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ABSTRACT,

The transfer of shear stresses along pre-existing cracks by means

of the interface shear transfer (aggregate interlock) and dowel action

f- mechanisms is of major importance in the response of reinforced concrete

structures,

l The main objective of this report is to present and discuss

( experimental results on the effects of combined fully reversing cyclic

membrane shear, and biaxial tension loading, on the degradation of the

shear rigidity and strength of precracked reinforced concrete flat

specimens. Only two-way orthogonal reinforcement is considered in the

present study.

The specimen configuration and loading scheme employed were

chosen to best sinulate the membrane stress state in the wall of a

reinforced concrete nuclear containment vessel subjected to the
)
'

combined loading of an accidental internal pressurization plus membrane

shear due to seismic forces. The specimens were 4 ft. souare and

f 6 inches thick orthogonally reinforced with 3/4 inch diameter bars.

I Sixteen specimens were tested; test parameters included the level of
I

biaxial tension, the peak shear stress level and the loading history

(monotonic and cyclic shear). The effect on each of these on the

shear stiffness, cracking patterns and ultimate strength were

investigated.
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Engineering models are proposed with predictive equations for the
|
1

effective shear modulus G for cracked reinforced concrete and for the
cr

ultimate strength under membrane shear and simultaneous biaxial tension.

It was found that at shear stresses less than about 100 psi the shear

resistance is provided by the combined mechanisms of interface shear

transfer and dowel action along the orthogonal cracks. For shear stresses

above 100 psi which produce extensive diagonal cracking, the prevailing-

shear transfer mechanism is that of diagonal tension and compressive $

strut action in the concrete. The measured effective shear modulus

values in the cracked specimens are less than 10% of that for uncracked

concrete. The effect of cycling caused a 15 to 20% reduction in shear

capacity relative to the monotonically loaded specimens. The experimental

results on ultimate strength are considered to be very conservative

since they are based on the total cross-sectional area of the specimen and

failure occurred at a diagonal crack.

The initial extensional (axitl) stiffness in both reinforcing

directions in four axial tes.3 oa identical flat specimens with No. 4 and.

No. 6 bars is determined so that estimates of the initial crack width at
1

the orthogonal cracks can be calculated.

Finally, design implications for the allowable membrane shear in

nuclear containment vessels and tentative design recomendations are given.

This improved understanding of the shear transfer phenomenon in

cracked two-way reinforced concrete panels should result in the reduction

or even the elimination of the additional diagonal steel normally used to

help resist seismic membrane shear. Also, these research results will

lead to a more rational dynamic analysis of cracked reinforced concrete

containment structures.
I
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FOREWORD

U. S. Nuclear Regulatory Commission has established a research

program on reinforced concrete related to licensing of containments

and other safety related Category I structures. Participants of this

program are: Construction Technology Laboratories, a Division of the

Portland Cement Association (PCA); Cornell University; and Massachusetts

Institute of Technology (MIT). The Portland Cement Association and

Cornell University contribute to this program with experimental testing

of structural elements. The Portland Cement Association is testing

large-scale elements. Cornell University is testing intermediate size

elements. Massachusetts Institute of Technology contributes with

analytical interpretation, primarily for PCA's test program.

This report is the first of a series of several reports to be

issued on the Cornell University research. It treats reinforced concrete

wall elements with two-way orthogonal reinforcement subjected to combined

biaxial tension and membrane shear.

U. S. Nuclear Regulatory Commission

xix
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Purnose

The present research was motivated from design considerations for'

reinforced concrete containment structures. A major design problem in the

construction of nuclear containment vessels, offshore structures or other

similar thick-walled cylindrical reinforced concrete structures is to

efficiently proportion the materials of concrete and steel to carry the

heavy seismic forces across already existing cracks.

In the case of reinforced concrete nuclear containment vessels

(RCCV's) the wall would be cracked in the hoop and meridional direction

during the internal pressurization acceptance test. This would result in

vertical and horizontal cracks that separate the cylindrical wall into

blocks of uncracked concrete held.together by the reinforcing bars. Thus, -

the induced seismic shear forces have to be transferred to the base of the '

structure across the existing horizontal and vertical cracks by the shear j

transfer mechanisms. These include interface shear transfer along the

rough crack interfaces, dowel action of the reinforcing bars, and tensile

forces in the bars that are inclined to the crack plane.

An actual pattern of horizontal and vertical cracks in the wall of a

|
nuclear containment vessel during the internal pressurization acceptance

tests is shown in Fig. 1.1. To best simulate the stress conditions in the

shaded region of the wall in Fig.1.2, a square flat reinforced concrete

;

1
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specimen was utilized in the present investigation. In a containment

structure there is also a 1/4 to 1/2 inch thick steel plate liner anchored

on the wall to guarantee a leak tight structure even if cracking occurs in

the concrete. This steel liner was not included in this work.

The required biaxial tension in the orthogonal reinforcement and shear

forces in the concrete were applied to the specimen through specially de-

signed tensioning and shear loading devices. The actual dynamic membrane

shear stresses were simulated in these tests by fully reversing cyclic

shear stresses statically applied to the specimen.
.

.

1.2 Objective '

The major objective of this report is to determine the stiffness and

strength of precracked reinforced concrete panels subjected to combined

biaxial tension and fully reversing cyclic membrane shear loads. Param-

eters such as the shear stress level, the biaxial tension level, and the

number of cycles are studied and their effect on the overall hysteretic be-

havior of the structure is determined.

The mechanisms involved in the shear transfer stiffness degradation

are defined and an engineering model is proposed with predictive expres-

sions for: (a) the effective shear modulus after cracking, and (b) the

ultimate shear capacity. The expression for the shear modulus of cracked

concrete panels under a biaxial state of stress will help to more accurate-

ly define the shear stiffness of a cracked element for implementation into

a nonlinear finite element analysis of reinforced concrete structures.

The prediction formulae for the ultimate strength will contribute to a

better understanding of the failure mechanisms taking place and provide

!

.. . . . . - -.
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more realistic design recommendations for large reinforced concrete struc-
,

tures, such as secondary nuclear containment vessels. The deformation be-

havior under cyclic reversing shear will have significant influence on the

dynamic response and on the amounts of deformations that the steel liner

plate in the containment experiences during combined biaxial tension and

cyclic shear. In addition, this research will lead to a better understand-

ing of important factors needed in a more rational dynamic analysis, such

as damping, hysteretic behavior, and nonlinear response inherent in the

shear transfer phenomenon.

Four-way reinforcing schemes with diagonals in both directions are

often used in the construction of reinforced concrete nuclear containments

where seismic membrane shear forces are high. It is therefore important

to investigate whether the additional diagonal bars positioned at 45

degrees to the horizontal are actually needed. The wall is already heavily

congested with the orthogonal bars and other secondary reinforcement and it

becomes costly to fabricate and place the additional diagonal steel (de-

signed to carry the membrane shear forces). In addition, it is very diff!

cult to attain high quality concrete due to the excessive steel congestion, s
%

A two-way orthogonal reinforcement scheme was utilized in the present ex- \,
perimental work in order to establish the fact that the orthogonal steel

in the containment can mobilize considerable shear stiffness and strength.

A better understanding of the shear transfer phenomenon in cracked con-'

crete panels with two-way reinforcing patterns could lead to a substantial

reduction of the amount of additional diagonal steel, and even eliminate

it in some cases.

.

-'w r ~ - - ,e ..iw+- - ..
- T is-
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1.3 Outline
i

In Chapter 2 the results of an extensive experimental program con-

ducted on flat concrete specimens subjected to simultaneous biaxial tension

and simulated seismic membrane shearing forces are presented. The speci-

mens are 6 inches thick and orthogonally reinforced with two layers of

reinforcement in one direction and one layer in the other. They are

cracked by tensioning the reinforcement to about 36 ksi. The tension level

is held at a constant value (0, 0.3f , 0.6f or 0.9f ) while fully revers-y y y

ing shear stresses are applied. The normal cyclic shear loading regime

begins at a shear stress of 125 psi for 10 cycles and then increases in

increments of 50 psi, with 10 cycles of reversing shear at each load level.

Increments of shear are added until failure results. Identical specimens

are also subjected to combined tension and monotonic shear to failure.

These results establish a basic interaction curve for biaxial tension plus

shear and are used to assess the decrease in stiffness and strength pro-

duced by cyclic shear loading. Finally, the experimental results from the

biaxial tests are compared with uniaxial tests on block specimens.

An expression estimating the effective extensional stiffness parallel

to the orthogonal directions of the reinforcing bars is given in Chapter 3.

Results on axial tests perfonned on four specimens with No.4 and No.6

rebars (0.5 in. and 0.75 in. or 13 m and 19 m diameter) are also pre-

sented. Based on measurements of total elongations on the concrete sur-

face, the concrete tension stiffening effect is determined and its influ-

ence in estimating an effective steel modulus in tension is pointed out.

A statistical analysis is perfonned to determine the average crack spacing
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|

of the orthogonal cracks that formed after tensioning the bars in both j

directions. In addition, a literature review on axial tests with a single

crack, and formulae for predicting the crack spacing and steel strain are

included in this chapter. Finally, a comparison is made between the pre- )
dicted values of the extensional stiffness given by the proposed expression |

|

and those measured in uniaxial tests or biaxial tests with larger size bars. I

Chapter 4 is con-erned with the development of an engineering model I

for prediction of snear stiffness and strength in the presence of biaxial

tension. In the beginning of the chapter an extensive literature review

is given regarding the interface shear transfer (IST) and dowel action (DA)

mechanisms at a single crack and the determination of an effective shear

modulus for cracked reinforced concrete panels. Also presented, is a re-

view of previous analytical studies on planar reinforced concrete members

and various expressions predicting the ultimate strength of block specimens

with a single crack. An expression for the effective shear rigidity of

concrete panels under biaxial tension and shear is proposed by generalizing

the relation of shear stiffness along a single crack to bidirectional crack-

ing normal to the orthogonal reinforcement. The effect of diagonal crack-

ing on the shear modulus is als9 identified as the shear transfer sliding

mode is gradually replaced by a diagonal tension-compression strut mode.

The predicted shear rigidity values are compared with the experimental

findings and values predicted by other relations in the literature (Duchon,

Collins). Finally, the failure mode of the specimens tested is identified

and equilibrium studies are performed to determine the shear transfer

mechanisms active as failure is approached in biaxially tensioned rein-

forced concrete.

_ ____
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Tentative recomendations and implications regarding the design of

nuclear secondary reinforced concrete containment vessels are given in

Chapter 5.

Chapter 6 includes a summary of the conclusions drawn from the present

research on the shear transfer phenomenon and a discussion with comments on

additional future work needed to better understand this rather complex

type of structural behavior.

.

I



CHAPTER 2

EXPERIMENTAL PROGRAM

2.1 Outline

Previous experimental investigations (see Section 4.2) have dealt

with the subject of shear transfer along a preformed crack in reinforced

concrete, but they focused on the case of combined untaxial tension and
t

shear acting at the crack. Effects of parameters such as cracking in two

directions and applied biaxial tension on the shear transfer behavior were

ignored. However, the wall of a reinforced concrete containment structure,

cracked in both the hoop and the meridional directions and subjected to

seismic shear forces, is in a state of biaxial stress (neglecting the

variation of stresses through its thickness). Data on the stiffness and

strength of such a section is definitely needed to better evaluate the

shear transfer phenomenon and to improve design methodology.

This chapter describes the experimental program conducted to study
1

the combined mechanisms of interface shear transfer (aggregate de.terlock)

and dowel action in precracked reinforced concrete wall sections jected

to membrane biaxial tension and fully reversing cyclic shear. The specimen

employed is described in detail in Section 2.2. This type of specimen

was chosen to model the behavior of a cracked segment of a secondary

nuclear containment vessel under internal pressurization and seismic

forces. In addition, the size of the specimen was small enough so that it

could be handled easier than a larger-scale specimen, which would have

9

_. _ _ _
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resulted in an unreasonably high expense. During this experimental study
i

a large range of variables could be investigated fa .er and more efficient-

ly by utilizing the thinner specimens. This is the first specimen con-

figuration reported in the literature that adequately represents the com-

plex phenomenon of shear transfer at a crack interface in specimens sub-

jected to simultaneous biaxial tension and in-plane shear.

Although it would be ideal to apply dynamic shear loads to the speci-

men, the shear loads were applied in a static manner, either monotonically

or cyclically in predetermined increments. The formation of the shear

planes was accomplished by tensioning the embedded reinforcing bars to

about 36 ksi (248 MPa) in both the x and y directions (see Fig. 2.la).

Then the tension was held constant at a prescribed value for each specimen

and the shear stresses were superimposed to create the desired stress con-

ditions.

One of the major difficulties met during the design of the specimen

and the reaction frame was how to apply the shear loads without interfering

with the orthogonal cracking produced by biaxial tension, and at the same

time creating in the central region of the specimen a reasonably uniform

distribution of shear stresses. In fact, the shear loads were applied as

equal tensile and compressive loads at the thickened corners of the speci-

men and in the direction of the diagonals (see Fig. 2.lb). Thus,the total

shear force on each of the four edges of the specimen was transferred to

the cross section as the sum of two equal projections of the diagonal ten-

sile and compressive loads on a direction parallel to that side. A linear

finite element analysis was employed to determine the elastic distribution

of shear stresses in the specimen on the planes through the origin of the

_ - _ . _ _ - - _ .
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x-y coordinate system and parallel to the direction of the bars, as shown

in Fig. 2.lc. Although this analysis is valid only prior to cracking, it i

j can be seen that a reasonably uniform distribution of shear stresses exists

at the central portion of the specimen, which is the region of interest.

Variables studied during the course of the experiments included

applied tension in the bars, shear stress level, cyclic load history, and

| type of loading (monotonic or cyclic). Sixteen specimens were tested at

different preselected tension stress levels, between 0 and 0.9f , in they

reinforcement. The reinforcement ratio was kept constant for all speci-

mens (0.0122 in one direction and 0.0244 in the other direction). In all,

twelve specimens were subjected to fully reversing shear (Series A,B,C)

and four specimens to monotonic shear loading up to failure (Series M), to

study the effect of cycling on the degradation of stiffness and strength.

More details on the load history for each test and the loading procedures

followed are given in Section 2.5.

Extensive measurements vere performed at the central 2 ft. square

region of the specimen .ncluding crack slips and crack width changes alongs

,

the orthogonal crack &, shear distortion of the panel, and extensional de-

formations in both directions parallel to the bars. The instrumentation

procedure and description of the devices used to measure the deformations

mentioned above are explained in detail in Section 2.4. All experimental

work was conducted in the George Winter Structural Research Laboratory at

Cornell University.

In Section 2.6, the experimental results are discussed in terms of

cracking patterns observed, shear stress-displacement response, and ulti-

mate strength attained for each specimen. The general behavior and
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observations are also sumarized for each group of tests. Finally, com-

parisons and conclusions are drawn in Section 2.7.

!

2.2 Description of Specimen - Materials

The specimen employed in the present experimental program is a 4 ft.

(1.22 m) square reinforced concrete flat slab, 6 inches (152 mm) thick. It

is reinforced with one layer of No.6 (0.75 in. or 19 mm diameter) bars at |

6 inches (152 mm) spacing .in the (x) direction (px = 0.0122) and with two

layers of No.6 bars at 6 inches (152 mm) spacing in the orthogonal (y)

direction (py = 0.0244). The layers in each direction were centered in the

thickness of the slab to avoid eccentricity effects. All details of the

specimen geometry are defined in Fig. 2.la. The specimen provides a shear-

2ing area of 288 in ,

The concrete mix consisted of Type III high early strength Portland

cement, sand with a maximum size of 0.125 inches (3 mm), and locally avail-
;

able crushed gravel aggregate with a maximum size of 1.5 inches (?8 mm).

The above aggregate consisted of one part of N.Y. #1 type with a gradation

of 3/8 to 1/2 inches (10 to 13 mm) and five parts of N.Y. #2 type aggregate

with a gradation of 5/8 to 1 1/2 inches (16 to 38 mm). A representative

gradation of the sand and the twn types of aggregate used is shown in

Table 2A. The average nominal compressive strength was about 3800 psi (26 |

MPa) with a specified slump of 3 to 3.5 inches, (76 to 89 mm). Compressive

strength, modulus of elasticity and ultimate strain in the concrete were

determined from standard compressive tests on 6 x 12 inch (152 x 305 mm)
|

cylinders. Compressive strengths of concrete in all specimens are
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Table 2.A. Gradation of crushed gravel aggregates and course sand.

Sieva Size Sand N.Y. #1 Gravel N.Y. #2 Gravel

1 1/2" 100
1" 99

3/4" 100 87
1/2" 98 7
3/8" 100 70 1

#4 99 2
#8 90 1

#16 65
#30 25
#50 9
#100 2
#200 1 ;

(Percent Finer by Weight)

contained in Table 2B. A representative stress-strain curve obtained from

a 6 x 12 inch cylinder loaded in a very stiff MTS testing machine with an

average strain rate of 0.01 in/in per minute, is shown in Fig. 2.2.

