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SUMMARY

The distance that a thermocouple bead is located from the surface of an indirectly heated electric
fuel pin simulator ( EFPS) and the uncertainty of the thermocouple signal severely inhibit the ability of
the thermocouple to accurately resolve high-froquency changes in the surface temperature. A
thermocouple bead with a measurement standard deviation of 0.556 K and located 0.0508 mm below
the surface [ Thermal-Hydraulic Test Facility (THTF) bundie | EFPS design) was found capable of
resolving surface phenomena occurring only at a period of >90ms for alow-power axial zone and > 40
ms for the highest-power axial zone. These are on the same order as the periods that the THTF data
acquisition system can successfully resolve (~100 ms). Therefore, the loss of surface phenomena
resolution (if any) is due to the limitations of the thermometry and not to the limitations of the data
acquisition system,

The radially dependent thermocouple time response is dominated by the surface-heat-flux driving
potential, which forces the mid- and outer-radius nodes to have first-order time constants almost
identical to the first-order time constant of the surface. Because large surface heat fluxes frequently
occur in the early part of a typical loss-of-coolant transient or during a rewet, the effect of radial
position on the thermocouple time response is minimal for these time frames. Higher-order response
theory for the thermal response of the EFPS was developed to establish that first-order response theory
accurately predicts the radially dependent time constants for given ranges of heat transfer coefficients
{h). Important results from the application of the higher-order response theory include the following:

I. Overall EFPS response (in all heat transfer regimes) cannot be predicted by first-order response
theory.

2. For specific heat transfer coefficient ranges [h < ~4kW (m*K)andh>~114kW/ (m*K)], the
EFPS surface behaves in a first-order fashion.

3. In cases dominated by surface heat transfer resistance [h < ~4 kW (m*K)]. the total EFPS
time constant can be approximated by

s [(p(‘pv)FFN], (hzwgrwrhn) .
where
(pC,V)erps = capacitance of EFPS for thermal energy.
£ = axial length of EFPS,
Lurse = outer radius of EFPS.
Even for these cases, the differences between the centerline and surface response times are 1.3t0 2.0s.
4. When an internal thermal resistance dominates [h > ~11.4 kW (m”K)), the EFPS surface
responds much faster than predicted by the above equation. and the centerline response appears to be
totally independent of the heat transfer coefficient.

5. The centerline response is multiorder, but for high surface heat transfer coefficients the
centeriine response time asymptotically approaches

75 = puco Coygomso/ (4Kuco) .



where
pmco = density of magnesium oxide core,
Coyo = specific heat of magnesium oxide core,
oo = outer radius of magnesium oxide core,

Kumoo = thermal conductivity of magnesium oxide core.

6. In certain situations —defined by high surface heat fluxes—the firsi-order response times of
radial positions inside the EFPS are shorter than the EFPS surface response time.

7. The EFPS response is highly dependent on initial conditions and on the combination of forcing
functions at the surface (i.e., the heat transfer coefficient and sink temperature).

8. The EFPS response is not strongly dependent on the change in EFPS geometries from one axial
power zone to another axial power zone.

Future EFPSs should have a sheath (assuming the thermocouple resides within the inner surface of
this sheath) as thin as mechanically possible and preferably not in excess of 0.254 mm. An extensive
effort should also be made to reduce as well as to determine more accurately the thermocouple signal
uncertainty (i.e., measurement standard deviation). These factors would greatly reduce the uncertainties
found in the numerical EFPS analysis which uses the thermocouple signal as a foundation.



THERMOCOUPLE SiGNAL SENSITIVITY TO THE SHEATH
THICKNESS OF THERMAL-HYDRAULIC TEST FACILITY
INDIRECTLY HEATED ELECTRIC
FUEL PIN SIMULATOA.

R. D. Dabbs L.J Ot

ABSTRACT

Analysis of data in large loss-of-coolant accident experimental facilities often
requires extensive use of signals recorded from thermocouples embedded in indirectly
heated electric fuel pin simulators (EFPS). These signals, converted to temperature,
are used in the numerical determination of EFPS experimental conditions, including
transient surface temperature, transient surface heat flux, and transient internal radial
temperature distribution.

Important points that arise in using the recorded thermocouple signals as a basis
for subsequent anal s include (1) the effect of the distance that the thermocouple
bead is located from the EFPS surface on the ability of the thermocouple to resolve
rapidly changing bourdary phenomena and (2) the extent that this depth influences
the time response associated with the thermocouple. Several numerically solved EFPS
transients (where boundary conditions were specified, and surface temperature,
surface heat flux, and internal radial temperature histories were subsequently
calculated) are presented in an effort to establish these two relationships and to forma
foundation for recommending designs which will minimize the adverse effects of these
relationships by specifying optimal thermocouple radial positions in futere EFPSs.

i. INTRODUCTION

The Oak Ridge National Laboratory (ORNL) Pressurized-Water Reactor Blowdown Heat
Transfer Separate-Effects Program' comprises two major areas of investigation: (1) an experimental
separate-effects study of the relations among the principal variables that can alter the rate o
blowdown —the presence of flow reversal and rereversal, time delay to critical heat flux, the rate at
which dryout progresses, and similar time- and space-related functions that are important to loss-of-
coolant accident analysis—and (2) the development of a steady-state and transient heat transfer-local
fluid condition data base applicable to bundle geometries. Data pertinent to these areas of investigation
are obtained from the Thermal-Hydraulic Test Facility (THTF), a large nonnuclear experimental loop
with a test section that employs a square array of indirectly heated electric fuel pin simulators (EFPSs)
(Fig. i.1).

The EFPSs in both bundle | and bundle 2* have a dual-sheath design, which is cross sectioned for
two axial locations in Fig. 1.2. The outer and inner sheaths are stainless steei with the inner grooved to
accept a 0.508-mm-OD Chromel-Alumel thermocouple. A boron nitride (BN) annulus inside the
stainless steel sheaths electrically insulates the heating element from these sheaths. The heating element,
an annulus located concentrically within the BN annulus, consists of an Inconel 600 base and a series of

*Bundle | and bundie 2 refer to the first and second EFPS bundles (7 X 7 arrays) designed for testing inthe THTF AIITHTF
tests to date have been performed using bundle 1; though it has not been instalied. bundie 2 will be used as a design basis for this
study because of the increased total thickness of the stainless steel sheaths.
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Fig. 1.1. Indirectly heated EFPS assembly.
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Fig. 1.2. Indirectly heated bundle 1 or bundle 2 fuel pin simulator cross section.

swaged cupronickel and; or Inconel 600 oversleeves which allow variable axial heat generation, thus
creating the stepped-chopped-cosine axial power profile. The central axial region of the heating
element, which has the highest electrical resistance and maximum heat generation rate, is composed of
only the Inconel 600 base. Successive oversleeves of Inconel 600 or cupronickel are swaged over the base
with each succeeding oversleeve extending to the end of the heating element. Oversleeves reduce the
resistance of the heating element and therefore decrease the power generation rate of that axial region.
The heated zone lengths and the representative axial power ratios for a prototypical THTF bundle | or
bundle 2 fuel pin simulator are shown in Fig. 1.3. (The axial leve! I and axial level V cross sections in Fig.
1.2 correspond respectively to locations within axial power zone | and axial power zone V of Fig. 1.3.)
The region inside the heating element is magnesium oxide (MGO), which electrically insulates the
central thermocouple sheaths from the heating element.

The design difference between bundle | and bundle 2 is the thickness of the outer stainless steel
sheath, which was increased from 0.254 mm to 0.381 mm. An idealized segme’ .t of a bundle | or bundle
2 fuel pin simulator is shown in Fig. 1.4, and the associated bundle 2 dimensior. for axial power zones |
and V are given in Table 1.1. The thermocouple bead (0.076 mm diam) is nominally centered 0.254 mm
inside the outer surface of the inner sheath (0.635 mm from the pin surface) of a bundle 2 EFPS;
therefore, that point is the radial position at which the EFPS temperature history is measured.
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Table 1.1. Radial dimensions of bundie 2
EFPS at axial power zones | and V

Radial dimension

Radial -
position Axia! power Axia! power
zone | zone V
A 27 228
" 310 182
C 110 310
D 424 424
E 5.00 5.00
F 518 5.38

“The racial positions are referenced to Fig.
14
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Fig. 1.4. Idealized EFPS segment construction details showing regionsl compositions and locations of the dimensions listed
in Table 1.1.



2. REPORT OBJECTIVES

The physical location of the thermocouple bead (0.635 mm from the bundle 2 EFPS surface)
affects its ability to record accurately the temperature transients occurring on the surface of the EFPS.
For oscillatoiy surface phenomena, the recorded transient temperatures (i.¢., thermocouple response)
will be damped as compared with the surface temperatures and will exhibit some form of time response
even if the EFPS is experiencing an extremely slow surface transient.

This investigation will determine the ability of thermocouples embedded at varying depths from
the EFPS surface to represent accurately various frequency boundary conditions and will determine the
time response associated with different thermocouple bead radial positions. A relationship will thus be
established between the sheath thickness of the EFPS (because the thermocouple will be adjacent to the
inner surface of this sheath) and the frequency range of surface phenomena that can be determined
numerically with the internally measured temperature history as a boundary condition.

