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SUMMARY

The distance that a thermocouple bead is located from the surface of an indirectly heated electric
,

fuel pin simulator (EFPS) and the uncertainty of the t hermocouple signal severely inhibit the ability of
the thermocouple to accurately resolve high-frequency changes in the surface temperature. A-

thermocouple bead with a measurement standard deviation of 0.556 K and located 0.0508 mm below

the surface [ Thermal-Hydraulic Test Facility (THTF) bundle i EFPS design) was found capable of
resolving surface phenomena occurring only at a period of >90 ms for a low-power axial zone and > 40

ms for the highest-power axial zone. These are on the same order as the periods that the THTF data

acquisition system can successfully resolve (~I00 ms). Therefore, the loss of surface phenomena
resolution (if any)is due to the limitations of the thermometry and not to the limitations of the data

'

acquisition system.
The radially dependent thermocouple time response is dominated by the surface-heat-flux driving

potential, which forces the mid- and outer-radius nodes to have first-order time constants almost
identical to the first-order time constant of the surface. Because large surface heat fluxes frequently

occur in the early part of a typical loss-of-coolant transient or during a rewet, the effect of radial

position on the thermocouple time response is minimal for these time frames. Higher-order response
theory for the thermal response of the EFPS was developed to establish that first-order response theory

accurately predicts the radially dependent time constants for given ranges of heat transfer coefficients

(h). Important results from the application of the higher-order response theory include the following:
1. Overall EFPS response (in all heat transfer regimes) cannot be predicted by first-order response-

theory.
2. For specific heat transfer coefficient ranges [h < ~4 k W/(m' K) and h > ~ 11.4 kW/(m' K)], the' '

EFPS surface behaves in a first-order fashion.
3. In cases dominated by surface heat transfer resistance [h < ~4 kW/(m* K)], the total EFPS

time constant can be approximated by

r = [(pC,V)rr rs]!(h2rrfr.wm) ,

where

(pC,V)EFr5 = capacitance of EFPS for thermal energy,

R = axiallength of EFPS,

rw. = outer radius of EFPS.

Even for these cases, the differences between the centerline and surface response times are 1.3 to 2.0 s.

4. When an internal thermal resistance dominates [h > ~II.4 kW/(m* K)], the EFPS surface

responds much faster than predicted by the above equation, and the centerline response appears to be

totally independent of the heat transfer coefficient.
5. The centerline response is multiorder, but for high surface heat transfer coefficients the.

centerline response time asymptotically approaches
.

rc = puoo C,uoo doo/(4Kuoo) .r

. ~ . - .
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,

xit

where

puoo = density of magnesium oxide core,
,

C,uoo = specific heat of magnesium oxide core,
.

ruoo = outer radius of magnesium oxide core,

' Kuoo = thermal conductivity of magnesium oxide core.

6. In certain situations-defined by high surface heat fluxes-the first-order response times of
radial positions inside the EFPS are shorter than the EFPS surface response time.

7. The EFPS responseis highly dependent on initialconditions and on the combination of forcing
functions at the surface (i.e., the heat transfer wefficient and sink temperature).

8. The EFPS response is not strongly dependent on the change in EFPS geometries from one axial

; power zone to another axial power zone.

Future EFPSs should have a sheath (assuming the thermocouple resides within the inner surface of

this sheath) as thin as mechanically possible and preferably not in excess of 0.254 mm. An extensive

effort should also be made to reduce as well as to determine more accurately the thermocouple signal
uncertainty (i.e., measurement standard deviation). These factors would greatly reduce the u ncertainties

found in the numerical EFPS analysis which uses the thermocouple signal as a foundation.

.

,

l

.

.
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THERMOCOUPLE SIGNAL SENSITIVITY TO THE SHEATH
THICKNESS OF THERMAL-HYDRAULIC TEST FACILITY

INDIRECTLY HEATED ELECTRIC-

FUEL PIN SIMULATOh3
.

R. D. Dabbs L. J. Ott

ABSTRACT

Analysis of data in large loss-of-coolant accident experimental facilities often
requires extensive use of signals recorded from thermocouples embedded in indirectly
heated electric fuel pin simulators (EFPS). These signals, converted to temperature,
are used in the numerical determination of EFPS experimental conditions, including
transient surface temperature, transient surface heat flux, and transient internal radial
temperature distribution.

Important points that arise in using the recorded thermocouple signals as a basis
for subsequent anal-is include (1) the effect of the distance that the thermocouple
bead is located from the EFPS surface on the ability of the thermocouple to resolve
rapidly changing bourdary phenomena and (2) the extent that this depth influences
the time response associated with the thermocouple. Several numerically solved EFPS
transients (where boundary conditions were specified, and surface temperature,
surface heat flux, and internal radial temperature histories were subsequently
calculated) are presented in an effort to establish these two relationships and to form a

*
foundation for recommending designs which will minimize the adverse effects of these
relationships by specifying optimal thermocouple radial positions in future EFPSs.

.

I. INTRODUCTION

The Oak Ridge National Laboratory (ORNL) Pressurized-Water Reactor Blowdown Heat
Transfer Separate-Effects Program' comprises two major areas of investigation: (1) an experimental
separate-effects study of the relations among the principal variables that can alter the rate vi
blowdown-the presence of flow reversal and rereversal, time delay to critical heat flux, the rate at
which dryout progresses, and similar time- and space-related functions that are important to loss-of-
coolant accident analysis-and (2) the development of a steady-state and transient heat transfer-local

fluid condition data base applicable to bundle geometries. Data pertinent to these areas ofinvestigation

are obtained from the Thermal-Hydraulic Test Facility (THTF),a large nonnuclear experimentalloop
with a test section that employs a square array ofindirectly heated electric fuel pin simulators (EFPSs)
(Fig.1.1).

The EFPSs in both bundle I and bundle 2* have a dual-sheath design, which is cross sectioned for

two axial locations in Fig.1.2. The outer and inner sheaths are stainless steel with tl:e inner grooved to

accept a 0.508-mm-OD Chromel-Alumel thermocouple. A boron nitride (BN) annulus inside the
stainless steel sheaths electrically insulates the heating element from these sheaths. The heating element,-

an annulus located concentrically within the BN annulus, consists of an inconel 600 base and a series of
.

* Bundle I and bundle 2 refer to the first and second E FPS bundles (7 X 7 arrays) designed for testing in the THTF. All TIITF
tests to date have been perforrned using bundle I; though it has not been installed, bundle 2 will be used as a design basis for this
study because of the increased total thickness of the stainless steel sheaths.
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Fig.1.2. Indirectly heated bundle 1 or bundle 2 fuel pin simulator cross section.

swaged cupronickel and/or inconel 600 oversleeves which allow variable axial heat generation, thus>

creating the stepped-chopped-cosine axial power profile. The central axial region of the heating
element, which has the highest electrical resistance and maximum heat generation rate,is composed of

only the Incone1600 base. Successive oversleeves of inconel 600 or cupronickel are swaged over the base

with each succeeding oversleeve extending to the end of the heating element. Oversleeves reduce the

resistance of the heating element and therefore decrease the power generation rate of that axial region.

The heated zone lengths and the representative axial power ratios for a prototypical THTF bundle I or

bundle 2 fuel pin simulator are shown in Fig. l.3. (The axial leve! I and axial level V cross sections in Fig.

1.2 correspond respectively to locations within axial power zone I and axial power zone V of Fig.1.3.)

The region inside the heating element is magnesium oxide (MGO), which electrically insulates the
central thermocouple sheaths from the heating element.

The design difference between bundle I and bundle 2 is the thickness of tFe outer stainless steel.

sheath, which was increased from 0.254 mm to 0.381 mm. An idealized segme' t of a bundle 1 or bundle

2 fuel pin simulatoris shown in Fig.1.4, and the associated bundle 2 dimensior.c for axial power zones I.

and V are given in Table 1.1. The thermocouple bead (0.076 mm diam) is nominally centered 0.254 mm
inside the outer surface of the inner sheath (0.635 mm from the pin surface) of a bundle 2 EFPS;

^ therefore, that point is the radial position at which the EFPS temperature history is measured.
I

e
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Fig.1.3. Location of asial power rones and their local-to-average heat generation rates for bundle I or bundle 2 EFPS.

1

Table I.I. Radial dimensions of bundle 2
EFPS at asial power zones I and V

4
Radial dimension

'**'Radial

Position * ;g p9,.cr Mial r
zone l zone V

A 2.76 2.28

B 3.10 2.82 -

C 3.10 3.10
D 4.24 4.24

*

E $.00 5.00
F 5.38 5.38

*The radial positions are referenced to Fig.
1.4.
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2. REPORT OBJECTIVES

The physical location of the thermocouple bead (0.635 mm from the bundle 2 EFPS surface)
*

affects its ability Io record accurately the temperature transients occurring on the surface of the EFPS.

For oscillatory surface phenomena, the recorded transient temperatures (i.e., thermocouple response)
,

will be damped as compared with the surface temperatures and will exhibit some form of time response

even if the EFPS is experiencing an extremely slow surface transient.

This investigation will determine the ability of thermocouples embedded at varying depths from
the E FPS surface to represent accurately various frequency boundary conditions and will determine the

time response associated with different thermocouple bead radial positions. A relationship will thus be

established between the sheath thickness of the EFPS (because the thermocouple will be adjacent to the

inner surface of this sheath) and the frequency range of surface phenomena that can be determined
numerically with the ir.ternally measured temperature history as a boundary condition.

