)*SIN (CO1+CD1*x)+CE1*SIN (CF1+OG1*x)
If the default value of a coefficient, is not zero and you wish it to be sero,
```

```
    BE}(=6)
    CS1 (=0)=
    CO1(=0)=
    CD1( = 0) =
    CE1 (= 0) =1.
    CF1(=0) = - 0.00728
    CO1(=0)=25
        For each Dats Set in the job, the program etarte with
        the lovest degree polynomlul you vant to consider and
        fite it to the data pointe; the program then fite
        eequentiaily and in bssending order, as many higher
        degree polynomisls as you epecify (the ourrent degree
        1mit is 10).
    What is the lowest degree polynomial (LDP) you want to consider
    for this Data Set (1 << LDP }<=10)\mathrm{ ? LDP (=1) =
    How many polynomial fits (NPE) do you want to
    try - including the LDP - (2 <z NPF <z 10) ? NPF (=1)=
        What symbol (M) would you like to use to represent
        the Data for Taek # 5 ?
            1. I 5. DIAMOND
            2. CROSS b. TRIANGLE - UP
            3. X 7. TRIANGLE - DOWN
        M(= 4 4}=\mp@subsup{3}{}{H}\mathrm{ 8, SQOARE
        What bymbol size (MM) would you like?
            1. Emall
            2. LARGE
        MM( = 1)=
    What INIUT device (NE) would you like to use to
    enter your Data for Task # 6 ?
        2. The REYBOARD
        2. A STORED FILE
NE(=2)=
What is the lacation and name of the FIl: containing Data for Task & 6 ?
        FORMAT - (etorage)devioe:filaname (a:fol06891.sib) -
How many Data Sete are in thie flLE?
        NDSF(=1)=
Do you want to INPUT Data Set # I from FILE a:fol06891. Eie
[i.e., that identified as : Mod, CHARFY DATA from RC-2;
with (NDP = ) }18\mathrm{ data pointe] (y/n)? y
Do you want to INPUT the stored weighting factore (y/n)? y
Do you want to change ANY data in this Data Set (y/n)?
Do you want to fit curves to your Data Pointe (y/n)P y
Whioh of the following BASIS FUNCTIONS do you want to use for this Dats
Set (YOU MUST Eupply values for coefficiente CS1, CO1, CD1, CE1, CF1 & CG1):
```

```
2. \(X(x)=\operatorname{CS1}+\mathrm{x}\)
```

2. $X(x)=\operatorname{CS1}+\mathrm{x}$
3. $X(x)=C S 1+E X P(C O 1 * x) /(O D 1+x)$
4. $X(x)=C S 1+E X P(C O 1 * x) /(O D 1+x)$
5. $X(x)=(\operatorname{CS} 1+\operatorname{CO} 1 * x+\operatorname{CD} 1 * x-2) * \operatorname{LOG}(x)$
6. $X(x)=(\operatorname{CS} 1+\operatorname{CO} 1 * x+\operatorname{CD} 1 * x-2) * \operatorname{LOG}(x)$
7. $X(x)=$ CS1 $/ x+\operatorname{CO1*LOG}(x)+x * \operatorname{LOG}(C D 1 * x+2.718)$
8. $X(x)=$ CS1 $/ x+\operatorname{CO1*LOG}(x)+x * \operatorname{LOG}(C D 1 * x+2.718)$
9. $X(x)=C S 1+C O 1 * x^{-C D} 2+C E 1 /\left(C E 1+x^{\circ} C G 1\right)$
10. $X(x)=C S 1+C O 1 * x^{-C D} 2+C E 1 /\left(C E 1+x^{\circ} C G 1\right)$
11. $\quad X(x)=C S 1 * E X P\left(C O 1 * x^{*} C D 1\right)+C E 1 * E X P\left(C E 1 * x^{*} C G 1\right)$
12. $\quad X(x)=C S 1 * E X P\left(C O 1 * x^{*} C D 1\right)+C E 1 * E X P\left(C E 1 * x^{*} C G 1\right)$
13. $\mathrm{X}(\mathrm{x})=\mathrm{CS} 1 * E X F(C O 1 * \mathrm{x})+\mathrm{CD} 1 * E X P($ CE1*x $)+C \mathrm{~F} 1 * E X P(O G 1 * \mathrm{x})$
14. $\mathrm{X}(\mathrm{x})=\mathrm{CS} 1 * E X F(C O 1 * \mathrm{x})+\mathrm{CD} 1 * E X P($ CE1*x $)+C \mathrm{~F} 1 * E X P(O G 1 * \mathrm{x})$
15. $\quad X(x)=\operatorname{CS1*}(C O 1+x)^{-}$CD1 + CE1* $(C E 1+x)^{\circ}$ CG1
```
8. \(\quad X(x)=\operatorname{CS1*}(C O 1+x)^{-}\)CD1 + CE1* \((C E 1+x)^{\circ}\) CG1
```

```
    9. X(x)=EXP(CS1*x)*(CO1*x)*CD1+EXF(CE1*x)*(CF1*x)*CO1
10. }\textrm{X}(\textrm{x})=C=1*\textrm{x}*\mathrm{ &1N(CO1 +CD1*x)+(CN1/(CD1*x))*S1N(CF1+CG1*x)
11. }\textrm{X}(\textrm{x})=\operatorname{EXP}(CS1*x)*SIN(CO1+CD1*x)+CE1*S2N(CF1+CG1*x
```

$1 f$ the default value of a coefficient is not zero and you wieh it to be zero, you must enter ar incignificant, emall nunber (perhape, i\&-7*XMIN), 6 ince entering 0 would be interpreted by PLOTnFIT as acceptance of the defaalt value.

```
BF(= 6)=
    CS1(=0)=
    COL(= 0)=
    CD1(=0)=
    CE1(= 0) =1.
    CF1(=0) =-0,00285
    001(= 0) = 30.
        For each Data Set in the job, the prograto etarte with
        the lowest degree polynonial you want to consider and
        fite it to the dats pointe; the prograt then fite,
        sequentially and in ascending order, as tany higher
        degree polynomials as you specify (the current degree
        lait is 10).
```

 What is the lowest degree polynomial (LDP) you want to consider
 for this Deta Set (\(1 \times \operatorname{LDP} k=10\))? \(\operatorname{LDP}(=1)=\)
 How many polynotisal fits (NPF) do you want to
 try - including the LDP - (\(1<=\mathrm{NPF} \leqslant 10\))? NPF \((=1)=\)
 What symbol (M) would you like to use to represent
 the Data for Task 56 ?
 1. 1 5. DIAMOND
 2. CROSS 6. TRIANGLE - UP
 3. \(X\) 7. TRIANGLE - DOWN
 4. H 8. SQUARE
 \(M(=4)=5\)
 What symhol eize (MM) would you like?
 1. Emall
 2. LARGE
 \(M M(=1)=\)
 ALL PLOTTING INSTRUCTIONS AND DATA HAVE BEEN ENTERED
 Would you like to make changes in your Ploting Instructions;
 values ourrently in the computer appear in parenthesis \((y / n)\) ?
 Would you like to make a few changes in one or more of your Data
 Sets [most useful when most data are from the KEYBOARD] (\(\mathrm{y} / \mathrm{n}\)) ?
 Number of Bite not being ueed at this tine, for this job $=2884$
Would you like to PRIHT values of the Polynomial
Coefflciente for all the curves fit to each Data Set,
along with the corresponding Residual Variances and
Coeffioients of Determination (y / n) ? y
Would you like to wake HARD COPIES of graphe of ALL
the Data Sets, one set of graphs for esch Data Set,
showing ALL the polynomial curves fit to EACH Data
Set (y / n) ?
Would you like to make 'a' HARD COPY ersph containing
ALL the Data Sets, each Data Set with it' 6 corresponding
BEST POLYNOMIAL/BEST F1T curve (y / n) ? y
Would you like to PRINT values of key program variables
and a Table of Bone of the pointe which fall on esch
REST POLYNOMIAL/EEST EIT ourve plotted (y / n) ?

```
        Would you like to INPUT a function to be plotted
        with your data (y/n)? y
        Your function, the dependent varibble F(X), must
        be exvressed ac a polynonial of less than 11th
        degree (most phyeical - technical modele can be
        expreseed sdequately with such s polynomial)
    F}(X)=C(n+1)+C(n)*X+C(n-1)*X*2+C(n-2)*X-8+\ldots, C(2)*X*(n-2)*C(1)*X* n
Which of the following BASIS FUNCTIONS do you want to use for this Data
Set (YOU MUST eupply values for coefflciente C51, CO1, CD1, CE1, CF1 & CG1):
    1. }x(x)=\operatorname{css}1+
    2. X(x)=CS1+EXP(CO1*x)/(OD1+x)
    3. }X(x)=(CS1+CO1*x+CD1*x*2)*LOG(x
    4. X(x)=C51/x+CO1*LOG(x)+x*LOG(IDD1* x+2.718)
    5. }\textrm{X}(\textrm{x})=\textrm{CS1+CO1*x CD 1+CE1/(CF1+x*CG1)
    6. X(x)=CS1*EXP(CO1*x CD1 )+CE1*EXP(CF1* *-CC1)
    7. X(x)=CS1*EXP(CO1*x)+CD1*EXP(CE1*X) +CE1*EXP(CG1*x)
    8. }\quad\textrm{A}(\textrm{x})=\textrm{CS1*(CO1+x)
    9. X(x)=EXP(COS1*x)*(CO1+x)*CD1+EXF(CE1*x)*(CF1+x)*OG1
    10. }\textrm{X}(\textrm{x})=\mathrm{ CS1*x*81N(CO1+CD2*x)+(CE1/(CD1+x))*SIN(CF1*CG1*x)
11. X(x)=EXP(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CQ1*x)
If the default value of a coefficient is not zero and you wish it to be cero, you must enter an incignifioant, small number (perhaps, 1E-7*XMIN), since entering 0 would be interpreted by PLOTnFIT as acoeptance of the default value
\(B F(=6)=1\)
\(\operatorname{cs1}(=0)=\)
What degree polynomial do you want to uee, \(n=5\)
\(C(6)=-98848.59\)
C( 5 ) \(=425694.9\)
\(C(4)=-730683.8\)
\(C(3)=620427.2\)
C \((2)=-261180.2\)
\(C(1)=43618.66\)
Would you like to save your DATA for later ube \((\mathrm{y} / \mathrm{n})\) ?
```


PLOTMFIT • 4th

JOB: CHARPY RC-2 ACONT-06/27/89
time - $15: 14: 53$
THE FOLLOWING ARE DATA RESULTING FROM FITTING POLYNOMIALS
TO THE VARIOUS DATA SETS
TASK 1: ANALYSIS OF Mod. CHARPY DATA frow RC-2*
Degree of Polynomial, $\mathrm{P}[\mathrm{X}(\mathrm{x}) \mathrm{]}, \mathrm{n}=1$
BASIS FUNCTION: $\mathbf{X}(\mathrm{x})=0$ EEXP[0*x-(0)]
$+(1) * \operatorname{EXP}\left[-.273 * x^{*}(5)\right]$
Coefficient of Determination, $C D=.878124$
Residual Variance, $\mathrm{RV}=1.972444$
2 Coefficients (the last coefficient is the constant term in the polynomial): $C(1)=-92.39537 \quad C(2)=90.16318$

1	x	y	$P[X(x)]$	Deviation	w
1	.9587	25	15.29356	9.706436	.04
2	.9641	17	15.76355	1.23645	.04
3	1.0185	21.5	20.91911	.5808945	.04
4	1.025	18	21.58548	-3.58548	.04
5	1.0772	21.5	27.30457	-5.804566	.04
6	1.1001	30.5	30.00529	4947129	.04
7	1.1175	19	32.12689	-13.12689	.04
8	1.1566	40.5	37.08305	3.416954	.04
9	1.174	28.5	39.35783	-10.85783	.04
10	1.2132	41.5	44.58919	-3.089184	.04
11	1.2132	46	44.58919	1.410816	.04
12	1.2382	55.5	47.96824	7.531765	.04
13	1.2654	64.5	51.64575	12.85425	.04
14	1.297	58	55.87318	2.12682	.04
15	1.3263	65	59.70222	5.297783	.04
16	1.3535	66.5	63.13852	3.361481	.04
17	1.4166	64.5	10.48625	-5.986252	.04
18	1.4514	58.5	74.068	-5.567993	.04

The CHI ${ }^{*} 2$ (to be used with Cai-square Distribution Table) is 31.55911 ,

JOB: GHARPY RC-2 ACONI $=06 / 27 / 89$ summary time - $15: 15: 12$
SUMMARY OF TASK \# 1
This task investigated Polynomials of degree 1 through 1 fit to the Data Set, Mod. CHARPY DATA fron RC-2, using the BASIS PUNCIION: $X(x)=0 * E X P\left[0 * x^{*}(0)\right]$

$$
+(1) * \operatorname{EXP}\left[-.273 * x^{*}(5)\right]
$$

The polynomial of degree 1 produces the largest fractional deorease in RV (note, its RV = 1.972444), hence, is taken as the BRST POLYNOMIAL/BBST FIT for this Data Set (i.e., frow anong the polynomials with the specoifically chosen Basis Function and within the degree range investigated). PLOTnFIT suggests that it is a polynomial of high enough degree that it should come close to the 'true function', 1.e., the 'true model', yet low enough that it averages out rendon errors.

```
Do you agree with PLOTnFIT s choice for the polynowial degree that yielde the most satisfactory correlation of the data \((y / n) ? y\)
```

```
Degree of Polynowial, \(\mathrm{P}[\mathrm{X}(\mathrm{x})], \mathrm{n}=1\)
    BASIS YUNCTION: \(X(x)=0 * E X P\left[0 * x^{-}(0)\right]\)
                                \(+(1) * \operatorname{EXP}\left[-.11 * \mathrm{x}^{-}(10)\right]\)
    Coefficient of Deternination, CD \(=.914854\)
                            Residual Variance, \(\mathrm{KV}=1.378004\)
```

2. Coffictents (the last coefficient is the conetant tern in the polynoisal):
$C(1)=-58.69301 \quad C(2)=71.86225$

1	x	y	$\mathrm{P}[\mathrm{X}(\mathrm{x}) \mathrm{]}$	Deviation	*
1	9587	25	17.25463	7.745373	04
2	9641	17	17.48178	-. 481781	04
3	1.0185	21.5	20.43386	1.066139	04
1	1.025	18	20.87827	-2.878268	04
5	1.0772	21.5	25.29375	-3.793747	04
6	1.1001	30.5	27.74947	2.750527	04
7	1.1175	19	29.83881	-10.83881	04
8	1.1566	40.5	35.22374	5. 276264	04
9	1.174	28.5	37.90128	-9.401283	. 04
10	1. 2132	41.5	44. 40884	-2.968836	. 04
11	1.2132	46	44.40884	1.591164	. 04
12	1.2382	55.5	48.74525	6.754757	. 04
13	1.2854	64.5	53.42412	11.07588	. 04
14	1. 237	58	58.52567	-. 5256691	. 04
15	1.3263	65	62.65861	2.341389	. 04
16	1.3535	66.5	65.79694	. 703064	04
17	1. 1166	64.5	70.2259	-5.725891	04
18	1.4514	68.5	71.25013	-2.750122	04

The CKI" 2 (to be used with Chi-square Distribution Table) is 22.04806.

SUMMARY OF TASK \# 2
Thas task investigated Polymonials of degree 1 through 1 fit to the Data Set, Mod. CHARPY DATA from RC- 2 , using the BASIS FONCTION: $X(x)=0 * \operatorname{EXP}\left[0 * x^{*}(0)\right]$ $+(1) * E X P\left[-11 * *^{*}(10)\right]$

The polynonial of degree 1 produces the largest fractional decrease in RV (note, its RV = 1.378004), hence, is taken as the BEST POLYNOMIAL/BRST FIT for this Data Set (i.e., frow among the polynomiale with the apeoifioally chosen Basis Function and within the degree range investigated). PLOTnFIT suggesta that it is a polynosial of high enough degree that it should come close to the "true function", i.e., the "true model', yet low enough that it
avereges out randon errors

Do you agree with PLOTnFIT a choice for the polynomial degree that yielde the most atiafactory correlation of the data (y / n) ? y

TASE i A: ANALYSIS OF Mod. ChaRPY DATA from BC-2.

```
Degree of Polynowial, P[X(x)], n = 1
    BASIS FUNCTION: X(x) = 0*EXP[ 0* K
                            +(1)*EXP[-.018*** ( 20)]
Coefficient of Determination, CD = .945029
                            Residual Variance, RV = . }889655
```

2 Coefficients (the last coefficient is the vonstant ters in the polymolal):
$C(1)=-46.37255 \quad C(2)=65.57366$

1	x	y	$\mathrm{P}[\mathrm{X}(\mathrm{x}) \mathrm{]}$	Deviation	v
1	. 9588	25	19.5588	5.441201	04
2	9641	17	19.60114	-2. 601143	04
3	1.0185	21.5	20.38996	1. 110043	04
4	1. 025	18	20.5489	-2.548897	04
5	1.0772	21.5	22.75152	-1.251522	04
6	1. 1001	30.5	24.49896	6. 001038	04
7	1. 1175	19	26. 29568	-7.295681	04
8	1.1566	40.5	32.24603	8.253975	04
9	1. 174	28.5	35.86537	-7.365368	04
10	1. 2132	41.5	45.9281	-4. 428093	04
11	1. 2132	46	45.9281	7.190705K-02	04
12	1.2382	55.5	52.82755	2.672455	04
13	1. 2654	64.5	59.26307	5.236935	04
14	1. 297	58	63.80488	-5.804882	04
15	1. 3263	65	65.29271	-. 2927094	04
16	1. 3535	66.5	65.55188	9481201	04
17	1. 4166	64.5	65. 57366	-1.073654	04
18	1.4514	68.5	$65 \quad 57366$	2.926346	04

The CHI ${ }^{-2}$ (to be used with Chi-square Distribution Table) is 14.23449 ,

JOB: GHARPY RC-2 ACONT-06/27/B9

SUMMARY OF TASK \# 4

This task investigated Polynowials of degree 1 through 1 fit to the Data Set, Mod, CHARPY DATA frow RC-2, weing the
BASIS FONCTION: $X(x)=0 * E X P\left[0 * x^{\prime \prime}(0)\right]$
$+(1) * \operatorname{EXP}\left[-.018 * x^{*}(20)\right]$

The polynowial of degree 1 produces the largest fractional decrease in RV (note, its RV $=.8896558$), hence, is taken as the BEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynowale with the specifically chosen Basis Function and within the degree range investisated). PLOTnFIT suggests that it is a polynomial of high enough degree that it should come close to the 'true function', 1.e., the 'true model', yet low enough that it 'averages out random errors.

```
Do you agree with PLOTnFIT a choice for the polynomial degree that yields the most satisfactory oorrelation of the data \((y / n)\) ? \(y\)
```

Degree of Polynonial, $\mathrm{P}[\mathrm{X}(\mathrm{x}) \mathrm{]}, \mathrm{n}=1$
BASIS FONCTION: $X(x)=0 * K X P\left[0 * x^{*}(0)\right]$
$+(1) * \operatorname{EXP}\left[-.00729 * \mathrm{E}^{-}(26)\right]$
Coefficient of Deternination, CD $=.944909$
Residual Variance, $\mathrm{BV}=.8915932$
2 Coefficiente (the last coefficient is the constant teris in the polynomial):
$C(1)=-44.25882$

1	x	y	$P[X(x)]$	Deviation	v
1	9587	2.5	20.38365	4. 616352	04
2	9641	17	20.40055	-3.400551	04
3	1. 0185	21.5	20.79868	. 7213211	04
4	1.025	18	20.86554	-2.86554	04
5	1.0772	21.5	22.29452	-. 7945213	04
6	1. 1001	30.5	23.6401	6.859902	04
7	1.1175	19	25.16606	-6.166062	. 04
8	1.1566	40.5	30.97615	9.523853	04
9	1.174	28.5	34.92783	-6.427834	04
10	1.2132	41.5	46,79008	-5.290077	04
11	1.2132	46	46.79008	-. 7900772	. 04
12	1. 2382	55.5	54.87318	. 6268235	. 04
13	1.2654	64.5	61.31134	3.188667	. 04
14	1. 297	58	64.18659	-6.186585	04
15	1.3263	65	64.52208	. 4779206	04
16	1.3535	66.5	64.53116	1. 968842	. 04
17	1.4166	64.5	64.5312	-. 0311966	. 04
18	1.4514	68.5	64.5312	3.968804	04

The CHI' 2 (to be used with Chi-square Dietribution Table) is 14.26549

JOB: CHARPY RC-2 ACONT-06/27/89
SUMMARY OF TASE 5
This task investigated Polynoniais of degree 1 through 1 fit to the Data Set,
Mod. CHARPY DATA from RC-2, using the
BASIS FUNCTION: $X(x)=0 * E X P\left[0 * x^{*}(0)\right]$
$+(1) * E X P\left[-.00729 * x^{*}(25)\right]$

The polynowial of degree 1 produces the largest fractional decrease in RV (note, ite RV = .8915932), hence, is taken as the BEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated). PLOTnFIT suggesta that it is a polynowial of high enough degree that it should oone close to the 'true function', 1.e., the 'true nodel', yet low enough that it 'averages out' rando errors.

Do you agree with PLOTnFIT's choice for the polynomial degree that yields the most satisfactory correlation of the data $(y / n) ? y$

TASK \% 6: ANALYSIS OF Not. CHARPY DATA from RC-2.
Degree of Polynowial, $P[X(x)], n=1$
BABIS FONCTION: $X(x)=0 * \operatorname{EXP}\left[0 * \mathrm{x}^{*}(0)\right]$
$+(1) *$ EXPI $-.00295 * x^{*}(30) ?$
Coefficient of Deterination, CD $=.941253$
Residual Variance, $\mathrm{RV}=.9507661$
2 Coefficiente (the last coefficient is the constant tert in the polynoial): $C(1)=-42.84796 \quad C(2)=63.82746$

1	x	y	$\mathrm{P}[\mathrm{X}(\mathrm{x}) \mathrm{]}$	Deviation	*
1	9587	25	21.01515	3.984852	04
2	9641	17	21.02169	-4.02169	04
3	1.0185	21.5	21.19801	3019905	04
4	1.025	18	21.24382	-3.243817	04
5	1.0772	21.5	22.14013	-. 6401291	04
6	1. 1001	30.5	23. 13505	7,364952	04
7	1.1175	19	24.37852	-5.378521	04
8	1.1566	40.5	29.84824	10.65176	04
9	1.174	28.5	34.02197	-5.521973	04
10	1. 2132	41.5	47.62161	-6.121609	. 4
11	1.2132	46	47.62161	-1.621608	64
12	1.2382	55.5	56.69396	-1.193955	. 04
13	1.2654	64.5	62.45463	2.045376	04
14	1.297	58	63.79583	-5.795826	04
15	1.3263	65	63.82743	1.172577	04
16	1. 3535	66.5	63.82746	2.672547	04
17	1.4166	64.5	63.82746	6725464	. 04
18	1.4514	68.5	63.82746	4. 672547	04

The CHI'2 (to be used with Chi-square Distribution Table) is 15.21826 .

JOB: CHARPY BC- 2 ACONT -06/27/89
SUMMARY OR TASE time - $15: 20: 26$
This task investigated Polynomials of degree 1 through 1 fit to the Data Set, Mod. CHARPY DATA frow RC-2, using the
BASIS FUNCTION: $\mathbf{X}(x)=0 *$ EXP $\left(0 * x^{*}(0)\right]$
$+(1) * \operatorname{EXP}\left[-.00295 * \mathrm{k}^{*}(30)\right]$

The polynosial of degree 1 produces the largest iractional decrease in RV (note, ite RV $=.9507661$), hence, is taken as the BEST POLYNOMIAL/BEST FIT for this Dats Set (i.e.. from among the polynonials with the epecifioally chosen Bas.e Function and within the degree range investigated). PLOTnFIT suggeste that it is a polynowial of high enough degree that it should come close to the 'true function', i.e.. the 'true nodel', yet low enough that it 'averages out randon errors.

Do you agree with PLOTnFIT' a choice for the polynomial degree that y ielde
the most batisfactory correlation of the data $(y / n) ? ~$

JOB: CHARPY KC-2 ACONT -06/27/89
t1me - 15:30:00
JOB DESCRIPTION
This is a continuation of the anslysis begun with joh INITIAL ANALYSIS - $-06 / 26 / 88^{\circ}$ and extended through job 'FOLLOWUP ANALYSIS -06/26/89.' This job vill use Basis Function 16 in the polynonial fit to the codified data fro file FOL06891.S15.

EACH CURVE IS A 'BEST FIT' WITH AN nth DEGREE POLYNOMIAL $\mathrm{P}[\mathrm{X}(\mathrm{x})]=\mathrm{C}(1) \mathrm{X}(\mathrm{x})^{n} \mathrm{n}+\mathrm{C}(2) \mathrm{X}(\mathrm{x})^{*}(\mathrm{n}-1)+\ldots+\mathrm{C}(\mathrm{n}) \mathrm{X}(\mathrm{x})+\mathrm{C}(\mathrm{n}+1)$

The 'Dashed Curve' is a Plot of the Function:
$F(X)=[-88849.59]+\left[426694.9 * X^{*} 1\right]+\left[-730689.8 * X^{*} 2\right]$
$+\left[620427.2 * \chi^{-} 3\right]+\left[-261180.2 * \mathbf{X}^{*} 4\right]+\left[43618.66 * X^{-5} 5\right]$

DETERMINATION of RTndt

Part 2.b) Comments on OUTPUT

1. The results of chis part of the analysis suggest that the CHI^{2} is minimum between CG1:CF1 $=20:(-0.0180)$, where RV $=0.8896$, and CG1:CF1 $=$ $25:(-0.00729)$, where $R V=0.8916$ (see pages $A-41$ and $A-4$?).
2. Over the CG1:CF1 range from $5:(-0.273)$ to $30:(-0.00295)$, the lower shelf energy: upper shelf energy varied from $-3.2: 90.2 \mathrm{ft}-1 \mathrm{~b}$ to $21.0: 63.8 \mathrm{ft}-1 \mathrm{~b}$.

Part 2.c) INPUT
The results of Part 2.b) suggest that for the chosen Basis Function, with polynomial degree $n=1, R V$ should be minimum for some CGI:CF1 values between $20:(-0.0180)$ and $25:(-0,00729)$. To refine our estimate of "good" values for CG1 and CF1, we again solve the equation $\left.0.50946=\operatorname{EXP}[C F] \cdot(1.1985)^{\text {CG1 }}\right]$ for values of CG1 $=21,22,22.5,23$, and 24 to obtain values of CF1 $=-0.01505$, $-0.01256,-0.011147,-0.01048$, and -0.00874 , respectively.

In the job for this part of the analysis, we will fit polynomials of degree $n=1$ to the modified data using Basis Function \# 6 (with CSI $=0$, CO1 $=0$, $C D 1=0$, and $C E I=1$) in five tasks, where a different combiriation of coefficients CG1:CF1, taken from the above list, is used in each task. The job was run following the job for Part 2.b) without exiting PLOTNFIT. 4TH.