The reinforcement used was Grade 60 with an average yield strength of

about 61 ksi (421 MPa). Four coupons 8 inches (203 mm) long were instru-

mented with electrical' resistance strain gages and loaded to failure. The

measured stress-strain relationship for the No.6 deformed bars is given in

Fig. 2.3. The reinforcing bars used for all specimens have a nominal

diameter of 0.75 inches (19 mm) and a cross-sectional area of 0.44 in2
2(125 m ),

The four corners of the specimen were made 3 inches (76 mm) thicker

than the central portion, so that the reversing shear loads could be ap-

plied. Secondary reinforcement of No.4 (0.5 in. or 13 mm diameter) Grade

40 deformed bars in the form of prefabricated mesh (as shown in Fig. 2.la),

-, - . -
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|
Table 2.B. Cylinder compressive strength of concrete (fc')-
-

Sample Average Sample Average ~
Compressive Compressive Compressive Compressive

Specimen Strength Strength Specimen Strength Strength,

No. (psi) (psi) No. (psi) (psi)

.0(A) 2688 3148 2980 .6(A) 3000 3200 3100
3077 3006 3100

,

.0(B) 3077 3431 3400 .6(B) 3350 3150 3300
3714 3395 3400 3300

.0(C) 3926 3890 3930 .6(C) 3608 3696 3790
3890 4032 3890 3961

.0(M) 3077 3042 3160 .6(M) 3600 3254 3700 ,

3148 3360 3855 4103
'

-------------------------------------------------------------------------

.3(A) 3360 3254 3500 .9(A) 3466 3501 3580
3678 3706 3714 3523

.3(B) 3873 3890 3900 .9(B) 3183 3961 3650
3926 3554 3890

.3(C) 3590 3537 3620 .9(C) 3310 3537 3380'

3643 3714 3183 3480

.3(M) 4545 4463 4600 .9(M) 3325 3908 3620
4598 4775

I

was placed in the corners (too and bottom) to ensure a better transfer of

the corner loads to the thinner section of the slab. This additional rein-

forcement was needed to effectively anchor the corners to the flat portion
>

of the specimen and diminish the undesirable cracking due to stress con-

centration effects at that area.

The concrete mix was prepared on site by a local concrete contractor

according to the specified proportions and requirements, and was placed

into two reusable forms fabricated from plastic-coated plywood. All ply-

j_ wood pieces were carefully oiled before casting to ease the process of

. - . . ,...._. . - . _ . - - . - - - _. -- . - -
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dismantling the forms and thus prolong their life. The form with the rein-

forcement in place is shown in Fig. 2.4. The side panels of the forms were

constructed in two half pieces and at the level of the joint in both direc-

tions holes were drilled in the plywood to hold the main reinforcement bars.

Steel plates with threaded inserts were fastened on the form itself so that

after removing the forms, special steel fixtures could be attached on the;

specimen to aid .in transferring the shear-inducing compressive and tensile

corner loads (see Fig. 2.5). Four threaded inserts were also embedded in

concrete, one at each corner, to be used for lifting the specimen from the

casting position to the testing frame with a large crane.
'

The concrete mix was compacted by a hand vibrator, especially at the

corners of the specimen where the steel congestion made casting more dif-

ficult. The specimens were left in the forms for at least 7 days after

casting. They were covered with wet burlap immediately after casting and

were periodically moistened to lessen shrinkage cracking. The curing

process took at least 14, days af+er casting, at which time at least 4

cylinders were tested to determine the compressive strength of concrete.

2.3 Experimental Setup and Loading Scheme

The biaxial tensile load was applied in the embedded No.6 bars with

hydraulic rams that reacted against structural steel frames around the

specimen. The reversing loads were transmitted to the slab by alternately

pushing and pulling on the corners through two large hydraulic rams con-

nected to a prestressed concrete reaction frame.

_ .__ _ ._ _ _
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The reaction system for the bar tensile loads consisted of 8 individ-

ual frames (4 frames in each direction), each fabricated of two horizontal

heavy-walled steel pipes with vertical rectangular steel tubular end sec-

tions (see Figs. 2.6a, 2.6b). The tensile loads were applied by four 30

ton capacity single-acting center hole hydraulic jacks (Enerpac RCH-302)

in the single layer and four 60 ton capacity jacks (Enerpac RCH-603) in

the double layer, powered by two independent hand pumps. The load from the

jacks was transmitted to the bars reacting against a tubular section-nut

assembly welded to the ends of the bars. All jacks were held by pipes

welded on the end tubular sections, which were also resting on steel I-

beams. The I-beams could move freely in the horizontal direction on ball-

bearing plates. Each hydraulic ram was capable of tensioning two bars in

the single layer and four bars in the double layer up to the yield strength

of the steel.

A large prestressed concrete frame employed to react to the shear

corner loads was preferred over a steel frame of equal capacity, since the

former was both stiffer and less expensive. It consisted of two inverted

post-tensioned frames at right angles to each other as shown in Fig. 2.7.

High strength steel rods were used to post-tension the becms and vertical

cantilevers in the concrete frame. The two 200 ton capacity heavy duty

solid plunger hydraulic rams used to apply the shear loads were of the

double-acting type with a 13 inch (330 mm) stroke capacity (Enerpac RR-

20013). They were powered by two independent electric pumps. Also, two

large tubular section load cells were used on the opposite corners of the

specimen to monitor the applied shear loads.

!

. -
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Both hydraulic rams and tubular sections were connected with hinge-

type steel linkages to the columns of the concrete reaction frame to permit

free rotations while the specimen was deforming. A linkage system existed

|
also between the corners of the specimen and the rams or the load cells.

The latter linkage was designed to transmit either compressive (high

strength steel bearing plates with a male and a female pin connection) and

tensile corner loads (high strength steel pins and heavy clevises) and at

the same time allow free horizontal movement of the slab. The above rather

massive connection fittings and linkages at the corners of the specimen are

shown in Fig. 2.8. Peak shear stresses of about 550 psi (3.8 MPa) may be

generated in the specimen with the hydraulic rams pressurized at a load of

112 kips (498 kN), which is the maximum tension capacity of the rams. |

After the specimen was placed in the test frame it was leveled to a

precise position with the aid of four vertical mechanic 61 supporting jacks

permanently fastened to the concrete beams of the frame. Between the speci-

men and the jacks specially designed ball-bearing plates were placed in
,

order to achieve free horizontal aovement during the test (see Fig. 2.9).

Then, the external pipe and tubular steel frames for stressing the bars at

the prescribed level of tension were positioned around the specimen in both

directions. The major advantage of this experimental setup is that the

bar stressing systems are independent in the two directions of the bars,,

and both are completely independent of the shear loading system. Thus,

undesired restraints and interaction are avoided. Considering the extreme

difficulties present in tne load application system, the reaction frames

and the tensioning devices and linkages, the system functioned very well.

It is the first successful experimental setup for application of fully

-. - . _ - _ _ _ _ _ . _.
___ _-
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independent biaxial tension and reversing shear stress to reinforced con-

crete specimens.

After the specimen was cracked in both directions, a 6 inch (152 mm)

square grid was drawn with a felt-tipped pen on the concrete surface and

the orthogonal cracks were marked. Then, the dial gages and/or the dis-

placement transducers (DCDT's) were mounted on the top of the specimen at

i the appropriate positions (see Section 2.4 for details on the instrumenta-

tion procedure). The shear loads were then applied according to the load

history of each specimen (see Section 2.5) and the additional diagonal

cracking was recorded at preselected peak shear stress levels. An overall

view of the specimen in the testing frame is given in Fig. 2.10.

2.4 Instrumentation - Measurements

In the central 2 ft. (610 mm) square region of the -lab specimen

three different types of deformations were measured during the tests: the

crack width changes perpendicular to the crack planes, the crack slips

parallel to the crack, and the compressive and tensile diagonal deforma-

tions. The crack slip and crack width measurements were conducted for

only one selected major orthogonal crack in each direction. Therefore,

these measurements are influenced by local effects and are not representa-

tive of the entire panel. The shear distortion, on the other hand, was

measured over a larger gage length of 34 inches (864 mm) and included

i several orthogonal cracks in both directions. This integration of deforma-

tions over several cracks provides realistic deformational patterns char-

acteristic of the overall behavior of the specimen. Both dial gages and
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linear displacement transducers were used to measure defonnations. Dial

gages were used for the first four experiments and transducers for the

remainder of the tests as a new data acquisition system was obtained.

However, occasionally dial gages were used together with transducers for

verification purposes.

A general view of the instrumentation is shown in Fig. 2.11a, and a

close-up photograph of the instrumentation is shown in Fig. 2.11b. The

crack slip (S1, S2) and the crack width gages (C1, C2) were mounted paral-

lel and perpendicular to a major orthogonal crack, respectively, in both

j the direction of the single layer (x) and the double layer of bars (y).
i

The diagonal deformations (D1, D2) were measured with the use of special

brackets and a thin bar along the diagonals to span the moving and the

; rigid part of the gage (see Fig. 2.12). The dial gages employed had a

least reading of either 0.0001 or 0.001 inches (0.0025 or 0.025 mm). The

displacement transducers made by Hewlett Packard were of two kinds: four

DCDT's with displacement range of 0.5 inches ( 12.7 mm) and two with a

range of 1.0 inch ( 25.4 mm) were used. Both were excited by a DC power

sunply at 6 volts and had a guaranteed linearity error of less than 0.5%

of the full scale.

For selected specimens the axial elongation in both x and y directions

was measured with dial gages of a least reading of 0.0001 inches (0.0025

mm). More details are given in Section 3.3, dealing with the extensional

axial stiffness of the specimen. The test specimens were also instrumented

to measure the applied shear loads and the tension in the reinforcement.

The load cells employed to measure the shear corner loads were prepared andi

installed using four 1 inch (25.4 un) long wire SR-4 electrical strain

. .. __ _ _ __ - - - _ _ _ _ - - - _ _ - . . - _ _ _ _ _ _ - _
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i

gages, connected in a full bridge configuration. The measured axial strain

according to the calibration was about 7 micro-strains per 1 kip (4.5 kN)

of axial load, which produces a shear stress of 5 psi (0.034 MPa). Also,

wire electrical strain gages were used to monitor the bar strains. Two

strain gages were cemented on diametrically opposite sides of selected

bars in each direction outside the specimen. The axial load was also

checked in an approximate fashion with pressure gages mounted on the hand

pumps that powered the hydraulic rams of the tensioning frames.,

The average shear distortion y of the central part of the specimen was -

obtained by taking the average of the tensile (at) and compressive (ac)

diagonal defomations measured, through the use of the relation

y = c ad, with ad = latl + lacl (2.1)

where c w 589.2 x 10-4 (see Section 2.6 for derivation of the above Eqn.

2.1). Based on Eqn. 2.1, an expression for the effective shear modulus

G during cracking can be derived to describe the overall shear deforma-cr
'tions of the 2 ft. square portion of the concrete panel. More details on

the evaluation of an effective shear modulus are given later in Section j
!

2.6.1c.
1

For the cyclically leaded specimens all deformations were recorded

incrementally only for the 1st, 2nd and 10th cycle at each shear stress

level (see Section 2.5), during loading and unloading in both directions.

I During the remaining cycles (3rd to 9th) the specimen was loaded to the

peak positive and negative shear stress (0 + + vmax + 0 - - vmax + 0 +

. . 0) and deformations were measured at these peak levels only. On
*

_ _ _ _ _ ___ _. _ ._._.. . _ . _ . _ _ __
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the other hand,the monotonically loaded specimens were subjected to incre-

mental shear loading and measurements were recorded at 25 psi (0.17 MPa)

increments.

Readings from each displacement transducer used in this program were

recorded by the 3052A Hewlett Packard Digital Data Acquisition system

interfaced with an HP-9825A calculator, and an HP-9871A fast impact printer.

The raw data was stored on tape cassetts for subsequent analysis and

plotting by an HP-9862A X-Y plotter. After each load stage all specimens

were inspected visually for additional diagonal cracking and any evidence

of splitting cracks. Cracking patterns were marked on the specimen and

recorded. Photographs were also taken during the test and at failure.

2.5 Test Procedure - Test Series - Load History

Each specimen was initially precracked by tensioning the orthogonal

reinforcing bars at a stress of abcut 0.6fy or 36 ksi (248 MPa) in the x

and y direction. The crack openings in the y direction were smaller than

in the x direction, since the amount of steel in the y direction was double

of that in the x direction. More details on the actual measurements of the

axial stiffness are presented in Section 3.3. Then the tensile load in the

bars was released and set at a prescribed value corresponding to the de-

sired biaxial tension. Four different tension levels of 0, 0.3f , 0.6f ,y y

and 0.9f were considered to study the effect of biaxial tension. Thisy

tension load was kept constant throughout each test.

The dial gages and/or the displacement transducers (DCDT's) were

cemented on the concrete surface and all the electrical wiring was

_ _ _ _
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completed and verified. The specimen was leveled relative to the corner

loading devices and shear stresses were produced along the shear planes of

the orthogonal cracks. Positive shear loading was defined as tension on

diagonal D1 and equal compression on diagonal D2 . This was also the

shear loading direction employed for the specimens subjected to mono-

tonic shear. For the case of fully reversing shear the direction of the

corner loads was reversed and reloading was commenced in the opposite

dire:: tion after releasing the load to zero. The loading history of all

tests is explained later in this section.
i

Sixteen flat specimens with constant reinforcement ratio of o = 0.0122x

and p = 0.0244 in the x and y direction, respectively, were tested in thisy

program under combined biaxial tension and cyclic or monotonic shear to

study the major components of shear transfer, that is interface shear

transfer and dowel action. A summary of the testing program is given in

Table 2.C. The specimens were arranged in four groups of four specimens

each. The same value of biaxial tension was applied to the specimens of

each group.

In each group two duplicate specimens (labeled A and B) were subjected'

to cyclic shear stress starting at 125 psi (0.86 MPa). Ten cycles at

this shear stress level were then applied. The shear stress was increased

in 50 psi (0.34 MPa) increments ( 175 ' .'l MPa), 225 (1.55 MPa),etc.)

with 10 fully reversing cycles at each u.. ear stress level until failure

occurred (see Fig. 2.13). Failure load is defined here as the maximum

possible shear stress that could be sustained by the cpecimen. A third

specimen (labeled C) was cycled with the initial shear stress starting at

the average failure shear stress for specimens A and B. Finally, a fourth
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.
-

Table 2.C. Testing program.'

,
__ ___ _ _.

] Specimen Rebar Load
j No. Tension History

.0(A) No Cyclic
: .0(B) Tension Cyclic

.0(C) Cyclic '
,

i .0(M) Monotonic
1

i -

_________________.. ______________. ____________________

l
.3(A) 0.3f Cyclicy
.3(B Cyclic
.3(C Cyclic
.3(M Monotonic

*

_______....._. _________________________________________

j .6(A) 0.6f Cyclic
.6(B) Y'

Cyclic
.6(C) Cyclic.

: .6(M) Monotonic
;

.... _______________________..___________ .___.._ _____

! .9(A) 0.9f Cyclic '

.9(B) Y Cyclic-,

.9(C) Cyclic

.9(M) Monotonic
4

'
Notes:

! i

Steel: Grade 60
p =0.0122(singlelayer)xp = 0.0244 (double layer)
1,

Concrete: fc' = 3800 psi

t

specimen (labeled M) was subjected to monotonically increasing shear stress

j in 25 psi (0.17 MPa) increments up to failure, so that the effects of

cyclic shear load history on the shear strength and stiffness could be
i

; assessed.

!

4

i

, ,r_, --,, - - . - .- , - - . . . . - - - - ,. ,,.-.-_.,,r- . , - - , _ - - , , _ . . . - - - - - - , - - - - - - , . - - - - - .. ,.
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NEXT SHEAR
STRESS LEVEL

225 ----------<- - --

'

175 - - - - -'-- *

,

2 10 50 poi
* CYCLES INCREMENTS

,

"
O

DEFORMATION ,

$ - 125 L -

5
-175 -----

-225 - - - - - - - - - -

Fig. 2.13. Stress history under cyclic shear (specimen Series A and B).

The designation of specimens in Table 2.C indicates the bar tension
'

ratio level of the tension in the bar to the yield strength of steel fy

and in parenthesis the type of shear stress load history. For example,

a designation number .3(M) means that the specimen was subjected to a

monotonic shear loading at a constant biaxial tension in the reinforcement

bars of 0.3f .y
|

_
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2.6 Description of Experimental Results

2.6.1 Monotonically loaded specimens (Series M) '

All four biaxial tests described below were performed under a

monotonic shear loading up to failure in 25 psi (0.17 MPa) increments.

Specimens .0(M), .3(M), .6(M) and .9(M) were tensioned to 0, 0.3f , 0.6fy y

and 0.9f , respectively, in each rebar in the single and the double layer.y

a) Cracking patterns

In all four specimens tension was applied up to 0.6f level in ordery

to precrack them in the two orthogonal directions parallel to the rebars.

More details on the procedure followed during tensioning are given in

Section 3.3. First cracking occurred between 15 ksi (0.25f ) and 25 ksiy

(0.4f ) tension in each reinforcement bar, with the cracking perpendiculary

to the double layer occurring at a lower bar tension level than the crack-

ing in the orthogonal direction, as expected. The orthogonal cracking in

each specimen at the specified tension level is more or less similar, with

an average crack spacing of about 7.0 and 6.0 in. (178 and 152 mm) in the

x and y direction, respectively. The tension cracking patterns are not

much different since all primary orthogonal cracks formed at the same

initial tension level of 0.6f in all specimens. The cracking pattern fory

each specimen is shown in Figs. 2.14a(1) to 2.14d(1), on a 6 inch wide

square grid that was used to record each crack during tensioning.

Diagonal cracking was initiated at approximately 45 degrees to the

reinforcing bars when the shear stresses at the cracks were in the range of

75 to 125 psi (0.52 to 0.86 MPa) level. The lower values of shear stress
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at first cracking correspond to the higher tensioned specimens. It is

apparent that since the orthogonal cracking was dictated more or less from

the spacing of the transverse rebars and the tension cracks formed in the

vicinity of the reinforcement, the bond transfer capability of each bar

would be impaired. Thus, little difference is expected in the shear stress

level that would cause the first diagonal crack for the various tension

levels. A more rational approach is undertaken in Chapter 3 to explain the

possible reason for the relatively low diagonal cracking shear stress level.