The procedure used to establish this relationship will be basically numeric. A one-dimensional
model of a bundle 2 EFPS will be supplied to a forward-implicit version of ORINC,2 which will be
capable of using supplied steady-state and transient power generation rates and heat transfer
coefficient-sink temperature combinations as boundary conditions; more specifically, a square-wave
heat transfer coefficient of varying periods, a constant power generation rate, and a constant sink
temperature will be user' in the frequency response evaluation, whereas combinations of step drops,
constant values, and step increases for the heat transfer coefficient, power generation rate, and sink
temperature will be used in the time-response study.

,

The forward-implicit ORINC will be used to determine the internal transient temperature
distribution resulting from these imposed boundary conditions.The calculated transient temperature .

at a given radial position will then be considered to be the signal of a thermocouple located at that radial
position and experiencing the given boundar conditions.

i

1e

1e
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3. THERMOCOUPLE FREQUENCY STUDY (TFS)

In loss-of-coolant accident expenments such as tnose performed at ORNL's TIITF, high-speed

data recording is extremely important because transient conditions such as 90 K surface temperature
'

rises in 100 ms after departure from nucleate boiling and 200 K surface temperature drops in 200 ms
,

during rewet are not uncommon. The TilTF data acquisition system currently scans a given instrument
at a rate of 20 times /s and thus can sense when these events occur. Because the thermocouple is
embedded within the outer sheath of the EFPS, the question arises whether the thermocouple can be

used to determine high-frequency transitory surface phenomena.

3.1 Forward-Implicit Version of ORINC

To answer the question of the resolving capability of the thermocouple and to influence t he design
of future EFPSs, a series of transient calculations was performed with a newly developed version of
ORINC. This version has been modified to analyze data from the Forced Convection Test Facility

(FCTF)* and to handle a maximum of 12 thermocouples, each of which is sampled 100 times /s.

In transforming ORINC to make it compatible with the FCTF, the overall calculational method,

data input, code initialization, the code organization, and theory for solving transient, lumped-
parameter formulation of the cylindrical (radially one-dimensional) heat conduction problem were
preserved. Major changes involved converting the code to double precision; creating a variable
timestep capability; implementing TRIDIG,3 which is a tridiagonal matrix inversion subroutine;
completely revising the output packages; and transforming the finite-differenced heat conduction

,

equations from theinverse-implicit to the forward-implicit formulations with the power generation rate
and the heat transfer coefficient-sink temperature combination as boundary conditions (each of which

.

can be user-supplied for both steady-state and transient calculations). The boundary conditions are
known at 10 ms intervals, so that for calculational timesteps < 10 ms ORINC cubically interpolates

between the known values.
The bundle 2 ORINC pin model(Fig. 3.1) divides the EFPS into nodes numbered sequentially

from the center of the EFPS and associates the internal temperatures with the calculated nodal centers

of mass (COMs). The nodal interfaces (given by the solid lines in Fig. 3.1) and their corresponding

COMs (given by the chain-dotted lines in Fig. 3.1) are determined by the number of nodes desired for

each region and by the method of calculating the interface and center of mass radii documented in

O RINC.2
For this study, there are six regions with nodes as follows: (1) four in the M GO core.(2) two in the

inconel 600 heater,(3) two in the cupronickel oversleeve (absent in axial power zone 1),(4) three in the

BN annulus,(5) three in the inner stainless steel sheath, and (6) two in the outer stainless stee.' sheath.

The nodes-along with their inner and outer radii, COM radii, COM distances from the pin ..urface,

regional ma' erir is, a nd regional thick nesses for exial power zones I and V-are given in Tables 3.1 and

3.2, resre. eely. The ORINC code is capable of modeling a gap between the inner and outer stainless
steel sheaths; however, for this study it is set equal to zero, essentially creating one 1.143-mm-thick

sheath.'
.

The EFPS model does not physically incorporate the thermocouple but associates the center of the

thermocouple bead witt the nodal COM that most closely approximates its radial position; because the
,

gap has been zeroed, the thermocouple bead can be associated with the radial position of any nodal
COM. The region of interest, however, will be the stainless steel sheaths, which define an area within

1.143 mm of the surface of the EFPS.
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Fig. 3.1, ORINC model(one-dimensionsl along chain-dashed line) for e bundie 2 EFPS. Axial power rone V is represented
by the 16-node model, and axial power rone I is represented by the 14-node model.

Table 3.1. Radial dimension information for ORINC model of bundle 2 EFPS
at amiellevel corresponding to power rene I

***'

Nodalinner Nodal COM Nodal outer
'

Nodal Material
''"## # *radius radius radius material " ' . ' ' shicknessl . ' " ' '' "" ' ' " "

(mm) (mm) (mm) composition (mm)

|

| [ 0.0 0.0 0.0 5.38 MGO 2.76 2.76
1 0.0 0.98 1.38 4.40 MGO 2.76 2.76
2 f.18 1.69 1.95 3.69 MGO 2.76 2.76
3 1.95 2.18 2.39 3.20 MGO 2.76 2.76
4 2.39 2.59 2.76 2.79 MGO 2.76 2.76
5 2.76 2.85 2.94 2.53 inconel 3.10 0.34
6 2.94 3.02 3.10 2.36 inconel 3.10 0.34

'7 3.1G 3.32 3.52 2.06 BN 4.24 1.14
8 3.52 3.71 3.90 1.67 BN 4.24 1.14
9 3.90 4.07 4.24 1.31 BN 4.24 1.14 *

10 4.24 4.38 4.51 1.00 Stainless steet 5.00 0.76
|| 4.51 4.64 4.76 0.74 Stainless steel 5.00 0.76, .

12 4.76 ' 4.89 5.00 0.49 Stainless steel 5.00 0.76
13 -5.00 5.10 5.20 0.28 Stainless steel 5.38 0.33
14 5.20 5.29 5.38 0.09 Stainless steel 5.38 0.38

Surface 5.38 5.38 5.38 0.0 Stainless steel 5.38 0.38

_ _ - _ _ _ _ _
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Table 3.2. Radial dimienelon infornietion for the ORINC model of bundle 2
EFPS at asial level corresponding to pawer zone V

*I "'' 'INodalinner Nodal COM Nodal outer Nodal Material' ' * " ' ' ' " ' "'''radius radius radius material thickness. * '

'" ''[ compo.ition (mm)
** (mm) (nim) (mm)

[ 0.0 0.0 0.0 5.38 MGO 2.28 2.28
I 0.0 0.80 1.14 4.58 MGO 2.28 2.28
2 1.14 1.39 I.61 3.99 MGO 2.28 2.28

'
3 I.61 1.80 1.97 3.58 MGO 2.28 2.28
4 f.97 2.13 2 28 3.25 MGO 2.28 2.28
5 2.28 2.42 2.56 2.96 inconel 2.82 0.54
6 2.56 2.69 2.82 2.69 Inconel 2.82 0.54
7 2.82 2.89 2.96 2.49 Cupronickel 3.10 0.28
8 2.96 3.03 3.10 2.35 Cupronickel 3.10 0.28
9 3.10 3.32 3.52 2.06 BN 4.24 1.14
10 3.52 3.71 3.90 1.67 BN 4.24 1.14
11 3.90 4 07 4.24 l.: BN 4.24 1.14
12 4.24 4.38 4.51 1.00 Siainless steel 5.00 0.76
13 4.51 4.64 4.76 0.74 Stainless steel 5.00 0.76
14 4.76 4.89 5.00 0.49 Stainless steel 5.00 0.76
15 5.00 5.10 5.20 0.28 Stainless steel 5.38 0.38
16 5.20 5.29 5.38 0.09 Stainless steel 5.38 0.38

Surface 5.38 5.38 5.38 0.0 Stainless steel 5.38 0.38

.

3.2 Test Matrix Formulation.

Seven transient cases were completed, each using the forward-implicit ORINC to calculate the

internal temperature distributions using the previously discussed EFPS model, the supplied power
generation rate, and the supplied heat transfer coefficient-sink temperature combination boundary
conditions. Temperature histories were calculated for all nodal COMs, for the pin centerline, and for

,
the pin surface at two axial levels, one located within axial power zone I and the other located within

'

axial power zone V.

Identical steady-state boundary conditions were supplied for each case at each level, with the
transier.t boundary conditions derived from their corresponding steady-state values, which are listed in

Table 3.3. The power generation rates and the sink temperatures were held constant at their steady-state

values for the duration of the transient. Thus, the only difference from one case to another involved the

transient heat transfer coefficient, which was prescribed to be a square wave having a variable period
and oscillating for ten cycles about the steady-state heat transfer coefficient from a minimum of 0.5 the

steady-state value to a maximum of 1.5 the steady-state value. The seven cases were then defined by

choosing seven periods for the square wave. The associated periods are tabulated in Table 3.4. The

steady-state boundary condition combistations were chosen to allow power zone V to experience a
steady-state forced-convecticn heat transfer mode and power zone I to experience a steady-state

*

nucleate-boiling heat transfer mode.

Because the transient heat transfer coefficient boundary condition is composed of discrete data
.

points, the number of these points that must be included in one cycle of the square wave must be
determined if the function is to be represented accurately.The chosen value,20, represents the number

of calculational timesteps per square-wave cycle and creates the square wave pictured in Fig. 3.2. The 20

calculational timesteps per square-wave cycle, the 10-cycle square-wave duration, known square-wave

. - .,
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Table 3.3. Steady-state boundary conditions for all TFS cases

^ * I E '" ^ * I *I ** ''PBoundary condition .

rone I ione V

lleat transfer coefficient, kW/(m' K) 69.105 12.473 -

Sink temperature, K 620.348 564.087
Local linear power generation rate, kW/m' 58.25I 13.786

* Total rod power ~126 kW.