```
Identify your job (INITIAL ANALYSIS):
    FORMAT - string of lese than 18 characters (where BASIC
    fllenatie rulee apply to firet $ and last 3 churacters) - CHARFY RC-2 BCONT
Desoribe your job (This snalysis is to get s feel for the dsta.):
    FORMAT - a 'ootma-lese' etring of lese than 256 characters -
This is a continuation of the analyeis begun with job INITIAL ANALYSIS .- 06/26/
88' and extended through job CHARPY RC-2 ACONT -06/27/89. This job will uee b
asie Function * 6 in the polynomia, fit to the mofified data from file FOLO6891
818.
```


PLOTTING INSTRUCTIONS

What kind of graphe would you like to generate

1. LINEAR
2. SEMI-LOG (Y-axie,LOG; X-axie,LINEAR)
3. LOG-LOG
$\mathrm{NT}(=1)=$

What palette do you want:			
FOR NP $=1$	FOR NP:2	FOR NOP $=1$	FOR NOP $=2$
GREEN	MAGENTA	CURVES'	CURVES
RED	CYAN	DATA POINTS'	DATA FIELD'
BROWN	WHITE	AXES AND LABELS'	DATA POINTS, AXES,
			AND LABELS'

> Regardleez of the NOF value you onter here, if you loter choose to make HARD COPIES of the data and curves plotted on the coreen, PLOTnFIT will automatically wake NOP=1.

$\operatorname{NOP}(=2)=$
What background color do you want:

1. BLACK
2. GRAY
3. LIGHT BLUE
4. WHITE
5. LIGHT CYAN
6. LIGHT MAGENTA
$N Q(=2)=3$

Would you like graph labels different from those shown in ()?
TITLE (DETERMINATION of RTndt) (y / n) :
X-AXIS
unite
Y-AXIS
units
(Normalized Temperature)(y/n):
$(R / 460)(y / n)$
(Charpy Energy) (y/n)
$(f t-1 b)(y / n)$:
What scaling procedure (NS) would you like to use?

1. SPECIFY COORDINATE RANGES AND MARKING INTERVALS FOR

THE AXES (DSE ONLY AFTER EXPERIENCE WITH PLOTNEIT')
2. ALLOW 'PLOTnFIT' TO ESTABLISH COORDINATE RANGES AND

MARKING INTERVALS BASED ON THE DATA RANGES
$N S(=2)=$

DATA AND DATA IDENTIFICATION
How tariy Taske will there be in this job $(2<=\operatorname{NDS}(=8)$? $\operatorname{NDS}(=6)=85$
What INPUT device (NE) Hould you like to use to
enter your Data for Task $\ddagger 1$?

1. The KEYBOARD
2. A STORED FILE
$\mathrm{NE}(=2)=$

What is the location and name of the FILE containing Data for Tesk i ?
 FORMAT - (storage)device filename (sifol06891.6is) - y

How wany Data Sets are in thle FILE?
NDSF ($=1$) $=$
*** ERROR ***
File Not Found
What is the Joostion and natie of the FILE containing Date for Task $\$ 1$?
FORMAT - (sturage)device:filename (y) - a:fol06891.eis
How tany Deta Sete are in this FILE?
$\operatorname{NDSF}(=1)=$

Do you want to INPUT Data Set \# 1 from FILE afol06891.eie [i.e., that identified se : Mod. CHARPY DATA from RC-2; with (NDP $=18$ date pointe) (y / n) ? y

Do you want to INPUT the estored weighting factors (y / n) ?
Do you want to change ANY data in this Data Set (y / n) ?
Do you want tie fit surves to your Dats Points $(\mathrm{y} / \mathrm{n})$? y

Which of the following BASIS FUNCTIONS do you want to use for the Date
Set (YOU MOST eupply values for coefficiente CS1, CO1. CD1, (E1, CF1 \& CG1):

1. $X(x)=\operatorname{Cs} 1+\mathrm{x}$
2. $X(x)=\operatorname{CS1}+\operatorname{EXP}(\operatorname{CO1} * x) /(C D 1+\mathrm{x})$
3. $X(x)=\left(C S 1+C O 1 * x+C D 1 * x^{*} 2\right) * L O G(x)$
4. $X(x)=C S 1 / x+\operatorname{CO1} * \operatorname{LOG}(x)+x * \operatorname{LOG}(C D 1 * x+2.718)$
5. $\mathrm{X}(\mathrm{x})=\mathrm{CS1}+\mathrm{CO1*} \mathrm{x}^{-} \mathrm{CD} 1+\mathrm{CE} 1 /\left(C F 1+\mathrm{x}^{\wedge}\right.$ CG1)
6. $\mathrm{X}(\mathrm{X})=\mathrm{CS} 1 * E X P\left(C 01 * \mathrm{~K}^{-}\right.$CD1 $)+$CE1 $* \mathrm{EXP}\left(\mathrm{CF} 1 * \mathrm{x}^{-}\right.$CG1 $)$
7. $X(x)=C S 1 * \operatorname{EXP}(C 01 * x)+C D 1 * E X P(C E 1 * x)+C F 1 * \operatorname{EXP}(C G 1 * x)$
8. $\mathrm{X}(\mathrm{x})=\mathrm{CS1} *(\mathrm{CO}+\mathrm{x})^{-} \mathrm{CD} 1+\mathrm{CE} 1 *(\mathrm{CF} 1+\mathrm{x})^{*} \mathrm{CG} 1$
9. $\mathrm{X}(\mathrm{x})=\mathrm{EXP}(\mathrm{CS} 1 * \mathrm{x}) *(\mathrm{CO1}+\mathrm{x})^{\prime} \mathrm{CD} 1+\mathrm{EXP}(\mathrm{CE} 1 * \mathrm{x}) *(\mathrm{CF} 1+\mathrm{x})^{*} \mathrm{CG} 1$
10. $\mathrm{X}(\mathrm{x})=\mathrm{CS1*x*SIN}(\mathrm{CO} 1+\mathrm{CD1} * \mathrm{x})+(\mathrm{CE} 1 /(\mathrm{CD} 1+\mathrm{x})) * \operatorname{SIN}(C F 1+C G 1 * x)$
11. $\mathrm{X}(\mathrm{x})=\operatorname{EXP}(C S 1 * \mathrm{x}) * \operatorname{SIN}(C O 1+C D 1 * x)+$ CE1*SIN $(C F 1+C G 1 * x)$

If the default value of a coefficient is not zero and you kish it to be zero, you taut enter an ineignificant, smali number (perhaps, $1 \mathrm{E}-7 * \mathrm{XMIN}$), since entering 0 would be interpreted by PLOTnFIT as acceptance of the default value.

```
    BF(z 1 ) = 6
    CS1(= 0)=
    CO1(= 0)=
    CDI(= 0 )=
    CE1(= 1) =y
?Rede from etart
)=1
    CFL(=-.273) =-0.01505
    CG1(* 5 ) =21
            For each Data Set in the job, the program starts with
            the lowest degree polynomial you want to consider and
            fite it to the data points; the program then fits,
            eeguentially and in sesending order, as many higher
            degree polynomlals as you epecify (the current degree
            lmit is 10).
    What is the lovest degree polynomal (LDF) you want to coneider
    for thie Data Set (2 &= LDP &z 10)? LDP(=1)=
```

```
How many polynomisl fite (NPF) do you want to
try - including the LDP - (1 <z NPF <= 10)? NPF(=1)=
    What eymbol (M) would you like to use to represent
    the Dete for Task {1?
        2. I' 5. DIAMOND 
```



```
        4. H
    8. SQUARE
M(=3)=4
What symbol size (MM) would you like?
        1. gmall
        2. LARGE
MM(=1)=
What INPUT device (NE) would you like to ure to
enter your Data for Task & 2 ?
    1. The KEYBOARD
    2. A STORED FILE
NE(=2)=
What is the location and name of the FILE containing Data for Task & 2?
    FORMAT - (storace)device:filename (a:fol06881.sis) -
How meny Dats Sets are in this FILE?
    NDSF(=1)=
Do you want to INPUT Data Set # I from EILE a fol06891.bie
[i.e., that identified as : Mod. CHARPY DATA from RC-2;
with (NDP =) }18\mathrm{ data points] (y/n)? y
Do you want to INPUT the etored weighting factore (y/n)? y
Do you want to change ANY data in this Data Set (y/n)?
Do you want to fit ourves to your Data Fointe (y/n)? y
```

Which of the following BASIS FUNCTIONS do you want to use for this Dats Set (YOU MUST supply values for coefficients CS1, CO1, CD1, CE1, CF1 \& CG1):

1. $X(x)=\operatorname{cs} 1+\mathrm{x}$
2. $X(x)=\operatorname{CS1}+\operatorname{EXP}(C O 1 * x) /(C D 1+x)$
3. $X(x)=(C S 1+C 01 * x+C D 1 * x-2) * L O G(x)$
4. $X(x)=C S 1 / x+C 01 * \operatorname{LOG}(x)+x * \operatorname{LOG}(C D 1 * x+2.718)$
5. $X(x)=$ CS1 + CO1* $x^{*} 211+$ CE1//CE1 $+\mathrm{x}^{\prime}$ CG1)
6. $X(x)=C S 1 * E X P\left(C O 1 * x{ }^{*} C D 1\right)+C E 1 * E X P\left(C F 1 * x^{-} C G 1\right)$
7. $X(x)=C S 1 * \operatorname{EXP}(C(1 * x)+* 01 * \operatorname{EXP}(C E 1 * X)+C F 1 * \operatorname{EXP}(C G 1 * x)$
8. $X(x)=C S 1 *(C O 1+x)^{-} C D 1+C E 1 *(C F 1+x)^{-} C G 1$
9. $X(x)=\operatorname{EXP}(C S 1 * x) *(C O 1+x)^{-C D 1}+\operatorname{EXP}(C E 1 * x) *(C F 1+x)^{+}$CG1
10. $X(x)=C S 1 * x * \operatorname{SIN}(C O 1+C D 1 * x)+(C E 1 /(C D 1+x)) * \operatorname{SIN}(C F 1+C G 1 * x)$
11. $X(x)=E X P(C S 1 * x) * \operatorname{SIN}(C O 1+C D 1 * x)+C E 1 * S I N(C F 1+C G 1 * x)$
```
If the default value of a coefficient is not zero and you wish it to be zero,
you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since
entering O would be interpreted by PLOTnFIT as acceptance of the default value.
    BF(=6)=
        CS1(= 0)=
    CO1(= 0)=
    CD1(= 0)=
    CEI(= 1)=
    CF1(=-.11) =-0.01256
    CG1(=10 ) =22
```

```
    For each Data Set in the job, the program etarte with
    the lowest degree polynomial you want to consider and
    fits it to the dsta points; the prograts then fite,
    seguentially and in aseendij}\mathrm{ order, as many higher
    degree polynomials as you epecify (the current degree
    limit is 10).
What is the lowest degree polynomial (LDP) you want to consider
for thle Data Set (1<z LDP <= 10)? LDP(=1)=
How many polynomial fite (NPF) do you want to
try - Ircluding the LDP - (1 }<=N\mathrm{ NPF }<=10)\mathrm{ ? NPF (=1)=
    What symbol (M) would you ilke to use to represent
    the Data for Task $ 2 ?
\begin{tabular}{ll} 
2. I & 5. DIAMOND \\
2. CROSS & 6. TRIANGLE - UP \\
3. X & 7. TRIANGLE - DOWN \\
4. H & 8. SQUARE
\end{tabular}
\(M=\)
What symbol size (MM) would you like?
        1. 6mall
        2. LARGE
    MM(z 1)=
What INPUT device (NE) would you like to use to
enter your Data for Task & 3 ?
    1. The REYBGARD
    2. A STORED FILE
NE(= 2)=
```

```
What is the location and rame of the FILE containing Data for Task \& 3 ?
```

What is the location and rame of the FILE containing Data for Task \& 3 ?
FORMAT - (etorage)device filename (a:fol06891.818) -
FORMAT - (etorage)device filename (a:fol06891.818) -
How many Data Sets are in this FILE?
NDSF(=1)=
Do you want to INPUT Data Set 11 from FILE aifol06891.6ie [1.e., that identified as : Mod. CHARPY DATA from RC-2; With (NDPs) 18 data pointe 3 (y / n)? y
Do you want to INPUT the stored weighting factore (y / n) ? y
Do you want to change ANY data in this Data $\operatorname{Set}(\mathrm{y} / \mathrm{n})$?
Do you want to fit ourves to your Data Points (y / n) ? y
Which of the following BASIS FUNCTIONS do you want to use for this Data Set (YOU MUST suppiy values for coefficients CS1, CO1, CD1, CE1, CF1 \& CG1)

1. $X(x)=\operatorname{CS1}+\mathrm{x}$
2. $\mathrm{X}(\mathrm{x})=\operatorname{CS1}+\mathrm{EXP}(\mathrm{CO1} * \mathrm{x}) /(C D 1+\mathrm{x})$
3. $X(x)=(C S 1+C 01 * x+C D 1 * x-2) * L O Q(x)$
4. $X(x)=C S 1 / x+C 01 * \operatorname{LOG}(x)+x * \operatorname{LOG}(C D 1 * x+2.718)$
5. $\mathrm{X}(\mathrm{x})=\mathrm{CS1}+\mathrm{CO1} * \mathrm{x}^{-} \mathrm{CD} 1+$ CE1/(CF1 $+\mathrm{x}^{-}$CG1)
6. $X(x)=C S 1 * E X P\left(C O 1 * x^{*} C D 1\right)+C E 1 * E X P\left(C F 1 * x^{*} C G 1\right)$
7. $\mathrm{X}(\mathrm{x})=\mathrm{CS} 1 * \operatorname{EXP}(\mathrm{CO1} * \mathrm{x})+\mathrm{CD} 1 * \operatorname{EXP}(\mathrm{CE} 1 * \mathrm{x})+\mathrm{CF} 1 * \operatorname{EXP}(\mathrm{CG1*x})$
8. $X(\mathrm{x})=\mathrm{CS1}^{*}(\mathrm{CO}+\mathrm{x})^{-}$CD1 + CE1* $(\text {CF1 }+\mathrm{x})^{-}$CG1
9. $\mathrm{X}(\mathrm{x})=\operatorname{EXP}(\mathrm{CS1} * \mathrm{x}) *(\mathrm{CO1}+\mathrm{x})^{-}$CD1 $+\operatorname{EXP}($ CE1 $* \mathrm{x}) *(\text { CF1 }+\mathrm{x})^{-}$CG1
10. $\mathrm{X}(\mathrm{x})=\mathrm{CS1} * \mathrm{x} * \operatorname{SIN}(\mathrm{CO} 1+\mathrm{CD} 1 * \mathrm{x})+(\mathrm{CE1} /(\mathrm{CD} 1+\mathrm{x})) * \operatorname{SIN}(C F 1+\mathrm{CG1} * \mathrm{x})$
11. $\mathrm{X}(\mathrm{x})=\operatorname{EXP}\left(\mathrm{CS}^{\prime} * \mathrm{x}\right) * \operatorname{SIN}(C O 1+\mathrm{CD} 1 * \mathrm{x})+\mathrm{CE} 1 * \mathrm{SIN}(\mathrm{CF} 1+\mathrm{CG1*x})$
If the default value of a coefficient is not zero and you wish it to be zero. you must enter an insignificant, emall number (perhape, $1 \mathrm{E}-7 * \mathrm{XMIN}$), since entering 0 would be interpreted by PLOTnFIT as acceptance of the default value.
```
```

BF(=6)=
CS1(= 0)=
CO1(= 0) =
CD1(= 0)=
CE1(= 1)=
CEL(=-.0446) =-0.01147
CG1(= 15) =22.5
For each Data Set in the job, the program etarte with
the lowest degree polynomial you want to consider and
fits it to the data points; the program then fite,
sequentially and in assending order, bs twany higher
degree polynomisis bs you specify (the ourrent degree
limit is 10).
What is the lowest degree polynomial (LDP) you want to consider
for this Data Set (1 < L LDP <= 10)? LDP(=1)=
How many polynomial fite (NPF) do you want t.o
try - inoluding the LDP - (1<= NPF << 10)? NPE (=1)=
What symbol (M) would you like to use to represent
the Data for Task \# 3 ?
1. I 5. DIAMOND
2. CROSS 6. TRIANGLE - OF
3. X
4. H
7. TRIANGLE - DOWN
8. SQUARE
M(= 5)=4
What symbol size (MM) would you like?
1. small
2. LARGE
MM(= 1)=
What INPUT device (NE) would you like to use to
enter your Data for Task \$ 4 ?
1. The KEYBOARD
2. A STORED FILE
NE}=2)
What is the location ond name of the FILE contrining Data for Task \# 4 ?
FORMAT - (storage)device:filename (a:fol06891.6is) -
How many Data Setg are in the EILE?
NDSF(= 1)=
Do you want to INPUT Data Set \# I from EILE a:fol06891.els
[i.e., that identified as : Mod. CHARPY DATA from RC-2;
with (NDP=) }18\mathrm{ data pointe) (y/n)? y
Do you want to INPUT the stored weightine factore (y/n)? y
Do you want to change ANY data in this Data Set (y/n)?
Do you want to fit curves to your Data Points (y/n)? y
Which of the following BASIS EDNCTIONS do you want to use for this Data
Set (YOU MOST supply valuee for coefficients CS1, CO1, CD1, CE1, CF1 \& CG1%

1. X(x)=CSI+x
2. X(x)=CS1+EXP}(CO1*x)/(CD1+x
3. }X(x)=(CS1+CO1*x+CD1*X* 2)*LOG(x
4. }X(x)=CS1/x+CO1*LOG(x)+x*L(OG(CD1* x + 2.718)
5. X(x)=CS1+C01*X CD1 +CE1/(CF1+X'CG1)
6. }\textrm{X}(\textrm{x})=\textrm{CS1*EXP}(\textrm{CO1*x
7. X(x)=CS1*EXP(CO1*x)+CD1* EXP(CE1*x)+CF1*EXP(CG1*x)
8. X(X)=CS1*(CO1+X)-CD1+CE1*(CE1+X)-CG1
```
9. \(\mathrm{X}(\mathrm{x})=\mathrm{EXP}(\mathrm{CS1} * \mathrm{x}) *(\mathrm{CO1}+\mathrm{x})^{\wedge} \mathrm{CD} 1+\operatorname{EXP}(\) CE1*x \() *(C F 1+\mathrm{x})^{-} \mathrm{CG1}\)
10. \(\mathrm{X}(\mathrm{x})=\mathrm{CS1} * \mathrm{x} * \operatorname{SIN}(C O 1+\mathrm{CD}) * \mathrm{x})+(\mathrm{CE} 1 /(\mathrm{CD} 1+\mathrm{x})) * \operatorname{SIN}(\mathrm{CF} 1+\mathrm{CG1} * \mathrm{x})\)
11. \(X(x)=\operatorname{EXP}(C S 1 * x) * \operatorname{SIN}(C O 1+C D 1 * x)+C E 1 * S I N(C E 1+C G 1 * x)\)