The additional diagonal cracks at preselected shear stress levels are shown
t

in Figs. 2.14a to 2.14d (2, 3, 4, etc.). The diagonal crackino at failure

is also included. All monotonically loaded specimens after testhg are

shown in Figs. 2.15a(4) to 2.15d(4).

b) Shear stress versus displacement response

For each specimen a set of two orthogonal cracks was chosen for the

positioning of the dial gages and/or displacement transducers to measure

the crack slip and crack widths during the loading history of the experi-

ments. The crack width and slip were denoted by C1, S1 and C2, S2 at an

orthogonal crack parallel to the x (1) and y (2) direction, respectively.

In general, the crack slip and/or width variations versus the applied

shear stress were inconsistent and erratic. This unfortunately was unavoid-

able because of the inherent random character of cracking. Each tension

crack did not always extend completely across the entire width of the

specimen. Therefore, having also in mind the irregularity of the crack

interface, the shear slip and crack width measured at one point of the
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crack will in general contain some scatter. Nevertheless, the crack slips

and widths measurements provide a good qualitative picture of the behavior

of the specimens during the application of the monotonic shear loading.

The recorded changes in both the slips and crack openings for all four

monotonically loaded specimens are shown in Fig. 2.16(a,b,c,d). The

changes in crack width are the variations of the initially preset values

for the corresponding tension level in the reinforcement before the shear

loading is applied.

The general trend shows that as the constant applied tension increases
<

from specimen .0(M) to .9(M) and the average initial crack width present

at the crthogonal cracks assumes larger values, the resistance offered by

the asperities at the crack interface to slip decreases. This causes

larger relative movement of the crack surfaces. The above can be seen in

Fig. 2.16 comparing the slips S1 and S2 for each specimen.

c) Effective shear modulus

As mentioned in Section 2.4, the average distortion of the middle 2

ft. square region of the specimen was measured by recording the total com-

pressive (Ac) and tensile (At) deformation at the two diagonals D1 and D2,

as shown in Fig. 2.17. Distortion was calculated by taking the average

of at and Ac. An effective shear modulus for cracked concrete, Gcr, was

then evaluated using the expression

G (2.2)V- Vn
cr Y Ad 2
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where v is the applied nominal shear stress in psi, a is the dimension of

the instrumented square region (24 in. or 610 mm) and ad is the average

total diagonal deformation, also in inches.

This effective shear modulus accounts for the deformation at the

orthogonal cracks (crack slip and crack width), the effect of diagonal

cracking, and the shear deformation in the uncracked concrete blocks. Of

course, fully developed and equally spaced cracks are assumed in the above

expression for G This relation for G can be input in a nonlinear
cr. cr

finite element analysis as a variable in the material stiffness matrix.

The variation of the average shear strain of the central portion of

each specimen loaded under a monotonically increasing shear is plotted in

Fig. 2.18 as a function of the applieo shear stress v. Especially for

higher tensioned specimens (.6(M) and .9(M)) a relatively low shear stiff-

ness exists for shear stresses ,ty) to about 25 psi (0.17 MP4). This shift

of the shear stress-strain curve to the right could be attributed to the

so-called " free slip." That is, a finite relative slip is required at the

crack to mobilize the interface shear transfer mechanism, because an ini-

tial crack opening is present after tensioning. This explains the dis-

tinct change in stiffness at higher shear stresses as the crack surfaces

come into contact. The above stiffness increase does not occur in specimen

.

.O(M), which with very small initial crack widths mobilizes the interface
!

shear transfer much faster. In addition to the above explanation of " free

slip," another reason that could have contributed to the observed soft re-

sponse is shrinkage cracking that was observed before testing.

Above 25 psi (0.17 MPa) the response is approximately linear. There

is a definite decrease in shear stiffness and increase in shear

. . _ _ . . _ . _ _
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deformations as the tension level in the reinforcing bars increases from

0 to a maximum value of 0.9f . More details on the actual measured valuesy

of the shear stiffness are presented in the discussion of the experimental

results in Section 2.7. The above decrease in shear stiffness corresponds

mainly to the secant stiffness, which reflects the total shear deformation

induced at any shear stress level. The local tangent stiffness, on the

other hand, which is the slope of the curve, remains nearly constant for
,

all biaxial tension levuls. Specimens .0(M) and .3(M), at least for shear

stresses up to about 17L psi (1.21 MPa), exhibited similar tangent and

secant shear stiffness.

Th:. complete recorded data for the average diagonal deformation ad

and the corresponding equivalent average distortion values y at each shear

stress level for the specimens subjected to monotonic shear are tabulated

in Table 2.D.

d) Ultimate strength

Failure in the specimens resulted from yielding in the steel crossing
,

a diagonal crack near a corner loaded in tension (see Figs. 2.15a(4) to

2.15d(4) for cracking at failure). The peak shear stresses at failure vu

at each biaxial tension level for the monotonically loaded specimens are
i
'

shown in Table 2.E.

The peak shear stresses transferred to the specimens at failure de-

creased with increased applied tension from a value of 485 psi (3.35 MPa)

j for specimen .0(M) to 300 psi (2.07 MPa) for specimen .9(M). At 0.3fy

tension the ultimate strength was 450 psi (3.10 MPa) and at 0.6f' y
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Table 2.D. Average diagonal deformations for speciinens under monotonic
shear.

.0(M) .3(M) .6(M) .9(M)
Shear
Stress Ad y* Ad y* Ad y* Ad y*

; (psi) (in) (in) (in) (in)
0 0 0 0 0 0 0 0 0

25 0.005 3 0.013 8 0.024 14 0.032 19
50 0.010 6 0.019 11 0.030 18 0.037 22
75 0.014 6 0.023 14 0.038 22 0.041 24

; 100 0.020 12 0.029 17 0.048 28 0.046 27
; 125 0.024 14 0.036 21 0.055 32 0.051 30

150 0.029 17 0.039 23 0.062 37 0.059 35
175 0.034 20 0.045 27 0.069 41 0.068 40
200 0.042 25 0.052 31 0.076 45 0.086 51
225 0.046 27 0.060 35 0.084 49 0.120 71
250 0.052 31 0.067 39 0.092 54 0.192 113
275 0.056 33 0.072 42 0.102 60 0.268 158
300 0.063 37 0.077 45 0.118 70 0.391 230'

325 0.068 40 0.081 48 0.160 94 - -

350 0.076 45 0.087 51 0.242 143 - -

375 0.082 48 0.091 54 0.378 223 - -

400 0.091 54 0.098 58 - - - -

425 0.100 59 0.103 61 - - - -

450 0.116 68 0.121 71 - - - -

460 0.138 81 0.156 92 - - - -

475 0.149 88 - - - - - -

*(rad. x 10-4). -

Table 2.E. Ultimate strength for monotonic shear (specimen Series M).
__

[ySpecimen Vu
No. (psi)

,

.0(M) 0 485

.3(M) 0.3 450

.6(M) 0.6 375

.9(M) 0.9 300

i

- _ . - - -- ,,
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decreased to 375 psi (2.59 MPa). A linear representation of the ultimate

strength as a function of the applied biaxial tension provides a very good

fit to the data available (see Fig. 2.19).

Interaction curves for the ultimate strength versus the applied bi-

axial tension stress level in each rebar are given in Figs. 2.19a and 2.19b.
l

Theshearstressparameterv/Q',whichisusedinFig.2.19btoincludeu

the effect of the variation in the compressive strength of concrete, or the

ultimate shear stress v , are plotted in terms of the dimensionless tensileu

stress parameter f /f . A linear regression analysis with a correlations y ,

coefficient of about 0.97 gives the following straight lines

u = (8.5 - 4.0 f /f ) /f]' (psi) (2.3a)v s y

or

v = 510-220 f /f (psi) (2.3b)u s y

where v is the ultimate strength in psi, f is the applied tensile stressu s

per rebar, f is the yield strength of steel, and f ' is the compressivey c

cylinder strength of concrete in psi.

2.6.2 Cyclically loaded specimens (Series A,B,C)

All twelve specimens in Series A, B and C were loaded under shear

according to the loading history described in Section 2.5. The only excep-

tion was specimen .9(A), in which cycling began at a lower shear stress

level than 125 psi (0.86 MPa), because it was the first specimen tes.ted at

0.9f tension and the shear stress failure level was incorrectly expectedy
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4

to be in the range of 100 psi to 125 psi (0.69 to 0.86 MPa). The actual

loading history followed for this specimen was 10 cycles at each of 225,
,
.

250, 175, 100 and 2125 psi peak shear stress levels. Above 125 psi the ,

loading procedure was identical with the rest of .the specimens.
'

,

a) Crackinc patterns
1
i

The orthogonal cracking was similar to that observed for the monotonic- f
i

ally loaded specimens since the tensioning procedure was the sa=e. The j

cracking patterns due to bar tension and the additional inclined cracking ;,

,

i produced by the shear . stress are shown in Figs. 2.20 to 2.23 for all twelve [

ispecimens. Again here the diagonal cracking first occurred at a shear,

stress of 125 psi or ')wer.
.

The main difference observed between cyclic and monotonic shear load-
>

ings was the ruch more severe diagonal cracking that occurred after fully

j reversing cycles of shear were applied to the specimen. The important !
'

influence of cyclic loading in causing extensive diagonal cracking, and as ;

:

a result, in lowering the capacity of concrete to withstand shear stresses,

is therefore evident.

!
b) Shear stress versus disolacement response

| In all specimens the crack width variation and shear slio were rea-

sured as the shear stress increased (loading) or decreased (unloading) [
i

incrementally within the limits of the specified peak shear (positive or

! negative).
!

h4

.

. . - - .--y,n-,, - _s, a _m_y. . . . - .__m, p ,_ y g-_. ,- _.
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As the shear deformations measured at the selected two orthogonal

cracks were also erratic in the Series A, B and C specimens, it was very

difficult if not impossible to base any quantitative conclusions on these

res ul ts. However, selected graphs of the response will be presented in

this section. These give qualitative insight into the effect of cycling,

peak shear stress level, biaxial tension ievel and direction of crack on

the crack opening or closing and the relatrm slip of the crack surfaces.

In Fig. 2.24 (a,b,c) the variation of the slip S1 at the tension crack

parallel to the single bars is plotted versus the applied shear stress at

i 2

Shear v(psi) v(psi) J jo
stress,v(psi) Cycic

300-- 300-- 300~ -

200-- P.00- 200- -

10 0 - . 100 - - 100 -

Sl(in)-0.005 -0.Q05 -QOn ,
, ,

I

0.005 0.005 0.005

-10 0 " -10 0 -10 0

- -200 - ;-200 - -200

a) 125 psi b)t225 psi c)t375 psi
~ ~-30 0 - -300 ~ -300

Fig. 2.24. Crack slip S1 versus applied cyclic shear (specimen .0(A)).



62

the 1st, 2nd and 10th cycle at three preselected stress levels of (a) 125

psi,(b) 225 psi, and (c) 375 psi for specimen .0(A). The influence of

cycling in increasing the slip values is insignificant for ticis case.

About 0.005 in. (0.13 nn) average maximum slip was measured at the crack

at the relatively high stress level of 375 psi (2.59 MPa). For lower

shear stresses very little slip took place.

The corresponding values for the crack width C1 are given in Fig.

2.25 (a,b,c,d) at three selected stress levels ( 125, 225, 325 and 375

psi). The values of crack width shown are the changes from the initial -

v(psi) (O
I 2

Shear v(psi) 9qy1istress,v
300-- (psi) 300- 300--

I9s j,0
200-- 200-- 200--

|2 10

100 100-- 100 -- k\

-0.005 h 0.005 )/ 0.01 j C2(in)
, ,

7 T'
-100-- k "-10 0 " -10 0

i 2 'o
-200 -- - -200 n - -200

1,2 10

a)tl25 psi b)t225 psi c)t375
-300"

-

-300 -300'' Psi

Fig. 2.25. Crack width changes C2 versus applied cyclic shear (specimen
.0(A)).
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crack width value at the beginning of the test; a negative value means

closing of the crack. An increase in either the peak shear stress or the

number of cycles results in further closing of the crack in both positive

and negative direction of loading. This is a very important point, since

it shows that at a shear stress higher than a certain level of about 125

psi (0.86 MPa) the shear transfer mechanism through sliding, which requires

increase in the crack width, does not control any more and another mechan-

ism becomes dominant. The latter is believed to be the diagonal tension-

compression strut mechanism. The compressive stress in the concrete could
' ' - of the orthogonal cracks with subsequent opening of thecause the

newly deu #ed inclined cracks.

The absolute variation of crack width in the crack parallel to the

double bars (C2 - see Fig. 2.26(a,b,c)) seems to be similar to that of C1.

However, crack width C2 increases at intennediate stress levels but shows

some decrease as failure is approached. Although there is the possibility

that the above observation does not reflect the true overall behavior, it

does bring up the argument that some interaction of the two shear transfer

mechanisms, mentioned in the previous paragraph, takes place. Since some

sliding has to occur in the beginning and crack width C1 decreases, crack

width C2 must increase to permit the required slip that does not occur in

the other direction. Fig. 2.27 shows exactly that. The increase in slip

S2 is much larger than S1. Of course, for much larger initial crack widths

the response could be different as it will be seen below. Specimen.3(A)
|

shows approximately tile same behavior as .0(A), although increasing resid-

ual slips are present at zero shear stress, especially for shear slip S2.

The changes in the quantities C1, C2, S1 and S2 for specimen .3(A) are
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Fig. 2.26. Crack width changes C1 versus applied cyclic shear (specimen
.0(A)).

given with the corresponding stress-displacement diagrams in Figs. 2.28

to 2.31, respectively.

The results of specimen .3(C) are presented in Fig. 2.32(a,b,c,d).

During the initial monotonic loading up to +375 psi (2.59 MPa) both crack

widths increased. Upon subsequent cycling, crack width C1 remained more

or less constant in the positive loading direction and decreased in the
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' -negative direction (see Fig. 2.32a). Crack width C2 exhibited larger

deformations in the same loading directions (see Fig. 2.32b).
,
.

In specimen .6(A), crack width C1 assumed smaller values during load-
,

ing and increased to about the initial value upon unloading (see Fig. 2.33).

No data is available for C2 due to a malfunction of the measuring device.

Crack slips S1 and S2 were distir.ctly larger than those in the previous

mentioned cases of lower applied tension (0 to 0.3f ) and reached they

average maximum values of 0.025 and 0.014 in. (0.64 and 0.36 mm), respec-

tively, during the 1st cycle at a peak shear stress of 275 psi (1.90 MPa).

These values for S1 and S2 increased to 0.028 and 0.017 in. (0.71 and 0.43

mm), respectively, after 10 cycles of reversing loading at the same maximum

shear (see Figs. 2.34 and 2.35).

The duplicate specimen .6(B) experienced much less sliding along the

crack parallel to the single bars (S1) (see Fig. 2.36). Specimen .6(A)

could be inherently softer in its response since excessive shrinkage crack-

ing was observed prior to the test, while specimen .6(B) had no visible

initial distress. As also noticed in specimen .3(A), the curve for S2 kept

shif ting to the left with no relative difference in slip between the post-
' tive and negative shear stress (see Fig. 2.37). This shows a preference

of the crack slipping to occur mainly in one direction causing continuously

increasing residual slip relative to the beginning of the test. Thus, al-

though locally the crack surfaces still keep sliding in both directions

under reversing shear load, a permanent shear distortion is present in one

i direction, which probably shows less ability to transfer shear stresses in

that direction.

.

g y---r- i---,-,--- , , - - - m.,, --

w- ,



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ -

Shear o v(psi)
stress , v(psi) 200

l' 3 -f0| 2 Io
Cycle s q

> _.100 . 00

-000 h, P, Cl (in ),
, ,

7 Q002 0004
/ b)t175 psi
/[

/

-10 0 -10 0-
a)tI25 psi / 2i v(psi)

i6{3 I '2 "30 010 2 i "300.

-200-,

-200 - 200

e
c)1275 psi 10 0 d)t325 psi 10 0

Cl (in ), -opi2 -0908 , -o,oo4 -ogis -0.012 , -o.Qos , -o,
, ,

M- 0002 --

-10 0- -10 0-

-200. -200-
10

'I I '

-300- . -300

Fig. 2.33. Crack width changes Cl versus applied cyclic shear (specimen .6(A)).

_ - _ _ _ _ _ _ _ _ _ _



5

)

n
i

(
l

i

S o. o, o kt

1 Q
k20

,

eI0
~

Mo.
-

o .o )
l )
- A

(
6o i

- s np e
)5 m
n i

7 ci

l e
, m. t

( p
I so S) (

b
, r

, a
es 1

ho o 0 s
.l

, o 0 c)
i- is

l
p0 0 0 ceI 0 0 0

( y
i

v3 2 cQ 0 -
-

d
1

-.

_ - -o
i2 o 0 0 e)

s g 0 0i

,N
|

, i

i

po 2 3 l
p

vl
1

_ - -o p(
a0

,C5 , v

- s0o u,

-rs- so r- as
l e_ ee -

hr i it s 2Ss s 1p o. p S
,o

2 N 5 p
- i

\2 71 l

i , 2 s

3 t0 k)
2, , 0 a o. c

) a

0
1

,o r-
- c C

l
1

-e
c b

,

.

y 44C ,0
3

o o 2

- .
g
i

F

i |



y

)

n
i )
( ni

s i

2 (
2, p 2S 2d 1 5 [0 2 S,,

0 2%) 11s ) , 0i

)(p c 0
v ^

&0
. o 0 0-

0 0_
, o 0 0

2
1 u 1 2

- -

0 0 0 l 2 3
-

- - -- .

2 1

M
- -

- -
) .