Table 3.4. TFS esses and their
corresponding best transfer

coeffielent equere.weve periods

Squarc-wave period
(ms)

TFSI 1000

TFS2 200
TFS3 100

TFS4 50

TFS5 25

TFS6 10

TFS7 5
*

.
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period,5 periods of steady-state calculations preceding the square wave, and 15 periods of steady-state

calculations following the square wave all combine to give unique definition to the 7 transients, w hich
are listed with their transient length and calculational timestep information in Table 3.5. The heat-

transfer coefficient boundary conditions for axial power level V of cases TFSI, TFS4, and TFS7 are
represented in Figs. 3.3 through 3.5. The heat transfer coefficient boundary conditions for the*

remaining car,es are similarly constructed.

The E FPS interna' temperature histories, as calculated for the two power zones in each of the seven

cases by the forward-implicit ORINC using these boundary conditions, can now be used to relate the
depth of the thermocouple bead to its highest interpretable frequency and also to determine the
maximum depth at u hich the thermocouple bead can be located and still resolve a particular surface

condition frequency. The method of determining these relationships is first to associate the

Table 3.5. Colemissional timestep and transiens duration infonnetion toe all TFS cases

"" '
Square-mate Preced.ng Ten-cycle Following Total length Calculational

** #" *Case period steady state square nave steady state of transient timestep r, ire'
, ' ' ' "

(ms) (ms) (me (ms) (ms) (ms)

TFS1 1.000 5.000 10.000 15.000 30.000 600 50
TF52 200 1.000 2.000 3.000 6.000 600 10

TFS3 100 500 1.000 f.500 3.000 600 $

TFS4 50 250 500 750 1.500 600 2.5
TF55 20 100 200 300 600 600 1.

TFS6 10 50 100 150 300 600 0.5
TFS7 5 25 50 75 150 600 0.23

.
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thermocouple bea.' with a nodal COM and then to combine the temperature history for this nodal
COM with the standard deviation of the thermocouple signal. This method yields an indication of the

ability of the thermocouple to record the nodal COM temperature for a given frequency of surface.

phenomena; that is, the thermocouple may be able to record the nodal temperature history trace
perfectly, but if the temperature oscillates (randomly or systematically) about a mean and if those-

oscillations are within il o (a being the thermocouple signal standard deviation) of the mean, then
those oscillations canmt be distinguished from the thermocouple signal uncertainty.

In applying this thermocouple frequency resolution analysis (Fig. 3.6), the mean oscillation
amplitudes a are determined by locating a curve through the minimum cyclic temperatures and
maximum cyclic temperatures occurring for the ten cycles. The nodal COM trend temperature,
represented by the chain-dashed line in Fig. 3.6, is then f ound for a particular time by taking the average

of the upper and lower mean oscillation amplitudes at that time.
Adding and subtracting the thermocouple signal standard deviation from the trend temperature

curve results in the trend standard deviation curves, which are represented as the dashed lines in Fig.

3.6.
If the mean oscillation amplitude band 2a is greater than the trend standard deviation band 2o, a

thermocouple located at this nodal COM is considered capable of resolving the given frequency.
Otherwise, the signal recorded by the thermocouple cannot adequately represent the nodal COM
temperature, and as a result, the inverse-implicit ORINC will be unable to calculate the surface
phenomena that actually occurred.

.

.
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3.3 Period Depth Correlation: Power Zone I

As seen in Table 3.1, the nodal COM s of most interest are those associated with nodes 10 through *

14. The node 14 COM being so close to the surface (0.091 mm) will be omitted from the discussion

because its response is indistinguishable from the surf ace response. Additionally, the calculated EFPS *

surface and EFPS centerline transient temperatures will be referenced; the calculated EFPS surface

heat flux will be presented for comparative purposes.

The standard deviation on the thermocouples used in the THTF EFPSs, as given by the
manufacturer,8 is 2.389 K, a value consisting of both a systematic and a random component. In
applying the thermocouple signal uncertainty to an oscillatory phenomenon, the random eontribution

to this uncertainty effectively represents the total uncertainty, for the s'stematic term produces only a
relative shift in the thermocouple signal. For this study, a more appropriate estimate of the
thermocouple signal standard deviation can therefore be obtained by determining the magnitude of the

random uncertainty through examination of actual steady-state thermocouple signals. The maximum

standard deviation of the steady-state thermocouple signal for all thermocouples located in axial pow er

ione I was found to be roughly 0.233 K. As a conservative figure, a standard deviation of 0.556 K is used
for the thermocouple signal. This value, combined with the results obtained in the TFS case studies for

axial power zone I, was interpreted by using the previously discussed method to yield Table 3.6.

For example, the node 10 through 13 COM temperatures for case TFS I (1000 me step-wave period

and axial power zone I) are presented in Figs. 3.7 through 3.10. From these figures it is evident that a

thermocouple located at any of these radial positions can accurately represent a surface phenomenon *

having a period of 1000 ms. Also, a/o decreases as the radial position approaches the center of the

EFPS. The radial position where a/o = 1.0 would be the maximum depth at which a thermocouple
'

bead could be located and still resolve the surface phenomenon occurring at the given period.

Figure 3.11 represents the calculated EFPS centerline temperature forcase TFSI and axial power

zone 1. The quantity a/o is less than 1.0; thus the centerline cannot distinguish surface phenomena
having a period of 1000 ms. Because a/o < l.0 at this point, the maximum thermocouple bead depth at
which the surface phenomenon can be rc<olved occurs between the radial position of the node 10 COM

and the EFPS centerline. The calculated surface temperature and surface heat flux for case TFSI and
axial power ione I are presented in Figs. 3.12 and 3.13.

Table 3.6. Thermocoupie frequewy ruolution
analyele results for asial power zone I

Nodal COM
Case [ Surface

10 !! 12 |}

TF51 * * * * *

* * * * *TFS2
TF53 * * * *

,

TFS4 * * *

TFS$ * *

TFS6 * *

TFS7 *

*Therrnocouple bead located at this radial position can
resolve temperature oscillations at the given frequency.

l
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3.4 Period-Depth Correlation: Power Zone V

in Table 3.2, the nodal COMs of most interest are those associated with nodes 12 through 16. The

node 16 COM will be omitted from the discussion because it is indistinguishable from the surface
response. The calculated EFPS centerline and EFPS surface transient temperatures will also be
analyzed; the calculated EFPS surface heat flux will be presented for comparative purposes.

The thermocouple standard deviation is combined with the calculational results obtained in the

TFS case studies for axial power zone V and subjected to the thermocouple frequency response analysis

to produ;c Table 3.7. Because the analysis is identical to that performed for axial power zone I, no
further discussion of the procedure is needed at this point.

Table 3.7. Thermocouple frequency resolution
analysis results for asial power zone V

Nodal COM
Case { Surface

12 13 14 15

* * * * *TFSI
TFS2 * * * *

TFS3 * * * *

TFS4 - * *

TFS5 *
.

TFS6 *

TFS7 *

* Thermocouple bead located at this radial position can
resolve temperature oscillations at the given frequency.
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3.5 Period-Depth Composite Relationship

The period-depth results summarized in Tables 3.6 and 3.7 indicate dual areas in the two-
' - dimensional space defined by the thermocouple bead distance from the EFPS surface and by the period

of the phenomena occurring on the EFPS surface. The first area represents the combinations of
thermocouple bead depths and surface phenomena periods that yield thermocouple signals which,

*

when supplied to the inverse-implicit ORINC can accurately reproduce the EFPS surface conditions.
The remaining area in this two-dimensional space represents the thermocouple bead d:pths that
provide thermocouple signals incapable of resolving the given frequency of surface oscillation.

These areas, as determined for axial power zone 1, are shown in Fig. 3.14 with the crosshatched

portion representing the desirable combinations. Figure 3.15 presents the areas as determined for axial

power zone V, with the crosshatched portion again representing the desirable combinations.
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|

The effect of the power generation rate and the heat transfer mode on the number of desirable

combinations can be seen from the larger area in Fig. 3.14 as compared with Fig. 3.15. This increase in

desirable combinations is due to the larger magnitude of the nodal COM temperature oscillations in the

region of axial power zone I; these oscillations correspond to a larger surface temperature oscillation

that will propagate further into the EFPS, thus increasing the depth at which the thermocouple bead
-_ can resolve the given frequency.

'

.
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4. THERMOCOUPLE RESPONSE STUDY (TRS)

- In addition to the damping of the node COM temperatures near the center of the EFPS, a
' *

. companion physical situation affects the ability of the thermocouple to record surface phenomena
accurately.This situation, which can be associated with various radial positions,is the time response;it

*

is often described in terms of a time constant,is characterized by the capacity of a system to store
energy, and is measured by the time necessary for a system or one of its components to adjust to an
external input.

To determine how an indirectly heated EFPS responds to a sudden change in surface conditions, a

series of transient calculations was performed using the forward-implicit version of ORINC, as
described in Chap. 3. A bundle 2 ORINC EFPS model (Fig. 3.1) identical to that used in the
thermocouple position frequency sensitivity study was supplied; because the EFPS models are
identical, the geometry specified in Tables 3.1 and 3.2 remains valid.

A gap of ~0.0254 mm is included between the inner and outer stainless steel sheaths in this study. It
is incorporated in the ORINC formulation as a heat transfer resistance term and therefore does not

change the geometry of the EFPS model. Th: gap is important in the TRS because the behavior of
L bundle I and bundle 2 EFPSs is being examined, whereas in the TFS, the gap was omitted because the
1

primary purpose was support for the design of bundle 3* EFPSs. The omission of the gap thus allowed
effective transformation of the ORINC EFPS from a bundle 2 design-with an outer sheath thickness
of 0.381 mm, an inner sheath thickness of 0.762 mm, and a gapd between these sheaths-into a bundle 3
design-with a single outer sheath 1.143 mm thick.