\section*{If the default value of a coefficient is not zero and you wish it to be zero, you must enter an ineignificant, small number (perhape, \(1 \mathrm{E}-7 * \mathrm{XMIN}\) ), since entering \(D\) would be interpreted by PLOTnFIT aB acceptance of the default value.}
```

BF(=6)=
CS1(= 0)=
CO1(= 0) =
CD1(= 0) =
CE1(=1)=
CF1(z-.018) =-0.01048
CG1(=20) =23
For each Data Set in the job, the program starte with
tine lowest degree polynomial you want to consider and
fits it to the data points; the program then fite,
sequentially and in ascending order, as many higher
degree polynomials as you specify (the current degree
limit is 10).
What is the lowest degree polynomial (LDP) you want to oonsider
for this Data Set (1 }=\operatorname{LDP}<=10)\mathrm{ ? LDP(}=1)
How many polynomial fite (NPF) do you want to
try - inoluding the LDP - (1 <z NPF }<=10)\mathrm{ ? NPE (=1)=
What symbol (M) would you like to use to represent
the Data for Task \# 4 ?
1. I 5. DIAMOND
2. OROSS 6. TRIANGLE - UF
3. }X\mathrm{ 7. TRIANGLE - DOWN
4. H} 8. SQUARE
M (= 5) = 4
What eymbol s:ze (MM) would you like?
1. Emall
2. LARGE
MM(=1)=
What INPUT device (NE) Would you like to use to
enter your Data for Task \$ 5 ?
1. The REYBOARD
2. A STORED FILE
NE(=2)=
What is the locsiion and name of the FILE containing Data for Task \# 5 ?
FORMAT - (storage)device:flloname (a:fol06891.sis) -
How many Data Sets are in this FILE?
NDSF(= 1)=
Do you want to INFUT Data Set \# 1 froto FILE a:fol06891.sis
(i.e., that identified \&s : Mod. CHARPY DATA from RC-2;
with (NDP=) }18\mathrm{ data pointe] (y/n)? y
Do you want to INPUT the stored welghting factors (}\textrm{y}/\textrm{n})\mathrm{ ? y
Do you vart to change ANY iata in this Data Set (y/n)?
Do you want to fit curvee to your Data Polnte (y/n)? y

```
```

Whach of the following BASIS FONCTIONS do you want to use for this Dats
Set (YOU MUST eupply values for coefficiente CS1, CO1, CD1, CE1, CF1 \& (OG2)

1. X(x)=CS1+x
2. }X(x)=CS1+EXP(CO2*x)/(CD1+x
3. X(x)=(C51+CO1*x+CD1*X 2)*LOG(x)
4. X(x)=CS1/x+CS1*LOG(X)+x*LOG(CD1*x+2.718)
5. }X(\textrm{X})=\textrm{CS1+CO2* - CD1+CE1/(CF1+ - - CG1)
6. X(x)=CS1* EXP(CO1*x*CD1)+CE1* EXP(CF1*x* CG1)
7. X(x)=CS1*EXP(CO1*x)+CL/1*EXP(CE1** })+\mathrm{ CF1*EXP(CG1*x)
8. X(x)=CS1*(CO1+x)*CD1+CE1* (CF1+x)-CG1
9. }\textrm{X}(\textrm{x})=\textrm{EXP}(CS1*x)*(CO1+\textrm{x}\mp@subsup{)}{}{\prime}\textrm{CD1 + EXP(CE1*x)*(CF1*x)
10. }\textrm{X}(\textrm{x})=\textrm{CS1*x*SIN(CO2 +CD1*x)+(CE1/(CD1 +x))*SIN(CF1+CG1*x)
11. X(x)=EXP(CS1*x)*SIN(CO1 +CD1*x)+CE1*SIN(CF1 +CG1*x
```
If the default value of a coeffictent is not zero and you wish it to be zero,
you turet enter an insignificant, ewoll number (perhape, \(2 \mathrm{E}-7 * \mathrm{XMIN}\) ), since
entering 0 would be interpreted by PLOTnFIT as acceptance of the default value
\(B E(=6)=\)
    \(\operatorname{CS1}(=0)=\)
    CO1 (: 0 ) \(=\)
    \(\operatorname{CDI}(=0)=\)
    CE1 (= 1 ) =
    CF1 \(=-.00729)=-0.00874\)
    CG1(= 25\()=24\)
            For each Data Set in the job, the program atarte with
            the loweet degree polynomial you want to consider and
            fits it to the dats pointe; the program then fits
            sequentially and in assending order, as many higher
            degree polynoniale as you specify (the current degree
            limit ie 10).
    What is the lowest degree polynomiol (LDP) you want to sonsider
    for this Data Set \((1<=\operatorname{LDP}<=10)\) ) \(\operatorname{LDP}(=1)=\)
    How rany polynomial fits (NPF) do you want to
    try - including the LDF - \((1<=\mathrm{NPF}<=10)\) ? \(\mathrm{NPF}(=1)=\)
            What symbol (M) would you like to ues to represent
            the Data for Taek \(\# 5\) ?
                1. I S. DIAMOND
            2. CROSS 6. TRIANGLE - UP
            3. \(X\) 7. TRIANGLE - DOWN
            \(M(=5)=4\)
            What aymbol eize (MM) would you like?
                    1. Emall
                    2. LARGE
            \(M M(=1)=\)
            ALL PLOTTING INSTRUCTIONS iND DATA HAVE BEEN ENTERED
    Would you like to make changes il your Plotting Instructions;
    values currentily in the computer sppear in sarenthesis \((y / n)\) ?
    Would you like to make a few changes in one or nore of your Daja
    Sets twost useful when most data are from the KEILAADnt i....
    Would you like to completely RE-INPUT your Coordinate Data
    [most ueeful when most data are from STORED FILES] \((y / n)\) ?

Number of Bite not being used at this time, for this job \(=1312\)
```

Would you like to PRINT values of the Polynomial
Coefficlents for all the curves fit to each Data Set,
along with the corresponding Residual Variances and
Coefficients of Determination (y/n)? y
Would you like to make HARD COPIES of graphs of ALL
the Deta Sete, one set of graphe for each Data Set,
ehowing ALL the polynomial ourves fit to EAOH Data
Set (y/n)?
Would you like to make 'a' HARD COPY graph containing
ALL the Datg Sets, each Data Set with it's correeponding
'BEST POLYNOMIAL/BEST FIT' curve (}\textrm{y}/\textrm{n})\mathrm{ ? y
Would you like to PRINT values of key program variablee
and a Table of some of the points which fall on each
BEST POLYNOMIAL/BEST EIT' curve plotted (}\textrm{y}/\textrm{n})\mathrm{ ?
Would you like to INPUT a funotion to be plotted
with your data (y/n)?
Would you like to save your DATA for later use (y/n)?

```

\section*{PLOTMFIT - 4th}

JOB: SHARPY RC-2 BCONT - \(06 / 27 / 89\)
time - 15:50:31
THE FOLLOWING ARE DATA RRSULTING RROM FITTING POLYNOMIALS TO THE VARIOUS DATA SETS

TASE \# 1: ANALYSIS OR Mod. CHARPY DATA from RC-2.
Dagree of Polynowlal, \(\mathrm{P}[\mathrm{X}(\mathrm{x})], \mathrm{n}=1\)
BASIS FUNCTION: \(X(x)=0 * E X P\left[0 * x^{n}(0)\right]\)
\(+(1) * \operatorname{EXP}\left[-.01505 * x^{*}(21)\right]\)
Coefficient of Determination, \(C D=.945367\)
Residual Variance, \(R V=.884177\)
2 Coefficients (the last coefficient is the oonstant term in the polynomial): \(C(1)=-45.86022 \quad C(2)=65.31018\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & x & \(y\) & \(\mathrm{P}[\mathrm{X}(\mathrm{x}) \mathrm{]}\) & Deviation & * \\
\hline 1 & . 9587 & 25 & 19.73373 & 5.26327 & 04 \\
\hline 2 & . 9641 & 17 & 19.76914 & -2.769135 & 04 \\
\hline 3 & 1. 0185 & 21.5 & 20.4531 & 1.046902 & 04 \\
\hline 4 & 1. 025 & 18 & 20.59467 & -2.594673 & 04 \\
\hline 5 & 1.0772 & 21.5 & 22.62473 & -1.124725 & 04 \\
\hline 6 & 1. 1001 & 30.5 & 24.29217 & - 6.207836 & 04 \\
\hline 7 & 1. 1175 & 13 & 26.04044 & 6.207836
-7040436 & 04 \\
\hline 8 & 1.1566 & 40.5 & 31.99003 & 8.509976 & 04 \\
\hline 9 & 1.174 & 28. 5 & 35.68834 & -7.188339 & 04 \\
\hline 10 & 1.2132 & 41.5 & 46. 11997 & -7.188339 & 04 \\
\hline 11 & 1.2132 & 46 & 46. 11997 & -4.619872 & 04 \\
\hline 12 & 1.2382 & 55.5 & 53.26623 & - 1199722 & 04 \\
\hline 13 & 1.2654 & 64.5 & 58.75123 & 2. 233772 & 04 \\
\hline 14 & 1.297 & 58 & 59.75123 & 4.748772 & 04 \\
\hline 15 & 1. 3263 & 65 & & -5.982582 & . 04 \\
\hline & & & 65.15088 & -. 2508789 & 04 \\
\hline 16 & 1. 3535 & 66.5 & 65.30233 & 1.19767 & 04 \\
\hline 17 & 1. 4166 & 64.5 & 65.31018 & -. 8101807 & 04 \\
\hline 18 & 1. 4514 & 68.5 & 65.31018 & 3.189819 & 04 \\
\hline
\end{tabular}

The CHI \({ }^{\wedge} 2\) (to be used with Chi-square Distribution Table) is 14.14683.

JOB: CHARPY RC-2 BCONT -06/27/89
SUMMARY OF TASE \(\# 1\)
This task investigated Polynoials of degree 1 through 1 fit to the Data Set,
Mod. CHARPY DATA from RC-2, using the
BASIS FUNCTION: \(X(x)=0 * E X P[0 * x(0)]\)
\(+(1) * \operatorname{EXP}\left[-.01505 * x^{*}(21)\right]\)


Do you agroe with PLOTnFIT' choice for the polynomial degree that yielde the mot aatiafactory correlation of the data \((y / n)\) ? \(y\)

TASK 2: ANALYSIS OF Mod. CHARPY DATA from RC-2.
Degree of Polynomial, \(\mathrm{P}[\mathrm{X}(\mathrm{x})], \mathrm{n}=1\)
BASIS FUNCTION: \(X(x)=0 * E X P\left[0 * x^{*}(0)\right]\)
\(+(1) * E X P\left[-.01256 * \mathrm{x}^{*}(22)\right]\)
Coeffioient of Determination, CD \(=.945506\)
Residual Variance, RV \(=.8818332\)
2 Coefficients (the last coefficient is the constant term in the polynomial): \(C(1)=-45.4019 \quad C(2)=65.08533\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & K & \(y\) & \(\mathrm{P}[\mathrm{X}(\mathrm{x}) \mathrm{]}\) & Deviation & * \\
\hline 1 & .9587 & 25 & 19.90834 & 5.081656 & 04 \\
\hline 2 & . 9641 & 17 & 19.93784 & -2.83784 & 04 \\
\hline 3 & 1.0185 & 21.5 & 20.52897 & . 971035 & 04 \\
\hline 4 & 1. 025 & 18 & 20.65462 & -2.654617 & 04 \\
\hline 5 & 1. 0772 & 21.5 & 22.5191 & -1.019096 & 04 \\
\hline 6 & 1. 1001 & 30.5 & 24.10438 & 6.395619 & 04 \\
\hline 7 & 1. 1175 & 19 & 25.79945 & -6.79945 & . 04 \\
\hline 8 & 1.1566 & 40.5 & 31,72988 & 8.770122 & . 04 \\
\hline 9 & 1.174 & 28.5 & 35.49898 & -6.998982 & . 04 \\
\hline 10 & 1.2132 & 41.5 & 46.29232 & -4.792313 & . 04 \\
\hline 11 & 1.2132 & 46 & 46.29232 & -. 2923126 & . 04 \\
\hline 12 & 1.2382 & 55.5 & 53.68161 & 1. 81839 & . 04 \\
\hline 13 & 1. 2654 & 64.5 & 60.19575 & 4.304257 & . 04 \\
\hline 14 & 1. 297 & 58 & 64.16375 & -6. 103752 & . 04 \\
\hline 15 & 1.3263 & 65 & 64.99922 & 7,781983E-C4 & . 04 \\
\hline 16 & 1.3535 & 66.5 & 65. 0828 & 1.417198 & . 04 \\
\hline 17 & 1. 4166 & 64.5 & 65.08533 & -. 5853271 & . 04 \\
\hline 18 & 1.4514 & 68.5 & 65.08533 & 3.414673 & . 04 \\
\hline
\end{tabular}

The Cil \({ }^{-2}\) (to be used with Chi-square Distribution Table) is 14.11093.

\section*{SUMMARY OF TASK \(\% 2\)}

This task investigated Polynomals of degree 1 through 1 fit to the Data Set,
Mod. CHARPY DATA from RC-2, using the
BASIS FUNCTION: \(X(x)=0 * E X P\left[0 * x^{-}(0)\right]\)
\(+(1) * \operatorname{EXP}\left[-.01256 * x^{*}(22)\right]\)

The polynonial of degree 1 produces the largest fractional decrease in RV (note, its RV = .8819332), hence, is taken as the BEST POLYNOMIAL/BEST FIT for thie Data Set (i.e.. from anong the polynonials with the specifically chosen Basis Function and within the degree range investigated). PLOTnFIT suggests that it is a polynomial of high enough degree that it should come close to the 'true function", i.e., the 'true model', yet low enough that it averages out random errors.

Do you agree with PLOTnFIT B choice for the polynomial degree that yielde the most satisfactory correlation of the data \((y / n)\) ? \(y\)

Degree of Polynowial, \(\mathrm{P}[\mathrm{X}(\mathrm{x}) \mathrm{]}, \mathrm{n}=1\)
BASIS FUNCTION: \(Y(x)=0 * E X P\left[0 * x^{*}(0)\right]\)
\(+(1) * E X P\left[-.01147 * x^{*}(22.5)\right]\)
Coefficient of Deterwination, \(C D=.945508\)
Residual Variance, \(\mathrm{BV}=.3818857\)
2 Coefficients (the last coefficient is the constant te in the polyncmial): \(C(1)=-45.18971 \quad C(2)=64.9832\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & * & \(y\) & \(\mathrm{P}[\mathrm{X}(\mathrm{x})\) & ?o, cation & * \\
\hline 1 & . 9587 & 25 & 19.99371 & 5.006287 & 04 \\
\hline 2 & . 9641 & 17 & 20.02062 & -3.020615 & 04 \\
\hline 3 & 1.0185 & 21.5 & 20.56969 & 9303131 & 04 \\
\hline 4 & 1.025 & 18 & 20.68795 & -2.687946 & 04 \\
\hline 5 & 1.0772 & 21.5 & 22.47306 & -. 9730606 & 04 \\
\hline 6 & 1. 1001 & 30.5 & 24.01719 & 6. 482811 & 04 \\
\hline 7 & 1.1175 & 19 & 25.68455 & \(-6.684551\) & 04 \\
\hline 8 & 1.1566 & 40.5 & 31.60011 & 8.893881 & 04 \\
\hline 9 & 1.174 & 28.5 & 35.40219 & -6.902191 & 04 \\
\hline 10 & 1. 2132 & 41.5 & 46.37454 & -4.874535 & 04 \\
\hline 11 & 1. 2132 & 46 & 46.37454 & -. 3745346 & 04 \\
\hline 12 & 1. 2382 & 55.5 & 53.88362 & 1.616379 & 04 \\
\hline 13 & 1.2654 & 64.5 & 60.40347 & 4. 096535 & 04 \\
\hline 14 & 1. 297 & 59 & 64.1452 & -6. 145203 & 04 \\
\hline 15 & 1.3263 & 65 & 64.92122 & 7.878113R-02 & 04 \\
\hline 16 & 1.3535 & 66.5 & 64.98184 & 1.518166 & 04 \\
\hline 17 & 1. 4166 & 64.5 & 64.9832 & -. 4832001 & 04 \\
\hline 18 & 1.4514 & 68.5 & 64.9832 & 3.5168 & 04 \\
\hline
\end{tabular}

The CHI \({ }^{-2}\) (to be used with Chi-square Distribution Table) is 14.11017.

JOB CHAREY RC-2 BCONT-06/27/89
SUMMARY OF TASK 3
This task investigatec Polynomials of degree 1 through 1 fit to the Data Set, Mod. CHARPY DATA from RC-2, using the BASIS FUNCTION: \(X(x)=0 * E X P\left[0 * x^{*}(0)\right]\)
\(+(1) * \operatorname{EXP}\left[-.01147 * x^{-}(22.5)\right]\)

The polynomial of degree 1 produces the largest fractional decrease in RV (note, its RV \(=.8818857\) ), hence, is taken as the BEST POLYNOMIAL/BRST FIT for this Data Set (i.e., from among the polynomiale with the epecifically chosen Basis Function and within the degree range investigated). PLOTnFIT suggests that it is a polynomial of high enough degree that it should come close to the "true function', i.e., the 'true model', yet low enough that it 'averages out randon errors.

Do you agree with PLOTnFIT s choice for the polynomial degree that yielda the most aatiafactory correlation of the data \((y / n) ? y\)
```

Degree of Polynowial, $\mathrm{P}[\mathrm{X}(\mathrm{x})], \mathrm{n}=1$
BASIS FUNCTION: $X(x)=0 *$ EXP[$\left.0 * x^{-}(0)\right]$
$+(1) *$ EXP $\left.-.01048 * x^{*}(23)\right]$
Coefficient of Determination, $C D=.94546$
Residual Variance, RV $=.8826718$

```
2 Coefficients (the last coefficient is the constant term in the polynomial):
    \(C(1)=-44.98643 \quad C(2)=64.8825\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & K & \(y\) & \(\mathrm{P}[\mathrm{X}(\mathrm{x} ;)]\) & Deviation & * \\
\hline 1 & . 9587 & 25 & 20.07443 & 4. 825572 & 04 \\
\hline 2 & 9641 & 17 & 20.09897 & -3.098969 & 04 \\
\hline 9 & 1. 0185 & 21.5 & 20.60906 & 8909416 & 04 \\
\hline 4 & 1.025 & 18 & 20.72037 & \(-2.720568\) & 04 \\
\hline 5 & 1. 0772 & 21.5 & 22. 42964 & -. 9296418 & 04 \\
\hline 6 & 1. 1001 & 30.5 & 23.93367 & 6. 56633 & . 04 \\
\hline 7 & 1.1175 & 19 & 25.57372 & -6.573723 & 04 \\
\hline 8 & 1. 1566 & 40.5 & 31.47432 & 9.025684 & 04 \\
\hline 9 & 1.174 & 28.5 & 35.30941 & -6.80941 & 04 \\
\hline 10 & 1. 2132 & 41.5 & 46.4622 & -4.962197 & . 04 \\
\hline 11 & 1.2132 & 46 & 46.4622 & -. 4621964 & . 04 \\
\hline 12 & 1. 2382 & 55.5 & 54.08895 & 1.411057 & 04 \\
\hline 13 & 1. 2654 & 64.5 & 60.60457 & 3.895435 & . 04 \\
\hline 14 & 1. 297 & 58 & 64. 17286 & -6.172859 & . 04 \\
\hline 15 & 1.3263 & 65 & 64.83678 & . 1612244 & 04 \\
\hline 16 & 1.3535 & 66.5 & 64.8817\% & 1.61821 & . 04 \\
\hline 17 & 1. 4166 & 64.5 & 64.8825 & -. 3824997 & . 04 \\
\hline 18 & 1. 4514 & 68.5 & 64.8825 & 3.6175 & . 64 \\
\hline
\end{tabular}

The CHI \({ }^{-2}\) (to be used with Chi-square Distribution Tabi?) is 14.12275.

JOB: CHARPY RC-2 BCONT -06/27/89
```

 time - 15:54:49
    ```

SUMMARY OF TASK \(\#\)
This task investigated Polynomials of degree 1 through 1 fit to the Data Set, Mod. CHARPY DATA fron \(\mathrm{RC}-2\), using the BASIS FUNCTION: \(X(x)=0 *\) EXP[ \(\left.0 * x^{-}(0)\right]\)
\(+(1) * E X P\left[-.01048 * x^{\wedge}(23)\right]\)

The polynowial of degree 1 produces the largest fractional decrease in \(R V\) (sote, its \(R V=.8826718\) ), hence, is taken as the BRST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated). PLOTnFIT suggestes that it is a polynomial of high enough degree that it should come close to the true function', i.e.. the 'true model', yet low enough that it 'averages out random errors.

Do you agree with PLOTnFIT's choice for the polynomial degree that yields the nost satisfactory correlation of the data \((\mathrm{y} / \mathrm{n})\) ? y

TASK 5: ANALYSIS OF Mod. CHARPY DATA frome RC-2.
```

Degree of Polynonial, P[X(x)], n = 1
BASIS FUNCTION: X(x) = 0*KXP[0*x^(0)]
+(1)*EXP{-8,740001E-03*x*(24)]
Coefficient of Determination, CD = .94526
Residual Variance, RV = .8859224
2 Coefficients (the last coefficient is the constant term in the polynonial):
C(1) =-44.60788 C(2)=64.70011

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & \(x\) & \(y\) & \(\mathrm{P}[\mathrm{X}(\mathrm{x})\) ] & Deviation & * \\
\hline 1 & . 9587 & 25 & 20.23369 & 4.766316 & 04 \\
\hline 2 & . 9641 & 17 & 20.25406 & -3.254059 & 04 \\
\hline 3 & 1.0185 & 21.5 & 20.69346 & 8065376 & 04 \\
\hline 4 & 1. 025 & 18 & 20.79186 & -2.781859 & 04 \\
\hline 5 & 1.0772 & 21.5 & 22. 35571 & -. 8557129 & 04 \\
\hline 6 & 1. 1001 & 30.5 & 23.77942 & 6.720581 & 04 \\
\hline 7 & 1.1175 & 19 & 25.36266 & -6.362664 & 04 \\
\hline 8 & 1. 1566 & 40.5 & 31.22194 & 9.278061 & 04 \\
\hline 9 & 1. 174 & 28.5 & 35.11739 & -6.617394 & 04 \\
\hline 10 & 1.2132. & 41.5 & 46.62579 & \(-5.125786\) & 04 \\
\hline 11 & 1. 2132 & 46 & 46.62579 & -. 6257858 & 04 \\
\hline 12 & 1. 2382 & 55.5 & 54.48431 & 1.01569 & 04 \\
\hline 13 & 1. 2654 & 64.5 & 60.97575 & 3.52425 & 04 \\
\hline 14 & 1. 297 & 58 & 64.19867 & -6.19867 & 04 \\
\hline 15 & 1. 3263 & 65 & 64.67933 & . 3206711 & 04 \\
\hline 16 & 1.3535 & 66.5 & 64.69994 & 1.800064 & 04 \\
\hline 17 & 1. 4166 & 64.5 & 64.79011 & -. 2001038 & 04 \\
\hline 18 & 1. 4514 & 68.5 & 64.70011 & 3.799896 & 04 \\
\hline
\end{tabular}

The CHI \({ }^{2} 2\) (to be used with Chi-square Distribution Table) is 14.17476.
```

JOB: CHARPY RC-2 BCONT-06/27/89 SUMMARY OF TASE 5 time - $15: 58: 03$
This task investigated Polynomials of degree 1 through 1 fit to the Data Set, Mod. CHAKPY DATA from RC-2, using the BASIS FUNCTION: $X(x)=0 * \operatorname{kXP}\left[0 * x^{*}(0)\right]$ $+(1) * E X P\left[-8.740001 \mathrm{~B}-03 * \mathrm{x}^{2}(24)\right]$

```

The polynowial of degree 1 produces the largest fractional decrease in RV (note, its \(\mathrm{RV}=.8859224\) ), bence, is taken as the BEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the epecifically chosen Basis Function and within the degree range investigated). PLOTnFIT suggests that it is a polynowial of high enough degree that it should come close to the "true function", i.e., the 'true model', yet low enough that it 'averages out rando errors.

