NUREG-1378

PLOTnFIT: A BASIC Program for Data Plotting and Curve Fitting

U.S. Nuclear Regulatory Commission

Office of Nuclear Reactor Regulation

J. O. Schiffgens

8911290377 891031 PDR NUREG 1378 R PDR

AVAILABILITY NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

- The NRC Public Document Room, 2120 L Street, NW, Lower Level, Washington, DC 20555
- The Superintendent of Documents, U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20013-7082
- 3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC Office of Inspection and Enforcement bulletins, circulars, information notices, inspection and investigation notices; Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the GPO Sales Program: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal and periodical articles, and transactions. Federal Register notices, federal and state legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Office of Information Resources Management, Distribution Section, U.S. Nuclear Regulatory Commission, Washington, DC 20555.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018.

NUREG-1378

PLOTnFIT: A BASIC Program for Data Plotting and Curve Fitting

Manuscript Completed: July 1989 Date Published: October 1989

J. O. Schiffgens

Division of Engineering and Systems Technology Division of Operational Events Assessment Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, DC 20555

ABSTRACT

PLOTNFIT is a BASIC program to be used with an IBM or IBM-compatible personal computer (PC) for plotting and fitting curves to measured or observed data for both extrapolation and interpolation. It uses the Least Squares method to calculate the coefficients of nth degree polynomials (e.g., up to 10th degree) of Basis Functions so that each polynomial fits the data in a Least Squares sense, then plots the data and the polynomial that a user decides best represents them.

PLOINFIT is very versatile. It can be used to generate linear, semilog, and log-log graphs and can automatically scale the coordinate axes to suit the data. It can plot more than one data set on a graph (e.g., up to 8 data sets) and more data points than a user is likely to put on one graph (e.g., up to 225 points). A PC diskette containing (1) READIST.PNF (a summary of this NUREG), (2) INIO6891.SIS and FOLO6891.SIS (two data files), and (3) PLOTNFIT.4TH (the latest version of the program) may be obtained from the National Energy Software Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439.

TABLE OF CONTENTS

Page

PREF	RACT ACE. ALLATION AND EXECUTION OF PLOTNFIT.4TH	iii vii ix
1	DESCRIPTION O. PLOTNFIT	1-1
	1.1 Introduction. 1.2 Some Basic Assumptions. 1.3 Theory	1-1 1-1 1-2
2	USE OF PLOTNFIT	2-1
	2.1 Introduction 2.2 INPUT 2.3 OUTPUT	2-1 2-2 2-4
3	REFERENCES	3-1

APPENDICES

A	SAMPLE PROBLEM	
D	CHT-COUAPE DISTRIBUTION	TARLE

- CHI-SQUARE DISTRIBUTION TABLE PROGRAM OUTLINE BC

PREFACE

In 1984, the U.S. Nuclear Regulatory Commission (NRC) staff wrote a program, the precursor to PLOTnFIT, to plot data, with the idea of eventually adding to it curve-fitting capabilities. The work was set aside until 1987 when a paper by William G. Hood, "Polynomial Curve Fitter" (see Reference 1), came to the staff's attention. The program described in the paper is POLYFIT.BAS, copyright 1987 by William G. Hood, Conway, Arkansas. The staff recognized that the techniques presented by Hood were ideally suited to meet its initial objective and were much simpler to incorporate and faster to execute than anything it had envisioned. Subsequently, Hood's techniques were incorporated into the original program and PLOTNFIT.IST emerged in 1988. Since then, various useful options and safeguards have been added - not the least of which was the incorporation of the option of using Basis Functions. It is the inclusion of Basis Functions that allows for the possibility of meaningful extrapolation from complex data dependencies if you know something about how the data "should behave." The NRC staff's John Schiffgens developed PLOTnFIT and its precursor.

The description presented here specifically concerns PLOTNFIT.4TH, the fourth in a series of programs referred to generically as PLOTnFIT, each successive version being an extension of its predecessor. The program is "user friendly" (i.e., you, the user, need only follow the prompts) and has many "error traps" to keep you from entering meaningless INPUT by mistake. PLOTNFIT.4TH allows for the correction of erroneously entered data points by following simple procedures. You can choose from among five OUTPUT options, depending on the amount of detailed information you want to print.

The NRC staff is grateful to William G. Hood for permission to use portions of POLYFIT.BAS in PLOTnFIT. It is also grateful to the Literary Executor of the late Sir Ronald A. Fisher, F.R.S., to Dr. Frank Yates, F.R.S., and to the Longman Group UK Ltd., London, for permission to reprint Table IV, "Distribution of χ^2 ," from their book <u>Statistical Tables for Biological</u>, <u>Agricultural and Medical</u> Research (6th Edition, 1974).

INSTALLATION AND EXECUTION OF PLOTNFIT. 4TH

This section details the hardware and software requirements and the steps involved in running PLOTNFIT.4TH on a personal computer (PC). A basic familiarity with the PC and the DOS environment is assumed. No programming experience is required to run PLOTNFIT.4TH in its present form. A file labeled READIST.PNF is included on the PLOTNFIT diskette along with PLOTNFIT.4TH and data files INIO6891.SIS and FOLO6891.SIS from the sample problem shown in Appendix A. READIST.PNF contains much of the information presented here, but has no additional information; it is included as a convenient reference for those occasions when you are at your PC and this report is not handy.

None of the versions of PLOInFIT will run properly on a PC with a monochrome monitor; both a color/graphics monitor adapter and a color monitor are required. Also, it should be noted that the command BASICA alone (i.e., with defaults) will not provide sufficient memory for most jobs; to ensure sufficient memory for all jobs, you will need to use BASICA/C:0/F:1.

PLOTNFIT.4TH requires the following minimum hardware:

- IBM-PC/XT/AT or IBM-compatible PC
- color monitor and color/graphics monitor adapter
- 256K memory
- 8087 or 80287 math coprocessor (optional; noted here because it is highly recommended, although not actually required)
- 1 floppy drive
- printer (the printer must always be left on when PLOTNFIT.4TH is operating; a PLOTNFIT job always produces some printed OUTPUT)

Computer-printer communication is accomplished by PLOTnFIT using BASIC printer control codes to give Epson commands. Hence, best results are obtained with an Epson printer (e.g., FX-86e/286e) in protocol mode: ESC/P. It should be noted that there is one assembly language subroutine, VARPTR(TRRAY(1)), in PLOTnFIT. This subroutine uses the shift-print screen function to send the graphics presented on the monitor to the printer.

The following software is also required:

- DOS 3.X
- PLOTnFIT diskette
- GRAPHICS.COM (included in DOS)
- BASICA.COM (included in DOS)

PLOTNFIT.4TH may be installed on a hard disk by following the procedure given below:

A: C:\ switches to drive C C:\ Copy A:.. copies all files from the PLOInFIT diskette to drive C

All of the files from the distribution diskette will be copied onto the root directory of the hard disk by following this procedure.

To properly execute PLOTNFIT. 4TH, you must load GRAPHICS before BASICA; that is,

A: (or C: \) GRAPHICS A: (or C: \) BASICA/C: 0/F: 1.

GRAPHICS translates the computer instructions that refresh the graphics on the monitor screen for transmission to the printer. Without first loading GRAPHICS, you cannot produce printed copies of graphs displayed on the monitor. Once in BASICA, you can begin executing a job (e.g., the sample problem shown in Appendix A) by entering the following commands after the Ok prompt:

either

Ok LOAD" A:(or C:\)PLOTNFIT.4TH Ok RUN

or

Ok RUN A: (or C: \)PLOTNFIT. 4TH.

Of course, you may also execute and run PLOTNFIT.4TH while in DOS through the initial BASIC command as follows:

A: (or C: \) BASICA PLOTNFIT. 4TH/C: 0/F: 1.

After the RUN command, or the above equivalent, simply follow the prompts provided by PLOTNFIT.4TH. INPUT may be entered either from the keyboard or from a diskette file. It is a good bookkeeping procedure to have a diskette in drive A or B, or a subdirectory on drive C, just for data files (i.e., you tend to generate many small files using PLOTNFIT), and to do all reading from it and writing to it.

It is often desirable to create data files where measurements are made (i.e., in the laboratory, in the field, out in the plant, etc.), perhaps using a "lap-top" IBM or IBM-compatible PC, and then analyze the data when you return to your office. For this reason the following description has been included of the OUTPUT format required in any program to produce a data file that PLOINFIT can read; this is the same format used by PLOINFIT.4TH to save data for further analysis at a later time: OPEN [storage]device:filename FOR OUTPUT AS #i
WRITE #i, dataIDname[<31 characters], ndp[# of data points]
FOR J = 0 to NDP - 1
WRITE #i, x(J)[independent variable], y(J)[dependent variable],
 w(J)[weighting factor]
NEXT J
 [Repeat these four statements, perhaps in a FOR...NEXT loop, for each
 data set that you want to include in "filename." You must keep track
 of data sets (pdsf) included in filename. A simple</pre>

data set that you want to include in "filename." You must keep track of the number of data sets (ndsf) included in filename. A simple procedure suggested by PLOINFIT for keeping track of the number of data sets in a file is described in Section 2.3.]

CLOSE #1

During a job, PLOTnFIT asks if your data will be INPUT from the keyboard or from a stored file. If you answer "from a stored file," PLOTnFIT will request the "[storage]device:filename" and the "# of data sets, ndsf," in the file, then step through the file and read in, sequentially, those data sets you choose to use. The total number of data points per job (from all data sets) must not exceed 225.

1 DESCRIPTION OF PLOTNFIT

1.1 Introduction

This program is a tool to help with understanding and interpreting numerical data. Because of uncertainties, typical data never exactly fit the model used to describe them, even when that model is correct (i.e., the "true model"). In analyses, therefore, it is generally not important for the model or curve to pass through each point; it need only come close to be of value. PLOINFIT is useful for the analysis of such inexact data (i.e., data subject to measurement errors). In applications where there are no uncertainties in the data and the curve must pass exactly through the data points, you should use methods other than those incorporated in PLOINFIT, such as "spline functions."

1.2 Some Basic Assumptions

Perhaps the basic assumption made, implicitly or explicitly, when technical, quantitative measurements or observations of the effect of changes in one quantity (the independent variable, x) on another (the dependent variable, y) are recorded, is that there is a true model that relates the quantities measured. That is, there is a direct physical relation between the independent and dependent variables that can be expressed mathematically. You, as an evaluator of data, want to be able to identify such models so as to improve your understanding of phenomena under investigation and your ability to predict results. Although understanding phenomena and predicting results are not independent, the former tends to focus on interpolation (i.e., describing within the range of the data analyzed) and the latter on extrapolation (i.e., going beyond the data analyzed). How you use PLOInFIT depends on your focus.

Similarly, another basic assumption is that for any given (finite) set of such measurements there is an infinite parent distribution, of which the set is a sample, and that the set is actually the most probable set of measurements. This is the principle of maximum likelihood. The problem is that frequently we do not know, at least initially, even an approximate model, let alone the true model, or the parent distribution or all the independent variables that can have an effect on the dependent variable, let alone control them all. Furthermore, we are never able to fully eliminate errors from measurements. though we strive to eliminate systematic errors or make corrections for them (and must assume that we succeed, if we are to value our data).

The task then is to try models of y as a function of x, P(x), incorporating into them as much knowledge as we have of the phenomena being analyzed, until we find one that, in our judgment, best describes the data (i.e., best correlates all the points in the data set). Suppose we are fitting m data points (x_j, y_j) ,

i = 1,...,m, to a model that has n+1 adjustable parameters C_k , k = 1,...n+1; that is, suppose

 $y \sim P(x; C_1, C_2, \dots, C_{n+1}).$

NUREG-1378

1-1

We may ask the question: Given a particular set of parameters, what is the probability that this data set could have occurred, plus or minus some fixed delta y on each data point? We may then intuitively identify the probability of the data given the parameters as the likelihood of the parameters given the data. In any case, we assume that the measurements, y_i , contain only random

errors [generally, each with a different parent distribution and corresponding standard deviation, $(sigma)_i$], and that the x_i contain no errors (i.e., that the neglected uncertainty in x_i , which would be otherwise assumed random, is effectively included as a contributing component to the total uncertainty in

 y_i). For a good and easy to read discussion of experimental errors and how to treat them, see Reference 2.

1.3 Theory

To be genuinely useful, a fitting procedure should allow for modeling flexibility and the incorporation of data uncertainties, as well as yield model parameters and a statistical measure of goodness-of-fit. PLOTNFIT.4TH is so written as to be genuinely useful.

For our purposes, in order to determine model parameters and to estimate how well a model correlates the data, we define a set of "observation equations," the deviations

 $d_{i} = y_{i} - P[X(x_{i})],$

where P[X(x)] is an nth degree polynomial chosen to model measurements of the dependent variable y_i as a function of x_i . The polynomial is linear relative to its coefficients and taken to be a function of X(x), referred to as a Basis Function (see Reference 3), so that at any x_i

$$P[X(x_i)] = C(1)[X(x_i)]^{(n)} + C(2)[X(x_i)]^{(n-1)} + \dots + C(k)[X(x_i)]^{(n-k+1)} + \dots + C(n)X(x_i) + C(n+1).$$

On a graph, the deviation d_i is the vertical distance between the data point (x_i, y_i) and the point on the curve $(x_i, P[X(x_i)])$. Since we assume that the set of measurements is the most probable set of measurements, the proper model to choose is that which gives the largest possible value to the probability of having $P[X(x_i)]$ fall within an interval dy of y_i for all m points (i.e., we apply the "principle of maximum likelihood" to d_i).

Least Squares fitting is a maximum likelihood estimation of the polynomial coefficients C(k) if the measurement errors are independently random and normally distributed with a constant standard deviation. That is, for the set of observations (x_i, y_i) , the method of Least Squares selects a curve [i.e., chooses C(k) values] that maximizes the probability that P[X(x)] will describe the data by minimizing the sum of the squares of the vertical distances

 $SUM[d_{i}]^{2} = SUM(y_{i} - P[X(x_{i})])^{2}.$

NUREG-1378

This is referred to as the maximum likelihood estimator, where SUM symbolizes the sum over i from 1 to m. If the errors are not normally distributed, then the Least Squares estimations of the C(k) coefficients are not maximum likelihood, but may still be useful in a practical sense.

The method can also be used when the observations are not all from the same parent distribution. For example, if different observations were made by different observers, made using different instruments, or are suspect for some reason (i.e., perhaps some of the observations were made under less than optimal conditions), "outliers" may result. The problem with outliers is that they can readily render a Least Squares fit, on otherwise adequate data, worthless, because their probability of occurrence in an assumed Gaussian distribution is so small that the maximum likelihood estimator is likely to distort the whole model or curve by trying to take them, mistakenly, into account (see Reference 3). To handle the problem, the deviation for each point is weighted inversely as the

variance [i.e., the square of the uncertainty or standard deviation, (sigma);²]

of its parent distribution, which is assumed Gaussian, where the variance of each point is assumed to be that of its parent distribution. The quantity to be minimized then is

 $SUM[(y_i - P[X(x_i)])/(sigma)_i]^2$,

which is called the Chi-square.

To minimize a function of n+1 variables, we take the partial derivative of the function with respect to each of the variables in turn, and set each derivative equal to zero. Therefore, to minimize the weighted sum of the squares of the vertical distances, we set

Partial derivative w.r.t. C(k) of $SUM(w_j[d_j]^2) = 0$,

for k from 1 to n+1, where the ith weighting factor is

 $w_i = 1/(variance)_i = 1/(sigma)_i^2$.

The derivatives are evaluated to obtain n+1 equations, which are solved simultaneously to find the C(k). With this more general formulation, if the measurement errors are not known, they may all be set to the constant value, sigma_i = 1 (i.e., for i = 1 to m, w_i = 1 may be input to PLOInFIT or the w_i may be ignored and PLOInFIT will set them equal to 1).

The procedure incorporated in PLOTnFIT uses a linear combination of orthogonal polynomials so as to avoid "ill-conditioning" and to perform the task of curve fitting with single-precision arithmetic (see Reference 1). PLOTnFIT not only produces the best approximation in the Least Squares sense, but also produces a solution whose parameters C(k) tend to be as small as possible. That is, when some combination of Basis Functions is irrelevant to the fit, that combination is driven down to a small value rather than pushed up to create very large, delicately canceling quantities.

NUREG-1378

After P[X(x)] is fit to the data, PLOTnFIT calculates the statistic "residual variance"

$$RV = [1/(m-n-1)][SUM(w_{i}[d_{i}]^{2})]$$

= [1/(m-n-1)][SUM(w_{i}[y_{i} - P[X(x_{i})]]^{2})],

where m-n-l is the degree of freedom NU (n+l being the number of coefficients in the polynomial determined by the data) that can be used to determine which polynomial gives the best fit. Generally, the smaller the RV the better the fit, at least when the polynomial degree, n, is much smaller than the number of data points, m. It is almost always desirable, however, to keep n as low as possible, consistent with a small RV, so as to keep the fitted curve free of meaningless, non-physical oscillations and to keep the model simple.

If each point has its own standard deviation (sigma)_i, then the statistic of interest is Chi-square; that is,

 $CHI^2 = SUM(w_i[d_i]^2) = (m-n-1) \cdot RV = NU \cdot RV.$

Clearly, if the measured data agree with the model exactly, then $\text{CHI}^2 = 0$; but as mentioned earlier, this is very unlikely, even if the sample is taken from the assumed parent distribution. In any case, the larger CHI^2 is, the more the data and the model disagree. The appropriate question to be answered then becomes: How large a value of CHI^2 is reasonable for the model to be considered representative of the data?

The probability distribution for different values of CHI^2 at its minimum can be derived analytically and is the Chi-square distribution for NU degrees of freedom. The probability that the CHI^2 should exceed a particular value by chance Q, or the probability that it should fail to exceed a particular value by chance P, where P is the complement of Q (i.e., P = 1 - Q), is frequently tabulated in appendices to statistics books [a table of Q = $f(\text{NU}, \text{CHI}^2)$ is presented in Appendix B]. For example, for NU = 10 the probability that CHI^2 will (1) exceed 2.558 is Q = 0.99, (2) exceed 9.342 is Q = 0.50, and (3) exceed 29.588 is Q = 0.001. This means that if the model "fits" the data, there is a 99 percent chance that CHI^2 will be 2.558 or larger because of random fluctuations, but only a 0.1 percent chance that it will be larger than 29.558. If we calculate $\text{CHI}^2 = 7$, the differences are probably due to chance; whereas if we calculate $\text{CHI}^2 = 35$, then it is very unlikely that the differences are due to chance.

If $Q \leq 0.001$ either (1) the model is not a good one, (2) the sizes of the measurement errors (sigma); are incorrect (i.e., were underestimated), or

(3) the measurement errors are not normally distributed (i.e., there is an abundance of outlier points). If Q > 0.1 for a model, it is generally considered believable. However, if Q is too near to 1, most likely the measurement errors were overestimated, or perhaps the data were altered to fit the model. As a rule of thumb, a "typical" value of CHI² for a "moderately" good fit is

about NU; that is, for large NU, CKI^2 becomes normally distributed with a mean of NU and a standard deviation equal to the square root of 2.NU (see Reference 3).

It should be noted that when the individual measurement errors are not known, RV is no longer an independent assessment of goodness of fit, rather, it is only a quantity that can be used to estimate the uncertainty in the data provided the model P[X(x)] is "known" to be close to the true model. If you do not know the individual measurement errors (sigma), you may set the (sigma), equal to 1 and take the square root of RV as the standard deviation of the data with respect to the curve P[X(x)]; that is,

 $[SIGMA] = [[1/(m-n-1)]SUM(w_{i}[y_{i} - P[X(x_{i})]]^{2})]^{1/2},$

provided the deviations are due to measurement errors that are independently random and normally distributed [i.e., this assumes all (sigma)_i = SIGMA]. Accordingly, the measurements y_i fall within + or - SIGMA, 2.5IGMA, and 3.5IGMA of P[X(x_i)], 68 percent, 95 percent, and 99.7 percent of the time, respectively.

The program also calculates another statistic, the "coefficient of determination"

CD = 1 - WD/WY.

where

 $WD = SUM(w_i[d_i]^2)$

and

 $WY = SUM(w_i[y_i]^2) - [(SUM[w_iy_i])^2]/[SUM(w_i)],$

which can be used as a measure of how much of the variation in the values y_i can be attributed to changes in the values x_i (i.e., if y_i are independent of x_i , then the curve is just a horizontal straight line and CD = 0, while if the curve fits the data perfectly, CD = 1). Suppose, for example, that CD is 0.91. You can then attribute 91 percent of the weighted sum of the deviations squared to changes in x. Furthermore, to the extent that P[X(x)] is close to the true model, 9 percent of the weighted sum of the deviations squared would be due to random error (see Reference 1).

2 USE OF PLOTNFIT

2.1 Introduction

For ease in making changes during execution of the program, PLCTnFIT has two categories of INPUT: (1) plotting instructions and (2) data and data identification. It is possible to do more than one task (i.e., analyze more than one data set or analyze a data set more than once) during a given job; simply follow the "prompts."

- With regard to plotting instructions, the quantities (numbers and strings) that appear in parentheses are the variable values currently in the computer memory [Note: N(2) refers to the second element in the N array; N(=2) refers to the value of the variable N currently in the computer memory]. If you do not want to make a change at a variable prompt, simply press the ENTER key.
- (2) With regard to data and data identification, the quantities entered for one job can be readily saved for reanalysis in a later job. Data may be entered from the computer keyboard or from a disk file. Data are INPUT from the keyboard or disk file until a specified number of data points are read.
- (3) Data are changed easily by writing to a file (e.g., "filesave") those data sets that you are interested in saving from a job, starting a new job (without exiting PLOInFIT, if you like), entering the data from "filesave," and then making the desired changes (i.e., keyboard additions, deletions, or corrections).

As previously stated, the portion of this program that fits curves to data is based on the method described by W. G. Hood (see Reference 1), which involves finding the coefficients of an nth degree polynomial, P[X(x)], so that it fits a set of data points in a Least Squares sense. When the number of data points equals n+1, the plot of the polynomial will pass exactly through each point, although some meaningless, non-physical oscillations that are not wanted may occur. Generally, the most meaningful results are obtained when the number of data points far exceeds the degree of the polynomial (by at least a factor of 3 for large n), in which case the curve would probably not pass through any of the points but would be smooth (i.e., "wiggle free") within the range of the data. A common sense rule of thumb for a good fit is that "the curve should not be straining toward individual data points."

Typically, many calculations are required for intelligent interpretation of curve-fitting results, particularly when you are fitting for extrapolation. PLOInFIT and your PC do the calculations and plot the results quickly and accurately, but in the final analysis <u>curve fitting is an art and it is your good</u> judgment and skill that determine the value of the results and whether PLOInFIT was appropriately and satisfactorily used.

2.2 INPUT

You begin by identifying the job with a string of 17 characters or less. The job may consist of up to eight tasks, where each task is a separate analysis of a data set. You then provide a brief description of the job with a string of less than 256 characters, including blanks. Next you specify a series of plotting instructions; this involves responding to essentially the following questions:

- (1) Do you want your graph to be linear, semilog, or log-log?
- (2) What color combinations do you want for the curves, data points, and axes and labels shown on the monitor?
- (3) What labels do you want for the graph title (up to 30 characters), horizontal or x-axis (up to 22 characters), x-axis units (up to 5 characters), vertical or y-axis (up to 16 characters), and y-axis units (up to 5 characters)?
- (4) Do you want to establish coordinate ranges and marking intervals yourself, or do you want to let PLOInFIT do it for you?

These plotting instructions apply to all the tasks in a job. PLOInFIT may be instructed to make a set of graphs for each task and/or make one graph for the job containing the main result of each task. It is a good idea to let PLOInFIT establish coordinate ranges and marking intervals until you become familiar with the program.

After entering the plotting instructions, you then identify and INPUT the data you want to analyze; this involves responding to essentially the following questions or instructions:

(1) How many data sets do you want to analyze (although you may enter no more than eight per job, you may INPUT the same set eight times)?

(For each data set:)

- (2) Will the data come from the keyboard or from a stored file?
- (3) Identify the data (a string of less than 31 characters).
- (4) Enter each data point and weighting factor and make desired data changes.
- (5) Choose a Basis Function (from the list provided), and <u>specify the constant</u> coefficients in the function.
- (6) What is the lowest degree polynomial you want to consider, and how many successively higher degree polynomial fits do you want to try?
- (7) Choose a symbol to represent the data points.

Repeat steps 2 through 7 until all data are entered.

.

The model, P[X(x)], which in PLOTnFIT has the form of a polynomial in X(x), may consist of a linear combination of any specified function of x, X(x), where linear refers to the model's dependence on its initially unknown coefficients,

C(k). Although in theory the model could be any combination of functions, if it were nonlinear in its unknown coefficients, solving for them would be very difficult. The arbitrary function X(x), which is called the Basis Function, may be quite nonlinear in x, but may contain only known coefficients, whether estimated from the data set (or some other data set) or determined theoretically. The list of Basis Functions provided for you to choose from is as follows:

(1) X(x) = CS1 + x

(2) $X(x) = CS1 + EXP(CO1 \cdot x)/(CD1 + x)$

(3) $X(x) = (CS1 + CO1 \cdot x + CD1 \cdot x^2) \cdot LOG(x)$

(4) $X(x) = CS1/x + CO1 \cdot LOG(x) + x \cdot LOG(CD1 \cdot x + 2.71828)$

(5) $X(x) = CS1 + CO1 \cdot x^{CD1} + CE1/(CF1 + x^{CG1})$

(6) $X(x) = CS1 \cdot EXP(CO1 \cdot x^{CD1}) + CE1 \cdot EXP(CF1 \cdot x^{CG1})$

(7) $X(x) = CS1 \cdot EXP(CO1 \cdot x) + CD1 \cdot EXP(CE1 \cdot x) + CF1 \cdot EXP(CG1 \cdot x)$

(8) $X(x) = CS1 \cdot (CO1 + x)^{CD1} + CE1 \cdot (CF1 + x)^{CG1}$

(9) $X(x) = EXP(CS1 \cdot x) \cdot (CO1 + x)^{CD1} + EXP(CE1 \cdot x) \cdot (CF1 + x)^{CG1}$

(10) $X(x) = CS1 \cdot x \cdot SIN(CO1 + CD1 \cdot x) + [CE1/(CD1 + x)] \cdot SIN(CF1 + CG1 \cdot x)$

(11) $X(x) = EXP(CS1 \cdot x) \cdot SIN(CO1 + CD1 \cdot x) + CE1 \cdot SIN(CF1 + CG1 \cdot x)$

This list contains most of the functions you are apt to need. But remember, you must provide values for the constants (i.e., CS1, CO1, CD1, CE1, CF1, and CG1)

in the function you choose. Note, for Basis Functions containing arg^C terms, c must be an integer when arg is expected to have negative values.

If the Basis Function coefficients (i.e., constants) are not known initially, you may choose them by trial and error to give you a good fit to the data. However, you should keep in mind that PLOInFII gives you a best fit in terms of the chosen Basis Function in x, including the chosen Basis Function coefficients, not (except for Basis Function # 1) in terms of x. Note that if you choose the Basis Function coefficients to fit the data, you should include these coefficients in determining the degrees of freedom (except, of course, for those coefficients set merely to get the functional form desired).

The advantage of allowing for the use of a Basis Function [other than just X(x) = x] is that if you know something about "how the data go," for example, that they tend to be periodic (harmonic or damped harmonic) or logarithmic or exponential, etc., from theory, previous observation, or <u>intuition</u>, you can incorporate this knowledge into the model. Although X(x) = x can generally give a satisfactory fit for interpolation, it tends to be unsatisfactory for extrapolation from complex data dependencies, especially when polynomials of greater than 3rd degree are required for a good fit. In general, you need to know something about the data you are plotting (i.e., you need to be able to choose a suitable Basis Function) if you hope to extrapolate satisfactorily.

It is important to remember that once all plotting instructions and data have been INPUT, you are given an opportunity to make changes before PLOTnFIT begins to analyze and plot the data. Therefore, although mistakes may be made while entering plotting instructions (e.g., you may choose log-log when you really want your graphs to be semilog) or data sets (e.g., you may enter incorrect coordinates or weighting factors for some of the data points), you should always continue to INPUT and not try to abort the job, cause before the analysis begins you can go back and make corrections.

2.3 OUTPUT

You will find PLOINFIT OUTPUT neat, well organized, and easy to read and understand. Care was taken to arrange and group data for printing so as to provide reasonable flexibility in choosing an amount of detailed information for printing that is in keeping with the level of the analysis. For example, when doing exploratory analyses, you may choose to print as little OUTPUT as possible. For each job, by default, PLOINFIT provides at least a one-page summary for each task and a one-page job summary.

Each task summary identifies (1) the data set, (2) the degree range investigated, (3) the Basis Function used, (4) the polynomial degree chosen by PLOTnFIT as that which best correlates the data within the set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated), and (5) your choice of the degree that best fits the data (i.e., the "best polynomial/best fit").

The job summary page (1) identifies the job and the date and time of the analyses; (2) describes the job; (3) completely characterizes the comparative plot (described below) if one was made, and if not, it shows a summary of plotting instructions; (4) lists, for each task, the task number, data identification, the degree of the "best polynomial/best fit," the type of symbol used to represent the data points, the number of data points, and the source of the data set; and (5) identifies the data sets saved (if any data are saved from the job) and the file in which they are stored.

As you begin to zero in on a satisfactory model, you will most likely want to print more and more OUTPUT (i.e., to see more of the details). You are given five options from which to select the level of detail desired in the printed OUTPUT; they are as follows:

- (1) You may print the polynomial coefficients C(k), the residual variance (RV), and the coefficient of determination (CD) for each of the curves fit to each data set, as well as the coordinates and weighting factor for each data point (x_i, y_i, w_i) , the corresponding $P[X(x_i)]$ value and deviation d_i , and either the root-residual variance (standard deviation SIGMA) or the CHI².
- (2) For each data set you may print a set of graphs containing plots of all polynomials fit to the data set. The first graph will show a plot of the lowest degree polynomial considered, the second graph will show plots of the lowest and next higher degree polynomial considered, and so on. Such graphs show the evolution of a model as you proceed to a higher and higher polynomial degree.
- (3) You may print a graph containing plots of all data sets, each set with or without a corresponding "best polynomial/best fit" curve. Since this is the most significant graph, if you choose to print it, it is placed on the job summary page (which, as described above, always contains the complete identification of the information presented on this graph, whether the graph is printed or not).

(4) You may print values of key program variables needed to help you select coordinate ranges and marking intervals should you anticipate making additional graphs of the same data at a later time and not have PLOInFII do the selecting for you. The program parameters listed pertain to coordinate information (except for TNDP); each parameter that refers to the x-axis has a counterpart that refers to the y-axis. Hence, it is sufficient here to define only those parameters pertaining to the x-axis (except where otherwise noted).

TNDP : Total number of data points from all data sets (TNDP must ≤ 225).

- XMIN : Minimum x-coordinate from among all job data, when you default to PLOTNFIT (or you may choose some other value for XMIN).
- XMAX : Maximum x-coordinate from among all job data, when you default to PLOTNFIT (or you may choose some other value for XMAX).
- DEX : Length of a marking interval (i.e., distance between small hashmarks) in units of the data (you may choose the value for DEX).
- LJX : Number of marking intervals between large hashmarks.
- LIX : Number of large hashmarks considered minus one (and number of values of x to be printed along the x-axis); all may not be used.
- CX : Initial estimate of the maximum number of marking intervals needed.

[The next three parameters refer to x-coordinates of points on the monitor screen (where the x-, y-coordinates of the upper-left-most point are 0,0 and of the lower-right-most point are 319,199).]

- XS : Lowest horizontal point on the graph.
- XE : Highest horizontal point on the graph.
- XO : Horizontal point (sometimes not on the graph) at which the x-datacoordinate would be zero.
- NXS : Lowest value on the x-axis (initially XMIN), as shown on the graph, divided by DEX.
- NXE : Highest value on the x-axis (initially XMAX), as shown on the graph, divided by DEX.
- NXT : Total number of x-axis marking intervals (small hashmarks) on the graph [where NXT = NXE - NXS must initially be ≤ 36 (Note: similarly, NYT must initially be ≤ 27), otherwise, DEX (and/or DEY) must be increased].

[The following five parameters, including XLL and XUL, have significance only when the x- (or y-) coordinate axis is presented on a log scale.]

IXLL : Exponent of the lowest value of x (i.e., XLL) shown on the x-axis (with one figure to the left of the decimal).

- IXUL : Exponent of the highest value of x (i.e., XUL) shown on the x-axis (with one figure to the left of the decimal).
- NXC : Number of cycles on the x-axis [NCX must be ≤ 9 (Note: similarly, NYC must be ≤ 9)].
- UX(I) : Array containing values of x printed along the x-axis.
- SX(I): Array containing character locations (columns, 1-40) of the first digit in the corresponding UX(I) [Note: similarly, SY(I) contains locations of rows (1-24) for values stored in corresponding UY(I)].

This option also provides, for each data set, a table containing some or all of the points that fall on each "best polynomial/best fit" curve (as shown on your monitor screen, in both units of the data x, P[X(x)] and units of the monitor XPI, YPI), the derivative at each point, and the integral from the point on the curve just below XMIN up to each point, where each total integral covers the entire data range for all sets analyzed (up to just above XMAX). For Basis Function # 1, X(x) = x + CS1, PLOTnFIT analytically calculates the derivative and integral and presents the coefficients of two new polynomials, one for the derivative and the other for the integral, should you want to plot them at a later time. For all other Basis Functions, PLOTnFIT analytically calculates the derivative, but numerically calculates the integral; the last column (IT) shows the number of intervals, between successive points on the curve as shown on your monitor screen, used in a simple "trapezoidal rule" algorithm. Differences between analytical and numerical integrations, by PLOTnFIT, of the same function tend to be less than 0.1 percent. (IT is zero for Basis Function # 1.)

(5) For illustration you may choose to make a plot of a polynomial with any Basis Function from the list provided specifying all coefficients for presentation on the graph described under option 3; this plot is to be for comparison purposes only and appears as a dashed curve.

PLOTNFIT can also be directed to send data OUTPUT to a disk file for later use. Since entering coordinate data is the tedious aspect of using PLOTNFIT, it is recommended that you save all the data you analyze on the chance that you may want to reanalyze it at a later time. PLOTNFIT prepares a default "filename" for data you want to save; the name itself provides a convenient method for keeping track of the number of data sets in the file, as well as a clue as to what job first analyzed the data and when it did so. The default "filename" format used by PLOTNFIT is as follows:

AAAMMYY#.ZZZ

AAA : The first three characters from Job Identification. MMYY : The month (MM) and year (YY) the file was made. # : The number of data sets in the file, ndsf. ZZZ : The last three characters from Job Identification.

You, of course, have the option of choosing some other "filename" if you like.

3 REFERENCES

- 1. William G. Hood, "Polynomial Curve Fitter," Byte, p. 155, June 1987.
- Hugh D. Young, <u>Statistical Treatment of Experimental Data</u>, McGraw-Hill Book Company, Inc., New York, 1962.
- William H. Press et al., <u>Numerical Recipes: The Art of Scientific</u> <u>Computing</u>, Cambridge University Press, Cambridge, MA, 1986.

APPENDIX A

SAMPLE PROBLEM

SAMPLE PROBLEM

As a sample problem, to give you an idea of how PLOTNFIT.4TH can be used, we present a three-part analysis of some Charpy data. These real data are taken to be from a fictitious company identified by the acronym RC-2. We will assume that the company claims an uncertainty for its Charpy energy measurements of + or - 5 ft-lb. It should be noted that, for regulatory purposes, the NRC staff is not recommending the specific procedure followed here for the analysis of Charpy data nor does it suggest or imply that this sample problem should be used as a model analysis for such purposes.