The procedure used to establish this relationship will be basically numeric. A one-dimensional
model of a bundle 2 EFPS will be supplied to a forward-implicit version of ORINC,? which will be
capable of using supplied steady-state and transient power generation rates and heat transfer
coefficient -sink temperature combinations as boundary conditions; more specifically, a square-wave
heat transfer coefficient of varying periods, a constant power generation rate, and a constant sink
temperature will be usec* in the frequency response evaluation, whereas combinations of step drops,
constant values, and sten increases for the heat transfer co~fficient, power generation rate, and sink
temperature will be used in the time-response study.

The forward-implicit ORINC will be used to determine the internal transient temperature
distribution resulting from these imposed boundary conditions. The calculated transient temperature
ata given radial position will then be considered to be the signal of a thermocouple located at that radial
position and experiencing the given boundar conditions.



3. THERMOCOUPLE FREQUENCY STUDY (TFS)

In loss-of-coolant accident experiments such as tnose performed at ORNL's THTF, high-speed
data recording is extremely important because transient conditions such as 90 K surface temperature
rises in 100 ms after departure from nucleate boiling and 200 K surface temperature drops in 200 ms
during rewet are not uncommon. The THTF data acquisition system currently scans a given instrument
at a rate of 20 times/s and thus can sense when these events occur. Because the thermocouple s
embedded within the outer sheath of the EFPS, the question arises whether the thermocouple can be
used to determine high-frequency transitory surface phenomena.

3.1 Forwsard-Implicit Version of ORINC

To answer the question of the resolving capability of the thermocouple and to influence the design
of future EFPSs, a series of transient calculations was performed with a newly developed version of
ORINC. This version has been modified to analyze data from the Forced Convection Test Facility
(FCTF)' and to handle a maximum of 12 thermocouples, each of which is sampled 100 times/'s.

In transforming ORINC to make it compatible with the FCTF, the overall calculational method,
data input, code initialization, the code organization, and theory for solving transient, lumped-
parameter formulation of the cylindrical (radially one-dimensional) heat conduction problem were
preserved. Major changes involved converting the code to double precision; creating a variable
timestep capability; implementing TRIDIG.* which is a tridiagonal matrix inversion subroutine;
completely revising the output packages. and transforming the finite-differenced heat conduction
equations from the inverse-implicit to the forward-implicit formulations with the power gencration rate
and the heat transfer coefficient-sink temperature combination as boundary conditions feach of which
can be user-supplied for both steady-state and transient calculations). The boundary conditions are
known at 10 ms intervals, so that for calculational timesteps << 10 ms ORINC cubically interpolates
between the known values.

The bundle 2 ORINC pin model (Fig. 3.1) divides the EFPS into nodes numbered sequentially
from the center of the EFPS and associates the internal temperatures with the calculated nodal centers
of mass (COMs). The nodal interfaces (given by the solid lines in Fig. 3.1) and their corresponding
COMs (given by the chain-dotted lines in Fig. 3.1) are determined by the number of nodes desired for
each region and by the method of calculating the interface and center of mass radii documented in
ORINC?

For this study, there are six regions with nodes as follows: (1) four in the MGO core, (2) two in the
Inconel 600 heater, (3) two in the cupronickel oversieeve (absent in axial power zone 1), (4) three in the
BN annulus, (5) three in the inner stainless steel sheath, and (6) two in the outer stainless stee' sheath.
The nodes—along with their inner and outer radii, COM radii, COM distances from the pin urface,
regional ma eri Is, and regional thicknesses for zxial power zones l and V—are given in Tables 3.1 and
32, resne~_.ely. The ORINC code is capable of modeling a gap between the inner and suter stainless
steel sheaths; however, for this study it is set equal to zero, essentially creating one 1. 143-mm-thick
sheath.

The EFPS model does not physically incorporate the thermocouple but associates the center of the
thermocouple bead witt ‘he nodal COM that most closely approximates its radial position; because the
gap has been zeroed, the thermocouple bead can be associated with the radial position of any nodal
COM. The region of interest, however, will be the stainless steel sheaths, which define an area within
1.143 mm of the surface of the EFPS.
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Fig. 3.1. ORINC model (one-dimensional along chain-dashed line) for s bundle 2 EFPS. Axial power zone V is represented
by the 16-node model, and axial power zone | is represented by the 14-node model

Table 3.1. Radial dimension information for ORINC model of bundle 2 EFPS
at axial level corresponding to power zone |

Nodslinner  Nodsl COM  Nodalouter | ‘odal COM Nodal Matorinl o etial
Nodal : ; distance from outer
: radius radius radius material " thickness
e (mm) (mm) {mm) g composition — (mm)
(mm) (mm)

0.0 0.0 0.0 538 MGO 276 276
| 0.0 0.9% 1.38 440 MGO 2.76 2.76
2 i.38 1.69 1.9% 169 MGO 2.76 2.76
3 1.95 218 29 3120 MGO 27 276
4 139 259 2.7% 27 MGO 2.76 2.7
b 276 285 294 283 Inconel 0 034
[ 294 302 10 236 Inconei 210 0.34
7 316 2 182 206 BN 424 114
L] 182 in 190 1.67 BN 424 1.14
9 1% 407 424 1.31 BN 424 114
10 424 438 45 1.00 Stainless steel 5.00 0.76
1} 451 464 476 0.74 Stainless steei $90 076
12 47 489 5.00 0.49 Stainless stee! 5.00 0.76
13 500 S.10 520 0.28 Staialess steel 5.38 0.38
i4 5.20 52 538 0.09 Stainless steel 538 0.38

Surface 538 S38 538 0.0 Stainless steel 5.38 0.38




Table 3.2, Rsdial dimension information for the ORINC model of bundle 2
EFPS at axial level corresponding to power zone V

Nodslinner Nodsl COM  Nodalouter ‘098 COM Nodal Material o aterial
Nodal : - distance from outer
' radius radius radius matenal thickness
identifier surface radius
{mm) (nim) (mm) composition {mm)
(mm) (mm)
s 0.0 0.0 0.0 S.38 MGO 228 228
1 0.0 0.80 114 458 MGO 228 2.28
2 1.14 1.39 1.61 19 MGO 2.28 228
k) 1.61 1.80 1.97 358 MGO 228 228
4 197 213 228 32§ MGO 228 228
h 228 242 2.56 296 Inconel 282 054
6 256 269 282 269 Inconel 282 054
7 2.82 289 296 249 Cupronickel 30 0.2¢
) 296 103 0 2.35 Cupronickel 310 028
9 310 in 152 206 BN 424 1.14
10 152 i 190 1.67 BN 424 114
1 190 407 424 & BN 424 1.14
12 424 48 451 (K Stainless steel 5.00 0.7
13 451 464 476 074 Stanless steel 500 0.76
14 476 4.89 5.00 049 Stainless steel 5.00 0.76
15 S.00 5.10 5.20 0.2% Stainless steel $.38 0.38
16 520 529 538 009 Stainless stee) 538 038
Surface S.38 S.38 S 38 0.0 Stainless steel 538 0.3%

3.2 Test Matrix Formulation

Seven transient cases were completed, each using the forward-implicit ORINC to calculate the
internal temperature distributions using the previously discussed EFPS model, the supplied power
generation rate, and the supplied heat transfer coefficient-sink temperature combination boundary
conditions. Temperature histories were calculated for all nodal COMs, for the pin centerline, and for
the pin surface at two axial levels, one located within axial power zone I and the other located within
axial power zone V.

Identical steady-state boundary conditions were supplied for each case at each level, with the
transient boundary conditions derived from their corresponding steady-state values, which are listed in
Table 3.3. The power generation rates and the sink temperatures were held constant at their steadv-state
values for the duration of the transient. Thus, the only difference from one case to another involved the
transient heat transfer coefficient, which was presciibed to be a square wave having a variable period
and oscillating for ten cycles about the steady-state heat transfer coefficient from a minimum of 0.5 the
steady-state value to a maximum of 1.5 the steady-state value. The seven cases were then defined by
chioosing seven periods for the square wave. The associated periods are tabulated in Table 3.4. The
steady-state boundary condition combinations were chosen to allow power zone V to experience a
steady-state forced-convecticn heat tran:fer mode and power zone | to experience a steady-state
nucleate-boiling heat transter mode.