, ,

4.1 Test Matrix Formulation,

Thirty cases, each involving 3000 transient timesteps, were studied with the forward-implicit
'

ORIN C calculating the internal temperature distributions using the power generation rate and the heat

transfer coefficient-sink temperature combination as boundary conditions. Temperature histories were
'

generated for (I) all nodal COMs,(2) the EFPS centerline, and (3) the EFPS surface for an axial level
located within cit her power zone 1 or power zone V (Fig.1.3). The EFPS transient surface heat flux was

*

also determined by ORINC for each case.

These 30 cases can be arranged into I major group and 4 comparative groups. The major group
consists of 22 cases, with calculations corresponding to an EFPS geometry at an axial level within
power zone V, where the EFPS is subjected to a sufficient steady-state power generation rate to
necessitate an initial temperature profile to be considerably higher than the sink temperature. At the
initiation of the transient, the power generation rate is reduced to zero; the rod then cools until it attains

equilibrium with the sink temperature, which is held constant at its steady-state value over the duration

of the transient.The heat transfer coefficient is stepped at the time of the drop in the power generation
rate, with the size of the step increase defining the different surface. conditions to which the EFPS can

respond. The 22 cases in the major group, which are distinguished by the calculational timestep size and

by the magnitude of the step of the heat transfer coefficient boundary condition, are known as TRS01

; through TRS22..

The first comparative group experiences the same type of transient as the major group, wkh
calculations being performed for an EFPS geometry at an axial level within power zone 1. In the first

-
.

i. comparative group the cases are known as TRS23 and TRS24.

i '
' Bundle 3 refers to the third EFPS bundle (8 X 8 array) designed for testing in the THTF.

1

1
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The second and third comparative groups, for which calculations are performed for EFPS
geometries at axiallevels corresponding to power zones V and I, respectively, consist of two cases each

in which the power generation rate is zero over the duration of the transient, and the sink temperature .

and heat transfer coefficient are stepped at the beginning of the transient. Because the power generation

rate equals zero at all times, the EFPS is initially at equilibrium with the sink temperature and must .

again attain this equilibrium with the sink temperature when the sink temperature is step-increased. The

heat transfer coefficient is stepped at the time corresponding to the step in the sink temperature; the size

of the step increase distinguishes the two cases in each group and defines different surface conditions to

which the EFPS can respond. The cases composing the second and third comparative groups are
known as TRS25, TRS26, TRS27, and TRS28, respectively.

In the fourth comparative group are two cases that have (1) steady-state boundary conditions
similar to those used in the TFS and (?) correspond to the EFPS geometries of axial power zones V and

I, respectively. These cases, TRS29 and TRS30, experience a transient consisting of a constant sink

temperature, a constant power generation rate, and a step-decreased heat transfer coefficient.

Calculational timestep size, steady-state boundary conditions,and transient boundary conditions
for the TRS cases TRS01 through TRS30 are listed in Tables 4.1 and 4.2.

Table 4.1. Sesedy-sease (t = 0) boemdmey condesloes and
celealmeineel timesseep stae for mil TRS esses

n8l cal near Pom Enk Heat traderTRS
timestep generation rate temperature coemcient****

(ms) (kW/ m)* (K) [kW/(m' K)] ,

i 10.0 (3.2808) (0.39971) 299.66 0.1703
2 10.0 (3.2800) (0.39971) 299.66 0.1703
3 10.0 (3.2808) (0.39971) 299.66 0.1703
4 10.0 (3.2808) (0.39971) 299.66 0.1703
5 10.0 (3.2808) (0.39971) 299.66 0.1703
6 10.0 (3.2800) (0.39971) 299.66 0.I703
7 10.0 (3.2808) (0.39971) 299.66 0.1703
8 10.0 (3.2808) (0.39971) 299 66 0.1703
9 10.0 (3.2000) (0.39971) 299.66 0.1703

10 10.0 (3.2808) (0.39971) 299.66 0.1703
Ii 10.0 (3.2800) (0.39971) 299 66 0.1703
12 10.0 (3.2000) (0.39971) 299.66 0.1703
13 10.0 (3.2008) (0.39971) 299.66 0.1703
14 0.10 (3.2800) (0.3997I) 299.66 0.1703
15 0,10 (3.2000) (0.39971) 299.66 0.I703
16 0.10 (3 2808) (0.39971) 299.66 0.I703
17 0.10 (3.2000) (0.39971; 299.66 0.1703
18 0.10 (3.2808) (0.39971) 299.66 0.I703
19 0.10 (3.2800) (0.39971) 299.66 0.1703
20 0.10 -(3.2808) (0.39971) 299.66 0.1703
21 0.10 (3.2808) (0.39971) 299.66 0.I703
22 0.10 (3.2308) (0.39971) 299.66 0.1703
23 10.0 (3.2808) (1.68893) 299.66 0.1703
24 10.0 (3.2808) (1.69893) 299.66 0.1703
25 10.0 0.0 299.66 0.1703
26 10.0 0.0 299.66 0.1703
27 10.0 0.0 299.66 0.1703
28 10.0 0.0 299.66 0.1703
29 10.0 (34 4894) (0.39971) 564.08 15.0481 *

30 10.0 (34.4894) (1.64893) 620.35 187.9464

*0.39971 and 1.68893 are she axial peaking factors for power zones V and I.
respectively.
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Table 4.2. Transient (0 < t C t ) boundary conditions and
calculational tiniestep nise for all TRS cases

* ae t nal al Hncar p wer n Heat transfer
TRS timestep generation rate temperature coefficient

(ms) - (kW/ m)* (K) [kW/(m' K)]"****
.

I 10.0 0.0 299.66 0.5677

2 10.0 0.0 299.66 1.1354

3 |M 0.0 299.66 1.7030

4 10.0 0.0 299.66 2.8384

5 10.0 0.0 299.66 3.9738

6 10.8 0.0 299.66 5.6768

7 10.0 0.0 299.66 8.5152

8 10.0 0.0 299.66 11.3530

9 10.0 0.0 299.66 17.0304

10 10.0 0.0 299.66 22.7072

Il 10.0 0.0 299.66 28.3840

12 10.0 0.0 299.66 34.0608

13 10.0 0.0 299.66 170.3040

I4 0.10 0.0 299.66 17.0304

15 0.10 0.0 299.66 22.7072

16 0.10 0.0 299.66 28.3840

17 0.10 0.0 299.66 30608
I8 0.10 0.0 - 299.66 39.7376

19 0.10 0.0 299.66 56.7680

20 0.I0 0.0 299.66 113.5360

2I 0.10 0.0 299.66 170.3040

22 0.10 0.0 299.66 227.0720*

23 10.0 0.0 299.66 1.7030

24 10.0 0.0 299.66 17.0304

25 10.0 0.0 373.00 1.7030*

26 10.0 0.0 373.00 17.0304

27 10.0 0.0 373.00 1.7030

28 10.0 0.0 373.00 17.0304

29 10.0 (34.4894) (0.39971) 564 08 1.5048

30 10.0 (34.4894) (1.68893) 620.35 18.7946

'O.39971 and 1.68893 are the axial peaking factors for power zones V and I,
respectively.

The EFPS internal temperature histories as calculated by the forv ard-implicit ORINC using the

tabulated boundary conditions can now be used to relate the depth of the thermocouple bead to a time
constant associated with the radial location of the thermocouple. If the thermocouple is assumed to

reside at a given nodal COM that nodal COM transient temperature is used to yield a radially
dependent time constant directly related to the phenomena on the surface.

4.2 Radial Time Constant Determination

A widely accepted model for system dynamic response'is the ordinary differential equation with

constant coefficients:

d'x
+ a.-'d''' x. '" "' dt

dx.

* * *a. d t''',

'

b,.d"x. + b. id"-'x.. + . . + bidx,. + box,. , (4.1)d t, dt,_, dt

- _-
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where

a, = constants, i = 0, I, ..., n;
.

b, = constants,j = 0,1, ..., m;

t = time; '

xma = system response quantity;

x,. = system input quantity.

If the EFPS is assumed to be a first-order system, a complete solution to Eq. (4.1)(relative to the

initial system temperatures and forced by a step in the input system temperature occurring at t = 0) of
the following form can be obtained:

T(r, t) = T(r, 0) + [T(r, =) - T(r, 0)] [1.0 - e-""d] , (4.2)

where

T(r, t) = temperature at radial position r and time t = t,

T(r,0) = temperature at radial position r and time t = 0,

T(r, =) = temperature at radial poskion r and time t = =,

f(r) = EFPS time constant at radial position r.

~

The complete transformation from Eq. (4.1) to Eq. (4.0 can ? e found in Appendix A.
Substituting t = r(r)into Eq. (4.2) results in

|
| T[r, r(r)] = T(r,0) + [T(r, =) - T(r,0)][1.0 e"''] (4.3)

or

- Er, r(r)] = T(r, 0),+ [T(r, =) - T(r,0)] [0.63212] . (4,4)

(

| Equation (4.4) is valid for all TRS cases [i.e., T(r, =) can be higher than T(r,0) or T(r, =) can be lower
j than T(r,0)] because Eq. (4.4) is dependent on both the sign and the magnitude of the difference in

( T(r,=) and T(r,0). This is shown by Fig. 4.1 and .i.2, which graphically portray the relationship between
| r(r) and [T(r. =)- T(r,0)] for a cooling case and a heating case, respectively.