<u>Part 1.</u> To get a feel for the data given below, we will fit curves to them, using Basis Function # 1, X(x) = CS1 + x, with CS1 = 0, for polynomial degrees n = 1 through 6:

Data Point (#)	Temperature (deg F)	Charpy Energy (ft-lb)
1	-19.0	25.0
2	-16.5	17.0
3	8.5	21.5
4	11.5	18.0
5	35.5	21.5
1 2 3 4 5 6 7 8 9 10	46.0	30.5
7	54.0	19.0
8	72.0	40.5
9	80.0	28.5
10	98.0	41.5
11	98.0	46.0
12	109.5	55.5
13	122.0	64.5
14	136.5	58.0
15	150.0	65.0
16	162.5	66.5
17	191.5	64.5
18	207.5	68.5

Part 2. To get rid of the negative values of the independent variable and decrease its magnitude, we modify the data by converting the temperature units to the Rankine scale (i.e., deg R = deg F + 459.67 deg F) and normalize (i.e., Normalized Temperature = deg R/459.67 deg F), as shown below:

Data Point (#)	Normalized Temperature (R/459.67 F)	Charpy Energy (ft-lb)
1	0.9587	25.0
2	0.9641	17.0
3	1.0185	21.5
4	1.0250	18.0

Data Point (#)	Normalized Temperature (R/459.67 F)	Charpy Energy (ft-lb)
5	1.0772	21.5
6	1.1001	30.5
7	1.1175	19.0
8	1.1566	40.5
8	1.1740	28.5
10	1.2132	41.5
11	1.2132	46.0
12	1.2382	55.5
13	1.2654	64.5
14	1.2970	58.0
15	1.3263	65.0
16	1.3535	66.5
17	1.4166	64.5
18	1.4514	68.5

We will then fit curves to the modified data a) using the Basis Function # 1, $X_a(x) = CS1 + x$, with CS1 = 0, for polynomial degrees n = 3 through 5, and b) using the Basis Function # 6, $X_b(x) = CS1 \cdot EXP(CO1 \cdot x^{CD1}) + CE1 \cdot EXP(CF1 \cdot x^{CG1})$, with CS1 = 0, CO1 = 0, CD1 = 0, and CE1 = 1, for polynomials of degree n = 1, while varying the parameters CF1 and CG1 so as to match the value of $P[X_a(x)]$ at the inflection point x_{ip} [i.e., we arbitrarily chose the point where dP[X(x)]/dxis maximum as a "pinning point" for the purpose of comparing curves; $P[X_a(x_{ip})] =$ $P[X_b(x_{ip})]]$ and approximate the shape of the data. The reason we chose to continue our analysis with the function $X_b(x)$, Basis Function # 6, is that either term in the sum can be used to produce a monotonic transition curve, of essentially any desired slope, between two plateaus, which from experience we know is characteristic of Charpy energy versus temperature data. Finally, c) we will refine the results obtained in b).

Part 3. a) To check the sensitivity of the results of Part 2.c) to the specific values of parameters used in the Basis Function, we will repeat the process of curve fitting using the Basis Function of Part 2.b) with the same values for the parameters CS1, CO1, CD1, and CE1, while varying CF1 and CG1 around the values that gave the best fit in Part 2.c). b) We will make a final plot of the data with the "best polynomial/best fit" curve from Part 3.a), considering higher order polynomials, and compare the results with the "best polynomial/best fit" from Part 2.a).

Part 1 INPUT

Remember, when you see no apparent response to a prompt, it is because the ENTER key was used to enter a negative response or accept the default. In this part of the analysis, we will fit polynomials of degree n = 1 through 6, with Basis Function # 1, to the data. At this time we want to produce the minimum printed OUTPUT. We will enter the uncertainties (sigma); later.

LOAD"a:plotnfit.rec RUN

PLOTNFIT / NUREG -

FLOTNFIT was prepared for an agency of United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any protion of this program or represents that its use by such third party would not infringe privately owned rights.

This version of PLOTNFIT (i.e., PLOTNFIT.4TH) will not run properly on a PC with a monochrome monitor. If this PC does not have a color/graphics card or this is not a color monitor. type yes or y at the EXIT (y/n)? prompt, otherwise type no or n and continue (NOTE: If GRAPHICS.COM was not loaded before BASICA.COM, HARD COPIES of graphs can not be made. Now is the time to EXIT this job and reload if it is desirable to print graphs and GRAPHICS.COM has not been pre-loaded.). THE PRINTER MUST BE KEPT ON WHILE PLOTNFIT IS OPERATING.

EXIT (y/n)?

Number of Bits not being used at the START of this job = 10486

For default purposes, what Disk Drive (e.g., A:) would you most likely want to WRITE to (include subdirectory if applicable - e.g., C:\SUBDIR\) ? A:

PLOTnFIT	
A US NRC Program for Plotting and Analyzing	
(i.e., Curve Fitting) Data Interactively	
with an IBM or IBM Compatible Personal	
Computer (PC) (using DOS 2.1 and BASICA 3.0)	
May 1989	

IF YOU ARE 'NOT' ALREADY FAMILIAR WITH THIS PROGRAM, you should probably ENTER yes at the 'EXIT (y/n)?' prompt, and run the program 'READIST.PNF'.

Exit (y/n)?

Identify your job (INITIAL ANALYSIS): FORMAT - a string of less than 18 characters (where BASIC filename rules apply to first 3 and last 3 characters) -

Describe your job (This analysis is to get a 'feel' for the data.): FORMAT - a 'comma-less' string of less than 256 characters -

PLOTTING INSTRUCTIONS

What kind of graphs would you like to generate: 1. LINEAR 2. SEMI-LOG (Y-axis, LOG; X-axis, LINEAR) 3. LOG-LOG NT(= 1)= What palette do you want: FOR NOP=2 FOR NOP=1 FOR NP=2 FOR NP=1 CURVES 'CURVES' MAGENTA GREEN 'DATA POINTS' 'DATA FIELD' RED CYAN DATA POINTS, AXES, AXES AND LABELS' BROWN WHITE AND LABELS' NP(= 1)= Regardless of the NOP value you enter here, if you later choose to make HARD COPIES of the data and curves plotted on the screen, PLOTnFIT will automatically make NOP=1. NOP(= 2)= What background color do you want: 1. BLACK 2. GRAY 3. LIGHT BLUE 4. WHITE 5. LIGHT CYAN 6. LIGHT MAGENTA NQ(= 2)= 4 Would you like graph labels different from those shown in ()? - 30 characters maximum - (y/n): TITLE) (X-AXIS) Horizontal - 22 characters maximum -(y/n): (units) for x-axis - 5 characters maximum -(y/n): (Y-AXIS) Vertical - 16 characters maximum -(y/n): (unita) for y-axis - 5 characters maximum -(y/n): What scaling procedure (NS) would you like to use? 1. SPECIFY COORDINATE RANGES AND MARKING INTERVALS FOR THE AXES (USE ONLY AFTER EXPERIENCE WITH 'PLOTNFIT') 2. ALLOW 'PLOTNFIT' TO ESTABLISH COORDINATE RANGES AND MARKING INTERVALS BASED ON THE DATA RANGES NS(= 2)= DATA AND DATA IDENTIFICATION How many Tasks will there be in this job (1<=NDS<=8)? NDS(= 1)= What INPUT device (NE) would you like to use to enter your Data for Task # 1 ? 1 . The KEYBOARD 2. A STORED FILE NE(= 1)= What identification name would you like for the Data in Task # 1 ? FORMAT - a string of less than 31 char. - CHARPY DATA from CRC-2 The number of Data Points is NDP(1)= 18 Is the data to be weighted (y/n)? x, and y = -19.0, 25.01 x. and y = -16.5, 17.02 x, and y =8.5,21.5 3 x, and y =11.5,18.0 4 x, and y =35.5,21.5 5

6 x, and y =46.0,30.5 7 x, and y =54.0,19.0	
8 x, and y =72.040.5	
?Redo from start	
x, and y =72.0,40.5	
9 x, and y =80.0,28.5	
10 x, and y =98.0,41.5	
11 x, and y =98.0,46.0	
12 x, and y =109.5.55.5	
?Redo from start	
x, and y =1019.5,55.5	
13 x, and y =122.0,64.5	
14 x, and y =136.5,58.0	
15 x, and y =150.0,65.0	
16 x, and y =162.5,6645	
17 x, and y =191.5,64.5	
18 x, and y =207.5,68.5	

Do you want to fit curves to your Data Points (y/n)? y

Which of the following BASIS FUNCTIONS do you want to use for this Data Set (YOU MUST supply values for coefficients CS1, CO1, CD1, CE1, CF1 & CG1):

1. X(x)=CS1+x 2. X(x)=CS1+EXP(CO1*x)/(CD1+x) 3, $X(x) = (CS1 + CO1 * x + CD1 * x^2) * LOG(x)$ 4. X(x) = CS1/x + CO1 + LOG(x) + x + LOG(CD1 + x + 2.718)X(x)=CS1+CO1*x^CD1+CE1/(CF1+x^CG1) 5. 6. X(x)=CS1*EXP(CO1*x^CD1)+CE1*EXP(CF1*x^CG1) 7. X(x)=CS1*EXP(CO1*x)+CD1*EXP(CE1*x)+CF1*EXP(CG1*x) 8. X(x)=CS1*(CO1+x)^CD1+CE1*(CF1+x)^CG1 9. $X(x) = EXP(CS1*x)*(CO1+x)^{CD1}+EXP(CE1*x)*(CF1+x)^{CG1}$ 10. X(x)=CS1*x*SIN(CO1+CD1*x)+(CE1/(CD1+x))*SIN(CF1+CG1*x)

11. X(x)=EXP(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x)

If the default value of a coefficient is not zero and you wish it to be zero, you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since entering 0 would be interpreted by PLOTNFIT as acceptance of the default value.

```
BF(= 1 )=
CS1(= 0 )=
         For each Data Set in the job, the program starts with
         the lowest degree polynomial you want to consider and
         fits it to the data points; the program then fits,
         sequentially and in assending order, as many higher
         degree polynomials as you specify (the current degree
         limit is 10).
   What is the lowest degree polynomial (LDP) you want to consider
   for this Data Set (1 <= LDP <= 10 )? LDP(=1)=
   How many polynomial fits (NPF) do you want to
   try - including the LDP - (1 <= NPF <= 10 )? NPF(=1)= 6
         What symbol (M) would you like to use to represent
         the Data for Task # 1 ?
                                            5. DIAMOND
              2. CROSS
                                            6. TRIANGLE - UP
7. TRIANGLE - DO
              3.
                  X
                                               TRIANGLE - DOWN
                   H
                                            8. SQUARE
              4.
        M(= 1) =
        What symbol size (MM) would you like?
              1. emal1
              2. LARGE
        MM(= 1 )=
```

ALL PLOTTING INSTRUCTIONS AND DATA HAVE BEEN ENTERED

Would you like to make changes in your Plotting Instructions; values currently in the computer appear in parenthesis (y/n)?

Would you like to make a few changes in one or more of your Data Sets [most useful when most data are from the KEYBOARD] (y/n)? y

YOU MUST STORE YOUR DATA - END THE JOB - THEN CHANGE THE DATA WHEN THEY ARE READ INTO A NEW JOB

How many Data Sets will you save (O<=DSS<= 1)? DSS=1

Do you want other than the default Location and Name for the FILE containing these (weighted) coordinate data (A:INI06891.SIS) (y/n)?

Do you want to save data from Task # 1 (y/n)? y

Number of Bits not being used at the END of this job = 0

Do you want to do another job and plot other graphs using ALL or SOME of the data and/or instructions in memory (y/n)?

y

Identify your job (INITIAL ANALYSIS): FORMAT - a string of less than 18 characters (where BASIC filename rules apply to first 3 and last 3 characters) -

Describe your job (This analysis is to get a 'feel' for the data.): FORMAT - a 'comma-less' string of less than 256 characters -

PLOTTING INSTRUCTIONS

What kind of graphs would you like to generate: 1. LINEAR 2. SEMI-LOG (Y-axis,LOG; X-axis,LINEAR) 3. LOG-LOG NT(= 1)=

What palette do you want: FOR NP=1 FOR NP=2 GREEN MAGENTA RED CYAN BROWN WHITE

FOR NOP=1 'CURVES' 'DATA POINTS' 'AXES AND LABELS'

FOR NOP=2 CURVES' 'DATA FIELD' 'DATA POINTS, AXES, AND LABELS'

NP(= 1)=

Regardless of the NOP value you enter here, if you later choose to make HARD COPIES of the data and curves plotted on the screen, PLOTnFIT will automatically make NOP=1. NOP(= 2)=

What background color do you want: 1. BLACK 2. GRAY 3. LIGHT BLUE 4. WHITE 5. LIGHT CYAN 6. LIGHT MAGENTA NQ(= 2)= 4

Would you like graph	labels different from those shown in ()? (TITLE Xy/n): y
What is your choice? X-AXIS	DETERMINATION of RTndt (X-AXIS)(y/n): y
What is your choice?	Temperature
What is your choice?	
Y-AXIS What is your choice?	(Y-AXIS)(y/n): y Charpy Energy
unite	(unite)(y/n): y
What is your choice?	1 f+1D

What scaling procedure (NS) would you like to use? 1. SPECIFY COORDINATE RANGES AND MARKING INTERVALS FOR THE AXES (USE ONLY AFTER EXPERIENCE WITH 'PLOTNFIT') 2. ALLOW 'PLOTNFIT' TO ESTABLISH COORDINATE RANGES AND MARKING INTERVALS BASED ON THE DATA RANGES

NS(= 2)=

DATA AND DATA IDENTIFICATION

How many Tasks will there be in this job (1<=NDS<=8)? NDS(= 1)=

What INPUT device (NE) would you like to use to enter your Data for Task # 1 ? 1. The KEYBOARD 2. A STORED FILE NE(= 1)= 2

What is the location and name of the FILE containing Data for Task # 1 ? FORMAT - (storage)device:filename - a;:ini06891.sis

How many Data Sets are in this ITLE? NDSF(= 1)=

Do you want to INPUT Data Set # 1 from FILE a:ini06891.eis [i.e., that identified as : CHARPY DATA from RC-2; with (NDP=) 18 data points] (y/n)? y

Do you want to INPUT the stored weighting factors (y/n)?

Do you want to change ANY data in this Data Set (y/n)? y

Do you want to change ONLY weighting factors (y/n)?

What identification name would you like for this Data in Task # 1 (FOR EACH VARIABLE, PRESS ENTER FOR NO CHANGE)? FORMAT - a string of less than 31 chr. -

			the number of Data Points, NDP (y/n)?
1=	1	x=-19	y=25 Change $(y/n)?$
1=	2	x=-16.5	y=17 Change $(y/n)?$
1=	3	x= 8.5	y = 21.5 Change $(y/n)?$
1=	4	x= 11.5	y= 18 Change (y/n)?
1=	5	x= 35.5	y=21.5 Change $(y/n)?$
1=	6	x= 46	y= 30.5 Change (y/n)?
1=	7	x= 54	y=19 Change (y/n) ?
1=	8	x= 72	y = 40.5 Change $(y/n)?$
1=	9		y=28.5 Change $(y/n)?$
i=	10	x= 98	y = 41.5 Change $(y/n)?$
1=	11	x= 98	y=46 Change $(y/n)?$
1=	12	x= 109.5	y= 55.5 Change (y/n)?
1=	13	x= 122	y = 64.5 Change $(y/n)?$
1=	14	x= 136.5	y=58 Change $(y/n)?$
1=	15	x= 150	y=65 Change $(y/n)?$
1=	16	x= 162.5	y= 665 Change (y/n)? y

	Delete	(y/n)?						
	х, у	=162.5,6	6.5					
1=	17	x=	191.5	у=	64.5	Change	(y/n)?	
1=	18	x =	207.5	y=	68.5	Change	(y/n)?	

Do you want to fit curves to your Data Points (y/n)? y

Which of the following BASIS FUNCTIONS do you want to use for this Data Set (YOU MUST supply values for coefficients CS1, CO1, CD1, CE1, CF1 & CG1):

- 1. X(x)=CS1+x
- 2. X(x) = CS1 + EXP(CO1 * x)/(CD1 + x)
- 3. X(x)=(CS1+CO1*x+CD1*x²)*LOG(x)
- 4. X(x)=CS1/x+CO1*LOG(x)+x*LOG(CD1*x+2.718)
- 5. X(x)=CS1+CO1*x^CD1+CE1/(CF1+x^CG1)
- X(x)=CS1*EXP(CO1*x^CD1)+CE1*EXP(CF1*x^CG1)
- 7. X(x)=CS1*EXP(CO1*x)+CD1*EXP(CE1*x)+CF1*EXP(CG1*x)
- 8. X(x)=CS1*(CO1+x)^CD1+CE1*(CF1+x)^CG1
- 9. X(x)=EXP(CS1*x)*(CO1+x)^CD1+EXP(CE1*x)*(CF1+x)^CG1
- 10. X(x)=CS1*x*SIN(CO1+CD1*x)+(CE1/(CD1+x))*SIN(CF1+CG1*x)
- 11. X(x)= EXP(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x)

If the default value of a coefficient is not zero and you wish it to be zero, you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since entering 0 would be interpreted by PLOTnFIT as acceptance of the default value.

BF(= 1)= CS1(= 0)= For each Data Set in the job, the program starts with the lowest degree polynomial you want to consider and fits it to the data points; the program then fits, sequentially and in assending order, as many higher degree polynomials as you specify (the current degree limit is 10).

What is the lowest degree polynomial (LDP) you want to consider for this Data Set (1 <= LDP <= 10)? LDP(=1)=

How many polynomial fits (NPF) do you want to try - including the LDP - (1 <= NPF <= 10)? NPF(=1)= 6

What symbol (M) would you like to use to represent the Data for Task # 1 ? 1. I 5. DIAMOND 2. CROSS 6. TRIANGLE - UP 3. X 7. TRIANGLE - DOWN 4. H 8. SQUARE M(= 1)= What symbol size (MM) would you like? 1. small

2. LARGE MM(= 1)=

ALL PLOTTING INSTRUCTIONS AND DATA HAVE BEEN ENTERED

Would you like to make changes in your Plotting Instructions; values currently in the computer appear in parenthesis (y/n)?

Would you like to make a few changes in one or more of your Data Sets [most useful when most data are from the KEYBOARD] (y/n)?

Would you like to completely RE-INPUT your Coordinate Data [most useful when most data are from STORED FILES] (y/n)?

Number of Bits not being used at this time, for this job = 3110

Would you like to PRINT values of the Polynomial Coefficients for all the curves fit to each Data Set, along with the corresponding Residual Variances and Coefficients of Determination (y/n)?

Would you like to make HARD COPIES of graphs of ALL the Data Sets, one set of graphs for each Data Set, showing ALL the polynomial curves fit to EACH Data Set (y/n)?

Would you like to make 'a' HARD COPY graph containing ALL the Data Sets, each Data Set with it's corresponding 'BEST POLYNOMIAL/BEST FIT' curve (y/n)? y

Would you like to PRINT values of key program variables and a Table of some of the points which fall on each "BEST POLYNOMIAL/BEST FIT" curve plotted (y/n)?

Would you like to INPUT a function to be plotted with your data (y/n)?

Would you like to save your DATA for later use (y/n)? y

How many Data Sets will you save (0<=DSS<= 1)? DSS=1

Do you want other than the default Location and Name for the FILE containing these (weighted) coordinate data (A:INIO6891.SIS) (y/n)?

Do you want to save data from Task # 1 (y/n)? y

Part 1 Comments on INPUT

- On page A-4, we neglected to enter the proper graph labels but "went back" to do so later, as shown on page A-7.
- 2. Note, as shown on page A-4, when INPUT format errors are made on entering data, BASIC asks you to "? Redo from start," then repeats the prompt.
- 3. As mentioned above, we "went back" to enter graph labels, but since we made an error when entering data (see data point 16, on page A-5) and needed to correct it, there was no need to "go back" just to change plotting instructions (see page A-6), since when you go to correct data you automatically have the opportunity to change plotting instructions (see pages A-7 and A-8).

Part 1 OUTPUT

SUMMARY OF TASK # 1

This task investigated Polynomials of degree 1 through 6 fit to the Data Set, CHARPY DATA from RC-2, using the BASIS FUNCTION: X(x) = 0 + x

The polynomial of degree 3 produces the largest fractional decrease in RV (note, its RV = 30.06752), hence, is taken as the BEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated). PLOTnFIT suggests that it is a polynomial of high enough degree that it should come close to the 'true function', i.e., the 'true model', yet low enough that it 'averages out' random errors.

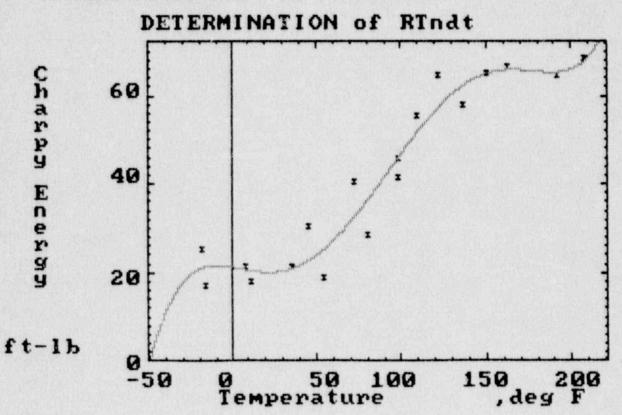
Do you agree with PLOTNFIT's choice for the polynomial degree that yields the most satisfactory correlation of the data (y/n)? n

What degree polynomial do you think best represents this Data Set?

n = 5, RV = 30.58583

JOB: INITIAL ANALYSIS--06/26/89

time - 17:04:44


JOB DESCRIPTION This analysis is to get a 'feel' for the data.

EACH CURVE IS A 'BEST FIT' WITH AN nth DEGREE POLYNOMIAL $P[X(x)] = C(1)X(x)^n + C(2)X(x)^{(n-1)} + \dots + C(n)X(x) + C(n+1)$

PLOTTING INSTRUCTIONS Generate (color) MEDIUM resolution, LINEAR graphs with PLOTNFIT DETERMINED COORDINATE RANGES AND MARKING INTERVALS

	*****		DATA **	****		
TASK	IDENTIFICATION	<u> </u>	SYNBOL	4	NDP	SOURCE
1*	CHARPY DATA from RC-2	5	small	I	18 FIL	E ini06891.sis

* These DATA SETS were OUTPUT to file A: IN106891.SIS.

Part 1 Comments on OUTPUT

- PLOTnFIT suggests that degree n = 3 produces the "best polynomial/best fit" curve (see page A-11). We chose the polynomial of degree n = 5, although it produces a slightly "less good" fit (RV = 30.59 compared with 30.07), since, within the data range, it suggests the existence of plateaus or shelves (i.e., "lower shelf" and "upper shelf" energies), which from experience we know are associated with such data (see page A-12).
- If our model is at all close to the true model, the company's claim of + or - 5 ft-lb data uncertainty is not unreasonable (i.e., the square root of RV is about 5.5).
- 3. The job summary page, A-12, shows that the data came from file INI06891.SIS rather than from the keyboard. The reason for this is that after initial data entry, the data were saved in this file then re-entered for correction before the job was completed. Note also that the corrected data were saved under the same "filename."

Part 2.a) INPUT

We will enter the data directly from the keyboard - although we could have, perhaps just as easily, entered the data by reading in data saved from Part 1 (i.e., the data in file INI06891.SIS) and then changed the x-coordinates and entered the weighting factor (w_i) [i.e., $1/(sigma)_i^2 = 1/5^2 = 0.04$ for all points]. From Part 1 OUTPUT, the polynomial of degree n = 5, with Basis Function # 1, was taken as the "best polynomial/best fit." In this part of the analysis, we will fit polynomials of degrees 3 through 6, with Basis Function # 1, to the data and increase the amount of OUTPUT, since we not only want the polynomial coefficients for later use (i.e., for making comparative plots), but we also want a table of all the values plotted so that we can estimate the "lower shelf" and "upper shelf" energies (in a generally definable way) and identify the inflection point accurately for use in Part 2.b) (although there is actually nothing sacred about the inflection point for curve-fitting purposes).

RUN

PLOTNFIT / NUREG -

PLOTNFIT was prepared for an agency of United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any protion of this program or represents that its use by such third party would not infringe privately owned rights.

This version of PLOTNFIT (i.e., PLOTNFIT.4TH) will not run properly on a PC with a monochrome monitor. If this PC does not have a color/graphics card or this is not a color monitor, type yes or y at the EXIT (y/n)? prompt, otherwise type no or n and continue (NOTE: If GRAPHICS.COM was not loaded before BASICA.COM, HARD COPIES of graphs can not be made. Now is the time to EXIT this job and reload if it is desirable to print graphs and GRAPHICS.COM has not been pre-loaded.). THE PRINTER MUST BE KEPT ON WHILE PLOTNFIT IS OPERATING.

EXIT (y/n)?

Number of Bits not being used at the START of this job = 10486

For default purposes, what Disk Drive (e.g., A:) would you most likely want to WRITE to (include subdirectory if applicable - e.g., C:\SUBDIR\) ? A:

PLOTNFIT		
A US NRC Program for Plotting and Analyzing		
(i.e., Curve Fitting) Data Interactively		
with an IBM or IBM Compatible Personal	*	
Compatible Personal		*
Computer (PC) (using DOS 2.1 and BASICA 3.0)	*	
May 1989		

IF YOU ARE 'NOT' ALREADY FAMILIAR WITH THIS PROGRAM, you should probably ENTER yes at the 'EXIT (y/n)?' prompt, and run the program 'READIST.PNF'.

Exit (y/n)?

Identify your job (INITIAL ANALYSIS): FORMAT - a string of less than 18 characters (where BASIC filename rules apply to first 3 and last 3 characters) - FOLLOWUP ANALYSIS Describe your job (This analysis is to get a 'feel' for the data.): FORMAT - a 'comma-less' string of less than 256 characters -This is a follow-up to job 'INITIAL ANALYSIS--06/25/89.' This analysis will use the data be expressed in normalized Rankine unite - R/459.67F). PLOTTING INSTRUCTIONS What kind of graphs would you like to generate: 1. LINEAR 2. SEMI-LOG (Y-axis,LOG; X-axis,LINEAR) 3. LOG-LOG NT(= 1)= What palette do you want: FOR NOP=2 FOR NOP=1 FOR NP=1 FOR NP=2 'CURVES' 'CURVES' MAGENTA GREEN 'DATA POINTS' 'DATA FIELD' CYAN RED 'DATA POINTS, AXES, 'AXES AND LABELS' BROWN WHITE AND LABELS NP(= 1)= 3 The value(s) INPUT for this (these) variable(s) is (are) not within an allowable range. Try again, please. NP(= 1)= 2 Regardless of the NOP value you enter here, if you later choose to make HARD COPIES of the data and curves plotted on the screen, PLOTnFIT will automatically make NOP=1. NOP(= 2)= What background color do you want: 1. BLACK 2. GRAY 3. LIGHT BLUE 4. BROWN 5. YELLOW 6. LIGHT GREEN NQ(= 3)= 4 Would you like graph labels different from those shown in ()? - 30 characters maximum - (y/n): y (TITLE) What is your choice? DETERMINATION of PIndt (X-AXIS) Horizontal - 22 characters maximum -(y/n): y What is your choice? Normalized Temperature (unite) for x-axis - 5 characters maximum -(y/n): y What is your choice? R/460 (Y-AXIS) Vertical - 16 characters maximum -(y/n): y What is your choice? Charpy Energy (units) for y-axis - 5 characters maximum - (y/n): y What is your choice? ft-1b What scaling procedure (NS) would you like to use? 1. SPECIFY COORDINATE RANGES AND MARKING INTERVALS FOR THE AXES (USE ONLY AFTER EXPERIENCE WITH 'PLOTNFIT') 2. ALLOW 'PLOTNFIT' TO ESTABLISH COORDINATE RANGES AND MARKING INTERVALS BASED ON THE DATA RANGES NS(= 2)=

DATA AND DATA IDENTIFICATION

	What INPUT device (NE) would you like to use to enter your Data for Task # 1 ? 1. The KEYBOARD 2. A STORED FILE NE(= 1)=
	What identification name would you like for the Data in Task # 1 ? FORMAT - c string of less than 31 char Mod. CHARPY DATA from RC-2
	The number of Data Pointe is NDP(1)= 18
123456	Is the data to be weighted (y/n) ? y x, y, and w =.9587,25.0,0.04 x, y, and w =96.9641,17.0,0.04 x, y, and w =1.0185,21.5,0.04 x, y, and w =1.0250,18.0,0.04 x, y, and w =1.0772,21.5,0.04 x, y, and w =1.1001,30.5,0.04
6 7 8 9 10	x, y, and $w = 1.1175, 19.0, 0.04$ x, y, and $w = 1.1566, 40.5, 0.04$ x, y, and $w = 1.1740, 28.5, 0.04$ x, y, and $w = 1.2132, 41.5, 0.04$ x, y, and $w = 1.2132, 46, 0.0, 04$
12 13 14 15 16 17	x, y, and w =1.2382,55.5,0.04 x, y, and w =1.2654,64.5,0.04 x, y, and w =1.2970,58.0,0.04 x, y, and w =1.3263,65.0,0.04 x, y, and w =1.3535,66.5,0.04 x, y, and w =1.4166,64.5,0.04
18	x, y, and w =1.4514,68.5,0.04 Do you want to fit curves to your Data Points (y/n) ? y

- ST supply values for coefficients CS1, CO1, CD1, CE1, CF1 & CG1):
- 1. X(x) = CS1 + x

21

- 2. X(x)=CS1+EXP(CO1*x)/(CD1+x)
- 3. A.K)=(CS1+CO1*x+CD1*x^2)*LOG(x)
- 4. X(x)=CS1/x+CO1*LOG(x)+x*LOG(CD1*x+2.718)
- 5. X(x)=CS1+CO1*x^CD1+CE1/(CF1+x^CG1)
- 6. X(x)=CS1*EXP(CO1*x^CD1)+CE1*EXP(CF1*x^CG1)
- 7. X(x)=CS1*EXP(CO1*x)+CD1*EXP(CE1*x)+CF1*EXP(CG1*x)
 8. X(x)=CS1*(CC1+x)^CD1+CE1*(CF1+x)^CG1
- X(x)=EXP(C51*x)*(C01+x)^CD1+EXP(CE1*x)*(CF1+x)^CG1 9
- 10. X(x)=CS1*x*SIN(CO1+CD1*x)+(CE1/(CD1+x))*SIN(CF1+CG1*x)
- 11. X(x)=EXP(CS1*x) SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x)

If the default value of a coefficient is not zero and you wish it to be zero, you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since entering 0 would be interpreted by PLOTnFIT as acceptance of the default value.

BF(= 1)=

CS1(= 0)=

For each Data Set in the job, the program starts with the lowest degree polynomial you want to consider and fits it to the data points; the program then fits, sequentially and in assending order, as many higher degree polynomials as you specify (the current degree limit is 10).

What is the lowest degree polynomial (LDP) you want to consider for this Data Set (1 <= LDP <= 10)? LDP(=1)= 3

How many polynomial fits (NPF) do you want to try - including the LDP - (1 <= NPF <= 8)? NPF(=1)= 3 What symbol (M) would you like to use to represent the Data for Task # 1 ? 5. DIAMOND 1 6. TRIANGLE - UP 2. CROSS 7. TRIANGLE - DOWN 3. X 8. SQUARE 4. H M(= 1)= 2 What symbol size (MM) would you like? 1. small 2. LARGE MM(= 1)=

ALL PLOTTING INSTRUCTIONS AND DATA HAVE BEEN ENTERED

Would you like to make changes in your Plotting Instructions; values currently in the computer appear in parenthesis (y/n)?

Would you like to make a few changes in one or more of your Data Sets [most useful when most data are from the REYBOARD] (y/n)?

Would you like to completely RE-INPUT your Coordinate Data [most useful when most data are from STORED FILES] (y/n)?

Number of Bits not being used at this time, for this job = 3184

Would you like to PRINT values of the Polynomial Coefficients for all the curves fit to each Data Set, along with the corresponding Residual Variances and Coefficients of Determination (y/n)? y

Would you like to make HARD COPIES of graphs of ALL the Data Sets, one set of graphs for each Data Set, showing ALL the polynomial curves fit to EACH Data Set (y/n)?

Would you like to make 'a' HARD COPY graph containing ALL the Data Sets, each Data Set with it's corresponding 'BEST POLYNOMIAL/BEST FIT' curve (y/n)? y

Would you like to PRINT values of key program variables and a Table of some of the points which fall on each "BEST POLYNOMIAL/BEST FIT' curve plotted (y/n)? y

...a Table of 'all' the points (y/n)? y

Would you like to INPUT a function to be plotted with your data (y/n)?

Would you like to save your DATA for later use (y/n)? y

How many Data Sets will you save (O<=DSS<= 1)? DSS=1

Do you want other than the default Location and Name for the FILE containing these (weighted) coordinate data (A:FOL06891.SIS) (y/n)?

Do you want to save data from Task # 1 (y/n)? y

1

Part 2.a) Comments on INPUT

- Note the comment on page A-14, "Number of Bits not being used at the START of this job = 10486." To be confident that you have sufficient "available" computer memory for your jobs, you should keep this quantity larger than 10000.
- 2. Concerning "error traps" on INPUT variables with a specific range [e.g., NP(= 1) where 1 is the default value and the variable can only take values 1 or 2], if you enter a value outside the range [in this example, say NP(= 1) = 3], PLOINFIT will reject the value and repeat the prompt, as shown on page A-15.
- 3. Note the comment on page A-17, "Number of Bits not being used at this time, for this job = 3184." If, after plotting instructions and data have been entered, the number of bits not being used drops below about 1000, you could encounter problems with exceeding available computer memory; this is most likely to occur when entering a second job without exiting PLOInFIT after the first.

PLOTNFIT.4th

JOB: FOLLOWUP ANALYSIS-06/26/89

time - 17:29:03 THE FOLLOWING ARE DATA RESULTING FROM FITTING POLYNOMIALS TO THE VARIOUS DATA SETS

TASK # 1: ANALYSIS OF 'Fod. CHARPY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 3 BASIS FUNCTION: X(x) = 0 + xCoefficient of Determination, CD = .934965 Residual Variance, RV = 1.202892

4 Coefficients (the last coefficient is the constant term in the polynomial): C(1)=-1800.705 C(2)= 6868.957 C(3)=-8071.413 C(4)= 3121.686

i	×	y	P[X(x)]	Deviation	
	.9587	25	22.12012	2.879883	.04
2	.9641	17	21.39502	-4.39502	.04
	1.0185	21.5	18.25342	3.246582	.04
	1.025	18	18.33399	3339844	.04
6	1.0772	21.5	21.85523	3552246	.04
ē	1.1001	30.5	24.7461	5.753907	.04
7	1.1175	19	27.36694	-8.366943	.04
Å	1.1566	40.5	34.26392	6.236084	.04
9	1.174	28.5	37.64258	-9.142578	.04
10	1.2132	41.5	45.55127	-4.05127	.04
11	1.2132	46	45.55127	.4487305	.04
12	1,2382	55.5	50.55908	4.940918	.04
13	1.2654	64.5	55.7312	8.768799	.04
14	1.297	58	61.07959	-3.07959	.04
15	1.3263	65	65.10669	1060895	.04
	1.3535	66.5	67.78516	-1.285156	.04
16	1.4166	64.5	68.77344	-4.273438	.04
17 18	1.4514	68.5	65.38428	3.115723	.04

The CHI'2 (to be used with Chi-square Distribution Table) is 16.84049 .

1

TASK # 1: ANALYSIS OF Mod. CHARPY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 4 BASIS FUNCTION: X(x) = 0 + xCoefficient of Determination, CD = .935174 Residual Variance, RV = 1.29126

5 Coefficients (the last coefficient is the constant term in the polynomial): C(1)= 844.7538 C(2)=-5958.323 C(3)= 14127.81 C(4)=-13802.83 C(5)= 4806.809

1	x	y	P[X(x)]	Deviation	w
1	.9587	25	22.43897	2.561035	
2	.9641	17	21.58277	-4.592774	.04
3	1.0185	21.5	17.85693		.04
4	1.025	18		3.643067	.04
5	1.0772		17.92627	7.373047B-02	.04
Ē	1.1001	21.5	21.60547	1054688	.04
2		30.5	24.6377	5.862305	.04
-	1.1175	19	27.36768	-8.367676	.04
8	1.1566	40.5	34.46729	6.032715	.04
9	1.174	28.5	37.90283	-9.402832	.04
10	1.2132	41.5	45.82862	-4.328614	
11	1.2132	46	45.82862	.1713867	.04
12	1.2382	55.5	50.77051		.04
13	1.2654	64.5		4.729492	.04
14	1.297	58	55.81006	8.689941	.04
15	1.3263		60.95655	-2.956543	.04
		65	64.79053	.2094727	.04
16	1.3535	66.5	67.33594	8359375	.04
17	1.4166	64.5	68.52295	-4.022949	.04
18	1.4514	68.5	65.81495	2.585059	.04

The CHI'2 (to be used with Chi-square Distribution Table) is 16.78637 .