Because the transient heat transfer coefficient boundary condition is composed of discrete data
points, the number of these points that must be included in one cycle of the square wave must be
determined if the function is to be represented accurately. The chosen value, 20, represents the number
of calculational timesteps per square-wave cycle and creates the square wave pictured in Fig. 3.2. The 20
calculational timesteps per square-wave cycle, the 10-cycle square-wave duration, known square-wave
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Table 3.3, Steady-state boundary conditions for all 71 S cases

Boundary condition Axial power Axial power

zone | rone V
Heat transfer coefficient, kW (m"K) 69.108 12473
Sink temperature, K 620 348 564.087
Local linear power generation rate, kW 'm* $8.251 13,786

“Total rod power <126 kW

Table 3.4, TFS cases and their
corresponding heat transfer
coefficient square-wave periods
Square-wave period
(ms)

Case

TFESI 1000
TFS2 200
TFS? 100
TFS4 50
TFSS 25
TESe 10
TFS? 5

ORNL -DWG 80-4475 ETD

4 4

-0 —@— B -8 - 0-%

-o-0-0-0 ~9-0-0-8—0-0 I-0-8

Fig. 3.2. Heat transfer coefficient square-wave boundary condition as constructed using 20 data points per cycle.
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period, S periods of steady-state calculations preceding the squaie wave, and 15 periods of steady-state
calculations following the square wave all combine to give unique definition to the 7 transients, which
are listed with their transient length and calculational timestep information in Table 3.5. The heat
transfer coefficient boundary conditions for axial power level V of cases TFS1, TFS4, and TFS7 are
represented in Figs. 3.3 through 3.5. The heat transfer coefficient boundary conditions for the
remaining cases are similarly constructed.

The EFPS interna’ temperature histories, as calculated for the two power zones in each of the seven
cases by the forward-implicit ORINC using these boundary conditions, can now be used to relate the
depth of the thermocouple bead to its highest interpretable frequency and also to determine the
maximum depth at which the thermocouple bead can be located and still resolve a particular surface
condition frequency. The method of determining these relationships is first to associate the

Table 1.5, Calculational timestep and transient duration information for all TFS cases

Number of

Square-wave Preceding Ten-cycle Following Total length colcalationed Calculational

Case period steady state square wave steady state of transient timestep size
timesteps in
(ms) {ms) (ms) (ms) (ms) : (ms)
Lransient

TSI 1.000 5,000 10.000 15.000 30.000 600 50
TES2 200 1.000 2,000 1.000 6,000 600 10
TFSY 100 $00 1.000 1.500 1.000 600 ]
TFES4 $0 250 S00 750 1.500 600 28
TFSS 20 100 200 00 600 600 I
TFSe 10 50 100 150 00 600 0s
TFS? s 25 50 75 150 600 0.2%
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thermocouple bea. with a nodal COM and then to combine the temperature history for this nodal
COM with the standar. deviation of the thermocouple signal. This method yields an indication of the
ability of the thermocouple to record the nodal COM temperature for a given frequency of surface
phenomena; that is, the thermocouple may be able to record the nodal temperature history trace
perfectly, but if the temperature oscillates (randomly or systematically) about a mean and if those
oscillations are within +1 o (o being the thermocouple signal standard deviation) of the mean. then
those oscillations can~ .« be distinguished from the thermocouple signal uncertainty.

In applying this thermocouple frequency resolution analvsis (Fig. 3.6), the mean oscillation
amplitudes a are determined by locating a curve through the minimum cyclic temperatures and
maximum cyclic temperatures occurring for the ten cycles. The nodal COM trend temperature,
represented by the chain-dashed line in Fig. 3.6, is then found for a particular time by taking the average
of the upper and lower mean oscillation amplitudes at that time.

Adding and subtracting the thermocouple signal standard deviation from the trend temperature
curve results in the trend standard deviation curves, which are represented as the dashed lines in Fig.
36.

If the mean oscillation amplitude band 2a is greater than the trend standard deviation band 20,4
thermocouple located at this nodal COM is considered capable of resolving the given frequency.
Othzrwise, the signal recorded by the thermocouple cannot adequately represent the nodal COM
temperature, and as a result, the inverse-implicit ORINC will be unable to calculate the surface

phenomena that actually occurred.
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3.3 Period-Depth Correlation: Power Zone |

As seen in Table 3.1, the nodal COMs of most interest are those associated with nodes 10 through
14. The node 14 COM being so close to the surface (0.091 mm) will be omitted from the discussion
because its response is ingistinguishable from the surface response. Additionally, the calculated EFPS
surface and EFPS centerline transient temperatures will be referenced. the calculated FFPS surface
heat flux will be presented for comparative purposes.

The standard deviation on the thermocouples used in the THTF EFPSs, as given by the
manufacturer,’ i1s 2.389 K, a value consisting of both a systematic and a random component. In
applying the thermocouple signal uncertainty to an oscillatory phenomenon, the random contribution
to this uncertainty effectively represents the total uncertainty, for the s' stematic term produces only a
relative shift in the thermocouple signal. For this study, a more appropriate estimate of the
thermocouple signal standard deviation can therefore be obtained by determining the magnitude of the
random uncertainty through examination of actual steady-state thermocouple signals. The maximum
standard deviation of the steady-state thermocouple signal for all thermocouples located in axial power
zone | was found to be roughly 0.233 K. Asa conservative figure, a standard deviation of 0.556 K is used
for the thermocouple signal. This value, combined with the results obtained in the TFS case studies for
axial power zone |, was interpreted by using the previously discussed method to yield Table 3.6.

Forexample, the node 10 through 13 COM temperatures for case TFS1 (1000 m: step-wave period
and axial power zone 1) are presented in Figs. 3.7 through 3.10. From these figures it is evident that a
thermocouple located at any of these radial positions can accurately represent a surface phenomenon
having a period of 1000 ms. Also, a o decreases as the radial position approaches the center of the
EFPS. The radial position where a0 = 1.0 would be the maximum depth at which a thermocoupie
bead could be located and still resolve the surface phenomenon occurring at the given period.

Figure 3.11 represents the calculated EFPS centerline temperature for case TFS! and axial power
zone 1. The quantity a /o is less than 1.0; thus the centerline cannot distinguish surface phenomena
having a period of 1000 ms. Because a /o < 1.0 at this point, the maximum thermocouple bead depth at
which the surface phenomenon can be resolved occurs between the radial position of the node 10 COM
and the EFPS centerline. The calculated surface temperature and surface heat flux for case TFS1 and
axial power zone | are presented in Figs. 3.12 and 3.13.

Table 1.6. Thermocoupie frequency resolution

ana.yeis results for axisl power zoae |
Nodal COM
Case § Surface
10 i 12 13
TFSI . - . - -
]Fsz L . - . ~
TFs2 - - o X
TFH . . .
TFSS P 1
TFS6 -
TFS? ’

“Thermocouple bead located at this radial position can
resolve temperature oscillations at the given frequency.
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3.4 Period-Depth Correlation: Power Zone V

In Table 3.2, the nodal COMs of most interest are those associated with nodes 12 through 16. The
node 16 COM will be omitted from the discussion because it is indistinguishable from the surface
response. The calculated EFPS centerline and EFPS surface transient temperatures will also be
analyzed; the calculated EFPS surface heat flux will be presented for comparative purposes.

The thermocouple standard deviation is combined with the calculational results obtained in the
TFS case studies for axial power zone V and subjected to the thermocouple frequency response analysis
to produc¢ Tabie 3.7. Because the analysis is identical to that performed for axial power zone 1, no
further discussion of the procedure is needed at this point.

Table 3.7. Thermocoupie frequency resolution
analysis results for axial power zone V

Nodal COM
Case 1y Surface
12 13 14 15
TFS' - - - . .
TFSZ - . . .
TFS3 N ° -
TFS4 - e
TFSS b
TFS6 e
TFS7 "

“Thermocoupie bead located at this radial position can
resolve temperature oscillations at the given frequency.
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3.5 Period-Depth Composite Relationship

The period-depth results summarized in Tabies 3.6 and 37 indicate dual areas in the two-
dimensional space defined by the thermocouple bead distance from the EFPS surface and by the period
of the phenomena occurring on the EFPS surface. The first area represents the combinations of
thermocouple bead depths and surface phenomena periods that yield thermocouple signals which,
when supplied to the inverse-implicit ORINC can accurately reproduce the EFPS surface conditions.
The remaining area in this two-dimensional space represents the thermocouple bead depths that
provide thermocouple signals incapable of resolving the given frequency of surface oscillation.

These areas, as determined for axial power zone |, are shown in Fig. 3.14 with the crosshatched
portion representing the desirable combinations. Figure 3.15 presents the areas as determined foraxial
power zone V, with the crosshatched portion again representing the desirable combinations.
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phenomenon period as determined by cases TFS1 through TFS7 involving axial power zone 1.
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The effect of the power generation rate and the heat transfer mode on the number of desirable
combinations can be seen from the larger area in Fig. 3.14 as compared with Fig. 3.15. This increase in
desirable combinations is due to the larger magnitude of the nodal COM temperature oscillations in the
region of axial power zone I; these oscillations correspond to a larger surface temperature oscillation
that will propagate further into the EFPS, thus increasing the depth at which the thermocouple bead
can resolve the given frequency.
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4. THERMOCOUPLE RESPONSE STUDY (TRS)

In addition to the damping of the node COM temperatures near the center of the EFPS, a
compenion physical situation affects the ability of the thermocouple to record surface phenomena
accurately. This situation, which can be associated with various radial positions, is the time response; it
is often described in terms of a time constant, is characterized by the capacity of a system to store
energy, and is measured by the time necessary for a system or one of its components to adjust to an
external input.

