FARLEY NUCLEAR PLANT

UNIT 2

PHASE III TEST PROCEDURE

501-7-001

DRAFT

COOLDOWN CAPABILITY OF THE CHARGING AND LETDOWN SYSTEM

Approved:	AS	8	
	12 m	See .	
~?	1		
lant Manage	er		

Date Issued:

Diskette No. 4

	REVISION NO. 0											
PAGE NO.	0	1	2	3	4		6	7	8	9	10	11
1	Х				Eart					-		
2	X											
3	Х											
4	X											
5	X											
DATA SHEETS												
1	X										-	L
2	X											
3	х											
4	X											
APPENDIX A										- 5	4	
1	х											
APPENDIX B												
1	Х											
2	X											
3	X											
ATTACH. 1	Х											
												П
		1					1				-	

Page 1 of 1

FARLEY NUCLEAR PLANT UNIT 2 PHASE III TEST PROCEDURE 501-7-001

COOLDOWN CAPABILITY OF THE CHARGING AND LETDOWN SYSTEM

1.0 Purpose

This procedure contains the information necessary to verify plant performance capabilities and provide operator experience and training in the following condition:

1.1 Determination of the COOLDOWN CAPABILITY OF THE CHARGING AND LETDOWN SYSTEM with all three S/G's isolated and one RCP in operation.

		isolated and one RCP in operation.
2.0	Init	ial Conditions
	2.1	Tave is approximately 535°F. The Steam Dump is operating (or available) to maintain Tave in the Steam Pressure Mode.
	2.2	Pressurizer pressure is being maintained at approximately 2235 psig by automatic operation of the Pressurizer Pressure Control System.
	2.3	Pressurizer level is being maintained at approximately 22% by automatic operation of the Pressurizer Level Control System.
	2.4	operating (or available) to maintain 5/6 levels.
	2.5	2B RCP is running.
		The CVCS is in a normal at-power lineup.
		Excess letdown is available for operation.
	2.8	Both shutdown banks are fully withdrawn.
	2.9	RCS Boron concentration is high enough to provide sufficient Shutdown Margin at 450°F.

	2.10	The Core Subcooling Monitor is operable.
_	2.11	Temporary instrumentation has been installed as required by Appendix A of this procedure.
	2.12	The computer trend printer is set up to monitor the parameters specified in Appendix B of this procedure.
	2.13	All test equipment to be used during the performance of this procedure is operational and in calibration, as verified on the Test Equipment Record, Data Sheet 1 of this procedure.
	2.14	The Shift Supervisor has been notified of the impending performance of this procedure.
	2.15	S/G chemistry is in a condition such that blowdown may be isolated for the duration of the test.
	2.16	Prior to commencing this test, record the following information (as applicable) on each Recorder Strip Chart.
		Test Procedure Number Recorder Number Time and Date

Recorder Number
Time and Date
Chart Speed
Scale of each Pen
Input to each Pen

3.0 Precautions and Limitations

- 3.1 The difference in Boron concentration between the RCS and Pressurizer should not exceed 50 ppm. Use Pressurizer Spray to equalize concentration.
- 3.2 Monitor and record Source Range count rate on Data Sheet 4 every 15 minutes. Any unexplained increase in count rate by a factor of two is grounds for test termination and investigation for cause.

4.0	Instr	uctions
	4.1	Record the time on the recorder charts in the instrument rack area and/or Control Room and start the recorders at an appropriate speed determined by the Test Supervisor.
	4.2	Record the initial plant conditions on Data Sheet 2.
7	4.3	Close the Main Steam Line 2A (B, C) upstream drain pot to Aux Steam Condensate Tank isolation valves Q2N11V006A (B, C) and Q2N11V008A (B, C).
	4.4	Shutdown the S/G Blowdown System, if in operation, using FNP-2-SOP-16.1.
	4.5	Stop 2A and 2C RCP's, if operating.
	4.6	Adjust Tave to 535°F ± 2°F using the Steam Dump.
	4.7	Stop feeding the S/G's and shutdown the AFW System using FNP-2-SOP-22.0 or the Main Feedwater System using FNP-2-SOP-21.0.
	4.8	Verify that S/G 2B Atmospheric Relief Valve is in AUTO and set for 1035 psig.
	4.9	Close all six MSIV's.
		Verify that the Pressurizer Level Control System is in AUTO.
	4.11	Increase letdown flow to maximum using FNP-2-SOP-2.1.

NOTE

Tave may increase or decrease depending of the charging temperature and flowrate and RCS ambient losses.

4.12	Maintain the flow conditions established in
	step 4.11 for 30 minutes, or until T decreases to 525°F, or until T increases to 545°F, whichever comes first. Record the information
	to 525°F, or until T increases to 545°F,
	whichever comes first. Record the information
	required in Data Sheets 3 and 4.

Rev. 0

CAUTION

If T reaches 545°F, proceed directly to step 4.15.