TASE # 1: ANALYSIS OF 'Mod. CHARPY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 5 BASIS FUNCTION: X(x) = 0 + xCoefficient of Determination, CD = .943212 Residual Variance, RV = 1.225407

C(1)= 43618.66 C(4)=-730689.8	C(2)=-261180.2 C(5)= 426694.9	term in the polynomial): C(3) = 620427.2 C(6) = -98849.59
		01 0 100049.59

i	x	y	P[X(x)]	Deviation	¥
1	.9587	25	20.83594	4.164063	
2	.9641	17	21.14844	-4.148438	.04
3	1.0185	21.5	20.46094	1.039063	.04
4	1.025	18	20.26563		.04
5	1.0772	21.5	20.90625	-2.265625	.04
6	1.1001	30.5		. 59375	.04
7	1.1175		22.96094	7.539063	.04
à		19	25.29688	-6.296875	.04
9	1.1566	40.5	32.69531	7.804688	.04
	1.174	28.5	36.6875	-8.1875	.04
10	1.2132	41.5	46.14844	-4.648438	.04
11	1.2132	46	46.14844	1484375	.04
12	1.2382	55.5	51.97657	3.523438	.04
10	1.2654	64.5	57.59375	6.90625	.04
14	1.297	58	62.34375	-4.34375	
15	1.3263	65	64.90625	.09375	.04
16	1.3535	66.5	65.66406		.04
17	1.4166	64.5		.8359375	.04
18	1.4514	68.5	65.07813 67 PE1EC	578125	.04
	1.4014	00.0	67.85156	.6484375	. 04

The CHI'2 (to be used with Chi-square Distribution Table) is 14.70488 .

SUMMARY OF TASK # 1

This task investigated Polynomials of degree 3 through 5 fit to the Data Set, Mod. CHARPY DATA from RC-2, using the BASIS FUNCTION: X(x) = 0 + x

The polynomial of degree 3 produces the largest fractional decrease in EV (note, its RV = 1.202892), hence, is taken as the BEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated). PLOTNFIT suggests that it is a polynomial of high enough degree that it should come close to the 'true function', i.e., the 'true model', yet low enough that it 'averages out' random errors.

Do you agree with PLOTnFIT's choice for the polynomial degree that yields the most satisfactory correlation of the data (y/n)? n

What degree polynomial do you think best represents this Data Set?

? n = 5, RV = 1.225407

PLOTNFIT. 4th

JOB: FOLLOWUP ANALYSIS-06/26/89

time - 17:32:41

KEY PROGRAM PARAMETERS AND OUTPUT DATA

TNDP= 18

XMIN= .958 YMIN= 17	37	XMAX= 1.4 YMAX= 68.		DEX= .02 DEY= 2
LJX= 10 LJY= 10		LIX= 4 LIY= 4		CX= 80 CY= 40
XS= 75 YS= 12		XE= 315 YE= 162		XO=-207 YO= 162
NXS= 40 NYS= 0		NXR= 74 NYE= 36		NXT= 34 NYT= 36
	0L= 0 0L= 0	NYC= 0 NXC= 0	YLL= 0 XLL= 0	$\mathbf{X}\mathbf{\Omega}\mathbf{\Gamma}=0$ $\mathbf{X}\mathbf{\Omega}\mathbf{\Gamma}=0$
I= 1 UX I= 2 UX I= 3 UX	= .8 = 1 = 1.2 = 1.4 = 1.6	SX= 9 SX= 18 SX= 27 SX= 35 SX= 0	UY= 0 UY= 20 UY= 40 UY= 60 UY= 80	SY= 21 SY= 16 SY= 10 SY= 5 SY= 0

	Вев	t Fit To 'Mod	d. CHARPY DA	TA from RC-2'	:	
Coef	ficients of the $1 = 218093.3$					
	4)=-1461380)=-1044721)= 426694.9	C(3 C(6)= 1861282)= 0	
Coef	ficients of the	Integral:				
C(1)= 7269.777)=-52236.05	C(3)= 155106.8	
C(4)=-243563.3	C(5)= 213347.4	C(6)=-98849.59	
XPI	x	P[X(x)]	YPI	dP[X(x)]/dx	Int P[X(x)]dx	IT
75	.799	- 166.2031				**
76	.8018334	-157.0313	508 489	3287.969 3167.906	0	0
77	.8046667	-148.25	470	3050.813	0	0
78	.8075	-139.7578	453	2936.813	0	0000
79	.8103334	-131.5938	436	2825.719	0	0
80	.8131667	-123.7422	419	2717 531	0	0
81	.8160001	-116.1875	404	2612.219	0	0
82	.8188334	-108.9375	388	2509.688	0	õ
83	.8216667	-101.9688	374	2409.938	0	0
84	.8245	-95.3125	360	2312.938	Ö	0 0 0 0
85	.8273333	-88.875	347	2218.594	õ	õ
86	.8301667	-82.71875	334	2126.906	Ō	õ
87	.833	-76.82813	322	2037.688	0	
88	.8358334	-71.14844	310	1951.188	0	õ
89	.8386667	-65.75	298	1867.031	0	õ
90	.8415001	-60.59375	288	1785.406	0	0000000
91 92	.8443334	-55.65625	277	1706.188	0	0
92	.8471667	-50.89063	268	1629.406	0	0
94	.85	-46.35938	258	1554.906	0	0
95	.8528334 .8556667	-42.10157	249	1482.656	0	000
96	.8585	-37.97656	241	1412.719	0	0
97	.8613334	-34.09375	233	1345	0	0
98	.8641667	-30.35156 -26.8125	225	1279.375	0	0
99	.8670001	-23.45313	217	1215.969	0	0
100	.8698334	-20.29688	210	1154.531	0	0
101	.8726667	-17.28125	204 198	1095.219	0	0
102	.8755	-14.39844	191	1037.969 982.6875	0	0 0
103	.8783334	-11.69531	186	929.2188	0	0
104	.8811667	-9.125	181	877.75	0	0
105	.8840001	-6.726563	176	828.0313	0	0
106	.8868334	-4.421875		780.2188	0	0
107	.8896667	-2.289063		734.1563	0	õ
108	.8925001	28125		689.7813	õ	õ
109	.8953334	1.617188		647.2188	õ	õ
110	.8981667	3.367188	155	606.25	õ	õ
111	.901	5.0625	152	566.9375	0	õ
112	.9038334	6.617188	149	529.2813	0	õ
113	.9066667	8.046875	146	493.1563	0	0
114	.9095	9.390625	143	458.5938	0	0
115	.9123334	10.64844	140	425.5	0	0
116	.9151667	11.79688	138	393.8438	0	0
117	.9180001	12.89844		363.5938	0	0
118 119	.9208334	13.86719		334.7813	0	0
120	.9236667	14.78125		307.375	0	0
120	.9265	15.60156		281.2188	0	0
121	.9293334 .9321667	16.375		256.3438	0	0 0 0 0
123	.9350001	17.05469	127	232.9063	0	0
124	.9378334	17.69531		210.4688	0	0
	.0010004	18.26563	124	189.3438	0	0

TASK # 1 Every Point On The Best Polynomial Curve Best Fit To 'Mod. JHARPY DATA from RC-2':

125	. \$406667	18.79688	123	169.4688	0	0
126	.9435001	19.21875	122	150.5625	õ	õ
	A Local sector development and the sector of the sector of the	19.64844		132.8438	ō	õ
127	.9463334		122			
128	.9491667	20	121	116.1875	0	0
129	.952	20.28125	120	100.5938	0	0
130	.9548334	20.57031	120	86.09375	0	0
131	.9576667	20.78125	119	72.46875	0	0
132	.9605	20.97656	119	59.84375	7.617188E-02	0
			118	48.15625	.1269531	õ
133	.9633334	21.13281				õ
134	.9661668	21.23438	118	37.4375	.1835938	
135	.9690001	21.32813	118	27.53125	.25	0
136	.9718334	21.42188	118	18.59375	.2988281	0
137	.9746667	21.45313	118	10.25	.3671875	0
138	.9775	21.47656	118	2.84375	.4199219	0
139	.9803334	21.46875	118	-3.84375	. 484375	0
			the second s	-9.6875	.5605469	õ
140	.9831667	21.42968	118		the second s	õ
141	.9860001	21.40625	118	-14.90625	. 5976563	
142	.9888334	21.35156	118	-19.4375	.6542969	0
143	.9916667	21.3125	118	-23.21875	.7226563	0
144	.8945001	21.23438	118	-26.40625	.7871094	0
145	. 5973334	21.14063	118	-28.9375	.8671875	0
	1.000167	21.07031	119	-31	.9179688	0
146			and the second	-32.40625	.9648438	ñ
147	1.003	20.97656	119			0
148	1.005833	20.875	119	-33.25	1.017578	0
149	1.008667	20.77344	119	-33.19375	1.089844	0
150	1.0115	20.67188	119	-33.34375	1.144531	0
151	1.014333	20.61719	120	-32.71875	1.220703	0
152	1.017167	20.47656	120	-31.65625	1.275391	0
		20.40625	120	-30.125	1.314453	0
153	1.02			-28.03125	1.375	õ
154	1.022833	20.35156	120			õ
155	1 025667	20.25	120	-25.78125	1.4375	U
156	1.0285	20.21875	120	-22.96875	1.5	0
157	1.031333	20.14063	121	-19.96875	1.5625	0
158	1.034167	20.10156	121	-16.5625	1.595703	0
159	1.037	20.03125	121	-12.78125	1.65625	0
		20.00120	121	-8.6875	1.714844	0
160	1.039833	the second se			1.771484	õ
161	1.042667	19.96875	121	-4.375	1.771404	
162	1.0455	19.97656	121	.15625	1.828125	0
163	1.048333	20.00781	121	4.9375	1.896484	0
164	1.051167	20.02344	121	9.875	1.947266	0
165	1.054	20.02344	121	15.21875	1.992188	0
166	1.056833	20.07813	121	20.5625	2.072266	0
		20.16406	120	26.25	2.117188	0
167	1.059667			31.90625	2.181641	0
168	1.0625	20.25	120			
169	1.065333	20.33594	120	37.75	2.230469	0
170	1.068167	20.45313	120	43.8125	2.28711	0
171	1.071	20.58594	120	49.78125	2.353516	0
172	1.073833	20.75781	119	56.03125	2.410156	0
173	1.076667	20.875	119	62.28125	2.470703	0
	1.0795	21.07813	119	68.59375	2.513672	0
174				74.90625	2.563985	0
175	1.082333	21.28125	118			0
176	1.085167	21.53906	118	81.21875	2.642578	0
177	1.083	21.76563	117	87.71875	2.720703	0
178	1.090833	22.01563	117	94.03125	2.785156	0
179	1.093667	22.3125	116	100.5938	2.841797	0
180	1.0965	22.57031	115	107	2.902344	0
			115	113.3438	2.978516	0
181	1.099333	22.90625			3.015625	õ
182	1.102167	23.19531	114	119.5625		0
183	1.105	23.5625	113	125.875	3.083985	0
184	1.107833	23.94531	113	132.0313	3.16211	0 0 0
185	1,110667	24.32031	112	138.1563	3.236328	0
186	1.1135	24,71875	111	144.1875	3.289063	0
Contraction of the second s	1.116333	25.13281	110	150.1563	3.369141	0
187	1.110000				3.449219	Ő
188	1.119167	25.57031	109	155.9063		0
189	1.122	26.02344	108	161.6563	3.511719	
190	1.124833	26.45313	107	167.1875	3.611328	0

191 1.127667 26.86675 106 172.5313 3.679688 0 192 1.13363 27.60781 106 172.8375 3.740235 0 194 1.138333 28.60781 106 102.9686 3.90625 0 196 1.1381 28.60156 101 182.4686 3.90625 0 196 1.44667 30.14544 100 201.9063 4.15.361 0 198 1.4475 30.740236 97.210.1875 4.351719 0 200.21.56833 31.84375 97 210.1875 4.351719 0 202.1.56833 33.1875 93 221.125 4.55647 0 202 1.56833 33.1875 93 221.475 4.67564 0 274.4775 4.779297 0 204 1.6467 33.6574 92 224.4666 4.69336 0 206 1.70167 35.76 88 230.1675 4.84375 0 206 1.70167 3							
182 1.1305 27.50781 105 177.5077 5.57858 5.57858 184 1.136167 28.50761 103 188.0938 3.90225 0 185 1.136167 28.50761 103 187.4065 4.074218 3.90225 196 1.141853 28.60156 101 197.4065 4.074218 0 197 1.141653 28.60156 101 197.4065 4.074218 0 198 1.14667 30.14544 100 201.90653 4.15747 0 201 1.1566 32.554669 95 217.16436 4.511718 0 203 1.61667 33.83544 92 224.4658 469336 0 204 1.76733 35.07031 89 230.1675 4.16164 0 205 1.176873 37.07031 84 228.6675 4.984375 0 210 1.16667 34.63176 81 224.6653 5.4082866 0 21	191	1.127667	26.96875	106	179 6919	5 670505	
194 1.133333 28 104 1.82.9688 5.20513 0 194 1.36167 28.50761 105 186.0588 5.90225 0 195 1.144657 30.14544 100 201.90653 4.074218 0 196 1.4475 30.70513 99 206.0584 4.55677 0 198 1.1675 4.351675 96 214.125 4.35567 0 200 1.56833 33.1875 93 221.125 4.55867 0 201 1.56833 33.1875 93 227.4375 4.779287 0 202 1.56833 35.07031 89 230.1875 4.8716944 0 206 1.70167 35.75 86 230.1875 4.8716944 0 207 1.73 36.36719 67 235.125 5.061797 0 206 1.7708733 37.07031 84 239.0838 5.13672 0 210 1.818	Contract Contract						
146 1.186167 28.50781 103 188.0838 3.90625 0 196 1.141633 28.0625 101 197.74063 4.074218 0 1967 1.44667 30.14444 100 201.9063 4.15381 0 199 1.150333 31.34375 97 210.1875 4.258125 0 2001 1.15167 31.96675 96 214.125 4.358126 0 2023 1.151683 33.1875 93 221.125 4.56944 0 2034 1.161667 33.83544 92 224.4688 4.67104 0 2055 1.167335 35.07031 89 230.1875 4.871064 0 2066 1.17683 37.07031 85 237.2813 5.292669 0 2011 1.1815 38.45313 62 240.6563 5.408203 0 211 1.17667 37.70313 84 239.0936 5.922669 0 212	193	1.133333					
196 1.139 29.0625 102 192.7186 5.97856 0 196 1.14163 29.0625 101 197.4063 4.074218 0 196 1.475 30.70313 99 206.0938 4.15791 0 196 1.160333 31.34375 97 210.1875 4.35547 0 200 1.153167 31.96675 96 214.125 4.35547 0 2021 1.156833 33.8575 93 221.75436 4.51719 0 2031 1.61667 33.85544 92 224.4686 4.6636 0 204 1.1645 34.66875 91 227.4787 0 0 2056 1.170167 35.75 86 232.2615 5.1091797 0 206 1.170167 35.75 86 232.2615 5.1091797 0 210 1.1815 36.36714 67 236.125 5.00738 5.210936 211 1.176833 <td>194</td> <td>1.136167</td> <td>All the second second</td> <td></td> <td></td> <td></td> <td>0</td>	194	1.136167	All the second				0
186 1.44683 28.60156 101 197.4063 4.074218 0 196 1.44667 30.14464 100 201.9063 4.157391 0 198 1.1475 30.70313 99 206.0938 4.25907 0 200 1.150183 31.94875 96 214.125 4.455547 0 201 1.1566 32.55469 93 221.125 4.55467 0 2023 1.15467 33.8554 92 224.4688 4.67326 0 2041 1.16465 34.46875 91 227.4575 4.79297 0 205 1.167333 35.07031 89 237.2613 5.10875 0 206 1.176467 37.70313 84 238.0936 5.292869 0 210 1.1815 38.65313 82 240.6563 5.408203 0 211 1.17647 39.83564 90 243.438 5.508677 0 212 1.187	195	1.139	29.0625				ő
199 1.450333 3.3.24375 97 210.1875 4.325125 0 200 1.153167 31.96875 96 214.125 4.435547 0 201 1.156833 33.1875 93 221.125 4.589644 0 202 1.161667 33.85544 92 224.4688 4.689364 0 204 1.1645 34.66875 91 227.4375 4.671084 0 206 1.170167 35.75 86 232.6675 4.964375 0 206 1.17583 37.07031 84 239.0838 5.29969 0 210 1.815 36.63574 80 243.3438 5.63666 0 211 1.187667 37.70313 84 240.0313 5.75 0 212 1.87167 38.63544 80 243.3438 5.63666 0 212 1.86433 40.49219 78 244.0313 5.75 0 212 1.19		1.141833	29.00156		197.4063		ő
199 1.450333 3.3.24375 97 210.1875 4.325125 0 200 1.153167 31.96875 96 214.125 4.435547 0 201 1.156833 33.1875 93 221.125 4.589644 0 202 1.161667 33.85544 92 224.4688 4.689364 0 204 1.1645 34.66875 91 227.4375 4.671084 0 206 1.170167 35.75 86 232.6675 4.964375 0 206 1.17583 37.07031 84 239.0838 5.29969 0 210 1.815 36.63574 80 243.3438 5.63666 0 211 1.187667 37.70313 84 240.0313 5.75 0 212 1.87167 38.63544 80 243.3438 5.63666 0 212 1.86433 40.49219 78 244.0313 5.75 0 212 1.19			30.14944				ő
199 1.450333 3.3.24375 97 210.1875 4.325125 0 200 1.153167 31.96875 96 214.125 4.435547 0 201 1.156833 33.1875 93 221.125 4.589644 0 202 1.161667 33.85544 92 224.4688 4.689364 0 204 1.1645 34.66875 91 227.4375 4.671084 0 206 1.170167 35.75 86 232.6675 4.964375 0 206 1.17583 37.07031 84 239.0838 5.29969 0 210 1.815 36.63574 80 243.3438 5.63666 0 211 1.187667 37.70313 84 240.0313 5.75 0 212 1.87167 38.63544 80 243.3438 5.63666 0 212 1.86433 40.49219 78 244.0313 5.75 0 212 1.19	and the second se			99			ŏ
2010 1.156 33.96675 96 214.125 4.86547 0 2021 1.156633 33.1875 93 221.125 4.86846 6 203 1.61667 33.8514 92 224.4688 4.68356 0 204 1.16453 34.46875 91 227.4375 4.779297 0 205 1.167333 35.07031 89 230.1675 4.864375 0 206 1.170167 35.75 86 232.6675 4.964375 0 206 1.175863 37.070313 85 239.0838 5.292669 0 2101 1.1815 38.45313 82 240.6563 5.408203 0 211 1.187467 39.83584 80 243.3488 5.63086 0 213 1.19 40.49219 76 246.0235 5.83516 0 214 1.192683 41.14063 77 244.6125 5.84316 0 214 1.204167<	and the second sec		31.34375	97			ő
202 1.1568.33 33.1875 93 221.125 4.589364 0 203 1.161667 33.83584 92 224.4688 4.68366 0 204 1.1645 34.66875 91 227.4375 4.779297 0 205 1.167533 35.07031 89 230.1875 4.671084 0 206 1.173 36.36719 87 235.125 5.081797 0 206 1.175633 37.70313 86 237.2813 5.219938 0 210 1.815 36.46313 82 240.6663 5.408203 0 211 1.815 38.645313 82 240.6663 5.408203 0 212 1.87167 39.83594 80 243.3438 5.63066 0 213 1.9 40.48219 7 244.6125 5.853516 0 214 1.192683 41.14063 77 244.6125 5.853516 0 214 1.29467 41.66719 7 244.6133 6.89375 0 214			31.96875	96			õ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			32.55469	95			ő
2204 1.1645 33.83544 92 224.4688 4.68356 0 2204 1.1645 34.66875 91 227.4375 4.779297 0 2205 1.167333 35.07031 89 230.1875 4.871084 0 2206 1.173 36.36719 67 235.125 5.091767 6 0 2206 1.175833 37.07031 86 239.0898 5.210936 0 210 1.1815 56.45313 82 240.6563 5.408203 0 211 1.187467 35.8554 80 241.0413 5.518672 0 212 1.187467 35.8554 80 242.0313 5.518672 0 213 1.192833 41.14063 77 244.8125 5.853516 0 214 1.192833 43.27844 72 245.0625 6.238516 0 216 1.204167 45.8938 68 243.4063 6.08375 0 217 1.201333 45.35938 68 243.4063 6.08375 0			33.1875	93	221.125		ŏ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				92	224.4688		õ
				81	227.4375	4.779297	Ó
						4.871094	0
					232.6875	4.984375	0
209 1.178667 37.07031 85 239.0836 5.220265 0 210 1.1815 38.45313 62 240.6563 5.408203 0 211 1.18433 38.09375 61 242.0313 5.13672 0 212 1.187167 38.85594 80 243.3436 5.63066 0 213 1.195 40.48219 76 244.0135 5.863516 0 214 1.195667 41.66719 75 245.0836 6.09375 0 216 1.20567 41.56719 75 245.0625 6.228516 0 217 1.20133 43.27344 72 245.0625 6.228516 0 219 1.207 44.59375 70 244.265 6.484375 0 220 1.22667 46.03125 67 242.4063 6.089375 0 221 1.22667 46.03125 67 242.4063 6.734375 0 2221 1.22667 46.03125 67 242.4063 6.734375 0 2221	1000 C 1000			and the second	235.125	5.091797	0
210 1.1685 37.70313 84 229.0836 5.292669 0 211 1.187167 36.8534 82 240.6563 5.408203 0 211 1.187167 36.85594 80 242.0313 5.13672 0 212 1.187167 36.85594 80 244.0313 5.75 0 213 1.197 40.49219 76 244.0313 5.75 0 214 1.1926833 41.14063 77 244.8125 5.85316 0 216 1.192677 41.86719 70 245.0938 566797 0 217 1.201333 43.27344 72 245.0625 6.28516 0 218 1.204167 43.86438 71 244.7613 6.358375 0 220 1.208833 47.4375 64 239.5 7 0 221 1.22667 46.03125 67 242.20633 7.86375 0 224 1.22167 46.07813 62 237.5 7.134766 0 0 0 0					237.2813	5.210938	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						5.292969	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			and the second sec			5.408203	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						5.513672	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						5.63086	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			and the second se				0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Contraction of the second s					5.853516	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100 - 10 - 100 - 1						0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						6.859375	and the second sec
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						7	U
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	233	1.246667					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	234	1.2495					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	235	1.262333					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.255167					
238 1.260833 56.71875 44 189.4375 9.214844 0 239 1.263667 57.28907 43 184.7188 9.373047 240 1.2665 57.76563 42 179.5938 9.546875 . 241 1.269333 58.25 41 174.4063 9.710938 . 242 1.272167 58.70313 40 169 9.867188 0 243 1.275 59.25782 39 163.8125 10.02148 0 244 1.277833 59.61719 38 158.0625 10.19531 c 244 1.277833 59.61719 38 158.0625 10.53125 0 244 1.280667 60.09375 37 152.4688 10.38477 0 246 1.2835 60.57032 36 146.6875 10.53125 0 247 1.286333 60.91407 36 140.7813 10.71289 0 248 1.289167 61.32032 35 134.875 10.689649 0 249	237	1.258	FD DADWE				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.260833					0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	239	1.263667	57.28907				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	240	1.2665					1944
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	241	1.269333			174.4063		1.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							ò
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.275	59.25782	39			õ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.277833	59.61719	38		and the second se	
246 1.2835 60.57032 36 146.6875 10.53125 0 247 1.286333 60.91407 36 140.7813 10.71289 0 248 1.289167 61.32032 35 134.875 10.89649 0 249 1.292 61.6875 34 128.75 11.0625 0 250 1.294833 62.125 33 122.8125 11.25977 0 251 1.297667 62.375 33 116.625 11.41797 0 252 1.3005 62.74219 32 110.5313 11.59375 0 253 1.303333 63.02344 31 104.2188 11.77734 0 254 1.306167 63.30469 31 98.03125 11.94727 0 255 1.309 63.60157 30 91.90625 12.13281 0			60.09375				0
247 1.286333 60.91407 36 140.7813 10.71289 0 248 1.289167 61.32032 35 134.875 10.89649 0 249 1.292 61.6875 34 128.75 11.0625 0 250 1.294833 62.125 33 122.8125 11.25977 0 251 1.297667 62.375 33 116.625 11.41797 0 252 1.3005 62.74219 32 110.5313 11.59375 0 253 1.303333 63.02344 31 104.2188 11.77734 0 254 1.306167 63.30469 31 98.03125 11.94727 0 255 1.309 63.60157 30 91.90625 12.13281 0			60.57032	36			0
248 1.289167 61.32032 35 134.875 10.89649 0 249 1.292 61.6875 34 128.75 11.0625 0 250 1.294833 62.125 33 122.8125 11.25977 0 251 1.297667 62.375 33 116.625 11.41797 0 252 1.3005 62.74219 32 110.5313 11.59375 0 253 1.303333 63.02344 31 104.2188 11.77734 0 254 1.306167 63.30469 31 98.03125 11.94727 0 255 1.309 63.60157 30 91.90625 12.13281 0				36			0
249 1.292 61.6875 34 128.75 11.0625 0 250 1.294833 62.125 33 122.8125 11.25977 0 251 1.297667 62.375 33 116.625 11.41797 0 252 1.3005 62.74219 32 110.5313 11.59375 0 253 1.303333 63.02344 31 104.2188 11.77734 0 254 1.306167 63.30469 31 98.03125 11.94727 0 255 1.309 63.60157 30 91.90625 12.13281 0					134.875		
250 1.294833 62.125 33 122.8125 11.25977 0 251 1.297667 62.375 33 116.625 11.41797 0 252 1.3005 62.74219 32 110.5313 11.59375 0 253 1.303333 63.02344 31 104.2188 11.77734 0 254 1.306167 63.30469 31 98.03125 11.94727 0 255 1.309 63.60157 30 91.90625 12.13281 0					128.75		0
251 1.297667 62.375 33 116.625 11.41797 0 252 1.3005 62.74219 32 110.5313 11.59375 0 253 1.303333 63.02344 31 104.2188 11.77734 0 254 1.306167 63.30469 31 98.03125 11.94727 0 255 1.309 63.60157 30 91.90625 12.13281 0							0
252 1.3005 62.74219 32 110.5313 11.59375 0 253 1.303333 63.02344 31 104.2188 11.77734 0 254 1.306167 63.30469 31 98.03125 11.94727 0 255 1.309 63.60157 30 91.90625 12.13281 0					116.625		0
253 1.303333 63.02344 31 104.2188 11.77734 0 254 1.306167 63.30469 31 98.03125 11.94727 0 255 1.309 63.60157 30 91.90625 12.13281 0						11.59375	0
254 1.306167 63.30469 31 98.03125 11.94727 0 255 1.309 63.60157 30 91.90625 12.13281 0					104.2188		
						11.94727	0
200 1.011035 63.82813 30 85.65625 12.32227 0							
	200	1.011033	63.82813	30	85.65625	12.32227	0

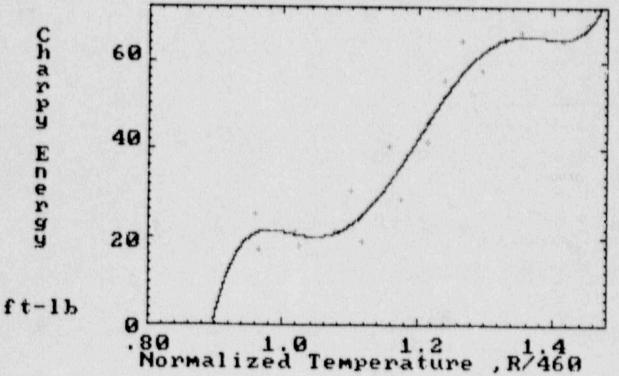
257	1.314667	64.03906	29	79.5625	12.48242	0
258	1.3175	64.35156	28	73.34375	12.6582	õ
259	1.320333	64.5	28	67.40625	12.8418	õ
260	1.323167	64.60156	28	61.40625	13.05664	0
261	1.326	64.78906	28	55.46875	13.19727	Ó
262	1.328833	65.02344	27	49.65625	13.44141	00
263	1.331667	65.15625	27	44.15625	13.60742	õ
264	1.3345	65.21875	27	38.3125	13.77734	0
265	1.337334	65.3125	26	33.15625	13.97461	õ
266	1.340167	65.39063	26	27.65625	14.1875	õ
267	1.343	65.54688	26	22.71875	14.34766	Ő
268	1.345833	65.54688	26	17.71875	14.50781	õ
269	1.348667	65.53906	26	12.96875	14.69336	000
270	1.3515	65.59375	26	8.71875	14.92774	õ
271	1.354333	65.58594	26	4.5	15.05469	Ő
272	1.357167	65.72656	26	.78125	15.27344	0
273	1.36	65.625	26	-3.125	15.42578	Ő
274	1.362833	65.61719	26	-6.40625	15.63672	Ő
275	1.365667	65.60938	26	-9.4375	15.8418	õ
276	1.3685	65.58594	26	-11.84375	15.99805	ŏ
277	1.371333	65.57812	26	-14.21875	16.20703	õ
278	1.374167	65.5	26	-16.03125	16.37695	õ
279	1.377	65.48438	26	-17.53125	16.58984	00
280	1.379833	65.4375	26	-18.78125	16.75	õ
281	1.382667	65.89063	26	-19.25	16.82774	ö
282	1.3855	65.28125	26	-19.4375	17.125	õ
283	1.388333	65.25	27	-18.9375	17.30859	ő
284	1.391167	65.17969	27	-18.21875	17.51953	ñ
285	1.394	65.16406	27	-16.75	17.66016	0
286	1.396833	65.07031	27	-14.71875	17.83984	ŏ
287	1.399667	65.07031	27	-12.25	18.05641	ŏ
288	1.4025	65.00781	27	-8.78125	18.22656	Ö
289	1.405333	64.96875	27	-5.3125	18.41406	õ
290	1.408167	64.92188	27	46875	18.59961	õ
291	1.411	65.03125	27	4.5625	18.80859	Ő
292	1.413833	65.0625	27	10.53125	18.98438	õ
293	1.416667	65.04688	27	16.96875	19.15625	õ
294	1.4195	65.16406	27	24.53125	19.3457	Ő
295	1.422333	65.25	27	32.71875	19.49024	õ
296	1.425167	65.25781	27	41.625	19.71875	õ
297	1.428	65.47656	26	51.4375	19.90625	Ö
298	1.430833	65.65625	26	62.03125	20.06641	Ő
299	1.433667	65.83594	25	73.8125	20.24024	õ
300	1.4365	66.04688	25	86.09375	20.46094	Ő
301	1.439334	66.34375	24	89.625	20.66211	õ
302	1.442167	66.59375	24	114.0313	20.81055	õ
303	1.445	66.9375	23	129.375	21.01172	õ
304	1.447833	67.33594	22	146.0938	21.21485	õ
305	1.450667	67.82813	21	163.4688	21.4043	ő
306	1.4535	68.17188	20	182.3438	21.5918	ő
307	1.456333	68.85156	19	202.1563	21.5918	ő
308		69.46094	18	223.0938	21.5918	ő
		70.10156	16	244.9688	21.5918	ő
309	1.462	70.74219	15	268.6563	21.5918	000000000000000000000000000000000000000
310		71.60156	13	292.9063	21.5918	0
311	1.467667	72.5	11	318.9688	21.5918	0
312	1.4705		9	346.25	21.5918	0
313	1.473333	73.46094 74.38281	0	374.75	21.5918	0
314	1.476167	75.5	8 5	404.6875	21.5918	õ
315	1.479	10.0	0	404.0070	21.0010	

The Total Integral Of P[X(x)]dx is From .9576667 To 1.4535 and the Constant of Intergration is -18925.81 .

JOB: FOLLOWUP ANALYSIS-06/26/89

time - 17:38:20

JOB DESCRIPTION This is a follow-up to job 'INITIAL ANALYSIS--06/26/89.' This analysis will use the data (in modified form) from that job (i.e. the temperature will be expressed in normalized Rankine units - R/459.67F).


EACH CURVE IS A 'BEST FIT' WITH AN ath DEGREE POLYNOMIAL $P[X(x)] = C(1)X(x)^{n} + C(2)X(x)^{n}(n-1) + \dots + C(n)X(x) + C(n+1)$

PLOTTING INSTRUCTIONS Generate (color) MEDIUM resolution, LINEAR graphs with PLOTNFIT DETERMINED COORDINATE RANGES AND MARKING INTERVALS

					*****		DATA	*****			
TASK	L	IDENT.	FICA	NOL		. D	SY	BOL	NDP	SOURCE	
1*	Mod.	CHARPY	DATA	from	RC-2	5	smal	CROSS	18	REYBOARD	

These DATA SETS were OUTPUT to file A: FOLO6891.SIS.

DETERMINATION of RIndt

Part 2.a) Comments on GUTPUT

- 1. The CHI⁺ is 14.705 for the polynomial of degree n = 5 (for which RV is 1.2254; see page A-20). Interpolating the Chi-square distribution table in Appendix B, with the degrees of freedom NU = 18 - 6 = 12, we see that, if the model is approximately "correct," there is about a 26 percent chance that CHI² will be 14.7 or larger because of random fluctuations. Hence, we can say that the differences between the data points (x_i, y_i) and the curve $(x_i, P[X(x_i)])$ are probably due to chance and that the model gives a reasonably good correlation of the data in this data set.
- 2. From the table showing x, P[X(x)], and dP[X(x)]/dx (see pages A-22 through A-25), we see that the inflection point is at $x_{ip} = 1.1985$ and $P[X(x_{ip})] = 42.57813$ (from experience we know that the inflection points associated with "lower shelf" and "upper shelf" energies have no physical significance but, rather, are merely the result of the limited number of data points in each region and the nature of the Basis Function used).
- 3. From the same table referred to above, we can estimate the lower and upper shelf energies by calculating the average P[X(x)] over the maximum to minimum of curve "wiggle" in each range (i.e., over the ranges, 0.9775 $\leq x \leq 1.0455$ and $1.357 \leq x \leq 1.411$) to obtain 20.7 ft-lb and 65.3 ft-lb, respectively.

Part 2.b) INPUT

From Part 2.a) OUTPUT, the inflection point was found to be at $x_{ip} = 1.1985$ and $P[X(x_{ip})] = 42.57813$. To estimate the combination of coefficients CF1 and CG1 that produce a curve of desired shape, we assumed that as x approaches relatively large values, $P[X_b(x)]$ approaches 65.3 ft-lb (the "upper shelf" energy) and as x approaches very small values, $P[X_b(x)]$ approaches 20.7 ft-lb (the "lower shelf" energy). We then solved the equation (65.3 - 42.57813)/(65.3 - 20.7) = 0.50946 = EXP[CF1 \cdot (1.1985)^{CG1}] for values of CG1 = 5, 10, 15, 20, 25, and 30 to obtain values of CF1 = -0.273, -0.110, -0.0446, -0.0180, -0.00729, and -0.00295, respectively.

In the job for this part of the analysis, we will fit polynomials of degree n = 1 to the modified data using Basis Function # 6 (with CS1 = 0, CO1 = 0, CD1 = 0, and CE1 = 1) in six tasks, where a different combination of coefficients CG1:CF1 taken from the above list is used in each task. It should be noted that although approximate "upper shelf" and "lower shelf" energies were used to obtain the relation between CF1 and CG1 at the "pinning point" (i.e., the inflection point), PLOInFIT will, with this Basis Function and n = 1, calculate new polynomial coefficients that are directly related to the "upper shelf" energies, C(1), so as to give a best fit to all the data points for the given CF1:CG1 combination.

(0)

PLOTNFIT / NUREG -

PLOTNFIT was prepared for an agency of United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any protion of this program or represents that its use by such third party would not infringe privately owned rights.

This version of PLOTNFIT (i.e., PLOTNFIT.4TH) will not run properly on a PC with a monochrome monitor. If this PC does not have a color/graphics card or this is not a color monitor, type yes or y at the EXIT (y/n)? prompt, otherwise type no or n and continue (NOTE: If GRAPHICS.COM was not loaded before BASICA.COM, HARD COPIES of graphs can not be made. Now is the time to EXIT this job and reload if it is desirable to print graphs and GRAPHICS.COM has not been pre-loaded.). THE PRINTER MUST BE KEPT ON WHILE PLOTNFIT IS OPERATING.

EXIT (y/n)?

Number of Bite not being used at the START of this job = 10486

For default purposes, what Disk Drive (e.g., A:) would you most likely
want to WRITE to (include subdirectory if applicable - e.g., C:\SUBDIR\)
7 A:

PLOINFIT A US NEC Program for Plotting and Analyzing (i e., Curve Fitting) Lata Interactively with an IBM or IBM Competible Personal Computer (PC) (using DOS 2.1 and BASICA 3.0)

May 1988

if YOU ARE 'NOT' ALREADY FAMILIAR WITH THIS PROGRAM, you should probably ENTER yes at the 'EXIT' (y/n)?' prompt, and run the program 'READIST.PNF'.

Exit (y/n)?

