DOUKETING

POUNDED 1807

Buite 300 1920 N Stre Washington, D.C. 20036 202/861-2800

TWX 710/822-0126 Easylink: 62756020 Fax: 202/861-7835

Chairman Milton H. Ward

Vice Chairman and Chairman. Finance Committee: Allen Born

Vice Chairmen. Harry M. Conger* Robert H. Quenon Richard de J. Osborne Gordon R. Parker M. Thomas Moore Gerard K Drummond B. B. Turner

John A. Knebe

Vice President & Secretary: Berbara Spillinger

Clarence L. Smith

Robert H. Quenon, St. Louis Calvin A. Campbell, Jr., Chicago Harry M. Conger, San Francisco Richard G. Miller, Chicago Kenneth J. Barr. Englewood CO Gino P Giust, Stamford William G. Kegel, Indiana PA Douglas J. Bourne, Houston Milton H. Ward, New Orleans Renold D Thompson, Cleveland G. Frank Joklik, Salt Lake City Allen Born, New York B. R. Brown, Pittsburgh R. Gene Dewey, Los Angel Gerard K. Drummond, Portland Richard M. Holsten, Englewood CO Robert A. Lothrop, Boise Richard de J. Osborne, New York Gordon R. Parker, Denver Reuben Richards, New York W. R. Starnier, Millersburg KY Richard W. Ince, Knoxville Terry A. Kirkley, Houston M. Thomas Moore, Cleveland Robert T. Spitz, Charlotte NC Arthur Brown, Coeur d'Alene James T. Curry, San Francisco H. L. Bilhartz, Deriver John D. Janak, Dallas Wm. G. Mulligan, Woodcliff Lake NJ Billie B. Turner, Northbrook IL Marc R. von Wyss. Dundee MI Lawrence Williams, Peoria Dana S. Getman, Bangor Mi Anthony J. Petrina, Vancouver BC Stuart H. Theis. Cleveland J. Burgess Winter, San Manuel AZ Leonard R. Judd, Phoenix Peter B. Lilly, Okiahoma City Ian L. White-Thomson, Los Angeles Sir Ian MacGregor, New York 1 N. 1. Camicia, Greenwich + Charles F. Barber, New York † Raiph E. Bailey, Stamford t

U.S. Nuclear Regulatory Commission .86 NOV 15 P2:34 Washington, DC 20555

Gentlemen:

Proposed Final Rules for Protection Against RE: Radiation in 10 CFR Parts 19 et seq.

On May 11, 1989, John A. Knebel, President of the American Mining Congress (AMC), wrote to the Commission regarding proposed revisions to 10 CFR Part 20. In particluar, Mr. Knebel's letter addressed the proposed revised radon limit in Table 2 of Appendix B in 10 CFR Part 20. The revised limit would reduce the value for radon-222 allowable in unrestricted areas from 3 pCi/1 to 0.1 pCi/1 above background at the fence line of the restricted area.

On July 3, 1989, Mr. Eric S. Beckjord, Director, Office of Nuclear Regulatory Research replied to Mr. Knebel's letter. Mr. Beckjord's letter indicated that the Nuclear Regulatory Commission (NRC) had identified problems with demonstrating compliance with the lower radon-222 concentration limits identified in Mr. Knebel's let-The letter went on to state that the staff would be considering a proposal to provide increased flexibility "by allowing licensees to submit site-specific air concentration limits for NRC staff approval." Further, the letter indicated that this flexibility would be in addition to provisions permitting evaluation of doses to actual individuals where located and allowing licensees to request a temporary higher dose limit as an alternate means of compliance.

AMC's concerns about the reduction of the radon limit to 0.1 pCi/l have been further heightened by materials provided by Roger Jones, Environmental Coordinator, Umetco Minerals Corporation. Mr. Jones received a letter dated August 13, 1989, from Dr. Naomi Harley of New York University Medical Center, Institute of Environmental Medicine. Dr. Harley is widely recognized and acknowledged to be one of the leading authorities in the United States and, indeed the world, on the general subject of radon and the potential health effects resulting from exposure thereto.