\footnotetext{
Do you agree with PLOTnFIT's choice for the polynomial degree that yielde the most batisfactory correlation of the data \((y / n) ? y\)
}

JOB DESCRIPTION
This is a continuation of the analysis begun with job INITIAL ANALYSIS \(\cdots-06 / 26 / 89^{\circ}\) and extended through job 'CHARPY RC-2 ACONT -06/27/89. This Job will use Basis Function \(\%\) in the polynomal fit to the mofified data from flle FOLO6891.SIS.

EACH CURVE IS A BRST FIT' WITH AN \(n\)th DEGREB POLYNOMIAL \(\mathrm{P}\left[\mathrm{X}(\mathrm{x} ;]=\mathrm{C}(1) \mathrm{X}(\mathrm{x})^{n} \mathrm{n}+\mathrm{C}(2) \mathrm{X}(\mathrm{x})^{\prime}(\mathrm{n}-1)+\ldots+\mathrm{C}(\mathrm{n}) \mathrm{X}(\mathrm{x})+\mathrm{C}(\mathrm{n}+1)\right.\)

PLOOTTING INSTRDCTIONS
Generate (color) MEDIUM resolution, LINEAR graphs with PLOTnFIT DKTERMINED COORDINATE RANGES AND MARKING INTERVALS


\section*{DETERMINATION of RTindt}


\section*{Part 2.c) Comments on OUTPUT}
1. The result of this part of the analysis is that the maximum variation in RV is from 0.8859 with CG1:CF1 values \(24:(-0.00874)\) (see page \(A-58)\) to 0.8819 with CG1: CF1 values \(22.5:(-0.0115)\) (see page \(A-56\) ); hence, CG1: CF1 values that yield o reasonable good fit to the data for Basis Function \# 6 \((C S 1=0, C O 1=0, C O 1=0\), and CE1 \(=1)\) are 22.5: \((-0.01097)\). The corresponding \(\mathrm{CHI}^{2}\) is 14.110 .

\section*{Part 3.a) INPUT}

From Part 2.c) OUTPUT, the polynomial of degree \(n=1\), with Basis Function \# 6, that seems to yield the best model had coefficients CF1 \(=-0.0115\) and CG1 \(=\) 22.5. The job submitted for this part of the analysis will consist of eight tasks and will explore the sensitivity of the results of Part 2.c) to small changes in Basis Function parameters. The first six tasks will involve keeping CG1 \(=22.5\) while letting CF1 take the values, CF1 \(=-0.0125,-0.0115,-0.0105\), \(-0.0100,-0.0095\), and -0.0085 . The next two tasks will involve keeping CFI \(=\) -0.0115 while letting CG1 take the values, CG1 \(=21\) and 24 .
```

Identify your job (INITIAL ANALYSIS):
FORMAT - a string of less than 18 characters (where BASIC
filename rules apply to first 3 and last 3 characters) - CHARPY RC-2 CJONT
Describe your job (This analysis is to get a feel for the data.)
FORMAT - \& 'comma-less' etring of lese than 256 characters.
This is a continuation of the analysis begun with job INITIAL ANALYSIS --06/26/
88' and extended through job 'CHARPY RC-2 BCONT -06/27/89.' This job will use B
asis Function \# 6 in the polynomial fit to the modified data from file FOLO6891
SIS.

```

\section*{PLOTTING INSTRUCTIONS}
```

What kind of graphe would you like to generate:

```
    1. LINEAR
    2. SEMI-LOG \((\mathrm{Y}\)-axib,LO'3; X -axi 6, LINEAR \()\)
    3. LOG-LOG
\(N^{-1}(=1)=\)
\begin{tabular}{llll} 
What palette do you want: & & \\
FOR NP \(=1\) & FOR NP \(=2\) & FOR NOP \(=1\) & FOR NOP \(=2\) \\
GREEN & MAGENTA & CURVES & CURVES \\
RED & CYAN & DATA POINTS & DATA FIELD' \\
BROWN & WHITE & AXES AND LABELS' & DATA POINTS, AXES, \\
& & &
\end{tabular}
\(N P(=1)=2\)
```

 Regardless of the NOP value you enter here, if you later
 choose to make HARD COPIES of the data and curves plotted
 on the screen, PLOTnFIT will automatically make NOP=1
 NOP(= 2)=

```
What background color do you want
            1. BLACX
            2. GRAY
            3. LIGHT BLUE
            4. BROWN
            5. YELLOK
            6. LIGHT GREEN
\(N Q(=3)=4\)
Would you like graph labels different from those shown in ()?
    TITLE (DETERMINATION of RTindt) \((\mathrm{y} / \mathrm{n})\) :
    \(X\)-AXIS (Normalized Temperature) \((y / n)\) :
    units
                                    (R/460)(y/n):
    Y-AXIS
                            (Charpy Energy) (y/n):
    unite
                                \((f t-1 b)(y / n)\) :
What ecaling procedure (NS) would you like to use?
    1. SPECIFY COORDINATE RANGES AND MARKING INTERVALS FOR
        THE AXES (USE ONLY AFTER EXPERIENCE WITH 'PLOTAFIT')
```

 2. ALLOW PLOTnFIT TO ESTABLISH COORDINATE RANGES AND
 MAIKING INTERVALS BASED ON THE DATA RANGES
 NS(= 2)=

```

\section*{DATA AND DATA IDENTIFICATION}
```

How many Tasks will there be in this job $(1<=\operatorname{NDS}<=8)$? $\operatorname{NDS}(=5)=8$
What INPUT devioe (NE) would you like to use to
enter your Data for Task \# \& ?
1. The KEYBOARD
2. A STORED FILE
NE}=2)
What is the location and name of the FILE containing Data for Task \# \& ?
FORMAT - (storage)device:filename (a:fol06891.gib) -
How many Data Sets are in this FILE?
NDSF(= 1)=
Do you want to INPUT Data Sev \#1 from FILE a:fol06891.6is
[1.e., that identified as : Mod. CHARPY DATA from RC-2;
with (NDP z) }18\mathrm{ data pointe] (}\textrm{y}/\textrm{n})\mathrm{ ? y
Do you want to INPUT the storec weighting factors (y/n)? y
Do you want to change ANY data in this Data Set (y/n)?
Do you want to fit ourvee to your Data Pointe (y/n)? y
Which of the following BASIS FUNCTIONS do you want to use for this Data
Set (YOU MUST supply values for coefficiente CS1, CO1, CD1, CE1, CF1 \& SG1):

1. X(x)=CS1+x
2. X(x)=CS1+EXP(CO1*x)/(CD1+x)
3. }X(x)=(CS1+CO1*x+CD1*x-2)*LOG(x
4. }\textrm{X}(\textrm{x})=\textrm{CS1/x}+\textrm{CO1*LOG(x)+x*LOG(CD1*x+2.718)
5. X(x)=CS1+CO1* * CD1 +CE1/(CF1+x^CG1)
6. }\textrm{X}(\textrm{x})=\textrm{CS1*EXP(CO1*x CD1)+CE1*EXP(CF1*x CG1)
7. X(x)=CS1*EXP(CO1*x)+CD1*EXP(CE1*x)+CF1*EXP(CG1*x
8. X(x)=CS1*(CO1+x)*CD1+CE1*(CF1+x)*CG1
9. X(x)=EXP(CS1*x)*(CO1+x)^CD1+EXP(CE1*x)*(CF1+x) CO1
10. X(x)=CS1*x*SIN(CO1+CD1*x)+(CE1/(CD1 +x))*SIN(CF1+CG1*x)
11. X(x)=EXP(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x)
If the default value of a coefficient is not zero and you wish it to be zero,
BE(=6)=
CS1(= 0)=
C01(= 0)=
CD1(= 0)=
CE1(= 1)=
CF1(=-.01505) =-0.0125
CG1(= 21) =22.5
For each Data Set in the job, the program etarts with
the lowest degree polynomial you want to consider and
fite it to the data pointe; the program then fits,
sequentially and in ascending order, as many higher
degree polynomials as you epecify (the current degree
limit is 10).
What is the lowest degree polynomial (LDP) you want to consider
for this Data Set (1 c= LDP <z 10)? LDP(=1)=
```
```

How many polynomsal fite (NPF) do you went to
try - including the LDP - (1 << NPF <z 10) ? NPF(=1)=
What symbol (M) would you like to use to represent
the Dats for Task \#l ?
1. I 5. DTAMOND
2. CROSS 6. TRIANGLE - UP
3. X
5. TRIANGLE - DOWN
8. SQUARE
M(=4)=5
What eymbol size (MM) would you like?
1. Emall
2. LARGE
MM(=1)=
What INPUT device (NE) would you like to use to
enter your Dats for Task \# 2 ?
1. The KEYBOARD
2. A STORSD FILE
NB(= 2) =

```
```

What is the location and name of the FILE containing Data for Task \# 2 ?

```
What is the location and name of the FILE containing Data for Task # 2 ?
    FORMAT - (Btorage)devicefilename (a:fol06891.sis) -
    FORMAT - (Btorage)devicefilename (a:fol06891.sis) -
How many Data Sets are in this FILE?
How many Data Sets are in this FILE?
    NDSF(= 1)=
    NDSF(= 1)=
Do you want to INPUT Data Set & 1 from FILE a:fol06891.eis
[i.e., that identified as : Mod. CHARPY DATA from RC-2;
with (NDP=) 18 data pointe] (y/n)? y
Do you want to INPUT the stored weighting factors ( }\textrm{y}/\textrm{n})\mathrm{ ? y
Do you want to change ANY data in thic Data Set (y/n)?
Do you want to fit curves to your Data Pointe (y/n)? y
```

```
Which of the following BASIS FUNCTIONS do you want to uese for this Data
```

Which of the following BASIS FUNCTIONS do you want to uese for this Data
Set (YOU MUST supply values for coefficients CS1, C01, CD1, CE1, CF1 \& C(i1):
Set (YOU MUST supply values for coefficients CS1, C01, CD1, CE1, CF1 \& C(i1):
1. }X(x)=\operatorname{CS1}+
2. X(x)=CS1+EXP(CO1*x)/(CD1+x)
3. }X(x)=(CS1+CO1*x+CD1*x 2)*LOG(x
4. X(x)=CS1/x+CO1*LOG(x)+x*LOG(CD1*x+2.718)
5. X(x)=CS1+C01*x CD1+CE1/(CF1+x*CG1)
6. X(x)=CS1*EXP(CO1*x CD1)+CR1*EXP(CF1*x CG1)
7. X(x)=C51*EXP(CO1*x)+CD1*EXP(CE1*x)+CF1*EXP(CG1*x)
8. }\textrm{X}(\textrm{x})=\mathrm{ CS1*(CO1+x)*}\textrm{CD1}+\textrm{CE1*(CF1+x}\mp@subsup{)}{}{*}\textrm{CG1
9. X(x)=EXP(CS1*X)*(CO1 + x)}\mp@subsup{}{}{*}\textrm{CD}1+\textrm{EXP}(\textrm{CE1*x})*(CF1+x)*CG1
10. X(x)=CS1*x*SIN(CO1+CD1*x)+(CE1/(CD1+x))*SIN(CF1+CG1*x)
11. X(x)=EXP(OS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x)

```
```

If the default value of a coefficient is not zero and you wish it to be zero,

```
If the default value of a coefficient is not zero and you wish it to be zero,
you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since
you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since
entering 0 would be interpreted by PLOTnFIT as acceptance of the default value.
entering 0 would be interpreted by PLOTnFIT as acceptance of the default value.
BF}(=6)
BF}(=6)
    C51(=0)=
    C51(=0)=
    COL(= 0)=
    COL(= 0)=
    CD1(=0)=
    CD1(=0)=
    CE1(z 1) =
    CE1(z 1) =
    CF1(=-.01256 ) =-0.0115
    CF1(=-.01256 ) =-0.0115
    CG1(= 22 ) =22.5
```

 CG1(= 22) =22.5
    ```
```

 For each Data Set in the job, the program starts with
 the lowest degree polynomial you want to consider ard
 fite it to tue data pointe; the program then fite,
 seguentially and in ascending order, as many higher
 degree polynomials as you specify (the current degree
 limit is 10).
 What is the lokeat degree polynomial (LDP) you want to consider
for this Dats Set (1<= LDP <= 10)? LDP(=1)=
How many polynomial fite (NPE) do you want to
try - including the LDP - (1 cz NPE <= 10)? NPF (=1)=
What sumbol (M) would you like to use to represent
the Dele for Task \# 2 ?

1. I	5. DIAMOND
2. CROSS	6. TRIANGLE - UP
3. X	7. TRIANGLE - DOWN
4. H	8. SQUARE

 M (= 6) = 5
 What symbol size (MM) would you like?
 1. Bmall
 2. LARGE
 MM(=1)=
 What INPOT device (NE) would you like to use to
enter your Data for Task \# 3 ?
1. The REYBOARD
2. A STORED FILE
NE(=2)=

```
```

What is the location and name of the FALE containing Data for Task \# 3 ?

```
What is the location and name of the FALE containing Data for Task # 3 ?
    FORMAT - (storage)device:filename (a:fol06891.8is) -
    FORMAT - (storage)device:filename (a:fol06891.8is) -
How many Data Sets are in this FILE?
    NDSE(=1)=
Do sou want to INPUT Data Set \# 1 from FILE a:fol06891.sis [i.e., that identified as : Mod. CHARPY DATA from RC-2; with (NDP \(=18\) data points) \((y / n)\) ? y
Do you want to INPUT the stored weighting factors \((\mathrm{y} / \mathrm{n})\) ? y
Do you want to change ANY data in this Data Set \((y / n)\) ?
Do you want to fit curves to your Data Points \((y / n)\) ? y
```

```
Which of the following BASIS FUNCTIONS do you want to use for this Data
```

Which of the following BASIS FUNCTIONS do you want to use for this Data
Set (YOU MUST supply values for coeffioients CS1, CO1, CD1, CE1, CF1 \& CG1):
1. X(x)=CS1+x
2. X(x)=CS1+EXP(CO1*x)/(OD1+x)
3. }X(x)=(CS1+CO1*x+CD1*x 2)*LOG(x
4. X(x)=CS1/x+CO1*LOG(x)+x*LOG(CD1*x+2.718)
5. X(x)=CS1+CO1**'CD1+CE1/(CF1+\mp@subsup{x}{}{\wedge}}\textrm{CG1}
6. }X(x)=CS1*EXP(CO1*x-CD1)+CE1*EXP(CF1*x CG1)
7. X(x)=CS1*EXP(CO1*x)+CD1*EXP(CE1*x)+CF1*EXP(CG1*x)
8. }X(\textrm{x})=\textrm{CS1*(CO1+x)}\mp@subsup{)}{}{\wedge}\textrm{CD1}+\textrm{CE1*(CF1+x}\mp@subsup{)}{}{\wedge}\textrm{CG1
9. }X(x)=\operatorname{EXP}(CS1*x)*(CO1+x)^CD1+EXP(CE1*x)*(CE1+x)^ CG1
10. X(x)=CS1*x*SIN(CO1+CD1*x)+(CE1/(CD1 +x) *SIN(CF1+CG1*x)
11. }\textrm{X}(\textrm{x})=\operatorname{EXP}(\textrm{CS1*x})*\operatorname{SIN}(CO1+CD1*x)+CE1*SIN(CF1+CG1*x
If the default value of a coefficient is not zero and you wish it to be zero, you must enter an insignificast, small number (perhaps, 1E-7*XMIN), since entering 0 would be interpreted by PLOTnFIT as acceptance of the defauit value.

```
```

 3F}(=6)
 CS1(= 0)=
 CO1(=0)=
 CD1(= 0) =
 CE1(= 1)=
 CF1(=-.01147) =-0.0105
 CG1(= 22.5)=
 For each Data Set in the job, the program starte with
 the lowest degree polynomial you want to consider and
 fits it to the data points; the program then fits,
 sequentially and in aseending order, as many higher
 degree polynonials as you epeclfy (the ourrent degree
 limit is 10).
 What is the lowest degree polynomial (LDP) you want to consider
 for this Data Set (1 <= LDP }<=10)\mathrm{ ? LDP(=1)=
 How many polynomial fits (NFF) do you want to
 try - including the LDP - (1 <= NPF <z 10)? NPF}(=1)
 What symbol (M) would you like to use to represent
 the Data for Task # 3 ?
 1. I 5. DIAMOND
 2. CROSS 6. TRIANGLE - UP
 3. X 7. TRIANGLE - DOWN
 4. H 8. SQUARE
 M(=6)=5
What symbol Bize (MM) would you like?
1. Emall
2. LARGE
MM(= 1)=
What INPUT device (NE) Would you like to use to
enter your Data for Task \# 4 ?
1. The KEYBOARD
2. A STORED EILE
NE(=2)=
What is the location and name of the FILE containing Data for Task \# 4 ?
How many Data Sete are in tl FILE?
NDSF(=1)=
Do you want to INPUT Data Set \#1 from FILE a:fol06891.sis
[1.0., that identified as : Mod. CHARPY DATA from RC-2;
with (NDP=) }18\mathrm{ data pointe] (}\textrm{y}/\textrm{n})\mathrm{ ? y
Do you want to INPUT the stored weighting factore (y/n)? y
Do you want to change ANY data in thib Data Set (y/n)?
Do you want to fit curves to your Data Pointe (y/n)? y
Which of the following BASIS FUNCTIONS do you want to use for this Data
Set (YOU MUST supply values for coefficiente CS1, CO1, CD1, CE1, CF1 \& CG1)

1. }X(x)=\operatorname{CS1}+
2. }X(x)=CS1+EXP(CO1*x)/(CD1+x
3. }\textrm{X}(\textrm{x})=(\textrm{CS1}+\textrm{CO1*x}+\textrm{CD1*x}-2)*\textrm{LOG}(\textrm{x}
4. }X(x)=CS1/x+CO1*LOG(x)+x*LOG(CD1*x+2.718
5. X(x)=CS1+CO1*x-CD1+CE1/(CF1+\mp@subsup{x}{}{-}}\textrm{CG1}
6. X(x)=CS1*EXP(CO1*x CD1)+CE1*EXP(CE1*x CG1)
7. X(x)=CS1*EXP(CO1*x)+CD1*EXP(CE1*x)+CF1*EXP(CG1*x)
8. X(X)=CS1*(CO1+x)-CD1+CE1*(CF1+X)-CG1
```
9. \(\mathrm{X}(\mathrm{x})=\mathrm{E} \cdot: \cdot \mathrm{P}(\mathrm{CS} 1 * \mathrm{x}) *(\mathrm{CO} 1+\mathrm{x})^{*} \mathrm{CD} 1+\mathrm{EXP}(\mathrm{CE} 1 * \mathrm{x}) *(\mathrm{CF} 1+\mathrm{x})^{*} \mathrm{CG1}\)
10. \(\mathrm{X}(\mathrm{x})=\mathrm{CS1*x*SIN}(\mathrm{CO} 1+\mathrm{CD} 1 * \mathrm{x})+(\mathrm{CE} 1 /(\mathrm{CD} 1+\mathrm{x})) * \operatorname{SIN}(\mathrm{CF} 1+\mathrm{CG1} * \mathrm{x})\)
11. \(\mathrm{X}(\mathrm{x})=\mathrm{EXP}(\mathrm{CS1} * \mathrm{y}) * \operatorname{SIN}(C O 1+\) CD1*x \()+\) CE1*SIN \((C F 1+\) CG1*x \()\)
```

If the default value of a coefficient is not zero and you wish it to be zero,
you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since
entering 0 would be interpreted by PLOTnFIT as acceptance of the default value.

```
    \(B E(=5)=\)
        \(\operatorname{CS1}(=0)=\)
        \(\operatorname{co1}(=0)=\)
        \(\operatorname{CD1}(=0)=\)
        \(\operatorname{CE1}(=1)=\)
        \(\operatorname{CF1}(=-.01048)=-0.0100\)
        CG1 ( \(=23\) ) \(=22.5\)
        For each Data Set in the job, the program etarte with
        the lowest degree polynomial you want to consider and
        fits it to the data points; the program then fits,
        sequentially and in aseending order, as many higher
        degree polynomials as you specify (the current degree
        limit is 10 ).
        What is the lowest degree polynomial (5DP) you want to consider
        for this Data Set \((1<=\operatorname{LDP}<=10)\) ? \(\operatorname{LDP}(=1)=\)
    How many polynomial fite (NPF) do you want to
    try - including the LDP - \((1<=N P F \quad<=10)\) ? \(\operatorname{NPF}(=1)=\)
        What symbol (M) would you like to use to represent
        the Data for Task \# 4 ?
            1. I 5. DTAMOND
            2. CROSS
                            6. TRIANGLE - UP
            3. X 7. TRIANGLE - DOWN
            4. H
                            8. SQUARE
        \(M(=6)=5\)
        What symbol size (MM) wolld you like?
            1. small
            2. LARGE
        \(M M(=1)=\)
What INPUT device (NE) would sou like to ure to
enter your Data for Task \# 5 ?
    1. The KEYBOARD
    2. A STORED FILE
\(\mathrm{NE}(=2)=\)
What is the location and name of the THLE containing Data for Task \# 5 ?
    FORMAT - (storage)device:filename (a:fol06891.sis) -
How many Data Sets are in this EILE?
        \(\operatorname{NDSE}(=1)=\)
Do you want to INPUT Data Set \# 1 frow FILE a:fol06891.61s
[1.e., that identified as : Mod. CHARPY DATA from RC-2;
with (NDP \(=18\) data points] \((y / n)\) ? 8
Do you want to INFUT the B tored weighting factors \((\mathrm{y} / \mathrm{n})\) ? \(y\)
Do you want to change ANY data in this Data Set \((\mathrm{y} / \mathrm{n})\) ?
Do you want to lit curves to your Data Points \((y / n)\) ? y
which of the following BASIS FUNCTIONS do you want to use for this Data
Set (YOU MUST supply values for ooefficients CS1, CO1. CD1, CE1, CF1 \& CG1)
```