Identify your job (INITIAL ANALYSIS): FORMAT - a string of less than 18 characters (where BASIC filename rules apply to first 3 and last 3 characters) - CHARPYA RC-2 CONT I

Describe your job (This analysis is to get a 'feel' for the data.): FORMAT - a 'comma-less' string of less than 256 characters -Tihis is a continuation of the analysis begun with job 'INITIAL ANALYSIS --06/26/ 689.' tHThis job will use Basis Function #6 in the polynomial fit to the modidie

PLOTTING INSTRUCTIONS

```
What kind of graphs would you like to generate:
    1. LINEAR
    2. SEMI-LOG (Y-axis,LOG; X-axis,LINEAR)
    3. LOG-LOG
NT(= 1 )=
```

A-28

RUN

What palette do you want: FOR NP=1 FOR NP=2 FOR NOP=1 FOR NOP=2 GREEN MAGENTA CURVES' CURVES RED CYAN 'DATA POINTS' 'DATA FIELD' BROWN WHITE AXES AND LABELS' DATA POINTS, AXES, AND LABELS NP(= 1)= Regardless of the NOP value you enter here, if you later choose to make HARD COPIES of the data and curves plotted on the screen, PLOTnFIT will automatically make NOP=1. NOP(= 2)= What background color do you want: 1. BLACK 2. GRAY 3. LIGHT BLUE 4. WHITE 5. LIGHT CYAN 6. LIGHT MAGENTA NQ(= 2)= 5 Would you like graph labels different from those shown in ()? (TITLE) - 30 characters maximum - (y/n): Y What is your choice? DETERMINATION of RIndt (X-AXIS) Horizontal - 22 characters maximum - $(\mathbf{y}/\mathbf{n}): \mathbf{y}$ What is your choice? Normalized Temperature (units) for x-axis - 5 characters maximum -(y/n): y What is your choice? R/460 (Y-AXIS) Vertical - 16 characters maximum -(y/n): y What is your choice? Charpy Energy (units) for y-axis - 5 characters maximum - (y/n): y What is your choice? ft-1b What scaling procedure (NS) would you like to use? 1. SPECIFY COORDINATE RANGES AND MARKING INTERVALS FOR THE AXES (USE ONLY AFTER EXPERIENCE WITH 'PLOTNFIT') 2. ALLOW 'PLOTNFIT' TO ESTABLISH COORDINATE RANGES AND MARKING INTERVALS BASED ON THE DATA RANGES NS(= 2)= DATA AND DATA IDENTIFICATION How many Tasks will there be in this job (1<=NDS<=8)? NDS(= 1)= 6 What INPUT device (NE) would you like to use to enter your Data for Task # 1 ? 1. The KEYBOARD 2 A STORED FILE NE(=1)=2What is the location and name of the FILE containing Data for Task # 1 ? FORMAT - (storage)device:filename - a:fol06891.sis How many Data Sets are in this FILE? NDSF(= 1)= Do you want to INPUT Data Set # 1 from FILE a: fol06891.sis [i.e., that identified as : Mod. CHARPY DATA from RC-2; with (NDP=) 18 data points) (y/n)? y Do you want to INPUT the stored weighting factors (y/n)? y Do you want to change ANY data in this Data Set (y/n)? Do you want to fit curves to your Data Points (y/n)? y

Which of the following BASIS FUNCTIONS do you want to use for this Data Set (YOU MUST supply values for coefficients CS1, CO1, CD1, CB1, CF1 & CG1):

1. X(x)=CS1+x
2. X(x)=CS1+EXP(CO1*x)/(CD1+x)
3. X(x)=(CS1+CO1*x+CD1*x²)*LOG(x)
4. X(x)=CS1/x+CO1*LOG(x)+x*LOG(CD1*x+2.718)
5. X(x)=CS1+CO1*x^cCD1+CE1/(CF1+x^cCG1)
6. X(x)=CS1*EXP(CO1*x^cCD1)+CE1*EXP(CF1*x^cCG1)
7. X(x)=CS1*EXP(CO1*x)+CD1*EXP(CE1*x)+CF1*EXP(CG1*x)
8. X(x)=CS1*(CO1+x)^cCD1+CE1*(CF1+x)^cCG1
9. X(x)=EXP(CS1*x)*(CO1+x)^cCD1+EXP(CE1*x)*(CF1+x)^cCG1
10. X(x)=CS1*x*SIN(CO1+CD1*x)+(CE1/(CD1+x))*SIN(CF1+CG1*x)

11. X(x) = EXP(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x)If the default value of a coefficient is not zero and you wish it to be zero, you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since entering 0 would be interpreted by PLOTNFIT as acceptance of the default value

BF(= 1)= 6 CS1(= 0)= CO1(= 0)= CD1(= 0)= CE1(= 0)=1. CF1(= 0)=-0.273 CG1(= 0)=5 For each Data Set in the job, the program starts with the lowest degree polynomial you want to consider and fits it to the data points; the program then fits, sequentially and in assending order, as many higher degree polynomials as you specify (the current degree limit is 10). What is the lowest degree polynomial (LDP) you want to consider for this Data Set (1 <= LDP <= 10)? LDP(=1)= How many polynomial fits (NPF) do you want to try - including the LDP - (1 <= NPF <= 10)" NFF(=1)= What symbol (M) would you like to use to represent the Data for Task # 1 5. DIAMOND 2. CROSS 6. TRIANGLE - UP 3. 7. TRIANGLE - DOWN X H 4. B. SQUARE M(= 1) = 3What symbol size (MM) would you like? 1. small 2. LARGE MM(= 1) =What INPUT device (NE) would you like to use to 1. The REYBOARD 2. A STORED FILE NE(= 2)= enter your Data for Task # 2 ? What is the location and name of the FILE containing Data for Task # 2 ? FORMAT - (storage)device:filename (a:fol06891.sis) -How many Data Sets are in this FILE? NDSF(= 1)=

Do you want to INPUT Data Set B 1 from FILE a:fol06891.sie [i.e., that identified as : Mod. CHARPY DATA from RC-2; with (NDP=) 18 data points] (y/n)? y Do you want to INPUT the stored weighting factors (y/n)? y Do you want to change ANY data in this Data Set (y/n)? Do you want to fit curves to your Data Points (y/n)? y

Which of the following BASIS FUNCTIONS do you want to use for this Data Set (YOU MUST supply values for coefficients CS1, CO1, CD1, CE1, CF1 & CG1):

1. $X(\mathbf{x}) = CS1 + \mathbf{x}$ 2. X(x)=CS1+EXF(CO1*x)/(CD1+x) X(x)=(CS1+CO1*x+CD1*x*2)*LOG(x) 3. X(x)=CS1/x+CO1*LOG(x)+x*LOG(CD1*x+2.718) 4. 5. X(x)=CS1+CO1*x^CD1+CE1/(CF1+x^CG1) X(x)=CS1*EXP(CO1*x CD1)+CE1*EXP(CF1*x CG1) 6. X(x)=C51*EXP(CO1*x)+CD1*EXP(CE1*x)+CF1*EXF(CG1*x) 7 8. X(x)=CS1*(CO1+x) CD1+CE1*(CF1+x) CG1 X(x)=EXP(CS1*x)*(CO1*x) CD1+EXP(CE1*x)*(CF1+x) CG1 9 10. X(x)=CS1*x*SIN(CO1+CD1*x)+(CE1/(CD1+x))*SIN(CF1+CG1*x)

11. X(x)=EXP(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x)

If the default value of a coefficient is not zero and you wish it to be zero, you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since entering Q would be interpreted by PLOTnFIT as acceptance of the default value.

BF(= 6)= CS1(= 0)= CO1(= 0)= CD1(= 0)= CE1(= 0)=1 CF1(= 0)=-0.110 CG1(= 0)=10 For each Data Set in the job, the program starts with the lowest degree polynomial you want to consider and fits it to the data points; the program then fits, sequentially and in assending order, as many higher degree polynomials as you specify (the current degree limit is 10). What is the lowest degree polynomial (LDP) you want to consider for this Data Set (1 <= LDP <= 10)? LDP(=1)= How many polynomial fits (NPF) do you want to try - including the LDP - (1 <= NPF <= 10)? NPF(=1)= What symbol (M) would you like to use to represent the Data for Task # 2 ? 5. DIAMOND 2. CROSS 6. TRIANGLE - UP 3. X 7. TRIANGLE - DOWN H 8. SQUARE 4. M(= 4)= 3 What symbol size (MM) would you like? 1. small 2. LARGE MM(= 1)= What INPUT device (NE) would you like to use to enter your Data for Task # 3 ? 1. The KEYBOARD 2. A STORED FILE NE(= 2)=

What is the location and name of the FILE containing Data for Task # 3 ? FORMAT - (storage)device:filename (s:fol06891.sis) -

How many Data Sets are in this FILE? NDSF(= 1)=

Do you want to INPUT Data Set # 1 from FILE a:fol06891.sis [1.e., that identified as : Mod. CHARFY DATA from RC-2; with (NDF=) 18 data pointe] (y/n)? y

Do you want to INPUT the stored weighting factors (y/n)? y

Do you want to change ANY data in this Data Set (y/n)?

Do you want to fit curves to your Data Foints (y/n)? y

Which of the following BASIS FUNCTIONS do you want to use for this Data Set (YOU MUST supply values for coefficients CS1, CO1, CD1, CE1, CF1 & CG1):

X(x)=CS1+x X(x)=CS1+EXP(CO1*x)/(CD1+x) 2. 3. $X(x) = (CS1 + CO1 * x + CD1 * x^2) * LOG(x)$ $X(x) = CS1/x + CO1 \times LOG(x) + x \times LOG(CD1 \times x + 2.718)$ 4. X(x)=CS1+CO1*x CD1+CE1/(CF1+x CG1) X(x)=CS1*EXP(CO1*x CD1)+CE1*EXP(CF1*x CG1) 6 X(x)=C51*EXP(CO1*x)+CD1*EXP(CE1*x)+CF1*EXP(CG1*x) 7 . 8. X(x)=CS1*(CO1+x)*CD1+CE1*(CF1+x)*CG1 X(x)=EXF(CE1*x)*(CO1+x)^CD1+EXF(CE1*x)*(CF1+x)^CG1 9. X(x)=C51*x*SIN(CO1+CD1*x)*(CE1/(CD1+x))*SIN(CF1+CG1*x) 10. 11. X(x)=EXP(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x)

If the default value of a coefficient is not zero and you wish it to be zero, you must enter an ineignificant, small number (perhaps, 1E-7*XMIN), since entering 0 would be interpreted by FLOTnFIT as acceptance of the default value.

```
BF(= 6 )=
   CS1(= 0 )=
   CO1(= 0 )=
CD1(= 0 )=
   CE1(= 0 )=1
   CF1(= 0 )=-0.4460446
   CG1(= 0 )=15
        For each Data Set in the job, the program starts with
        the lowest degree polynomial you want to consider and fits it to the data points; the program then fits,
         sequentially and in assending order, as many higher
         degree polynomials as you specify (the current degree
         limit is 10).
   What is the lowest degree polynomial (LDP) you want to consider
   for this Data Set (1 <= LDP <= 10 )? LDP(=1)=
   How many polynomial fits (NPF) do you want to
   try - including the LDP - (1 <= NPF <= 10 )? NPF(=1)=
         What symbol (M) would you like to use to represent
         the Data for Task # 3 ?
                                                5. DIAMOND
                                                6. TRIANGLE - UP
7. TRIANGLE - DOWN
               2. CROSS
              3.
                    X
                                                8. SQUARE
                    H
               4.
         M(= 4) = 3
         What symbol size (MM) would you like?
               1. small
               2. LARGE
         MM(= 1 )=
```

What INPUT device (NE) would you like to use to enter your Data for Task # 4 1. The REYBOARD 2. A STORED FILE NE(= 2)= What is the location and name of the FILE containing Data for Task # 4 ? FORMAT - (storage)device:filename (a:fol06891.sis) -Now many Data Sets are in this FILE? NDSF(= 1)= Do you want to INFUT Data Set # 1 from FILE a: fol06891.sis [1.e., that identified as : Mod. CHARPY DATA from RC-2; with (NDP=) 18 data points) (y/n)? y Do you want to INPUT the stored weighting factors (y/n)? y Do you want to change ANY data in this Data Set (y/n)? Do you want to fit curves to your Data Points (y/n)? y Which of the following BASIS FUNCTIONS do you want to use for this Data Set (YOU MUST supply values for coefficients CS1, CO1, CD1, CF1, CF1 & CG1): 1 . X(x)=CS1+x 2. X(x)=CS1+EXP(CO1*x)/(CD1+x) 3. $X(x) = (CS1 + CO1 * x + CD1 * x^2) * LOG(x)$ X(x)=CS1/x+CO1*LOG(x)+x*LOG(CD1*x+2.718) 4. 5. X(x)=CE1+CO1*x^CD1+CE1/(CF1+x^CG1) 6. X(x)=CS1*EXP(CO1*x^CD1)+CE1*EXP(CF1*x^CG1) X(x)=CS1*EXP(CO1*x)+CD1*EXP(CE1*x)+CF1*EXP(CG1*x) 8. X(x)=CS1*(CO1+x)^CD1+CE1*(CF1+x)^CG1 X(x)=EXP(CS1*x)*(CO1+x) CD1+EXP(CE1*x)*(CF1+x) CG1 9. X(x)=CS1*x*SIN(CO1+CD1*x)+(CE1/(CD1+x))*SIN(CF1+CG1*x) 10. X(x)=EXP(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x) 11. If the defaul: value of a coefficient is not zero and you wish it to be zero, you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since entering 0 would be interpreted by PLOTnFIT as acceptance of the default value BF(= 6)= CS1(= 0)= CO1(= 0)= CD1(= 0)= CE1(= 0)=1. CF1(= 0)=-0.0180 CG1(= 0)=20. For each Data Set in the job, the program starts with the lowest degree polynomial you want to consider and fits it to the data points; the program then fits, sequentially and in assending order, as many higher degree polynomials as you specify (the current degree limit is 10). What is the lowest degree polynomial (LDP) you want to consider for this Data Set (1 <= LDP <= 10)? LDP(=1)= How many polynomial fits (NPF) do you want to try - including the LDP - (1 <= NPF <= 10)? NPF(=1)=

What symbol (M) would you like to use to represent the Data for Task # 4 ? 5. DIAMOND 6. TRIANGLE - UP 2. CROSS 7. TRIANGLE - DOWN 3. X H 8. SQUARE 4. M(= 4)= 3 What symbol size (MM) would you like? . small 2. LARGE MM(= 1)= What INPUT device (NE) would you like to use to enter your Data for Task # 5 ? 1. The KEYBOARD 2. A STORED FILE NE(= 2)= What is the location and name of the FILE containing Data for Task # 5 ? FORMAT - (storage)device:filename (a:fol06891.sis) - y How many Data Sets are in this FILE? NDSF(= 1)= *** ERROR *** File Not Found What is the location and name of the FILE containing Data for Task # 5 ? FORMAT - (storage)device:filename (y) - a:fol06891.sis How many Data Sets are in this FILE? NDSF(= 1)= Do you want to INPUT Data Set # 1 from FILE a: fol06891.sis [i.e., that identified as : Mod. CHARPY DATA from RC-2; with (NDP=) 18 data points) (y/n)? y Do you want to INFUT the stored weighting factors (y/n)? y Do you want to change ANY data in this Data Set (y/n)? Do you want to fit curves to your Data Points (y/n)? y Which of the sollowing BASIS FUNCTIONS do you want to use for this Data Set (YOU MUET supply values for coefficients CS1, CO1, CD1, CE1, CF1 & CG1): 1. X(x)=CS1+x 2. X(x)=CS1+EXP(CO1*x)/(CD1+x) 3. X(x)=(CS1+CO1*x+CD1*x^2)*LOG(x) 4. X(x)=CS1/x+CO1*LOG(x)+x*LOG(CD1*x+2.718) $\begin{array}{l} X(\mathbf{x}) = CS1 + CO1 * \mathbf{x}^{C}CD1 + CE1/(CF1 + \mathbf{x}^{C}CG1) \\ X(\mathbf{x}) = CS1 * EXP(CO1 * \mathbf{x}^{C}CD1) + CE1 * EXP(CF1 * \mathbf{x}^{C}CG1) \\ \end{array}$ 5. 6. 7. X(x)=CS1*EXP(CO1*x)+CD1*EXP(CE1*x)+CF1*EXP(CG1*x) 8. X(x)=CS1*(CO1+x)^CD1+CE1*(CF1+x)^CG1 X(x)=EXP(CS1*x)*(CO1+x)^CD1+EXP(CE1*x)*(CF1+x)^CG1 9 X(x)=CS1*x*SIN(CO1+CD1*x)+(CE1/(CD1+x))*SIN(CF1+CG1*x) 10. 11. X(x)=EXP(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x) If the default value of a coefficient is not zero and you wish it to be zero,

you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since entering 0 would be interpreted by PLOTnFIT as acceptance of the default value.

```
BF(= 6 )=
           CS1(= 0 )=
           CO1(= 0 )=
           CD1(= 0 )=
           CE1(= 0 )=1
           CF1(= 0 )=-0.00729
           CG1(= 0 )=25.
                For each Data Set in the job, the program starts with
                the lowest degree polynomial you want to consider and
                fits it to the data points; the program then fits,
                sequentially and in assending order, as many higher
                degree polynomials as you specify (the current degree
                limit is 10).
          What is the lowest degree polynomial (LDP) you want to consider
          for this Data Set (1 <= LDP <= 10 )? LDP(=1)=
          How many polynomial fits (NPF) do you want to
          try - including the LDP - (1 (= NPF (= 10 )? NPF(=1)=
                What symbol (M) would you like to use to represent
                the Data for Task # 5 7
                                                      5. DIAMOND
                      2. CROSS
                                                      6. TRIANGLE - UP
7. TRIANGLE - DOWN
                     3.
                         X
                      4
                           H
                                                      8. SQUARE
                M(= 4 )= 3
                What symbol size (MM) would you like?
                      1. small
               2. LARGE
MM(= 1 )=
          What INFUT device (NE) would you like to use to
          enter your Data for Task # 6 ?
               1. The REYBOARD
2. A STORED FILE
          NE(= 2 )=
          What is the location and name of the FILE containing Data for Task # 6 ?
               FORMAT - (storage)device:filoname (a:fol06891.sis) -
          How many Data Sets are in this FILE?
               NDSF(= 1 )=
         Do you want to INPUT Data Set # 1 from FILE a:fol06891.sis [i.e., that identified as : Mod. CHARPY DATA from RC-2; with (NDP=) 18 data points] (y/n)? y
         Do you want to INPUT the stored weighting factors (y/n)? y
         Do you want to change ANY data in this Data Set (y/n)?
         Do you want to fit curves to your Data Points (y/n)? y
Which of the following BASIS FUNCTIONS do you want to use for this Data
Set (YOU MUST supply values for coefficients CS1, CO1, CD1, CE1, CF1 & CG1):
  1. X(x) = CS1 + x
  2. X(x)=CS1+EXP(CO1*x)/(CD1+x)
      X(x) = (CS1 + CO1 * x + CD1 * x^2) * LOG(x)
      X(x) = CS1/x + CO1 + LOG(x) + x + LOG(CD1 + x + 2.718)
      X(x)=CS1+CO1*x CD1+CE1/(CF1+x CG1)
     X(x)=CS1*EXP(CO1*x^CD1)+CE1*EXP(CF1*x^CG1)
      X(x) = CS1 * EXP(CO1 * x) + CD1 * EXP(CE1 * x) + CF1 * EXP(CG1 * x)
```

A-35

4009.32

3.

4.

5.

6. 7.

8.

NUREG-1378

X(x)=CS1*(CO1+x) CD1+CE1*(CF1+x) CG1

X(x)=EXP(CS1*x)*(CO1+x) CD1+EXP(CE1*x)*(CF1+x) CG1 9.

10. X(x)=CS1*x*SIN(CO1+CD1*x)+(CC1/(CD1+x))*SIN(CF1+CG1*x)

11. X(x)=EXP(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x)

If the default value of a coefficient is not zero and you wish it to be zero, you must enter ar insignificant, small number (perhaps, 1E-7*XMIN), since entering D would be interpreted by PLOTnFIT as acceptance of the default value.

BF(= 6)= CS1(= 0)= CO1(= 0)= CD1(= 0)= CE1(= 0)=1. CF1(= 0)=-0.00295 CG1(= 0)=30. For each Data Set in the job, the program starts with the lowest degree polynomial you want to consider and fits it to the data points; the program then fits, sequentially and in assending order, as many higher degree polynomials as you specify (the current degree limit is 10). What is the lowest degree polynomial (LDP) you want to consider for this Data Set (1 <= LDP <= 10)? LDP(=1)= How many polynomial fits (NPF) do you want to try = including the UDF = (1 <= NPF <= 10)? NPF(=1)= What symbol (M) would you like to use to represent the Data for Task # 6 7 5. DIAMOND 6. TRIANGLE - UP 2. CROSS 7. TRIANGLE - DOWN 8. SQUARE 3. X H 4. M(= 4)= 3 What symbol size (MM) would you like? . small 2. LARGE MM(= 1)= ALL PLOTTING INSTRUCTIONS AND DAYA HAVE BEEN ENTERED Would you like to make changes in your Plotting Instructions; values currently in the computer appear in parenthesis (y/n)? Would you like to make a few changes in one or more of your Data Sets [most useful when most dats are from the KEYBOARD] (y/n)? Number of Bits not being used at this time, for this job = 2884 Would you like to PRINT values of the Polynomial Coefficients for all the curves fit to each Data Set. along with the corresponding Residual Variances and Coefficients of Determination (y/n)? y

> Would you like to make HARD COPIES of graphs of ALL the Data Sets, one set of graphs for each Data Set, showing ALL the polynomial curves fit to EACH Data Set (y/n)?

Would you like to make 'a' HARD COPY graph containing ALL the Data Sets, each Data Set with it's corresponding BEST POLYNOMIAL/BEST FIT' curve (y/n)? y

Would you like to PRINT values of key program variables and a Table of some of the points which fall on each 'BEST POLYNOMIAL/BEST FIT' curve plotted (y/n)?

Would you like to INPUT a function to be plotted with your data (y/n)? y

Your function, the dependent variable F(X), must be expressed as a polynomial of less than 11th degree (most physical - technical models can be expressed adequately with such a polynomial):

F(X)=C(n+1)+C(n)*X+C(n-1)*X^2+C(n-2)*X^3+...+C(2)*X^(n-1)+C(1)*X^n

Which of the following BASIS FUNCTIONS do you want to use for this Data Set (YOU MUST supply values for coefficients CS1, CO1, CD1, CE1, CF1 & CG1):

X(x)=CS1+x 1. 2. X(x) = CS1 + EXP(CO1 * x)/(CD1 + x)3. $X(x) = (CS1 + CO1 * x + CD1 * x^2) * LOG(x)$ X(x)=CS1/x+CO1*LOG(x)+x*LOG(CD1*x+2.718) 4. 5. X(x)=CS1+CO1*x CD1+CE1/(CF1+x CG1) X(x)=CS1*EXP(CO1*x^CD1)+CE1*EXP(CF1*x^CC1) 6. 7. X(x) = CS1 * EXP(CO1 * x) + CD1 * EXP(CE1 * x) + CF1 * EXP(CG1 * x)8. "(x)=C51*(CO1+x) CD1+CE1*(CF1+x) CG1 X(x)=EXP(CS1*x)*(CO1+x) CD1+EXP(CE1*x)*(CF1+x) CG1 9. 10. X(x)=CS1*x*SIN(CO1+CD1*x)+(CE1/(CD1+x))*SIN(CF1+CG1*x)

11. X(x)=EXF(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x)

If the default value of a coefficient is not zero and you wish it to be zero, you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since entering 0 would be interpreted by PLOTnFIT as acceptance of the default value

BF(= 6)= 1 CS1(= 0)=

> What degree polynomial do you want to use, n=5 C(6)= -98849.59 C(5)= 426694.9 C(4)= -730689.8 C(3)= 620427.2 C(2)= -261180.2 C(1)= 43618.66

Would you like to save your DATA for later use (y/n)?

PLOTDFIT. 4th

JOB: CHARPY RC-2 ACONT-06/27/89

THE FOLLOWING ARE DATA RESULTING FROM FITTING POLYNOMIALS TO THE VARIOUS DATA SETS

TASK # 1: ANALYSIS OF 'Mod. CHARPY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 1 BASIS FUNCTION: $X(x) = 0*EXP[0*x^{(0)}] + (1)*EXP[-.273*x^{(5)}]$ Coefficient of Determination, CD = .878124 Residual Variance, RV = 1.972444

2 Coefficients (the last coefficient is the constant term in the polynomial): C(1)=-93.39537 C(2)= 90.16318

1	x	У	P[X(x)]	Deviation	
1	.9587	25	15.29356	9.706436	.04
2	.9641	17	15.76355	1.23645	.04
3	1.0185	21.5	20.91911	.5808945	.04
4	1.025	18	21.58548	-3.58548	.04
5	1.0772	21.5	27.30457	-5.804566	.04
6	1.1001	30.5	30.00529	.4947129	.04
7	1.1175	19	32,12689	-13.12689	.04
8	1.1566	40.5	37.08305	3.416954	.04
9	1.174	28.5	39.35783	-10.85783	.04
10	1.2132	41.5	44.58919	-3.089184	.04
11	1.2132	46	44.58919	1.410816	.04
12	1.2382	55.5	47.96824	7.531765	.04
13	1.2654	64.5	51.64575	12.85425	.04
14	1.297	58	55.87318	2.12582	.04
15	1.3263	65	59.70222	5.297783	.04
16	1.3535	66.5	63.13852	3.361481	.04
17	1.4166	64.5	70.48625	-5.986252	.04
18	1.4514	\$8.5	74.068	-5.567993	.04

The CHI'2 (to be used with Chi-square Distribution Table) is 31.55911 .

JOB: CHARPY RC-2 ACONT -06/27/89

time - 15:15:12

SUMMARY OF TASK # 1

This task investigated Polynomials of degree 1 through 1 fit to the Data Set, Mod. CHARPY DATA from RC-2, using the BASIS FUNCTION: $X(x) = 0*BXP[0*x^{(0)}]$

+ (1)*EXP[-.273*x*(5)]

. . .

The polynomial of degree 1 produces the largest fractional decrease in RV (note, its RV = 1.972444), hence, is taken as the BEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated). PLOTnFIT suggests that it is a polynomial of high enough degree that it should come close to the 'true function', i.e., the 'true model', yet low enough that it 'averages out' random errors.

Do you agree with PLOTnFIT's choice for the polynomial degree that yields the most satisfactory correlation of the data (y/n)? y

TASK # 2: ANALYSIS OF 'Mod. CHARPY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 1 BASIS FUNCTION: $X(x) = 0*EXP[0*x^{(0)}] + (1)*EXP[-.11*x^{(10)}]$ Coefficient of Determination, CD = .914854 Residual Variance, RV = 1.378004

2 Coefficients (the last coefficient is the constant term in the polynomial): C(1)=-58.69301 C(2)= 71.86225

1	x	У	P[X(x)]	Deviation	۲
1	.9587	25	17.25463	7.745373	.04
2	.9641	17	17.48178	481781	.04
3	1.0185	21.5	20.43386	1.066139	.04
4	1.025	18	20.87827	-2.878269	.04
5	1.0772	21.5	25.29375	-3.793747	.04
6	1.1001	30.5	27.74947	2.750527	.04
7	1.1175	19	29,83881	-10.83881	.04
8	1.1566	40.5	35.22374	5.276264	.04
9	1.174	28.5	37,90128	-9.401283	.04
10	1.2132	41.5	44.40884	-2.908836	.04
11	1.2132	46	44.40884	1.591164	.04
12	1.2382	55.5	48.74525	6.754757	.04
13	1.2654	64.5	53.42412	11.07588	.04
14	1.297	58	58.52567	5256691	.04
15	1.3263	65	62.65861	2.341389	.04
16	1.3535	66.5	65.79694	.703064	.04
17	1.4186	64.5	70.2259	-5.725891	.04
18	1.4514	68.5	71.25013	-2.750122	.04

The CHI'2 (to be used with Chi-square Distribution Table) is 22.04806 .

JOB: CHARPY RC-2 ACONT-06/27/89

time - 15:16:23

SUMMARY OF TASK # 2

This task investigated Polynomials of degree 1 through 1 fit to the Data Set, Mod. CHARPY DATA from RC-2, using the BASIS FUNCTION: $X(x) = 0*EXP[0*x^{(0)}] + (1)*EXP[-.11*x^{(10)}]$

The polynomial of degree 1 produces the largest fractional decrease in RV (note, its RV = 1.378004), hence, is taken as the BEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated). PLOTNFIT suggests that it is a polynomial of high enough degree that it should come close to the 'true function', i.e., the 'true model', yet low enough that it 'averages out' random errors.

Do you agree with PLOTnFIT a choice for the polynomial degree that yields the most satisfactory correlation of the data (y/n)? y

TASK # 4: ANALYSIS OF 'Mod. CHARPY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 1 BASIS FUNCTION: $X(x) = 0*EXP[0*x^{(0)}] + (1)*EXP[-.018*x^{(20)}]$ Coefficient of Determination, CD = .945029 Residual Variance, RV = .8896558

2 Coefficients (the last coefficient is the constant term in the polynomial): C(1)=-46.37255 C(2)= 85.57366

1	×	y	P[X(x)]	Deviation	
1	.9587	25	19.5588	5.441201	.04
2	.9641	17	19.60114	-2.601143	.04
3	1.0185	21.5	20.38996	1.110043	.04
4	1.025	18	20.5489	-2.548897	.04
5	1.0772	21.5	22.75152	-1.251522	.04
6	1.1001	30.5	24.49896	6.001038	.04
7	1.1175	19	26.29568	-7.295681	.04
8	1.1566	40.5	32.24603	8.253975	.04
9	1.174	28.5	35.86537	-7.365368	.04
10	1.2132	41.5	45.9281	-4.428093	.04
11	1.2132	46	45.9281	7.190705K-02	.04
12	1.2382	55.5	52.82755	2.672455	.04
13	1.2654	64.5	59.26307	5.236935	.04
14	1.297	58	63.80488	-5.804882	.04
15	1.3263	65	65.29271	2927094	.04
16	1.3535	66.5	65.55188	.9481201	.04
17	1.4166	64.5	65.57366	-1.073654	.04
18	1.4514	68.5	65 57366	2.926346	.04

The CH1^2 (to be used with Chi-square Distribution Table) is 14.23449 .

JOB: CHARPY RC-2 ACONT-06/27/89

time - 15:18:10

SUMMARY OF TASK # 4

This task investigated Polynomials of degree 1 through 1 fit to the Data Set. Mod. CHARPY DATA from RC-2, using the BASIS FUNCTION: $X(x) = 0*EXP[0*x^{\circ}(0)]$ + (1)*EXP[-.018*x^{\circ}(20)]

The polynomial of degree 1 produces the largest fractional decrease in RV (note, its RV = .8896558), hence, is taken as the BEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated). PLOTnFIT suggests that it is a polynomial of high enough degree that it should come close to the 'true function', i.e., the 'true model', yet low enough that it 'averages out' random errors.

Do you agree with PLOTnFIT's choice for the polynomial degree that yields the most satisfactory correlation of the data (y/n)? y

TASK # 5: ANALYSIS OF 'Mod. CHARPY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 1 BASIS FUNCTION: X(x) = 0*EXP[0*x*(0)] + (1)*EXP[-.00729*x*(25)] Coefficient of Determination, CD = .944909 Residual Variance, FV = .8915932

2 Coefficients (the last coefficient is the constant term in the polynomial): C(1) = -44.25982 C(2) = 64.5312

1	×	y	P[X(x)]	Deviation	•
1	.9587	25	20.38365	4.616352	.04
2	.9641	17	20.40055	-3.400551	.04
3	1.0185	21.5	20.77868	.7213211	.04
4	1.025	18	20.86554	-2.86554	.04
5	1.0772	21.5	22.29452	7945213	.04
6	1.1001	30.5	23,6401	6.859902	.04
7	1.1175	19	25.16606	-6.166062	.04
8	1.1566	40.5	30.97615	9.523853	.04
9	1.174	28.5	34.92783	-6.427834	.04
10	1.2132	41.5	46.79008	-5.290077	04
11	1.2132	46	46.79008	7900772	.04
12	1.2382	55.5	54.87318	.6268235	.04
13	1.2654	64.5	61.31134	3,188667	.04
14	1.297	58	64.18659	-6.186585	.04
15	1.3263	65	64.52208	.4779206	.04
16	1.3535	66.5	64.53116	1.968842	.04
17	1.4166	64.5	64.5312	0311966	.04
18	1.4514	68.5	64.5312	3.968804	.04

The CHI'2 (to be used with Chi-square Distribution Table) is 14.26549 .

JOB: CHARPY RC-2 ACONT-06/27/89

time - 15:19:36

SUMMARY OF TASK # 5

This task investigated Polynomials of degree 1 through 1 fit to the Data Set, Mod. CHARPY DATA from RC-2, using the BASIS FUNCTION: $X(x) = 0 * EXP[0 * x^{(0)}]$ + (1)*EXP[-.00729*x*(25)]

The polynomial of degree 1 produces the largest fractional decrease in RV (note, its RV = .8915932), hence, is taken as the BEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated). PLOTNFIT suggests that it is a polynomial of high enough degree that it should come close to the 'true function', i.e., the 'true model', yet low enough that it 'averages out' random errors.

Do you agree with PLOTnFIT's choice for the polynomial degree that yields the most satisfactory correlation of the data (y/n)? y

TASK # 6: ANALYSIS OF "Mod. CHARPY DATA from RC-2"

Degree of Polynomial, $P[X(x^{1}], n = 1]$ BASIS FUNCTION: $X(x) = 0*EXP[0*x^{*}(0)]$ + (1)*EXP[-.00295*x^{*}(30)] Coefficient of Determination, CD = .941253 Residual Variance, RV = .9507661

2 Coefficients (the last coefficient is the constant term in the polynomial): C(1)=-42.84796 C(2)= 63.82746

i	x	y	P[X(x)]	Deviation	
1	.9587	25	21.01515	3.984852	.04
2	9641	17	21.02169	-4.02169	.04
3	1.0185	21.5	21,19801	.3019905	.04
4	1.025	18	21,24382	-3.243817	.04
5	1.0772	21.5	22.14013	6401291	.04
6	1.1001	30.5	23,13505	7.364952	.04
7	1.1175	19	24.37852	-5.378521	.04
8	1.1566	40.5	29.84824	10.65176	.04
9	1.174	28.5	34.02197	-5.521973	.04
10	1.2132	41.5	47.62161	-6.121609	. 64
11	1.2132	46	47.62161	-1.621609	. 64
12	1.2382	55.5	56.69396	-1.193955	.04
13	1.2654	64.5	62.45463	2.045376	.04
14	1.297	58	63,79583	-5.795826	.04
15	1.3263	65	63.82743	1,172577	.04
16	1.3535	66.5	63.82746	2.672547	.04
17	1.4166	64.5	63.82746	6725464	.04
18	1.4514	68.5	63.82746	4.672547	.04

The CHI'2 (to be used with Chi-square Distribution Table) is 15.21226 .

JOB: CHARPY RC-2 ACONT-06/27/89

time - 15:20:26

SUMMARY OF TASK # 6

This task investigated Polynomials of degree 1 through 1 fit to the Data Set. Mod. CHARPY DATA from RC-2, using the BASIS FUNCTION: X(x) = 0*EXP[0*x^(0)] + (1)*EXP[-.00295*x^(30)]

The polynomial of degree 1 produces the largest fractional decrease in RV (note, its RV = .9507661), hence, is taken as the BEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated). PLOTnFIT suggests that it is a polynomial of high enough degree that it should come close to the 'true function', i.e., the 'true model', yet low enough that it 'averages out' random errors.

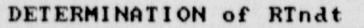
Do you agree with PhOTnFIT's choice for the polynomial degree that yields the most satisfactory correlation of the data (y/n)? y

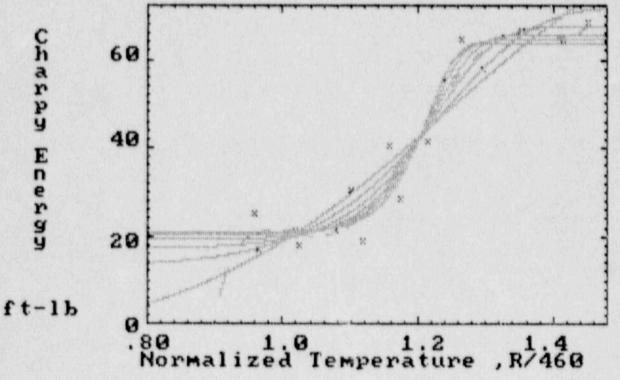
JOB: CHARPY RC-2 ACONT-06/27/89

time - 15:30:00

JOB DESCRIPTION This is a continuation of the analysis bogun with job 'INITIAL ANALYSIS --D6/26/89' and extended through job 'FOLLOWUP ANALYSIS -06/26/89.' This job will use Basis Function # 6 in the polynomial fit to the modified data from file FOL06891.SIS.'