Dr. Harley's letter indicates that it would be "impossible on a practical basis" to detect 0.1 pCi/1 above background. Her letter includes a copy of seven years of measured outdoor radon data

8911220091 891114 PDR PR PDR PR 30 51FR30870 PDR Nuclear Regulatory Commission November 14, 1989 Page Two

taken at a sampling station in Chester, New Jersey. Measurements were made hourly for most of the seven years and the range of the hourly measurements is from 0.01 to 2.5 pCi/l with the average yearly radon ranges from 0.19 to 0.25 pCi/l. Dr. Harley makes the point that that data would indicate that at least five years of intensive continuous monitoring would be necessary prior to any milling to establish baseline values against which a milling operation's releases could be measured. Dr. Harley goes on to say that the terrain and meteorology in the west, where uranium milling is carried on, results in much larger diurnal variability than in New Jersey. The New Jersey data represent a "best case situation for outdoor radon stability" and even in the New Jersey measuring program, it would have been "difficult to evaluate the presence of a 0.01 pCi/l source above background."

Finally. Dr. Harley also indicates that the proposed NRC 10 CFR 20 radon limit is unrealistic in light of the present estimates for health effects from radon.

AMC hopes that this additional information will be useful to the Commission in determining what is an appropriate final radon concentration limit. AMC believes that this data demonstrates conclusively that the Commission's proposed limit is not "practicable." Additionally, regulating by "variance" is a practice not generally preferred under existing tenets of administrative law and from long experience licensees have developed a healthy skepticism about "flexibility" that is supposed to mitigate an unreasonable rule. Therefore, AMC respectfully requests that the Commission reconsider any proposed reduction of the radon limit to 9.1 pCi/l.

With all best wishes.

Sincerely,

James E. Gilchrist Vice President

Enclosure

cc:

Kenneth M. Carr, Chairman, NRC

James R. Curtiss, Commissioner, NRC

Forrest Remick, Commissioner, NRC

Thomas M. Roberts, Commissioner, NRC

William C. Parler, General Counsel, NRC

Samuel J. Chilk, Secretary, NRC

James M. Taylor, Acting Executive Director for Operations, NRC

Eric S. Beckjord, Director, Office of Nuclear Regulatory Research, NRC

NEW YORK UNIVERSITY MEDICAL CENTER

A private university in the public service

Institute of Environmental Medicine 550 FIRST AVENUE, NEW YORK, N.Y. 10016 AREA 212 340.

AUG 1 1 1385

ANTHONY I. LANZA RESEARCH LABORATORIES AT UNIVERSITY VALLEY
LONG MEADOW ROAD, STERLING FOREST, TUXEDO, N.Y.
MAIL AND TELEPHONE ADDRESS: FSO FIRST AVANUE, NEW YORK, N.Y. 10016

August 13, 1989

Mr. Roger K. Jones Environmental Coordinator UMETCO Minerals Corporation P.O. Box 1029 Grand Junction, CO 81502

PE: Proposed U.S. Nuclear Regulatory Commission Regulations

Dear Mr. Jones:

I am responding to your letter of August 2, 1989 asking for technical information regarding the proposed USNRC regulations requiring uranium milling facilities to comply with a restricted area boundary standard for 222Rn of 0.1 pCi/L above background.

There are two serious problems with the proposed radon standard. The first is that the ability to detect 0.1 pCi/L above background is impossible on a practical basis. I am enclosing a copy of 7 years of measured outdoor radon data from the USDOE Environmental Heasurements Laboratory (EML) taken at their sampling station in Chester, NJ. Measurements were made hourly for most of the 7 years. As you can see, the range of hourly measurements is from 0.01 to 2.5 pCi/L and the average yearly radon ranges from 0.19 to 0.25 pCi/L. The EML data indicates that at least 5 years of intensive continuous monitoring would be necessary prior to any milling in order to establish baseline values against which the milling operation could be evaluated.