Because the nodal COMs, EFPS centerline, and EFPS surface transient temperature histories

have been generated for each TRS case by the forward-imp!icit ORINC, the temperature T[ro, r(ro)] for

a particular radial position ro, corresponding to the time t = r(ro), can be calculated from Eq. 4.4 using
i the steady-state temperature T(ro,0) and the final equilibrium temperature T(ro, =). The value of the
,

i

radially dependent time constant r(ro) is determined by using this known temperature T[ro, r(ro)], the
f ORINC-calculated temperature-time table, and the method illustrated in Fig. 4.1 or 4.2. Thus, the *

'

. ORINC-calculated transient temperature profiles are scanned at the radial position to until Mro, r(ro)]

lies between two successive timestep temperatures. The time of the first of these two temperature '

'

profiles is assumed to be r(ro); therefore, the error in r(ro)is less than the calculational timestep size for

that particular case because Wr , r(ro)]is guaranteed to occur before the time of the second temperatureo

profile.

-. - - -
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As seen in Tables 3.1 and 3.2, the nodal COMs of most interest are those associated with the five

outer nodes of either geometry. The outermost node (14 for axial power zone I and 16 ior axial power

zone V) will be omitted from the discussion since they are indistinguishable from the surface response. -

The ORINC-calculated EFPS centerline and EFPS surface transient temperatures will also be
referenced. *

Tabic 4.3 contains, for all TRS cases, the radially dependent first-order time constants (as
determined by the previously mentioned method) for the EFPS centerline and the EFPS surface. Also

included in Table 4.3 are the uncertainties (derived from the calculational timestep size) for each time

constant and the transient value of the heat transfer coefficient for each TRS case.

Additionally, the fifth through the second outermost nodal COM temperatures were analyzed for

cases TRS03, TRS09 TRSl3, TRS21, and TRS23 through TRS30, with their associated radially
dependent first-order time constants presented in Table 4.4.' These time constants have the same
uncertainties as listed in Table 4.3 for the corresponding TRS case.

Table 4.3. EFPS centerline and EFPS surface first-order tiene constants
with associated uncertainty for all TRS cases *

EFPS EFPS g g
TRS centerline r(0) surface r(r ,)

;
case time uncertainty time uncertainty

for t > 0- No. constant (s) constant (s)
[kW/(m* K)](s) (s) .

I 17.87 +0.01 1660 +0.01 0.5677
2 9.77 +0.01 8.27 +0.01 1.1354 -

3 7.07 +0.01 5.48 +0.01 f.7030
4 4.92 +0.01 3.20 +0.01 2.8384
5 4.0 I +0.01 2.20 +0.01 3.9738
6 3.33 +0.01 I.42 +0.01 5.6768
7 2.80 +0.01 0.8 i +0.0 I 8.5152
8 2.54 +0.01 0.50 +0.01 11.3536
9 2.28 +0.0 I I7.0304

10 2.15 +0.01 22.7072
il 2.08 +0.01 28.3840
12 2.03 +0.01 34.0608
13 I.82 +0.01 170.3040
14 0.2287 +0.0001 17.0304
15 0.1279 +0.0001 22.7072
16 0.0835 +0.0001 28.3940
17 0.0601 +0.0001 34.0608
I8 0.0460 +0.0001 39.7376
19 0.0253 +0.0001 56.7680
20 0.0074 +0.0001 113.5360
21 0.003I +0.0001 |70.3040
22 0.0013 +0.0001 227.0720
23 8.00 +0.01 6.01 +0.01 1.7030
24 2.28 +0.01 0.29 +0.01 17.0304
25 6.39 +0.01 4.80 +0.01 1.7030
26 2.00 +0.01 0.17 +0.01 17.0304
27 6.38 +0.01 4.76 +0.01 1.7030

' 28 2.03 +0.01 0.19 +0.01 17.0304 i
'

29 2.50 +0.01 1.53 +0.01 I.5048 |

30 2.44 +0.01 0.85 +0.01 18.7946

*The transient value of the heat transfer coefficient for each TRS case is included for
reference purposes.



27

Table 4.4. Radisily dependent first-order time constants (s) for selected TRS cases

Tits case number

position
3 9 13/21 23 24 25 26 27 28 29 30

*

[ 7.07 2.28 1.82 8.00 2.28 6.39 2.00 6.38 2.03 2.50 2.44
10 6.64 I.12 5.47 I.02 0.82
11 6.53 0.% 5.34 0.86 0.84
12 6.15 1.18 0.69 6.40 0.80 5.56 1.09 5.20 0.70 1.45 0.85
13 6.04 1.02 0.52 6.18 0.51 5.43 0.94 4.83 0.39 1.48 0.85
14 5.92 0.85 0.35 5.30 0.77 1.50

15 5.65 0.46 0.0538 4.99 0.38 1.52

Surface 5.48 0.23 0.0031 6.01 0.29 4.80 0.17 4.76 0.19 I.53 0.85

An example of the actual calculations used in creating Tables 4.3 and 4.4 can be found in Table 4.5,
w hich involves case TRS03.This table includes the following for the particular TRS case: (1) the radial

position r for which the time constant was calculated;(2) the distance of this radial position below the
surface of the EFPS;(3) the initial temperature T(r,0) at the given radius;(4) the final temperature
T(r, =) at the given radius;(5) the difference in the final and initial temperatures at the given radius;(6)

t his difference multiplied by (l.0 - c'''*);(7) the theoretical value of the temperature Tin.or, [r, r(r)] at the

given radial position and at the time equal to the time constant value at that radial position;(8,9) two
successive timestep ORINC-calculated temperature-time combinations which bound Tin ,, [r, r(r)] at*

the given radial position, and (10) the calculated value of the first-order time constant r(r) at the given
*

radius.

4.3 Time Response-Depth Composite Relationship

The radial time constant results which are summarized in Tables 4.3 and 4.4 indicate a relationship

between the magnitude of the EFPS surface conditions and the magnitude of these radial time
constants. Figure 4.3 portrays this relationship for cases TRS01 through TRS22 as an association

between the transient heat transfer coefficient and the time constants for the EFPS centerline and
surface. Figure 4.3 has the following characteristics.

There are two ranges of the heat transfer coefficient over which the log of the surface time constant

is linear with respect to the log of the heat transfer coefficient: (1) for those values of the heat transfer
2coefficient greater than ~11.4 kW/(m K) and (2) for those values of the heat transfer coefficient less

2than ~4 kW/(m K). The time constant for the centerline of the EFPS is nowhere linear with respect to
ti Nat transfer coefficient, although it does appear to approach ~l.8 s asymptotically as the heat
transfer coefficient becomes large. Because Fig. 4.3 represents the centerline and s urface time constants,

the time constants associated with any other radial position should lie within the envelope created by the

surface and centerline time constants. Broadening of the envelope with increased heat transfer

coefficient should be expected since (1) small heat transfer coefficients define a slow transient in which-

the centerline can respond equally with the surface and (2) large heat transfer coefficients define fast
transients in which the energy transport capability of the EFPS dominates, thereby forcing the*

centerline to respond much more slowly than the surface. The envelope defined by the EFPS surface
and centerline time constants appears to widen continually with increasing heat transfer coefficients;

however, the difference in the sunface and centerline time constants varies from ~l.3 s at low heat

-- -_ ,,
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Table 4.5. Critical inforsnation for deterunining radially dependent firsterder tiene constants relative to case TRSO3 .

Distance
* * * '" "I'* "'NNodal T(r,0) T(r, =) [T( ,=) t Tommc(r,t) t + At Tomme(r,t + At) 'r(r)"' "' (0 63212)G = Ur.0) + C2position (K) (K) -T(r,0)) (,) (g) (,) {K) (,)(mm) surface (K) (K)

I(mm)
.

,

.I0"
[ 0.0 5.38 532.91 299.67 -233.24 ~-147.44 385.47 7.07 385.56 7.08 385.41 7.07 '

12 4.38 f 00 530.45 299.67 -230.78 -145.88 384.57 6.15 384.65 6.16 384.51 6.15
13 4.64 0.74 529.72 299.67 -230.05 -145.42 384.30 6.04 384.34 . 6.0 * 384.21 6.04
14 - 4.88 0.50 529.07 299.67 -229.40 -145.01 384.06 5.92 384.10 5.93 383.96 5.92
15 5.10 0.28 527.93 299.67 -228.26 -144.29 383.64 5.65 383.69 5.66 -383.55 5.65

Surface 5.38 0.0 527.24 299.67 -227.57 -143.85 383.39 5.48 383.39 5.49 383.25 5.48

. . * *
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.

transfer coefficients to ~2.0 s at intermediate heat transfer coefficients to ~1.8 s at high heat transfer
coefficients.

in Sect. 4.2 the assumption was made that the EFPS is a first-order dynamic system. If this were the

case, the relationship of Fig. 4.3 would belinear for both the surface and the centerline [an explanation

of the linearity of the time constant-heat transfer coefficient relationship for first-order dynamic
systems is given in the comments concerning the development from Eqs. (4.7) to (4.10)]. Because the

time constant-heat transfer relationships of Fig. 4.3 clearly are not linear, additional explanation of the
observed behavior of the EFPS is necessary.

*

The E FPS is in fact a complex interacting thermal system having a response function structure that

must be obtained from mathematical modeling of the actual EFPS response characteristics. Because

the radially dependent EFPS temperature is the response variable ofinterest, the response function
structure of the EFPS is determined by making one-dimensional time-dependent energy balances on

the concentric layers (one layer for each material) of a bundle I or bundle 2 EFPS* (see Fig.1.2). This

analysis, presented in Appendix B, produces expressions for the temperature perturbations of each
concentric layer caused by a perturbation of the coolant bulk temperature..