EACH CURVE IS A 'BEST FIT' WITH AN nth DEGREE POLYNOMIAL $F[X(x)] = C(1)X(x)^n + C(2)X(x)^n(n-1) + ... + C(n)X(x) + C(n+1)$


The 'Dashed Curve' is a Plot of the Function: $F(X) = [-98849.59] + [426694.9*X^{1}] + [-730689.8*X^{2}] + [620427.2*X^{3}] + [-261180.2*X^{4}] + [43618.66*X^{5}] X(x) = 0 + x$



TASK			IFICAT	NOIT		n	SYMBO	L	NDP		SOURCE
1	Mod.	CHARPY	DATA	from	RC-2	1	small	x	18	FILE	fo106891.eis
2	Mod.	CHARPY	DATA	from	RC-2	1	65811	X	18	FILE	fo106891.sis
3	Mod.	CHARPY	ATAC	from	RC-2	1	small	X	18	FILE	fo106891.eis
4	Mod.	CHARPY	DATA	from	RC-2	1	emall	X	18	FILE	fo106891.sis
5	Mod.	CHARPY	ATA	from	RC-2	1	small	x	18	FILE	fo106891.sis
6	Mod.	CHARPY	DATA	from	RC-2	1	6mall	X		100 - 10 - 120 - 200	fo106891.sis

DATA

A-44

Part 2.b) Comments on OUTPUT

- 1. The results of this part of the analysis suggest that the CHI^2 is minimum between CG1:CF1 = 20:(-0.0180), where RV = 0.8896, and CG1:CF1 = 25:(-0.00729), where RV = 0.8916 (see pages A-41 and A-42).
- Over the CG1:CF1 range from 5: (-0.273) to 30: (-0.00295), the lower shelf energy: upper shelf energy varied from -3.2:90.2 ft-1b to 21.0:63.8 ft-1b.

Part 2.c) INPUT

The results of Part 2.b) suggest that for the chosen Basis Function, with polynomial degree n = 1, RV should be minimum for some CG1:CF1 values between 20:(-0.0180) and 25:(-0.00729). To refine our estimate of "good" values for CG1-

CG1 and CF1, we again solve the equation $0.50946 = EXP[CF1 \cdot (1.1985)^{CG1}]$ for values of CG1 = 21, 22, 22.5, 23, and 24 to obtain values of CF1 = -0.01505, -0.01256, -0.011147, -0.01048, and -0.00874, respectively.

In the job for this part of the analysis, we will fit polynomials of degree n = 1 to the modified data using Basis Function # 6 (with CS1 = 0, CO1 = 0, CD1 = 0, and CE1 = 1) in five tasks, where a different combination of coefficients CG1:CF1, taken from the above list, is used in each task. The job was run following the job for Part 2.b) without exiting PLOTNFIT.4TH.

Identify your job (INITIAL ANALYSIS): FORMAT - a string of less than 18 characters (where BASIC filename rules apply to first 3 and last 3 characters) - CHARFY RC-2 BCONT

Describe your job (This analysis is to get a feel for the data.):

FORMAT - a 'comma-less' string of less than 256 characters -This is a continuation of the analysis begun with job INITIAL ANALYSIS --06/26/ 89' and extended through job 'CHARPY RC-2 ACONT -06/27/89.' This job will use S asis Function # 6 in the polynomia. fit to the mofified data from file 'FOL06891 SIS.

PLOTTING INSTRUCTIONS

What	kin 1	d of LINEA	gray	he	would	you	like	to	generate	ł.
				(Y-	axis.L	OG;)	X-axi	e,LI	NEAR)	

WHITE

3. LOG-LOG

NT(= 1)=

What	palette do	you want:
	FOR NP=1	FOR NP=2
	GREEN	MAGENTA
	RED	CYAN

FOR NOP=1 CURVES' 'DATA POINTS' AXES AND LABELS'

FOR NOP=2

DATA FIELD' DATA POINTS, AXES,

AND LABELS'

'CURVES'

NP(= 1)=

BROWN

	choose to make	HARD COPIES	you onter here, if you later of the data and curves plotted
NOP(=	on the screen, 2)=	PLOTNFIT will	automatically make NOP=1.

What background color do you want: 1. BLACK 2. GRAY 3. LIGHT BLUE 4. WHITE 5. LIGHT CYAN 6. LIGHT MAGENTA

NQ(= 2)= 3

Would you like graph	<pre>1 labels different from those shown in ()?</pre>
TITLE	(DETERMINATION of RTndt)(y/n):
X-AXIS	(Normalized Temperature)(y/n):
unite	(R/460)(y/n):
Y-AXIS	(Charpy Energy)(y/n):
unite	(ft-1b)(y/n):

What scaling procedure (NS) would you like to use? SPECIFY COORDINATE RANGES AND MARKING INTERVALS FOR THE AXES (USE ONLY AFTER EXPERIENCE WITH 'PLOTNFIT')
 ALLOW 'PLOTNFIT' TO ESTABLISH COORDINATE RANGES AND MARKING INTERVALS BASED ON THE DATA RANGES NS(= 2)=

DATA AND DATA IDENTIFICATION

How many Tasks will there be in this job (1<=NDS<=8)? NDS(= 6)= 85

What INPUT device (NE) would you like to use to enter your Data for Task # 1 ? 1. The KEYBOARD 2. A STORED FILE NE(= 2)=

What is the location and name of the FILE containing Data for Task # 1 ? FORMAT - (storage)device:filename (s:fol06891.sis) - y

Now many Data Sets are in this FILE? NDSF(= 1)=

*** ERROR ***

File Not Found

What is the location and name of the FILE containing Data for Task # 1 ? FORMAT - (storage)device:filename (y) - a:fol06891.sis

How many Data Sets are in this FILE? NDSF(= 1)=

Do you want to INPUT Data Set # 1 from FILE a:fol06891.sie [i.e., that identified as : Mod. CHARPY DATA from RC-2; with (NDF=) 18 data points) (y/n)? y

Do you want to INPUT the stored weighting factors (y/n)? y

Do you want to change ANY data in this Data Set (y/n)?

Do you want to fit curves to your Data Points (y/n)? y

Which of the following BASIS FUNCTIONS do you want to use for this Data Set (YOU MUST supply values for coefficients CS1, CO1, CD1, CE1, CF1 & CG1):

- 1. X(x)=CS1+x
- X(x)=CS1+EXP(CO1*x)/(CD1+x)
 X(x)=(CS1+CO1*x+CD1*x²)*L
- X(x)=(CS1+CO1*x+CD1*x 2)*LOG(x)
- X(x)=CS1/x+CO1*LOG(x)+x*LOG(CD1*x+2.718)
- 5. X(x)=CS1+CO1*x CD1+CE1/(CF1+x CG1)
- 6. X(x)=CS1*EXP(CO1*x^CD1)+CE1*EXP(CF1*x^CG1)
- X(x)=CS1*EXP(CO1*x)+CD1*EXP(CE1*x)+CF1*EXP(CG1*x)

- 7. $X(x) = CS1 * EXP(CO1 * x) * CD1 * EAT(C1 + x)^{CG1}$ 8. $X(x) = CS1 * (CO1 + x)^{CD1} + CE1 * (CF1 + x)^{CG1}$ 9. $X(x) = EXP(CS1 * x) * (CO1 + x)^{CD1} + EXP(CE1 * x) * (CF1 + x)^{CG1}$ 9. X(x) = EXP(CS1 * x) * (CO1 + CD1 * x) + (CE1/(CD1 + x)) * SIN(CF1 + CG2)10. X(x)=CS1*x*SIN(CO1+CD1*x)+(CE1/(CD1+x))*SIN(CF1+CG1*x)
- 11. X(x) = EXF(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x)

If the default value of a coefficient is not zero and you wish it to be zero, you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since entering 0 would be interpreted by PLOTnFIT as acceptance of the default value.

BF(= 1)= 6 CS1(= 0)= CO1(= 0)= CD1(= 0)= CE1(= 1)=y ?Redo from start)=1 CF1(=-.273)=-0.01505 CG1(= 5)=21 For each Data Set in the job, the program starts with the lowest degree polynomial you want to consider and fits it to the data points; the program then fits, sequentially and in assending order, as many higher degree polynomials as you specify (the current degree limit is 10).

What is the lowest degree polynomial (LDP) you want to consider for this Data Set (1 <= LDP <= 10)? LDP(=1)=

How many polynomial fits (NPF) do you want to try - including the LDP - (1 <= NPF <= 10)? NPF(=1)= What symbol (M) would you like to use to represent the Data for Task # 1 ? 5. DIAMOND CROSS 6. TRIANGLE - UP 7. TRIANGLE - DOWN 3. X 4. H 8. SQUARE M(= 3)= 4 What symbol size (MM) would you like? small 2. LARGE MM(= 1)= What INPUT device (NE) would you like to use to enter your Data for Task # 2 ? 1. The KEYBOARD 2. A STORED FILE NE(= 2)= What is the location and name of the FILE containing Data for Task # 2 ? FORMAT - (storage)device:filename (a:fol06891.sis) -How many Data Sets are in this FILE? NDSF(= 1)= Do you want to INFUT Data Set # 1 from FILE a:fol06891.sis [i.e., that identified as : Mod. CHARPY DATA from RC-2; with (NDP=) 18 data points] (y/n)? y Do you want to INFUT the stored weighting factors (y/n)? y Do you want to change ANY data in this Data Set (y/n)? Do you want to fit curves to your Data Points (y/n)? y Which of the following BASIS FUNCTIONS do you want to use for this Data Set (YOU MUST supply values for coefficients CS1, CO1, CD1, CE1, CF1 & CG1): . 1. X(x)=CS1+x 2. X(x)=CS1+EXP(CO1*x)/(CD1+x) 3. X(x)=(CS1+CO1*x+CD1*x^2)*LOG(x) X(x)=CS1/x+CO1*LOG(x)+x*LOG(CD1*x+2.718) 4. 5. X(x)=CS1+CO1*x ^ Cl'1+CE1/(CF1+x ^ CG1) 6. X(x)=CS1*EXP(CO1*x ^ CD1)+CE1*EXP(CF1*x ^ CG1) 7. X(x)=CS1*EXP(CC1*x)+ CD1*EXP(CE1*x)+CF1*EXP(CG1*x) X(x)=CS1*(CO1+x) CD1+CE1*(CF1+x) CG1 8. X(x)=EXP(CS1*x)*(CO1+x)^CD1+EXP(CE1*x)*(CF1+x)^CG1 9. X(x)=CS1*x*SIN(CO1+CD1*x)+(CE1/(CD1+x))*SIN(CF1+CG1*x) 10 11. X(x)=EXF(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x) If the default value of a coefficient is not zero and you wish it to be zero. you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since entering 0 would be interpreted by PLOInFIT as acceptance of the default value. BF(= 6)= CS1(= 0)= CO1(= 0)= CD1(= 0)= CE1(= 1)= CF1(=-.11)=-0.01256

CG1(= 10)=22

For each Data Set in the job, the program starts with the lowest degree polynomial you want to consider and fits it to the data points; the program then fits, sequentially and in assending order, as many higher degree polynomials as you specify (the current degree limit is 10). What is the lowest degree polynomial (LDP) you want to consider for this Data Set (1 <= LDF <= 10)? LDP(=1)= How many polynomial fits (NPF) do you want to try - including the LDP - (1 <= NPF <= 10)? NPF(=1)= What symbol (M) would you like to use to represent the Data for Task # 2 ? 5. DIAMOND 6. TRIANGLE - UP 7. TRIANGLE - DOWN 2. CROSS 3. X 8. SQUARE H 4. M(= 5)= 4 What symbol size (MM) would you like? 1. small 2. LARGE MM(= 1)= What INPUT device (NE) would you like to use to enter your Data for Task # 3 ? 1. The REYBOARD 2. A STORED FILE NE(= 2)= What is the location and name of the FILE containing Data for Task # 3 ? FORMAT - (storage)device:filename (a:fol06891.sis) -How many Data Sets are in this FILE? NDSF(= 1)= Do you want to INPUT Data Set # 1 from FILE a:fol06891.sis [i.e., that identified as : Mod. CHARPY DATA from RC-2; with (NDF=) 18 data points] (y/n)? y Do you want to INPUT the stored weighting factors (y/n)? y Do you want to change ANY data in this Data Set (y/n)? Do you want to fit curves to your Data Foints (y/n)? y Which of the following BASIS FUNCTIONS do you want to use for this Data Set (YOU MUST supply values for coefficients CS1, CO1, CD1, CE1, CF1 & CG1): X(x) = CS1 + xX(x)=CS1+EXP(CO1*x)/(CD1+x) X(x)=CS1+EXP(CO1*x)/(CD1+x)
 X(x)=(CS1+CO1*x+CD1*x^2)*LOG(x) 4. X(x)=CS1/x+CO1*LOG(x)+x*LOG(CD1*x+2.718) 5. X(x)=CS1+CO1*x CD1+CE1/(CF1+x CG1) 6. X(x)=CS1*EXP(CO1*x^CD1)+CE1*EXP(CF1*x^CG1) X(x)=CS1*EXP(CO1*x)+CD1*EXP(CE1*x)+CF1*EXP(CG1*x) 8. X(x)=CS1*(CO1+x) CD1+CE1*(CF1+x) CG1 9. X(x)=EXP(CS1*x)*(CO1+x)^CD1+EXP(CE1*x)*(CF1+x)^CG1 10. X(x)=CS1*x*SIN(CO1+CD1*x)+(CE1/(CD1+x))*SIN(CF1+CG1*x) 11. X(x)=EXP(CS'*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x) If the default value of a coefficient is not zero and you wish it to be zero, you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since entering 0 would be interpreted by PLOTnFIT as acceptance of the default value.

NUREG-1378

BF(= 6)= CS1(= 0)= CO1(= 0)= CD1(= 0)= CE1(= 1)= CF1(=-.0446)=-0.01147 CG1(= 15)=22.5 For each Data Set in the job, the program starts with the lowest degree polynomial you want to consider and fits it to the data points: the program then fits, sequentially and in assending order, as many higher degree polynomials as you specify (the current degree limit is 10). What is the lowest degree polynomial (LDP) you want to consider for this Data Set (1 <= LDP <= 10)? LDP(=1)= How many polynomial fits (NPF) do you want to try - including the LDP - (1 <= NPF <= 10)? NPF(=1)= What symbol (M) would you like to use to represent the Data for Task # 3 ? 5. DIAMOND 2. CROSS 6. TRIANGLE - OF 3. X 7. TRIANGLE - DOWN H 4. 8. SQUARE M(= 5)= 4 What symbol size (MM) would you like? 1. small 2. LARGE MM(= 1)= What INPUT device (NE) would you like to use to enter your Data for Task # 4 ? 1. The KEYBOARD 2. A STORED FILE NE(= 2)= What is the location and name of the FILE containing Data for Task # 4 ? FORMAT - (storage)device:filename (a:fol06891.sis) -How many Data Sets are in this FILE? NDSF(= 1)= Do you want to INPUT Data Set # 1 from FILE a:fol06891.sis [i.e., that identified as : Mod. CHARPY DATA from RC-2; with (NDP=) 18 data points] (y/n)? y Do you want to INPUT the stored weighting factors (y/n)? y Do you want to change ANY data in this Data Set (y/n)? Do you want to fit curves to your Data Points (y/n)? y Which of the following BASIS FUNCTIONS do you want to use for this Data Set (YOU MUST supply values for coefficients CS1, CO1, CD1, CE1, CF1 & CG1; 1. X(x) = CSi + x2. X(x) = CS1 + EXP(CO1 * x)/(CD1 + x) X(x)=(CS1+CO1*x+CD1*x^2)*LOG(x) 4. X(x)=CS1/x+CO1*LOG(x)+x*LOG(CD1*x+2.718) X(x)=CS1+CO1*x^CD1+CE1/(CF1+x^CG1) 5. X(x)=CS1*EXP(CO1*x^CD1)+CE1*EXP(CF1*x^CG1) 6.

- 7. X(x)=CS1*EXP(CO1*x)+CD1*EXP(CE1*x)+CF1*EXP(CG1*x)
- 8. X(x)=CS1*(CO1+x)^CD1+CE1*(CF1+x)^CG1

9. X(x)=EXP(CS1*x)*(CO1+x)^CD1+EXP(CE1*x)*(CF1+x)^CG1 10. X(x)=CS1*x*SIN(CO1+CD!*x)+(CE1/(CD1+x))*SIN(CF1+CG1*x)

11. X(x)=EXP(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x)

If the default value of a coefficient is not zero and you wish it to be zero, you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since entering 0 would be interpreted by PLOTnFIT as acceptance of the default value.

BF(= 6)= CS1(= 0)= CO1(= 0)= CD1(= 0)= CE1(= 1)= CF1(=-.018)=+0.01048 CG1(= 20)=23 For each Data Set in the job, the program starts with the lowest degree polynomial you want to consider and fits it to the data points; the program then fits, sequentially and in assending order, as many higher degree polynomials as you specify (the current degree limit is 10). What is the lowest degree polynomial (LDP) you want to consider for this Data Set (1 <= LDP <= 10)? LDP(=1)= How many polynomial fits (NPF) do you want to try - including the LDP - (1 <= NPF <= 10)? NPF(=1)= What symbol (M) would you like to use to represent the Data for Task # 4 ? 5. DIAMOND 1. 6. TRIANGLE - UP 7. TRIANGLE - DOWN 2. CROSS 3. X 8. SQUARE H 4 M(= 5)= 4 What symbol size (MM) would you like? 1. small 2. LARGE MM(= 1)= What INPUT device (NE) would you like to use to enter your Data for Task # 5 ? 1. The **KEYBOARD** 2. A STORED FILE NE(= 2)= What is the location and name of the FILE containing Data for Task # 5 ? FORMAT - (storage)device:filename (a:fol06891.sis) -How many Data Sets are in this FILE? NDSF(= 1)= Do you want to INFUT Data Set # 1 from FILE a:fol06891.sis [i.e., that identified as : Mod. CHARPY DATA from RC-2; with (NDP=) 18 data points] (y/n)? y Do you want to INPUT the stored weighting factors (y/n)? y Do you want to change ANY data in this Data Set (y/n)? Do you want to fit curves to your Data Points (y/n)? y

Which of the following BASIS FUNCTIONS do you want to use for this Data Set (YOU MUST supply values for coefficients CS1, CO1, CD1, CE1, CF1 & CG1):

- 1. X(x)=CS1+x
- X(x)=CS1+EXP(CO1*x)/(CD1+x)
- X(x)=(CS1+CO1*x+CD1*x²)*LOG(x)
- 4. X(x)=CS1/x+C(1*LOG(x)+x*LOG(CD1*x+2.718)
- 5. X(x)=CS1+CO1*x^CD1+CE1/(CF1+x^CG1)
- 6. X(x)=CS1*EXP(CC1*x CD1)+CE1*EXP(CF1*x CG1)
- 7. X(x)=CS1*EXP(CO1*x)+CI/1*EXP(CE1*x)+CF1*EXP(CG1*x)
- 8. X(x)=CS1*(CO1+x)^CD1+CE1*(CF1+x)^CG1
- 9. X(x)=EXP(CS1*x)*(CO1+x)*CD1+EXP(CE1*x)*(CF1+x)*CG1
- 10. X(x)=CS1*x*SIN(CO1+CD1*x)+(CE1/(CD1+x))*SIN(CF1+CG1*x)
- 11. X(x)=EXP(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x)

If the default value of a coefficient is not zero and you wish it to be zero, you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since entering 0 would be interpreted by PLOTnFIT as acceptance of the default value.

BF(= 6)= CS1(= 0)= CO1(= 0)= CD1(= 0)= CE1(= 1)= CF1(=-.00729)=-0.00874 CG1(= 25)=24 For each Data Set in the job, the program starts with the lowest degree polynomial you want to consider and fits it to the data points; the program then fits, sequentially and in assending order, as many higher degree polynomials as you specify (the current degree limit is 10). What is the lowest degree polynomial (LDP) you want to consider for this Data Set (1 <= LDP <= 10)' LDP(=1)= How many polynomial fits (NPF) do you want to try - including the LDF - (1 <= NPF <= 10)? NPF(=1)= What symbol (M) would you like to use to represent the Data for Task # 5 ? 5. DIAMOND 2. CROSS 6. TRIANGLE - UP 7. TRIANGLE - DOWN 3. X H 4 8. SQUARE M(= 5)= 4 What symbol size (MM) would you like? 1. small 2. LARGE MM(= 1)= ALL PLOTTING INSTRUCTIONS 'ND DATA HAVE BEEN ENTERED

Would you like to make changes in your Plotting Instructions; values currently in the computer sppear in parenthesis (y/n)?

Would you like to make a few changes in one or sore of your Data Sets [most useful when most data are from the KEICAPH] (real

Would you like to completely RE-INPUT your Coordinate Data (most useful when most data are from STORED FILES) (y/n)? Number of Bits not being used at this time, for this job = 1312

Would you like to PRINT values of the Polynomial Coefficients for all the curves fit to each Data Set, along with the corresponding Residual Variances and Coefficients of Determination (y/n)? y

Would you like to make HARD COPIES of graphs of ALL the Data Sets, one set of graphs for each Data Set, showing ALL the polynomial curves fit to EACH Data Set (y/n)?

Would you like to make 'a' HARD COPY graph containing ALL the Data Sets, each Data Set with it's corresponding 'BEST POLYNOMIAL/BEST FIT' curve (y/n)? y

Would you like to PRINT values of key program variables and a Table of some of the points which fall on each 'BEST FOLYNOMIAL/BEST FIT' curve plotted (y/n)?

Would you like to INPUT a function to be plotted with your data (y/n)?

Would you like to save your DATA for later use (y/n)?

.

Part 2.c) OUTPUT

PLOTNFIT. 4th

JOB: CHARPY RC-2 BCONT-06/27/89

THE FOLLOWING ARE DATA RESULTING FROM FITTING POLYNOMIALS TO THE VARIOUS DATA SETS

TASK # 1: ANALYSIS OF 'Mod. CHARPY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 1 BASIS FUNCTION: $X(x) = 0*EXP[0*x^{(0)}] + (1)*EXP[-.01505*x^{(21)}]$ Coefficient of Determination, CD = .945367 Residual Variance, RV = .884177

2 Coefficients (the last coefficient is the constant term in the polynomial): C(1)=-45.86022 C(2)= 65.31018

i	x	y	P[X(x)]	Deviation	w
1	.9587	25	19.73373	5.26827	.04
2	.9641	17	19.76914	-2.769135	A
3	1.0185	21.5	20.4531	1.046902	.04
4	1.025	18	20.59467		.04
5	1.0772	21.5		-2.594673	.04
6	1.1001		22.62473	-1.124725	.04
7		30.5	24.29217	6.207836	.04
	1.1175	19	26.04044	-7 040436	.04
8	1.1566	40.5	31.99003	8.509976	.04
9	1.174	28.5	35.68834	-7.188339	.04
10	1.2132	41.5	46.11997	-4.619972	.04
11	1.2132	46	46.11997	1199722	.04
12	1.2382	55.5	53.26623	2.233772	
13	1.2654	64.5	59.75123	4.748772	.04
14	1.297	58	63.98258		.04
15	1.3263	65		-5.982582	.04
16	1.3535		65.15088	1508789	.04
and the second sec		66.5	65.30233	1.19767	.04
17	1.4166	64.5	65.31018	8101807	.04
18	1.4514	68.5	65.31018	3,189819	04

The CHI'2 (to be used with Chi-square Distribution Table) is 14.14683 .

JOB: CHARPY RC-2 BCONT-06/27/89

time - 15:50:49

SUMMARY OF TASK # 1

This task investigated Polynomials of degree 1 through 1 fit to the Data Set, Mod. CHARPY DATA from RC-2, using the BASIS FUNCTION: $X(x) = 0 \times X^{(0)}$

+ (1)*EXP[-.01505*x^(21)]

The polynomial of degree 1 produces the largest fractional decrease in RV (note, its RV = .8841.7), hence, is taken as the BEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated). PLOTnFIT suggests that it is a polynomial of high enough degree that it should come close to the 'true function', i.e., the 'true model', yet low enough that it 'averages out' random errors.

Do you agree with PLOTnFIT's choice for the polynomial degree that yields the most satisfactory correlation of the data (y/n)? y

.

.

TASK # 2: ANALYSIS OF 'Mod. CHARPY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 1BASIS FUNCTION: $X(x) = 0*EXP[0*x^{\circ}(0)] + (1)*EXP[-.01256*x^{\circ}(22)]$ Coefficient of Determination, CD = .945506 Residual Variance, RV = .8819332

2 Coefficients (the last coefficient is the constant term in the polynomial): C(1)=-45.4019 C(2)= 65.08533

1	×	y	P[X(x)]	Deviation	*
1	.9587	25	19.90834	5.091656	.04
2	.9641	17	19.93784	-2.93784	.04
3	1.0185	21.5	20.52897	.971035	.04
4	1.025	18	20.65462	-2.654617	.04
5	1.0772	21.5	22.5191	-1.019096	.04
6	1.1001	30.5	24.10438	6.395619	.04
7	1.1175	19	25.79945	-6,79945	.04
8	1.1566	40.5	31,72988	8.770122	.04
9	1.174	28.5	35.49898	-6.998982	.04
10	1.2132	41.5	46.29232	-4.792313	.04
11	1.2132	46	46.29232	2923126	.04
12	1.2382	55.5	53,68161	1.81839	.04
13	1.2654	64.5	60.19575	4.304257	.04
14	1.297	58	64.10375	-6.103752	.04
15	1.3263	65	64,99922	7.781983E-04	.04
16	1.3535	66.5	65.0828	1.417198	.04
17	1,4166	64.5	65.08533	5853271	.04
18	1.4514	68.5	65.08533	3.414673	.04

The CHI'2 (to be used with Chi-square Distribution Table) is 14.11093 .

JOB: CHARPY RC-2 BCONT-06/27/89

time - 15:51:36

SUMMARY OF TASK # 2

This task investigated Polynomials of degree 1 through 1 fit to the Data Set. Mod. CHARPY DATA from RC-2, using the BASIS FUNCTION: $X(x) = 0*EXF[0*x^{(0)}] + (1)*EXP[-.01256*x^{(22)}]$

The polynomial of degree 1 produces the largest fractional decrease in RV (note, its RV = .8819332), hence, is taken as the BEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated). PLOTnFIT suggests that it is a polynomial of high enough degree that it should come close to the 'true function', i.e., the 'true model', yet low enough that it 'averages out' random errors.

Do you agree with PLOTnFIT's choice for the polynomial degree that yields the most satisfactory correlation of the data (y/n)? y

TASK # 3: ANALYSIS OF 'Mod. CHARPY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 1 BASIS FUNCTION: $X(x) = 0 \times EXP[0 \times x^{(0)}]$ + (1) $\times EXP[-.01147 \times x^{(22.5)}]$ Coefficient of Determination, CD = .945509 Residual Variance, RV = .9818857

2 Coefficients (the last coefficient is the constant term in the polynomial): C(1)=-45.18971 C(2)= 64.9832

1	x	y	P[X(x)]	Poliation	w
1	.9587	25	19.99371	5.006287	.04
2	.9641	17	20.02062	-3.020615	.04
3	1.0185	21.5	20.56969	.9303131	.04
4	1.025	18	20.68795	-2.687946	.04
5	1.0772	21.5	22.47306	9730606	.04
6	1.1001	30.5	24.01719	6.482811	.04
7	1.1175	19	25.68455	-6.684551	.04
8	1.1566	40.5	31,60011	8.899891	.04
9	1.174	28.5	35.40219	-6.902191	.04
10	1.2132	41.5	46.37454	-4.874535	.04
11	1.2132	46	46.37454	3745346	.04
12	1.2382	55.5	53.88362	1.616379	.04
13	1.2654	64.5	60.40347	4.096535	.04
14	1.297	58	64.1452	-6.145203	.04
15	1.3263	65	64.92122	7.878113E-02	.04
16	1.3535	66.5	64.98184	1.518166	.04
17	1.4166	64.5	64.9832	4832001	.04
18	1.4514	68.5	64.9832	3.5168	.04

The CHI'2 (to be used with Chi-square Distribution Table) is 14.11017 .

JOB: CHARPY RC-2 BCONT-06/27/89

time - 15:53:23

SUMMARY OF TASK # 3

This task investigated Polynomials of degree 1 through 1 fit to the Data Set, Mod. CHARPY DATA from RC-2, using the BASIS FUNCTION: X(x) = 0*EXP[0*x^(0)] + (1)*EXP[-.01147*x^(22.5)]

The polynomial of degree 1 produces the largest fractional decrease in RV (note, its RV = .8818857), hence, is taken as the BEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated). PLOTnFIT suggests that it is a polynomial of high enough degree that it should come close to the 'true function', i.e., the 'true model', yet low enough that it 'averages out' random errors.

Do you agree with PLOTnFIT's choice for the polynomial degree that yields the most satisfactory correlation of the data (y/n)? y

TASK # 4: ANALYSIS OF 'Mod. CHARFY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 1BASIS FUNCTION: $X(x) = 0*EXP[0*x^{(0)}] + (1)*EXP[-.01048*x^{(23)}]$ Coefficient of Determination, CD = .94546Residual Variance, RV = .8826718

2 Coefficients (the last coefficient is the constant term in the polynomial): C(1)=-44.98643 C(2)= 64.8825

1	x	у	P[X(x)]	Deviation	w
1	.9587	25	20.07443	4.925572	.04
2	.9641	17	20.09897	-3.098969	.04
3	1.0185	21.5	20.60906	.8909416	.04
	1.025	18	20.72037	-2.720368	.04
5	1.0772	21.5	22.42964	9296418	.04
6	1,1001	30.5	23,93367	6.56633	.04
7	1.1175	19	25.57372	-6.573723	.04
8	1.1566	40.5	31.47432	9.025684	.04
9	1.174	28.5	35,30941	-6.80941	.04
10	1.2132	41.5	46.4622	-4.962197	.04
11	1.2132	46	46.4622	4621964	.04
12	1.2382	55.5	54.08895	1.411057	.04
13	1.2654	64.5	60.60457	3.895435	.04
14	1.297	58	64.17286	-6.172859	.04
15	1.3263	65	64.83578	. 1612244	.04
16	1.3535	66.5	64.88175	1.61821	.04
17	1.4166	64.5	64.8825	3824997	.04
18	1.4514	68.5	64.8825	3.6175	.04

The CHI'2 (to be used with Chi-square Distribution Table) is 14.12275 .

JOB: CHARPY RC-2 BCONT-06/27/89

time - 15:54:49

SUMMARY OF TASK # 4

This task investigated Polynomials of degree 1 through 1 fit to the Data Set, Mod. CHARPY DATA from RC-2, using the BASIS FUNCTION: $X(x) = 0*EXP[0*x^{(0)}]$

+ (1)*EXP[-.01048*x^(23)]

The polynomial of degree 1 produces the largest fractional decrease in RV (note, its RV = .8826718), hence, is taken as the BEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated). PLOTnFIT suggests that it is a polynomial of high enough degree that it should come close to the 'true function', i.e., the 'true model', yet low enough that it 'averages out' random errors.

Do you agree with PLOTnFIT's choice for the polynomial degree that yields the most satisfactory correlation of the data (y/n)? y

TASK # 5: ANALYSIS OF 'Mod. CHARPY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 1BASIS FUNCTION: $X(x) = 0*EXP[0*x^{(0)}] + (1)*EXP[-8.740001E-03*x^{(24)}]$ Coefficient of Determination, CD = .94526Residual Variance, RV = .8859224

2 Coefficients (the last coefficient is the constant term in the polynomial): C(1)=-44.60788 C(2)= 64.70011

i	x	y	P[X(x)]	Deviation	¥
1	.9587	25	20.23369	4.766316	.04
2	. 9641	17	20.25406	-3.254059	.04
3	1.0185	21.5	20.69346	.8065376	.04
4	1.025	18	20,79186	-2.791859	.04
5	1.0772	21.5	22.35571	8557129	.04
6	1.1001	30.5	23.77942	6.720581	.04
7	1.1175	19	25.36266	-6.362664	.04
8	1.1566	40.5	31.22194	9.278061	.04
9	1.174	28.5	35,11739	-6.617394	.04
10	1.2132	41.5	46.62579	-5.125786	.04
11	1.2132	46	46.62579	6257858	.04
12	1.2382	55.5	54.48431	1.01569	.04
13	1.2654	64.5	60.97575	3.52425	.04
14	1.297	58	64.19867	-6.19867	.04
15	1.3263	65	64.67933	.3206711	.04
16	1.3535	66.5	64.69994	1.800064	.04
17	1.4166	64.5	64,79011	2001038	.04
18	1.4514	68.5	64.70011	3.799896	.04

The CHI'2 (to be used with Chi-square Distribution Table) is 14.17476 .

JOB: CHARPY RC-2 BCONT-06/27/89

time - 15:58:03

SUMMARY OF TASK # 5

This task investigated Polynomials of degree 1 through 1 fit to the Data Set, Mod. CHARPY DATA from RC-2, using the BASIS FUNCTION: X(x) = 0*EXP[0*x^(0)] + (1)*EXP[-8.740001E-03*x^(24)]

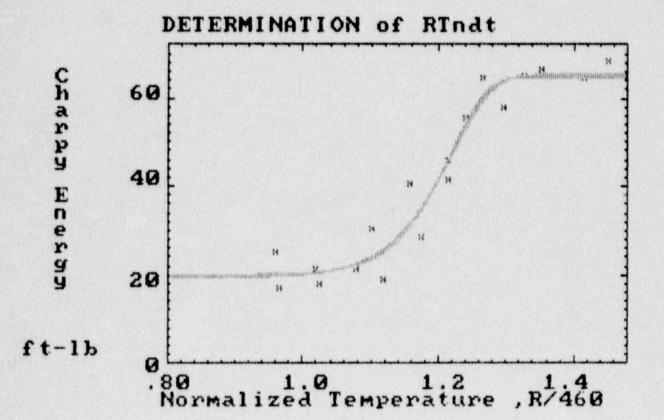
The polynomial of degree 1 produces the largest fractional decrease in RV (note, its RV = .8859224), hence, is taken as the BEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated). PLOTnFIT suggests that it is a polynomial of high enough degree that it should come close to the 'true function', i.e., the 'true model', yet low enough that it 'averages out' random errors.

Do you agree with PLOTnFIT's choice for the polynomial degree that yields the most satisfactory correlation of the data (y/n)? y

*

JOB: CHARPY RC-2 BCONT-06/27/89

time - 16:05:05


JOB DESCRIPTION This is a continuation of the analysis begun with job 'INITIAL ANALYSIS --O6/26/89' and extended through job 'CHARPY RC-2 ACONT -O6/27/89.' This job will use Basis Function # 6 in the polynomial fit to the mofified data from file 'FOL06891.SIS.'

> EACH CURVE IS A 'BEST FIT' WITH AN nth DEGREE POLYNOMIAL $P[X(x)] = C(1)X(x)^n + C(2)X(x)^n(n-1) + ... + C(n)X(x) + C(n+1)$

PLOTTING INSTRUCTIONS Generate (color) MEDIUM resolution, LINEAR graphs with PLOTNFIT DETERMINED COORDINATE RANGES AND MARKING INTERVALS

DATA

TASK		IDENT.	IFICA.	NOLI		<u>n</u>	SYMBO	L	NDP		SOURCE
1	Mod.	CHARPY	DATA	from	RC-2	1	emal1	H	18	FILE	fo106891.sie
2	Mod.	CHARPY	DATA	from	RC-2	1	small	H	18	FILE	fo106891.sie
3	Mod.	CHARPY	DATA	from	RC-2	1	small	H	18	FILE	fo106891.sie
4	Mod.	CHARPY	DATA	from	RC-2	1	spall	H	18	FILE	fo106891.sie
5	Mod.	CHARPY	DATA	from	RC-2	1	small	H	18	FILE	fo106891.si

NUREG-1378

A-59

¥

Part 2.c) Comments on OUTPUT

 The result of this part of the analysis is that the maximum variation in RV is from 0.8859 with CG1:CF1 values 24:(-0.00874) (see page A-58) to 0.8819 with CG1:CF1 values 22.5:(-0.0115) (see page A-56); hence, CG1:CF1 values that yield a reasonable good fit to the data for Basis Function # 6 (CS1 = 0, CO1 = 0, CD1 = 0, and CE1 = 1) are 22.5:(-0.01097). The corresponding CHI² is 14.110.

.

Part 3.a) INPUT

From Part 2.c) OUTPUT, the polynomial of degree n = 1, with Basis Function # 6, that seems to yield the best model had coefficients CF1 = -0.0115 and CG1 = 22.5. The job submitted for this part of the analysis will consist of eight tasks and will explore the sensitivity of the results of Part 2.c) to small changes in Basis Function parameters. The first six tasks will involve keeping CG1 = 22.5 while letting CF1 take the values, CF1 = -0.0125, -0.0115, -0.0105, -0.0100, -0.0095, and -0.0085. The next two tasks will involve keeping CF1 = -0.0115 while letting CG1 take the values, CG1 = 21 and 24.