Uranium milling is generally carried out in western mountainous terrain. Mountain/valley meteorology is such that much larger diurnal variability occurs and radon concentrations are generally higher than in the east with an average of about 1.0 pCi/L. The New Jersey data thus represent a best case situation for outdoor radon stability and even here it would be difficult to evaluate the presence of a 0.1 pCi/L source above background.

The second, and more serious problem, is that the selection of 0.1 pCi/L indicates disregard for the present estimates of health effects from radon. The National Council on Radiation Protection and Measurements Report 78, for example, predicts an additional 0.2 lung cancer deaths per 1000 persons exposed to 0.1 pCi/L radon for full lifetime. Given the necessarily limited population size near mills, not one lung cancer death can be calculated for an exposure of this magnitude. Normal outdoor background over the U.S. has a range of about a factor of 10 and any new limits should be responsive to the projected health detriment in realistic environments.

I was very pleased to learn of the environmental surveys being conducted in Uravan and would appreciate receiving any reports that are generated from this work.

Sincerely,

Naomi H. Harley Ph.D. Research Professor

FML -504

Environmental Measurements Laboratory

1985-86 BIENNIAL REPORT OF THE EML REGIONAL BASELINE STATION AT CHESTER, NJ

October 1988

DEPARTMENT OF ENERGY

NEW YORK, N. Y. 10014

RADON-222 MEASUREMENTS AT CHESTER, NJ THROUGH JULY 1986

Isabel M. Fisenne

The Environmental Measurements Laboratory (EML) has completed 9 y of continuous hourly 222 Rs measurements at the Chester, NJ Regional Baseline Station. The annual data for first 7 y have been reported previously (Harley, 1978, 1979; Fisenne, 1980-1985).

OPERATION

The instrumentation Division designed, operates, and maintains the continuous radon measurement system. For the mid-1984 to mid-1985 period, the unit operated 82% of the time. From mid-1985 to mid-1986 the unit was operational 43% of the time. The principle of operation (Thomas and LeClare, 1970), the physical description, the data acquisition system, and the formula for the calculation of the radon concentration have been described for the Chester unit (Negro, 1979).

The detection parameters for the unit have remained unchanged for 9 y:

Background - 12 to 24 counts h-1

Progeny product recovery - 75%

Efficiency - 2.5 total counts pc1-1 m-3

Lower limit of detection - ~ 10 pci m⁻³ at 95% confidence level

RESULTS

The 1984-1685 four-week average radon concentrations for 13 time periods are summarized in Table 1, while those for 1985-1986 are shown in Table 2. The 9 y mean diurnal and seasonal variations in radon concentrations are listed in Tables 3 and 4 and are plotted in Figure 1. The detailed daily 3-h averages are listed in Tables 5 and 6.

The range of values for the individual hourly measurements, for the 3-h periods, for the means of the 3-h data for the 4-week periods are shown below for the 7 y of measurements. These data show the smoothing effect resulting from averaging data over different time periods.

Range (pci 222Rn m-3)

Time Period	Hourly Measurements	3-h Averages	4-week Averages
1977 - 1978	30 - 1900	30 - 1400	70 - 560
1978 - 1979	30 - 1400	30 - 1000	80 - 500
1979 - 1980	20 - 1200	30 - 1200	70 - 430
1980 - 1981	10 - 2100	40 - 1700	90 - 500
1981 - 1982	10 - 1500	30 - 1300	70 - 470
1982 - 1983	10 - 2280	30 - 1500	70 - 530
1983 - 1984	10 - 2200	10 - 1700	60 - 490
1984 - 1985	10 - 1700	10 - 1300	90 - 420
1985 - 1986	20 - 2450	20 - 1000	70 - 550

The arithmetic mean and median radon concentrations for the 9 y of operation are tabulated below.

PCI	222 _{Rn}	m-3
ASSESSMENT OF		

Time Period	Arithmetic Mean	Median
1977 - 1978	230	170
1978 - 1979	230	180
1979 - 1980	190	170
1980 - 1981	240	190
1981 - 1982	220	160
19821983	220	160
1983 - 1984	250	200
1984 - 1985	200	170
1985 - 1986	200	150

DISTRIBUTION OF RESULTS

For the 7-y measurement period, both the hourly data and the 3-h averages of the radon concentration were log-normally distributed.