 1. }X(x)=CS1+
 2. }X(x)=CS1+EXP(CO1*x)/(CD1+x
 3. }X(x)=(CS1+CO1*x+CD1*x-2)*LOG(x
 4. X(x)=CS1/x+C(11*LOG(x)+x*LOG(CD1*x+2.718)
 5. X(x)=CS1+CO1* - CD1 +CE1/(CF1+\mp@subsup{x}{}{-}CO1)
 6. X(x)=CS1*EXP(CO1* * CD1)+CE1*EXP(CF1* ' CG1)
 7. X(x)=CS1*EXP(CO1*x)+CD1*EXP(CE1*x) +CF1*EXP(CG1*x)
 8. X(x)=CS1*(CO1+x)-CD1+CE1*(CF1+x)*CG1
 9. X(x)=EXP(CS1*x)*(CO1+x)-CD1+EXP(CE1*x)*(CF1+x)*CG1
 10. }X(x)=CS1*x*SIN(CO1+CD1*x)*(CE1/(CD1+x))*SIN(CF1+CG1*x
11. X(x)=EXP(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1*CG1*x)
If the default value of a coefficlent is not zero and you wish it to be zero,
you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since
entering 0 would be interpreted by PLOTnFIT as acceptance of the default value.
BF(z \&)=
CS1(=0)=
CO1(= 0) =
CD1(= 0) =
CE1(=1)=
CF1(=-8.7400001E-03) =-0.0095
CG1(= 24)=22.5
For each Data Set in the job, the program etarte with
the jowest degree polynonial you want to consider and
fite it to the data points; the program then fits,
sequentially and in assending order, as many higher
degree polyncmials as you specify (the current degree
Limit is 10).
What is the lowest degree polynomial (LDF) you want to consider
for this Data set (1 <= LDP <= 10)? LDP(<1)=
How many polynomial fits (NPF) do you want to
try - including the LDP - (1 <= NPF }\&=10)? NPF(=1)
What symbol (M) would you like to use to represent
the Data for Task \# 5 ?
1. I 5. DIAMOND
2. CROSS 6. JRIANGLE - UP
3. X 7. TRIANGLE - DOWN
4. H 8. SQUARE
M(=6)=5
What symbol size (MM) would you like?
1. emall
2. LARGE
MM(z1)=
What INPUT device (NE) would you like to use to
enter your Data for Task \# 6 ?
1. The KEYBOARD
2. A STORED FILE
NE(= 2)=
What is the location and name of the FILE containing Data for Task \# 6 ?
FORMAT - (Btorage)device:fllename (a:fol06891.e:6) -
How many Data Sets are in this FILE?
NDSF(= 1)=
Do you want to INPUT Data Set \# 1 from FILE a:fol06891.sis
[1e., that identified as : Mod. CHARPY DATA from RC-2;
with (NDP:) }18\mathrm{ data pointe] (y/n)? y
Do you want to INPUT the etorsd welghting factorg (y/n)? y
```

Do you want to change ANY dats in this Data Set \((y / n)\) ?
Do you want to fit eurves to your Data Pointe \((y / n)\) ? \(y\)
```

Which of the foilowing BASIS FQNCTIONS do you want to use for this Dats
Set (YOU MOST supply values for coefficiente CS1, CO1, CD1, CE1, CF1 \& CG1)

```
1. \(X(x)=\operatorname{CS} 1+x\)
2. \(\mathrm{X}(\mathrm{x})=\mathrm{CS} 1+\mathrm{EXP}(\operatorname{CO1}+\mathrm{x}) /(\mathrm{CD1}+\mathrm{x})\)
3. \(X(x)=(C S 1+C(1 * x+C D 1 * x-2) * L O G(x)\)
4. \(X(x)=C S 1 / x+C O 1 * L O G(x)+x * L O G T N 1 * x+2.718)\)
5. \(\mathrm{X}(\mathrm{x})=\mathrm{CS1}+\mathrm{CO1*x}\) - \(\mathrm{CD} 1+\mathrm{CE} 1 /\left(\mathrm{CF} 1+\mathrm{x}^{-}\right.\)CG1)
6. \(X(x)=C S 1 * E X P(C O 1 * x-C D 1)+C E 1 * E X F\left(C F 1 * x^{*}\right.\) CG1 \()\)
7. \(X(x)=C S 1 * E X P(O O 1 * x)+C D 1 * E X P(C E 1 * X)+C E 2 * E X P(C G 1 * x)\)
8. \(X(x)=C S 1 *(C O 1+x)^{-} C D 1+C E 1 *(C F 1+x)^{-C G 1}\)
9. \(\left.\mathrm{X}(\mathrm{x})=\mathrm{EXP}(\mathrm{CS} 1 * \mathrm{x}) *(\mathrm{CO1}+\mathrm{x})^{*} \mathrm{CD1}+\mathrm{EXP}_{1} \mathrm{CE} 1 * \mathrm{x}\right) *(\mathrm{CF} 1+\mathrm{x})^{*}\) CG1
10. \(X(x)=C S 1 * x * \operatorname{SIN}(C O 1+C D 1 * x)+(C E 1 /(C D 1+x)) * \operatorname{SIN}(C F 1+C G 1 * x)\)
11. \(\mathrm{X}(\mathrm{x})=\mathrm{EXP}(\mathrm{CS} 1 * \mathrm{x}) * \mathrm{SIN}(\mathrm{CO1}+\mathrm{CD1} * \mathrm{x})+\) CE1*S1N(CF1 \(+\mathrm{CG} 1 * \mathrm{x})\)

If the default value of a coefficient is not zero and you wish it to be zero, you must enter an inslenificant, small number (perhaps, \(1 \mathrm{E}-7 * \mathrm{XM} 1 \mathrm{~N}\) ), since entering 0 would be interpreted by PLOTnFIT as acceptance of the default value
\(\mathrm{BF}(=6)=\)
CS1 \(=0\) ) \(=\)
\(\cos (=0)=\)
CD1 ( \(=0\) ) ₹
CE1 ( \(=1\) ) =
CE1 \(=-.00285)=-0.0085\)
CG1 ( \(=30\) ) \(=22.5\)
For each Data Set in the job, the program rtarts with
the lowest degree polynomial you want to consider and
fits it to the data points; the program then fits,
sequentially and in assending order, as many higher
degree polynomials as you epecify (the current degree
linit is 10 ).
What is the lowest degree polynomial (LDP) you want to coneider for this Data Set ( \(s=\operatorname{LDP} s=10\) )? \(\operatorname{LDP}(=1)=\)

How many polvnomial fite (NPF) do you want to
try - including the LDP - \((1<=N P F=10)\) ? \(\operatorname{NPF}(=1)=\)
What symbol (M) would you like to use to represent
the Data for Task \# 6 ?
\begin{tabular}{ll} 
1. 1 & 5. DIAMOND \\
2. CROSS & 6. TRIANGLE - UF \\
3. \(X\) & 7. TRIANGLE - DOWN \\
4. & H
\end{tabular}
\(M(=6)=5\)
What symbol size (MM) would you like?
1. emall
2. LARGE
\(M M(=1)=\)
```

What INPUT device (NE) would you like to use to

```
enter your Data for Task \(\# 7\) ?
1. The KEYBOARD
2. A STORED FILE
\(N E(=2)=\)
What is the looation and name of the FILE containing Data for Task \# ? ? FORMAT - (Etorage)device:filename (a:fol06891.sis) -

How many Data Sets are in this FILE?
\(\operatorname{NDSF}(=1)=\)

Do you want to INPUT Data Set \(\# 1\) from FILE a fol06891.eis [i.e., that iciutified as : Mod. CHARPY DATA from RC-2 with (NDP =) 18 data points] \((y / n)\) ? y

Do you want to INPUT the etored weighting factors \((y / n)\) ? y
Do you want to change ENY data in thie Data Set \((y / n)\) ?
Do you want to fit curves to your Data Points \((\mathrm{y} / \mathrm{n})\) ? y

Which of the following BASIS FUNCTIONS do you want to use for this Data Set (YOU MUST supply values for voefficients CS1, CO1, CD1, CE1, CF1 \& CG1)
1. \(X(x)=\operatorname{CS} 1+\mathrm{x}\)
2. \(X(x)=C S 1+E X P(C O 1 * x) /(C D 1+x)\)
3. \(X(x)=\left(C S 1+C O 1 * x+C D 1 * x^{\wedge} 2\right) * L O G(x)\)
4. \(X(x)=C S 1 / x+\) CO1*LOG \((x)+x * L O G(C D 1 * x+2.718)\)
5. \(\mathrm{X}(\mathrm{x})=\mathrm{CS} 1+\) CO1* \(\mathrm{X}^{-}\)CD1 + CE1 \(/\left(C F 1+\mathrm{x}^{*}\right.\) CG1 \()\)
6. \(X(x)=C S 1 * E X P\left(C O 1 * x{ }^{-}\right.\)CD 1\()+\) CE1*EXP(CE1* \(x^{\wedge}\) CG1)
7. \(X(x)=C S 1 * \operatorname{EXP}(C O 1 * x)+C D 1 * E X P(C E 1 * x)+C F 1 * E X P(C G 1 * x)\)
8. \(X(x)=C S 1 *(C O 1+x)^{-} C D 1+\) CE1 \(*(C F 1+x)^{-}\)CG1
9. \(\mathrm{X}(\mathrm{x})=\operatorname{EXP}(\mathrm{CS} 1 * \mathrm{x}) *(\mathrm{CO} 1+\mathrm{x})^{-} \mathrm{CD} 1+\operatorname{EXP}(\) CE1 \(* \mathrm{X}) *(C F 1+\mathrm{x})^{\wedge}\) CG1
10. \(X(x)=C S 1 * x * \operatorname{SIN}(C O 1+C D 1 * x)+(C E 1 /(C D 1+\mathrm{x}) * \operatorname{SIN}(C E 1+C G 1 * x)\)
11. \(\mathrm{X}(\mathrm{x})=\mathrm{EXP}(\mathrm{CS1} * \mathrm{x}) * \operatorname{SIN}(\mathrm{CO1}+\mathrm{CD1} * \mathrm{x})+\mathrm{CE1} * \mathrm{SIN}(\mathrm{CF} 1+\mathrm{CG1} * \mathrm{x})\)
```

If the default value of a coefficient is not zero and you wish it to be zero,
you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since
ontering O would be interpreted by PLOTnE:T as acceptance of the default value

```
```

BF(= 6)=

```
    \(\operatorname{CS1}(=0)=\)
    \(\operatorname{CO1}(=0)=\)
    CD1 \(=0\) ) =
    CE1 \(=0\) ) \(=1\)
    CF1 \(=0)=-0.0115\)
    CG1 \(=0)=? 2.51\)
    For each Data Set in the job, the program starts with
    the lowest degree polynomial you want to consider and
    fits it to the data points; the program then fits,
    sequentially and in assending osder, as many higher
    degree polynomials as you spedify (the current degree
    linit is 10).
What is the lowest degree polynomial (LDP) you want to consider
for this Data Set \((1<=\operatorname{LDP}<=10)\) ? LDP \((=1)=\)
How many polynomial fite (NPE) do you want to
try - including the LDP - \((1<=\operatorname{NPF}<=10)\} \operatorname{NPF}(=1)=\)
What symbol ( \(M\) ) would you like to use to represent
the Data for Task \# 7 ?
    1. I 5. DIAMOND
    2. CROSS 6. TRIANGLE - UP
    3. \(X\) 7. TRIANGLE - DOWN
    4. H 8. SQUARE
\(M(=6)=5\)
What symbol size (MM) would you like?
    1. Emall
    2. LARGE
\(M M(=1)=\)
What INPUT device (NE) would you like to use to
enter your Data for Task \# 8 ?
    1. The KEYBOARD
    2. A STORED EILE
\(\mathrm{NB}(=2)=\)
```

 What is the looation and name of the FILE contairing Data for Task # 8 ?
 FORMAT - (storage)device:fllename (a:l'ol06891.8is) -
 How many Data Sets are in this FILE?
 NDSE(=1)=
 Do you want to INPUT Data Set # 1 from FILE a:fol06891.sis
 [1.e., that identlfied as : Mod. CHARPY DATA from RC-2;
 with (NDP=) }18\mathrm{ data pointe] (y/n)? y
 Do you want to INPUT the stored velghting factore (}\textrm{y}/\textrm{m})\mathrm{ ?
 Do you want to change ANY data in this Data Set (y/n)?
 Do you want to fit curves to your Data Points (y/n)? y
 Which of the following BASIS FUNCTIONS do you want to ure for this Data
Set (YOU MUST supply values for coefficiente CS1, C01, CD1, CE1, CF1 \& CG1):
1. X(x)=C51+x
2. X(x)=CS1+EXP(CO1*x)/(CD1+x)
3. }X(x)=(CS1+CO1*x+CD1*x 2)*LOG(x
4. X(x)=CS1/x+C01*LOG(x)+x*LOG(CD1*x+2.718)
5. X(x)=CS1+CO1*x-CD1+CE1/(CF1+\mp@subsup{x}{}{-}}\textrm{CG1}
6. X(x) =CS1*EXP(CO1* - CD1) +CE1*EXP(CF1* - CG1)
7. X(x)=CS1*EXP(CO1*x)+CD1*EXP(CE1*x)+CF1*EXP(CG1*x)
8. X(x)=CS1*(CO1 +x)
9. X(x)=EXP(CS1*x)*(CO1+x) CD1 +EXP(CE1*x)*(CF1+x) -CG1
10. X(x)=CS1*x*SIN(CO1+CD1*x)+(CE1/(CD1 +x))*SIN(CF1+CG1*x)
11. X(x)=EXP(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x)
If the default value of a coefficient is not zero and you wish it to be zero, you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since entering 0 would be interpreted by PLOTnFIT as acceptance of the default value.

```
```

BF}(=6)

```
BF}(=6)
    CS1(= 0)=
    CS1(= 0)=
    CO1(=0)=
    CO1(=0)=
    CD1(= 0) =
    CD1(= 0) =
    CE1(= 0) =1
    CE1(= 0) =1
    CE1 (= 0) =-0.0115
    CE1 (= 0) =-0.0115
    CG1(= 0) : 24
    CG1(= 0) : 24
        For each Data Set in the job, the program etarts with
        For each Data Set in the job, the program etarts with
        the lowest degree polynomial you want to consider and
        the lowest degree polynomial you want to consider and
        fits it to the data points; the program then fits,
        fits it to the data points; the program then fits,
        sequentially and in assending order, as many higher
        sequentially and in assending order, as many higher
        degree polynomials as you specify (the current degree
        degree polynomials as you specify (the current degree
        lmit is 10)
        lmit is 10)
    What id the lowest degree polynomial (LDP) you want to consider
    What id the lowest degree polynomial (LDP) you want to consider
    for this Data Set (1 <= LDP << 10)? LDP(=1)=
    for this Data Set (1 <= LDP << 10)? LDP(=1)=
    How many polynomibul fits (NPF) do you want to
    How many polynomibul fits (NPF) do you want to
    try - including the LDP - (1 <= NPF <= 10)? NPF(=1)=
    try - including the LDP - (1 <= NPF <= 10)? NPF(=1)=
        What symbol (M) would you ilke to use to represent
        What symbol (M) would you ilke to use to represent
        the Data for Task # 8 ?
        the Data for Task # 8 ?
            1. I 5. DIAMOND
            1. I 5. DIAMOND
            2. CROSS 6. TRIANGLE - UP
            2. CROSS 6. TRIANGLE - UP
            7. TRIANGLE - DOWN
            7. TRIANGLE - DOWN
        M(=6) =5
```

 M(=6) =5
    ```
```

 What symbol size (MM) would you like?
 1. small
 2. LARGE
 MM(= 1)=
 ALL PLOTTING INSTRUCTIONS AND DATA HAVE BEEN ENTERED
 Would you like to make changes in your Plotting Instructions:
 values currently in the computer appear in parenthesis (y/n)?
 Would you like to make a few c.anges in one or more of your Dsta
 Sets (most useful when nirt Aut. are from the KEYRmARD) (y/n)?
 Would you like to completely RE-INPUT your Coordinate Data
 [most useful when most data are from STORED FILES] (y/n)?
 Number of Bits not being used at this time, for this job = }122
Would you like to PRINT values of the Polynomial
Coefficients for all the curves fit to each Data Set,
along with the corresponding Residual Variances and
Coefficients of Determination (}y/n\mathrm{)? y
Would you like to make RARD COPIES of graphe of ALL
the Data Sets, one set of graphs for each Data Set,
showing ALL the polynomial curves fit to EACH Data
Set (y/n)?
Would you like to make 'a' HARD COPY graph containing
ALL the Data Setc, each Data Set with it's corresponding
BEST POLYNOMIAL/BEST EIT curve (y/n)? y
Would you like to PRINT values of key program variables
and a Table of come of the points which fall on each
BEST POLYNOMIAL/BEST FIT curve plotted (}\textrm{y}/\textrm{n})\mathrm{ ?
Would you like to INPUT a funstion to be plotted
with your data (y/n)?
Would you like to save your DATA for later use (y/n)?

```

Part 3. a) OUTPUT

\author{
PLOTNFIT, 4th \\ JOB: CHARPY RC-2 CCONT-06/27/89
}
time - 16:33:14
THE POLLOWING ARE DATA RESULTING FROM FITTING POLYNOMIALS TO THE VARIOUS DATA SETS

TASK \# 1: ANALYSIS OF Mod. CHARPY DATA frow RC-2*
Degree of Polynonial, \(P[X(x)], n=1\) BASIS FUNCTION: \(X(x)=0 * E X P\left[0 * x^{-}(0)\right]\)
\(+(1) * \mathrm{EXP}\left[-.0125 * \mathrm{x}^{n}(22.5)\right]\)
Coefficient of Deterwination, \(C D=.343408\)
Residual Variance, \(\mathrm{RV}=.9158943\)
2 Coefficients (the last confficient is the constant tern in the polynomial): \(C(1)=-45.04924 \quad C(2)=64.42653\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & x & y & \(\mathrm{P}[\mathrm{X}(\mathrm{x})]\) & Deviation & - \\
\hline 1 & . 9587 & 25 & 19.61467 & 5. 38533 & 04 \\
\hline 2 & . 9641 & 17 & 19.64387 & -2.643868 & 04 \\
\hline 3 & 1. 0185 & 21.5 & 20.23953 & 1. 260475 & 04 \\
\hline 1 & 1.025 & 18 & 20.36773 & -2.367729 & 04 \\
\hline 5 & 1.0772 & 21.5 & 22.29922 & -.7992173 & 04 \\
\hline 6 & 1. 1001 & 30.5 & 23.9641 & 6.5359 & 04 \\
\hline 7 & 1. 1175 & 19 & 25.75554 & -6.755535 & 04 \\
\hline 8 & 1. 1566 & 40.5 & 32.05436 & 8.445644 & 04 \\
\hline 9 & 1.1.74 & 28.5 & 36.0511 & -7.551094 & 04 \\
\hline 10 & 1. 2132 & 41.5 & 47.30398 & -5.803978 & 04 \\
\hline 11 & 1. 2132 & 46 & 47.30398 & -1.303978 & 04 \\
\hline 12 & 1. 2382 & 55.5 & 54.67646 & . 8235436 & 04 \\
\hline 13 & 1. 2654 & 64.5 & 60.71103 & 3.788971 & 04 \\
\hline 14 & 1. 297 & 58 & 63.84284 & -5.842835 & 04 \\
\hline 15 & 1. 3263 & 65 & 64.39236 & . 6076431 & 04 \\
\hline 16 & 1. 3535 & 66.5 & 64.426 & 2. 074005 & 04 \\
\hline 17 & 1. 4166 & 64.5 & 64.42653 & 7.3471078-02 & 04 \\
\hline 18 & 1.4514 & 68.5 & 64. 42653 & 4.073471 & 04 \\
\hline
\end{tabular}

The CHI \({ }^{2} 2\) (to be used with Chi-equare Distribution Table) is 14.65431
JOB: CHARPY RC-2 CCONT-06/27/89
SUMMARY OR TASE time - 16:33:33

This task investigated Polynowials of degree 1 through 1 fit to the Data Set, Mod. CHARPY DATA from FC- 2 , using the BASIS FONCTION: \(X(x)=0 * \operatorname{EXP}\left[0 * x^{*}(0)\right]\)
\(+(1) * E X P\left[-.0125 * x^{*}(22.5)\right]\)

The polynomial of degree 1 produces the largest fractional decrease in RV (note, its RV \(=.9158943\) ), hence, is taken as the BRST POLYNOMIAL/BEST FIT for this Data Set (i.e., from anong the polynomials with the specifically chosen Basis Punction and within the degree range investigated). PLOTnFIT suggeste that it is a polynomial of high enough degree that it should come close to the 'true function', i.e., the 'true sodel', yet low enough that it averages out' randow errors.

Do you agree aith PLOTnFIT's choice for the polynomial degree that yields the most satisfactory correlation of the data \((y / n)\) ? ? \(y\)
```

TASK \# 2: ANALYSIS OF Mod. CHARPY DATA frome-2.