Identify your job (INITIAL ANALYSIS):

FORMAT - a string of less than 18 characters (where BASIC filename rules apply to first 3 and last 3 characters) - CHARPY RC-2 CCONT

Describe your job (This analysis is to get a 'feel' for the data.):

FORMAT - a 'comma-less' string of less than 256 characters -This is a continuation of the analysis begun with job 'INITIAL ANALYSIS --06/26/ 89' and extended through job 'CHARPY RC-2 BCONT -06/27/89.' This job will use B asis Function # 6 in the polynomial fit to the modified data from file FOL06891 .SIS.'

PLOTTING INSTRUCTIONS

What kind of graphs would you like to generate: 1. LINEAR 2. SEMI-LOG (Y-axis,LOG; X-axis,LINEAR) 3. LOG-LOG NT(= 1)=

> What palette do you want: FOR NP=1 FOR NP=2 GREEN MAGENTA RED CYAN BROWN WHITE

FOR NOP=1 'CURVES' 'DATA POINTS' 'AXES AND LABELS' FOR NOP=2 "CURVES" "DATA FIELD" "DATA POINTS,AXES, AND LABELS"

NP(= 1) = 2

Regardless of the NOP value you enter here, if you later choose to make HARD COPIES of the data and curves plotted on the screen, PLOTNFIT will automatically make NOP=1. NOP(= 2)=

What background color do you want: 1. BLACK 2. GRAY 3. LIGHT BLUE 4. BROWN 5. YELLOW 6. LIGHT GREEN NQ(= 3)= 4

Would you like graph labels different from those shown in ()? TITLE (DETERMINATION of RTndt)(y/n): X-AXIS (Normalized Temperature)(y/n): units (R/460)(y/n): Y-AXIS (Charpy Energy)(y/n): units (ft-lb)(y/n):

What scaling procedure (NS) would you like to use? 1. SPECIFY COORDINATE RANGES AND MARKING INTERVALS FOR THE AXES (USE ONLY AFTER EXPERIENCE WITH 'PLOTNFIT') 2. ALLOW 'PLOTNFIT' TO ESTABLISH COORDINATE RANGES AND MARKING INTERVALS BASED ON THE DATA RANGES NS(= 2)=

DATA AND DATA IDENTIFICATION

How many Tasks will there be in this job (1<=NDS<=8)? NDS(= 5)= 8

What INPUT device (NE) would you like to use to enter your Data for Task # 1 ? 1. The KEYBOARD 2. A STORED FILE NE(= 2)=

What is the location and name of the FILE containing Data for Task # 1 ? FORMAT - (storage)device:filename (a:fol06891.sis) -

How many Data Sets are in this FILE? NDSF(= 1)=

Do you want to INPUT Data Set # 1 from FILE a:fol06891.sis [i.e., that identified as : Mod. CHARPY DATA from RC-2; with (NDP=) 18 data points] (y/n)? y

Do you want to INPUT the stored weighting factors (y/n)? y

Do you want to change ANY data in this Data Set (y/n)?

Do you want to fit curves to your Data Points (y/n)? y

Which of the following BASIS FUNCTIONS do you want to use for this Data Set (YOU MUST supply values for coefficients CS1, CO1, CD1, CE1, CF1 & CG1):

1. X(x)=CS1+x

- X(x)=CS1+EXP(CO1*x)/(CD1+x)
- 3. X(x)=(CS1+CO1*x+CD1*x^2)*LOG(x)
- 4. X(x)=CS1/x+CO1*LOG(x)+x*LOG(CD1*x+2.718)
- 5. $X(x) = CS1 + CO1 * x^CD1 + CE1/(CF1 + x^CG1)$
- 6. X(x)=CS1*EXP(CO1*x CD1)+CE1*EXP(CF1*x CG1)
- 7. X(x)=CS1*EXP(CO1*x)+CD1*EXP(CE1*x)+CF1*EXP(CG1*x)
- 8. X(x)=CS1*(CO1+x) CD1+CE1*(CF1+x) CG1
- 9. X(x)=EXP(CS1*x)*(CO1+x)^CD1+EXP(CE1*x)*(CF1+x)^CG1

10. X(x)=CS1*x*SIN(CO1+CD1*x)+(CE1/(CD1+x))*SIN(CF1+CG1*x)

11. X(x)=EXP(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x)

If the default value of a coefficient is not zero and you wish it to be zero, you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since entering 0 would be interpreted by PLOTnFIT as acceptance of the default value.

BF(= 6)= CS1(= 0)= CO1(= 0)= CD1(= 0)= CE1(= 1)= CF1(=-.01505)=-0.0125 CG1(= 21)=22.5 For each Data Set in the job, the program starts with the lowest degree polynomial you want to consider and fits it to the data points; the program then fits, sequentially and in assending order, as many higher degree polynomials as you specify (the current degree limit is 10).

What is the lowest degree polynomial (LDP) you want to consider for this Data Set (1 <= LDP <= 10)? LDP(=1)=

```
How many polynomial fits (NPF) do you want to
       try - including the LDP - (1 <= NFF <= 10 )? NFF(=1)=
             What symbol (M) would you like to use to represent
             the Data for Task # 1 ?
                                                    5. DIAMOND
                                                    6. TRIANGLE - UP
                   2
                     CROSS
                   3.
                        X
                                                    7. TRIANGLE - DOWN
                        H
                   4.
                                                    8. SQUARE
             M(= 4 )= 5
             What symbol size (MM) would you like?
                   1. small
                   2. LARGE
             MM(= 1 )=
       What INPUT device (NE) would you like to use to
       enter your Data for Task # 2 ?
             1. The KEYBOARD
             2. A STORED FILE
       NE(= 2)=
       What is the location and name of the FILE containing Data for Task # 2 ?
             FORMAT - (storage)device:filename (a:fol06891.sis) -
       How many Data Sets are in this FILE?
             NDSF(= 1 )=
       Do you want to INPUT Data Set # 1 from FILE a:fol06891.sis
       [i.e., that identified as : Mod. CHARPY DATA from RC-2;
       with (NDP=) 18 data points] (y/n)? y
       Do you want to INPUT the stored weighting factors (y/n)? y
       Do you want to change ANY data in this Data Set (y/n)?
       Do you want to fit curves to your Data Points (y/n)? y
Which of the following BASIS FUNCTIONS do you want to use for this Data
Set (YOU MUST supply values for coefficients CS1, CO1, CD1, CE1, CF1 & CG1): -
  1. X(x)=CS1+x

    X(x)=CS1+EXP(CO1*x)/(CD1+x)
    X(x)=(CS1+CO1*x+CD1*x^2)*LOG(x)

  4. X(x) = CS1/x + CO1 + LOG(x) + x + LOG(CD1 + x + 2.718)
  5. X(x)=CS1+CO1*x^CD1+CE1/(CF1+x^CG1)
  6. X(x)=CS1*EXP(CO1*x^CD1)+CE1*EXP(CF1*x^CG1)
     X(x) = CS1 * EXP(CO1 * x) + CD1 * EXP(CE1 * x) + CF1 * EXP(CG1 * x)
  7
     X(x)=CS1*(CO1+x)^CD1+CE1*(CF1+x)^CG1
  8.
  9. X(x)=EXP(CS1*x)*(CO1+x)^CD1+EXP(CE1*x)*(CF1+x)^CG1
 10.
     X(x) = CS1 * x * SIN(CO1 + CD1 * x) + (CE1/(CD1 + x)) * SIN(CF1 + CG1 * x)
 11. X(x)=EXP(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x)
If the default value of a coefficient is not zero and you wish it to be zero,
you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since
entering 0 would be interpreted by PLOTnFIT as acceptance of the default value.
  BF(= 6 )=
     CS1(= 0 )=
     CO1(= 0 )=
     CD1(= 0 )=
     CE1(= 1 )=
```

CF1(=-.01256)=-0.0115CG1(=22)=22.5

For each Data Set in the job, the program starts with the lowest degree polynomial you want to consider and fits it to the data points; the program then fits, sequentially and in assending order, as many higher degree polynomials as you specify (the current degree limit is 10). What is the lowest degree polynomial (LDP) you want to consider for this Data Set (1 <= LDP <= 10)? LDP(=1)= How many polynomial fits (NPF) do you want to try - including the LDP - (1 <= NPF <= 10)? NPF(=1)= What symbol (M) would you like to use to represent the Data for Task # 2 ? 1. 5. DIAMOND 6. TRIANGLE - UP 7. TRIANGLE - DOWN 2. CROSS 3. X 4 H 8. SQUARE M(= 6)= 5 What symbol size (MM) would you like? . small 2. LARGE MM(= 1)= What INPUT device (NE) would you like to use to enter your Data for Task # 3 ? 1. The KEYBOARD 2. A STORED FILE NE(= 2)= What is the location and name of the FLE containing Data for Task # 3 ? FORMAT - (storage)device:filename (a:fol06891.sis) -How many Data Sets are in this FILE? NDSF(= 1)= Do you want to INPUT Data Set # 1 from FILE a:fol06891.sis [i.e., that identified as : Mod. CHARPY DATA from RC-2; with (NDP=) 18 data points] (y/n)? y Do you want to INPUT the stored weighting factors (y/n)? y Do you want to change ANY data in this Data Set (y/n)? Do you want to fit curves to your Data Points (y/n)? y which of the following BASIS FUNCTIONS do you want to use for this Data Set (YOU MUST supply values for coefficients CS1, CO1, CD1, CE1, CF1 & CG1): 1. X(x) = CS1 + x X(x)=CS1+EXP(CO1*x)/(CD1+x) X(x)=(CS1+CU1*x+CD1*x^2)*LOG(x) 4. X(x) = CS1/x + CO1 + LOG(x) + x + LOG(CD1 + x + 2.718)5. X(x)=CS1+CO1*x^CD1+CE1/(CF1+x^CG1) X(x)=CS1*EXP(CO1*x^CD1)+CE1*EXP(CF1*x^CG1) 7. X(x) = CS1 * EXP(CO1 * x) + CD1 * EXP(CE1 * x) + CF1 * EXP(CG1 * x)8. X(x)=CS1*(CO1+x)^CD1+CE1*(CF1+x)^CG1 9. X(x)=EXP(CS1*x)*(CO1+x)^CD1+EXP(CE1*x)*(CF1+x)^CG1 10. X(x)=CS1*x*SIN(CO1+CD1*x)+(CE1/(CD1+x))*SIN(CF1+CG1*x) 11. X(x)=EXP(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x) If the default value of a coefficient is not zero and you wish it to be zero, you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since entering 0 would be interpreted by PLOTnFIT as acceptance of the default value.

NUREG-1378

3F(= 6)= CS1(= 0)= CO1(= 0)= CD1(= 0)= CE1(= 1)= CF1(=-.01147)=-0.0105 CG1(= 22.5)= For each Data Set in the job, the program starts with the lowest degree polynomial you want to consider and fits it to the data points; the program then fits, sequentially and in assending order, as many higher degree polynomials as you specify (the current degree limit is 10). What is the lowest degree polynomial (LDP) you want to consider for this Data Set (1 <= LDP <= 10)? LDP(=1)= How many polynomial fits (NFF) do you want to try - including the LDP - (1 <= NPF <= 10)? NPF(=1)= What symbol (M) would you like to use to represent the Data for Task # 3 ? T 5. DIAMOND 1. 2. CROSS 6. TRIANGLE - UP 3. X 7. TRIANGLE - DOWN H 8. SQUARE 4. M(= 6)= 5 What symbol size (MM) would you like? 1. small 2. LARGE MM(= 1)= What INPUT device (NE) would you like to use to enter your Data for Task # 4 ? 1. The KEYBOARD 2. A STORED FILE NB(= 2)= What is the location and name of the FILE containing Data for Task # 4 ? FORMAT - (storage)device:filename (a:fol06891.sis) -How many Data Sets are in th FILE? NDSF(= 1)= Do you want to INPUT Data Set # 1 from FILE a:fol06891.sis [i.e., that identified as : Mod. CHARPY DATA from RC-2; with (NDP=) 18 data points] (y/n)? y Do you want to INPUT the stored weighting factors (y/n)? y Do you want to change ANY data in this Data Set (y/n)? Do you want to fit curves to your Data Points (y/n)? y Which of the following BASIS FUNCTIONS do you want to use for this Data Set (YOU MUST supply values for coefficients CS1, CO1, CD1, CE1, CF1 & CG1): 1. X(x) = CS1 + x2. X(x) = CS1 + EXP(CO1 * x)/(CD1 + x)3. X(x)=(CS1+CO1*x+CD1*x^2)*LOG(x) 4. X(x)=CS1/x+CO1*LOG(x)+x*LOG(CD1*x+2.718) X(x)=CS1+CO1*x^CD1+CE1/(CF1+x^CG1) 6. X(x)=CS1*EXP(CO1*x^CD1)+CE1*EXP(CF1*x^CG1)

- 7. X(x)=CS1*EXP(CO1*x)+CD1*EXP(CE1*x)+CF1*EXP(CG1*x)
- 8. X(x)=CS1*(CO1+x)^CD1+CE1*(CF1+x)^CG1

9. X(x)=ETP(CS1*x)*(CO1+x)^CD1+EXP(CE1*x)*(CF1+x)^CG1

10. X(x)=CS1*x*SIN(CO1+CD1*x)+(CE1/(CD1+x))*SIN(CF1+CG1*x)

11. X(x)=EXP(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x)

If the default value of a coefficient is not zero and you wish it to be zero, you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since entering 0 would be interpreted by PLOTnFIT as acceptance of the default value.

BF(= 5)= CS1(= 0)= CO1(= 0)= CD1(= 0)= CE1(= 1)= CF1(=-.01048)=-0.0100 CG1(= 23)=22.5 For each Data Set in the job, the program starts with the lowest degree polynomial you want to consider and fits it to the data points; the program then fits, sequentially and in assending order, as many higher degree polynomials as you specify (the current degree limit is 10). What is the lowest degree polynomial (LDP) you want to consider for this Data Set (1 <= LDF <= 10)? LDP(=1)= How many polynomial fits (NPF) do you want to try - including the LDP - (1 <= NPF <= 10)? NPF(=1)= What symbol (M) would you like to use to represent the Data for Task # 4 ? 5. DIAMOND 6. TRIANGLE - UP 2. CROSS TRIANGLE - DOWN 3. X 8. SQUARE 4. H M(= 6)= 5 What symbol size (MM) would you like? 1. small 2. LARGE MM(= 1)= What INPUT device (NE) would you like to use to enter your Data for Task # 5 ? 1. The KEYBOARD 2. A STORED FILE NE(= 2)= What is the location and name of the FILE containing Data for Task # 5 ? FORMAT - (storage)device:filename (a:fol06891.sis) -How many Data Sets are in this FILE? NDSF(= 1)= Do you want to INPUT Data Set # 1 from FILE a:fol06891.sis [i.e., that identified as : Mod. CHARPY DATA from RC-2; with (NDP=) 18 data points] (y/n)? y Do you want to INFUT the stored weighting factors (y/n)? y Do you want to change ANY data in this Data Set (y/n)? Do you want to fit curves to your Data Points (y/n)? y

which of the following BASIS FUNCTIONS do you want to use for this Data Set (YOU MUST supply values for coefficients CS1, CO1, CD1, CE1, CF1 & CG1):

1. X(x)=CS1+x 2. X(x) = CS1 + EXP(CO1 * x)/(CD1 + x)3. X(x)=(CS1+CO1*x+CD1*x^2)*LOG(x) 4. X(x)=CS1/x+CC1*LOG(x)+x*LOG(CD1*x+2.718) 5. X(x)=CS1+CO1*x CD1+CE1/(CF1+x CG1) X(x)=CS1*EXP(CO1*x CD1)+CE1*EXP(CF1*x CG1) 6. X(x)=CS1*EXP(CO1*x)+CD1*EXP(CE1*x)+CF1*EXP(CG1*x) 8 X(x)=CS1*(CO1+x)^CD1+CE1*(CF1+x)^CG1 X(x)=EXP(CS1*x)*(CO1+x) CD1+EXP(CE1*x)*(CF1+x) CG1 9. 10. X(x)=CS1*x*SIN(CO1+CD1*x)+(CE1/(CD1+x))*SIN(CF1+CG1*x) X(x) = EXP(CS1*x)*SIN(CO1+CD1*x)+CE1*FIN(CF1+CG1*x)11. If the default value of a coefficient is not zero and you wish it to be zero. you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since entering 0 would be interpreted by PLOInFIT as acceptance of the default value. BF(= 6)= CS1(= 0)= CO1(= D)= CD1(= 0)= CE1(= 1)= CF1(=-8.740001E-03)=-0.0095 CG1(= 24)=22.5 For each Data Set in the job, the program starts with the lowest degree polynomial you want to consider and fite it to the data points; the program then fits, sequentially and in assending order, as many higher degree polynomials as you specify (the current degree limit is 10). What is the lowest degree polynomial (LDF) you want to consider for this Data Set (1 <= LDP <= 10)? LDP(=1)= How many polynomial fits (NPF) do you want to try - including the LDP - (1 <= NPF <= 10)? NPF(=1)= What symbol (M) would you like to use to represent the Data for Task # 5 ? 5. DIAMOND 2. CROSS 6. TRIANGLE - UP 3. X 7. TRIANGLE - DOWN H 8. SQUARE 4. M(= 6) = 5What symbol size (MM) would you like? 1. small 2. LARGE MM(= 1)= What INPUT device (NE) would you like to use to enter your Data for Task # 6 ? The KEYBOARD 1. 2. A STORED FILE NE(= 2)= What is the location and name of the FILE containing Data for Task # 6 ? FORMAT - (storage)device:filename (a:fol06891.pls) -How many Data Sets are in this FILE? NDSF(= 1)= Do you want to INFUT Data Set # 1 from FILE a:fol06891.sis [ie., that identified as : Mod. CHARPY DATA from RC-2; with (NDP=) 18 data points] (y/n)? y Do you want to INFUT the stored weighting factors (y/n)? y

Do you want to change ANY data in this Data Set (y/n)?

Do you want to fit curves to your Data Points (y/n)? y

Which of the following BASIS FUNCTIONS do you want to use for this Data Set (YOU MUST supply values for coefficients CS1, CO1, CD1, CE1, CF1 & CG1):

- 1. X(x) = CS1 + x
- 2. X(x)=CS1+EXP(CO1*x)/(CD1+x)
- 3. X(x)=(CS1+CU1*x+CD1*x²)*LOG(x)
- 4. X(x)=CS1/x+CO1*LOG(x)+x*LOG(JD1*x+2.718)
- 5. X(x)=CS1+CO1*x CD1+CE1/(CF1+x CG1)
- 6. X(x)=CS1*EXP(CO1*x^CD1)+CE1*EXP(CF1*x^CG1)
- 7. X(x)=CS1*EXP(CO1*x)+CD1*EXP(CE1*x)+CF1*EXP(CG1*x)
- 8. X(x)=CS1*(CO1+x)^CD1+CE1*(CF1+x)^CG1
- 9. X(x)=EXP(CS1*x)*(CO1+x) CD1+EXP(CE1*x)*(CF1+x) CG1
- 10. X(x)=CS1*x*SIN(CO1+CD1*x)+(CE1/(CD1+x))*SIN(CF1+CG1*x)
- 11. X(x)=EXP(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x)

If the default value of a coefficient is not zero and you wish it to be zero, you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since entering 0 would be interpreted by PLOTnFIT as acceptance of the default value.

BF(= 6)= CS1(= 0)= CO1(= 0)= CD1(= 0)= CE1(= 1)= CF1(=-.00295)=-0.0085 CG1(= 30)=22.5 For each Data Set in the job, the program starts with the lowest degree polynomial you want to consider and fits it to the data points; the program then fits, sequentially and in assending order, as many higher degree polynomials as you specify (the current degree limit is 10). what is the lowest degree polynomial (LDP) you want to consider for this Data Set (1 <= LDP <= 10)? LDP(=1)= How many polynomial fits (NPF) do you want to try - including the LDP - (1 <= NPF <= 10)? NPF(=1)= What symbol (M) would you like to use to represent the Data for Task # 6 ? 5. DIAMOND 2. CROSS 6. TRIANGLE - UF 7. TRIANGLE - DOWN 3. X 8. SQUARE 4. H M(= 6) = 5What symbol size (MM) would you like? 1. small 2. LARGE MM(= 1)= What INPUT device (NE) would you like to use to enter your Data for Task # 7 ? 1. The KEYBOARD 2. A STOPED FILE NE(= 2)= What is the location and name of the FILE containing Data for Task # 7 ? FORMAT - (storage)device:filename (a:fol06891.sis) -How many Data Sets are in this FILE? NDSF(= 1)=

Do you want to INPUT Data Set # 1 from FILE a:fol06891.sis [i.e., that identified as : Mod. CHARPY DATA from RC-2; with (NDF=) 18 data points] (y/n)? y Do you want to INPUT the stored weighting factors (y/n)? y Do you want to change ANY data in this Data Set (y/n)? Do you want to fit curves to your Data Points (y/n)? y

Which of the following BASIS FUNCTIONS do you want to use for this Data Set (YOU MUST supply values for coefficients CS1, CO1, CD1, CE1, CF1 & CG1):

- 1. X(x)=CS1+x
- 2. X(x)=CS1+EXP(CO1*x)/(CD1+x)
- 3. X(x)=(CS1+CO1*x+CL1*x^2)*LOG(x)
- 4. X(x)=CS1/x+CO1*LOG(x)+x*LOG(CD1*x+2.718)
- 5. X(x)=CS1+CO1*x^CD1+CE1/(CF1+x^CG1)
- 6. X(x)=CS1*EXP(CO1*x^CD1)+CE1*EXP(CF1*x^CG1)
- 7. X(x)=CS1*EXP(CO1*x)+CD1*EXP(CE1*x)+CF1*EXP(CG1*x)
- 8. X(x)=CS1*(CO1+x)^CD1+CE1*(CF1+x)^CG1
- 9. X(x)=EXP(CS1*x)*(CO1+x)^CD1+EXP(CE1*x)*(CF1+x)^CG1
- 10. X(x)=CS1*x*SIN(CO1+CD1*x)+(CE1/(CD1+x))*SIN(CF1+CG1*x)
- 11. X(x)=EXP(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x)

If the default value of a coefficient is not zero and you wish it to be zero, you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since entering 0 would be interpreted by PLOTnFIT as acceptance of the default value.

```
BF(= 6 )=
   CS1(= 0 )=
   CO1(= 0 )=
   CD1(= 0 )=
   CE1(= 0 )=1
   CF1(= 0 )=-0.0115
   CG1(= 0 )=?2.51
         For each Data Set in the job, the program starts with
         the lowest degree polynomial you want to consider and
         fits it to the data points; the program then fits,
         sequentially and in assending order, as many higher
         degree polynomials as you specify (the current degree
         limit is 10).
   What is the lowest degree polynomial (LDP) you want to consider for this Data Set (1 <= LDP <= 10 )? LDP(=1)=
   How many polynomial fits (NPF) do you want to
   try - including the LDP - (1 <= NPF <= 10 )? NPF(=1)=
         What symbol (M) would you like to use to represent
         the Data for Task # 7 ?
                                               5. DIAMOND
                                                6. TRIANGLE - UP
               2. CROSS
                                                7. TRIANGLE - DOWN
               3. X
                   H
                                                8. SQUARE
               4
         M(= 6) = 5
         What symbol size (MM) would you like?
               1. small
               2. LARGE
         MM(= 1 )=
   What INFUT device (NE) would you like to use to
   enter your Data for Task # 8 ?
         1. The KEYBOARD
         2. A STORED FILE
   NE(= 2 )=
```

What is the location and name of the FILE containing Data for Task # 8 ? FORMAT - (storage)device:filename (a:folD6891.sis) -

How many Data Sets are in this FILE? NDSF(= 1)=

Do you want to INPUT Data Set # 1 from FILE a:fol06891.sis [i.e., that identified as : Mod. CHARPY DATA from RC-2; with (NDP=) 18 data points] (y/n)? y

Do you want to INFUT the stored weighting factors (y/n)?

Do you want to change ANY data in this Data Set (y/n)?

Do you want to fit curves to your Data Points (y/n)? y

Which of the following BASIS FUNCTIONS do you want to use for this Data Set (YOU MUST supply values for coefficients CS1, CO1, CD1, CE1, CF1 & CG1):

- 1. X(x)=CS1+x
- 2. X(x)=CS1+EXP(CO1*x)/(CD1+x)
- 3. X(x)=(CS1+CO1*x+CD1*x^2)*LOG(x)
- 4. X(x)=CS1/x+CO1*LOG(x)+x*LOG(CD1*x+2.718)
- 5. X(x)=CS1+CO1*x^CD1+CE1/(CF1+x^CG1)
- 6. X(x)=CS1*EXP(CO1*x^CD1)+CE1*EXP(CF1*x^CG1)
- 7. X(x)=CS1*EXP(CO1*x)+CD1*EXP(CE1*x)+CF1*EXP(CG1*x)
- 8. X(x)=CS1*(CO1+x)^CD1+CE1*(CF1+x)^CG1
- 9. X(x)=EXF(CS1*x)*(CO1+x)^CD1+EXP(CE1*x)*(CF1+x)^CG1
- 10. X(x)=CS1*x*SIN(CO1+CD1*x)+(CE1/(CD1+x))*SIN(CF1+CG1*x)
- 11. X(x)=EXP(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x)

If the default value of a coefficient is not zero and you wish it to be zero, you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since entering 0 would be interpreted by PLOTnFIT as acceptance of the default value.

BF(= 6)= CS1(= 0)= CO1(= 0)= CD1(= 0)= CE1(= 0)=1 CF1(= 0)=-0.0115 CG1(= 0):24 For each Data Set in the job, the program starts with the lowest degree polynomial you want to consider and fits it to the data points; the program then fits, sequentially and in assending order, as many higher degree polynomials as you specify (the current degree limit is 10). What is the lowest degree polynomial (LDP) you want to consider for this Data Set (1 <= LDP <= 10)? LDP(=1)= How many polynomial fits (NPF) do you want to try - including the LDP - (1 <= NPF <= 10)? NPF(=1)= What symbol (M) would you like to use to represent the Data for Task # 8 ? 1. 1 5. DIAMOND

 1.
 1.
 5.
 DIAMOND

 2.
 CROSS
 6.
 TRIANGLE - UP

 3.
 X
 7.
 TRIANGLE - DOWN

 4.
 H
 8.
 SQUARE

 M(= 6) = 5
 5

What symbol size (MM) would you like? 1. small 2. LARGE MM(= 1)=

ALL PLOTTING INSTRUCTIONS AND DATA HAVE BEEN ENTERED

Would you like to make changes in your Plotting Instructions: values currently in the computer appear in parenthesis (y/n)?

Would you like to make a few changes in one or more of your Data Sets [most useful when must data are from the KEYEOARD] (y/n)?

Would you like to completely RE-INPUT your Coordinate Data [most useful when most data are from STORED FILES] (y/n)?

Number of Bits not being used at this time, for this job = 1223

Would you like to PRINT values of the Polynomial Coefficients for all the curves fit to each Data Set, along with the corresponding Residual Variances and Coefficients of Determination (y/n)? y

Would you like to make HARD COPIES of graphs of ALL the Data Sets, one set of graphs for each Data Set, showing ALL the polynomial curves fit to EACH Data Set (y/n)?

Would you like to make 'a' HARD COPY graph containing ALL the Data Sets, each Data Set with it's corresponding 'BEST POLYNOMIAL/BEST FIT' curve (y/n)? y

Would you like to PRINT values of key program variables and a Table of some of the points which fall on each 'BEST POLYNOMIAL/BEST FIT' curve plotted (y/n)?

Would you like to INPUT a function to be plotted with your data (y/n)?

Would you like to save your DATA for later use (y/n)?

PLOTNFIT.4th

JOB: CHARPY RC-2 CCONT-06/27/89

THE FOLLOWING ARE DATA RESULTING FROM FITTING POLYNOMIALS TO THE VARIOUS DATA SETS

TASK # 1: ANALYSIS OF 'Mod. CHARPY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 1 BASIS FUNCTION: $X(x) = 0 \times EXP[0 \times x^{(0)}]$ + (1) $\times EXP[-.0125 \times x^{(22.5)}]$ Coefficient of Determination, CD = .943408 Residual Variance, RV = .9158943

2 Coefficients (the last coefficient is the constant term in the polynomial): C(1)=-45.02924 C(2)=64.42653

i	x	У	P[X(x)]	Deviation	
1	.9587	25	19.61467	5.38533	.04
2	.9641	17	19.64387	-2.643868	.04
3	1.0185	21.5	20.23953	1.260475	.04
4	1.025	18	20.36773	-2.367729	.04
5	1.0772	21.5	22.29922	7992173	.04
6	1.1001	30.5	23.9641	6.5359	.04
7	1.1175	19	25.75554	-6.755535	.04
8	1.1566	40.5	32.05436	8.445644	.04
9	1.174	28.5	36.0511	-7.551094	.04
10	1.2132	41.5	47.30398	-5.803978	.04
11	1.2132	46	47.30398	-1.303978	.04
12	1.2382	55.5	54.67646	.8235436	.04
13	1.2654	64.5	60.71103	3,788971	.04
14	1.297	58	63.84284	-5.842835	.04
15	1.3263	65	64.39236	.6076431	.04
16	1.3535	66.5	64.426	2.074005	.04
17	1.4166	64.5	64.42653	7.3471078-02	.04
18	1.4514	68.5	64.42653	4.073471	.04

The CHI'2 (to be used with Chi-square Distribution Table) is 14.65431 .

JOB: CHARPY RC-2 CCONT-06/27/89

time - 16:33:33

SUMMARY OF TASE # 1

This task investigated Polynomials of degree 1 through 1 fit to the Data Set, Mod. CHARPY DATA from RC-2, using the BASIS FUNCTION: $X(x) = 0 \neq EXP[0 \neq x^{\circ}(0)]$

+ (1)*EXP[-.0125*x*(22.5)]

The polynomial of degree 1 produces the largest fractional decrease in RV (note, its RV = .9158943), hence, is taken as the BEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated). PLOTnFIT suggests that it is a polynomial of high enough degree that it should come close to the 'true function', i.e., the 'true model', yet low enough that it 'averages out' random errors.

TASK # 2: ANALYSIS OF 'Mod. CHARPY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 1BASIS FUNCTION: $X(x) = 0 \times EXP[0 \times x^{(0)}] + (1) \times EXP[-.0115 \times x^{(22.5)}]$ Coefficient of Determination, CD = .945468Residual Variance, RV = .8825512

2 Coefficients (the last coefficient is the constant term in the polynomial): C(1)=-45.18515 C(2)= 64.9664

i	x	У	P[X(x)]	Deviation	
1	.9587	25	19.98197	5.018029	.04
2	.9641	17	20.00894	-3.008938	.04
3	1.0185	21.5	20.55938	.9406242	.04
4	1.025	18	20.67793	-2.677925	.04
5	1.0772	21.5	22.46734	9573424	.04
6	1.1001	30.5	24.01503	6.484974	.04
7	1.1175	19	25.68607	-6.686066	.04
8	1.1566	40.5	31.6131	8.886902	.04
9	1.174	28.5	35.42114	-6.921135	.04
10	1.2132	41.5	46.40274	-4.902741	.04
11	1.2132	46	46.40274	4027405	.04
12	1.2382	55.5	53.90863	1.591377	.04
13	1.2654	64.5	60.41447	4.085537	.04
14	1.297	58	64.13718	-6.137177	.04
15	1.3263	65	64.90549	9.451294E-02	.04
16	1.3535	66.5	64.96508	1.534927	.04
17	1.4166	64.5	64.9664	4664002	.04
18	1.4514	68.5	64.9664	3.5336	.04

The CHI'2 (to be used with Chi-square Distribution Table) is 14.12082 .

JOB: CHARPY AN-2 CCONT-06/27/89

time - 16:34:42

SUMMARY OF TASK # 2

This task investigated Polynomials of degree 1 through 1 fit to the Data Set, Mod. CHARPY DATA from RC-2, using the BASIS FUNCTION: X(x) = 0*EXP[0*x^(0)] + (1)*EXP[-.0115*x^(22.5)]

The polynomial of degree 1 produces the largest fractional decrease in RV (note, its RV = .8825512), hence, is taken as the BEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated). PLOTNFIT suggests that it is a polynomial of high enough degree that it should come close to the 'true function', i.e., the 'true model', yet low enough that it 'averages out' random errors.

TASK # 3: ANALYSIS OF 'Mod. CHARPY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 1BASIS FUNCTION: $X(x) = 0*EXP[0*x^{(0)}]$ + (1)*EXP[-.0105*x^{(22.5)}] Coefficient of Determination, CD = .946064 Residual Variance, RV = .8729078

2 Coefficients (the last coefficient is the constant term in the polynomial): C(1)=-45.33264 C(2)= 65.54778

1	×	y	P[X(x)]	Deviation	
1	.9587	25	20.39904	4.60096	
2	.9641	17	20.42376	-3.42376	.04
3	1.0185	21.5	20.92846		.04
4	1.025	18	21.03723	. 5715408	.04
5	1.0772	21.5		-3.037232	.04
6	1.1001		22.68216	-1.182163	.04
7		30.5	24.10975	6.390255	.04
	1.1175	19	25.65639	-6.656388	.04
0	1.1566	40.5	31.19042	9.309586	.04
9	1.174	28.5	34.79054	-6.290543	.04
10	1.2132	41.5	45.42569	-3.92569	.04
11	1.2132	46	45.42569	.5743103	.04
12	1.2382	55.5	53,00938	2.490624	.04
13	1.2654	64.5	59.9722	4.527802	
14	1.297	58	64.36998		.04
15	1.3263	65		-6.36998	.04
16	1.3535	66.5	65.4392	4391938	.04
17	1.4166		65.54448	.9555206	.04
18		64.5	65.54778	-1.047775	.04
10	1.4514	68.5	65.54778	2.952225	.04

The CHI'2 (to be used with Chi-square Distribution Table) is 13.96653 .

JOB: CHARPY RC-2 CCONT-06/27/89

time - 16:35:53

SUMMARY OF TASK # 3

This task investigated Polynomials of degree 1 through 1 fit to the Data Set, Mod. CHARPY DATA from RC-2, using the BASIS FUNCTION: X(x) = 0*EXP[0*x^(0)] + (1)*EXP[-.0105*x^(22.5)]

The polynomial of degree 1 produces the largest fractional decrease in RV (note, its RV = .8729078), hence, is taken as the BEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated). PLOTnFIT suggests that it is a polynomial of high enough degree that it should come close to the 'true function', i.e., the 'true model', yet low enough that it 'averages out' random errors.

TASK # 4: ANALYSIS OF 'Mod. CHARPY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 1BASIS FUNCTION: $X(x) = 0 \times EXP[\cup \times x^{\circ}(0)] + (1) \times EXP[-.01 \times x^{\circ}(22.5)]$ Coefficient of Determination, CD = .94568Residual Variance, RV = .8791269

2 Coefficients (the last coefficient is the constant term in the polynomial): C(1)=-45.40218 C(2)= 65.85591

1	×	y	P[X(x)]	Deviation	
1	.9587	25	20.62917	4.370835	.04
2	.9641	17	20.65274	-3.652744	.04
3	1.0185	21.5	21.13439	.3656159	.04
	1.025	18	21.23822	-3.23822	.04
5	1.0772	21.5	22.80999	-1.309994	.04
6	1.1001	30.5	24.17641	6.323593	.04
7	1.1175	19	25.65932	-6.659317	.04
Å	1.1566	49.5	30.9886	9.511402	.04
9	1.174	28.5	34.4772	-5.977204	.04
10	1.2132	41.5	44.90824	-3.409241	.04
11	1.2132	46	44.90824	1.091759	.04
12	1.2382	55.5	52.50573	2.994274	.04
	1.2654	64.5	59.68578	4.814224	.04
13	1.297	58	64.45236	-6.452362	.04
14	1.3263	65	65.71097	710968	.04
15		66.5	65.85071	.649292	.04
16	1.3535		65.85591	-1.355911	.04
17	1.4106	64.5		2.644089	.04
18	1.4514	68.5	65.85591	2.044008	.04

The CHI'2 (to be used with Chi-square Distribution Table) is 14.06603 .

JOB: CHARPY RC-2 CCONT-06/27/89

time - 16:37:30

SUMMARY OF TASK # 4

This task investigated Polynomials of degree 1 through 1 fit to the Data Set, Mod. CHARPY DATA from RC-2, using the BASIS FUNCTION: X(x) = 0*EXP[0*x^(0)] + (1)*EXP[-.01*x^(22.5)]

The polynomial of degree 1 produces the largest fractional decrease in RV (note, its RV = .8791269), hence, is taken as the BEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated). PLOTNFIT suggests that it is a polynomial of high enough degree that it should come close to the 'true function', i.e., the 'true model', yet low enough that it 'averages out' random errors.