Todetermine how an indirectly heated EFPS responds to a sudden change in surface conditions, a
series of transient calculations was performed using the forward-implicit version of ORINC, as
described in Chap. 3. A bundle 2 ORINC EFPS model (Fig. 3.1) identical to that used in the
thermocouple position frequency sensitivity study was supplied; because the EFPS models are
identical, the geometry specified in Tables 3.1 and 3.2 remains valid.

A gap of ~0.0254 mm is included between the inner and outer stainless steel sheaths in this study. It
15 incorporated in the ORINC formulation as a heat transfer resistance term and therefore does not
change the geometry of the EFPS model. The gap is important in the TRS because the behavior of
bundle | and bundie 2 EFPSs is being examined, whereas in the TFS, the gap was omitted because the
primary purpose was support for the design of bundle 3* EFPSs. The omission of the gap thus allowed
effective transformatior of the ORINC EFPS from a bundle 2 design— with an outer sheath thickness
0f0.381 mm, an inner sheath thickness of 0.762 mm, and a gap* between these sheaths— into a bundle 3
design—with a single outer sheath 1.143 mm thick.

4.1 Test Matrix Formulation

Thirty cases, each involving 3000 transient timesteps, were studied with the forward-implicit
ORINC calculating the internal temperature distributions using the power generation rate and the heat
transfer coefficieni -sink temperature combination as boundary conditions. Temperature histories were
generated for (1) all nodal COMs, (2) the EFPS centerline, and (3) the EFPS surface for an axial level
located within either power zone | or power zone V (Fig. 1.3). The EFPS transient surface heat flux was
also determined by ORINC for each case.

These 30 cases can be arranged into | major group and 4 comparative groups. The major group
consists of 22 cases, with calculations corresponding to an EFPS geometry at an axial level within
power zone V, where the EFPS is subjected to a sufficient steady-state power generation rate to
necessitate an initial temperature profile to be considerably higher than the sink temperature. At the
initiation of the transient, the power generation rate is reduced to zero; the rod then cools until it attains
equilibrium with the sink temperature, which is held constant at its steady-state value over the duration
of the transient. The heat transfer coefficient is stepped at the time of the drop in the power generation
rate, with the size of the step increase defining the different surface conditions to which the EFPS can
respond. The 22 cases in the major group, which are distinguished by the calculational timestep size and
by the magnitude of the step of the heat transfer coefficient boundary condition, are known as TRS01
through TRS22.

The first comparative group experiences the same type of transient as the major group, wi'h
calculations being performed for an EFPS geometry at an axial level within power zone 1. In the first
comparative group the cases are known as TRS23 and TRS24.

*Bundie 3 refers to the third EFPS bundie (8 X 8 array) designed for testing in the THTF.
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The second and third comparative groups, for which calculations are performed for EFPS
geometries at axial levels corresponding to power zones V and I, respectively, consist of two cases each
in which the power generation rate is zero over the duration of the transient, and the sink temperature
and heat transfer coefficient are stepped at the beginning of the transient. Because the nower generation
rate equals zero at all times, the EFPS is initially at equilibrium with the sink temperature and must
again attain this equilibrium with the sink temperature when the sink temperature is step-increased. The
heat transfer coefficient is stepped at the time corresponding to the step in the sink temperature; the size
of the step increase distinguishes the two cases in each group and defines different surface conditions to
which the EFPS can respond. The cases composing the second and third comparative groups are
known as TRS25, TRS26, TRS27, and TRS28, respectively.

In the fourth comparative group are two cases that have (1) steady-state boundary conditions
similar to those used in the TFS and (2) correspond to the EFPS geometries of axial power zones V and
I, respectively. These cases, TRS29 and TRS30, experience a transient consisting of a constant sink
temperature, a constant powei generation rate, and a step-decreased heat transfer coefficient.

Calculational timestep size, steady-state boundary conditions, and transient boundary conditions
for the TRS cases TRSOI through TRS30 are listed in Tables 4.1 and 4.2.

Table 4.1. Steady-state (1 = 0) boundary conditions and
calculational timestep size for all TRS cases

TRS Calculational Local linear power Sink Heat transfer
ok timestep gereration rate temperature coefficient
(ms) (kW m)* (K) [kW/(m"K)]

1 100 (3.2808) (0.39971) 299 66 0.1703
2 100 (3 2808) (0.39971) 299 66 0.1703
3 100 (1.2808) (0.39971) 299 66 0.1703
4 100 (3.2808) (0.39971) 299 66 0.1703
5 100 (3.2808) (0.39971) 29 66 0.1703
L 100 (3.2808) (0.39971) 299 66 01703
? 100 (3.2808) (0.39971) 299 66 0.1703
3 100 (3.2808) (0.39971) 299 66 0.1703
9 100 (3.2808) (0.39971) 299 66 0.1703
10 100 (3.2808) (0.39971) 299 66 0.1703
" 100 (3.2808) (0.39971) 299 66 0.1703
12 100 (3.2808) (0.39971) 299 66 0.1703
13 100 (3.2808) (0.39971) 299 66 0.1703
14 olo (3.2808) (0.39971) 299 66 0.1703
15 0.10 (3.2808) (0.39971) 299 66 01703
16 010 (3 2808) (0.39971) 299 66 0.i703
17 010 (31.2808) (039971, 299 66 0.1703
8 0.10 (1.2808) (0.39971) 299 66 0.1703
19 010 (3.2808) (0 39971) 299 66 0.1703
20 ol (3.2808) (0.39971) 299 66 01703
b3} 010 (3.2808) (0.39971) 299 66 0.1703
2 010 (3.2308) (0 39971) 299 66 0.1703
b3 ) 100 (3.2808) (1 68893) 299 66 0.1703
24 100 (3.2808) (1.68891) 299 66 0.1703
2 100 00 299 66 0.1703
26 100 0o 299 66 0.1703
” 100 00 299 66 0.1703
28 100 00 299 66 0.1703
29 100 (34 4894) (0.39971) 564 08 150481
» 100 (34.4894) (1 6889)) 62035 187 9464

*0.39971 and | 68893 are the axial peaking factors for power zones V and I,
respectively.
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Table 4.2. Transient (0 < t < t...) boundary conditions and
caiculational timestep size for all TRS cases

TRS Calculational Local lincar power Sink Heat transfer
Py timestep generation rate temperature coeﬂici‘ent
(ms) (kW m)* (K) [kW (m"K)]

I 10.0 0.0 299.66 0.5677
2 10.0 0.0 299.66 1.1354
3 R 0.0 295 66 1.7030
o 10.0 00 299 66 28384
5 10.0 0.0 299.66 39738
6 108 0.0 299 .66 5.6768
7 10.0 0.0 299 66 8.5152
8 10.0 0.0 299 66 11.3530
9 10.0 c.0 299.66 17.0304
10 10.0 0.0 299 66 22,7072
1 10.0 0.0 299 66 28 3840
12 10.0 00 299 66 34 0608
13 10.0 00 299 .66 1703040
14 0.10 0.0 299 .66 17.0304
15 0.10 0.0 299 66 227072
16 0.10 00 299.66 28.3840
17 0.10 0.0 299.66 34 J608
IR 0.10 0.0 299.66 197376
19 v.10 0.0 299 66 56.7680
20 0.10 6.0 299 .66 113.5360
21 0.10 0.0 299.66 170.3040
22 0.10 0.0 299 66 227.0720
23 10.0 00 299.66 1.7030
24 10.0 0.0 299.66 17.0304
28 10.0 0.0 373.00 1.7030
26 10.0 00 373.00 17.0304
27 10.0 0.0 373.00 1.7030
28 100 00 373.00 17.0304
29 100 (34.4894) (0.39971) 564 08 1.504%
0 10.0 (34.4894) (1 68893) 620.35 18.7946

%0.39971 and | 68893 are the axial peaking factors for power zones V and |,
respectively.

The EFPS internal temperature histories as caiculated by the forward-implicit ORINC using the
tabulated boundary conditions can now be used to relate the depth of the thermocouple bead t2 a time
constant associated with the radial location of the thermocouple. If the thermocouple is assumed to
reside at a given nodal COM that nodal COM transient temperature is used to yield a radially
dependent time constant directly related to the phenomena on the surface.

4.2 Radial Time Constant Determination

A widely accepted model for system dynamic response’ is the ordinary differential equation with
constant coefficients:
n- |

d" Xom Bilcs 4" Xow
dr" i

dXou
+ .. ta— +akom =

o ! dt

d.xlﬂ L d" l in dxq
d(- Dm-1 -~ + " bl—x' -2 hAXm B (4 I)

b o ety
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where
a =constants, i =0, 1, ... n;
b = constants, j =0, I, ..., m;
t = time;
Xou = SysStem response quantity;
A T Sysican inpui quaniy.

If the EFPS is assumed to be a first-order system, a complete solution to Eq. (4.1) (relative to the
initial system temperatures and forced by a step in the input system temperature occurring at t = 0) of
the following form can be obtained:

T(r, 0= T(r, 0) + [T(r, %) ~ T(r, O] [1.0 - ¢ "], (4.2)
where
T(r, 1) = temperature at radial position r and time t = t,
T(r, 0) = temperature at radial position r and time t = 0,
T(r. =) = temperature at radial pos..ion r and time t = %,
7(r) = EFPS time constant at radial position r.