0 0i )s 0 0 s A
i)p p

0 ( p (l- v
5 6-

2, o 3 n
e

p }o ,

2 m
i

o l ) c
- e e

p
2 si

, s p , (

-p 0 f

r
- l

5
,

ao. eo 7 h
1 s

V0
)

0 ii cs 0 i)
1

l
p

1 b 1- , 0(
cv - r

0 yj

- c
0 , 2, 0
0 , 0 0 dI

e1 0 2, i

i
f,

1

- l-
p-

o i )
- -

c p
0 0 aie s 0 0l o, 6 p 2

i

s s

L,
c -

3 (
1 p uy

0C v s5 r) Q 7 ei

s i q 2 vp o i

s - 2s

FMo
( p 1 SvI

5 ,
),

d pr s o 2 2s iae e ! l01

[ s/r i 1 Qht -
Ss - ) - 2

- k
c0 s a a0 o I

,

0
r

1 p
1

C
o 0

.
-

1

5
3

2

.

g
i

F

.



v (psi)-

Shear 10p v(psi) 10 1,2 200

kp'si) b U
'E -10 0 -10 0 10 0

-Q -Q ,SI (in)
, , , , ,

'

0005 }QOO5 ' O.OO5

-10 0-'f h -100- -10 0 '

iO i,2 - a,2

a)tidShsi b)1175 psi -200) gc)1225 psi
10 1,2

Fig. 2.36. Crack slip Sl versus applied cyclic shear (specimen .6(B)). V(psi)
2 <lShear v(psi) g 200- O

Cycle; ess,v(psi) 2' 1

, - 0;O2 , - I/ , -OQ2 ,-003
, -0.,01 S2 (in)

, , , , ,

OM
- O 01 -0.02

3 -100- -100 -10 0-

10 2 'l 10
'

a)tl25 psi 2' 'l b)1175 psi c) 225 psi -200-
ig ,

) 2
Fig. 2.37. Crack slip S2 versus applied cyclic shear (specimen .6(B)).



74

The companion specimen of .3(C), .6(C), as shown in Fig. 2.38 (a,b,

c,d), showed closing of cracks C1 and C2 at least for low and intermediate

shear stress levels, as the shear stress was increased up to +300 psi. At

that high shear stress slip values (S1, S2) were more sensitive to cycling.

The deformation along the chosen single cracks in the duplicate speci-

mens .9(A) and .9(B) are given in Figs. 2.39 to 2.42 and Figs. 2.43 to

2.46, respectively. Similar behavior was noticed in both specimens for
.

the shear slip S1. Intense cycling of specimen .9(A) at peak shear

stresses lower than 125 psi did not seem to have any effect whatsoever

(see Figs. 2.41(c,b) and 2.45a). Crack width values C1 and C2 showed con-

sistent decreases up to about 225 psi in specimen .9(A) (Figs. 2.39 and

2.40). At that shear stress level and higher, the width of the crack

started increasing erratically. Due to the high applied tension of 0.9f ,y

cracking was very severe and therefore spalling of concrete occurred on

the surface, especially around the main diagonal crack at failure. This

could have resulted in sliding of the steel base of the dial gage relative

to the concrete surface, in which case measurements would be unreliable.

All maximum values for C1, 51, C2 and S2 of the cyclically loaded

specimens at the 1st, 2nd and 10th cycle at selected shear stress levels

are given in Table A.1 (Appendix A).

c) Effective shear modulus

The measured hysteretic response of the specimens in Series A, B and

C is presented in Figs. 2.47 to 2.58 in the form of shear deformation

versus shear load loops, at the 1st and 10th loading cycle. Two ways are

I
,

I

\
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Fig. 2.38. Crack width changes Cl, C2 and crack slip S1, S2 versus
applied cyclic shear (specimen .6(C)).
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77

yck
Shear g2 1 v(psi)
stress, v (psi)

~00 b)tl75 psi
- 100

,k 150 psi , S2 (in ), , ,

-0.005 ' oo5 -002 -o W]o.oo5g
-100 -100_.)

_.
v(psi)

6' i6p200
2 3

c)t225 psi 10 0"

CPI .Sl (in),, , , , ,

-004 -O03 -Oo 0.005
,

-100 k
1

j, {,6-200- l
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Fig. 2.42. Crack slip S2 versus applied cyclic shear (specimen .9(A)).
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used to illustrate the above behavior. The actual changes in shear strain
'

y versus the applied shear stress v in both positive and negative direc-
' tions at all selected peak stress levels (1st and 10th cycle) are given in

part (a) of each figure. In part (b) only the positive portions of the

hysteresis loops are shown in terms of the calculated average shear strain

Y in the positive and neg~ative loading directions. The 1st cycle is indi-

cated by solid lines and the 10th cycle by dashed lines. For further

clarity the loops at each peak shear stress level ( 125 psi, 175 psi,

etc.) are drawn separately in parts (c), (d) etc. These figures show the

effects of axial tension, cycling and shear on the overall shear stiff-

ness. The response changes drastically upon unloading or loading in the

opposite direction, exhibiting hysteretic properties. Significant values

of residual distortion were recorded at zero shear stress. For a peak'

shear stress of 175 psi, average permanent distortions of about 0.0003,

0.0015, 0.0020 and 0.0020 radians were measured at zero external load<

after 10 cycles of fully reversing shear in specimens .0(A), .3(A), .6(A),
i

| and .9(A), respectively.

Duplicate specimens .0(B), .3(B), .6(B) and .9(B) experienced similar

residual deformations. For the same Series A specimens and peak shear of

175 psi the maximum average diagonal deformations measured at the central

2 ft. square region had values of 0.014, 0.028, 0.068 and 0.076 inches

(0.36, 0.71,1.73 and 1.93 mm) at the end of the 1st cycle and 0.017, 0.035

0.077 and 0.106 inches (0.43, 0.89,1.96 and 2.69 mm) at the end of the

10th cycle at biaxial tension levels of 0, 0.3f , 0.6f and 0.9f , respec-y y y

tively. These values correspond to effective secant shear modulus G rc

values of 0.140, 0.070, 0.029 and 0.026 times the uncracked shear modulus

- . .. --_ .-. - -.
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of concrete Go (=1500 ksi or 10350 MPa) at the 1st cycle and 0.120, 0.060,

0.026 and 0.019 Go at the 10th cycle. Increase of biaxial tension from 0

to 0.9f caused about 79% loss in shear stiffness at the 1st load cycle.y

Reversed loading of 10 cycles resulted in approximately 12 to 27% further

stiffness degradation relative to the 1st load cycle at 0 to 0.9f axialy

tension, respectively. The average shear deformations (Id in inches and

V in radians) together with the calculated shear modulus G in terms ofcr

the ratio Gcr/Go at each prespecified applied peak shear stress for the

cyclically loaded specimens in Series A and B are given in Table 2.F (only

cycles 1 and 10 are shown). Very similar response is observed for the

above duplicate specimen Series A and B at each biaxial tension level (see

also Figs. 2.47 to 2.57).

Specimens in Series C, cycled at higher peak shear loads, revealed a

more severe degrading influence of the number of cycles. Relatively wide

hysteresis loops with large permanent deformations, as shown in Fig. 2.49

for .0(C), Fig. 2.53 for .3(C), Fig. 2.55 for .6(C) and Fig. 2.58 for .9(C),

demonstrate the above observation. Thus, the influence of the value of

the maximum shear stress applied during cycling is enhanced as this value

approaches the ultimate strength vu under monotonic loading. I_n this

group, .9(C) gave unreliable results due to a malfunction of the instrumen-,

tation setup at the beginning of the test.

One characteristic of the shear stress-strain curves for all cyclical-

ly loaded specimens is the very low stiffness observed at shear stresses

less than about 50 psi (0.34 MPa). For higher values of shear stress a

hardening effect was evidenced with a sudden increase in stiffness, as

the concrete surfaces along each crack come into bearing contact and the
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Table 2.F. Average diagonal deformation Id and effective secant cracked
shear modulus Gcr for the cyclically loaded specimens in
Series A and B (cycle 1 and 10).

_ _ _ _ _ _ _ _ _ _ _ _ _

BIAXIAL TENSION: fs = 0

.0(A) .0(B)
'

Peak Cycle 1 Cycle 10 Cycle 1 Cycle 10
Shear Gcr Gcr Gcr Gcr
Stress Id i' G ad Y Go Ed i' Go Ed i' Go
v(psi) (1) (2)(3)

125 0.011 6.2 0.13 0.012 7.2 0.12 0.020 11.8 0.07 0.022 12.7 0.07
175 0.014 8.2 0.14 0.017 10.0 0.12 0.023 13.7 0.08 0.026 15.5 0.08
225 0.020 12.0 0.12 0.024 13.6 0.11 0.028 16.5 0.09 0.030 17.4 0.09
275 0.029 17.4 0.10 0.032 19.0 0.10 0.033 19.5 0.09 0.034 20.2 0.09
325 0.039 23.0 0.09 0.042 24.8 0.09 0.039 22.9 0.10 0.042 24.5 0.09
37F 0.051 29.8 0.08 0.068 40.2 0.06 0.049 28.8 0.09 - - -

______________________________________________...,__________________________

BIAXIAL TENSION: fs = 0.3fv

v(psi) .3(A) .3(B)

125 0.022 12.4 0.07 0.025 14.7 0.06 0.020 11.6 0.07 0.026 15.2 0.05
175 0.028 16.8 0.07 0.035 20.7 0.06 0.032 18.8 0.06 0.036 21.2 0.06
225 0.040 23.2 0.06 0.046 26.6 0.06 0.041 24.2 0.06 0.042 24.9 0.06
275 0.051 29.8 0.06 0.058 34.4 0.05 0.046 27.2 0.07 0.044 26.3 0.07

t325 0.064 38.0 0.06 0.070 41.4 0.05 0.050 29.6 0.07 0.056 33.0 0.07
375 0.076 44.6 0.06 - - - 0.066 38.7 0.06 - - -

___________________________________________________________________________

BIAXIAL TENSION: fs = 0.6fv

v(psi) .6(A) .6(B)

125 0.051 29.9 0.03 0.050 29.3 0.03 0.038 22.6 0.04 0.054 31.5 0.03
175 0.068 39.8 0.03 0.077 45.2 0.03 0.059 34.8 0.03 0.072 42.6 0.03
225 0.086 50.4 0.03 0.100 58.4 0.03 0.079 46.6 0.03 0.094 55.0 0.03
275 0.109 64.3 0.03 0.153 89.9 0.02 0.104 61.8 0.03 - - -

___________________________________________ _______________________________

BIAXIAL TENSION: fs = 0.j_"y

v(psi) .9(A) .9(B)

125 0.052 30.8 0.03 0.061 35.9 0.02 0.070 41.2 0.02 0.084 49.5 0.02
175 0.076 44.8 0.03 0.106 62.2 0.02 0.093 55.0 0.02 0.112 65.8 0.02
225 0.195 114.7 0.01 - - - 0.134 79.1 0.02 0.345 2D3.6 0.01

(Continued)
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Table 2.F. (Continued)

Notes:

(1) id = average peak diagonal deformation in the positive and negative.

shear loading direction (in).

(2) V = average peak shear distortion in the positive and negative shear,

loading direction (rad. x 10-4).
Gc

(3) ggr = ratio of the effective shear modulus of cracked concrete to that
of uncracked concrete (Go = 1500 ksi).

I interface shear transfer mechanism is mobilized. A diagonal tension-com-

pression strut type of shear transfer mechanism gradually develops as

diagonal cracks form at an angle of about 45 degrees to the x direction.

Further discussion.on the behavior and the effect of combined inplane bi-

axial tension and cyclic shear to the shear stiffness of reinforced con-
'

crete panels is given in Section 2.7.
i

All maximum values for the average diagonal deformation ad of the

cyclically loaded specimens at the 1st, 2nd, and 10th cycle at selected

maximum shear stress levels are given in Table A.1 (Appendix A).

d) Ultimate strength

The failure loads for all cyclically loaded specimens are given in

2 Table 2.G. Failure in these specimens also occurred near a corner due to

j yielding of the steel (see Figs. 2.14a (1,2,3) to 2.14d (1,2,3) for crack

patterns at failure).

Specimens .0(A) and .0(B) reached an ultimate strength of 425 psi

(2.93MPa). This is 60 psi less than the 485 psi carried by the companion

cpecimen .0(M, subjected to monotonic shear. Specimen .0(C) failed at an

! intermediate shear stress of 475 psi (3.28 MPa) during the 1st cycle.

_ __ . _ . _ _ _ . - . . _ . _
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Table 2.G. Ultimate strength for cyclic shear (specimen
Series A, B and C).

.

fSpecimen s V

No. TF (psi)

.0(A) 425

.0(B) 0 425

.0(C) 475

.3(A) 375

.3(B) 0.3 375

.3(C)- 400

.6(A) 325

.6(B) 0.6 275

.6(C) 300

.9(A) 225

.9(B) 0.9 275

.9(C) 250

By increasing the biaxial tension to C.3fy in specimens .3(A) and

.3(B), the ultimate strength decreased to a value of 375 psi (2.59 MPa) in

i the 4th and 6th cycle, respectively. Specimen .3(C) withstood a shear

stress of 400 psi (2.76 MPa) and failed in the 1st cycle.

Specimens .6(A) and .6(B) failed at 325 and 275 psi (2.59 and 1.90

MPa) shear stress in' the 1st and 10th cycle, respectively. The relatively

large discrepancy of 50 psi is at least partially due to the loading pro-

cedure followed, since a 50 psi increment in peak sheat stress after every4

10 cycles was set for all tests. Thus, in specimen .6(A) the shear stress
,

was raised from 275 psi to 325 psi. The average value of 300 psi (2.07

biaxial tensionMPa) is a good estimate of the shear capacity at the 0.6fy

level. That level of shear stress was the shear capacity for specimen
4

.6(C) that occurrt 1 si the 4th cycle.
9

.--
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Specimens .9(A) and .9(B) withstood an applied shear stress.of 225

psi (1.55 MPa) at the 8th cycle and 275 psi (1.90 MPa) at the'Ist cycle.

Again here the average value of 250 psi (1.72 MPa) was assumed as the ul-

timate strength of the previous specimens. Failure in specimen .9(C)

occurred at 250 psi shear, after 4 cycles of loading.

The ultimate shear stress v andtheshearstressparameterv/@'u u

for specimens under cyclic shear (Series A and B) are plotted versus the

applied tension stress ratio fs/fy in Figs. 2.19a and 2.19b, respectively.

The linear best-fit curve of the data is given by the following expres-

sions

u=(7.4-3.7f/f)@' (psi) (2.4a)v s y

or

vu = 428 - 200 fs/fy (psi) (2.4b)

where v . fs, fy and f ' are in psi. A correlation coefficient of 0.96u c

was obtained for the above Eqn. 2.4 showing that the assumption of linear

variation of the ultimate strength with the changing biaxial tension is

valid.

The data from specimens in Series C are also plotted in Fig. 2.19a.

The best-fit straight line is.

vu = 472 - 258 fs/fy (psi) (2.5)

This line is located between the other two lines (Eqns. 2.3 and 2.4) for

cyclic and monotonic shear and closer to the former one for applied tension

higher than 0.6f , as expected.y

.

_._
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2.7 Discussion of Experimental Results

The general response and the observations related to the crack forma-

tion, the shear stiffness and the ultimate strength of the precracked rein-

forced concrete flat slabs subjected to combined biaxiol tension and shear

are presented and discussed in this secticn.

2.7.1 Cracking patterns

All specimens were initially cracked by applyirg a tensile stress of

0.6fy (36 ksi) in the two-way reinforcement. The specimens exhibited

similar orthogonal cracking approximately perpendicular to each set of

transverse reinforcing bars. No additional major tensile cracking was

observed above the 0.6f tension level.y
In general, the primary orthogonal cracks normal <o the double layer

were more closely spaced and with smaller surface crack openings than

those normal to the single layer direction, resulting in more cracks in,

the former case. These primary cracks extended through the thickness of

the specimen. but they did not always extend across the entire 48 inch

width.

Horizontal and vertical splitting cracks were also visible on the

surface of the sides of the slab between most of the rebars in the single

and the double layer, respectively, at the tensile stress of 0.6f , asy

shown in Fig. 2.59(a,b). At higher tensile loads there was a tendency to

have some horizontal splitting cracks also forming on the sides normal to

the double bars connecting the already existing vertical splitting cracks

(see Fig. 2.59b). It is not known how far these splitting cracks
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horizont I splitting
cracks

fe7g a) Single layer (x direction)n: _- '

''
1

specimen
i

/ T
i _f _f - 6a b) Double layer (y direction)
$ 4 4] g

/
vertical splitting

cracks

Fig. 2.59. Splitting cracks due to biaxial tension (part of the specimen
is shown.

penetrated through the specimen. Under the subsequent shear loading (es-

pecially the cyclic loading) propagation of these cracks probably occurred

inside the specimen due to the dowel and bond forces, thus causing further

deterioration and loss of the overall shear stiffness. At that stage, es-

sentially complete horizontal splitting was observed on the surface of all

four sides of the 6 inch thick central portion of the specimen. However,

in the tests described, these splitting cracks did not seem to be the pri-

mary cause of failure. Splitting cracks in the single layer of rebars in

specimens subjected to various biaxial tension levels are shown in Fig.

2.60(a,b,c,d).

Upon shear loading, diagonal cracking inclined at about 45 degrees

to the reinforcement formed in the central region of the specimens at shear

stresses as low as 75 psi (0.52 MPa), as mentioned in Section 2.6. A dis-

cussion concerning the diagonal cracking initiation based on experimental

. _ - - _ _ -
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and analytical evidence is given in Section 4.3.2a (see Fig. 4.53). The

main reason for these low shear stress levels at first diagonal cracking

is believed to be the effect of bond stresses transferred from the steel

to the blocks of concrete between the orthogonal cracks. These forces

caused additional shear stresses due to bond that were superimposed on

the existing shear stresses due to the externally applied shear loads, and

together with the presence of internal cracking at the steel-concrete

interface, resulted in the aforementioned diagonal cracking. The fact that

the first diagonal cracks formed near an intersection of the orthogonal

bars supports the above argument.