DISCUSSION

Although meteorological parameters are measured at the Chester site, no attempt was made to correlate the measured radon concentrations with these data. In the period 1977-1981, no significant correlations were found between the 3-h radon concentrations and wind speed, wind direction, air temperature, barometric pressure or relative humidity.

The seasonal pattern of radon concentrations of a summer maximum recurred in the 1984-1986 period, but the unit was inoperable during most of the fall of 1985 in which the concentrations declined. With the addition of an 8th and 9th year of data, the radon concentration measurements indicate a diurnal maximum at essentially 0300 EST, occurring within the midnight to 0600 EST time period. A definite minimum occurs during the noon to 1500 EST period. The seasonal minimum in February is a factor of 3 lower than the August maximum. Over this 9-y period the average diurnal maximum is a factor of 2 greater than the average minimum.

The 9 y of continuous radon concentration measurements at Chester, NJ are to our knowledge the largest database of outdoor radon measurements for a single site. Besides affording the opportunity to study long-term trends in atmospheric radon concentrations, these measurements are of value to other research programs at Chester, as well as concurrent programs based in the New York City area. In addition, the continuous radon monitor has been useful as an experimental system for testing new techniques for maintaining and acquiring data from remote field sites.

ACKNOWLEDGEMENTS

The data tabulation and graphics presented in this report were prepared by Camille Marinetti of the Applied Mathematics Branch.

REFERENCES

Radon-222 Measurements at Chester
USDOE Report EML-383, pp. 73-107 (1980)

Fisenne, I. M.
IBID
USDOE Report EML-399, pp. 213-245 (1981)

Fisenne, I. M.
IBID
USDOE Report EML-411, pp. 192-227 (1982)

Fisenne, I. M.
IBID
USDOE Report EML-422, pp. 115-149 (1984)

Fisenne, I. M.
IBID
USDOE Report EML-450, pp. 104-139 (1985)

Harley, J. H.
Radon-222 Measurements
USDOE Report EML-347, pp. 30-65 (1978)

Harley, J. H. IBID USDOE Report EML-367, pp. 39-73 (1979)

Negro, V.
Environmental Radon Monitor
USDOE Report EML-367, pp. 244-247 (1979)

Thomas, J. W. and P. C. LeClare

A Study of the Two-Filter Method for Radon-222
Health Physics, 18, 113-122 (1970)

TABLE 1

FOUR WEEK AVERAGE RADON CONCENTRATIONS AT CHESTER, NJ July 8, 1984 - July 6, 1985 (pc: m⁻³)

			1		210	:	•		25	2	236	170	3:	!!	•	124	170	210	238	
	2100	228	2300		288	230	•	1		922	250		170				38	366	992	
	1866	1986	2000		580	270		1			230	166	150	•	1 :			286	280	230
	1500	1886	1700	!		136	230			! !	!	•	130	8		!!	27	136	31	3
Limeted	1200	1388			1		160			! !			136			:	1	911	120	3
Time Es	8888	188		7.7	!!	ı	150	388		3	! !		•	188	8		1	120	130	14.0
	9999	9786		210		!	266	346	210	250		!	176	120	130			•	1	
	0300	=		*	***		36	376	220	26.		1	•	120	170	25.		!		
1			950	280	220	1	350	388	210	280	18	:		•	150	236	:	1		2
			9300	8-Aug 4	6-500 1		2-Sep 22	9-0ct 27	9-Nov 24	5-Dec 22	Dec 23-Jan 19	ha 96 Cat :e		7-Mer 16	Nor 17-Apr 13	6-May 11	2-Jun 8		• 197-4	;
				3	Aug		•	Sep 36-0c	Oct 28-No	Nov 2	Dec 2	-	-	F. 1	Fer 1	Apr 14-May	May 12-Ju		ung	
		7		•	2		•	•	•	•	1	•		•	2	=	12	:	:	