The response of the temperature associated with the COM of the outer stainless steel sheath to a

perturbation in the coolant temperature can be described by*

i

R mos' R mos i

Ta = - [ Rosem.4
yos

Tos . (4.5)
Ros/u. 4 i Rosga.46

1

~

!

l

.
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where

To = bulk coolant temperatnre, -

Tis = inner sheath temperature,
,

Tos = outer sheath temperature,

yos = capacitance of the outer sheath for thermal energy (see Appendix B),

Ro = thermal resistance between i and j (see Appendix B),

A = differential operator,

Consider Eq. (4.5) with the assumption that Ros,u. > Ris,,os. Thus, Rosa., which includes the heat
transfer coefficient, is the dominant resistance to heat transfer associated with the EFPS. For this
condition, the internal heat transfer resistances are not restrictive, and the EFPS interior can supply

heat to the surface as quickly as the surface can dissipate it. Since

2rr2
Rosa = [[In(rsom/isou.)]/Kuom) + [1/hrsom] , (4.6)

where ,

R = axiallength of EFPS, ,

ruom = outer radius of EFPS,

inom = COM radius of outermost node in EFPS model,

Kuom = thermal conductivity of outermost node in EFPS model,

h = heat transfer coefficient,

and since for the current assumption [In(rsom/isom)]/ Kuoo. 41/ hrsom), Eq. (4.5) can be reduced to
- the following:

"
To = 1+ a Tos. (4.7)L h2druom 4

Equation (4.7)is a response function of the form that describes a first-order dynamic system. The
time constant for this first-order system is defined as

"
ros = (4.8)h2druou , ,

1

. In the surface-resistance-dominated condition, the entire EFPS will respond essentially as defined by !.

Eq. (4.7); therefore, yos can be replaced by ytres, where yrres is the capacitance of the ETPS for
thermal energy. Thus, expanding yerrs into its components, Eq. (4.8) can be transformed into

|
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(pC,V)ars
(4.9)

r = h2rrRr ,fy.

.

[(pC,V)Eres = frffC,,(rLi.,,- r ,,), where i is over n concentric layers). Supplying numerical values2
*

for the physical property and geometric variables yields an equation that is linear with respect to

(4.10)r= ,

h

where r is in s and h is in kW/(m K). The prediction of Eq. (4.10)is overlaid on the results ef Fig. 4.3 in2

Fig. 4.4. Equation (4.10) agrees very wellin both slope and absolute value with the portion of the surface
2

time constant curve associated with heat transfer coefficient values below ~4 kW/(m K).
As the EFPS heat transfer condition is transformed from being dominated by the heat transfer

coefficient resistance to being dominated by an internally located thermal resistance, the surface will

begin to respond much faster than predicted by Eq. (4.10).Therefore,in Fig. 4.4, the prediction of Eq.
(4.10) will rotate counterclockwise as the heat transfer coefficient becomes large. This rotation will
essentially pivot about the point on Fig. 4.4 defined by the time constant predicted by Eq. (4.10)
corresponding to the heat transfer coefficient that is the upper bound for the surface-dominated heat

2

transfer resistance condition (~4.0 kW/(m' K). Above heat transfer coefficients of ~ l l.4 kW/(m K),

the slope of the prediction of Eq. (4.10) tends to become less steep, thus approaching the slope of the*

.
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upper linear portion of the observed surface time constant curve. Indeed, the ccnditions in which the

heat transfer coefficient thermal resistance and the internally located thermal resistances are about
equal ' define the transition area on Fig. 4.3 where the observed surface time' constant curve is *

continuously changing slope (i.e., ~4 kW/(m' K) < h < ~11.4 kW/(m K).2

The response of the centerline of the EFPS to a certurbation in the coolant temperature can be
'

described by the following (see Appendix B):

Ta = [(5a' + (4a' + 6a' + (2A* + fia + fo]Tuoo , (4.11)

where

- a = differential operator,

Ta = bulk coolant temperature,

Tuun = EFPS core temperature,

{, = constants defined in Appendix B.

Equation (4.1 I)is a fifth-order response function for the centerline temperat ure of the EFPS:Iherefore,

no linear portions of the centerline time constant curve should appear in Fig. 4.3.

For the EFPS heat transfer condition in which the restrictive thermal resistance is located within -

the MGO core (this case occurs as the heat transfer coefficient becomes large), the centerline response
will be totally independ:nt of the surface conditions. Thus, the time constant for the centerline will *

asymptotically approach a minimum value as the heat transfer coefficient increases. The value of the
centerline time constant asymptote is from Eq. (4.11) to be

vue.e. puu, Cpu,,,,nt(rdui)
7

4 4w = Rpuu. 2n t(2 K uu,r ,m,)/(ruu.) (4.12)
=

,
2

u

wnich can he reduced to

pu,.e Cpyg,ruun
7%m=

4Kuu, (4.13).

where

yuu, = capacitance of the MGO core for thermal energy,

Rpu,,.. = thermal resistance between f, and MGO outer radius,

f = axial length of EFPS,

'pur . = density of MGO core.
.

Cpoy, = specific heat of MGO core,

ruu, = outer radius of MGO core,

Kuu, = thermal conductivity of MGO core.
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Substitution of the appropriate physical properties and geometric constants into Eq. (4.13) yields

%sy = 1.82 s . (4.14)-

This result compares extremely well with the centerline time constant asymptote of Fig. 4.3.-

Higher-order response theory has been applied to the EFPS to verify that the relationships or Fig.

4.3.which were obtained from first-order response theory, effectively explain the time-response
characteristics of EFPS. Comparisons of the first-order results of Fig. 4.3 with calculated predictions of

Eqs. (4.10) and (4.14)in general trends, slopes oflinear sections, and time constants approached as the

heat transfer coefficient becomes large or small indicate that first-order theory is sufficient to determine

dependent time constants associated with certain heat transfer coefficient ranges.

The observation w as made concerning Fig. 4.3 that the time constants for radial positions betu een

the centerline and the surface of the EFPS should lie within the envelope of Fig. 4.3. However, the

EFPS can experience a heat transfer condition for w hich this is not the case. If the dominant restriction

to heat transfer in the EFPS is a heat transfer resistance associated with a radial position within the
outer region of the heating element (large heat transfer coefficients), a situation arises u here. in order to

meet the boundary conditions on the surface. energy is removed from the mid-radius nodes (via
conduction through the outer-radius nodes) faster than energy is supplied to the mid-radius nodes from

the core region. Figure 4.5 is a representation of the radially dependent time constants for an EFPS

.
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experiencing this condition. The time constants at the mid-radius nodes are less than the time constar. .
of the surface. This relation indic '.es that, for any given time, the internal radial positions are not lower

in temperature than the surface, but rather, in relation to their steady-state temperature, their time ,

constant tem peratures [T[r, r(r)]} are attained before the surface reaches its time constant temperature.

The condition for which the internal time constants are smaller than the surface time constant ,

occurs ir. certain limiting cases where there is a large surface heat flux, which can be due to a large
difference in the sink and surface temperatures and/ or a large heat transfer coefficient. This surface heat

flux creates a large driving potential near the surface of the EFPS, thereby forcing a significant amount

of energy out of the surface. The M GO core region of the EFPS has a low thermal conductivity and thus

cannot supply energy (the power generation rate is zero for t > 0 s) to the mid-radius nodes as quickly ss

energy is being drawn from them by the large surface driving potential and high thermal conductivity of
the stainless steel sheaths. Therefore, the temperatures corresponding to the mid-radius nodal COMs

are depressed and reach their time constant temperatures prematurely, with the result of smaller salues
for the internal radial time constants. Surface heat fluxes of such magnitude are not unusual but may

occur frequently in loss-of-coolant experiments.
The test cases composing comparative groups one, two, and three have centerline and surface time

constants presented in Table 4.3. These values can be overlaid on Fig. 4.3 to illustrate that the EFPS

geometry associated with a particular axial power zone and the type of transient ti.e., heating or
cooling) do not significantly affect the time constant-heat transfer coefficient relationship.

Comparative group four, however,is included to show that theinitial conditions as well as the type
of transient to which the EFPS responds have a marked effect on the calculated time constants. Thus,

the information in Fig. 4.3 is extremely dependent on the initial conditions and the forcing functions
(i.e., heat transfer coefficient and coolant temperature); the results cannot be generalized into an -

all-encompassing explanation of the time constant-heat transfer coefficient relationship.

.

-
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5. CONCLUSIONS AND RECOMMENDATIONS

The transient calculations presented in the 7 TFS cases and the 30 TRS cases reveal a dramatic
'

effect on the ability of the thermocouple to resolve rapidly changing surface phenomena and a lesser

effect on the time response of the thermocouple attributable to the variation of the radial location of the
'

thermocouple bead in the EFPS (within 1.016 mm of the surface). Four factors dominate the
. temperature resolution capability of the thermocouple response: (1) the distance from the surface of

the EFPS to the radial position of the thermocouple bead,(2) devi e uncertainty in the thermocouple
itself,(3) the magnitude of the power generation rate of the EFPS, and (4) the magnitude of the change

in surface conditions. Two factors dominate the time response of an internally located thermocouple'

- bead: (1) the distance from the surface of the EFPS to the radial position of the thermocouple bead and

(2) the rnagnitude of the surface heat Gux of the EFPS.