Shear cycling was found to produce significant additional diagonal1

cracking at the same peak shear stress. A portion of the cracked specimen

subjected to a shear stress v (only the positive direction is shown) and

a tensile stress in the bars is shown in Fig. 2.61. The orthogonals

cracks approximately follow the reinforcing bars. The diagonal cracks

will most probably form near the corners of the uncracked regions of con-

crete between the bars at the 1st load cycle, as shown in Fig. 2.61. Re-

distribution of stresses will take place during the later cycles of shear

due to diagonal cracking. As the tensile principal stresses in the con-

crete increase at stiffer regions of concrete farther from the primary
1

orthogonal cracks and between the initially formed diagonal cracks, the

tensile strength of concrete f ' can be reached again and new diagonalt

cracks can form (see Fig. 2.61). Similar behavior is expected when the

shear is applied in the opposite direction (negative) with diagonal cracks

forming nearly e.t right angles to those shown in the above figure. Also,

reversing cycling tends to further close the orthogonal cracks (see Figs.

.

, - , - . - - , . - _ , , _ _
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Fig. 2.61. Diagonal cracking during cycling.

2.26 and 2.33), particularly for shear stresses higher than 125 psi. This

can improve the bond at the interface between the steel and the concrete.

As a result, the principal tensile stresses in the concrete 1 at the im-

mediate vicinity of the bars will also i.ncrease. Therefore, it appears

that cycling will cause more extensive diagonal cracking than that under

monotonic shear at the same peak shear level.

The extensive diagonal cracking due to cycling resulted in further

loss of the integrity of concrete as compared to monotonically loaded speci-

mens. As the shear load approached the ultimate level, the inclination
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angle of the major diagonal cracks to the x direction increased with de-

creasing applied tension, remaining at about the same original 45 degree

value at a tension of 0.9f in the rebars.y

2.7.2 Shear stiffness

a) Monotonic shear

For the monotonically loaded soecimens (Series M) a decrease in secant

stiffness and an increase in shear deformations was observed as the tension

in the steel increased from 0 to the maximum value of 0.9f . As shown iny

Fig. 2.18, for shear stresses up to 25 psi (0.17 MPa) a very low shear

stiffness was observed. O

For comparison, the normalized secant anch tangent shear modulus G incr

terms of the shear modulus for uncracked concrete Go (given in Table 2.H)

is pl.otted versus the shear stress level for all specimens under monotonic

shear in Fig. 2.62. Shear stiffness (Gcr/Go) values of 0.056, 0.021, 0.012

and 0.009 were calculated in specimens .0(M), .3(M), .6(M) and .9(M), re-

spectively, at a shear of 25 psi. The degrading incluence of increasing

applied tension is evident although it appears to be less significant for

tension levels of 0.6fy and higher.

However, the most important finding is that the effective shear

modulus Gcr is less than 10% of that for uncracked concrete (Go). For shear
,

stresses higher than 25 psi, there was a distinct increase in the tangent

shear stiffness for applied tension ranging from 0.3f to 0.9fy with they

interface shear transfer becoming active as the crack surfaces came into

contact. The latter increase, however, does not result in raising the

.
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Table 2.H. Test results of ultimate strength values. |

(7 (~2)- -(3) (4) Tij~~
~

Applied Ultimate v Failureu
Specimen Rebar Strength P f -Cy N at

v (psi) jfc, (psi) CycleNo. Tension u

.0(A) +425 7.8 744 1st

.0(B) No +425 7.3 744 3rd

.0(C) Tension +475 7.6 744 1st

.0(M) +485 8.7 744 -

_________________________________________________________ _________________

.3(A) -375 6.3 521 4th

.3(B) +375 6.0 521 6th0.3f

.3(C) Y -400 6.6 521 1st

.3(M) +450 6.6 521 -

___________________________________________________________________________

.6(A) +325 5.8 298 1st

.6(B) -275 4.8 298 10th0.6f

.6(C) Y +300 4.9 298 7th

.6(M) +375 6.2 298 -<

_______________________________________________________ ___________________

.9(A) +225 3.8 75 8th

.9(B) -275 4.6 75 1st0.9fY +250 4.3 75 4th.9(C)

.9(M) +300 5.0 75 -

_

(1) (A) or (B): CYCLIC (10 cycles at each shear stress level; start at 125
psi and continue at 50 psi increments).

(C) : CYCLIC (monotonic loading up to the average failure load
of (A) and (B); if no failure occurs continue cycling).

(N) : MON 0 TONIC (monotonic loading up to failure).

(2) Rebar tension of 0, 0.3f , 0.6f and 0.9fy is the same in both direc-y ytions (x and y).

(3) fc' = average cylinder compressive strength of concrete.

(4) o = 0.0122 (weak direction) is used; oN = normal tension.

(5) Cycle number is within a group of 10 cycles at the indicated stress
level.
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shear modulus G above the 0.10 Go value. For shear stresses between 50cr

and 125 psi, the effective tangent shear modulus Gcr was approximately i

equal to values ranging from 4 to 6% of Go for all biaxial tension levels.

To find a more representative value for the shear stiffness under

monotonic shear, the data from the shear stress-shear distortion curves

for specimens in Series A, B and C at the 1st positive cycle are plotted

together with the data from Series M. The combined test results for mono-
;

tonic shear are shown in Fig. 2.63 (a,b,c,d) for each biaxial tension level.

Due to the scatter of the dat5 the average values of the gross shear dis-

tortion at the corresponding shear stress is calculated and shown as full

dots in the above figures. Straight lines were fit through these average

data points for shear stresses between 25 psi and a stress level up to

which an approximately linear response still held for each tension level.!

! These results are sumaarized in Fig. 2.64. The average values of the effec-

tive tangent shear modulus determined for shear stresses higher than 25

psi are tabulated below:'

Biaxial
Tension Gm & py,i (MPa,)_ _ __ __ Jgf,Gp.

,

,

0 102000 (704) 0.068
0.3f 70400 (486) 0.047
0.6f 83100 (574) 0.055
0. 9 fy 73700(508) 0.049

Thus, contrary to the findings at shear stresses less than 25 psi, the'

response at higher shear stresses is not strongly sensitive to the level of
!

biaxial tension. This shows that the initial crack width does not play a'

I
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significant role in the resulting effective tangent shear modulus, at least

for monotonically applied shear higher than 25 psi. On the other hand, the

effective secant shear modulus (reflecting the total deformational behavior

of the specimen) is decreasing with increasing applied biaxial tension due

to the increasing initial shift of the shear stress-shear strain curve at

low shear stresses.

b) Cyclic shear

Three distinct stages of behavior may be identified for the hysteresis

loops (after several load cycles) for the specimens loaded under fully re-

versing cyclic shear (Series A, B and C), as shown in Figs. 2.47 to 2.58:

1) S_tage I (low stiffness; shear stress less than 50 psi)_:

Due to the residual crack openings upon unloading, relatively large

shear deformations were required to mobilize the shear transfer mechanism <

at these low shear stresses after several load reversals. This initial

softness in snear stiffness appeared to increase with cycling because the

residual slips at zero shear stress increased with increasing number of

cycles and peak shear stress (see Figs. 2.47 to 2.58). As more concrete

crushed tround the bar at the crack and the unbonded length of the bar in-

creased with cycling, gains in shear slip and crack width were expected.

Consequently, with increasing number of cycles, dowel action became the

most important mechanism with the interface shear transfer becoming less

active because of the progressive deterioration of the concrete surfaces

at the cracks. As the dowel forces increased with cycling they caused

additional danage to the bond transfer mechanism because of local crushing

.

. -
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around the bars. As a result, the unbonded length of the bars was in-

creased. With the concrete providing less resistance, the dowel action

mechanism became less effective in transferring stresses, and the specimen

became more flexible in shear.

Since dowel action was the major shear transfer mechanism at shear

stresses less than 50 psi, the total shear tranferred at the cracks would

be almost entirely carried by shear forces in the bars. In the weaker re-

inforcing direction (single layer) of the specimens with ox = 0.0122 a

daar stress of 50 psi would cause a shear stress equal to 4.1 ksi per bar.

This shear stress is far lower than the shear stress of about 35 ksi

(=f / 5), that is expected to cause yielding.in the No.6 bars. Thus, they

dowel action mechanism is capable of fully resisting these low shear

stresses.

2) Stage II (high stiffness; shear stress higher than 50 psi):

At shear stresses higher than 50 psi a dramatic increase in the tan-

gent shear stiffness occurred because the interface shear transfer mechan-

ism was mobilized as the shear slip resulted in contact of the asperities

of both sides of the crack interfaces. This shear stiffness increase was

particularly evident for very small initial crack widths, that is, for low

applied biaxial tension. At this stage, as the shear stresses increased,

the diagonal-tension-compression strut mechanism started predominating (at

about 100 psi) over a slipping type mechanism. This caused opening of the

diagonal cracks normal to the tensile direction, and some closing of the

orthogonal cracks due to the compressive stresses in the concrete. The

diagonal tension-compression mode is described in "hapter 4 (Section
,

4.3.2a).
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With an increasing number of load cycles and higher peak shear stress

the interface shear transfer became less effective, resulting in degrada-

tion of the stiffness and a cumulative gain in shear deformations. However,

for specimens with bar tension as high as 0.9f , which produced la ge cracky

openings, dowel action was the major shear tran fer mechanism. A 300 psi

shear stress wculd produce a shear stress of about 25 ksi in each bar of

the single layer. This high shear stress plus bending stresses and high

tension of 0.9fy could possibly cause yielding in the bars. Part of the

dowel shear could be induced by kinking in the bars, as described in

Section 4.4.

3) Stage III (unloading from peak shear stress):

Unloading led to some reduction in deformations, but appreciable

residual deformations could remain at zero shear stress because of the in-

terlocking of the asperities along the crack surfaces and the wedging

action of concrete at the surface of the reinforcement. The tangent shear

stiffness remained nearly the same as in the loading Stage II.

Regarding the effective shear modulus at shear stresses less than

50 psi (Stage I), a value of about 0.05G was calculated in the case ofo

zero tension during shearing in the initial load cycles. This value de-

creased to 0.02Go due to the combined effects of cycling and increasing

of the peak shear stress. Although a three-line segment idealization of

the hysteresis loops would be more accurate for the positive and negative

portion of the curve, a simple bilinear representation is chosen, shown in

Fig. 2.65(a,b,c,d) for each specified biaxial tension applied in the Na.6

rebars. The stiffer loading portion of the curves in Fig. 2.65a showed a

..
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drastic decrease in the tangent stiffness from about 45% that of uncracked

concrete to about 10% as failure was approached after some 80 cycles at

selected shear stress levels with zero tension in the bars.

With a 0.9fy applied tension (see Fig. 2.65d) an extremely low initial

shear stiffness of.about 2% of G was measured at shear stresses less thano

50 psi. In later cycles this shear rigidity assumed values of less than

1% of Go. Above the 50 psi shear level the stiffer portion of the response

resulted in a tangent shear modulus of about 0.03 to 0.04 Go. The increase

in shear deformations, particularly near failure, was apparent at this high

applied biaxial tension level, which produced large crack widths and caused

severe degradation of the bond mechanism. The specimens subjected to 0.6fy

biaxial tension showed similar behavior to those at 0.9fy (see Fig. 2.65c).

In the case of 0.3fy tension (see Fig. 2.65b), the effective tangent shear

modulus decreased due to cycling and increasing peak shear stress from 0.05

to 0.01 Go and 0.27 to 0.10 Go at low and high shear stresses, respectively.

In general, the shear stiffness degraded with increasing number of

fully reversing shear loading cycles causing an increase in shear deforma-

tions. The percentage increase of the peak average diagonal deformation

Ed(") in the specimens at cycle n (relative tc the deformation at cycle 1

Ed( )) as a function of the applied peak shear stress v, is given for dif-

ferent biaxial tension levels in Fig. 2.66(a,b,c,d). After 10 load cycles,

at lower shear stress levels for the low tension levels of 0 and 0.3f ,y

there is an increase in deformation of 15 to 20% (see Fig. 2.66(a,b)). At

shear stresses higher than 225 psi (1.55 MPa) the increase is about 10%.

The increase in deformations, relative h cycle 1 values, at the end of

the 2nd cycle at each peak shear stress level is practically constant at

.
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and 0.9f result in a5%. On the other hand, biaxial tensions of 0.6fy y

nearly constant 5% and 20% increase in shear deformations after 2 and 10

cycles of shear load, respectively. As failure is cgproached, cycling re-

sults in higher increases in deformations at all biaxial tension levels.

It appears that, independently of .the biaxial tension level, reversing

cycling at increasing peak shear stress has the same degrading influence

regarding the integrity of the specimens after only 2 cycles of' shear

loading. At a biaxial tension level of 0 or 0.3f , as the number of sheary

loading cycles is increased to 10, the effect of cycling decreases as the

applied peak shear stress increases.

Since the change in shear deformations versus the applied shear stress,

shear load cycling, and biaxial tension level is a measure of the effective

secant shear modulus Gcr, the following average values of G r at the endc

of 10 cycles of reversing shear at a particular peak value can be calcu-

lated:

(I) , for 1 0.6 and v < 225 psiGcr( )(secant) = = 0.83 Gcr y

or[f = 0.9 and v < 175 psi
y

(2.6a)

and (1)
G f

(l) , for 5 0.3 and( )(secant) = 42 GG * crcr 10

225 s y s 325 psi (2.6b)

where Gcr( ) is the average secant shear modulus at peak shear during the'

_ _ _ - . .
. .
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1st cycle. The secant shear modulus values at selected shear stress levels

are given in Table 2.I for all cyclically loaded specimens.

The percentage increase of peak average shear deformations at the 1st

cycle of each shear stress level, Id(V) (normalized by the peak deforma-

tion Id(125) at 125 psi shear),in terms of the dimensionless ratio of ap-

for all specimens inplied shear stress v to the ultimate strength vu

Series A and B, is given in Fig. 2.67. For ratios of v/vu less than 0.9,

it is possible to have as much as 250% gain in peak shear deformations

relative to the maximum deformation at 125 psi shear stress. The amount

of the total cumulative gain in deformations, that is the total decrease
Iof the secant shear modulus, increases with decreasing applied tension in

the bars and increasing shear stress ratio v/v - For V/Vu larger than 0.9,u

which means thet yielding in the bars is iminent, large increases are

present creating an extremely soft system, especially for high biaxial ten-

sion.

Finally, the shear stress-shear strain curves obtained in the present

biaxial tests formonotonic shear are compared with those for cyclic revers- |

ing shear in Figs. 2.68(a,b,c,d) at bar tensions ranging from 0 to 0.9f .y

For the specimens under cyclic shear only the positive portions of the |

average shear distortion versus shear load curves are shown for selected I

cycles of loading. In these figures the envelope curve connecting the

peaks at the 1st cycle at all shear stress levels is also drawn in dots.

It can be said that for all bar tensions and intermediate shear stress

levels the curves for monotonic shear are approximotely parallel to that

envelope. For high tensions of 0.6fy or 0.9f , the monotonic curves followy

very closely the path of that envelope (see Figs. 2.68c and 2.6Bd). However,



A /4
fl%*$ '$M

f4 <# ;9+f)$>$, 4. e. ...<e _
TEST TARGET (MT-3)

,

1.0 !!Ela BM
y ,T I!!E.

| 1.1 ,E m l!llM
l.8

| 1.25 1.4 1.6

|

4 6" >

:

i p% + //p

*$|[ f5,,,,,h#'
b'& Q.g[4

#s,

' '' ' '

~
_ ___ -. --.-



A %
Mb)* 'I{/k# .___

TEST TARGET (MT-3)

1.0 5 DM Ed
g a p=2

iam

i.i [m IllMe.'
l.8

1.25 '|l.4 __

1.6

4

4 6" >

>

#%Wy# / +
4 ,> s e% 7

__ .._ __ < gg 4,.wg
4*

~

-- -

.- - a



_-
N Q= w
I

'

Q '

Symbol ' Aver, fit Specime'n ' '
,

- o
5, o ------ .O ( A ), ( B )
34 300 -

o ---- .3 ( A ), ( B )
Bioxial tension ze30

~

c o--- .6 ( A ), (B ) 'I' ^|V 'J
o ,-

--.;: + .9 ( A ), (B ) , ~

o, -{ , _
C)

'
o 200 - ,

,

,g a,o ,- -
u -,- ,- to -o ,

-

a,.-$''g',. W - .6 fy _
e
u 100 -

' 8 +
E 0 #.;#o* 9fO'' O '''$ n -n:~~N,oA*0 , - 'g 0 02

- -

0.4 0.6 0.8 1.0o
C

'-

Stress ratio, v/vu

Fig. 2.67. Normalized % increase of neak average diagonal deformation Id at the 1st cycle- of each stress
level versus the ratio of the applied peak shear stress v to the ultimate strength vu in speci-
men Series A and B (No.6 bars).

- _ _ _ _ _ _ . _ _ _ _ - _ _ _ _ _ _ _ _



119

Table 2.I. Effective secant and tangent shear modulus Gcr in terms of Go
for monotonic shear.