TABLE 2

FOUR BEEK AVERAGE RADON CONCENTRATIONS AT CHESTER, NJ

July 7, 1986 - July 5, 1988 (pC: m⁻³)

wg 3 310 350 2700 1160 1760 1560 wg 3 310 350 210 100 156 1760 wg 3 310 350 210 100 156 176 wg 31 550 490 396 310 336 176 cc 2 2 2 2 2 2 2 2 cc 4 20 - - - - - - - cc 4 20 - <								Time Estimated	Limetad				
Date 0159 9469 0709 1669 1199 1469 1709 Jul 1-Aug 3 310 356 219 1109 1469 1709 Aug 4-Aug 31 650 496 366 310 336 176 Sop 1-Sop 20 - - - - - - - Sop 20-Oct 20 - - - - - - - - Sop 20-Oct 20 - <					0000	6369	6888	6361)	1260	1560	1650	2169	
Deta 0259 9509 6069 1169 1460 1700 Jul 7-Aug 3 310 350 216 186 156 170 Aug 4-Aug 31 550 496 389 310 356 170 Sop 1-Sap 20 - - - - - - Sop 20-Oct 28 - - - - - - Oct 27-Nov 23 - - - - - - Nov 24-Dec 21 236 226 169 150 170 Dec 22-Jen 10 226 216 239 169 170 Jon 19-Feb 15 146 210 170 170 170 Jon 19-Feb 15 176 179 169 76 60 Mar 16-Mar 12 179 179 169 76 60 Mar 113-Bay 10 - - - - - - May 111-Jun 7 230 299 1					0310	83469	6760	1680	1369	1866	1886	2283	
3 310 350 216 186 156 176 20 - - - - - - - 20 - - - - - - - 21 - - - - - - - 22 - - - - - - - - 21 236 236 226 166 176 176 16 126 170 116 166 176 15 126 170 116 166 176 16 126 170 166 176 176 16 126 166 176 126 176 16 - - - - - - 16 176 176 166 176 126 16 - - - - - - 16 - - - - - - - <th>Poriod</th> <th></th> <th>Dete</th> <th></th> <th>0520</th> <th>0000</th> <th>6966</th> <th>1160</th> <th>1460</th> <th>1768</th> <th>2002</th> <th>2300</th> <th>Moen</th>	Poriod		Dete		0520	0000	6966	1160	1460	1768	2002	2300	Moen
20 -		3	7-Awg	•	310	350	216	180	150	170	300	*	25.0
29 - </td <td>2</td> <td>Avg</td> <td>8-Aug</td> <td>31</td> <td>689</td> <td>967</td> <td>386</td> <td>310</td> <td>336</td> <td>346</td> <td>630</td> <td>980</td> <td>430</td>	2	Avg	8-Aug	31	689	967	386	310	336	346	630	980	430
28 - </td <td></td> <td>S</td> <td>1-Sop</td> <td>20</td> <td></td> <td>•</td> <td></td> <td>•</td> <td></td> <td></td> <td>•</td> <td></td> <td></td>		S	1-Sop	20		•		•			•		
23 -	•	8	29-00	26					•				•
21 236 236 226 169 150 176 16 276 216 230 189 160 170 15 146 210 170 110 160 170 16 120 110 160 70 60 12 170 160 160 120 10 - - - - 7 230 250 170 120 140 5 276 250 180 160 160 160	9	Oct	27-Kev	23				•				•	
16 226 216 236 166 169 170 16 146 216 176 116 169 170 16 126 116 169 76 80 12 176 169 169 170 120 16 - - - - - 7 236 256 176 116 140 6 276 269 260 160 140 180		2	24-Dec	21	236	238	226	160	150	176	236	226	266
16 146 216 170 116 160 160 160 12 176 116 160 76 80 12 176 150 160 120 120 10 - - - - - - 7 230 290 170 120 110 140 6 276 250 100 160 140 160 256 289 200 160 140 180		2	22-Jen	10	220	216	230	186	180	170	210	250	266
16 126 116 166 06 76 80 12 176 156 169 160 120 10		Sar	19-Feb	316	146	210	170	911	166	166	120	120	136
12 176 150 150 160 100 120 10	0	Fob	18-Bor	16	120	911	360	8	76	8	2	120	100
7 236 298 176 126 116 146 5 276 259 169 100 129 146 256 289 200 150 140 188	16	3	18-Apr	112	176	281	150	35	201	120	160	150	146
7 236 298 176 126 116 146 6 276 256 186 146 126 146 256 268 266 156 146 166	=	Apr	13-Noy	9									
256 269 260 150 140 180	12	Nog	11-Jun		230	280	176	120	110	140	210	240	28
25.0 28.0 28.0 15.0 14.0 186	2	5	-		270	25.0	81	146	120	9.	216	260	260
					25.0	286	28	2	9	92	246	246	8