TASK # 5: ANALYSIS OF 'Mod. CHARPY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 1 BASIS FUNCTION: $X(x) = 0*EXP[0*x^{(0)}] + (1)*EXP[-.0095*x^{(22.5)}]$ Coefficient of Determination, CD = .944755 Residual Variance, RV = .894097

2 Coefficients (the last coefficient is the constant term in the polynomial): C(1)=-45.46839 C(2)= 66.17696

1	¥	y	P[X(x)]	Deviation	
1	.9587	25	20.87549	4.124512	.04
2	.9641	17	20.89793	-3.897926	the second s
3	1.0185	21.5	21.35637	.1436272	.04
4	1.025	18	21.45524	-3.455238	.04
5	1.0772	21.5	22.95324		.04
6	1.1001	30.5		-1.453243	.04
7	1.1175	19	24.25775	6.242253	.04
8	1.1566		25.67589	-6.675888	.04
9	1.174	40.5	30.79481	9.705192	.04
10		28.5	34.16664	-5.666641	.04
	1.2132	41.5	44.37148	-2.871475	.04
11	1.2132	46	44.37148	1.628525	.04
12	1.2382	55.5	51.96351	3.536495	.04
13	1.2654	64.5	59.34938	5.15062	.04
14	1.297	58	64.5045	-8.504502	.04
15	1.3263	65	65.98348	9834824	.04
16	1.3535	66.5	66.16876	. 3312454	.04
17	1.4166	64.5	66.17696	-1.676956	.04
18	1.4514	68.5	66.17696	2.323044	.04

The CHI'2 (to be used with Chi-square Distribution Table) is 14.30555 .

JOB: CHARPY RC-2 CCONT-06/27/89

time - 16:38:53

SUMMARY OF TASK # 5

This task investigated Polynomials of degree 1 through 1 fit to the Data Set, Mod. CHARPY DATA from RC-2, using the BASIS FUNCTION: $X(x) = 0*EXP[0*x^{(0)}]$

+ (1)*EXP[-.0095*x^(22.5)]

The polynomial of degree 1 produces the largest fractional decrease in RV (note, its RV = .894097), hence, is taken as the bEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated). PLOTNFIT suggests that it is a polynomial of high enough degree that it should come close to the 'true function', i.e., the 'true model', yet low enough that it 'averages out' random errors.

TASK # 6: ANALYSIS OF 'Mod. CHARPY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 1BASIS FUNCTION: $X(x) = 0 \times EXP[0 \times x^{(0)}]$ + (1) $\times EXP[-8.500001E-03 \times x^{(22.5)}]$ Coefficient of Determination, CD = .940966 Residual Variance, RV = .9554064

2 Coefficients (the last coefficient is the constant term in the polynomial): C(1)=-45.58938 C(2)= 66.86283

1	x	y	P[X(x)]	Deviation	*
1	.9587	25	21.42322	3.576786	.04
2	.9641	17	21.44335	-4.443352	.04
3	1.0185	21.5	21.85504	3550377	.04
4	1.025	18	21.94388	-3.943874	.04
5	1.0772	21.5	23.29251	-1.792507	.04
6	1.1001	30.5	24.47094	6.029057	.04
7	1.1175	19	25.75643	-6.756424	.04
8	1.1566	40.5	30.43743	10.06257	.04
9	1.174	28.5	33.55945	-5.059445	.04
10	1.2132	41.5	43.24098	-1.740974	.04
11	1.2132	46	43.24098	2.759026	.04
12	1.2382	55.5	50.7559	4.744103	.04
13	1.2654	64.5	58.50489	5.99511	.04
14	1.297	58	64.48876	-6.488755	.04
15	1.3263	65	66.51819	-1.518189	.04
16	1.3535	66.5	66.84245	- 3424454	.04
17	1.4166	64.5	66.86283	-2.362824	.04
18	1.4514	68.5	66.86283	1.637177	.04

The CHI'2 (to be used with Chi-square Distribution Table) is 15.2865 .

JOB: CHARPY RC-2 CCONT-06/27/89

time - 16:40:12

SUMMARY OF TASK # 6

This task investigated Polynomials of degree 1 through 1 fit to the Data Set, Mod. CHARPY DATA from RC-2, using the BASIS FUNCTION: X(x) = 0*EXP[0*x^(0)] + (1)*EXP[-8.500001E-03*x^(22.5)]

The polynomial of degree 1 produces the largest fractional decrease in RV (note, its RV = .9554064), hence, is taken as the BEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated). PLOTnFIT suggests that it is a polynomial of high enough degree that it should come close to the 'true function', i.e., the 'true model', yet low enough that it 'averages out' random errors.

Do you agree with PLOTnFIT's choice for the polynomial degree that yields the most satisfactory correlation of the data (y/n)? y

.

TASK # 7: ANALYSIS OF 'Mod. CHARPY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 1BASIS FUNCTION: $X(x) = 0*EXP[0*x^{\circ}(0)]$ + (1)*EXP[-.0115*x^{\circ}(21)] Coefficient of Determination, CD = .9407919 Residual Variance, RV = .9582226

2 Coefficients (the last coefficient is the constant term in the polynomial): C(1)=-46.24303 C(2)= 67.11995

1	×	y	P[X(x)]	Deviation	¥
1	.9587	25	21.09572	3.904286	
2	.9641	17	21.12303		.04
3	1.0185	21.5		-4.123032	.04
4	1.025	18	21.65184	1518402	.04
5	1.0772	21.5	21.76154	-3.761536	.04
6	1.1001		23.34363	-1.843624	.04
2		30.5	24.65643	5.843575	.04
1	1.1175	19	26.04647	-7.049471	.04
8	1.1566	40.5	30.89225	9.60775	.04
9	1.174	23.5	34.00698	-5.506981	.04
10	1.2132	41.5	43.35501	-1.855003	
11	1.2132	10	43.35501	2.644997	.04
12	1.2382	55.5	50.47251		.04
13	1.2654	64.5		5.027489	.04
14	1.297	58	57.89903	6.600975	.04
15			64.03286	-6.03286	.04
	1.3263	65	66.50913	-1.509132	.04
16	1.3535	66.5	67.05872	5587158	.04
17	1.4166	64.5	67.11995	-2.619942	.04
18	1.4514	68.5	67.11995	1.380058	.04

The CHI'2 (to be used with Chi-square Distribution Table) is 15.33156 .

JOB: CHARPY RC-2 CCONT-06/27/89

time - 16:41:35

SUMMARY OF TASK # 7

This task investigated Polynomials of degree 1 through 1 fit to the Data Set, Mod. CHARPY DATA from RC-2, using the BASIE FUNCTION: X(x) = 0*EXP[0*x^(0)] + (1)*EXP[-.0115*x^(21)]

The polynomial of degree 1 produces the largest fractional decrease in RV (note, its RV = .95822?6), hence, is taken as the BEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated). PLOTnFIT suggests that it is a polynomial of high enough degree that it should come close to the 'true function', i.e., the 'true model', yet low enough that it 'averages out' random errors.

Do you agree with PLOTnFIT's choice for the polynomial degree that yields the most satisfactory correlation of the data (y/n)? y

.

TASK # 8: ANALYSIS OF 'Mod. CHARPY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 1BASIS FUNCTION: $X(x) = 0*EXP[0*x^{\circ}(0)]$ + (1)*EXP[-.0115*x^{\circ}(24)] Coefficient of Determination, CD = .932598 Residual Variance, RV = 27.27104

2 Coefficients (the last coefficient is the constant term in the polynomial): C(1)=-44.01487 C(2)= 62.99604

1	x	y	P[X(x)]	Deviation	*
1	.9587	25	19.16473	5.835266	1
2	.9641	17	19.19116	-2.191158	1
3	1.0185	21.5	19.76009	1.73991	1
4	1.025	18	19.88724	-1.887241	1
5	1.0772	21.5	21.89603	3960266	1
6	1.1001	30.5	23.70455	6.795452	1
7	1.1175	19	25.69249	-6.692494	1
8	1.1566	40.5	32,82527	7.674729	1
9	1.174	28.5	37.35726	-8.857262	1
10	1.2132	41.5	19.58848	-8.088478	1
11	1.2132	46		-3.588478	1
12	1.2382	55.5	56.6674	-1.167397	1
13	1.2654	64.5	61.31838	3.181618	1
14	1.297	58	62.87613	-4.876126	1
15	1.3263	65	62.99423	2.005776	1
16	1.3535	66.5	62,99604	3.503964	1
17	1.4166	64.5	62,99604	1.50396	1
18	1.4514	68.5	62.99604	5.50396	1

The Root-Residual Variance or Standard Deviation (SIGMA) is 5.222168 .

JOB: CHARPY RC-2 CCONT-06/27/89

time - 16:42:53

SUMMARY OF TASK # 8

This task investigated Polynomials of degree 1 through 1 fit to the Data Set, Mod. CHARPY DATA from RC-2, using the BASIS FUNCTION: $X(x) = 0 * EXP[0 * x^{(0)}]$

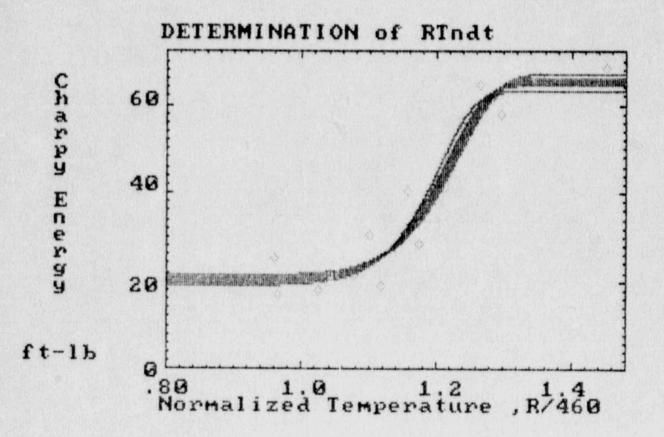
+ (1)*RXP[-.0115*x^(24)]

The polynomial of degree 1 produces the largest fractional decrease in RV (note, its RV = 27.27104), hence, is taken as the BEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated). FLOTNFIT suggests that it is a polynomial of high enough degree that it should come close to the 'true function', i.e., the 'true model', yet low enough that it 'averages out' random errors.

JOB: CHARPY RC-2 CCONT-06/27/89

time - 16:54:45

JOB DESCRIPTION


This is a continuation of the analysis begun with job 'INITIAL ANALYSIS --O6/26/59' and extended through job 'CHARPY RC-2 BCONT -O6/27/89.' This job will use Basis Function # 6 in the polynomial fit to the modified data from file FOL06891.SIS.

EACH CURVE IS A 'BEST FIT' WITH AN nth DEGREE POLYNOMIAL $P[X(x)] = C(1)X(x)^n + C(2)X(x)^{(n-1)} + \dots + C(n)X(x) + C(n+1)$

PLOTTING INSTRUCTIONS Generate (color) MEDIUM resolution, LINEAR graphs with PLOTNFIT DETERMINED COORDINATE RANGES AND MARKING INTERVALS

***** DATA *****

TASK	Ħ	IDENT	IFICA	TION		<u>n</u>	SY	MBOL	NDP		SOURCE
1	Mod.	CHARPY	DATA	from	RC-2	1	emall	DIAMOND	18	FILR	fo106891.616
2	Mod.	CHARPY	DATA	from	RC-2	1	small	DIAMOND	18	and the second sec	fo106891.sis
3	Hod.	CHARPY	DATA	from	RC-2	1	small	DIAMOND		A CONTRACTOR OF	fo106891.sis
4	Mod.	CHARPY	DATA	from	RC-2	1	small	DIAMOND	18		fo106891.sis
5	Mod.	CHARPY	DATA	from	RC-2	1	small	DIAMOND	18	A REAL PROPERTY AND A REAL PROPERTY.	fo106891.sis
6	Mod.	CHARPY	DATA	from	RC-2	1	small	DIAMOND	18	and the second sec	fo106891.sis
7	Mod.	CHARPY	DATA	from	RC-2	1	small	DIAMOND	18		fo106891.sis
8	Nod.	CHARPY	DATA	from	RC-2	1	and the second second	DIAMOND	18	and the second s	fo106891.sis

Part 3.a) Comments on OUTPUT

- 1. From among all the tasks, the lowest CHI^2 was obtained for that task with CG1:CF1 values of 22.5:(-0.0105) for which $CHI^2 = 13.97$ (see page A-74).
- 2. The results of this part of the analysis are that while CHI² is not very sensitive to variations in CFI (i.e., a + or 16 percent variation in CFI produced less than a 5 percent variation in CHI²), it is somewhat sensitive to changes in CGI (i.e., a 6.7 percent variation in CGI produced a 24 percent variation in CHI²).
- 3. Note the results from Task # 8 shown on page A-79. When entering the data for Task # 8, a negative response was accidently given to the question, "Do you want to INPUT stored weighting factors (y/n)?" (see page A-70). Since for this analysis all points have the same weighting factor, the polynomial coefficients C(1) and C(2) are not affected by the error. RV can be readily corrected by multiplying the value for RV on page A-79 by 0.04 to get RV = 1.0908 with a resulting CHI² of 17.45.

Part 3.b) INPUT

From Part 3.a) OUTPUT, the polynomial of degree n = 1, with Basis Function # 6, that seems to yield the best model had coefficients CG1:CF1 = 22.5:(-0.0105). This part of the analysis will consist of two tasks: (i) with Basis Function # 6 (CS1 = 0, CO1 = 0, CD1 = 0, and CE1 = 1) and the above coefficients, polynomials of degree n = 1 through 4 will be fit to the data; and (ii) with Basis Function # 1 (CS1 = 0), polynomials of degree n = 3 through 6 will be fit to the data. The "best polynomial/best fit" curves will be plotted for comparison. The maximum amount of OUTPUT will be produced for t's, the last part of the analysis.

PLOTNFIT / NUREG -

PLOTNFIT was prepared for an agency of United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warran ', expressed or implied, or assumes any legal liability or responsibility for ar; third party's use, or the results of such use, of any protion of this program or represents that its use by such third party would not infringe privately owned rights.

This version of PLOTNFIT (i.e., PLOTNFIT.4TH) will not run properly on a PC with a monochrome monitor. If this PC does not have a color/graphice card or this is not a color monitor, type yes or y at the EXIT (y/n)? prompt, otherwise type no or n and continue (NOTE: If GRAPHICS.COM was not loaded before BASICA.COM, HARD COPIES of graphs can not be made. Now is the time to EXIT this job and reload if it is desirable to print graphs and GRAPHICS.COM has not been pre-loaded.). THE PRINTER MUST BE KEPT ON WHILE PLOTNFIT IS OPERATING.

EXIT (y/n)?

Number of Bits not being used at the START of this job = 10486

For default purposes, what Disk Drive (e.g., A:) would you most likely want to WRITE to (include subdirectory if applicable - e.g., C:\SUBDIR\)

? 8:

PLOTNFIT A US NRC Program for Plotting and Analyzing (i.e., Curve Fitting) Data Interactively with an IEM or IbM Compatible Personal Computer (FC) (using DOS 2.1 and BASICA 3.0) May 1989

IF YOU ARE 'NOT' ALREADY FAMILIAR WITH THIS PROGRAM, you should probably ENTER yes at the 'EXIT (y/n)?' prompt, and run the program 'READIST.PNF'.

Exit (y/n)?

Identify your job (INITIAL ANALYSIS) FORMAT - a string of less than 18 characters (where BASIC filename rules apply to first 3 and last 3 characters) - CHARPY RC-2 DCONT

Describe your job (This analysis is to get a 'feel' for the data.): FORMAT - a 'comma-less' string of less than 256 characters -This is a continuation of the analysis begun with job 'INITIAL ANALYSIS --06/26/E 27/89.' This job will use Basis Function # 6 in the polynomial fit to the modifi

FLOTTING INSTRUCTIONS

What kind of graphs would you like to generate: LINEAR SEMI-LOG (Y-axis,LOG; X-axis,LINEAR) S. LOG-LOG NT(= 1)=

RUN

What palette do you want: FOR NOP=1 FOR NOP=2 FOR NP=1 FOR NP=2 GREEN MAGENTA CURVES' CURVES' DATA POINTS 'DATA FIELD' RED CYAN DATA POINTS, AXES, "AXES AND LABELS" WHITE BROWN AND LABELS NP(= 1)= 2 Regardless of the NOP value you enter here, if you later choose to make HARD COPIES of the data and curves plotted on the screen, PLOTnFIT will automatically make NOP=1. NOP(= 2)= What background color do you want 1. BLACK 2. GRAY 3. LIGHT BLUE 4. BROWN 5. YELLOW 6. LIGHT GREEN NQ(= 3)= 6 Would you like graph labels different from those shown in ()? (TITLE) - 30 characters maximum - (y/n): y What is your choice? DETERMINATION of RIndt (X-AXIS) Horizontal - 22 characters maximum -(y/n): yWhat is your choice? Normalized Temperature (units) for x-axis - 5 characters maximum -(y/n): yWhat is your choice? R/460 (Y-AXIS) Vertical - 16 characters maximum -(y/n): y What is your choice? Charpy Energy (units) for y-axis - 5 characters maximum -(y/n): yWhat is your phoice? ft-1b What scaling procedure (NS) would you like to use? 1. SPECIFY COORDINATE RANGES AND MARKING INTERVALS FOR THE AXES (USE ONLY AFTER EXPERIENCE WITH 'PLOTNFIT') 2. ALLOW 'PLOTNFIT' TO ESTABLISH COORDINATE PANGES AND MARKING INTERVALS BASED ON THE DATA RANGES NS(= 2)= DATA AND DATA IDENTIFICATION How many Tasks will there be in this job (1<=NDS<=8)? NDS(= 1)= 2 What INPUT device (NE) would you like to use to enter your Data for Task # 1 ? 1. The KEYBOARD 2. A STORED FILE NE(= 1)= 2 What is the location and name of the FILE containing Data for Task # 1 ? FORMAT - (storage)device:filename - a:fol06891.sis How many Data Sets are in this FILE? NDSF(= 1)= Do you want to INPUT Data Set # 1 from FILE a:fol06891.sie [i.e., that identified as : Mod. CHARPY DATA from RC-2; with (NDP=) 18 data points] (y/n)? y Do you want to INPUT the stored weighting factors (y/n)? y Do you want to change ANY data in this Data Set (y/n)? Do you want to fit curves to your Data Points (y/n)? y

NUREG-1378

Which of the following BASIS FUNCTIONS do you want to use for this Data Set (YOU MUST supply values for coefficients CS1, CO1, CD1, CE1, CF1 & CG1): 1. X(x)=CS1+x 2. X(x)=CS1+EXF(CO1*x)/(CD1+x) 3. X(x)=(CS1+CO1*x+CD1*x*2)*LOG(x)

X(x)=CS1/x+CO1*LOG(x)+x*LOG(CD1*x+2.718)

X(x)=CS1*EXP(CO1*x CD1)+CE1*EXP(CF1*x CG1)

11. X(x)=EXP(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x)

X(x)=CS1*EXP(CO1*x)+CD1*EXP(CE1*x)+CF1*EXP(CG1*x)

X(x)=EXF(C51*x)*(C01+x) CD1+EXF(CE1*x)*(CF1+x) CG1

X(x)=CS1*x*SIN(CO1+CD1*x)+(CE1/(CD1+x))*SIN(CF1+CG1*x)

X(x)=CS1+CO1*x^CD1+CE1/(CF1+x^CG1)

X(x)=CS1*(CO1+x)^CD1+CE1*(CF1+x)^CG1

4.

5.

6.

7.8

9.

10.

If the default value of a coefficient is not zero and you wish it to be zero. you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since entering 0 would be interpreted by FLOTnFIT as acceptance of the default value. BF/= 1)= 6 CS1(= 0)= CO1(= 0)= CD1(= 0)= CE1(= 0)=1 CF1(= 0)=-0.0105 CG1(= 0)=22.5 For each Data Set in the job, the program starts with the lowest degree polynomial you want to consider and fite it to the data points; the program then fits, sequentially and in assending order, as many higher degree polynomials as you specify (the current degree limit is 10). What is the lowest degree polynomial (LDF) you want to consider for this Data Set (1 <= LDP <= 10)? LDP(=1)= How many polynomial fits (NPF) do you want to try - including the LDP - (1 <= NPF <= 10)? NPF(=1)= 4

What symbol (M) would you like to use to represent the Data for Task # 1 5. DIAMOND 6. TRIANGLE - UP 7. TRIANGLE - DOWN 2. CROSU 3. X H 4 8. SQUARE M(= 1)= 8 What symbol size (MM) would you like? . small 2. LARGE MM(= 1)= 2 What INPUT device (NE) would you like to use to enter your Data for Task # 2 ? 1. The KEYBOARD 2. A STORED FILE NE(= 2)= What is the location and name of the FILE containing Data for Task # 2 ? FORMAT - (storage)device:filename (a:fol06891.sis) -HOW ny Data Sets are in this FILE? NDSF(= 1)=

Do you want to INPUT Data Set # 1 from FILE a: fc106891.sis [i.e., that identified as : Mod. CHARPY DATA from RC-2; with (NDF=) 18 data points] (y/n)? y Do you want to INPUT the stored weighting factors (y/n)? y

Do you want to change ANY data in this Data Set (y/n)?

Do you want to fit curves to your Data Points (y/n)? y

Which of the following BASIS FUNCTIONS do you want to use for this Data Set (YOU MUST supply values for coefficients CS1, CO1, CD1, CE1, CF1 & CG1):

3. X(x)=CS1+x 2 X(x)=CS1+EXP(CO1*x)/(CD1+x) X(x)=(CS1+CO1*x+CD1*x^2)*LOG(x) 3. X(x)=CS1/x+CO1*LOG(x)+x*LOG(CD1*x+2.718) 4. X(x)=CS1+CO1*x^CD1+CE1/(CF1+x^CG1) 5. X(x)=CS1*EXF(CO1*x^CD1)+CE1*EXP(CF1*x^CG1) 6. X(x)=CS1*EXP(CO1*x)+CD1*EXP(CE1*x)+CF1*EXP(CG1*x) X(x)=CS1*(CO1+x)^CD1+CE1*(CF1+x)^CG1 8. X(x)=EXF(CS1*x)*(CO1+x) CD1+EXP(CE1*x)*(CF1+x) CG1 9. X(x)=CS1*x*SIN(CO1+CD1*x)+(CE1/(CD1+x))*SIN(CF1+CG1*x) 10. 11. X(x)=EXP(CS1*x)*SIN(CO1+CD1*x)+CE1*SIN(CF1+CG1*x)

If the default value of a ccefficient is not zero and you wish it to be zero, you must enter an insignificant, small number (perhaps, 1E-7*XMIN), since entering 0 would be interpreted by PLOTnFIT as acceptance of the default value.

BF(= 6)=1 CS1(= 0)= For each Data Set in the job, the program starts with the lowest degree polynomial you want to consider and fits it to the data points; the program then fits, sequentially and in assending order, as many higher degree polynomials as you specify (the current degree limit is 10). What is the lowest degree polynomial (LDP) you want to consider for this Data Set (1 <= LDP <= 10)? LDP(=1)= 3 How many polynomial fits (NPF) do you want to try - including the LDP - (1 <= NPF <= 8)? NPF(=1)= 4 What symbol (M) would you like to use to represent the Data for Task # 2 ? 5. DIAMOND 6. TRIANGLE - UP 7. TRIANGLE - DOWN 2. CROSS 3. X 8. SQUARE H 4. M(= 9)= 8 What symbol size (MM) would you like? 1. small 2. LARGE MM(= 2)= ALL PLOTTING INSTRUCTIONS AND DATA HAVE BEEN ENTERED

Would you like to make changes in your Flotting Instructions; values currently in the computer appear in parenthesis (y/n)?

Would you like to make a few changes in one or more of your Data Sets [most useful when most data are from the KEYBOARD] (y/n)?

Would you like to completely RE-INPUT your Coordinate Data [most useful when most data are from STORED FILES] (y/n)?

Number of Bits not being used at this time, for this job = 3039

Would you like to PRINT values of the Polynomial Coefficients for all the curves fit to each Data Set, along with the corresponding Residual Variances and Coefficients of Determination (y/n)? y

Would you like to make MARD COPIES of graphs of ALL the Data Sets, one set of graphs for each Data Set, showing ALL the polynomial curves fit to EACH Data Set (y/n)? y

Would you like to make `a' HARD COPY graph containing ALL the Data Sets, each Data Set with it's corresponding `BEST POLYNOMIAL/BEST FIT' curve (y/n)? y

Would you like to PRINT values of key program variables and a Table of some of the points which fall on each 'BEST POLYNOMIAL/BEST FIT' curve plotted (y/n)? y

... a Table of 'ALL' the points (y/n)?

Would you like to INPUT a function to be plotted with your data (y/n)?

PLOTNFIT.4th

JOB: CHARPY RC-2 DCONT-06/29/89

THE FOLLOWING ARE DATA RESULTING FROM FITTING POLYROBIALS TO THE VARIOUS DATA SETS

TASK # 1: ANALYSIS OF 'Mod. CHARPY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 1 BASIS FUNCTION: $X(x) = 0*KXP[0*x^{\circ}(0)]$ + (1)*KXP[-.0105*x^{\circ}(22.5)] Coefficient of Determination, CD = .946064 Residual Variance, RV = .8729078

2 Coefficients (the last coefficient is the constant term in the polynomial): C(1) = -45.33264 C(2) = 65.54778

1 x		7	P[X(x)]	Deviation	•	
	.9587	25	20.39904	4.60096	.04	
5	.9641	17	20.42376	-3.42376	.04	
3	1.0285	21.5	20,92846	.5715408	.04	
	1.025	18	21,03723	-3.037232	.04	
	1.0772	21.5	22.68216	-1.182163	.04	
6	1,1001	30.5	24.10975	6.390255	.04	
7	1.1175	19	25.65639	-6.656388	.04	
	1.1566	40.5	31.19042	9.309586	.04	
0	1.174	28.5	34.79054	-6.290543	.04	
10	1.2132	41.5	45.42569	-3.92569	.04	
11	1.2132	46	45.42569	. 5743103	.04	
12	1.2382	55.5	53.00938	2.490624	.04	
13	1.2654	64.5	59.9722	4.527802	.04	
14	1.297	58	64.36998	-6.36998	.04	
15	1.3263	65	65.4392	4391938	.04	
16	1.3535	66.5	65.54448	.9555206	. 04	
17	1.4166	64.5	65.54778	-1.047775	.04	
18	1.4514	68.5	65.54778	2.952225	.04	

The CHI'2 (to be used with Chi-square Distribution Table) is 13.96653 .

TASK # 1: ANALYSIS OF 'Mod. CHARPY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 2BASIS FUNCTION: $X(x) = 0*KKP[0*x^{\circ}(0)]$ + (1)*EKP[-.0105*x^{\circ}(22.5)] Coefficient of Determination, CD = .946065 Residual Variance, EV = .9310868

3 Coefficients (the last coefficient is the constant term in the polynomial): C(1)=-.1933762 C(2)=-45.14174 C(3)= 65.53287

1	*	,	P[X(x)]	Deviation	
1	.9587	25	20.38244	4.617558	.04
2	.9641	17	20.40727	-3.407265	.04
3	1.0185	21.5	20.9141	.5858994	.04
4	1.025	18	21.02333	-3.023331	.04
5	1.0772	21.5	22.67486	-1.174862	.04
6	1.1001	30.5	24.10776	6.592243	.04
7	1.1175	19	25.65972	-6.659722	.04
8	1.1566	40.5	31,20911	9.290894	.04
9	1.174	28.5	34.81614	-5.316136	.04
10	1.2132	41.5	45.45742	-3.957417	.04
11	1.2132	46	45.45742	.5425835	.04
12	1.2383	55.5	53.03248	2.467526	.04
13	1.2654	64.5	59.97705	4.522156	.04
14	1.297	58	64.3599	-6.359902	.04
15	1.3263	65	65.42475	4247437	
16	1.3535	66.5	65.52958	.9704208	.04
17	1.4166	64.5			.04
18	1.4514	Server a la construction de la const	65.53287	-1.032867	.04
10	1.4014	68.5	65.53287	2.967133	.04

The CHI'2 (to be used with Chi-square Distribution Table) is 13.9663 .

TASE # 1: ANALYSIS OF 'Mod. CHARPY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 3 BASIS FUNCTION: $X(x) = 0*KXP[0*x^{\circ}(0)]$ + (1)*KXP[-.0105*x^{\circ}(22.5)] Coefficient of Determination, CD = .946204 Residual Variance, RV = .9950166

4 Coefficients (the last coefficient is the constant term in the polynomial): C(1)= 10.89538 C(2)=-16.34099 C(3)=-39.52417 C(4)= 65.4034

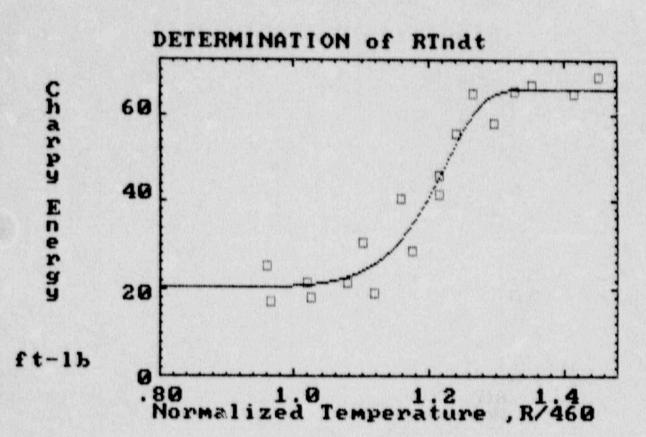
i	×	,	P[X(x)]	Deviation	
1	.9587	25	20.59421	4.405792	.04
2	.9641	17	20.61583	-3.615833	.04
3	1.0185	21.5	21.05948	.4405251	.04
4	1.025	18	21.15561	-3.155609	.04
5	1.0772	21.5	22.63097	-1.13097	.04
6	1.1001	30.5	23.94258	6.557419	
7	1.1175	19	25.39382	-6.393822	.04
8	1.1566	40.5	30.80508	9.694923	.04
9	1.174	28.5	34.4677	-5.967697	
10	1.2132	41.5	45.59281	-4.092808	04
11	1.2132	46	45.59281	.4071922	.04
12	1.2382	55.5	53.45199		.04
13	1.2654			2.048012	.04
14	1.297	64.5	60.3153	4.184704	.04
		58	64.36567	-6.36567	.04
15	1.3263	65	65.30864	3086395	.04
16	1.3535	66.5	65.40052	1.09948	.04
17	1.4166	64.5	65.4034	9033966	.04
18	1.4514	68.5	65.4034	3.096604	.04

The CHI'2 (to be used with Chi-square Distribution Table) is 13.93023 .

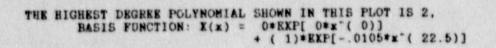
TASE # 1: ANALYSIS OF 'Mod. CHARPY DATA from RC-2'

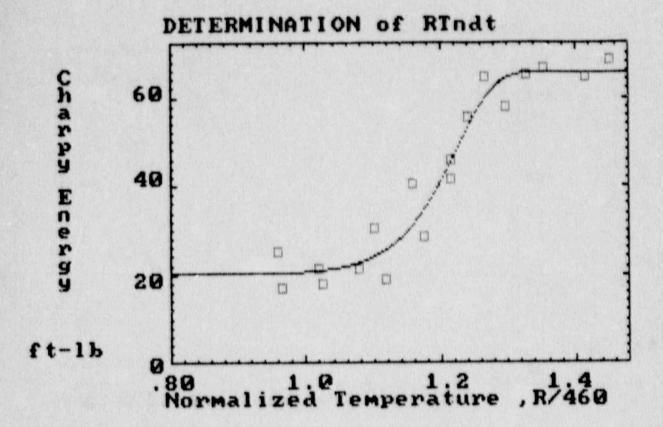
Degree of Polynomial, P[X(x)], n = 4BASIS FUNCTION: $X(x) = 0*EXP[0*x^{(0)}] + (1)*KXP[-.0105*x^{(22.5)}]$ Coefficient of Determination, CD = .949024Residual Variance, RV = 1.015383

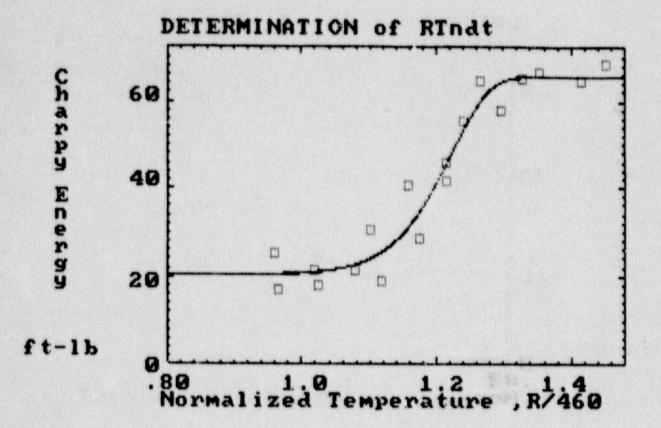
5 Coefficients (the last coefficient is the constant term in the polynomial): C(1)=-202.0862 C(2)= 422.4508 C(3)=-276.3049 C(4)= 10.48499 C(5)= 64.86556

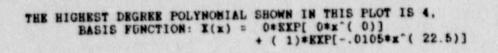

1	x	y	P[X(x)]	Deviation	
1	.9587	25	19.74385	5.25615	.04
2	.9641	17	19.78814	-2.788143	.04
8	1.0185	21.5	20.66481	.835186	.04
6	1.025	18	20.84704	-2.847038	.04
5	1.0772	21.5	23.33808	-1.838078	.04
6	1.1001	30.5	25.15009	5.349915	.04
7	1.1175	19	26.82144	-7.821434	.04
R	1,1566	40.5	31.33384	9.166161	.04
9	1.174	28.5	33.90613	-5.406120	.04
10	1.2132	41.5	44.18099	-2.680985	.04
11	1.2132	46	44.18099	1.819016	.04
12	1.2382	55.5	54.38414	1.115864	.04
13	1.2654	64.5	62.71516	1.784844	.04
14	1.297	58	64.95877	-6.958771	.04
15	1.3263	65	64.8891	. 1109085	.04
16	1.3535	06.5	64.86632	1.633682	.04
17	1.4166	64.5	64.86556	3655548	.04
18	1.4514	68.5	64.86556	3.634445	.04

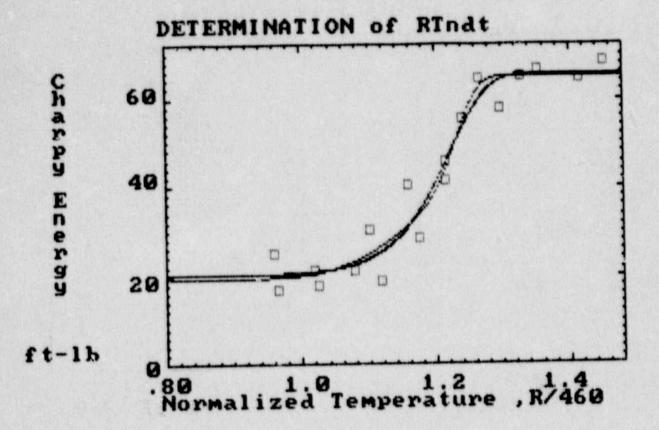
The CHI'2 (to be used with Chi-square Distribution Table) is 13.19998 .


SUMMARY OF TASK # 1


This task investigated Polynomials of degree 1 through 4 fit to the Data Set, Mod. CHARPY DATA from RC-2, using the BASIS FUNCTION: X(x) = 0*KXP[0*x^(0)] + (1)*KXP[-.0105*x^(22.5)]


The polynomial of degree 1 produces the largest fractional decrease in RV (note, its RV = .8729078), hence, is taken as the BEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated). FLOTnFIT suggests that it is a polynomial of high enough degree that it should come close to the 'true function', i.e., the 'true model', yet low enough that it 'averages out' random errors.