Specimen.0(M) Specimen.3(M) Specimen.6(M) Specimen.9(M)

G_Shear G G Gcr Gcr Ger Gcr Gcr _crer cr
Stress Go Go Go Go Go Go
v(psi) (Go ) (GtSn) (sec) (tan) (sec) (tan) (sec) (tan)sec

0 0 0 0 0 0 0 0 0
25 0.056 0.056 0.021 0.021 0.012 0.012 0.009 0.009
50 0.056 '0.067 0.030 0.056 0.018 0.042 0.015 0.067
75 0.062 0.056 0.036 0.056 0.023 0.033 0.021 0.067

100 0.056 0.056 0.039 0.048 0.024 0.033 0.025 0.056
125 0.059 0.067 0.040 0.056 0.026 0.037 0.028 0.042
150 0.059 0.056 0.043 0.056 0.027 0.037 0.029 0.033
175 0.058 0.042 0.043 0.042 0.028 0.042 0.029 0.021
200 0.053 0.048 0.043 0.042 0.030 0.042 0.026 0.011
225 0.056 0.056 0.043 0.042 0.031 0.037 0.021 0.005
250 0.054 0.056 0.043 0.048 0.031 0.030 0.015 0.004
275 0.056 0.056 0.044 0.056 0.031 0.021 0.012 0.003
300 0.054 0.048 0.044 0.056 0.029 0.010 0.009 -0
325 0.054 0.042 0.045 0.056 0.023 0.005 - -

350 0.052 0.042 0.046 0.056 0.016 0.003 - -

375 0.052 0.037 0.046 0.048 0.011 -0 - -

400 0.049 0.030 0.046 0.048 - - - -

425 0.048 0.024 0.046 0.026 - - - -

450 0.044 0.011 0.042 0.008 - - - -

460 0.038 0.008 0.033 -0 - - - -

475 0.036 -0 - - - - - -

for low bar tensions c>f 0 and 0.3f , the monotonically loaded specimensy

.0(M) and .3(M), as shown in Figs. 2.68a and 2.68b, experience larger peak

shear deformations at the same shear stress. The monotonic loading portion

of the shear stress-shear strain curve at the 1st cycle for specimen .0(C)

is also plotted in r'ig. 2.68a. This much steeper cuive falls to the left

; of the envelope of .0(A) indicating an apparent scatter for monotonic shear

tension and a high sensitivity at low shear stresses. The low shear stiff-

ness at very low shear stresses in specimens .0(fi) and .3(M) shtft the

whole curve towards larger deformatior ' resulting in lower secant shear
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stiffness values than would be predicted by the envelope curves of the re-

versing _ loading-unloading hysteresis loops. The major cause of this, as

mentioned before, is believed to be the shrinkage cracking. The local

tangent shear stiffness in specimens .0(M) and .3(M) does not seem to be

affected by the above factor and compares favorably with that of the

envelope curves.

2.7.3 Ultimate strength

It is evident from the test results that shear capacity was always

governed by yieldirg of the reinforcement in the region near a corner.

The diagonal tensit n-compression strut system resulted in increasing crack

openings at the diagonal cracks, which caused higher bar tensions and even-

tually yielding of the steel. It is emphasized that this response led to

an opening-type mode of failure at a diagonal crack and not to a sliding

shear-type mode along an orthogonal crack. According to the free body

equilibrium analyses at failure (see Section 4.4) and assuming yielding

in the bars in both reinforcing directions, appreciable dowel forces are

computed in each bar in the double and the single layer of No.6 bars, re-

spectively. Kinking of the bars at the failure crack is also probable as

; failure is approached.

The initially cracked specimens with zero tension in the reinforcement

during the application of shear carried a shear stress of about 8.5V

and 7.4/fc' for monotonic and cyclic shear, respectively. As applied bi-

axial tension is increased to 0.0f , the shear strength decreases to abouty

SW and 4V for monotonic and cyclic shear loading, respectively.

. _ .
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Strength is decreased by some 15% by the action of cyclic loading, as com-

pared to the monotonically loaded specimen strengths (see Fig. 2.19b).

The ultimate strength values measured in all specimens are given in Table

2.H. It is believed that the lower ultimate strength values measured under
~

cyclic shear compared to those under monotonic shear are mainly due to the

lower expected dowel strength of the No.6 reinforcing bars subjected to

cyclic shear loading. Reversing cycling causes progressive damage of the

concrete around the bars near the failure crack which results in smaller

dowel forces at failure.

These same results are plotted in Fig. 2.69 in terms of the steel

stress parameter (pfy-o). In this parameter, p is the steel ratio ing

the more lightly reinforced direction, and oN is the applied normal tension

stress in the same direction.
,

,

The mean ultimate strength values in the present experimental study
!

i for specimens with No.6 rebars are give7 by the following linear regression

expressions with a correlation coefficient of 0.97:

Monotonic shear- vu = [4.5 + 0.005(ofy - oN)] V (psi) (2.7a)

and

Cyclic shear: vu = [3.8 + 0.005(ofy- N)] V (psi) (2.7b)

providing the relationships pfy = 744 psi (p = 0.0122, fy = 61 ksi) and

75 5 (ofy- N) 5 744 psi are satisfied, and f , oN' f ' are in psi. Ul-y c

timate strength increases with increasing steel ratio o or with decreasing

axial tension. An approximately 50% variation in strength is observed in

the present results with applied biaxial tension ranging from 0 to 0.9f .y

.
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The maximum shear stress values v given by Eqns. 2.7a and 2.7b are
.

conservative when applied to a containment vessel because the failure
|

| type mode observed in the specimens cannot occur in a cylindrical shell,

| in which the region modeled by the specimens will be restrained by the

rest of the structure. This aspect and the influence of the way the shear

load was applied on the specimen to simulate a pure shear stress condition

are discussed in Section 4.4.
,
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CHAPTER 3

EXTENSIONAL STIFFNESS

m
3.1 Introduction

The main objective of this chapter is to present an estimate for the

effective extensional (axial) stiffness KN of the biaxially tensioned

specimens. As previously mentioned in Chapter 2, all specimens reported

here were initially cracked by tensioning each bar in both orthogonal di-

rections (x and y) to about 36 ksi (248 MPa).

The principal tensile concrete strains induced by tensioning the

bars in both directions were parallel to the orthogonal reinforcement.

Twice as much steel was present in the double layer (direction.y) as in

the single layer in the orthogonal direction (x). Thus, the concrete

surrounding the re.nforcement in the fonner direction would be expected to

experience more uniformly distributed strains than in the latter direction
'

but of about the same maximum value. Experimental evidence, presented

later in this chapter, showed that cracking in the concrete in the direc-

tion normal to the (y) direction (double layer) was initiated at a lower

tensile stress in the bars than in the orthogonal direction.

If the bars were simultaneously tensioned in both (x) and (y) direc-

tions to the specified tension level, the direction of the initial crack-

ing normal to the principal maximum strain direction would rend to be ran-

dom because the applied principal strains in both directions were roughly

equal. The Mohr's circle for strain would therefore collapse to a point.

1
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In addition, the already existing sources of anisotropic behavior, such as

shrinkage cracking, could easily lead to a different maximum principal

strain direction. However, although the specimen could crack in any"

direction (not only normal to the reinforcing bars), the cracks will tend

to follow the reinforcing bars because bars act as crack initiators.

To minimize the formation of inclined cracks, the bars in both direc-

tions were not tensioned simultaneously. Instead, the bars in one direc-

tion were first tensioned up to 36 ksi to induce cracks approximately nor-
2

mal to the stressed steel and then, after the tension in these bars was

released, the bars in the orthogonal direction were stressed to 36 ksi to

produce another set of parallel cracks normal to the first set. Finally,

the bars in both directions were tensioned together up to 36 ksi and then

the tension level was held constant at a preselected value of 0, 0.3f ,y

0.6f or 0.9f . The above procedure was followed to achieve an orthogonaly y

cracking pattern more representative of the horizontal and vertical cracks'

observed during internal pressurization tests of reinforced nuclear con-

tainment vess<tls.

There is neither data or any analysis available in the literature'on

the subject of the axjal stiffness in biaxially tensioned reinforced con-

crete elements. Considering the complex boundary conditions existing in

a segment of a cracked containment wall subjected to a biaxial tensile

loading, the following procedure was adopted. A simple relation for the

extensional-_ stiffness was obtained using the total external axial elonga-

tion measurements in the specimens during the application of the tensile
,

loads in the reinforcing bars in both orthogonal directions. The existing

within the gage length under consideration wereaverage steel strains esm
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expressed as a function of the applied tensile stress f , the reinforce-s

ment ratio o and the Young's modulus E of the steel.s

It is important to note that earlier experimental studies on the

shear transfer across single cracks (Refs. 61, 70, 97,117 and 126) dealt

v'+h prespecified constant initial crack widths or with constant axial re-

straining stiffness provided through external or embedded steel bars. The

present study on' shear transfer used two-way embedded reinforcement. Due

to bond deterioration and splitting, slip could occur between steel and

co rete, thus affecting the crack opening and shear-induced slip along the;

ortnogonal cracks. This axial stiffness degradation depended on the ten-
.

sion level, the applied shear stress and the number of load cycles. There

is no experimental data from the present research on the variation of the -

extensional stiffness during the application of combined biaxial tension

and shear. Thus, a constant extensional stiffness is assumed for both

the monotonically and cyclically loaded specimens, as determined by the

tension tests described in this chapter.

From the relation between the applied axial tension in the bars and

the total elongation in the surrounding concrete, an average effective ex-

tensional stiffness KN is determined in both the x and y directions, paral-

1el to the reinforcing steel. This stiffness (related to the local axial

restraint stiffness of the embedded reinforcement at a single crack) plcys

a significant role in the ability of the cracked reinforced concrete panels

to effectively transfer the applied shear forces across the cracks. The

importance of K is demonstrated by the shear-friction theory, according
N

to which the larger the compressive forces normal to the crack surfaces,

the larger is the contribution of the interface shear transfer to the shear
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transfer across the cracks. It.is true, however, that in order to create

sufficiently high compressive forces, equally high axial stiffness (pro-

vided by the reinforcement) is required normal to the cracks.

Since the extensional stiffness is interrelated with the crack open-

ings during tensioning, the main parameters influencing the latte. need

identification. These parameters are the mean steel strain esm, which in-

cludes the contribution of concrete to the axial stiffness (tension stiffen-

ing effect), and the crack spacing (mainly a function of concrete cover,
s

bar size and concrete tensile strength) of the orthogonal cracks after a

stabilized condition is achieved.

3.2 Literature Survey

The literature review on the subject of extensional stiffness and

cracking deformations is divided into two sections. First a review is pre-

sented in Section 3.2.1 on the experimental results for axial restraint

stiffness obtained from block specimens under uniaxial tension. Then, a

number of proposed fonnulae for the calculation of the mean strain in the

embedded reinforcement and the crack spacing, as well as different ap-

proaches used in estimating the tension stiffening effect of concrete, are
i

i given in Section 3.2.2.

3. 2. . Extensional (restraint) stiffness from uniaxial tests

In tests performed at Cornell University the effect of axial restraint

stiffness has been studied on block concrete specimens with a predefined

single shear crack. White and Holley (Ref. 126), and Laible (Ref. 70)
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used external unbonded rods, while Jimenez et al. (Ref. 61) used embedded

i reinforcing bars crossing the single crack. Eleiott (Ref. 33 and 127)

employed both embedded bars and external unbonded rods to study: (a)

interface shear transfer alone, (b) dowel action alone, and (c) interface
,

shear transfer and dowel action combined.

Laible and White and Holley performed studies on the effect of the

restraining axial stiffness on the shear displacement of a single crack
,

with a specified initial crack width c In their experiments the stiff-wm .

ness normal to the crack was provided by unbonded external rods bolted at

the top and bottom of the specimen to reaction steel beams (see Fig. 4.7 ).

White and Holley concluded that an increase in restraint stiffness

would result in smaller shear displacements and larger shear stiffness

during either cyclic or monotonic shear loading, even for relatively large

initial crack widths of 0.030 in. Direct comparisons were not possible
!

-

since the specimens with the higher axial restraint stiffness (larger ex-<

ternal steel rods) were cycled at a higher shear stress level than the

( specimens with the lower axial restraint stiffness.

Laible found that the reduction in the shear and normal displace-

ments caused by an increase in axial stiffness was affected by cycling

and the level of axial stiffness. The shear resistance in the bearing

mode of the interface shear transfer at very small crack widths was highly

dependent on the local roughness at the crack interface and on the value
0of cwm , and was less dependent on the axial stiffness normal to the crack.'

This meant that the increase in crack width and bar forces with increasing

shear load was not as large as in the frictional mode of behavior. In

the latter case, the interface shear transfer stiffness was highly affected

,

I

_
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by the axial restraint. 'The axial stiffness values (1780 k/in with four

1.0 inch (25 mm) diameter external bars, 3420 k/in with four 1.375 inch

(34 mm) diameter external . bars, and 5130 k/in or 7640 k/in with six 1.375

inch external bars) used in Laible's tests were lower than those in actual

reinforced concrete vessels with embedded bars and the slips observed did

not seem- to be influenced at the high value of 7640 k/in.

In Table 3.A the ratio of the total restraining force to a fixed

applied shear force of about 180 psi is given for different initial crack

Table 3.A. Restraining bar forces developed e' a' fixed shear force with
decreasing average initial crack w,dth according to Laible.

i

. Average initial Ratio of total restraining force

| Series crackwidth(dhm) to applied shear force
,

Cycle 1 Cycle 15 % Increase

A 0.03 in. (0.76 mm) 30 to 40% 40.to 65% 33 to 62%

C 0.02 in. (0.51 mm) 30 to 40% 40 to 55% 33 to 38%-

D 0.01 in. (0.25 mm) 10 to 20% 20 to 35% 100 to 75%

widths for specimens with axial stiffness equal to 3420 k/in. A decrease

in the restraint forces with decreasing initial crack width is evident.

It was observed that.the total restraining force required to transfer L

specific shear stress did not exceed 65% of the shear load, at least for

the initial loading cycles. For initial crack widths of about 0.010 in.
1

the axial restraining force could be as icw as 10% of the shear force

during the 1st cycle. The axial stiffness was.less effective in decreasing

the shear deformations in the initial loading cycles and axial stiffness

t

-, - -,
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2 shearing area).values larger than 3000 k/in (or 10 ksi/in for a 300 in

For values larger than 10 ksi/in the axial stiffness was more effective

in controlling shear deformations at subsequent cycles. As shown in Fig.

3.1, there was a critical level of KN (normalized to the corresponding

shearing area of concrete) above which an increase in restraint stiffness

did not decrease shear displacements. Slips comparable to Loeber's results

(discussed later in this section) were obtained for infinite axial re-

straint.

.c_

]. large specimens (Laible)
e r -

,)
E 0.06 (shearing area =300 in -

{ Cycle 15*
.

__

sell specimens (D eio n)Y 004 -

(shearing area 15 in )2
2 Cycle I
E

n. .c
(n 0.02 - _____j_______"'

-

Infinite axial stiffness (Loeber)
0 ' ' ' '

O 10 20 30 40 50
ERestraint axial stiffness k/in/in of shear surface

Fig. 3.1. Shear slip vs. restraint system stiffness (for initial crack
width of 0.030 in.).

Eleiott (Refs. 33 and 127) using smaller scale specimens than Laible
2(one No.4 embedded reinforcing bar crossing a shearing area of 15 in
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(see Fig. 4.20)), measured the increase of the bar stresses and the change

in the extensional stiffness Kn under the combined action of the interface

shcar transfer and dowel mechanisms. He also performed two tests with

! external' steel rods providing a restraint stiffness of about 700 k/in

(47 k/in/in2 of shearing area) to study the interface shear transfer mech-

anism alone. In the tests with the embedded bar the restraint stiffness

depended on the bond developed between the steel and the surrounding con-

crete. However, no internal strain gages were placed on the bars at the

vicinity of the crack plane to measure the change in the bar tension, be-

cause of their interference with bond. Instead, the corresponding change

in the bar stress was indirectly estimated by multiplying the initially

calculated axial stiffness by the increase in the crack width between

zero and peak axial load (see Fig. 3.2).;

:

9

50 - No. 4 bar (IST + DA)

3 Test 9b e
-

d 25 -

,

e Test 9c
E
e
m s ,'

s'
O O.b06 0.bO8 0.blO'

Crack width, (in)

fig. 3.2. Crack width variations, tests 9b and 9c(Eleiott).
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,

Axial steel stresses of 25 and 50 ksi and peak shear stresses of

- 150, 250 and 400 psi (1.04, 1.72 and 2.76 MPa) were applied to the

specimen with the No.4 reinforcing bar. Due to cyclic shear loading,
;

crushing of concrete around the bar lowered the bond transfer and decreased

the extensional stiffness of the embedded bar (p = 0.0133). Results from

two tests (9 and 10) with an initial crack width of 0.030 in. are presented

in Table 3.B. Average increases in the bar stress of about 8% for an

Table 3.B. Eleiott's test results for combined interface shear transfer
and dowel action with a single No.4 embedded rebar (average

4

initial crack width of 0.030 in.).

~(1) (2) (3) (4) (5) (6)
Peak

Shaar K of
N s

Test Stress No. of
No. fs (ksi) v(psil (ksi/in) (%) Cycles'

9 25 150 _ 8% 10

9a 50 150 111 to 373 8 to 28% 15

9b 50 250 111 to 213 12 to 20% 10

9c 50 400 111 to 191 30 to 55% 10
_________________________________________________________________________

10 50 150 100 to 130 20 to 0% 10

10a 50 250 78 to 186 24 to 19% 10

10b 50 400 107 to 167 30 to 32% 8

i,

Notes:

(4) The two values of KN correspond to the left and right crack plane at
the two ends of the specimen.

(5) afs = then average % increase in bar stresses after a certain number
of cycles.

(2) fs = initially applied axial stress per bar.

applied steel stress of 25 ksi (10 cycles) and 8 to 55% for.a steel stress

of 50 ksi (loading history is shown in col. 6 of Table 3.B) were measured

in these two tests.

. . . - - . _ - . _ . .
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!

| Eleiott's experimental results regarding the-effect of axial stiffness

and cycling on the amount of shear slip in the tests studying the inter-

face shear transfer mode (with external restraint steel rods) are included
!

in Fig. 3.1 for comparison with Laible's and Loeber's results. Direct com-

parison with Laible's data cannot be done, since the effective extensional

stiffness in Laible's larger specimens was 83% higher than that in

I Eleiott's small specimens. However, the size of the shearing area does

j not appear to influence appreciably the test results.