4.13 After 30 minutes or when T reaches 525°F reduce letdown flow to minimum using FNP-2-SOP-2.1.

CAUTION

Maintain 6 to 13 gpm seal injection flow to 2B RCP.

		Maintain the flow conditions established in step 4.13 for 30 minutes or until T decreases to 520°F, or until T increases to 545°F, whichever comes first. Record the information required in Data Sheets 3 and 4.
	4.15	Stop the recorders and trend printer after the test is completed and restore plant conditions using the following steps.
	4.16	Re-establish normal Charging and Letdown conditions.
	4.17	If necessary restore normal levels in all three S/G's with the AFW System using FNP-2-SOP-22.0
	4.18	Verify that the Steam Dump is set up for Steam Pressure Mode operation using FNP-2-SOP-18.0.
	4.19	Open the MSIV's using FNP-2-SOP-17.0.
_	4.20	If required, restore S/G Blowdown using FNP-2-SOP-16.1.
	4.21	Notify the Shift Supervisor that this Test

is complete.

	4.22	Verify that all Data Sheets associated with this procedure are complete and signed-off
		(where required).
7		Attach all relevant printouts and strip charts to this procedure and remove the temporary instrumentation if this concludes Natural Circulation testing.
		Completed By:
		Time/Date:
5.0		tance Criteria
	5.1	The effects on T of variations in Charging and Letdown flow rates have been determined.
6.0	Refer	rences
	6.1	PLS Document
	6.2	Farley Unit 2 Technical Specifications
	6.3	VEPCO North Anna Unit 2 procedure 2-ST-6
	6.4	Westinghouse Safety Evaluation for Farley Unit 2 Natural Circulation Testing.

7.0 Data Sheets, and Attachments

501-7-001 Data Sheet 1: TEST EQUIPMENT RECORD

501-7-001 Data Sheet 2: INITIAL PLANT CONDITIONS

501-7-001 Data Sheet 3: LETDOWN AND CHARGING

501-7-001 Data Sheet 4: SOURCE RANGE COUNT RATE

501-7-001 Appendix A: TEMPORARY RECORDERS

501-7-001 Appendix B: PROCESS COMPUTER TREND BLOCKS

501-7-001 Attachment 1: TRAINING ATTENDANCE SHEET

DATA SHEET 1 TEST EQUIPMENT RECORD

TEST EQUIPMENT* DESCRIPTION	FNP or ID NUMBER	CAL DUE DATE	DATES USED
		12271-0724	
		THE STATE OF	
		40 10 10 27 12	
	The little sets are		
		areas regis	
			4.25
		10,20,20,20,710	
		1100年10年14年1	

^{*} This applies only to temporarily installed test equipment or instrumentation. Permanent instrumentation which is part of the system and shown on drawings, should not be included.

Test	Supervisor		
		Signature	Date

DATA SHEET 2

INITIAL PLANT CONDITIONS - STEADY STATE

REACTOR COOLANT SYSTEM

Pressurizer Pressure PR-444 (Red Pen)	_psig	
Pressurizer Level LR-459 (Red Pen)%		
RCS Loop 1 Hot Leg Temperature TR-413 (Red Pen)		_°F
RCS Loop 1 Cold Leg Temperature TR-410 (Red Pen)		_°F
RCS Loop 2 Hot Leg Temperature TR-413 (Blue Pen)		_°F
RCS Loop 2 Cold Leg Temperature TR-410 (Blue Pen)		°F
RCS Loop 3 Hot Leg Temperature TR-413 (Green Pen)		_°F
RCS Loop 3 Cold Leg Temperature TR-410 (Green Pen)		°F
Steam Generator 2A Level (NR) LI-474 Steam Generator 2B Level (NR) LI-484		
Steam Generator 2C Level (NR) LI-494	%	
Steam Generator 1 Level (WR) LR-477 Pen 1 (Red)		%
Steam Generator 2 Level (WR) LR-477 Pen 2 (Green)		%
Steam Generator 3 Level (WR) LR-477 Pen 3 (Blue)		_%
Steam Generator 2A Pressure PI-474	psig	
Steam Generator 2B Pressure PI-484	psig	
Steam Generator 2C Pressure PI-494	psig	
Data Taken by	/	

501-7-001 Data Sheet 3 Revision 0 Page 1 of 1

DATA SHEET 3

LETDOWN AND CHARGING

Maximum Letdown and Charging

Min

Charging Flow	gpm
Letdown Flow	gpm
Average Temperature Change	°F (Use the Tayg data for the loop with the running RCP.)
Time Period	Min.
Rate of Temperature Change = $\frac{Av}{(T)}$	g. Change = °F ime Period/60) hr.
mum Letdown and Charging (if app	licable)
Charging Flow	gpm
Letdown Flow	gpm
Average Temperature Change	°F (Use the Tayg data for the loop with the running RCP.)
Time Period	Min.
Rate of Temperature Change = $\frac{Av}{T}$	g. Change = °F ime Period/60) hr.