```
```

Degree of Polynowial, P{X(x)], }n=
BASIS FUNCTION: X(x) = 0*EXP[0*x"(0)]
+(1)*EXP[-.0115*x* (22.5)]
Coefficient of Determination, CD = .945468
Residual Variance, RV = 882551?
2 Coefficients (the last coefficient is the constant term in the polynovial):
C(1) =-45.18515 C(2) = 64.9664

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & x & \(y\) & \(\mathrm{P}[\mathrm{X}(\mathrm{x})]\) & Deviation & * \\
\hline 1 & 9587 & 25 & 19.98197 & 5.018629 & 04 \\
\hline 2 & 9641 & 17 & 20.00894 & -3,008938 & 04 \\
\hline 3 & 1. 0185 & 21.5 & 20.55938 & 9406242 & 04 \\
\hline 4 & 1.025 & 18 & 20.67793 & -2.677925 & 04 \\
\hline 5 & 1.0772 & 21.5 & 22.46734 & -. 9873424 & 04 \\
\hline 6 & 1. 1001 & 30.5 & 24.01503 & 6.484974 & 04 \\
\hline 7 & 1. 1175 & 19 & 25,68607 & -6.686066 & 04 \\
\hline 8 & 1.1566 & 40.5 & 31,6131 & 8. 886902 & 04 \\
\hline 9 & 1.174 & 28.5 & 35.42114 & -6.921135 & 04 \\
\hline 10 & 1.2132 & 41.5 & 46.40274 & -4.902741 & 04 \\
\hline 11 & 1.2132 & 46 & 46.40274 & -. 4027405 & 04 \\
\hline 12 & 1. 2382 & 55.5 & 53.90863 & 1. 591377 & 04 \\
\hline 13 & 1. 2654 & 64.5 & 60.41447 & 4.085537 & 04 \\
\hline 14 & 1. 297 & 58 & 64. 13718 & -6.137177 & 04 \\
\hline 15 & 1. 3263 & 65 & 64.90549 & \(9.451294 \mathrm{E}-02\) & 04 \\
\hline 16 & 1.3535 & 66.5 & 64.96508 & 1.534927 & 04 \\
\hline 17 & 1. 4166 & 64.5 & 64.9664 & -. 4664002 & 04 \\
\hline 18 & 1. 4514 & 68.5 & 64.9664 & 3.5336 & 04 \\
\hline
\end{tabular}

The CHI 2 (to be used with Chi-square Diatribution TLble) is 14.12082

JOB: CHARPY bi: 2 CCONT-06/2 \(/ 89\)
time \(-16: 34: 42\)
SUMMARY OR TASK \(\# 2\)
This task investigated Polynomials of degree 1 through 1 fit to the Data Set, Mod. CHARPY DATA from RC-2, using the BASIS FUNCTION: \(X(x)=0 * E X P\left[0 * x^{\wedge}(0)\right]\)
\(+(1) * \operatorname{EXP}\left[-, 0115 * x^{*}(22.5)\right]\)

The polynomial of degree 1 produces the largest fractional decrease in RV (note, ite \(\mathrm{RV}=8825512\) ), hence, is taken ab the BRST POIYNOMIAL/BRST FIT for thie Data Set (i.e., from among the polynowala with the specifically chosen Basis Function and within the degree range investigated). PLOTnFIT auggests that it is a polynomial of high enough degree that it should come close to the 'true function', 1.e.. the 'true model', yet 1 ch enough that it 'averages out' random errors.

\footnotetext{
Do you agree with PLOTnFIT e choice for the polynomial degree that yields the most satisfactory correlation of the data \((y / n)\) ? \(y\)
}

TASK * 3: ANALYSIS OF Kod. CNARPY DATA fron RC-2.
```

Degree of Polynomial, $\mathrm{P}[\mathrm{X}(\mathrm{x}) \mathrm{]}, \mathrm{n}=1$
BASIS FUNCTION: $X(x)=0 * E X P\left[0 * x^{2}(0)\right]$
$+(1) * E X P\left[-.0105 * x^{*}(22.5)\right]$
Coefficient of Detervination, $C D=.946064$
Residual Variance, $R V=.8729078$

```

2 Coefficients (the last coefficient is the constant tert in the polynowial) \(C(1)=-45.33264 \quad C(2)=65.54778\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & x & y & \(\mathrm{P}[\mathrm{X}(\mathrm{x}) \mathrm{]}\) & Deviation & * \\
\hline 1 & . 9587 & 25 & 20.39904 & 4. 60096 & \\
\hline 2 & . 9641 & 17 & 20.42376 & -3.42376 & . 04 \\
\hline 3 & 1.0185 & 21.5 & 20.92846 & -3.42376
.5715408 & 04 \\
\hline 4 & 1. 025 & 18 & 21.03723 & +
-3715408
-037232 & 04 \\
\hline 5 & 1.0772 & 21.5 & 22.68216 & -3.037232
-1.182163 & 04 \\
\hline 6 & 1. 1001 & 30.5 & 24. 10975 & 6. 390255 & 04 \\
\hline 7 & 1.1175 & 19 & 25.65639 & -6.656388 & 04 \\
\hline 8 & 1.1566 & 40.5 & 31.19042 & 9.309586 & 04 \\
\hline 9 & 1.174 & 28.5 & 34.79054 & 9.309586
-6.290543 & 04 \\
\hline 10 & 1. 2132 & 41.5 & 45. 42569 & -6.290543 & 04 \\
\hline 11 & 1. 2132 & 46 & 45.42569 & -5743103 & 0 \\
\hline 12 & 1. 2382 & 55.5 & 53.00938 & 5743103 & . 04 \\
\hline 13 & 1.2654 & 64.5 & 59.9722 & 2.490624 & . 04 \\
\hline 14 & 1.297 & 58 & 59.9722
64.36998 & 4.527802 & . 04 \\
\hline 15 & 1. 3263 & 65 & 64.36998
65.4392 & -6.36998
\(-\quad 4391938\) & . 04 \\
\hline 16 & 1.3535 & 66.5 & 65. 54448 & -. 9551938 & 04 \\
\hline 17 & 1. 4166 & 64.5 & 65. 54778 & 9555206 & . 04 \\
\hline 18 & 1. 4514 & 68.5 & 65.54778 & -1.047775 & . 04 \\
\hline & 1.4514 & 68.5 & 65.54778 & 2.952225 & 04 \\
\hline
\end{tabular}

The \(\mathrm{CHI}^{2} 2\) (to be used with Chi-square Distribution Table) is 13,96653

JOB:
CHARPY RC- 2 CCONT \(-06 / 27 / 82\)

\section*{SUMMARY OF TASK \(\# 3\)}

This task investigated Polynomials of degree 1 through 1 fit to the Data Set, Mod. CHARPY DATA from RC-2, using the
BASIS FUNCTION: \(X(x)=0 * E X P\left[0 * x^{-}(0)\right]\)
```

 + (1)*EXP[-.0105**-(22.5)]
    ```

The polynomial of degree 1 produces the largest fractional decrease in RV (note, ite RV = . 8729378 ), hence, is taken as the BBST POLYNOMIAL/BBST GIT for this Data Set (i, e., from among the polynomale with the bpecifically chosen Basis Function and within the degree range investigated). PLOTnFIT suggeste that it is a polynomial of high enough degree that it should come close to the 'true function', i.e., the 'true model', yet low enough that it averages out randon errors.

\footnotetext{
Do you agree with PLOTnFIT' choice for the polynowial degree that yielde the most satisfactory correlation of the data \((y / n)\) ? \(y\)
}
```

Degree of Polynomial, P[X(x)], }\textrm{n}=
BASIS FONCTION: X(x) = 0*EXP[U*x"(0)]
+(1)*EXP[-.01*x* (22.5)]
Coefficient of Determination, CD =.94568
Residual Variance, RV = .8791269

```

2 Coefficients (the last coefficient is the constant ters in the polynomial): \(C(1)=-45.40218 \quad C(2)=65.85591\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & x & \(y\) & \(\mathrm{P}[\mathrm{X}(\mathrm{x})]\) & Deviation & * \\
\hline 1 & 8587 & 25 & 20.62917 & 4.370835 & 04 \\
\hline 2 & . 9641 & 17 & 20.65274 & -3.652744 & 04 \\
\hline 3 & 1. 0185 & 21.5 & 21.13439 & . 3656158 & 04 \\
\hline 4 & 1.025 & 18 & 21. 23822 & -3.23822 & . 04 \\
\hline 5 & 1.0772 & 21.5 & 22.80999 & -1.309994 & 04 \\
\hline 6 & 1. 1001 & 30.5 & 24.17641 & 6.323593 & 04 \\
\hline 7 & 1.1175 & 19 & 25.65932 & -6.659317 & 04 \\
\hline 8 & 1.1566 & 40.5 & 30.9886 & 9.511402 & 04 \\
\hline 9 & 1.174 & 28.5 & 34.4772 & \(-5.977204\) & 04 \\
\hline 10 & 1. 2132 & 41.5 & 44.90824 & -3.409241 & . 04 \\
\hline 11 & 1.2132 & 46 & 44.90824 & 1.091759 & 04 \\
\hline 12 & 1.2382 & 55.5 & 52.50573 & 2.994274 & . 04 \\
\hline 13 & 1.2654 & 64.5 & 59.68578 & 4.814224 & . 04 \\
\hline 14 & 1.297 & 58 & 64.45236 & -6.452362 & . 04 \\
\hline 15 & 1. 3263 & 65 & 65.71097 & -. 710968 & 04 \\
\hline 16 & 1.3535 & 66.5 & 65.85071 & . 649292 & . 04 \\
\hline 17 & 1. 4106 & 64.5 & 65.85591 & -1.355911 & 04 \\
\hline 18 & 1. 4514 & 68.5 & 65.85591 & 2.644089 & . 04 \\
\hline
\end{tabular}

The CHI \({ }^{2} 2\) (to be used with Chi-square Distribution Table) is 14.06603.

JOB: CHARPY RC-2 CCONT-06/2.7/89.
SUMMARY OF :CASK \# 4
This task investigated Polynomials of degree 1 through 1 fit to the Data Set,
Mod. CHARPY DATA from RC-2, using the
BASIS FUNCTION: \(X(x)=0 * E X P\left[0 * x^{*}(0)\right]\)
\(+(1) * \operatorname{EXP}\left[-.01 * \mathrm{x}^{\wedge}(22.5)\right]\)

The polynomial of degree 1 produces the largest fractional decrease in RV (note, its RV \(=.8791269\) ), hence, is taken as the BEST PULYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated). PLOTnFIT suggests that it is a polynomial of high enough degree that it should come close to the true function', i.e., the 'true model', yet low enough that it 'averages out random errors.

Do you agree with PLOTnFIT' ch chice for the polynomial degree that yields the most satisfactory correlation of the data \((y / n) ? ~ y\)

TASK \# 5: ANALYSIS OF 'Mod, CHARPY DATA from RC-2.
Degree of Polynomial, \(P[X(x)], n=1\)
BASIS FUNCTIOH: \(X(x)=0 * \operatorname{EXP}\left[0 * x^{*}(0)\right]\)
\(+(1) * \operatorname{KXP}\left[-.0095 * x^{*}(22.5)\right]\)
Coefficient of Determination, \(C D=.944755\)
Residual Variance, \(R V=.894097\)
2 Coefficients (the last coefficient is the constant term in the polynomial): \(\mathrm{C}(1)=-45.46839 \quad \mathrm{C}(2)=66.17696\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & \(x\) & \(y\) & \(\mathrm{P}[\mathrm{X}(\mathrm{x})\) & Deviation & W \\
\hline 1 & . 9587 & 25 & 20.87549 & & \\
\hline 2 & . 9641 & 17 & 20.89793 & 4.124512
-3.897926 & 04 \\
\hline 3 & 1.0185 & 21.5 & 21.35637 & -3.897826 & 04 \\
\hline 4 & 1.025 & 18 & 21.45524 & 1.436272
-3.45523 & 04 \\
\hline 5 & 1.0772 & 21.5 & 22.95324 & -1.453243 & 04 \\
\hline 6 & 1. 1001 & 30.5 & 24.25775 & 6.242253 & 04 \\
\hline 7 & 1.1175 & 19 & 25.67589 & 6. 675888 & 04 \\
\hline 8 & 1.1566 & 40.5 & 30.79481 & 9. 705192 & 04 \\
\hline 9 & 1. 174 & 28.5 & 34.16664 & 9.705192 & 04 \\
\hline 10 & 1.2132 & 41.5 & 44.37148 & -5.666641 & 04 \\
\hline 11 & 1.2122 & 46 & 44.37148 & -2.871475 & 04 \\
\hline 12 & 1.2382 & 55.5 & 44.37148 & 1.628525 & 04 \\
\hline 13 & 1. 2654 & 64.5 & 51.96351 & 3. 536495 & 04 \\
\hline 14 & 1. 297 & 58 & 59.34938 & 5.15062 & 04 \\
\hline 15 & 220 & & 64.5045 & -6. 504502 & 04 \\
\hline 16 & 1.3263 & 65 & 65.98348 & -. 9834824 & 04 \\
\hline & 1. 3535 & 66.5 & 66.16876 & 3312454 & 04 \\
\hline 17 & 1. 4166 & 64.5 & 66.17696 & -1.676956 & 04 \\
\hline 18 & 1. 4514 & 68.5 & 66.17696 & 2. 323044 & 04 \\
\hline
\end{tabular}

The CHI \({ }^{-2}\) (to be used with Chi-square Distribution Table) is 14.30555.

JOB: CHARPY RC-2 CCONT-D6/27/89

\section*{SUMMATY OF TASK \# 5 \\ tine - \(16: 38: 53\)}

This task investigated Polynonials of degree 1 through 1 fit to the Data Set, Mod. CHARPY DATA from RC-2, using the BASIS FUNCTION: \(\mathbf{X}(\mathbf{x})=0 *\) EXP[ \(\left.0 * \mathbf{x}^{\wedge}(0)\right]\) \(+(1) * \operatorname{EXP}\left[-.0095 * x^{\wedge}(22.5)\right]\)

The polynomial of degree 1 produces the largest fractional decrease in RV (note, its \(R V=894097\) ), hence, is taken as the BEST POLYNOMIAL/BKST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Punction and within the degree range investigated). PLOTnFIT suggests that it is a polynomial of high enough degree that it should come close to the true function, i.e., the 'true model", yet low enough that it averages out randon errors.

Do you agree with PLOTnFIT B choice for the polynooial degree that yielde the most satisfactory correlation of the data \((y / n)\) ? \(y\)
```

Degree of Polynomial, P[X(x)], n = 1
BASIS FUNCTION: X (x)=0*EXP[0*xn(0)]
+(1)*EXP[-8.500001B-03*x* (22.5)]
Coefficient of Detersination, CD =.940966
Residual Variance, RV = .9554064

```

2 Coefficients (the last coefficient is the constant term in the polynomial): \(\mathrm{C}(1)=-45.58938 \quad \mathrm{C}(2)=66.86283\)
\begin{tabular}{llllll}
1 & \(x\) & \(\boldsymbol{y}\) & y & \(\mathrm{P}[\mathrm{X}(\mathrm{x})]\) & Deviation
\end{tabular}

The \(\mathrm{CHI}^{\wedge} 2\) (to be used with Chi-square Distribution Table) is 15.2865

JOB: CHARPY RC-2 CCONT-D6/27/89

This task investigated Polynomials of degree 1 through 1 fit to the Data Set, Mod. CHARPY DATA from BC-2, using the
BASIS PONCTION: \(\mathbf{X}(\mathbf{x})=0 * \operatorname{EXP}\left[0 * x^{-}(0)\right]\)
\(+(1) * \operatorname{EXP}\left[-8.500001 \mathrm{E}-03 * \mathrm{x}^{2}(22.5)\right]\)

The polynomial of degree 1 produces the largest fractional decrease in RV (note, its RV \(=.9554064\) ), hence, is taken as the BRST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated). PLOTnFIT suggesta that it is a polynomial of high enough degree that it should come close to the "true function", i.e., the 'true sodel', yet low enough that it 'averages out' randon ercors.

Do you agree with PLOTnFIT' choice for the polynowial degree that yields the most satisfactory correlation of the data \((y / n)\) ? y

Degree of Polynonial, \(\mathrm{P}[\mathrm{X}(\mathrm{x})], \mathrm{n}=1\)
BASIS FUNCTION: \(X(x)=0 * E X P\left[0 * x^{n}(0)\right]\)
\(+(1) * \operatorname{EXP}\left[-.0115 * x^{*}(21)\right]\)
Coefficient of Determination, \(C D=9407919\)
Residual Variance, \(\mathrm{RV}=.9582226\)
2 Coefficients (the last coefficient is the constant ter in the polynomial): \(C(1)=-46.24303 \quad C(2)=67.11995\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & x & \(y\) & P[ \(X(x)\) & Deviation & - \\
\hline 1 & . 9587 & 25 & 21.09572 & 3.904286 & 04 \\
\hline 2 & 9641 & 17 & 21.12303 & -4.123032 & \\
\hline 3 & 1. 0185 & 21.5 & 21.65184 & - 1518403 & 04 \\
\hline 4 & 1.025 & 18 & 21.76154 & & 04 \\
\hline 5 & 1. 0772 & 21.5 & 23.34363 & -3.761536 & 04 \\
\hline 6 & 1.1001 & 30.5 & 23.34363 & -1.843624 & 04 \\
\hline 7 & 1.1175 & 19. & 24.65643 & 5.843575 & 04 \\
\hline 8 & 1. 1566 & 19.5 & 26.04647 & -7.043471 & 04 \\
\hline 9 & 1.174 & 40.5 & 30.89225 & 9.60775 & . 04 \\
\hline 10 & 1. 2132 & 23.5 & 34.00698 & -5.506981 & 04 \\
\hline 11 & 1. 2132 & 41.5
16 & 43.35501 & -1.855003 & 04 \\
\hline 12 & 1. 2382 & 16
55 & 43.35501 & 2.644997 & 04 \\
\hline 13 & 1. 2654 & 55.5 & 50.47251 & 5. 027489 & 04 \\
\hline & 1. 2654 & 64.5 & 57.89903 & 6.600975 & 04 \\
\hline 14 & 1. 297 & 58 & 64.03286 & -6.03286 & 04 \\
\hline 15 & 1.3263 & 65 & 66.50913 & -1.509132 & 4 \\
\hline 16 & 1.3535 & 66.5 & 67.05872 & - 5587158 & 04 \\
\hline 17 & 1. 4166 & 64.5 & 67.11995 & -.5587158 & 04 \\
\hline 18 & 1. 4514 & 68.5 & 67. 11995 & -2.619942. & . 04 \\
\hline & 1.4514 & 68.5 & 67.11985 & 1.380058 & 04 \\
\hline
\end{tabular}

The CHI 2 (to be used with Chi-square Distribution Table) is 15.33156 .

JOB: CHARPY RC-2 CCONT-06/27/89
SUMMARY OF TASK \(\# 7 \quad\) time \(-16: 41: 35\)

This task investigated Polynomials of degree 1 through 1 fit to the Data Set, Mod. SiAARPY DATA from RC-2, using the BASIE FUNCTION: \(X(x)=0 * E X P\left[0 * x^{n}(0)\right]\)
\(+(1) * \operatorname{EXP}\left[-.0115 * x^{\wedge}(21)\right]\)

The polynomial of degree 1 produces the largent fractional decrease in RV (note, its RV \(=.9582276\) ), hence, is taken as the BEST POLYKOMIAL/BBST FIT for this Data Set (i.e., from among the polynowials with the specifically chosen Basis Punction and within the degree range investigatec). PLOTnFIT suggests that it is a polynowial of high enough degree that it should come ciose to the "true function", i.e., the "true model', yet low enough that it averages out randon errors.

Do you agree with PLOTnFIT' \(s\) choice for the polynomial degree that yields the most batisfactory correlation of the data \((y / n)\) ? \(y\)


JOB: GHARPY RC 2 CCONT-06/27/89
```

t1me - 16:42:53

```
SUMMARY OF TASK \(\quad 8\)

This task investigated Polynomials of degree 1 through 1 fit to the Data Set, Mod. CHARPY DATA from RC-2, using the BASIS PUNCTION: \(X(x)=0 * E X P\left[0 * x^{*}(0)\right]\)
\(+(1) * \operatorname{RXP}\left[-.0115 * x^{n}(24)\right]\)

The polynomial of degree 1 produces the largest fractional deorease in RV (note, its RV = 27.27104), hence, is taken as the BEST POLYNOHIAL/BEST FIT for this Data Set (i.e., from among the polynowials with the specifically chosen Bas a Function and within the degree range investigated). Plotrifit suggests that it is a polynomial of high enough degree that it should come close to the 'true function', i.e., the 'true model', yet low enough that it 'averages out' random errorb.

Do you agree with PLOTnFIT' \(s\) choice for the polynomial degree that yields the most satisfactory correlation of the data \((y / n)\) ? \(y\)

\section*{JOB DESCRIPTION}
```

t1me - 16:54:45

```

This is a continuation of the analyeia begun with job INITIAL ANALYSIS \(--06 / 26 / 59^{\circ}\) and extended through job CHARPY BC-2 BCONT -06/27/89. This job will use Basis Function \#6 in the polynomial fit to the nodified data from file FOLO6B91.SIS.

EACH CURVE IS A 'BEST FIT' WITH AN nth DEGREE POLYNOMIAL \(P[X(x)]=C(1) X(x)^{n} n+C(2) X(x)^{\wedge}(n-1)+\ldots+C(n) X(x)+C(n+1)\)

PLOTTING INSTRUCTIONS
Generate (color) FiKDIUM resolution, LINEAR praphe with PI.OTAFIT DETERMINED COORDINATE RANGES AND MARKING INTKRVALS


DETERMINATION of RTADt

1. From among all the tasks, the lowest \(\mathrm{CHI}^{2}\) was obtained for that task with CG1:CF1 values of \(22.5:(-0.0105)\) for which \(\mathrm{CHI}^{2}=13.97\) (see page \(\mathrm{A}-74\) ).
2. The results of this part of the analysis are that while \(\mathrm{CHI}^{2}\) is not very sensitive to variations in CF1 (i.e., a + or - 16 percent variation in CFI produced less than a 5 percent variation in \(\mathrm{CHI}^{2}\) ), it is somewhat sensitive to changes in CGI (i.e., a 6.7 percent variation in CGI produced a 24 percent variation in \(\mathrm{CHI}^{2}\) ).
3. Note the results from Task \# 8 shown on page \(A-79\). When entering the data for Task \#8, a negative response was accidently given to the question, "Do you want to iNPUT stored weighting factors \((y / n)\) ? " (see page \(A-70\) ). Since for this analysis all points have the same weighting factor, the polynomial coefficients \(C(1)\) and \(C(2)\) are not affected by the error. RV can be readily corrected by multiplying the value for RV on page \(A-79\) by 0.04 to get RV \(=\) 1.0908 with a resulting \(\mathrm{CHI}^{2}\) of 17.45 .

\section*{Part 3.b) INPUT}

From Part 3. a) OUTPUT, the polynomial of degree \(n=1\), with Basis Function \# 6, that seems to yield the best model had coefficients CG1: CF1 \(=22.5:(-0.0105)\). This part of the analysis will consist of two tasks: (i) with Basis Function \# \(6(C S 1=0, C 01=0, C D 1=0\), and CE1 \(=1)\) and the above coefficients, polynomials of degree \(n=1\) through 4 will be fit to the data; and (ii) with Bas is Function \# \(1(\operatorname{CSI}=0)\), polynomials of degree \(n=3\) through 6 will be fit to the data. The "best polynomial/best fit" curves will be plotted for comparison. The maximum amount of OUTPUT will be produced for \(t\) ' 's, the last part of the analysis.

\section*{PLOTnFIT / NUREG - 憬}

PLOTnFIT was prepsed for an agency of Undted Ststes Government. Neither the United States Governman nor any agency thereof, nor any of their employees, makes any warran ', expressed or implied, or absumet any legal liability or reeponeibility for ar third party s use, or the results of such use, of any protion of this program or represente that ite uee by euch third party would not infringe privately owned righte.
Thie version of PLOTnFIT (1.e.. PLOTNFIT, 42\% will not run
properdy on a PC with b nonochrome mondtor, if this PC does
not have a color/grephice card or this is not a color monitor,
type yes or \(y\) at the EXIT \((y / n)\) ? prompt, otherwise type no or \(n\)
and continue (NOTE: If GRAPHICS.COM wses not loaded before
BAEICA.COM, HARD COPIES of graphe can not be made. Now is the
time to EXIT this job and reload if it is desirable to print
graphe and GRAFHICS.CCM has not been pre-losded.).
THE PRINTER MUST EE KEPT ON WHILE PLOTNFIT IS OPERATING.

EXIT \((y / n)\) ?
Number of Bite not being used at the START of this job \(\$ 10486\)
For default purposes, what Diek Drive (e.e., A:) would you most likely want to WRITE to (include subdirectory if applicetle - e.e., C:\SUBDIR )
*******************************************************
*
FLOTnFIT
\(*\)

IF YOU ARE NOT ALREADY FAMILIAR WITH THIS PROGRAM, YOU Bhould probebly ENTER yer at the 'EXIT \((y / n)\) ?' prompt, and run the prograti READIST. PNF'.