Paulay and Loeber (Ref. 97) and Taylor (Ref. 117) also studied in-

directly the effect of axial stiffness provided by the reinforcing steel.

| They conducted tests where either the ratio of the shear slip to crack

; opening was fixed at the beginning of the test, or the normal forces re-

| quired to maintain a constant initial crack width were measured during the

test. The relation between the measured normal stress and the applied

shear' stress given by Loeber is shown in Figs. 3.3a and 3.3b. The size

and shape of the aggregate and the initial crack width did not affect the

magnitude of the normal force required. Generally, for low ratios of nor-

| mal to shear displacement, Loeber found that the change of normal re-

straining force was appreciable only as failure was approached. However,

for larger crack width openings, significant changes in the applied normal

force occurred at lower shear stress levels. No extensional stiffness ex-

pression was developed by Loeber or Taylor.

Jimenez et al. (Ref. 61) established the following linear relation for

the average total axial restraint stiffness as a function of the reinforce-

| ment ratio o at the shear crack (see Fig. 3.4)

!

-
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Fig. 3.3. Normal restraining stress f versus applied shear stress
from Loeber's results (Ref.N97).
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Fig. 3.4. Total axial restraining stiffness vs. reinforcement ratio
- determined from test Series C and D (Jimenez et al. ,Ref. 61).

Kp; = 5900000 (k/in) (3.la)

or

Kp; = 5900000/225 = 26200 (k/in) (3.lb)

2per in of shear surface area normalized to the total shearing surface of

2 2225 in . The specimens had a shearing area of 225 in and p values from

0.0107 to 0.020.

According to Eqn. 3.lb for a single bar of diameter d the extensional

stiffness is given by the following relation

f
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2KN (per bar) = 2060 d (k/in) (3.2)

The axial restraint stiffness values measured by Jimenez et al. (see

Figs. 3.5 and 3.6) in all specimens are summarized in Table 3.C. The stiff-
!

ness values measurea in'the test series (D) (for studying dowel action

Table 3.C. Axial restraint stiffness values measured hy Jimenez et al.
(Ref. 61).

--

Specimen p K (k/in) KN (k/in)
| No. total) (per bar)

C4 - 7A (4-No.7) 0.0107 7000 1750 (1-No.7)
i C4 - 9A (4-No.9) 0.0178 9600 2400 (1-No.9)

C4 - 9B (4-No.9) 0.0178 9600 2400 (1-No.9),

5 C2 - 14B (2-No.14) 0.020 14800 7400 (1-No.14)
C2 - 14C (2-No.14) 0.020 13200 6600(1-No.14)
___________________________________________________________________________;

. D4 - 9A (4-No.9) 0.0178 10400 2600 (1-No.9)
D4 - 9C (4-No.9) 0.0178 7800 1950 (1-No.9)
D2 - 148 (2-No.14) 0.020 11600 5800 (1-No.14)

only), are shown in Fig. 3.5. The variation of the bar tension versus the
1

crack width changes is linear in all cases. The deterioration of the bond

mechanism under cyclina and increasing axial tension in the bars was more

severe in the specimens designed to provide only dowel resistance (Series!

D). For combined interface shear transfer and dowel action (Series C) the

smaller deformations at the shear crack lowered the rate of bond damage

resulting in higher values of axial stiffness (see Fig. 3.6).
.

Fardis and Buyukozturk (Ref. 35) gave a nonlinear expression for the

extensional stiffness of a single bar in terms of the crack width cw

(inches)as,
4

-
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Fig. 3.5. Axial restraint stiffness curves for test Series.D (Ref. 61).

C 2 - 14 B

I20,

.$ C 2 - 14C
6
as
8 80 -

0
-

U C4 - 9 A
.o
@

[ C4 -7A40

E

O '

O O.01 0.02 0.03
Average crack width, cwm(IDI

Fig. 3.6. Axial restraint stiffness for test Series C (Ref. 61).
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.

2, E . a c a cZ
-KN* (1 + no)d "I + 3 8

+ /in) p.3)

where n = Es/E is the ratio of moduli of steel and concrete, p the rein--c

forcement ratio, d the bar diameter in inches and al, a2 and a3 are em-;

pirical constants determined from analysis of the Cornell University test
i data:

3
a1 = 16.7 /fc' ksi/in (4540 /f ' MN/m )

'

c

2 = -8260 V ksi/in2 (8.82 x 107 y MN/m )4a

a3 = 1.12 x 106 y ksi/in3 (4.7 x 1011 5V MN/m )
(f ' is in psi)c

This expression (Eqn. 3.3) was based on the analysis proposed by Watstein

| and Bresler (Ref.121) for the estimation of bond slip at the steel-con-

crete interface. According to Ref. 35, comparison of the above expression,

for KN (Eqn. 3.3) with direct measurements in Refs. 61 and 127 did not give

satisfactory results. The variation of KNaccordingtoEqn.h.3asafunc-

tion of the crack width c is shown in Fig. 3.7. The extensional stiffnessw

K tends to decrease with increasing crack width. This is valid only forN

crack widths less or equal to 0.010 in., because for higher values KN in--

'

creases. According to Eqn. 3.3, the axial stiffness values of a single ,

bar range between

4.1 K0 5K $ 1.8 KO (0 f cw 5 0.010in.) (3.4a)N

: where

KO 8 (1 np)d (k/in) (3.4b),
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Fig. 3.7. Extensional stiffness of a single bar (Fardis and Buyukozturk).
!

' It is pointed out that one basic difference between the relations 3.2

and 3.3 is that the latter is a function of the crack width induced by'

tensioning the reinforcing bar. The former equation results in a constant

axial stiffness at least up to a maximum crack width value of 0.020 in.

Both,however, depend heavily on the bar diameter rather than the reinforce-

ment ratio p. Therefore, if the steel ratio in a concrete prism with a

single bar of diameter d is increased by decreasing the concrete cross-

sectional area A , the extensional stiffness.should decrease accordingly-
c

approaching the axial stiffness of the unbonded bar A,,E /Ecm, where A iss 3

the cross-sectional area of the bar and t is the average crack spacing.cm

For comparison,the axial stiffness for a single No.4, No.8 cod No.9 rebar

.

h

,



143

and two steel ratios of 0.0122 and 0.0244 are calculated using both ex-

pressions (see Table 3.D). Expression 3.3 gives results similar to those

Table 3.D. Axial stiffness KN calculated according to Eqns. 3.2 and 3.3.
~ _ _ _,

2 2p = 0.0122 (Ac = 36 in ) p = 0.0244 (Ac = 18 in )
KN (k/in)

'
.

c (in)per bar No.4 No.6 No.9 No.4 No.6 No.9 w

Eqn. 3.2 520 1160 2600 520 1160 2600 0<c <0.02w
___________________________________________________________________________

310 570 1050 300 540 1000 0.010
Eqn. 3.3 460 850 1530 440 810 1480 0.005

590 1090 2000 570 1040 1920 0.002

thenpredicted by Eqn. 3.2 for a crack width not larger than 0.002 in.; KN

decreases down to about half of that value at a crack width of 0.010 in.

It also appears that for the same size bar the estimated value of the axial

stiffness for p equal te 0.0122 and 0.0244 is identical using Eqn. 3.2 and

slightly smaller using Eqn. 3.3 for the higher p value of 0.0244.

3.2.2 Crack spacing and steel strain formulae

Due to the contribution of concrete in tension, the overall axial

stiffness of a reinforced concrete prism of length tcm (average crack spac-

ing) can be considerably higher than the axial stiffness of an unbonded

bar of the same length. Thus, the average tensile strain in the bar e sm

between two primary tension cracks will be lowcr than the steel strain at

the cracks. An effective average steel strain e is assumed uniformlysm

distributed along the rebar within the uncracked block of concrete.
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.

Consider-a simple. case of a single bar of diameter d embedded in a

concrete prism of.a length larger than the average crack spacing Acm. A

tensile stress f . is applied to both ends of the rebar as shown in Fig.s

3.8a.

According to the assumption of equal crack spacings and crack widths,

th6 average crack width c can be estimated using the following expres-wm

sion

cm) E (3.5)8 * (E -E cmwm sm
!

j- where e is the average effective strain in the bonded rebar shown insm

is the average residual strain in the concrete shown in
,

Fig. 3.8b and ecm
|

: Fig. 3.8c.
l

in most cases remains'

The~ longitudinal strain.in the concrete ecm

relatively small compared with steel strain esm (see Refs. 78 and 123) al-

though the total elongation of the prism could significantly increase due

to the internal cracking. The crack opening at the concrete surface is

normally several times larger than the extension of the concrete adjacent

to the rebar.

Ignoring the strain term ccm, Eqn. 3.5 becomes

|

cwm *c E (3.6)sm cm
'

|

Many expressions have been developed in the literature regarding the pre-

|
diction of crack' widths, which depend on the existing crack spacing and

!
| the average steel strain. A thorough discussion comparing various proposed

|

. . _. - _- _ . . . . _ - . _ , . _ _ ,
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formulae for crack spacing is given in Ref.19. Since this is outside the
,

scope of the present work only selected expressions for calculating the
4

average crack spacing and the average steel strain are given below. The

main parameters influencing the crack spacing are the concrete cover, the
:

bond characteristics of the reinforcement, the steel ratio and the bar

size. On the other hand, the average steel strain mainly depends on the

steel ratio, the level of the applied steel stress, the concrete tensile

| strength and the load history.
l'

-

a) Crack spacing:
1

1

] Holmberg and Lindgren (beains, slabs,1970)(Ref. 56):
'

i

fd (cm) (3.7a)maximum dverage t , max = 6 + klc

Holmberg and Lindgren (walls,1972)(Ref. 57):

dA
minimum average t , min = 0.055 + 0.144 I t (m) (3.7b)

'

c 2
Ed

,

i s

Gergely and Lutz (1968)(Ref. 45):

i

i
. 3

(3.7c)maximum average t , max = 2.2 R/A ctsc
!

Broms (1965)(Refs. 15, 16):

average t =2c (3.7d)cm s

L

& .

req - - T T + 7 -
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4

,.

Houde (1973)(Ref. 58):
i

average t = 3c (3,7e)
cm m

.

CEB (1978)(Refs. 21, 71):
,

average t = 2(cm+kg)+kk23i (.7f)em

! where
;
#

cm = minimum concrete cover

cs = minimum cover to bar centroid i

Bo = At = effective tension area o' .'qcrete
I d = bar diameter

di = diameter of that bar with the smallest concrete cover
R = gradient effect (pure tension R = 1)>

s = spacing of bars (s s 15 4)
.,

p = steel ratio *

I ki = coefficient depending on reinforcement type (k1 = 0.8 for de-

formed bars)

k2 = 0.4 for deformed bars

k3 = 0.25 for pure tension.

.

b) Steel strain:
c

Geistefeldt (1976)(Ref. 43):
~

4

sm"c(1-Amj (3.8a)c s

i
1

-

, , . - _ > - , , + w.-
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;

,

where

1
A=

[l'+ (o - 1) 0 05,

Morita (1965)(R0f. 90):

f'
(I -kk ) (3.8b)c *

s i2 psm
s

where

kk12" 3 + 0.02 > 0.01
4.5 x 10 e s + 0.84

4

CE8 (1978)(Refs. 21,71):
;

,

sm " Es[1 - k k (7sr)b 0.4 t (3.8c)c 34 em

where
'

f
s

= q = steel strain at the crackj sc

; m = coefficient indicating the level of concrete stiffening effect

(m = 1 for Qll contribution of concrete; m = 100 for no contri-

bution)
,

f = applied steel stresss

o - steel ratio = As/Ac

f ' = tensile strength of concrete
t

f = steel stress at first crackingsr

k,k3 = coefficients taking into account.the effect of bondg

(= 1 for high bond bar; =0.5 for plain bar)

k4 = coefficient taking into account the effect of the type of load

(= 1 for static load; =0.5 for repeated load)

_

2 = ratio of average tensile stress in the midway between two pri-k
;

mary cracks to the tensile strength of concrete ft'.

,

, . , , , c , - - . . . , - . , - . - . - - - -
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The crack spacing values tem (in inches) predicted by Eqns. 3.7a to

3.7f for the biaxial specimens employed in this work are summarized in

Table 3.E. According to the geometry in the single and the double layer

Table 3.E. Predicted crack spacing values tem according to Eqns. 3.7a ;

to 3.7f (cracks normal to the steel shown in col.1).
. _.

Steel Average Average Average
A , max (in) Acm (in)! Rebars Ac, min (in) c'

at 6 in. Eqn. Eqn Eqn. Eqn. Eqn. Eqn.
Spacing 3.7b 3~ 3.7c 3.7d 3.7e 3.7f

'

1-No.6
(single layer) 9.1 11.3 10.5 6.0 7.9 12.6,

' ,

2-No.6
,

(doublelayer) 6.2 8.8 9.5 4.5 5.6 9.3

direction of the No.6 bars the following parameters are given,

Single layer: cm = 2.62 in.; cs = 3 in.; Bo = At = 36 in.2; d = dy = 0.75

in.; R = 1; s = 6 in.; px = 0.0122; ki = 0.8, k2 = 0.4 and

k3 = 0.25.

Double layer: cm = 1.88 in.; cs = 2.26 in.; Bo=At = 36 in.2; deff "

1.06 in. (equivalent bar diameter for two No.6 bars); R = 1;

: s = 6 in.; py = 0.0244; ki = 0.8; k2 = 0.4 and k3 = 0.25.

The above expressions for the effective steel strain e can besm

written in the following general form

.csm " cs-c* (3.9)s

where e is the steel strain at the crack (unbonded bar) and e * is thes s

__ _ _ _ _ _. - _ - -
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effective contribution in tension of the concrete surrounding the bar

through the developed average bond stresses Tbm at the concrete-steel

interface, and assumed uniformly distributed along each half of the crack
:

spacing (see Fig. 3.8d).

The strain term c *, at least for deformed bars, can be assumed to bes

independent of bond characteristics since it is proportional to the ratio
,

i

Acm/dT
bm

In the above ratio the numerator does not vary significantly because the
i bond stresses increase with decreasing crack spacing. Therefore the strain

term e * depends mainly on the bar diameter d.s

Several methods and approaches have been proposed to account for the

tension stiffening effect of concrete. One approach is to assume a stress-
i

i strain curve for the concrete in tension with a specific unloading path.

| A stepwise (by Scanlon (Ref.104)), gradual (by Lin and Scordelis (Ref. 75))

or discontinuous piecewise linear path (by Gilbert and Warner (Ref. 48));

have been used in the analysis of slabs and beams (see Figs. 3.9(a,b,c)).

An alternative indirect method, employed in Ref. 48, is to assume a modi-
d

fled stress-strain diagram for the steel (see Fig. 3.9d), where the equiva-

lent tensile stress carried by the concrete has been added to the steel

stress at the level of the reinforcement. This allows for a decrease in

stiffness as the steel stress increases and cracking propagates.

According to the latter approach an effective secant steel modulus
I

E for the initial loading describing the overall axial stiffness of thesm

p.-ism can be defined as follows

,

- a - -- - - , - - -- ,,,



. _--_.

151

Il
f -

'b' . - l'='"=' - o .05 E e-~~- L
_

b"
4 4c 64 loc,,

J Concre.fe stra.in, 'c
}e

*

% f,'
-

\\.e.
s e,s,' s.u ~.,
o n ~~:-=

__ -

C E'' Concrete strain, g8'''
-

o
CO

jl

f|
-

!
P' .

0~ , ~ |L' .~: ::: uw|
-

,
-

f 4 fc 106,,
~

Concrele stra.in, e 'cr

c
N jla*

g---------
m y
e '

8 , I

% |f
'--

, y, ,

//, E, |
~

d
,, '| E, |i

u
'e .,

| 1 |,3
' *

,'y=
' ' =

y

Steel strain, e s

a) Stepped response after cracking
b) Gradually unloading response after cracking
c) Discontinuous unloading response after cracking
d) Modified steel stress-strain diagram

fig. 3.9. Different methods to account for the tension stiffening
effect of concrete.

l

.|



_ _ _ _ _ _ _ _ _ _ _
. . -

152

Esm " f /csm'" f /(cs - Es*) (3.10)s s

As e * decreases with the degradation of concrete due to cracking, Es sm

approaches the Young's modulus of the unbonded bar

Es." f /cs (3.11)s

Eqn. 3.10 can be also written as

E =$E (3.12)sm s

where * (a function of p and concrete cover) is a magnification factor

($ 21)(Murashev (Ref. 91)) indicating the contribution of concrete.

According to Watstein and Mathey (Ref.122) the relationship between

the ratio Esm/Es and the applied tensile stress f is given in Fig. 3.10s

for No.4, No.5, No.6 and No.7 deformed bars (f = 102 ksi). For staticy

loading the factor e varied between 1.45 (fs = 0.3f ) and 1.07 (fs = 0.9f )y y
-for No.6 bars, i

The above secant effective moludus Esm, which decreases with increas-

ing values of steel ratio o at the same applied steel stress after first

cracking, has to be distinguished from the tangent unloading-reloading

- effective modulus Esm' shown in Fig. 3.8e. Since in the specimens of the

present study the tension in the bars is released after an orthogonal
'

cracking pattern has been achieved at a steel stress of 36 ksi, the afore-

mentioned tangent modulus Esm' is really the modulus that affects the axial

stiffness of the specimen, instead of the secant E This tangent modulussm.
|

,
,
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Fig. 3.10. Relaticnship between the effective modulus of elasticity E
smof an embedded bar and the stress at its end (E is thesmodulus of an unbonded bar)(Watstein and Mathey,Ref.122).
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sm'' which will determine the initial extensional stiffness of the al-E '

ready cracked specimens in each direction of the reinforcement, will be

described in Section 3.5.
t

| 3.3 External Elongation Measurements
;

' To determine an estimate of the extensional stiffness KN during un-

loading and reloading, after the initial cracking in the specimens, three

tension tests described below were conducted. The total external elonga-

tion due to biaxial tension in the steel was measured in both orthogonal '4

directions of the reinforcement in the following three specimens: two

reinforced with No.4 (A4-2 and B4-2) and one with No.6 (C6-2) Grade 60

bars. One axial test was also completed on a similar specimen with a

single layer of No.6 (C6-1) bars in one direction only. The cracking pat-'

terns of all four tensioned specimens after the crack propagation had'

stabilized and no more new cracks appeared are given in Figs. 3.11a to

3.11d. Unfortunately other priorities in the testing program and a con-

gestion of the measuring devices at the central region of the specimen did

not allow these measurements to be performed in more specimens.