DATA SHEET 4 SOURCE RANGE COUNT RATE

rime*	PROCEDURE STEP	NI-31	NI-32
			erg Harrist State
-			
		-	
the state of			
			The state of the s

^{*} Record Source Range Count Rate every 15 minutes

Data	Taken	by	
		Signature	Date

APPENDIX A

TEMPORARY RECORDERS

Connect temporary strip-chart recorders as indicated below.

NOTE

Set the chart speed on the following recorders to 25 mm/min.

1.0 Strip-Chart Recorder No. 1

Channel	Connection	Monitoring
1	FP-414B, C1-432	RCS Flow, Loop 1
2	FP-424B, C1-433	RCS Flow, Loop 2
3	FP-434B, C1-434	RCS Flow, Loop 3
4	FQY-122, CE 522	RCS Charging Flow
5	FQY-150, C6-4	RCS Letdown Flow

2.0 Strip-Chart Recorder No. 2

Channel	Connection	Monitoring
1	TP-412K, C1-423	Narrow Range TAVG, Loop
2	TP-422K, C2-423	Narrow 'ange TAVG' Loop
3	TP-432K, C3-723	Narros Range Tavo, Loop

The above installation has been completed and check-out :s satisfactory.

Completed by:	/
Signature	Date
Test Supervisor:	
Signature	Date

The above installation has been removed.

Completed	i by:	/
	Signature	Date

501-7-001 Appendix B Revision 0 Page 1 of 3

PROCESS COMPUTER TREND BLOCK A

COLUMNS	ADDRESS	PARAMETER	UNITS
1	T0406A	RCL A T _{COID}	°F
2	T0426A	RCL B TCOLD	°F
3	T0446A	RCL C T _{COLD}	°F
4	T0419A	RCL A THOT	°F
5	T0439A	RCL B THOT	°F
6	T0459A	RCL C THOT	°F
7	T0400A	TAVG LOOP A	°F
8	T0420A	TAVG LOOP B	°F
9	T0440A	TAVG LOOP C	°F
10	T0403A	AT LOOP A	%
11	T0423A	AT LOOP B	%
12	T0443A	AT LOOP C	%
13	F0128A	CHARGING FLOW	GPM
14	F0134A	LETDOWN FLOW	GPM
15	U1250	HIGHEST REL FUEL ASSY PWR	
16	L0480A	PRESSURIZER LEVEL	%
17	L0112A	VCT LEVEL	%
18	U1251	HIGHEST REL ASSY PWR INDENT	

501-7-001 Appendix B Revision 0 Page 2 of 3

PROCESS COMPUTER TREND BLOCK B

COMUMNS	ADDRESS	PARAMETER	UNITS
1	L0400A	S/G A LEVEL	%
2	L0420A	S/G B LEVEL	%
3	L0440A	S/G C LEVEL	%
4	P0400A	S/G A PRESS	PSIG
5	P0420A	S/G B PRESS	PSIG
6	P0440A	S/G C PRESS	PSIG
7	P0483A	PRESSURIZER P	PSIG
8	P0499A	RC SYSTEM P	PSIG
9	P0142A	CHARGING PRESS	PSIG
10	U0482	AVG PZR PRESS	PSIG
11	U0483	AVG PZR LEVEL	%
12	U1118	RX THERMAL POWER	MW
13	U1170	AVG T/C TEMP	°F
14	AS REQUIRED	HOTTEST T/C (QUADRANT 1)	°F
15	AS REQUIRED	HOTTEST T/C (QUADRANT 2)	°F
16	AS REQUIRED	HOTTEST T/C (QUADRANT 3)	°F
17	AS REQUIRED	HOTTEST T/C (QUADRANT 4)	°F

PROCESS COMPUTER TREND BLOCK C

COLUMNS	ADDRESS	PARAMETER	UNITS
1	T0003A	INCORE T/C	°F
2	T0006A	INCORE T/C	°F
3	T0002A	INCORE T/C	o.B.
4	T0005A	INCORE T/C	°F
5	T0020A	INCORE T/C	°F
6	T0024A	INCORE T/C	°F
7	T0022A	INCORE T/C	°F
8	T0023A	INCORE T/C	°F
9	T0045A	INCORE T/C	°F
10	T0033A	INCORE T/C	°F
11	T0036A	INCORE T/C	°F
12	T0029A	INCORE T/C	°F
13	T0030A	INCORE T/C	°F
14	T0046A	INCORE T/C	°F
15	T0048A	INCORE T/C	°F
16	T0044A	INCORE T/C	°F
17	P0499A	RC SYSTEM P	PSIG
18	P0484A	PRESSURIZER P	PSIG

NOTE

The Training Attendance Sheet will be provided in the Control Room by the Training Department, prior to the performance of this procedure.