The inability of the thermocouple bead to resolve high-frequency surface conditions when it is
displaced from the surface is illustrated in Figs. 5.1 and 5.2, which show that a surface condition
occurring at a period of 100 ms is decipherable only by a thermocouple bead located within (0.14)
(5.385) = 0.754 mm of the surface for axial power zone I and within (0.10)(5.385) = 0.538 mm of the
surface for axial power zone V. These results are made conservative by the introduction of the
thermocouple standard deviation and by the relatively small amplitude of the heat transfer
coefficient-step-wave boundary condition.

Because of the instrument uncertainty of the thermocouple response, the nodal COM temperature

,

associated with the thermocouple bead must have a total cycle magnitude of at least I.lli K to be
resolvable.This magnitude is a result of the extent to which the heat transfer coefficient is changing; for

this study this change is small as compared with those experienced in actual THTF tests. [The heat
,

2 2transfer coefficient in these study cases ranges between 34.55 kW/(m K) and 103.6 kW/(m K) for
2axial power zone I and between 6.235 kW/(m K) and 18.709 kW/(m' K) for axial power zone V, as

compared with varying several orders of magnitude in THTF tests. However, these case calculations do

indicate the inability of the thermometry to allow the inverse-implicit ORINC to calculate a varying
heat transfer coefficient within 50% ofits true value for surface phenomena occurring at frequencies in

the higher range of the case studies.] Therefore, the depth at which a thermocouple can resolve a given

surface frequency (for this is a function of ..ie total cycle magnitude), as well as the highest frequency

that can be interpreted at a given radial position, is very much dependent on the thermocouple
uncertainty.

The test cases presented for a the; nocouple bead located 0.508 mm below the surface of the EFPS

(bundle I design as compared with 0.635 mm for bu ndle 2 design) show that surface conditions having a

period of >40 ms for axial power zone I and a period of >90 ms at axial power zone V are the only ones

that can be effectively reproduced by supplying the recorded thermocouple signal to the inverse-implicit

ORINC. Because the THTFdata acquisition system records the thermocouple signal at 50-ms intervals,

it is capable of resolving an oscillatory condition having a period of about 100 ms. Thus, the EFPSs as

designed in bundle I have a resolution capability consistent with the THTF data acquisition system
within axial power zones I and V.

*

The depth of the thermocouple bead below the surface of the EFPS also affects its time-response

characteristics. Examination of the radially dependent time-response characteristics of the EFPS yields
,

. severalimportant results:

1. Overall E FPS response (in all heat transfer regimes) cannot be predicted by first-order response

. theory.

.
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2. For specific heat transfer coefficient ranges [h < ~4 kW/(m' K)and h > I I.4 kW/(m' K)], the |
EFPS surface behaves in a first-order fashion.

'

3. In cases dominated by surface heat transfer resistance [h < 4 kW/(m' K)], the EFPS time ;
,

Iconstant can be approximated by

r = [(pC,V)rres]/(h2rrRr..,< ) ,
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where

(pC,V)sres = capacitance of EFPS for thermal energy,

R = axiallength of EFPS,
.

r..n-. = outer radius of EFPS.
,

(Even for these cases, the differences between the centerline and surface response times are 1.3 to 2.0 s.)
24. When an internal thermal resistance dominates [h > ~11.4 kW/(m K)], the EFPS surface

responds much faster than predicted by the above equation, and the centerline response appears to be ;

totally independent of the heat transfer coefficient. )
!

l

|
1
|
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5. The centerline response is multiorder, but for high surface heat transfer coefficients the
centerline response time asymptotically approaches .

rg = puoo C,uoo doo/(4Kuoo),r .

where

puoo = density of MGO core,

C,uco = specific heat of MGO core,

ruco = outer radius of MGO core,

Kuoo = thermal conductivity of MGO core.

6. In certain situations-defined by high surface heat fluxes-the first-order response times of
radial positior.s inside the EFPS are shorter than the EFPS surface response time.

7. The EFPS response is highly dependent on initial conditions and on the combination of forcing

functions at the surface (i.e., heat transfer coefficient and sir.k temperature).
8. The EFPS response is not strongly dependent on the change in EFPS geometries from one axial

power zone to another axial power zone.

These results indicate that first-order response theory should not be used for the analysis of EFPS
'

transients and that first-order time constants (although they are correct for certain heat transfer
conditions and EFPS radii) applied to the investigation of the complete thermal behavior of an EFPS

,

are meaningless. Therefore, a thorough time-response analysis of the EFPS transients must be
conducted with the rigorous solution of the transient heat conduction equation.

In general, the time response of the nodal positions in the radial vicinity where the thermocouple
might be located will be negligible because the surface heat flux is often large enough to produce the

dominating driving potential, which forces these nodes to have responses almost identical to the
surface. Thus, for a thermocouple bead located within 1.016 mm of the surface of the EFPS, the
thermocouple time response is much less restricting than the thermocouple resolving ability.

These conclusions make clear that the uncertainty of the thermocouple signal uncertainty limits its

ate.lity to resolve high-frequency boundary phenomena. Therefore, not only should future EFPSs be

designed with the thermocouple positioned as close to the surface as mechanically possible, but an

extensive effort should be undertaken to determine more accurately and/or to reduce the thermocouple
uncertainty.

.
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Appendix A

~ A STEP RESPONSE SOLUTION TO THE GOVERNING DIFFERENTIAL*

EQUATION OF A FIRST-ORDER DYNAMIC SYSTEM
,

An nth order system dynamic response can be modeled by the following ordinary differential
equation with constant coefficients:

d'n + a.-i d'~' n + .. + aidui + aohn =a. , ,_ i

b. dt.d*x., + b. i d*-' x., + . . + b i dx + box,. ,(A.1)d t,,- , dt

where

a. = constants, i = 0, I, ..., n;

b; = constants,j = 0, I, .., m;

t = time;
.

x = system response quantity;
.

x,. = system input quantity.
.

In simplifying Eq. ( A.1) to model a first-order system, all a. (i = 2,3, , n) are set to zero and all b,

(j = 1,2,3, ..., m) are set to zero. This results in

dui
ai * ' * ' ' ' (^ ' 'dt

f

Dividing Eq. (A.2) by ao yields

b '+%=b, (A.3)x
ao dt ao

where

r = system time constant,ai/ao sa

bo/ao ss 6 = a constant defined by the system.

The system input and output quantities ofinterest for the EFPS, at a radial position ro, are the sink

temperature (because the power generation rate is zero, the EFPS will attempt to attain equilibrium
'

with this quantity so that the initial and final temperatures at re will equal the initial and final sink
temperatures) and the transient temperature T(ro, t), resulting from the perturbation of the sink

,

temperature, respectively. Equation (A.3) can now be written in the form r.ecessary for this study,

r(ro) dT.,,,(ro, t) + T. ,(ro, t) = 6T.,,(ro, t) , (A.4)

1

!

|
4

)
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where

T..(ro, t) = the output system temperature at ro relative to t = 0, .

T.,,(ro, t) = the input system temperature at to relative to t = 0,
,

r(ro) = the time constant associated with the radial position ro.

The complete solution to Eq. (A.4) when T.,,(ro, t) uperiences a step of relative magnitude T (ro, t)%

[i.e.. T.,,(ro, t) = T(re,0) for t = 0 and T.,,(ro, t) = T (ro,0) + Tcosstaur for t > 0] at time t = 0 can be found
from the sum of the particular and homogeneous solutions to Eq. (A.4).

The solution to

c1T. (ro, t) T. (ro, t) (A.5)=0
dt r(ro)

is of the form

Snowoo = Aie" , (A.6)

where As is a constant and r is given by the characteristic equation r + 1/r(ro) = 0, which yields r =

-l/r(ro) so that the solution to Eq. (A.5)is

Snouoo = AieW (A.7).
,

The particular solution to Eq. (A.4) can be found by the method of undetermined coefficients if the right

side will yield a zero derivative upon sufficient differentiation. Because the right side of Eq. (A.4)is the

in put system quantity and this quantity is a step of relative magnitude T (ro, t) occurring at t = 0, for t >%

0, dT.,,(ro, t)/dt = 0 because T (ro, t) equals a constant over this range of t. Therefore, the particular%
solution to Eq' (A.4)is of the form.

dT (ro, t)%Srur = A2T (ro, t) + Ai . (A.8)%

The value of A2 in Eq. (A.8) can be determined by substituting Eq. (A.8)into Eq. (A.4) and requiring

Eq. (A.4) to be an identity. Namely,

r(ro) d[A2T.,,(re, t)] + A2T.,,(ro, t) = OT (ro, t) , (A.9)%

which results in A2 = 0. Therefore,
.

SrART * OI.,,(ro, t) . (A.10) ,

The combined solution to Eq. (A.4)is

T (ro, t) = Sr4ar + Snouoo (A.I |}

. - ,- -
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- or

T ,(re, t) = 8T.,,(ro, t) + Aie*"'d . (A. IIA)
,.

The value of Ai can be found from the initial condition T.,,,(r , t) = 0 at t = 0 (since the system iso.

initially at equilibrium), which yields 0 = 6T.,,(ro, t) + As or Ai = -0T.,,(ro, t) . The complete solution to

Eq. (A.4)is then
|

T.,,,(ro, t) = 8T.,,(ro, t) - ST.,,(ro, t)c"'"'d ( A.12)

or

T.,,,(ro, t) = OY.,,(ro, t)[i.0 - e"/"'d] ( A.12A)

for t > 0. Because T..,,,(ro, t) and T.,,(ro, t) are the system input and ouput quantities relative to the

temperature at to and t = 0,

T. ,(ro, t) = T(ro, t ) - T(ro, 0) , (A.13)

and

T.,,(ro, t) = T(ro, =) - T(ro, 0) . (A.13 A)

.