Exit \((y / n)\) ?
```

IJentify your job (INITIAL ANALYSIS)

```
    FORMAT - a string of less than 18 characters (where BASIC
    filename rules apply to first 3 and last 3 characters). CHARPY RC- 2 DCONT
Deenribe your job (This analysis is to get a feel for the data.):
    FORMAT - a 'comma-less' string of less than 256 characters -
This is \(s\) continuation of the analysis begun with job INITIAL ANALYSIS \(-06 / 36 / 8\)
27/89. This job will use Basis Funivion \(\# 6\) in the polynomial fit to the modifj

\section*{PLOTTING INSTRUCTIONS}

What kind of graphs would you like to generate
1. LINEAR
2. SEMI-LOG (Y-axis,LOG; X-axis,LINEAR)
3. \(L O G-L O G\)
\(N T(=1)=\)
```

What palette do you vant:
FOR NP=1 FOR NP=2
GREEN MAGENTA
RED CYAN
BROWN WHITE
NP(=1)=2
Regardless of the NOP value you enter here, if you later
choose to make HARD COPIES of the data and curves plotted
on the ecreen, PLOTnFIT will sutomatically make NOP=1.
NOP(=2)=
What background color do you vant
1. BLACK
2. GRAY
3. LIGHT BLUE
4. BROWN
5. YELLOW
6. LIGHT GREEN
NQi= 3)=6

```
```

Would you like graph labele difserent from those shown in ()?

```
Would you like graph labele difserent from those shown in ()?
    (TITLS) - 30 uharacters maximum - (y/n): y
    (TITLS) - 30 uharacters maximum - (y/n): y
What is your cholce? DETERMINATION of RTndt
What is your cholce? DETERMINATION of RTndt
    (X-AXIS) Horizontal - 22 characters paximum - (y/n):y
    (X-AXIS) Horizontal - 22 characters paximum - (y/n):y
What is your choice? Normalized Temperature
What is your choice? Normalized Temperature
    (units) for x-axis - 5 characters maximum - (y/n): y
    (units) for x-axis - 5 characters maximum - (y/n): y
What is yous cholce? R/460
What is yous cholce? R/460
    (Y-AXIS) Vertical - 16 oharacters maximum - (y/n): y
    (Y-AXIS) Vertical - 16 oharacters maximum - (y/n): y
What is your choice? Charpy Energy
What is your choice? Charpy Energy
    (undte) for y-axis - 5 characters maximum - (y/n): y
    (undte) for y-axis - 5 characters maximum - (y/n): y
What is your zholce? ft-1b
What is your zholce? ft-1b
What ecaling procedure (NS) would you like to use?
What ecaling procedure (NS) would you like to use?
    1. SPECIFY COORDINATE RANGES AND MARRING INTERVALS FCR
    1. SPECIFY COORDINATE RANGES AND MARRING INTERVALS FCR
    THE AXES (USE ONLY AFTER EXPERIENCE WITH 'PLOTRFIT')
    THE AXES (USE ONLY AFTER EXPERIENCE WITH 'PLOTRFIT')
    2. ALLOW 'PLOTnFIT' TO ESTABLISH COORDINATE RANGES AND
    2. ALLOW 'PLOTnFIT' TO ESTABLISH COORDINATE RANGES AND
    MARKING INTERVALS BASED ON THE DATA RANGES
    MARKING INTERVALS BASED ON THE DATA RANGES
NS(= 2)=
NS(= 2)=
DATA AND DATA IDENTIFICATION
How many Taske will there be in this job \((1<=N D S<=8) ? \operatorname{NDS}(=1)=2\)
What INPUT device (NE) would you like to use ts
enter your Data for Task & 1 ?
    1. The KEYBOARD
    3. A STORED FILE
NE(=1)=2
What is the location snc name of the FILE containing Data for Task % I ?
    FORMAT - (storage)devioe:filename - a:fol06891.6i6
How many Dats Sets are in this FILE?
    NDSF(=1)=
Do you want to INPUT Data Set # 1 from FILE a: fol06891. sie
[i.e., that identified as {od. CHARPY DATA fron RC-2;
with (NDP=) }18\mathrm{ data points) ( }\textrm{y}/\textrm{n})\mathrm{ ? y
Do you want to INPUT the stored weighting factors (y/n)? y
Do you vant to change ANY data in this Data Set (y/n)?
Do you wani to fit ourves to your Data Pointe (y/n)? y
```

Which of the followine BRSIS FINCTIONS do you want to use for this Data Set (YOU MUST supply values for coefficients CS1. CO1. CD1, CE1, CF1 \& CG1):

```
2. X(x)=CS1+x
2. X(x)=CS1+EXP(CO1*x)/(CD1+x)
3. }X(x)=(CS1+\operatorname{CO1*x+CD1*x-2)*LOG(x)
4. X(x)=081/x+C01*LOQ(x)+x*\00(CD1*x+2.718)
5. }\textrm{X}(\textrm{x})=\textrm{CS1}+\mp@subsup{\textrm{CO1* *}}{}{-}\textrm{CD}1+\mathrm{ CE1/(CF1+X-CG1)
6. X(x)=CS1*EXP(CO1* * CD1 ) CEE1*EXP(CF1*x*CG1)
7. X(x)=CS1*EXP (CO1*x) +CD1*EXP(CE1*x)+CF1*EXP(CG1*x)
8. }X(x)=C51*(CO2+x)-CD1+CE1* (CF1+x)-CG1
9. }\textrm{X}(\textrm{x})=\textrm{EXP}(C51*x)*(CO1+x)*CD1+EXP(CE1*x)*(CF1+x)*CO1
10. }\textrm{X}(\textrm{x})=\mathrm{ CS1* x*SIN(CO1+CD1*x)+(CE1/(CD1+x))*SIN(CF1+CG1*x)
12. X(x) =EXP(CS1*x)*S1N(CO1*CD2*x)+CE1*S1N(CF1+CG1*x)
```

If the default value of a coefficient is not zero and you wish it to be eero,
you bust enter an insignificant, smali number (perhaps, iE-7*XMIN), eince
entering 0 would be interpreted by PLOTnFIT as acceptance of the default value

```
BF
    cs1(=0)=
    CO1(=0)=
    CD1(= 0)=
    CE1(=0) =1
    CF1(=0) =-0.0105
    CG1(= 0) =22.5
        For each Dats Set in the job, the procram starte with
        the lowest degree polynomial you want to consider and
        fite it to the dats points; the program then fits,
        sequentially and in ascending order, as many higher
        degree polynomisla as you epecify (the current degree
        1imit is 10).
    What is the lowest degree polynomlal (LDP) you want to consider
    for this Data set (1<= LDP }<=10)? LDP(z1)
    How many polynomial fits (NPF) do you want to
    try - including the LDP - (1 &z NPF &z 10)? NPF (=1)=4
        What symbol (M) Hould you like to use to represent
        the Data for Task # 1?
            1. I 5. DIAMOND
            2. CROSU 6. TRIANGLE - UP
            3. X 7. TRIANGLE - DOWN
        4. H 8. SQ'JARE
        What symbol 6ize (MM) would you like?
            1. emall
            2. LARGE
        MM (= 1)=2
    What INPUT device (NE) would you like to use to
    enter your Data for Task # 2 ?
        1. The KEYBOARD
        2. A STORED FILE
    NE (=2)=
    What is the location and name of the FILE containing Data for Task # 2 ?
        FORMAT - (storage)device:filename (a:fol06881.6ib) -
    How ny Data Sets are in this FILE?
        NDSF}(=1)
    Do you want to INPUT Data Set #1 frow FILE s:fcl06891. eis
    [i.e., that identified as : Mod. CHARPY DATA from RC-2;
    with (NDP=) 18 data pointe) (y/n)? y
```

Do you want to INPUT the stored weighting factors (y / n) ? y
Do you want to chance ANY data in this Data Set (y / a) ?
Do you want to fit curves to your Data Pointe (y / n) ? y

Which of the following BASIS FUNCTIONS do you want to use for this Data Set (YOU MUST supply values for coefficients C81, CO1, CD1, CE1, CF1 \& CG1):

```
1. }X(x)=\operatorname{CS1+x
2. X(x)=CS1+EXP}(\operatorname{CO1*x})/(CD1+x
3. }X(x)={CS1+CO1*x+CD1*x*-2)*LOG(x
4. X(x)=CS1/x+CO1*LOG(x)+x*LOG(CD1*x+2.718)
5. X(x)=CS1+CO1* - CD1+CE1/(CF1+\mp@subsup{x}{}{*}CG1)
6. }\textrm{X}(\textrm{x})=CS1*EXP(201*x-CD1)+CE1*EXP(CE1*x-CG1
7. X(x)=CS1*EXP (CO1*x)+CD1*EXF(CE1*x)+CE & EXP (CO1*x)
8. X(x)=CS1*(CO1+x)*CD1+CE1*(CF1+X)*CO1
8. X (x)=EXP (CS1*x)*(CO1+x)*CD1+EXP (CE1*x)*(CE1+x)*CG1
10. X(x)=CS1*x*SIN(CO1+CD1*x)+(CE1/(CD1+x))*SIN(CE1+CG1*x)
11. }\textrm{X}(\textrm{x})=E\textrm{EXP}(CS1*X)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x
```

If the default value of a ccefficient is not zero and you wish it to be zero, you must enter an insignificant, small number (perhaps, $1 \mathrm{E}-7 * \times \mathrm{MIN}$), since entering 0 would be interpreted by PLOTnFIT so acoeptance of the default value.

```
BF(=6 ) =:
```

$\operatorname{cs1}(=0)=$
For each Data Set in the job, the program etarte with
the lowest degree polynomial you want to consider and
fits it to the data pointe; the program then fits,
equentially and in assending order, as many higher
degree polynomials as you specify (the current degree
init ie 10)
What is the lowest degree polynomial (LDP) you want to consider
for this Dsta Set $(1<=\operatorname{LDP}<=10)$? $\operatorname{LDP}(=1)=3$
How many polynomial fite (NPF) do yow want to
try - including the LDP - ($1<=\mathrm{NPF} \& 8$)? $\operatorname{NPF}(=1)=4$
What symbol (M) would yoll like to use to represent
the Data for Taek 2 ?

Data for Taek	
1.	5. DIAMOND
2. CROSS	6. TRIANGLE - UP
3. X	7. TRIANGLE - DOWN

 \(M, H^{4}\)
 8. SQUARE
 $M(=9)=8$
What eymbol size (MM) would you like?
1. smadl
2. $\angle A R G E$
$M M(=2)=$
ALL PLOTTING INSTRUCTIONS AND DATA HAVE BEEN ENTERED
Would you like to make changes in your Plotting Instructions;
values currently in the computer appear in parenthesis (y / n) ?
Would you like to make a few changes in one or more of your Data
Sets [most useful when most data are from the KEYBOARD] (y / n)?
Would you like to compleiely RE-INPUT your Coordinate Data
[most useful when nost data are from STORED FILES] $(\mathrm{y} / \mathrm{n})$?

```
Number of Bits not being leed et this tive, for this job = 3039
    Would you like to PRINT values of the Polynomial
    Coefficiente for sll the curves fit to each Dats Set,
    slong with the corresponding Residial Variances anc
    Coefficiente of Determination (y/n)? y
    Would you like to wake IARD COPIES of eraphe of ALL
    the Dats Sets, one set of graphe for esch Dats Set,
    showing ALL the polynowial curves fit to EACH Dsts
    Set (y/n)? y
Would you like to make 'a' HARD COPY graph containing
ALL the Dats Sets, esch Data Set with it e corresponding
    BEST POLYNOMIAL/BEST FIT curve (y/n)? y
Would you like to PRINT values of key progren varioblee
and table of some of the pointe whioh fall on each
    BEST POLYNOMIAL/BEST FIT curve plotted (y/n)? y
    ...a Table of 'ALL' the pointe (y/n)?
Would you like to INPUT s function to be plotted
with your data (y/n)?
```

Part 3.b) OUTPUT

WIOTnWIT. 4th

JOB: CHARPY RC-2 DCONT-D6/29/89
time - 11:27:55
THE FOLLOWING ARE DATA RESULTING FROM FITTING POLYMONIALS TO THK VARIOUS DATA SETS

TASK 1: ANALYSIS OF Mod. CHARPY DATA from RC-2.
Degree of Polynonial, $\mathrm{P}[\mathrm{X}(\mathrm{x}) \mathrm{]}, \mathrm{n}=1$
BASIS FUNCTION: $X(x)=0 * K X P\left(0 * x^{*}(0)\right]$
$+(1) * \operatorname{EXP}\left[-.0105 * x^{*}(22.5)\right]$
Coefficient of Determination, $C D=.946064$
Residusl Varialice, RV $=.8729078$
2 Coefficients (the last coefficient is the constant tern in the polynoial): $C(1)=-45.33264 \quad C(2)=65.54778$

1	x	y	$\mathrm{P}[\mathrm{X}(\mathrm{x}) \mathrm{]}$	Deviation	*
1	.9587	25	20.39904	$\text { 4. } 60096$	04
2	. 9641	17	20.42376	-3.42376	04
3	1. 0285	21.5	20.92846	. 5715408	04
4	1.025	18	21.03723	-3.037232	04
5	1.0772	21.5	22.68216	-1.182163	04
6	1. 1001	30.5	24.10975	6.390255	04
7	1.1175	18	25.65639	-6.656389	04
8	1.1566	40.5	31.19042	9. 3 ca586	04
9	1.174	28.5	34.79054	-6.290543	04
10	1.2192	41.5	45.42569	-3.92568	04
11	1.2132	46	45.42569	5743103	. 04
12	1.2382	55.5	53.00838	2. 490624	. 04
13	1. 2654	54.5	59.9722	4. 527802	04
14	1. 287	58	64. 36998	-6.36998	04
15	1. 3263	65	65. 4392	-. 4391938	. 04
16	1.3535	66.5	65.54448	. 9555206	. 04
17	1.4166	64.5	65. 54778	-1.047775	. 04
18	1. 4514	68.5	65.54778	2.952225	. 04

The CBI 2 (to be used with Chi-square Distribution Table) 1613.86653.

TASE 1: ANALYSIS OF 'Hod. CHARPY DATA iro RC-2.
Degree of Polynonia), $\mathrm{P}[\mathrm{X}(\mathrm{x})], \mathrm{n}=2$
BASIS FUNCTION: $X(x)=0 * E X P\left[0 * x^{*}(0)\right]$
$+(1) * E X P\left[-.0105 * x^{*}(22.5)\right]$
Coefficient of Determination, $C D=.946065$
Residual Variance, $\mathrm{BV}=.9310868$
3 Coefficients (the last coefficient is the constant ter in the polynosial): $C(1)=-.1933762 \quad C(2)=-45.14174 \quad C(3)=65.53287$

1	x	y	$\mathrm{P}[\mathrm{X}(\mathrm{x}) \mathrm{]}$	Deviatiou	*
1	. 9587	25	20.38244	4.617558	04
2	. 9641	17	20.40737	-3.407265	04
3	1.0185	21.5	20.9141	. 5858994	04
4	1.625	18	21.02333	-3.023331	04
5	1. 0772	21.5	22.67486	-1.174862	04
6	1.1001	30.5	24.10776	6.592243	04
7	1.1175	14	25.65972	-6.659722	04
8	1.1566	40.5	31.20911	-9.290894	04
8	1.174	28.5	34.81614	9.290894 -6.316136	04
10	1.2132	41.5	45.45742	-6.316136 $-3,957417$	04
11	1.2132	46	45. 45742	-5425835	04
12	1.238?	55.5	53.03248	2.467526	04
13	1.2654	64.5	59.97785	4. 522156	04
14	1.297	58	64.3599	-6.359902	04
15	1.3263	65	65. 42475	-. 4247437	04
16	1.3535	66.5	65.52958	. 9704208	04
17	1.4166	64.5	65.53287	-1.032867	04
18	1.4514	68.5	65, 53287	2.967133	04

The CHI' 2 (to be used with Chi-equare Distribution Table) 1s 13.9663.
TASK 1: ANALYSIS OF Mod. CHARPY DATA frow RC-2*
Degree of Polynomial, $P[X(x)], n=3$
BASIS FONCTION: $X(x)=0 * K X P\left[0 * x^{*}(0)\right]$
$+(1) * \mathrm{EXP}\left[-.0105 * x^{*}(22.5)\right]$
Coefficient of Detersination, CD $=.946204$
Residual Variance, $\mathrm{RV}=.9850166$
4 Coefficients (the last coefficiert is the eonstant term in the polynomial): $C(1)=10.89538 \quad C(2)=-16.34098 \quad C(3)=-39.52417$
$C(4)=65.4034$

1	x	y	P[X $(x)]$	Deviation	*
1	. 9587	25	20.59421	4.405792	04
2	. 9641	17	20.61583	-3.615833	04
3	1.0185	21.5	21.05948	. 4405251	04
4	1. 025	18	21.15561	-3.155609	04
5	1.0772	21.5	22.63097	-1.13097	04
6	1. 1001	30.5	23.84258	6.557419	04
7	1.1175	19	25.39382	-6.393822	04
8	1.1566	40.5	30.80508	9.694923	04
8	1.174	28.5	34.4677	-5.967697	04
10	1.2132	41.5	45.59281	-4.092808	04
11	1. 2132	46	45.59281	4071922	04
12	1. 2382	55.5	53.45199	2. 048012	04
13	1. 2654	64.5	60.3153	4. 184704	04
14	1. 297	58	64.36567	-6. 36567	04
15	1. 8263	65	65.30864	-. 3086385	04
16	1. 3535	66.5	65. 10052	-i.09948	04
17	1.4166	64.5	65.4034	-.903396	04
18	1.4514	68.5	65.4034	3.096604	04

The CHI 2 (to be used with Ch1-Bquare Distribution Table) is 13.8909 .3

TASE 1 : ARALYSIS OF Mod. CHARPY DATA from RC-2'