- = no date

TABLE 3

RADON CONCENTRATIONS AVERAGED OVER 4-WEBK PERIODS
July 1977 - July 1986
(pci m - 3)

-	¥ 3															200 230	
	ž 3	1985	•	! !	! !		22	2 :		! !	1	•	2 :		210	230	
	2 3	1964			:			•					. :	! !	8	120	
	2 2 5	-	*	**	2	2		2					!!	!!	!	230	
	i 2 i		286	330	310	280	320	210	186	120	911		210	310			-
	1 2 2		356	346	346	316		288	230	*	130	•	18	8			
	2 2 E		238	246	228	388	230	8	81	120		•	31	288	200		
-	3 8		336	:	238	225		286	100	•	22	136		216	382		236
	3 5		37.0	380	266	230	81	240	170		*	1.0	166	210	270		210
	Dete	1	Jul-Aug	Aug-Sep	Sep-Oct	Oct-Nev	Nov-Nov	Nov-Dec	Dec-Jen	Jan-Fab	Feb-Mar	Mer-Apr	Apr-May	May-Jun	Jun-Jul		Annuel Meen
	701.0		-	2		•		•			•	91		12	13		

See Figure 1 for the starting dates over the 9-y interval

TABLE 4

RADON CONCENTRATIONS AVERAGED OVER EACH OF THE EICHT 3-h INTERVALS OF THE DAY July 1977 - July 1986 (pci = 3)

									٠.
Years	1:1	228	1:1	\$ 2 <u>8</u>	120 150 150	982	10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 3	1
1977-1978	200	280	210	150	140	166	230	27.0	310
1978-1979	2		230	100	351		266	280	38
1979-1986	240	250			120	156	220	230	81
1986-1981	28	316	260	170	150	138	286	288	240
1991-1962	200	270	210	• 1	130	170	266	38	220
1962-1963	28	288	220	•	140	180	280	270	228
1983-1984	36.	:	240	931	•	81	300		36
1584-1986	260	250	200	•	130	150	230	246	38
1985-1986	286		208	31	•		340	240	28
LEAN		286	228	31	!	9/1	286	210	228

FREQUENCY DISTRIBUTION OF THE 3-h AVERAGE RADON CONCENTRATIONS

July 8, 1984 - July 6, 1985 (pci m⁻³)