Substituting Eqs. (A.13) and (A.13A) into Eq. (A.12A)(0 = | from necessary relationship at t = oo)

results in-

T(ro, t) = T(ro, 0) + [T(ro, =) - T(ro, 0)] [1.0 - e*"'d] . ( A.14)

.

O
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Appendix B

THE DETERMINATION OF AN EFPS HIGHER-ORDER-

RESPONSE FUNCTION STRUCTURE
,

The higher-order response function structure for a bundle 1 or bundle 2 EFPS can be determined

by performing one-dimensional time-dependent energy balances on the concentric layers of the EFPS
defined according to material composition (see Figs.1.2 and B.1). The energy balances for each

concentric layer have this form:

qiwa qours + qoesa = qAcc;, (B.1)

where

qis; = rate of heat transfer into ith concentric layer,

gours = rate of heat transfer out of ith concentric layer,

gosus = rate of heat generation in ith concentric layer,

qrecs = rate of accurrulation of energy in ith concentric layer.

. To simplify the analysis, each layer is assumed to be represented by only one temperature, and
material physical properties as well as the EFPS geometry are assumed to be independent of time and

temperature. Figure B.I represents the resulting elementary model of the EFPS. The temperature of+

each layer is defined as that temperature occurring at the COM radius of that layer, r i; furthermore,
the radii at which material interfaces occur are indicated by r6

The energy balance on the outer stainless steel sheath (OS) is

BTos
qis.os gour,os + gotu.os = posCposVos ''8t

where

pi = density of ith concentric layer,

Cp, = specific heat of ith concentric layer,

Vi = volume of ith concentric layer,

T = temperature at center of mass ofith concentric layer,

t = time. f

In a cylindrical coordinate system qix,os is represented as.

1
* f 2n2 1

"' '
[[lnfison./ruons)]/ Kuoo.} + (Disms) + {[In(ruoo3/ ruoos)]/ Kwoos}

l

X (Tos - Tis) . (B.3)

i
1

-.
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Similarly, gouros is reprewnted as

.
' 2nt '| (Ts - Tos) , (B.4)youros =-{
{[In(ruom/hom)]/Kwom} +[I/(hrsom)] 4i

.

where

R = axiallength of EFPS,

K, = thermal conductivity at radial position m,

(ks = interface resistance between ith and jth concentric layer,

h = heat transfer coefficient.

Let

(B.5)vos a posCposVos ,

where vi is the capacitance ofith concentric layer for thermal energy. Define Risfos and Rosw to be the
;

square-bracketed terms in Eqs. (B.3) and (B.4), respectively. Equation (B.2) then can be reduced to

-Ris,os(Tos - Tis) + Ros,m(Ts - Tos) = yosaTos . (B.6).

.

where A is a differential operator. Th: energy balance on the inner stainless steel sheath is

OTis
qin.is + goen.is gout.is = pisCpisVis (B.7).g

Letting

vis a pisCpisVis (B.8)'

and

'' 2wt (B.9)Rosas ={ l[In(Fuoos/ ruom)]/ Kuoo3} + (Disves) + 1[In(ruom/inom)]/ Kuom} ;l ,i

Eq. (B.7) can be reduced to

-Rouns(Tis - Tow) + Riscos(Tos - Tis) = yrsATis . (B.10)
.

The final form of the energy balance on the BN insulator is-

-Rursjew(Tow - Turs) + Rosas(Tis - Tsu) = you ATow , (B.ll)

- -
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where

tav Es pesCreuYou (B.12) *

and *

1 2nt '
Rura,nw ={

{{In(fuotu/ruom)]/ Ksoru) +(Ourajes) +[(rsom ruoo3)/(2Ksoo3rsom)] 4
l. (B.13)> 2 2 2

The final form of the energy balance on the Inconel heater element is

-Ruoo,nra(Tura - Tuoo) + Rurajas(T=v - Tura) = ynta ATura . (B.14)

where

vara e paraCrnra Vura (B.15)

and

'

2nf '

""#"

- [(idom - rdoo2)/(2K uomrdom)] + (Duco. nra) + [(rdoo2 - rdom)/(2 Kuon2rdon2)] <
' '

The final form of the energy balance on the MGO core is .

Ruco.nra(Tura - Tuoo) = tucoATuoo , (B.17)

where

yuao != puooCruooVuoo . (B.B)

Solving Eqs. (B.6) through :53.17) for Ts, Tos, Tis, Taw, Turm, respectively, yields

' ' ' ' ** 'Te = -
L Rosm T s + |1 + Rosu.4Tos + ATos , (B.19)i

Rosm.4
,

,

f Res.rs 1 f f 7:5Tos = -l ITau +1 1 + Rau,is ' Itis +1 ) ATis , (B.20) -

'

Risjes 4 i Ris,os 4 i Ris,os 4i

" * " ' ' " " ' " ' ' " "Tis = - j Tara +l I+ Tns +1 ATsu , (B.21)Rau,is 4 Raujis 4 i Rasas 4i

,

Tuao +l 1 + Rurajaw 4" ""'" \Tura + 1
" "'"'" "'"Tas = - '

ATura , (B.22)Rurajasi i Rurajes ie

t yuoa '
T3.ra = Tuco + { ) ATuao . (B.23)i Ruoo,.nra 4

t
_ ...
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Substituting Eq. (B.23) into Eq. (B.22) yields

Ynin }3
i

f Ruc,o nya } [ RRuco nraTas = - , yq.

i Rainins 4 6 Ruinsss a 6 urajes 4

' """
X 1 +1 A Tuoo . (B.24)

\ Ruaomtni

Substituting Eqs. (B.24) and (B.23) into Eq. (B.21) yields

1

Tis = - ,p Tm+ 1h
Rain,as ' p

Rasas 4)
i f 7esRuin.as ' f Tuc,o

i Rosas a i Ruoo,nta 4 i Rosas 4 i

'

X, -I
Ruc,onin'

4 ,pf Ruco nyu '| g ha )1 , ,[\ Ruoocuraa
'f Yuc,o
3 Tuc,o . (B.25)

i Ruinfas 4 i Rnrains a i Rura,es / ; .,

Substituting Eqs. (B.24) and (B.25) into Eq. (B.20) yields

f f

Ruoonra}[Rurajas}3Rewis '| '
Ruooma ' , yq YninTm = -

Risos a , Rura,es 4 6 Rura,es 4 i ai i

f 75 '
'M Te+ 1& Rasas ' p7"""X 1h

i Ruooma 4 i Rescs 4 i Ris,os a
.

f 'g , , p Ruin,as f bXI -l Rurn,ss 'j Yuanf f 'yg j,g
.

( i Rosas 4 iRuoornra 4 i Rasas 4 i Rescis 4

', ,[ Ruoo ura ay\X -| Ruc.o.nin'| 4, , ' Ruco.nin } ,[ Rura,ss }4
'

Ynin Yvoo '

9 , g3i Rurajes a i Rutasas 4 i' gi c,

Substituting Eqs. (B.26) and (B.25) into Eq. (B.19) yields

Rawos'
_

f Rain su ' f Tuon Rurniasi 7

Ts - < -|
Ros,ra.i ( i RnN/Os 4 h Ruoo,nta 4

,q , ,
Rasas 4i i

q' Rosas 4'g '_jf Ruc,own' , g'Ruc,o.ma' qb f ha ')
i i Rura,as 4 i Rura,as 4 i RnTa,as 4,

'\
X 1O b | + 1 + Ros,u.4Ris;os 'p' Ros,u. 4

7"C'" b '
|3i Ruc,o,ura 4 i i

_

.j

Rewis '|
7 Ruc,oma '

_
f Rosas

| ,q
i f Ruc,o, win ' f 'hmX

i Ris,os 4 i Rain,ss 4 i Ris,os 4 i Rura;ss 4 L Rura/es4
.

Rnwis '
q' Rissos 4

17""" Ti,
X 1h M + 1M.

i Ruoo,es 4 i Riseos 4 .i

' f
Xl -| Rain as 'j , q' Ruoo, win 4Torg3 , yg |p

Rasas a)
1

f Rurnf as 1
f 'b

Rosas 4 Rawas 4 i(6 i i

'g'\'I_
'

X -I
R uc,o.m a'

j
f Ruc.o,ma ' f . ha i f Yuc,og ,g c,o . (B.27)i Rura,ss 4 i Rurajas 4 i Ruinfas 4 6 Ruoomra 4 .[,

_
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Equation (B.27) can be simplified after multiplication of all of the terms, to the form

To = [(s A' + (4 A' + fia' + (: A' + fi A + fo]Tuoo , (B.28) ,

where (, are constants that can be determined by reduction of Eq. (B.27); for example.
,

g, , , _ qf Runomm'j _ ' Ruoomm'
_ f Rurn,as 'j _ f Runo urn'

_

i Rosu.)j
R nos '

i Ruin,su a Raur a i Risos a i Rurness ai

_
f Ruoo win'

_ f Ruon nin'jRas,is ai Ros,u.a| _ i Ross. afRurn,esj_'Ruonural(B.29)
' Risos ' i t

i Risos a i 6 Ro5u. i

and

f Kos
g, , Ross.4'q' RKis'q

f
Kas 'qi Kurn Kuno 'l . (B.30)

is,osa i Rau,isa i Ruromul{fi Ruoo,ntal6 6

Arranging Eq. (B.28)into the Laplacian block-diagram form
?

|
Te(S) Tuco (S) (B.31)

(5 A' + (4 A' + ( A' + (2 A' + fia + fo;
,

'

immediately says that the response function for the EFPS is fifth-order in the MGO core.

.
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