The complete transformation from Eq. (4.1) to Eq. (4.2 can ' ¢ found in Appendix A.
Substituting t = r(r} into Eq. (4.2) result- in

T[r. 7(n)] = T(r, 0) + [T(r, %) = T(r, 0)][1.0 — ¢ '] (4.3)
or

Tr, 7(n)} = T(r, 0) + [T(r, %) = T(r, 0)] [0.63212] . (4.4)

Equation {4.4) is valid for all TRS cases [i.e., T(r, %) can be higher than T(r. 0) or T(r. %) can be lower
than T(r, 0)] because Eq. (4.4) is dependent on both the sign and the magnitude of the difference in
Ter)and T(r,0). Thisis shown by Fig. 4.1 and 4.2, which graphically portray the relationship between
r(r) and [T(r, ) = T(r, 0)] for a cooling case and a heating case, respectively.

Because the nodal COMs, EFPS centerline, and EFPS surface transient temperature histories
have been generated for each TRS case by the forward-implicit ORINC, the temperature T[ro, r{ro)] for
a particular radial position ry, corresponding to the time t = 7(ry), can be calculated from Eq. 4.4 using
the steady-state temperature T(ro, 0) and the final equilibrium temperature T(ro, %). The value of the
radially dependent time constant r(ro) is determined by using this known temperature T[ro, 7(ro)], the
ORINC-calculated temperature-time table, and the method illustrated in Fig. 4.1 or 4.2. Thus, the
ORINC-calculated transient temperature profiles are scanned at the radial position ro until T[ro, r(rq)]
lies between two successive timestep temperatures. The time of the first of these two temperature
profiles is assumed to be r(ro); therefore, the error in (ro) is less than the calcu lational timestep size for
that particular case because T[ry, 7(ro)] is guaranteed to occur before the time of the second temperature
profiie.
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As seen in Tables 3.1 and 3.2, the nodal COMs of most interest are those associated with the five
outer nodes of either geometry. The outermost node (14 for axial power zone I and 16 .or axial power
zone V) will be omitted from the discussion since they are indistinguishable from the surface response.
The ORINC-calculated EFPS centerline and EFPS surface transient temperatures will also be
referenced.

Table 4.3 contains, for all TRS cases, the radially dependent first-order time constants (as
determined by the previously mentioned method) for the EFPS centerline and the EFPS surface. Also
included in Table 4.3 are the uncertainties (derived from the calculational timestep size) for each time
constant and the transient value of the heat transfer coefficient for each TRS case.

Additionally, the fifth through the second outermost nodal COM temperatures were analyzed for
cases TRSO3, TRS09, TRS13, TRS21, and TRS23 through TRS30, with their associated radially
dependent first-order time constants presented in Table 4.4. These time constants have the same
uncertainties as listed in Table 4.3 for the corresponding TRS case.

Table 4.3, EFPS centerline and EFPS surface first-order time constants
with associated uncertainty for all TRS cases”

EFPS EFPS Heat transfer
TRS centerline r{0) surface {fert) )
case time uncertainty time uncertainty emflicont
fort>0
No constant (s) constant (s) (kW (m*K)]
(s) (s)
I 17.87 +0.01 16.60 +0.01 0.5677
2 9.77 +6.01 827 +0.01 1.1354
3 7.07 +0.01 548 +0.01 1.7030
4 492 +0.01 120 +0.01 28384
5 401 +0.01 2.20 +0.01 19738
6 i +0.01 1.42 +0.01 56768
7 280 +0.01 0.81 +0.01 8.5152
X 254 +0.01 0.50 +0.01 11.3536
9 2.2 +0.01 17.0304
10 2.18 +0.01 22.7072
1 208 +0.01 28.1840
12 203 +0.01 340608
13 1.82 +0.01 170.3040
14 0.2287 +0.0001 17.0304
15 0.1279 +0.0001 22.7072
16 0.0835 +0.000] 28.2940
17 0.0601 +0.0001 340608
18 0.0460 +0.0001 39.7376
19 0.0253 +0 0001 56.7680
20 0.0074 +0.0001 113.5360
21 0.0031 +0.0001 170.3040
2 0.0013 +0.0001 2270720
23 8.00 +0.01 6.01 +0.01 1.7030
24 228 +0.01 029 +0.01 17.0304
28 6.39 +0.01 480 +0.01 1.7030
26 2.00 +0.01 017 +0.01 17.0304
27 6.38 +0.01 476 +0.0! 1.7030
28 203 +0.01 0.19 +0.01 17.0304
29 2.50 +0.01 1.53 +0.01 1.5048
30 244 +0.01 0.85 +0.01 18.7946

“The transient value of the heat transfer coefficient for each TRS case is included for
reference purposes.
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Tabie 4.4. Radially dependent first-order time constants (s) for selected TRS cases

TRS case number

Radial
1

e 39 1320 23 24 2% 2% 2 ® 229 3
€ 707 228 182 800 228 639 200 638 203 250 244
10 664 112 547 102 0.82
T 653 09 534 086 0.84
12 615 118 069 640 080 S5 109 S20 070 145 0SS
12 604 102 052 618 0S5 S43 094 48 039 148 0SS
14 592 085 035 530 077 1.50
15 565 0.46 00538 499 038 1.52

Surface S48 023 00031 601 029 480 017 47 019 1.53 085

An example of the actual calculations used in creating Tables 4.3 and 4.4 can be found in Table 4.5,
which involves case TRS03. This table includes the following for the particular TRS case: (1) theradial
position r for which the time constant was calculated; (2) the distance of this radial position below the
surface of the EFPS; (3) the initial temperature T(r, 0) at the given radius; (4) the final temperature
T(r, %) at the given radius; (5) the difference in the final and initial temperatures at the given radius; (6)
this difference multiplied by (1.0 — ¢ ""); (7) the theoretical value of the temperature T [r, 7(r)]at the
given radial position and at the time equal to the time constant value at that radial position; (8, 9) two
successive timestep ORINC-calculated temperature-time combinations which bound Tueor, [r, 7(r)] at
the given radial position, and (10) the calculated value of the first-order time constant r(r) at the given
radius.

4.3 Time Response - Depth Composite Relationship

The radial time constant results which are summarized in Tables 4. 3and 4.4 indicate a relationship
between the magnitude of the EFPS surface conditions and the magnitude of these radial time
constants. Figure 4.3 portrays this relationship for cases TRSOI through TRS22 as an association
between the transient heat transfer coefficient and the time constants for the EFPS centerline and
surface. Figure 4.3 has the following characteristics.

There are two ranges of the heat transfer coefficient over which the log of the surface time constant
is linear with respect to the log of the heat transfer coefficient: (1) for those values of the heat transfer
coefficient greater than ~11.4 kW/(m”K) and (2) for those values of the heat transfer coefficient less
than ~4 kW (m’ K). The time constant for the centerline of the EFPS is nowhere linear with respect to
t  =at transfer coefficient, although it does appear to approach ~1.8 s asymptotically as the heat
transfer coefficient becomes large. Because Fig. 4.3 represents the centerline and surface time constants,
the time constants associated with any other radial position should lie within ihe envelope created by the
surface and centerline time constants. Broadening of the envelope with increased heat transfer
coefficient should be expected since (1) small heat transfer coefficients define a slow transient in which
the centerline can respond equally with the surface and (2) large heat transfer coefficients define fast
transients in which the energy transport capability of the EFPS dominates, thereby forcing the
centerline t0 respond much more slowly than the surface. The envelope defined by the EFPS surface
and centerline time constants appears to widen continually with increasing heat transfer coefficients;
however, the difference in the sutface and centerline time constants varies from ~1.3 s at low heat



Table 4.5, Critical information for determining radially dependent first-order time constants relative to case TRSO3

Distance c
Nodsl Radal - from  y. o The) [T e Sl o Tewtl A0 Vapelia0u -9
position POSioar EFFS ot T Sven ©OUG =Tro+C o () (s) x) )
(mm) surface (K; (K) (K)
(mm)

¢ 0.0 S38 53291 29967 -23324  —147.44 385.47 707 38556 7.08 385 41 7.07

12 438 100 53045 29967 -23078 - 14588 184.57 615 38465 616 84,51 6.15

13 464 074 52972 29967 -23005 14542 384.30 604 38434 60° 384.21 6.04

14 488 050 52007 29967 22940 14501 384.06 592 8410 593 1%3.96 592
s 5.10 028 52793 29967 22826 14429 383 64 565 W19 566 38355 5.65
Surface  5.38 00 52724 29967 22757 14385 383 39 S48 8339 549 383.25 5.48
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Fig. 4.3, Relationship between surface or centerline first-order time constants and transient heat transfer coefficients for
cases TRSO1 through TRS22.

transfer coefficients to ~2.0 s at intermediate heat transfer coefficients to ~ 1.8 s at high heat transfer
coefficients.