Concentration Range	Distribution		Cumulative Distribution	
1- 25	3	0.04	3.	0.04
26- 50	133	1.85	136	1.89
51- 75	557	7.74	693	9.63
76- 100	917	12.74	1610	22.37
101- 125	783	10.88	2393	33.25
126- 150	784	10.89	3177	44.15
151- 175	784	10.89	3961	55.04
176- 200	577	8.02	4538	63.00
201- 225	543	7.55	5081	70.65
226- 250	400	5.56	5481	76.17
251- 275	322	4.47	5803	80.64
276- 300	254	3.53	6057	84.17
301- 325	210	2.92	6267	87.09
326- 350	141	1.96	6408	89.05
351- 375	96	1.33	6504	90.38
376- 400	131	1.82	6635	92.20
401- 425	68	0.94	6703	93.15
426- 450	86	1.20	6789	94.34
451- 475	44	0.61	6833	94.96
476- 500	54	0.75	6887	
501- 525	49	0.68	6936	95.71
526- 550	27	0.36		96.39
551- 575	34	0.47	6963 6997	96.76
576- 600	ii	0.15		97.23
601- 625	30	0.42	7008	97.39
626- 650	34	0.47	7038	97.80
651- 675	17	0.24	7072	98.28
676- 700	18	0.25	7089	98.51
701- 725	ii		7107	98.76
726- 750		0.19	7121	98.96
751- 775	12	0.08	7127	99.04
776- 800	18	0.17	7139	99.21
801- 825	3	0.25	7157	99.46
826- 850		0.04	7160	99.50
851- 875		0.08	7166	99.58
901- 925		0.13	7175	99.71
926- 950		0.04	7178	99.75
		0.04	7181	99.79
976-1000		0.04	7184	99.83
1001-1025		0.04	7187	99.87
1101-1125		0.04	7190	99.92
1276-1300		0.04	7193	99.96
1301-1325	3	0.04	7196	100.00

FREQUENCY DISTRIBUTION OF THE 3-h AVERAGE RADON CONCENTRATIONS

July 9, 1985 - July 5, 1986 (pci m⁻³)

Concentration Range	". Distribution		Cumulative Distribution	
26- 50	80	2.14	80	
51- 75	266	7.13	346	2.14
76- 100	516	13.82		9.27
101- 125	578	15.48	862	23.09
126- 150	420	11.25	1440	38.57
151- 175	321	8.60	1860	49.83
176- 200	253	6.78	2181	58.42
-01- 225	237	6.35	2434	65.20
226- 250	166	4.45	2671	71.55
251- 275	153		2337	76.00
276- 300	130	4.10	2990	80.10
301- 325	125	3.48	3120	83.58
326- 350	73	3.35	3245	86.93
351- 375	75	1.96	3318	88.88
376- 400	64	2.01	3393	90.89
401- 425	41	1.71	3457	92.61
426- 450		1.10	3498	93.70
451- 475	44	1.18	3542	94.88
476- 500	24	0.64	3566	95.53
501- 525	21	0.56	3587	96.09
	20	0.54	3607	96.62
526- 550	6	0.16	3613	96.79
551- 575	8	0.21	3621	97.00
376- 600	9	0.24	3630	97.24
601- 625	7	0.19	3637	97.43
626- 650	9	0.24	3646	97.67
651- 675	9	0.24	3655	97.67
676- 700	9	0.24	3664	97.91
701- 725	3	0.08	3667	98.15
726- 750	6	0.16	3673	98.23
751- 775	3	0.08	3676	98.39
776- 800	3	0.08	3679	98.47
801- 825	6	0.16		98.55
826- 850	12	0.32	3685	98.71
851- 875 .	6	0.16	3697	99.04
876- 900	9	0.24	3703	99.20
901- 925	6	0.16	3712	99.44
026-1050	3	0.08	3718	99.60
051-1075		0.08	3721	99.68
101-1125		0.08	3724	99.76
526-1550			3727	99.84
976-2000		0.08	3730 3733	99.92

Figure 1.

Nine year (1977 to 1986) average variation in radon concentrations at Chester, NJ. The diurnal variations show the means for the 8, 3-h time periods. The seasonal variations show the means for the 13, 4-wk periods.

Diurn	al Per	lo	ds (EST)			s	easonal	Perlods	•	
1	0000	to	0300	,	Jul	07-17		7	Jan	19-20
2	0300	to	0600	2	Aug	04-14			1000000	16-26
3	0600	to	0900			01-11			- 12-12-12-1	16-26
4	0900	to	1200			29-Oct	09		-	13-23
5	1200	to	1500		100	27-Nov			200	11-21
6	1500	to	1800		100	24-Dec				08-18
7	1800	to	2100						van	00-10
8	2100	to	2400							

[.] Denotes the starting dates of the periods over the 9 y interval.