```
Degree of Polynowial, \(\mathrm{P}[\mathrm{X}(\mathrm{x})], \mathrm{n}=4\)
BASIS FUNCTION: \(\mathbf{X}(\mathbf{x})=0 * E X P\left[0 * x^{-}(0)\right]\)
\(+(1) *\) KXP \(\left[-.0105 * x^{*}(22.5)\right]\)
```

Coefficient of Deternination, $C D=.949024$
Residubl Variance, $\mathrm{RV}=1.015383$
5 Coefficients (the last coefficient is the constant tert in the polynowial):
$C(1)=-202.0862 \quad C(2)=422.4508 \quad C(3)=-276.3048$
$C(4)=10.48499 \quad C(5)=64.86556$

1	K	y	$\mathrm{P}[\mathrm{X}(\mathrm{x})]$	Deviation	*
1	9587	25	19.74385	5.25615	04
2	9641	17	19.78814	-2.788143	04
8	1. 0185	21.5	20.66481	. 835186	04
4	1. 025	18	20.84704	-2.847038	04
5	1. 0772	21.5	23.33808	-1.838078	04
6	1.1001	30.5	25.15009	5.349915	04
7	1.1175	19	26.82144	-7.821434	04
8	1.1566	40.5	31.33384	9.166161	04
8	1. 174	28.5	33.90613	-5.406160	04
10	1.2132	41.5	44.18099	-2.680985	04
11	1.2132	46	44.18099	1.819016	. 04
12	1.2382	55.5	54.38414	1. 115864	. 04
13	1.2654	64.5	62.71516	1.78484委	04
14	1. 287	58	64.9587%	-6.958771	04
15	1.3263	65	64.8891	. 1109085	04
16	1.3535	C6. 5	64.86632	1.633682	04
17	1.4166	64.5	64.86556	-. 3655548	04
18	1. 4514	68.5	64.86556	3.634445	04

The CHI'2 (to be used with Ch1-square Distribution Table) is 13.19988.

SUMMARY OF TASE 1

This task investigated Polynokials of degree 1 through if fit the Date Set, Mod. CHARPY DATA frow RC-2, using the BASIS FUNCTION: $X(x)=0 * K 2 P\left[0 * x^{*}(0)\right]$ $+(1) * \operatorname{EXP}\left[-.0105 * x^{*}(22.5)\right]$

The polynonial of degree 1 produces the largest fractional decrease in RV (note, ita RV $=8729078$), hence, is taken as the BEST POLYNOMIAL/BRST EIT for this Data Set (i.e., frow anong the polynomals with the epecifically chosen Basis Function and within the degree range investigated). PLOTnFit suggenta that it is a polynonial of high enough degree that it should oome close to the 'true function', 1.e., the 'true model', yet low enough that it 'averages out" randos errors.

THE HIGHEST DRGREE POLYNOHIAL SHOWN IN THIS PLOT IS 1 , BASIS FONCTION: X $(\mathbf{x})=0 * K X P\left[0 * \mathbf{x}^{*}(0)\right]$ $+(1) * \operatorname{EXP}\left[-.0105 * x^{*}(22.5)\right]$

DETERMINATION of RTADt

THE HIGHEST DEGREE PGLYNOHIAL SHOWN IN THIS PLOT 152 , BASIS FONCTION: $\mathbf{X}(\mathbf{x})=0 * \mathrm{EXP}\left[0 * \mathbf{x}^{-}(0)\right]$
$+(1) * \operatorname{EXP}\left[-.0105 * \mathrm{x}^{*}(22.5)\right]$

THE HIGHEST DEGREE POLYNOHIAL SHOWN IN THIS PLOT IS 3 , SASIS FUNCTION: $\mathbf{X}(x)=0 * \operatorname{EXP}\left[0 * \mathbf{x}^{\prime \prime}(0)\right]$
$+(1) *$ EXP $\left[-.0105 * x^{*}(22.5)\right]$

DETERMINATION of RTndt

THE HIGHEST DEGREE POLYNOHIAL SHOWN IN THIS PLOT IS 4 , BASIS FUNCTION: $\mathbf{X}(\mathbf{x})=0 * \mathbb{E X P}\left[0 * \mathbf{x}^{-}(0)\right]$
$+(1) * E X P\left[-.0105 * x^{*}(22.5)\right]$

Do you agree with PLOTnFIT a choice for the polynonial degree that yields
the most satisfactory correlation of the data $(y / a) ? y$

TASK 2: ANALYSIS OF Kod. CHARPY DATA froe RC-2*
Degree of Polynowial, $P[X(x)], n=3$
BASIS FUNCTION: $\mathbf{X}(\mathrm{x})=0+\mathbf{x}$
Coefficient of Detersination, $C D=.994965$
Residual Veriance, $R V=1.202892$
4 Coefficients (the last coefficient is the constiant ter in the polynomial)
$\begin{array}{ll}C(1)=-1800.705 & C(2)=6868.957 \\ C(4) & =3121.686\end{array} C\left(3^{3}\right)=-8071.413$

1	x	y	$\mathrm{P}[\mathbf{X}(\mathbf{x})]$	Deviation	e
1	. 9587	25	22. 12012		
2	. 8641	17	21.39502	2.879883 -4.39502	04
3	1.0185	21.5	18.25342	-4.39502 ${ }^{\text {3. }} 246582$	04
4	1. 025	18	18.33399	3.246582 $-\quad 3399844$	04
5	1.0772	21.5	21.85523	-. +3339844	04
6	1.1001	30.5	24.7461	--3552246	. 04
7	1. 1175	19	27.36694	5.753907	. 04
8	1. 1566	40.5	34.26392	-8.366943	04
9	1. 174	28.5		6.236084	04
10	1. 2132	41.5	37.64258	-9.142578	04
11	1.2132	46	45.55127	-4.05127	04
12	1. 2382	85.5	45,55127	. 4487305	04
13	1. 2654	64.5	50.55908	4.940818	04
14	1. 297	64.5 58	55.7812	8.768799	04
15	1. 3263	68	61.07959	-3.07959	04
16	1. 3535	65.5	65.10669	-. 1066895	04
17	1. 4166	66.5	67.78516	-1.285156	4
18	1. 4514	84.5	68.77344	-4.273438	04
	1.4515	68.5	65.38428	3.115723	04

The CHI 2 (to be used with Chi-square Distribution Table) is 16.84049.

TASE 2: ANALYSIS OF Kod. CHARPY DATA from RC-2.
Degree of Polynowial, $P[X(x)], n=4$
BASIS FUNCTION: $X(x)=0 ; x$
Coefficient of Determination, $C D=.835174$
Residual Variance, $R V=1.29126$
5 Coefficients (the last coefficient is the constant tere in the polynomial) $C(1)=844.7538$ C(2) $=-5858.323$

C(3) = 14127.81
c(4$)=-13802.83$
$C(5)=4806.809$

1	K	y	$\mathrm{P}[\mathrm{X}(\mathrm{x})]$	Deviation	*
1	. 8587	25	22.43897	2. 561035	04
2	. 9641	17	21.59277	2.561035 -4.592774	04
3	1.0185	21.5	17.85693	-4.582774 3.643067	04
4	1. 025	18	17.92627	7. $3730478 \mathrm{E}-02$	04
5	1.0772	21.5	21.60547	-. $1054688{ }^{\text {7.02 }}$	04
6	1. 1001	30.5	24.6077	5.862305	04
7	1.1175	19	27.36768	5.862305 -8.367676	04
8	1. 1566	40.5	34.46729	-6.367676 6.032715	04
9	1.174	28.5	37.90283	6.032715 -9.402832	04
10	1. 2132	41.5	45.82862	-9.402832 -4.328614	04
11	1. 2132	46	45.82862 45.82862	-4.328614	04
12	1. 2382	55.5	50.82862 50.77051	1713867 $+\quad 729492$	04
13	1. 2554	64.5	55.81006	4.729492	04
14	1. 287	58	56.81006 60.95655	8.689941	04
15	1.3263	65	64.79053	-2,956543	04
16	1.3535	66.5	64.39083	2084727	04
17	1. 4166	64.5	67.38584	-. 8358375	04
18	1. 4514	68.5	68.52285	-4.022949	04
	1.4514	68.5	65.81495	2.685059	4

The CHI ${ }^{-2}$ (to be used with Chi-square Distribution Table) is 16.78637

TASE 2: ANALYSIS OF Mod. CHARPY DATA frow RC-2*
Degree of Polynowial, $\mathrm{P}[\mathrm{X}(\mathrm{x})], \mathrm{n}=5$
BASIS FUNCTION: $X(x)=0+x$
Coefficient of Deteraination, CD $=.943212$
Residual Variance, $\mathbf{R V}=1.225407$
6 Coefficients (the last coefficient is the constant ters in the polynomial):

$\mathrm{C}(1)=43618.66$	$\mathrm{C}(2)=-261180.2$	$\mathrm{C}(3)=620427.2$
$\mathrm{C}(4)=-730689.8$	$\mathrm{C}(5)=426694.9$	$\mathrm{C}(6)=-98849.59$

1	x	y	$\mathrm{P}[\mathbf{X}(\mathrm{x})]$	Deviation	*
1	. 85887	25	20.83594	4. 164063	04
2	. 9641	17	21.14844	-4.148438	14
3	i. 0185	21.5	20.46094	1.038063	04
4	1.025	18	20.26563	-2. 265625	04
5	1.0772	21.5	20.90625	. 58375	04
6	1. 1001	30.5	22.96094	7.539063	04
7	1.1175	19	25.29688	-6. 296875	04
8	1.1566	40.5	32.69531	7.804688	04
9	1.174	28.5	36.6875	-8.1875	04
10	1. 2132	41.5	46.14844	-4.648438	04
11	1. $2: 32$	46	46.14844	-. 1484375	04
12	1.2382	55.5	51.97657	3.523438	04
13	1. 2654	64.5	57.59375	6.906:5	. 04
14	1.297	58	62.34375	-4.34375	04
15	1. 3268	65	64.90625	. 09375	. 04
16	1.3535	66.5	65.66406	. 8359375	. 04
17	1.4166	64.5	65.07813	$-.578125$. 04
18	1.4514	68.5	67.8E156	. 6484375	04

The CHI ${ }^{2} 2$ (to be used with Ch1-Bquare Distribution Table) is 14.70488.
TASK * 2: ANALYSIS OF Hod. CHARPY DATA from RC-2'
Degree of Polynowial, $P[X(x)], n=6$
BASIS FUNCTION: $X(x)=0+x$
Coefficient of Deternination, $C D=.843883$
Reaidual Variance, $\operatorname{BV}=1.321019$
7 Coefficients (the last coefficient is the constant term in the polynomial):

$\mathrm{C}(1)=166668$	$\mathrm{C}(2)=-1160218$	$\mathrm{C}(3)=3347188$
$\mathrm{C}(4)=-5124321$	$\mathrm{C}(5)=4392653$	$\mathrm{C}(6)=-2000023$
$\mathrm{C}(7)=578072.7$		

1	$\underline{1}$	y	$\mathrm{P}[\mathbf{X}(\mathrm{x})]$	Deviation	*
1	. 9587	25	21.84375	3. 15625	04
2	. 9641	17	21.15625	-4.15625	04
3	1.0185	21.5	18.78125	1.71875	04
4	1.025	18	19.9375	-1.9375	04
5	1.0772	21.5	22.21875	-. 71875	04
6	1. 1001	30.5	24.15625	6.34375	. 04
7	1.1175	19	26.40625	-7.40625	. 04
8	1.1566	40.5	32.65625	7.84375	. 04
9	1.174	28.5	36.5	-8	. 04
10	1. 2132	41.5	45.96875	-4.46875	. 04
11	1.2132	46	45.96875	. 03125	. 04
12	1. 2382	55.5	52.59375	2.90625	. 04
13	1.2654	64.5	57.71875	6.78125	. 04
14	2.297	58	63.53125	-5.53125	. 04
15	1.3263	65	66.59375	-1.59375	. 04
± 6	1. 3535	66.5	66.90625	-. 40625	. 04
17	1.4166	64.5	63.8125	. 6875	. 04
18	1. 4514	68.5	68.65625	-. 15625	04

The CHI 2 (to be ueed with Chi-equare Distribution Table) is 14.53121.

SUMMARY OF TASE 2
This task investigated Polynoniale of degree 3 through 6 fit to the Data Set,
Hod. CRARPY DATA froe RC-2, using the
BASIS FONCTION: $\mathbf{X}(\mathbf{x})=0+\mathbf{x}$

The polynomial of degree 3 produces the largest fractional decrease in RV (note, ite $R V=1.202882$), hence, is taken as the BRST POLYNOMIAL/BEST FIT for this Data fiet (1.e., from anong the polyooials with the apeoifically chosen Basis Punction and within the degree range investigated). PLOTnFIT suggeste that it is a polynonial of high enough degree that it should oone close to the 'true function", i.e., the 'true sodel', yet low enough that it 'averages out' randow errors.

THE RIGHRST DEGRER POLYNOHIAL SHOWN IN THIS PLOT IS 3 , EASIS FUNCTION: $\mathbf{X}(\mathbf{x})=0+\mathbf{x}$

DETERMINATION of RTADt

THE BIGEEST DEGREE POLYNOHIAL SHOWN IN THIS PLOT IS 4, BASIS FONCTION: $\mathbf{X}(\mathbf{x})=0+\mathbf{x}$

DETERMINATION of RTIAT

THE HIGREST DEGREE POLYNOHIAL SHOWN IA THIS PLOT IS 5,

DETERMINATION of RTndt

THE HIGHEST DEGREE POLYNOHIAL SHOWN IN THIS PLOT IS 6, BASIS FUNCTION: $X(x)=0+x$

DETERMINATION of RTNDt

Do you agree with PLOTnFIT' ehoice for the polynowial degree that yielde the most atisfactory correlation of the data (y / n) ? n
What degree poiynowal do you think beet represents this Data Set?
$n=5, \quad B V=1.225407$

PL,OTNEIT, 4th

JOB: CHARPY RC-2 DCONT-06/28/89
EEY PROGRAM PARABETKRS AND OJTPUT DATA
tive - 11:52:15

TNDP $=36$

$X H A X=1.4514$
$Y M A X=68.5$
LIX $=4$
LIY $=4$
$\mathbf{X R}=315$
$Y \mathrm{Yg}=162$
$N X B=74$
NYE $=36$

$W Y C=0$	$Y L L=0$
$N X C=0$	$Y L L=0$
$S X=8$	$U Y=0$
$S X=18$	$U Y=20$
$S X=27$	$U Y=40$
$S X=27$	$U Y=60$
$S X=35$	$U Y=80$

YOL $=0$
XOL $=0$
$\mathrm{SY}=21$
$S Y=16$
$\mathrm{SY}=10$
$S Y=5$
$\mathbf{S Y}=0$

Every 10 th Point TASE 1
Ber Best Polynonial Curve Best Fit To Mod. CharPy data from RC-2':

XPI	x	$\mathrm{P}[\mathrm{X}(\mathrm{x}) \mathrm{]}$	YPI	$\mathrm{dP}[\mathrm{X}(\mathrm{x})] / \mathrm{dx}$	Int $P[X(x)] d x$
75	. 799	20.21819	120	8. $600216 \mathrm{~K}-02$	0
85	. 8273333	20.22183	120	. 1819072	0
85	. 8556667	20.22941	120	+. 3751815	0
105	. 8840001	20.24483	120	. 755479	0
115	. 8123334	20.27551	120	1.487667	0
125	. 9406667	20.33518	120	2.867474	0
135	. 8890001	20.4489	120	5.413761	. 2314342
145 155	. 9873334	20.66117	118	10.0128	+8135206
155 165	1.025667	21.04923	118	18.12807	1.403879
165 175	1.054	21.74803	117	32.06022	2.009175
185	1.082333	22.85212	115	55.14407	2.640818
185	1.139	24.99342	110	91.50798	3. 317623
205	1.167333	28.29585 33.317	104	144.4708	4.069013
215	1.195667	40.30155	93 78	211.9675 27.0898	4. 837401
225	1. 224	48.72762	78 61	276.0898 306.5502	5.975937
235	1. 252333	56.92102	44	306.5502 257.1568	7.235229
245	1. 280667	62.63449	32	257.1568 140.4854	8.735229 10.43684
255	1. 309	65.03956	27	140.4854 39.23042	10.43684 12.25238
265	1. 337334	-5.51625	26	39.25042 3.657172	12.25238 14.10424
275	1. 365667	65.54738	26	7. $564261 \mathrm{~g}-02$	14.96424
285	1. 394	65.54778	26	1. $25394 \mathrm{E}-04$	15.96118 17.81838
295	1. 422333	65.54778	26	4.856977E-09	17.81838 19.67566
305	1. 450667	65.54778	26	4.856977E-09	19.67556 21.53274
315	1.479	65.54778	26	$1.807926 \mathrm{E}-26$	21.71846

The Total Integral Of P[X(x)]dx is From .9576667 To 1.4535 and the Constant of Intergrstion is 0 .

TASK 2
Every 6th Point On The Best Folynosial Curve Best Fit To Mod. CharPY DATA fro RC-2":

$\begin{gathered} \text { Coeffle } \\ \text { C(} 1 \\ \text { C(} 4 \end{gathered}$	seates of the $\begin{aligned} & \eta=218083.3 \\ & \eta=-1461380 \end{aligned}$	Derivative: C(2 C(5	$=-1044721$ $j=426684.8$	C) c) c	$\begin{aligned} & J=1861282 \\ & j=0 \end{aligned}$	
$\begin{gathered} \text { Coeffic } \\ \text { C(} 1 \\ \text { C(} 4 \end{gathered}$	ients of the $=7269.777$ $=-243563.3$	$\begin{array}{rrr}\text { Integral } & \\ C(& 2 \\ C(& 5\end{array}$	$=-52236.05$ $==2193 \wedge 7.4$	C($\begin{aligned} & 3 \\ & \text { c(} 6\end{aligned}$	$=155106.8$ $=-88849.59$	
XPI	x	$\mathrm{P}[\mathrm{X}(\mathrm{x}) \mathrm{]}$	YTI	$\mathrm{dF}[\mathrm{X}(\mathrm{x})] / \mathrm{dx}$	Int $\mathrm{P}[\mathrm{X}(\mathrm{x})] \mathrm{dx}$	17
75	. 798	-166.2031	508	3287.868	0	
81	8160001	-116.1875	404	2612.219	0	0
87	. 833	-76.82813	322	2037.688	0	0
93	. 85	-46.35938	258	1554.906	0	
99	. 8670001	-23.45313	210	1154.531	0	0
105	. 8840001	-6.726563	176	828.0313	0	0
111	. 901	5.0625	152	566.9375	0	0
117	. 8180001	12.89844	136	363.5938	0	c
128	. 9350001	17.68581	126	210.4688	0	0
129	852	20.28125	120	100.5938	0	0
135	. 9690001	21.32813	118	27.53125	. 26	0
141	. 8860001	21.40625	118	-14.90625	. 5976568	0
147	1.008	20.97656	119	-32.40625	. 9648438	0
153	1.02	20.40625	120	-30.125	1.314453	0
138	1.037	20.03125	121	-12.78125	1.65625	0
165	1.054	20.02344	121	15.21875	1. 982188	0
171	1.071	20.38594	120	49.78125	2.353516	0
177	1.088	21.76568	117	87.71875	2.720703	0
183	1. 105	23.5625	113	125.875	3. 083985	0
189	1. 122	26.02344	108	16:.6563	8. 511718	0
195	1. 139	29.0625	102	182.7188	3. 078516	
201	1. 156	32.55469	85	217.8438	¢. 511719	0
207	1.173	36.36719	87	235,125	5.091797	0
213	1.18	40.48219	78	244.0313	5.75	0
218	1. 207	44.59375	70	244.25	6. 484375	0
225	1.224	48.76563	61	235.6563	7.28711	
231	1.241	52.60157	53	218.5	8. 125	0
237	1.258	56.21875	45	194.1563	9.050781	0
243	1.275	58.25782	39	163.8125	10.08148	0
249	1. 292	61.6875	34	128.75	11.0625	0
255	1. 309	63.60157	30	91.90625	12. 13281	
261	1. 326	64.78906	28	55.46875	13,19727	0
267	1.343	65.54688	26	22.71875	14.34766	0
273	1. 36	65.625	26	-3.125	15. 42578	
279	1.377	65.48438	26	-17.53125	16.58984	
285	1. 394	65.16406	27	-16.75	17.66016	0
291	1. 411	65.03125	27	4. 5625	18.80859	0
297	1.428	65.47656	26	51.43 .75	19.90625	0
308	1. 445	66.9375	23	129.375	21.01172	0
309	1.462	70.10156	16	244.9688	21.5918	0
315	1. 479	75.5	5	404.6875	21.5918	0

The Total Integral of $\mathrm{F}[\mathrm{X}(\mathbf{x}) \mathrm{Jdx}$ is Fron 8576667 To 1.4535 and the Constant of Intergration is -18925.81

This is a continuation of the snalysis begun with job INITIAL ANALYSIS$06 / 26 / 89^{\circ}$ and extended through Job CHARPY RC-2 CCONT-06/27/89. . This job Qill conpare results using Basis Functions 6 and 1 on the modified data frow file FOL06891.SIS.
EACH CURVE IS A BEST FIT' WITH AN nth DRGREE POLYNOMIAL
$P[X(x)]=C(1) X(x)^{n} n+C(2) X(x)^{n}(n-1)+\cdots+C(n) X(x)+C(x+1)$

PLOTTING INSTROCTI ONS
Generate (color) BKDIUM resolution, LINEAR graphe with PLOTAFIT DETERMINRD COORDINATE RANGES AND HARKING INTERVALS

DETERMINATION of RTndt

1. The results of this part of the analysis show that, using Basis function \# 6 with the coefficients from Part 3.a), curves fit with high degree polynomials are not an improvement over that obtained with degree $n=1$. For $n=2$ and $n=3$, the high order terms in the polynomial tend to be suppressed, while for $n=4$ the higher order coefficients start to get large as RV increases further (see pages A-88 and A-89). As shown by the graphs on pages $A-90$ through $A-92$, the effect of going from $n=1$ to 3 is barely perceptible, but in going to $n=4$, the curve begins to "strain" toward the data points.
2. Using Basis Function \# 6, CHI^{2} decreases slightly (from 13.9665 to 13.2000) with increasing polynomial degree $n(=1$ to 4) while RV increases (from 0.873 to 1.015). The reason for this is that as n increases, the number of degrees of freedom $N U$ decreases from 16 to 13 (not taking into account the two coefficients in the Basis Function that are obtained by "trial-anderror" fit to the data) and the calculated CHI^{2} is independent of NU while RV is inversely proportional to $N U$; consequently, RV is a better parameter for interactively comparing polynomials. With regard to CHI^{2}, the effect of NU is taken into account in the interpretation of the value of CHI^{2} relative to the Chi-square distribution table in Appendix B.
3. Although RV is lowest for the polynomial of degree $n=3$ when using Basis Function \# 1 (see pages $A-94$ and $A-95$), the polynomial of degree $n=5$ was taken as being more representative of the data because it shows a shape that is "more like" typical Charpy energy versus temperature data (see pages $A-96$ through $A-99)$. All the coefficients increase steadily with increasing n, becoming very large above $n=5$ (while RV continues to increase), suggesting that higher degree polynomials may not only fail to improve the fit, but may result in problems with loss of significance due to the limitations of single-precision arithmetic.
4. With regard to the tables on pages $A-100$ and $A-101$, note that every 10 th point is shown for Task \# 1 (which is the PLONnFIT default for $n \leqq 3$) and every 6 th point is shown for Task $\# 2$ (which is the PLOTAFIT default for $3<n \leqslant 7$); if n had been greater than 7 for pither task, the corresponding table would have shown every 3rd point. The only options available for you to choose are to request that all the points be displayed in the table [as was done in Part 2.a); see pages A-19 through A-26] or to request that none of the points be displayed (as was done in Part 1; see pages $A-11$ and $A-12$).
5. Page $A-102$ shows the comparison of the "best polynomial/best fit" using (a) Basis Function \# 6 (Task \#1) and (b) Basis Function \# 1 (Task \#2). For case (a) there are actually 4 data-determined coefficients (hence, 14 degrees of freedom) and CHI^{2} is 13.97 ; for case (b) there are 6 datadetermined coefficients (hence, 12 degrees of freedom) and CHI^{2} is 14.70 . Although both models may be considered to fit the data adequately (i.e. . in both cases the deviations are probably due to chance; see the table in Appendix B), which is what you would expect on the basis of the curves
shown, Basis Function \# 6 yields (a) a simpler model, (b) a slightly better fit to the data, (c) lower shelf and upper shelf energies from the best fit to all data points, and (d) meaningful extrapolation to regions outside the data range.
6. The lower and upper shelf energies estimated from the "best polynomial/best fit" using Basis Function \# 1 [see Part 2. a) Comments on OUTPUT, page A-27] are $20.7 \mathrm{ft}-1 \mathrm{~b}$ and $65.3 \mathrm{ft}-1 \mathrm{~b}$, respectively. The coefficients returned by PLOTnFIT, for the polynomial of degree $n=1$, with Basis Function \# 6 $(C S I=0, C O 1-0, D C 1=0, C E 1=1, C F 1=-0.0105$, and $C G 1=22.5)$, are $C(2)=65.55 \mathrm{ft}-1 \mathrm{~b}$ (which is equivalent to the upper shelf energy) and $C(1)=-45.33 \mathrm{ft}-1 \mathrm{~b}$ (which represents the difference between the lower and upper shelf energies); that is, $C(2)+C(1)=65.35-45.33=20.22 \mathrm{ft}-1 \mathrm{~b}$, which is the lower shelf energy.

APPENDIX B

CHI-SQUARE DISTRIBUTION TABLE

∞ For larger degrees of freedom, $N U$, the expression $\sqrt{2 C_{H I}^{2}}-\sqrt{2 N U-1}$ may be used as a normal deviate with unit variance.
This table is reproduced from Table IV, "Distribution of x^{2}," of Fisher \& Yates, Statistical Tables for Biological, Agricultural and Medical Research. published by Longman Group UK Ltd. , London (previously published oy Oliver and Boyd, [td. Edinburgh) and by permissior, of the authors and publishers.

APPENDIX C

PROGRAM QUTLINE

	NUREG-1378
2.TITLE AND SUETITLI PLOTnFIT: A BASIC Program for Data Plotting and Curve Fitting	
	3. DATE REPORT PUBLISHED
	October 1989
	a FIN OR ORANT NUMEIR
6. AUTMOR(5)	6.tyPE OF REDORT Conputer Program
John 0. Schiffgens	7 Period coveneb unium Disum
B. PERFORMING OPGANIZATION - NAME AND ADDRESS III NRC provide Givision, Ollict or righon, U.S Nuclear Requlatory Divisjon of Engineering and Systems Technology Division of Operational Events Assessment Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, DC 20555	sion, and manifing achoress if contractor

 and mailing addren.).

Same as above
10. SUPPLEME NTARY NOTES
11. ABSTRACT 1200 worh ar les

PLOTnFIT is a BASIC program to be used with an IBM or IBM-compatible personal conputer (PC) for plotting and fitting curves to measured or observed data for both extrapolation and interpolation. It uses the Least Squares method to calculate the coefficients of nth degree polynomials (e.g., up to 10 th degree) of Basis Functions so that each polynomia? fits the data in a Least Squares sense, then plots the data and the polynomial that a user decides best represents them.

PLOTnFIT is very versatile. It can be used to generate linear, semilog, and $\log -\log$ graphs and can automatically scale the coordinate axes to suit the data. It can plot more than one data set on a graph (e.g., up to 8 data sets) and more data points than a user is likely to put on one graph (e.g., up to 225 points). A PC diskette containing (1) READIST. PNF (a summary of this NUREG), (2) INI06891. Sis and FOL06891. SIS (two data files), and (3) PLOTNFIT. 4TH (the latest version of the prograni) may be obtained from the National Energy Software Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL. 60439.
12 KEY WORDSDESCRMPORS ILaI wor

BASIC
curve fitting
computer graphics
curve plotting
data a~alysis
data devlalions
data errors
data evaluatior
1BM computers
least squares fit
mathematical models
polynomials
statistics

Ti Avaliablivilatimen Unl imited
14 Sculivelabsmentor
Thin Paser
Unclassified
Trinimeatis
Unclassified
16. NUMEER OR PAGES
16.

UNITED STATES
NUCLEAR REGULATORY COMMISSION
WASHINGTON, D.C. 20555
OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, $\mathbf{6 0 0}$