In Sect. 4.2 the assumption was made that the EFPS is a first-order dynamic system. If this were the
case, the relationship of Fig. 4.3 would be linear for both the surface and the centerline [an explanation
of the linearity of the time constant—heat transfer coefficient relationship for first-order dynamic
systems is given in the comments concerning the development from Egs. (4.7) to (4.10)]. Because the
time constant—heat transfer relationships of Fig. 4.3 clearly are not linear, additional explanation of the
observed behavior of the EFPS is necessary.

The EFPS isin fact a complex interacting thermal system having a response function structure that
must be obtained from mathematical modeling of the actual EFPS response characteristics. Because
the radially dependent EFPS temperature is the response variable of interest, the response function
structure of the EFPS is determined by making one-dimensional time-dependent energy balances on
the concentric layers (one layer for each material) of a bundle | or bundle 2 EFPS® (see Fig. 1.2). This
analysis, presented in Appendix B, produces expressions for the temperature perturbations of each
concentric layer caused by a perturbation of the coolant bulk temperature.

The response of the temperature associated with the COM of the outer stainless steel sheathto a
perturbation in the coolant temperature can be described by

P s Risos )T;s+ (l + Risos )Tos+ Yos )ATos. 4.5)

Ros/tim Ros/fitm

' K)

W

TRANS ENT HEAT TRANSFER COEFFICIENT



where

Ts = bulk coolant temperatnre,

T = inner sheath temperature,
Tos = outer sheath temperature,
yos = capacitance of the outer sheath fo: thermal energy (see Appendix B),
R, = thermal resistance between i and j (see Appendix B),
A = differential operator.

Consider Eq. (4.5) with the assumption that Roswum 2 Risos. Thus, Ros s, which includes the heat
transfer coefficient, 1s the dominant resistance to heat transfer associated with the EFPS. For this
condition, the internal heat transfer resistances are not restrictive, and the EFPS interior can supply
heat to the surface as quickly as the surface can dissipate it. Since

2wk
Rossim = - ; 4.6
ol {[In(rxops Txos)]) Kxops) + [/ hrsops] e

where

£ = axial length of EFPS,
rvops = outer radius of EFPS,
Tvope = COM radius of outermost node in EFPS model,
Kxops = thermal conductivity of outermost node in EFPS model,

h = heat transfer coefficient,

and since for the current assumption [In{rxone/ *~ops)])/ Knoos € 1/ hrxops), Eq. (4.5) can be reduced to
the following:

- ed 1
w1+ 22— . %,
T [l ( h2m8ryvons o e “n

Equation (4.7) is a response function of the form that describes a first-order dynamic system. The
time constant for this first-order system is defined as

Yos
h2mfrzvone

Tos =

(4.8)

In the surface-resistance-dominated condition, the entire EFPS will respond essentially as defined by
Eq. (4.7); therefore, yos can be replaced by yerps, where ygpps is the capacitance of the EI'PS for
thermal energy. Thus, expanding yerps into its components, Eq. (4.8) can be transformed into
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= (Pcpv)EFrs

h2 7R uace %

[(pC Vieres = n!}.‘l(‘,,(ri.m, ~ Flaner,), Where i is over n concentric layers). Supplying numerical values
for the physical property and geometric variables yields an equation that is linear with respect to

10.45
h

(4.10)

| N

where risinsand hisin kW /(m*K). The prediction of Eq. (4.10) is overlaid on the results cfFig. 4.3in
Fig. 4.4. Equation (4.10) agrees very well in both slope and absolute value withthe pomon of the surface
time constant curve associated with heat transfer coefficient values below ~4 kW (m"K).

As the EFPS heat transfer condition is transformed from being dominated by the heat transfer
coefficient resistance to being dominated by an internally located thermal resistance. the surface will
begin to respond much faster than predicted by Eq. (4. 10). Therefore, in Fig. 4.4, the prediction of Eq.
(4.10) will rotate counterclockwise as the heat transfer coefficient becomes large. This rotation will
essentially pivot about the point on Fig. 4.4 defined by the time constant predicted by Eq. (4.10)
corresponding to the heat transfer coefﬁcnem that is the upper bound for the surface-dominated heat
transfer resistance condition (~4.0 kW' (m’-K). Above heat transfer coefficients of ~11L.4KW (m™ K},
the slope of the prediction of Eq. (4.10) tends to become less steep, thus approaching the slope of the
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upper linear portion of the observed surface time constant curve. Indeed, the zenditions in which the
heat transfer coefficient thermal resistance and the internally located thermal resistances are about
equal define the transition area on Fig. 4.3 where the observed surface time constant curve is
continuously changing slope (i.e.. ~4 kW (m*K)< h< ~11.4 kW /(m*K).

The response of the centerline of the EFPS to = verturbation in the coolant temperature can be
described by the following (see Appendix B):

Te = [f‘A‘ » ‘45‘ * fIA‘ + f:Az +&6A + &) Twco ,

A = differential operator,
Ts = bulk coolant temperature,
Twao = EFPS core temperature,

& = constants defined in Appendix B.

Equation (4.11)is afifth-order response function for the centerline temperature of the EFPS; therefore,
no hinear portions of the centerline time constant curve should appear in Fig. 4.3,

For the EFPS heat transfer condition in which the restrictive thermal resistance is located within
the MGO core (this case occurs as the heat transfer coefficient becomes large), the centerline response
will be totally independent of the surface conditions. Thus, the time constant for the centerline will
asymptotically approach a minimum value as the heat transfer coefficient increases. The value of the
centerline time constant asymptote is from Eq. (4.11) to be

Y M0 P W ‘p“h“ﬂg(f\fu,n)

T asy = — = - : —_——
R' MG 2R 2K st mcin)/ (Fatcins)

wnich can be reduced to

prte s Copge, Pl
Th asy = e seastn

4KM4.I|

Yuoo = capacitance of the MGO core for thermal energy,
Ry moo = thermal resistance between § and MGO outer radius,
£ - axial length of EFPS,
pwaco = density of MGO core,
Coner = specific heat of MGO core,
fyan = outer radius of MGO core,

Kwueo = thermal conductivity of MGO core.
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Substitution of the appropriate physical properties and geometric constants into Eq. (4.13) vields

Toasy = 1.82s. (414)

This result compares extremely well with the centerline time constant asymptote of Fig. 4.3,

Higher-order response theory has been applied tu the EFPS to verify that the relationships o1 Fig
4.3, which were obtained from first-order response theory. effectively explain the time-response
characteristics of EFPS. Comparisons of the first-order results of Fig 4.3 with calculated predictions of
Eqgs. (4.10) and (4.14) in general trends. slopes of linear sections, and time constants approached as the
heat transfer coefficient becomes large or small indicate that first-order theory is sufficient to determine
dependent time constants associated with certain heat transfer coefficient ranges

The observation was made concerning Fig. 4.3 that the time constants for radial positions between
the centerline and the surface of the EFPS should lie within the envelope of Fig. 4.3, However. the
EFPS can experience a heat transfer condition for which this is not the case. If the dominant restriction
to heat transfer in the EFPS is a heat transfer resistance associated with a radial position within the
outer region of the heating element (large heat transfer coefficients). a situation anses where. in order to
meet the boundary conditions on the surface. energy i1s removed from the mid-radius nodes (via
conduction through the outer-radius nodes) faster than energy is supplied to the mid-radius nodes from
the core region. Figure 4.5 is a representation of the radially dependent time constants for an EFPS
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Fig. 4.5 Representation of radiaily dependent first-order time constants for a cooling EFPS experiencing a domimating
surface-heat-Mlux driving potential.
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experiencing this condition. The time constants at the mid-radius nodes are less than the time constar. .
of the surface. This relation indic~"es that, for any given time, the internal radial positions are not lower
in temperature than the surface, but rather, in relation to their steady-state temperature, their time
constant temperatures [ T[r, r(r)]} are attained before the surface reaches its time constant temperature.

The condition for which the internal time constants are smaller than the surface time constant
occurs ir. certain limiting cases where there is a large surface heat flux, which can btz due to a large
difference in the sink and surface temperatures and  or a large heat transfer coefficient. This surface heat
flux creates a large driving potential near the surface of the EFPS, therzby forcing a significant amount
of energy out of the surface. The MGO core region of the EFPS has a lo' thermal conductivity and thus
car:not supply energy (the power generation rate is zero for t >0s) to the mid-radius nodes as quickly as
energy is being drawn from them by the large surface driving potential and high thermal conductivity of
the stainless steel sheaths. Therefore, the temperatures corresponding to the mid-radius nodal COMs
are depressed and reach their time constant temperatures prematurely, with the result of smaller values
for the internal radial time constants. Surface heat fluxes of such magnitude are not unusual but may
occur frequently in loss-of-coolant experiments.

The test cases composing comparative groups one, two, and three have centerline and surface time
constants presented in Table 4.3. These values can be overlaid on Fig. 4.3 to illustrate that the EFPS
geometry associated with a particular axial power zone and the type of transient (i.c., heating or
cooling) do not significantly affect the time constant—heat transfer coefficient relationship.