THE HIGHEST DEGREE POLYNOMIAL SHOWN IN THIS PLOT 1S 1, EASIS FUNCTION: $\mathbf{X}(\mathbf{x}) = 0 \times \mathbf{K} \mathbf{K} \mathbf{P} \begin{bmatrix} 0 \times \mathbf{x}^{*}(0) \end{bmatrix} + (1) \times \mathbf{K} \mathbf{K} \mathbf{P} \begin{bmatrix} -.0105 \times \mathbf{x}^{*}(22.5) \end{bmatrix}$



THE HIGHEST DEGREE POLYNOMIAL SHOWN IN THIS PLOT IS 3, BASIS FUNCTION: $X(x) = 0*EKP[0*x^{(0)}]$ + (1)*EKP[-.0105*x^{(22.5)}]

Do you agree with PLOTnFIT's choice for the polynomial degree that yields the most satisfactory correlation of the data (y/a)? y

TASK # 2: ANALYSIS OF 'Mod. CHARPY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 3 BASIS FUNCTION: X(x) = 0 + xCoefficient of Determination, CD = .934965 Residual Variance, RV = 1.202892

4 Coefficients (the last coefficient is the constant term in the polynomial): C(1)=-1900.705 C(2)= 6868.957 C(3)=-8071.413 C(4)= 3121.686

1	*	7	P[I(x)]	Deviation	
1	. 9587	25	22.12012	2.879883	
2	. 9641	17	21.39502	-4.39502	.04
3	1.0185	21.5	18.25342		.04
4	1.025	18		3.246582	.04
5	1.0772	21.5	18.33399	3339844	. 64
6	1.1001		21.85523	3552246	.04
7	1.1175	30.5	24.7461	5.753907	.04
		19	27.36694	-8.366943	.04
0	1.1566	40.5	34.26392	6.236084	.04
9	1.174	28.5	37.64258	-9.142578	.04
10	1.2132	41.5	45.55127	-4.05127	.04
11	1.2132	46	45.55127	.4487305	
12	1.2382	\$5.5	50.55908		.04
13	1.2654	64.5	55.7312	4.940918	.04
14	1.297	58		8.768799	.04
15	1.3263	65	61.07959	-3.07959	.04
16	1.3535		65.10669	1066895	.04
17		66.5	67.78516	-1.285156	.04
	1.4166	84.5	68.77344	-4.273438	.04
18	1.4514	68.5	65.38428	3.115723	.04

The CHI'2 (to be used with Chi-square Distribution Table) is 16.84049 .

TASK # 2: ANALYSIS OF 'Mod. CHARPY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 4 BASIS FUNCTION: X(x) = 0 i x Coefficient of Determination, CD = .935174 Residual Variance, RV = 1.29126

5 Coefficients (the last coefficient is the constant term in the polynomial): C(1) = 844.7538 C(2) = -5958.323 C(3) = 14127.81 C(4) = -13802.85 C(5) = 4806.809

1	*	*	P[X(x)]	Deviation	
1	.9587	25	22.43897	2.561035	.04
2	.9641	17	21.59277	-4.592774	and the second se
3	1.0185	21.5	17.85693		.04
4	1.025	18	17.92627	3.643067	.04
5	1.0772	21.5		7.3730478-02	.04
6	1.1001	30.5	21.60547	1054688	.04
7	1.1175		24.6077	5.862305	.04
		19	27.36768	-8.367676	.04
0	1.1566	40.5	34.46729	6.032715	.04
9	1.174	28.5	37.90283	-9.402832	.04
10	1.2132	41.5	45.82862	-4.328614	.04
11	1.2132	46	45.82862	.1713867	.04
12	1.2382	55.5	50.77051	4.729492	
13	1.2654	64.5	55.81006		.04
14	1.297	58		8.689941	.04
15	1.3263	65	60.95655	-2.956543	.04
16	1.3535		64.79053	. 2094727	.04
17		66.5	67.33594	8359375	.04
18	1.4166	64.5	68.52295	-4.022949	.04
10	1.4514	68.5	65.81495	2.685059	.04

The CHI'2 (to be used with Chi-square Distribution Table) is 16.78637 .

TASK # 2: ANALYSIS OF 'Mod. CHARPY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 5 BASIS FUNCTION: X(x) = 0 + xCoefficient of Determination, CD = .943212 Residual Variance, RV = 1.225407

6 Coefficients (the last coefficient is the constant term in the polynomial): C(1)= 43618.66 C(2)=-261180.2 C(3)= 620427.2 C(4)=-730689.8 C(5)= 426694.9 C(6)=-98849.59

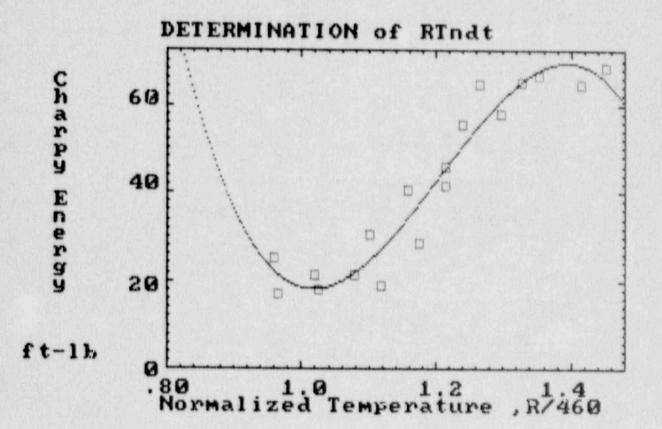
1		7	P[X(x)]	Deviation	
1	.9587	25	20.83594	4.164063	.04
2	.9641	17	21.14844	-4.148438	. 04
3	1.0185	21.5	20.46094	1.039063	.04
1	1.025	18	20.26563	-2.265625	.04
	1.0772	21.5	20.90625	. 59375	.04
ě	1,1001	30.5	22.96094	7.539063	.04
2	1.1175	19	25.29688	-6.296875	.04
	1.1566	40.5	32.69531	7.804688	.04
0	1.174	28.5	36.6875	-8.1875	.04
10	1.2132	41.5	46.14844	-4.648438	.04
10	1.2132	46	46.14844	1484375	.04
11		55.5	51.97657	3.523438	.04
12	1.2382		57.59375	6.90615	.04
13	1.2654	64.5	62.34375	-4.34375	.04
14	1.297	58		.09375	.04
15	1.3263	65	64.90625	.8359375	.04
16	1.3535	66.5	65.66406		
17	1.4166	64.5	65.07813	578125	.04
18	1.4514	68.5	67.85156	.6484375	

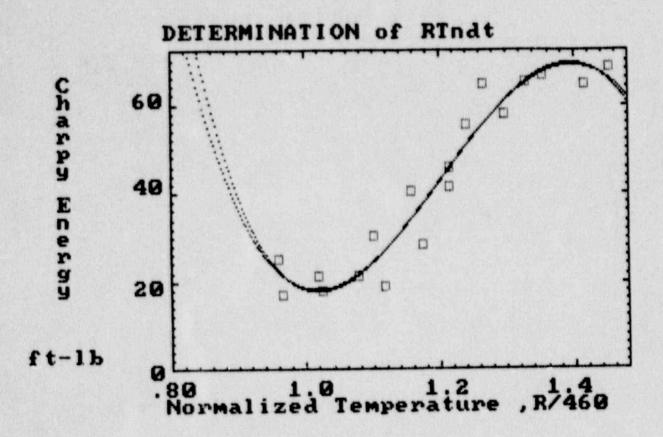
The CH1^2 (to be used with Chi-square Distribution Table) is 14.70488 .

TASK # 2: ANALYSIS OF 'Mod. CHARPY DATA from RC-2'

Degree of Polynomial, P[X(x)], n = 6 BASIS FUNCTION: X(x) = 0 + xCoefficient of Determination, CD = .943883 Residual Variance, RV = 1.321019

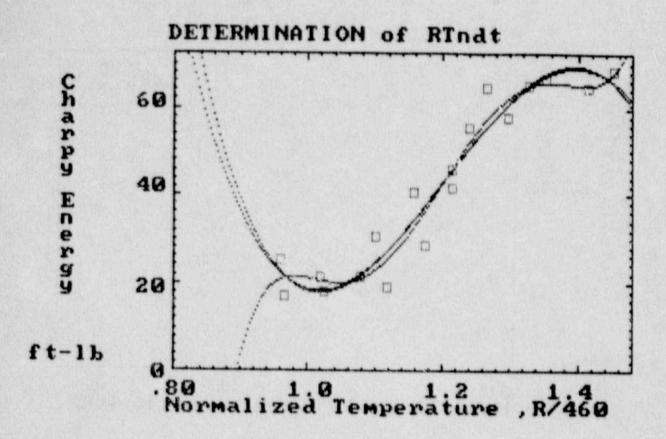
7 Coeff		st coefficient C(2)=	is the constant -1160218	term in the poly C(3)= 3347188	
C	4)=-5124321	C(5)=	4392653	C(6)=-2000023	3
ci	7)= 378072.7				
1	1	y	P[X(x)]	Deviation	•
	06.97	25	21.84375	3.15625	.04
1	.9587	17	21.15625	-4.15625	.04
2	.9641		19.78125	1.71875	.04
3	1.0185	21.5		-1.9375	.04
4	1.025	18	19.9375		
5	1.0772	21.5	22.21875	71875	.04
6	1.1001	30.5	24.15625	6.34375	.04
7	1.1175	19	26.40625	-7.40625	.04
8	1.1566	40.5	32.65625	7.84375	.04
9	1.174	28.5	36.5	-8	.04
10	1.2132	41.5	45.96875	-4.46875	.04
11	1.2132	46	45.96875	.03125	.04
12	1.2382	55.5	52.59375	2.90625	.04
		64.5	57.71875	6.78125	.04
13	1.2654		63.53125	-5.53125	.04
14	1.297	58		-1.59375	.04
15	1.3263	65	66.59375		
16	1.3535	66.5	66.90625	40625	.04
17	1.4166	64.5	63.8125	.6875	.04
18	1.4514	68.5	68.65625	15625	.04

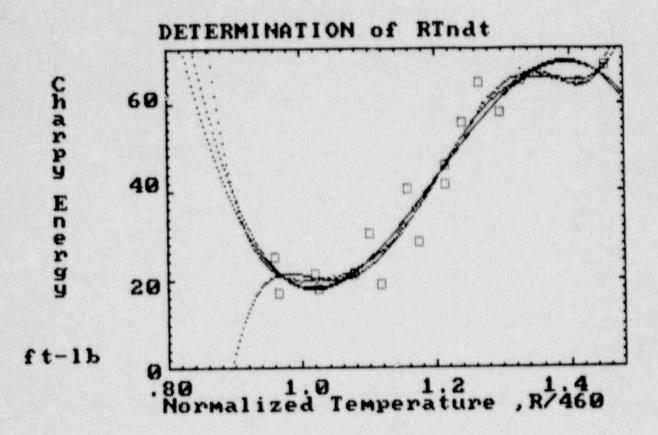

The CHI'2 (to be used with Chi-square Distribution Table) is 14.53121 .


SUMMARY OF TASE # 2

This task investigated Polynomials of degree 3 through 6 fit to the Data Set. Mod. CHARPY DATA from RC-2, using the BASIS FUNCTION: X(x) = 0 + x

The polynomial of degree 3 produces the largest fractional decrease in RV (note, its RV = 1.202892), hence, is taken as the BEST POLYNOMIAL/BEST FIT for this Data Set (i.e., from among the polynomials with the specifically chosen Basis Function and within the degree range investigated). PLOTNFIT suggests that it is a polynomial of high enough degree that it should come close to the 'true function', i.e., the 'true model', yet low enough that it 'averages out' random errors.


THE HIGHEST DEGREE POLYNOMIAL SHOWN IN THIS PLOT IS 3, BASIS FUNCTION: X(x) = 0 + x


THE BIGHEST DEGREE POLYNOMIAL SHOWN IN THIS PLOT IS 4, BASIS FUNCTION: X(x) = 0 + x

)

THE HIGHEST DEGREE POLYNOMIAL SHOWN IN THIS PLOT IS 5. BASIS FUNCTION: X(x) = 0 + x

4

THE HIGHEST DEGREE POLYNOMIAL SHOWN IN THIS PLOT IS 6, BASIS FUNCTION: X(x) = 0 + x

Do you agree with PLOTnFIT's choice for the polynomial degree that yields the most satisfactory correlation of the data (y/n)? n

What degree polynomial do you think best represents this Data Set?

n = 5 , RV = 1.225407

PLOTNFIT. 4th

JOB: CHARPY RC-2 DCONT-06/29/89

KEY PROGRAM PARAMETERS AND OUTPUT DATA

time - 11:52:15

TNDP= 36

IMIN= . YMIN= 1		XMAX= 1. YMAX= 68	4514	DKX= .02 DEY= 2
LJX= 10 LJY= 10		LIX: 4 LIX: 4		CX= 80 CY= 40
XS= 75 YS= 12		XR= 315 YE= 162		XO=-207 YO= 162
NYS= 0		NXB= 74 NYE= 36		NYT= 34 NYT= 36
	YOL= 0	NYC= 0 NXC= 0	YLL= 0 XLL= 0	YUL= 0 XUL= 0
I= 1 U I= 2 U I= 3 U	UX= .8 UX= 1 0X= 1.2 UX= 1.4 UX= 1.6	SX= 9 SX= 18 SX= 27 SX= 35 SX= 0	UY= 0 UY= 20 UY= 40 UY= 60 UY= 80	SY= 21 SY= 16 SY= 10 SY= 5 SY= 0

TASK # 1 Every 10th Point On The Best Polynomial Curve Best Fit To 'Mod. CHARPY DATA from RC-2':

XPI	×	P[X(x)]	YPI	dP[X(x)]/dx	Int P[X(x)]dx	17
75	.799	20.21819	120	8.600216B-02	0	
85	.8273333	20.22183	120	.1819072		3
95	.8556667	20.22941	120	.3751415	0	3
105	.8840001	20.24483	120		0	3
115	.9123334	20.27551	120	.755479	0	3
125	.9406667	20.33518		1.487667	0	3
135	. 9890001	20.4489	120	2.867474	0	3
145	.9973334		120	5.413761	.2314342	3
155	1.025667	20.66117	119	10.0128	.8135206	3
165	1.054	21.04923	119	18.12807	1.403879	3
175		21.74303	117	32.06022	2.009175	3
	1.082333	22.95212	115	55.14407	2.640818	3
185	1.110667	24.99342	110	91.50798	3 317623	3
195	1.139	28.29585	104	144.4708	4.069013	3
205	1.167333	33.3217	93	211.9675	4.937401	9
215	1.195667	40.30155	79	278.0898	5.975937	0
225	1.224	48.72762	61	306.5502	7.235229	0
235	1.252333	56.92102	44	257.1568	8.735229	0
245	1.280667	62.63449	32	140.4854	10.43684	0
255	1.309	65.03956	27	39.23042	12.25238	0
265	1.337334	65.51625	26	3.857172	14.10424	3
275	1.365667	65.54738	26	7.5642618-02		3
285	1.394	65.54778	26		15.96119	3
295	1.422333	65.54778	26	1.253948-04	17.81838	3
305	1.450667	65.54778		4.856977B-09	19.67556	3
315	1.479		26	6.5089528-16	21.53274	3
		65.54778	26	1.8079268-26	21.71846	3

The Total Integral Of P[X(x)]dx is From .9576667 To 1.4535 and the Constant of Intergration is 0.

1

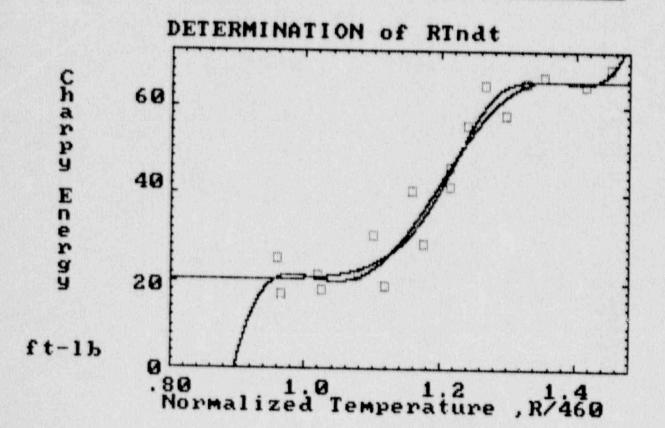
			TASK #			
Every	6th	Point On	The Be	st Fo	lynomial	Curve
		To Mod.				

C(1	cients of the)= 218093.3)=-1461380	C(2)=-1044721)= 426694.9	C(3 C(6)= 1861282)= 0	
	cients of the	Integral:				
CII)= 7269.777	C(2)=-52236.05)= 155106.8	
cia)=-243563.3)= 213347.4)=-98849.59	
KP1		P[X(x)]	¥L.I	dP[X(x)]/dx	Int P[X(x)]dx	11
75	.799	-166.2031	508	3287.969	0	0
81	.8160001	-116,1875	404	2612.219	0	0
87	.833	-76.82813	322	2037.688	0	0
93	.85	-46.35938	258	1554.906	0	0
99	.8670001	-23.45313	210	1154.531	C	0
105	.8840001	-6.726563	176	828.0313	0	0
	.901	5.0625	152	566.9375	0	0
111	9180001	12.89844	136	363.5938	0	C
117	.9350001	17.69531	126	210.4688	0	0
	.952	20.28125	120	100.5938	0	0
129	.9690001	21.32813	118	27.53125	.25	0
135	.9860001	21.40625	118	-14.90625	. 5976563	0
141	1.003	20.97656	119	-32.40625	.9648438	0
147	1.02	20.40625	120	-30,125	1.314453	0
153		20.03125	121	-12.78125	1.65625	0
159	1.037	20.02344	121	15.21875	1.992188	0
165	1.054	20.58594	120	49.78125	2.353516	0
171	1.071	21.76563	117	87.71875	2.720703	0
177	1.088	23.5625	113	125.875	3.083985	0
183	1.105	26.02344	108	161.6563	3.511719	0
189	1.122	29.0625	102	192.7188	3,978516	0
195	1.139	32.55469	\$5	217.8438	4.511719	0
201	1.156	36.36719	87	235.125	5.091797	0
207	1.173	40.49219	78	244.0313	5.75	0
213	1.19	44.59375	70	244.25	6.484375	0
219	1.207	48.76563	61	235.6563	7,28711	0
225	1.224	52.60157	53	218.5	8,125	0
231	1.241	56.21875	45	194.1563	9.050781	0
237	1.258	and the second	39	163.8125	10.02148	0
243	1.275	59.25782 61.6875	34	128.75	11.0625	0
249	1.292	63.60157	30	91.90625	12.13281	0
255	1.309	64.78906	28	55,46875	13.19727	0
261	1.326		26	22.71875	14.34766	0
267	1.343	65.54688	26	-3.125	15.42578	0
273	1.36	65.625	26	-17.53125	16.58984	0
279	1.377	65.48438	27	-16.75	17.66016	0
285	1.394	65.16406	27	4.5625	18.80859	0
291	1.411	65.03125	26	51.4375	19.90625	0
297	1.428	65.47656	23	129.375	21.01172	0
303	1.445	66.9375	16	244.9688	21.5918	0
309	1.462	70.10156	5	404.6875	21,5918	0
315	1.479	75.5	0	404.0010		1. C. S.

The Total Integral Of P[X(x)]dx is From .9576667 to 1.453 and the Constant of Intergration is -18925.81.

3

JOB: CHARPY RC-2 DCONT-06/29/89


time - 11:57:26

JOB DESCRIPTION This is a continuation of the analysis begun with job 'INITIAL ANALYSIS--06/26/89' and extended through job 'CHARPY RC-2 CCONT- 06/27/89.' This job will compare results using Basis Functions # 6 and # 1 on the modified data from file 'FOL06891.SIS.'

EACH CURVE IS A 'BEST FIT' WITH AN nth DEGREE POLYNOMIAL $P[X(x)] = C(1)X(x)^n + C(2)X(x)^n(n-1) + \dots + C(n)X(x) + C(n+1)$

PLOTTING INSTRUCTIONS Generate (color) MEDIUM resolution, LINEAR graphs with PLOTAFIT DETERMINED COORDINATE RANGES AND MARKING INTERVALS

			*****		DATA **	***			
TASK	IDEN7	IFICATION		n	SYMBOL	L	NDP		SOURCE
1 2	Mod. CHARPY Mod. CHARPY	DATA 'ro DATA fro	RC-2 RC-2	1 5	LARGE SQ LARGE	JARE	18 18	FILE	fo106891.eis fo106891.eis

Part 3.b) Comments on OUTPUT

- 1. The results of this part of the analysis show that, using Basis Function # 6 with the coefficients from Part 3.a), curves fit with high degree polynomials are not an improvement over that obtained with degree n = 1. For n = 2 and n = 3, the high order terms in the polynomial tend to be suppressed, while for n = 4 the higher order coefficients start to get large as RV increases further (see pages A-88 and A-89). As shown by the graphs on pages A-90 through A-92, the effect of going from n = 1 to 3 is barely perceptible, but in going to n = 4, the curve begins to "strain" toward the data points.
- 2. Using Basis Function # 6, CHI² decreases slightly (from 13.9665 to 13.2000) with increasing polynomial degree n (= 1 to 4) while RV increases (from 0.873 to 1.015). The reason for this is that as n increases, the number of degrees of freedom NU decreases from 16 to 13 (not taking into account the two coefficients in the Basis Function that are obtained by "trial-and-error" fit to the data) and the calculated CHI² is independent of NU while RV is inversely proportional to NU; consequently, RV is a better parameter for interactively comparing polynomials. With regard to CHI², the effect of NU is taken into account in the interpretation of the value of CHI² relative to the Chi-square distribution table in Appendix B.
- 3. Although RV is lowest for the polynomial of degree n = 3 when using Basis Function # 1 (see pages A-94 and A-95), the polynomial of degree n = 5 was taken as being more representative of the data because it shows a shape that is "more like" typical Charpy energy versus temperature data (see pages A-96 through A-99). All the coefficients increase steadily with increasing n, becoming very large above n = 5 (while RV continues to increase), suggesting that higher degree polynomials may not only fail to improve the fit, but may result in problems with loss of significance due to the limitations of single-precision arithmetic.
- 4. With regard to the tables on pages A-100 and A-101, note that every 10th point is shown for Task # 1 (which is the PLONnFIT default for $n \leq 3$) and every 6th point is shown for Task # 2 (which is the PLOTnFIT default for $3 \leq n \leq 7$); if n had been greater than 7 for either task, the corresponding table would have shown every 3rd point. The only options available for you to choose are to request that all the points be displayed in the table [as was done in Part 2.a); see pages A-19 through A-26] or to request that none of the points be displayed (as was done in Part 1; see pages A-11 and A-12).
- 5. Page A-102 shows the comparison of the "best polynomial/best fit" using (a) Basis Function # 6 (Task # 1) and (b) Basis Function # 1 (Task # 2). For case (a) there are actually 4 data-determined coefficients (hence, 14 degrees of freedom) and CHI² is 13.97; for case (b) there are 6 datadetermined coefficients (hence, 12 degrees of freedom) and CHI² is 14.70. Although both models may be considered to fit the data adequately (i.e., in both cases the deviations are probably due to chance; see the table in Appendix B), which is what you would expect on the basis of the curves

shown, Basis Function # 6 yields (a) a simpler model, (b) a slightly better fit to the data, (c) lower shelf and upper shelf energies from the best fit to all data points, and (d) meaningful extrapolation to regions outside the data range.

6. The lower and upper shelf energies estimated from the "best polynomial/best fit" using Basis Function # 1 [see Part 2.a) Comments on OUTPUT, page A-27] are 20.7 ft-lb and 65.3 ft-lb, respectively. The coefficients returned by PLOTnFIT, for the polynomial of degree n = 1, with Basis Function # 6 (CSI = 0, CO1 = 0, DC1 = 0, CE1 = 1, CF1 = -0.0105, and CG1 = 22.5), are C(2) = 65.55 ft-lb (which is equivalent to the upper shelf energy) and C(1) = -45.33 ft-lb (which represents the difference between the lower and upper shelf energies); that is, C(2) + C(1) = 65.55 - 45.33 = 20.22 ft-lb, which is the lower shelf energy.

.

APPENDIX B

CHI-SQUARE DISTRIBUTION TABLE

.

a starter											and the second		Section and the section of	
NU Q	0.99	0.98	0.95	0.90	0.80	0.70	0.50	0.30	0.20	0.10	0.05	0.02	0.01	0.001
1	0 000157	0.000628	C 00393	0.0158	0.0642	0.148	0.455	1.074	1.642	2.706	3.841	5.412	6.635	10.827
2	0.0201	0.0404	0.103	0.211	0.446	0.713	1.386	2.408	3.219	4.605	5.991	7.824	9.210	13.81
3	0.115	0.185	0.352	0.584	1.005	1.424	2.366	3.665	4.642	6.251	7.815	9.837	11.341	16.266
4	0.297	0.429	0.711	1.064	1.649	2.195	3.357	4.878	5.989	7.779	9.488	11.668	13.277	18.467
5	0.554	0.752	1.145	1.610	2.343	3.000	4.351	6.064	7.289	9.236	11.070	13.388	15.086	20.515
6	0.872	1.134	1.635	2.204	3.070	3.828	5.348	7.231	8.558	10.645	12.592	15.033	16.812	22.45
7	1.239	1.564	2.167	2.833	3.822	4.671	6.346	8.383	9.803	12.017	14.067	16.622	18.475	24.32
8	1.646	2.032	2.733	3.490	4.594	5.527	7.344	9.524	11.030	13.362	15.507	18.168	20.090	26.12
9	2.088	2.532	3.325	4.168	5.380	6.393	8.343	10.656	12.242	14.684	16.919	19.679	21.666	27.87
10	2.558	3.059	3.940	4.865	6.179	7.267	9.342	11.781	13.442	15.987	18.307	21.161	23.209	29.58
11	3.053	3.609	4.575	5.578	6.989	8.148	10.341	12.899	14.631	17.275	19.675	22.618	24.725	31.264
12	3.571	4.178	5.226	6.304	7.807	3.034	11.340	14.011	15.812	18.549	21.026	24.054	26.217	32.90
13	4.107	4.765	5.892	7.042	8.634	9.926	12.340	15.119	16.985	19.812	22.362	25.472	27.688	34.52
14	4.660	5.368	6.571	1.790	9.467	10.821	13.339	16.222	18.151	21.064	23.685	26.873	29.141	36.12
15	5.229	5.985	7.261	8.547	10.307	11.721	14.339	17.322	19.311	22.307	24.996	28.259	30.578	37.69
16	5.812	6.614	7.962	9 312	11.152	12.624	15.338	18.418	20.465	23.542	26.296	29.633	32.000	39.25
17	6.408	7.255	8.672	10.085	12.002	13.531	16.338	19.511	21.615	24.769	27.587	30.995	33.409	40.79
18	7.015	7.906	9.390	10.865	12.857	14.440	17.338	20.601	22.760	25.989	28.869	32.346	34.805	42.31
19	7.633		10.117	11.651	13.716	15.352	18.338	21.689	23.900	27.204	30.144	33.687	36.191	43.82
20	8.260	9.237	10.851	12.443	14.578	16.266	19.337	22.775	25.038	28.412	31.410	35.020	37.566	45.31
21	8.897	9.915	11.591	13.240	15.445	17.182	20.337	23.858	26.171	29.615	32.671	36.343	38.932	46.79
22	9.542	10.600	12.338	14.041	16.314	18.101	21.337	24.939	27.301	30.813	33.924	37.659	40.289	48.26
23	10.196	11.293	13.091	14.848	17.187	19.021	22.337	26.018	28.429	32.007	25.172	38.968	41.638	49.72
24	10.856	11.992	13.848	15.659	18.062	19.943	23.337	27.096	29.553	33.196	36.415	40.270	42.980	51.17
25	11.524	12.697	14.611	16.473	18.940	20.867	24.337	28.172	30.675	34.382	37.652	41.566	44.314	52.62
26	12.198	13.409	15.379	17.292	19.820	21.792	25.336	29.246	31.795	35.563	38.885	42.856	45.642	54.05
27	12.879	14.125	16.151	18.114	20.703	22.719	26.336	30.319	32.912	36.741	40.113	44.140	46.963	55.47
28	13.565	14.847	16.928	18.939	21.588	23.647	27.335	31.391	34.027	37.916	41.337	45.419	48.278	56.89
29	14.256	15.574	17.708	19.758	22.475	24.577	28.336	32.461	35.139	39.087	42.557	46.693	49.588	58.30
30	14.953	16.306	18.493	20.599	23.364	25.508	29.336	33.530	36.250	40.256	43.773	47.962	50.892	59.70
32	16.362	17.783	20.072	22.271	25.148	27.373	31.336	35.665	38.466	42.585	46.194	50.487	53.486	62.48
34	17.789	19.275	21.664	23.952	26.938	29.242	33.336	37.795	40.676	44.903	48.602	52.995	56.061	65.24
36	19.233	20.783	23.269	25.643	28.735	31.115	35.336	39.922	42.879	47.212	50.999	55.489	58.619	67.98
38	20.691	22.304	24.884	27.343	30.537	32.992	37.335	42.045	45.076	49.513	53.384	57.969	61.162	70.70
40	22.164	23.838	26.509	29.051	32.345	34.872	39.335	44.165	47.269	51.805	55.759	60.436	63.591	73.40

NIIREG-1378

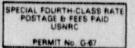
8-1

NU Q	0.99	0.98	0.95	0.90	0.80	0.70	0.50	0.30	0.20	0.10	0.05	0.02	0.01	0.001
42	23.650	25.383	28.144	30.765	34.157	36.755	41.335	46.282	49.456	54.090	58.124	62.892	66.206	75.084
44	25.148	26.939	29.787	32.487	35.974	38.641	43.335	48.396	51.639	56.369	60.481	65.337	68.710	78.750
46	26.657	28.504	31.439	34.215	37.795	40.529	45.335	50.507	53.818	58.641	62.830	67.771	71.201	81.400
48	28.117	30.080	33.098	35.949	39.621	42.420	47.335	52.616	55.993	60.907	65.171	70.197	73.583	84.037
	29.707	31.664	34.764	37.689	41.449	44.313	49.335	54.723	58.164	63.167	67.505	72.613	76.154	86.661
52	31.246	33.256	36.437	39.433	43.281	46.209	51.335	56.827	60.332	65.422	69.832	75.021	78.615	89.272
	32.793	34.856	38.116	41.183	45.117	48.106	53.335	58.930	62.496	67.673	72.153	77.422	81.069	91.872
	34.350	36.464	39.801	42.937	46.955	50.005	55.335	61.031	64.658	69.919	74.468	79.815	83.513	94.461
	35.913	38.078	41.492	44.696	48.797	51.906	57.335	63.129	66.816	72.160	76.778	82.201	85.950	97.039
	37.485	39.699	43.188	46.459	50.641	53.809	59.335	65.227	68.972	74.397	79.082	84.580	88.379	99.607
52	39.063	41.327	44.889	48,226	52.487	55.714	61.335	67.322	71.125	76.630	81.381	86.953	90.802	102.166
Contract of the second	40.649	42.960	46.595	49,996	54.336	57.620	63.335	69.416	73.276	78.860	83.675	89.320	\$3.217	104.716
The states	42.240	44.599	48.305	51.770	56.188	59.527	65.335	71.508	75.424	81.085	85.965	91.681	95.626	107.258
	43.838	46.244	50.020	53.548	58.042	61.436	67.335	73.600	77.571	83.308	88.250	94.037	98.028	109.791
	45.442	47.893	51,739	55.329	59.898	63.346	69.334	75.689	79.715	85.527	90.531	96.388	100.425	112.317

For larger degrees of freedom, NU, the expression $\sqrt{2CHI^2} - \sqrt{2NU} - 1$ may be used as a normal deviate with unit variance. This table is reproduced from Table IV, "Distribution of χ^2 ," of Fisher & Yates, <u>Statistical Tables for Biological</u>, <u>Agricultural and Medical Research</u>, published by Longman Group UK Ltd., London (previously published by Oliver and Boyd, Ltd., Edinburgh) and by permission of the authors and publishers.

8-2

NUREG-1378


APPENDIX C PROGRAM OUTLINE

36 REM	PLOTNFIT	
37 REM	(PLOTNFIT.4TH - 7/31/89)	
38 REM	A Program Written in IBM BASIC (A2.10) for	
39 REM	Plotting and Analyzing (i.e., Curve Fitting) Data	
116 REM		>>
526 RIEM		>>
771 REM	<<< Determine the Data Range for the Coordinates	
772 REM		>>
826 REM		>>
1011 REM		>>
1501 REM		>>
2056 REM	<<< OUTPUT - Plot Data and Curves > ***********************************	>>
2206 REM		
2207 REM	eactouctile of onote phere ronorrone	******
2336 REM 2396 REM	CACTOROTHE OF THE OF PROM FLOW ONE HERPOHED	*******
2716 REM	have a a a a a a a a a a a a a a a a a a	*******
2821 REM	ANDERANDERED OF OVER OF PROM OF A PAVILIE FARM	*******
2822 REM	energe for eraning with routing a contain	*******
2841 REM	*** I *** *** CROSS ***	
2861 REM	*** X ***	
2881 REM	*** H ***	
2901 REM	*** DIAMOND ***	
2921 REM	*** TRIANGLE-UP ***	
2941 REM	*** TRIANCLE-DOWN ***	
2961 REM	*** SQUARE ***	
2971 REM	*** CURVE ***	
2981 REM	****** Subroutine to Scale the Coordinate Axes	*******
3166 REM	******* Subroutine for Job Description	*******
3231 REM	****** Subroutine to Print Job Summary	******
3451 REM	****** Subroutine to Print Key Program Variables	******
3591 REM	****** Subroutine for Program Introduction	******
3666 REM	****** Subroutine for Centering Strings	******
3676 REM	****** Subroutine for Setting Print Type	******
3681 REM	******* Subroutine for Accepting Responses to Queries	******
3691 REM	****** Subroutine for a Screen Pause	******
3696 REM	****** Subroutine for Polynomial Curve Fitting	******
3697 REM	and Plotting	
4126 REM	<<< Plot All Polynomials for the Lth Data Set	>>>
4221 REM	<cc best="" coefficients<="" fit="" save="" td=""><td>>>></td></cc>	>>>
4351 REM	******* Subroutine for Plotting Each Data Set and	******
4352 REM	Corresponding Best Polynomial/Best Fit Curve	
4661 REM	****** Subroutine to Define Chosen BASIS FUNCTIONS	******
5051 REM	****** Subroutine for Integration of Polynomials	******
5141 REM	******* Subroutine for INPUT Variable Range Check	******
5161 REM	****** Subroutine to Print Polynomial Coefficients	******
5196 REM	****** Subroutine with Cautionary Note on Use of PLOTnFIT	******
5316 REM	****** Subroutine for Trapping "File Opening" Errors	******
	1. 영양에 가장 것이 가지 않는 것이 같은 것이 없는 것이 있는 것이 있는 것이 있는 것이 있다. 것이 있는 것이 있는 것이 있는 것이 것이 것이 것이 있는 것이 있는 것 같은 것이 있는 것이 있는	

NBC FORM 335 12.80 NRCM 1102, 3201, 3202 BIT	RY COMMISSION 1 REPORT NUMBER (Assigned by NRC Add Vol. Supp., Rev., and Artifendum Numbers, if any 1 NUREG-1378	
PLOTNFIT: A BASIC P Curve Fitting	3. DATE REPORT PUBLISHED October 1989 4 FIN OR GRANT NUMBER	
6 AUTHOR(5) John O, Schiffgens	6. TYPE OF REPORT Computer Program 7. PERIOD COVERED (inclusive Dates)	
name and mailing address I	ory Commission	iclear Regulatory Commission, and mailing address if contractor, provide
9. SPONSORING ORGANIZATION - NAI and mailing address.) Same as above	ME AND ADDRESS (If NRC. type "Some of above", if contractor, provide	e NRC Division. Office of Region, U.S. Nuclear Regulatory Commission.
10. SUPPLEMENTARY NOTES		
computer (PC) for both extrapolation calculate the coef of Basis Functions sense, then plots sents them. PLOTNFIT is very v log-log graphs and data. It can plot and more data poin 225 points). A PC (2) INIO6891.SIS a latest version of Center, Argonne Na	C program to be used with an IBM of plotting and fitting curves to mea and interpolation. It uses the L ficients of nth degree polynomials so that each polynomial fits the the data and the polynomial that a ersatile. It can be used to gener can automatically scale the coord more than one data set on a graph ts than a user is likely to put on diskette containing (1) READIST.P nd FOLO6891.SIS (two data files), the program) may be obtained from tional Laboratory, 9700 South Cass	sured or observed data for east Squares method to (e.g., up to 10th degree) data in a Least Squares user decides best repre- rate linear, semilog, and linate axes to suit the (e.g., up to 8 data sets) one graph (e.g., up to NF (a summary of this NUREG), and (3) PLOTNFIT.4TH (the the National Energy Software
BASIC curve fitting computer graphics curve plotting data analysis data deviations data errors	Unlimited 14. SECURITY CLASSIFICATION (This Page) Unclassified (This Report) Unclassified 15. NUMBER OF PAGES 16. PRICE	

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300

120555139531 1 1AN1CV1RC1R US NRC-OADM 1 1AN1CV1RC1R DIV FOIA & PUBLICATIONS SVCS P-223 WASHINGTON DC 2055 1 1ANICVIRCIRF1

DC 20555