Comparative group four, however, is included to show that the initial conditions as well as the type
of transient to which the EFPS responds have a marked effect on the calculated time constants. Thus,
the information in Fig. 4.3 is extremely dependent on the initial conditions and the forcing functions
(i.e.. heat transfer coefficient and coolant temperature); the results cannot be generalized into an
all-encompassing explanation of the time constant—heat transfer coefficient relationship.
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S. CONCLUSIONS AND RECOMMENDATIONS

The transient calculations presented in the 7 TFS cases and the 30 TRS cases reveal a dramatic
effect on the ability of the thermocouple to resolve rapidly changing surface phenomena and a lesser
effect on the time response of the thermocouple attributable to the variation of the radial location of the
thermocouple bead in the EFPS (within 1.016 mm of the surface). Four factors dominate the
temperature resolution capability of the thermocouple response: (1) the distance from the surface of
the EFPS to the radial position of the thermocouple bead, (2) devi-e uncertainty in the thermocouple
itself, (3) the magnitude of the power generation rate of the EFPS, and (4) the magnitude of the change
in surface conditions. Two factors dominate the time response of an internally located thermocouple
bead: (1)thedistance from the surface of the EFPS to the radial position of the thermocouple bead and
(2) the magnitude of the surface heat 7lux of the EFPS.

The inability of the thermocouple bead to resolve high-frequency surface conditions when it is
displaced from the surface is illustrated in Figs. 5.1 and 5.2, which show that a surface condition
occurring at a period of 100 ms is decipherable only by a thermocouple bead located within (0.14)
(5.385) = 0.754 mm of the surface for axial power zone | and within (0.10) (5.385) = 0.538 mm of the
surface for axial power zone V. These results are made conservative by the introduction of the
thermocouple standard deviation and by the relat.vely small amplitude of the heat transfer
coefficient—step-wave boundary condition.

Because of the instrument uncertainty of the thermocouple response, the nodal COM temperature
associated with the thermocouple bead must have a total cycle magnitude of at least 1.111 K to be
resolvable. This magnitude is a result of the extent to which the heat transfer coefficient is changing; for
this study this change is small as compared with those experienced in actual THTF tests. [The heat
transfer coefficient in these study cases ranges between 34.55 kW/(m™K) and 103.6 kW, (m*K) for
axial power zone | and between 6.235 kW /(m*K) and 18.709 kW (m’-K) for axial power zone V, as
compared with varying several orders of magnitude in THTF tests. However, these case calculations do
indicate the inability of the thermometry to allow the inverse-implicit ORINC to calculate a varying
heat transfer coefficient within 50% of its true value for surface phenomena occurring at frequencies in
the higher range of the case studies.j Therefore, the depth at which a thermocouple can resolve a given
surface frequency (for this is a function of _.ie total cycle magnitude), as well as the highest frequency
that can be interpreted at a given radial position, is very much dependent on the thermocouple
uncertainty.

The test cases presented for a the: nocouple bead located 0.508 mm below the surface of the EFPS
(bundle | design as compared with 0.635 mm for bundle 2 design) show that surface conditions havinga
period of >40 ms for axial power zone | and a period of >90 ms at axial power zone V are the only ones
that can be effectively reproduced by supplying the recorded thermocouple signal to the inverse-implicit
ORINC. Because the THTF data acquisition system records the thermocouple signal at 50-ms intervals,
it is capable of resolving an oscillatory condition having a period of about 100 ms. Thus, the EFPSs as
designed in bundle | have a resolution capability consistent with the THTF data acquisition system
within axial power zones | and V.

The depth of the thermocouple bead below the surface of the EFPS also affects its time-response
charactenstics. Examination of the radially dependent time-response characteristics of the EFPS yields
several important results:

1. Ove all EI'PS response (inall heat transfer regimes) cannot be predicted by first-order response
theory.
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2. For specific heat transfer coefficient ranges [h < ~4 kW/(m*K)and h > 11.4 kW /(m"K)], the

EFPS surface behaves in a first-order fashion.
3. In cases dominated by surface heat transfer resistance [h < 4 kW/(m*K)], the EFPS time

constant can be approximated by

r= [(pCvV)[rps] (hzdfmduc) s
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where
(pC,V)erps = capacitance of EFPS for thermal energy,
L = axial length of EFPS,
Twriace = Outer radius of EFPS.
(Even for these cases, the differences between the centerline and surface response timesare 1.3t0 2.0s.)
4. When an internal thermal resistance dominates [h > ~11.4 kW/(m*K)], the EFPS surface

responds much faster than predicted by the above equation, and the centerline response appears to be
totally independent of the heat transfer coefficient.
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5. The centerline response is multiorder, but for high surface heat transfer coefficients the
centerline response time asymptotically approaches

75 = pmco Coyoorico/ (4Kwca) ,
where
pmaco = density of MGO core,
Couco = specific heat of MGO core,
ruco = outer radius of MGO core,

Kwmco = thermal conductivity of MGO core.

6. In certain situations—defined by high surface heat fluxes—the first-order response times of
radial positiors inside the EFPS are shorter than the EFPS surface response time.

7. The EFPS response is highly dependent on initial conditions and on the combination of forcing
functions at the surface (i.e., heat transfer coefficient and sir.k temperature).

8. The EFPS response is not strongly dependent on the change in EFPS geometries from one axial
power zone to another axial power zone.

These results indicate that first-order response theory should not be used for the analysis of EFPS
transients and that first-order time constants (although they are correct for certain heat transfer
conditions and EFPS radii) applied to the investigation of the complete thermal behavior of an EFPS
are meaningless. Therefore, a thorough time-response analysis of the EFPS transients must be
conducted with the rigorous solution of the transient heat conduction equation.

In general, the time response of the nodal positions in the radial vicinity where the thermocouple
might be located will be negligible because the surface heat flux is often large enough to produce the
dominating driving potential, which forces these nodes to have respornses almost identical to the
surface. Thus, for a thermocouple bead located within 1.016 mm of the surface of the EFPS, the
thermocouple time response is much less restricting than the thermocouple resolving ability.

These conclusions make clear that the uncertainty of the thermocouple signal uncertainty limits its
ab lity to resolve high-frequency boundary phenomena. Therefore, not only should future EFPSs be
designed with the thermocouple positioned as close to the surface as mechanically possible, but an
extensive effort should be undertaken to determine more accurately and/ or to reduce the thermocouple
uncertainty.
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Appendix A

A STEP-RESPONSE SOLUTION TC THE GOVERNING DIFFERENTIAL
EQUATION OF A FIRST-ORDER DYNAMIC SYSTEM

An nrh order system dynamic respense can be modeled by the following ordinary differential
equation with constant coefficients:

aﬁd'xm.. $n drlxom + +2 dXou + RoXow =
dr’ Al ™ L
g™ ™ %, dx,,
- st W o WD + boXia , Al
bndlm bw-1 ar" 1 dt X ( )
where
a =constants, 1 =0, |, ..., n;

b, = constants, j =0, 1, ..., m;
t = time,;
Xou = SYStem response quantity;
X = system input quantity.
Insimplifying Eq. (A.1) to model a first-order system, alla, (1= 2, 3, ..., n) are set to zero and all b,

(= 1,2, 3, .., m)are set to zero. This results in

au%ﬂ + a0Xou = boXin . (A.2)

Dividing Eq. (A.2) by a; yields

a dXou

bo
i o Salenr.” T >
a 4t - on. A3

where
a;/ao = r = system time constant,
bo/ a0 = 6 = a constant defined by the system.

The system input and output quantities of interest for the EFPS, at aradial position ry, are the sink
temperature (because the power generation rate is zero, the EFPS will attempt to attain equilibrium
with this quantity so that the initial and final temperatures at ry will equal the imtial and final sink
temperatures) and the transient temperature T(ro, 1), resuiting from the perturbation of the sink
temperature, respectively. Equation (A.3) can now be written in the form rnccessary for this study,

dT-‘,‘,(l’o. ‘)

r{ro) &

+ Togulro, 1) = 0T, (0. 1) , (A4)



T.,.(fo, ) = the output system temperature at ro relative tot =0,
T, (ro, 1) = the input system temperature at ro relative to t = 0,
r(ro) = the time constant associated with the radial position ro.
The complete solution to Eq. (A.4) when T, (1o, t) *xperiences a step of relative magnitude T, (rq, 1)
[i.e.. T, (ro, ) = T(ro,0) fort=0and T, (ro, 1) = T (0. 0) + Tconstant fort > 0] at time t =0 can be found

from the sum of the particular and homogeneous solutions to Eq. (A.4).
The soiution to

:_‘T.w(ro.t) ¥ T lro, t) =0 (A.5)
dt r(ro)

is of the form
Swomoc = Aje" {A.6)

where A, is a constant and r is given by the characteristic equation r + 1/7(ro) = 0, which yields r =
=1/7(ry) so that the solution to Eq. (A.5) is

Suomoa = Aje V0 (A.7)

The particular solution to Eq. (A.4) can be found by the method of undetermined coefficients if the right
side will yield a zero derivative upon sufficient differentiation. Because the right side of Eq. (A.4) is the
input system quantity and this quantity is a step of relative magnitude T, (ro, t) occurringatt=0, foert>
0, dT, (ro, 1)/ dt = 0 because T, (ro, t) equals a constant over this range of t. Therefore, the particular
solution to Eq. (A.4) is of the form

dTg'.( o, l)

& (A.8)

Searr = Aa Ty (ro, 1) + Ay

The value of A; in Eq. (A.8) can be determined by substituting Eq. (A.8) into Eq. (A.4) and requiring
Eq. (A.4) to be an identity. Namely,

d[A: T, (ro, 1)]

e dt

+ A:T, (ro, t) =0T, (0, t) , (A.9)

which results in A; = 8. Therefore,
Seart =0T, (1o, t) . (A.10)
The combinea solution to Eq. (A.4) is

Tou (1o, 1) = Spart + Swomoo (A.11)



Tagyfo, 1) = 0T, (ro. 1) + Aje 0. (A.11A)

The value of A, can be found from the initial condition T, (ro, t) = 0 at t = 0 (since the system is
initially at equilibrium), which yields 0 = 8T, (ro.1) + A, or A; = —8T, (ro, 1) . The complete solution to
Eq. (A.4)is then

Tay (o, 1) = BT, (1o, ) = 0T, (10, t)e " (A.12)

Tayu(ro, 1) = 071, (ro, [ 1.0 — &) (A.12A)

for t > 0. Because T, (r, t) and T, (ro, t) are the system input and ouput quantities relative to the
temperature at rp and t = 0,

To, . (ro, ) = Tiro, 1) = Tire, 0), (A.13)

T (ro, ) = T(ro, %) = T(ro, 0) . (A.13A)

Substituting Eqs. (A.13) and (A.13A) into Eq. (A.12A) (6 = | from necessary relationship at t = %)
results in

T(ro, ) = T(ro, 0) + [T(ro, %) = T(ro, 0)] [1.0 — &™) . (A.14)
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Appendix B

THE DETERMINATION OF AN EFPS HIGHER-ORDER
RESPONSE FUNCTION STRUCTURE

The higher-order response function structure for a bundle | or bundle 2 EFPS can be determined
by performing one-dimensional time-dependent energy balances on the concentric layers of the EFPS
defined according to materia! composition (see Figs. 1.2 and B.1). The energy balancss for each
concentric layer have this form:

Qing — Qoury + Qeen, = Qacc » (B.1)
where
qin, = rate of heat transfer into ith concentric layer,
qour, = rate of heat transfer out of ith concentric layer,
gaen, = rate of heat generation in ith concentric layer,
gacc, = rate of accumulation of energy in ith concentric layer.

To simplify the analysis, each layer is assumed to be represented by only one temperature, and
material physical properties as well as the EFPS geometry are assumed to be independent of time and
temperature. Figure B.! represents the resulting elementary model of the EFPS. The temperature of
each layer is defined as that temperature occurring at the COM radius of that layer, r ; furthermore,

the radii at whict. material interfaces occur are indicated by r..
The energy balance on the outer stainless steel sheath (OS) is

ATos

2 ‘ (B.2)

Qinos — Qoutos + Qoenos = posCposVos

where
p = density of ith concentric layer,
Cp, = specific heat of ith concentric layer,
V, = volume of ith concentric layer,
T, = temperature at center of mass of ith concentric layer,

t = time.
In a cylindrical coordinate system qixos is represented as

27l
L (mﬂ(ﬁuom/ rvons)]/ Knope} + (flisios) + {[In(rvops/ Tvops))/ Kxops}

X (Tos — Tis) . (B.3)
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Fig. B.1. Simplified EFPS mode! used in determining higher-order response function structure.




Similarly, Gour.os is represented as

- ‘( [[ln(ruq)m,"?ht)m)),“z::()m’ + 11 (hrwooe)] ) (Ts = Tos)., (B.4)
where
£ = axial iength of EFPS,
K. = thermal conductivity at radial position m,
f), = interface resistance between ith and jth concentric layer,
h = heat transfer coefficient.
Let

yos = posCposVos . (B.5)

where v, is the capacitance of ith concentric layer for thermal energy. Define Ris.os and Rossim to be the
square-bracketed terms in Egs. (B.3) and (B.4), respectively. Equation (B.2) then can be reduced to

~Risos(Tos = Tis) + Rosnum(Te = Tos) = yosdTos , (B.6)

where A is a differential operator. The energy balance on the inner stainless steel sheath is

aT

Qings + qoengs — Qouris = mSCplsVIs‘a—F‘ ’ (B.7)
Letting

vis = pisCpisVis (B.8)
and

2nR
el : R
e {[In(txops/ tvoe)]/ Knoos) + (Disan) + {[In(rxons/ rvons)]/ Knond} —

Eq. (B.7) can be reduced to

~Ranas(Tis = Tan) + Risios(Tos — Tis) = yis4&Tis . {B.10)

The final form of the energy balance on the BN insulator 1s

~Rurran(Tax = Turx) + Ronas(Tis = Ton) = yandTon (B.11)



where

yox = panCogy Van

and

2R

Rurrpn =

The final form of the energy balance on the Inconel heater element is

“Rucomra(Ture = Tuao) + Rurmn(Tax = Ture) = yure ATurs .

( {[In(rxons/ rvop) ]/ Knond + (Qurr ax) + [(reons — Féuuu),'(thnmrsmn)]

where
YHTR = purr Cogyrp Virr
and
Rucomre ={ =y 3 7 S 3 =3 7 ;
[(rNops = rNop2)/ (2Knoostron2)] + (Dwco wir) + [(r8op2 = MRon2)/ (2Knoparaom))

The final form of the energy balance on the MGO core is

Rucomra(Ture = Tuco) = ymcod Tueo .

where

ymao = pymacoCryco VMoo .

Solving Egs. (B.6) through :8.17) for Tg, Tus, Tis. Tan, Thix. respectively, vields

Ris us) ( Risos ) Yos )

Ta Ts+ {1 + Tos + ATos ,
Rus,t n " Ru&hl- o R()svhlm .y
Ranis

T +(|+ “"‘)T ( )T
le's) L Risos - Risos atn.

Tos = -

Tis=~ Rurnan )Tml +(| + — Rurnan )TlN +(

RIN is RIN 15 lN s

IR R““""")Tum-*(l + Rucomre )Tun +( Yurn

Riure ay Rurr an
Tam = Tuco ’*( ——")ATuoo
Ruco ure

).\Ts\ P

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.1%)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)



Substituting Eq. (B.23) into Eq. (B.22) yields

Tex =~ M)Tuuﬂ#[l«r R'"'A‘"'"') ( Yuin ) ]

Ryre an Ryrw an Risrn an

[l +‘ Rym’“ ) ]Tu(,n : (B.24)

MGOHTR

Substituting Egs. (B.24) and (B.23) into Eq. (B.21) yieids

= [ Rumen ) [ ( Ymoo ) ] ‘ +[ +f Ruwomx ) ( Yox ) ]
T le 15 Rucowrr 4 |Tmao : Rn 18 RnN 1S
Ruao, un) [ ( Ruao mre ) +( Yuir __Ymco ) ]} -
[ Rur an s Rurwan /7 \ Rurwmn / . [' 4 Rucomms oo . (B35

Substituting Egs. (B.24) and (B.25) into Eq. (B.20) yields
Tou = - (fiate.) [ (Fpaams ) o[ 4 o) , () 5 |
1+ (e )l oo o[ 1 +( R ) + 22 ) |
(B e ] oo o{ B o g2 ) ]
- (B o () o )] [ (2o )l 20

Substituting Egs. (B.26) and (B.25) into Eq. (B.19) yields
Rax 0\ Ryrw ex ) [ __Yuco ] [ Rurs n)
l (Rm film Ranos g Ruconm 4 i Raxis
_Yen ) ] { Rwmao un) [l + Ruao HTI) ( Yurr ) ]
Rons Ryt oy Rurw an Ryrr sy
a2z W) 222 ) o
X + —
Rm,n HTR a l Ros tim * Ros fim 4

| { Rox ls) Rum/nn [ Rexus )[ Rmmmn) ( Yurr ) ]

Risos Ruiwan Risos Rutw an Rurran

-

X1 +( s )a | o1 +( Ju ) o 322 )]
o ) [+ (s ) ] e (Bam) o )

Ruoomn) [ Ruoourn) ( Yurr )][ ( Veacws )]} :
{ Rure an 3 Rurw sy T Rirw an » & i Ruconrr . Tuao . (B.27)
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Equation (B.27) can be simplified. after multiplication of all of the terms, to the form
To=[£A"+ 64+ 64"+ £47 + 68 + &]Tuco ,

where § are constants that can be determined by reduction of Eq. (B.27); for example.

fom 1 - fpoae) _  Rusormn) () ( Recoume) _( Rvor)

L Rani Risos Riyrr s

~(Byuam) _(Bgmsan) Sees ) . ( fuonan) _( Bnan)

and

6 ~{ il e

Arranging Eq. (B.28) into the Laplacian block-diagram form

|
Ta(S) Tosoo ()
——— BALEA A EA T EA FEAL S |

immediately says that the response function for the EFPS is fifth-order in the MGO core.

(B.28)

(B.29)

(B.30)

(B.31)
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