To measure the total axial deformation at the exterior surfacu of the

concrete during cracking, special brackets with dial gages were attached

j on the top of the specimen parallel to the orthogonal reinforcement in
'

both x and y directions. Two dial gages measured the total external lonai-

! tudinal e'longation in.the central 2 ft square region, and tw. additionai

gages measured the total elongations over the entire 4 ft. gage length of

the specimen. The position of the dial gages, which hai a least reading

_. - _ _ - . , _ .__ _ _ _ .
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;
,

. 0.0001 inches.(0.0025 mm), is shown in Fig. 3.12. The measured total

axial deformations on the concrete surface over a 2 and 4' ft. gage length

in both orthogonal x and y directions are given in Table 3.F. Also the4

' measured total elongations (over a gage length of 24 in. or 48 in.) in the

aforementioned three specimens A4-2, B4-2, and C6-2' are plotted in Figs.

3.13a, 3.13b and 3.13c, respectively, as a function of the applied tensile

! sf.ress in each bar (No.4 or No.6) for the single and the double steel
i layers. For comparison the line indicating an unbonded bar is also in-

cluded in the above figures. ;

As described earlier, the 1st cycle of tension was applied separately-

| in each direction (unf axial tension) up to a maximum of 0.6f in each bar,y

at which level stabilization of cracking had occurred. Since the direc-

4 tion parallel to the double layer offered higher stiffness than the direc-
i

j ' tion with the single bars, the Poisson's effect was higher in the latter

direction. However, at least in the 1st cycle of tensioning, this Pois-

son's effect was insignificant compared with the overall elongations of

up to 0.070 in. (1.8 mm). In addition, progressive cracking due to increas-

j ing number of load cycles under tension is expected to diminish it further-

more.

| The first tension crack usually formed approximately at the midwidth
,

of the specimen and perpendicular to the double layer of reinforcement at

a tensile stress smaller or equal to the stress that caused the first-

crack normal to the single layer. The tensile stress at cracking was in

the range of 0.25 to 0.45 times the yield stress in the bar, with the

lower values corresponding to the steel stress in the double laycr at

cracking. As the tension was increased to the 0.6f level, a *ditionaly

?

_ . . _ . _ , . - . . _ , . _ . - , _ _ . _ . . , .- _ - _ .__ ___ ____ ._____ __
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Table 3.F. Summary of tension test results--total surface elongations and
average crack widths (measurements presented here are after
t?nsion of 0.6f has been reached in cycle 2).y

Gage No. of
Specimen Reinforcing Length, Cracks, fs/fy al

cN)(No. Steel L(in) N (in)
(1) (2) (3) (4) (5) (6) (7)

S(2)+ 24 3 0.025 0.0083
0

D(2)4 24 4 0.009 0.0022
S(2 + 24 3 0.048 0.016
S(3 t 24 3 0.042 0.0140.3
D(2 + 24 4 0.015 0.0038
D(3)t 24 4 0.013 0.0032

; A4-2 S(2)t 24 3 0.062 0.0207
S(3)t 24 3 0.069 0.02306
n'2)t 24 4 0.022 0.0055
U(3)+ 24 4 0.022 0.0055

,

3)t 24 3 0.109 0.0362
S'f 3)t

'

0.9
D 24 4 0.040 0.010

__________________________________________._______________________________
,

0.028 0.0093S(2)+ 24 e.
'

| S(2)4 48 5 0.034 0.0068
0

| D(2)+ 24 4 0.015 0.0038
| D(2)+ 48 6 0.019 0.0032
| S(2)+ 24 3 0.060 0.020

S(3)t 24 3 0.054 0.018
S(2)+ 48 5 0.074 0.0148

0.067 0.0134S(3)t 48 5 0.3
D(2)+ 24 4 0.038 0.0095
D(3)t 24 4 0.035 0.0083
D(2)+ 48 6 0.046 0.0077<

B4-2
| D(3)+ 48 6 0.043 0.0072

S(2)t 24 3 0.076 0.0253
S(3)t 24 3 0.077 0.0257
S(2)t 48 5 0.092 0.0184

0.097 0.0194S(3)+ 48 5 0.6
D(2+ 24 4 0.054 0.0135

, D(3 t 24 4 0.053 0.0132

| D(2 t 48 6 0.067 0.0112

|
D(3+ 48 6 0.066 0.011

_________________________________________________________________________

! S(2)+ 24 3 0.006 0.002
D(2)+ 24 4 0.004 0.001

0C6-2' S(2)+ 48 5 0.022 0.0044
I D(2)+ 48 6 0.007 0.0012

(Continued )
|

I
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Table 3.F. (Continued)

Gage No. of gSpecimen Reinforcing Length, Cracks, fs/fy AL c
(wm)No. Steel L(in) Nc (in) in

(1) (2) (3) (4) (5) (6) (7)

S(2)+ 24 3 0.036 0.012
S(3)t 24 3 0.022 0.0073
S(2)+ 48 5 0.057 0.0114
S(3)+ 48 5 0.040 0.0080.3D(2 1 24 4 0.016 0.004
D(3 + 24 4 0.015 0.0038
D(2 + 48 6 0.026 0.0043
D(3)t 48 6 0.025 0.0042
S(2)t 24 3 0.054 0.018

C6-2 S(3)t 24 3 0.039 0.013
(cont'd) S(2)t 48 5 0.085 0.017

S(3)t 48 5 0.065 0.0130.60(2)t 24 4 0.026 0.0065
D(3)t 24 4 0.025 0.0062
D(2)+ 48 6 0.042 0.007
D(3)t 48 6 0.043 0.0072
S(3)t 24 3 0.050 0.0167
S(3)+ 48 5 0.082 0.0164
D(3)t 24 4 0.9 0.033 0.0082
D(3)t 48 6 0.046 0.0077

......--------- . .......... ...--...--...............-- ....--. -

S(2)+ 24 3 0.056 0.01870.3S(3)t 24 3 0.054 0.018C6-1 S(2)t 24 3 0.083 0.0270.6S(3)+ 24 3 0.086 0.0287
S(3)t 24 3 0.9 0.099 0.033

Notes:

(1) A4-2 (two-way reinforcement of No.4 bars)
B4-2 (duplicate specimen of A4-2)
C6-2 (two-way reinforcement of No.6 bars)
C6-1 (one-way/ single layer of No.6 bars)

(?) S = single layer; D = double layer
() = cycle No.
t = loading; + = unloading

(4) Nc = No.~ of primary cracks at fs/fy = 0.6 (Cycle 1)
-

(7) -ch = AL/Nc
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orthogonal cracks formed over the entire width of the specimen. About

4 h 5 and 6 to 7 cracks formed normal to the single and the double layers

of bars, respectively.

After the initial. loading and unloading (1st cycle) was completed in

each direction and the specimen was subjected to biaxial tension for two

additional cycles, significant deterioration in the bond mechanism was ob-

served. During unloading appreciable irrecoverable crack openings were1

recorded in both directions. Values of up to 0.030 and 0.015 in. residual

total crack deformations, in a gage length of 24 in., were measured paral-

lel to the single and the double layer direction, respectively. These

values correspond to average individual crac|: widths of about 0.006 in.

and 0.002 in. for the cracks normal to the single and the double layer,

directf;ns, respectively. Therefore, some residual tensile stresses were

expected in the steel crossing the cracks even after the release of the

tensile load in the bars. This was also observed by Bresler and Bertero

(Ref.13)(see Fig. 3.14) and Mirza and Houde (Ref. 89). One explanation

of the above hysteretic behavior is believed to be the wedging action of

the uncracked concrete teeth inclined to the bars along the steel-concrete,

interface (see Fig. 3.15), which did not permit full recovery of the

local deformations.
,

'

Due to the fact that the critical tension level of 0.6fy was reached

and surpassed and the orthogonal cracking stabilized, no significant fur-

ther degradation was expected at subsequent cycles. Thus, the axial de-

formations recorded during the unloading-reloading stage (cycles 2 and 3)

can provide a realistic estimate of the extensional stiffness, at least for

the initial cycles of shear loading. An.approximately linear response was

.

, _.,y -- --
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observed in the load-deformation curves during the 3rd c cle of tensioning,

which confirmed in a way the above argument of stable response. Similar

behavior was observed by Bresler and Bertero (Ref.13)(see Fig. 3.14) and

EdwardsandYannopoulos(Ref.21)(seeFig.3.16). ,

i o
ts.

3
splittingg _

*
12 _y7 ,

3*3 K'rO4* 2(MPo/y)
n

Cyc
I I

O 60t30 16 6 "
Slip, (p)

Fig. 3.16. Repeated local bond-slip. An experimental example together
with scatter limits (based on Edwards and Yannopoulos,Ref. 21).

There was an apparent shift of the load-deformation curve to the -

right for the single layer, resulting in crack openings larger (by a factor

of abcut 2) than the corresponding deformations for the double layer. The

double layer of bars had a minimum concrete cover, which was about 2/3 of

the available minimum concrete cover in the single layer. Thus, since the

surface crack width is known to be a function of the concrete cover,

small.er crack widths at smaller crack spacings would result normal to the

double layer. In addition, since there was less concrete to carry the ten-

sile stresses transferred by the double layer steel, it is reasonable to

_ _ _ _
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assume that most of the internal cracking would have occurred at the 0.6fy
tension level before releasing the load in that direction. Therefore the

unloading and reloading stiffness is likely to be higher in the double

layer than in the single layer (see Figs. 3.13a to 3.13c). On the other

hand, larger crack openings were present at the tension cracks perpendicu-

lar to the single layer causing larger residual crack widths at the ten-

sion cracks after the tension in the bars was released.

3.4 Crack Spacing fieasurements

The crack spacing of the two sets of orthogonal tension cracks formed

at a biaxial tension level of 0.6f were measured in a total of eighteeny

specimens (the sixteen specimens for the shear tests plus two of the

axial test specimens). Above the 0.6f stress level no additional cracksy

appeared on the surface of the specimens.

All crack spacing measurements were performed directly above the

reinforcement under tension in order to be consistent, since in between

the bars the crack spacings could be different. Recording the crack

spacings of the cracks induced by the eight single and double bars with-

in the 48 in. wide central flat region of the biaxially reinforced speci-

mens, a total statistical sample of 654 and 714 measurements was accumu-

lated for the cracks perpendicular to the single and double bars, respec-

.tively. As shown in Table 3.G, the average spacing of the cracks normal4

to the single layer was found to be 6.85 in. (17 mm) and normal to the

; double layer 6.37 in. (16 mm) with a standard deviation of 2.48 in.

j (6.3 cm) and 2.08 in. '(5.3 cm), respectively. Therefore, the scatter

| of the sampling data was about 36% to 33% in the direction of the

single and the double bars, respectively. As stated by Mirza
i
l

r

l
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.

and Houde (Ref. 89) and others, the average crack spacing will be approx-I

| imately 1.5 times the minimum crack spacing and thus a minimum value of
1

| 33% scatter was anticipated. Having in mind that the formation of cracks

| 1s influenced by variables with their own statistical scatter, such as

the tensile strength of concrete and shrinkage cracking, the scatter in

the measured values of crack spa.cing could very well reach the 50% level.

| It is St.m in Table 3.G that if the crack spacing measurements in the

four 1 ft. wide outer regions in each direction were included in the sampling

,

I Table 3.G| Statistical measure of crack spacing t in eighteen flatem
| specimens for the cracks normal to the reinforcing steel,shown
| in col. 1 (No.6 bars).

No. of
Crack Average Average Average

Spacing Crack Standard Max. Crack Min. Crack
Reinforc- Region Measure- Spacing, Deviation Spacing, Spacing,
ing Steel Sampled ments tcm(in) (in)

tc.$N(in)
tc, min (in)

(1) (2) (3) (4) (5) (7)
|
' Single 24" wide 458 7.23 2.55 11.33 3.44

layer 48 wide 654 6.85 2.48 11.50 3.11_______________"____________________________________________________________
Double 24" wide 507 6.56 2.16 10.72 3.33
layer 48" wide 714 6.37 2.08 11.00 3.22

Noter:

(1) All eighteen specimens were reinforced with No.6 bars;
i This reinforcing steel caused the cracks with an average spacing shown
j in col. 4.

| (2) The 24 inch wide region corresponds to the middle 2 ft. wide flat sec- '

| tion of the specimen ~.
!

data, the calculated average crack spacing would drop by about 5% and 3% in

the single and the double layer, respectively. This is probably due to the

!

|
- . - . .
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effect of the four thickened corners in lowering the average crack spacing

value expected otherwise in the 6 in. thick flat specimens. Thus, the

measurements in the 2 ft. square central region were more representative

of the ral cracking pattern.

Although the experimental data from the results of one specimen rein-

forced with a single layer of No.6 bars in one direction only (C6-1) was

not sufficient for definite conclusions, a general trend could be identi-'

fied. In specimen C6-1, definitely larger external elongations were re-

corded at the concrete surface as compared to its companion specimen C6-2

reinforced with a two-way reinforcement. Tensioning of the former specimen

resulted in larger crack spacings with a minimum spacing larger than the

average minimum spacing in the biaxial specimens. Possible reasons for the

smaller extensional stiffne:s experienced by specimen C6-1 were the non-

existence of transverse steel that could cause larger number of cracks

parallel to it and the larger concrete cover present. Also only three

?rimary cracks formed on the surface of the specimen, as shown in Fig.

3.11d. Thus, since these three cracks happened to fonn within the 2 ft.

gage length with no cracks at the outer 1 ft. regions the measurements at

the central 2 ft. gage length could lead to false conclusions as far as

the effective extensional stiffness of the entire 4 ft. wide specimen was

concerned.
4

In general, the tension cracks tended to form over the transverse re-

inforcement, where the net concrete area to resist tension was minimma (see

the cracking pattern in Fig. 3.11c). This showed that the crack spacing

tcmi (i = x, y) in the biaxially tensioned reinforced concrete panels de-

- pended not only on the concrete cover, bar spacing, bar diameter and
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reinforcement ratio as suggested by Broms (Refs.15 and 16), Goto (Ref.

49), CEB Bulletin (Ref. 21), Gergely and Lutz (Ref. 45), Holmberg and

Lindgren (Refs. 56 and 57), Rao (Ref.101) ar.d others, but also on the

spacing of the transverse steel in the orthogonal direction (tests on two-

way slabs by Nawy and Blair (Ref. 92)). The influence of transverse re-

inforcing was also mentioned by Beeby (Ref.10) in his attempt to develop

a more general cracking theory of hardened concrete. He stated that, the

transverse bars in walls and slabs under membrane tension ". . . can act

as crack formers. . . ." Additional experimental evidence supporting t5e-

latter was provided by Lenschow and Sozen (Ref. 71), where the crack spac-

ing in their orthogonally reinforced specimens B4 and B10 averaged the

j spacing of the transverse reinforcement in each direction.

The above observation appeared to be more consistent for the cracks

parallel to the single bar layer (produced by tensioning the bars in the

double layer), since the single layer bars were uniformly distributed over

) the width of the specimen at 6 inches spacing. The bars in the double
i

layer, however, were spaced in pairs at varying distances conter to center
,

(5 to 7 inches), due to spacing constraints of the tensioning reaction

frame. Thus, it is clear that in some cases of orthogonally reinforced

flat concrete structural elements the spacing of transverse reinforcement

could be the controlling factor in the crack formation, if it is not much

smaller or larger than the minimum crack spacing expected in the case with

no transverse steel present. The scatter of the data was slightly smaller

in the case of cracking normal to the double layer, which meant that a more

uniform crack spacing existed in that direction. Thus, the crack spacing

perpendicular to the heavier reinforced section was bound to be closer to

. . - . , - . - , - . --
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the uniform 6 in spacing of_the single bars than the more variable crack

spacing in the orthogonal direction. The chances that the transverse bar

spacing controlled the tension cracking were much higher in the former

case.

Since the primary parallel cracks would be a major cause of internal
|

secondary longitudinal cracks at the transverse reinforcement, a higheri

level of bond deterioration was expected for the biaxially tensioned spec'.

mens compared with specimens under uniaxial tension, especially for tension

levcis higher than 0.6f and under fully reversing shear loads.y

It should be also pointed out that smaller crack spacings were re-

corded for the cracks normal to the double layer. This verifies the well

estabiished fact that crack spacing is proportional to the ratio of the

|
| bar diameter to the reinforcement ratio d/p (Beeby (Ref. 10)).

Comparing the measured crack spacing values given in Table 3.G with

the predicted values according to Eqns. 3.7a to 3.7f (see Table 3.E, page

), it appears that, although the above formulae do not include the ef-
|
' fect of transverse steel, most of them give reasonable values. Regarding

the average crack spacing tcm, Eqn. 3.7f (CEB) seems to overestimate it

in both reinforcing directions while Eqns. 3.7d (Broms) and 3.7e (Houde)

predict acceptable values, especially for the spacing of the cracks norreal

| to the single layer (the orthogonal direction is more affected by the

transversesteel). Satisfactory predictions for the maximum average crack

spacing a , max (col. 6 in Table 3.G) are given by Eqns. 3.7a (Holmberg andc

Lindgren) and 3.7c (Gergely and Lutz).

.

For a general cracking theory to be developed a more extensive experi-
!
; mental study on biaxial tension tests is definitely needed. Important

b
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parameters such as biaxial tension, ratio of the biaxial tensile stresses,

reinforcement ratio in each direction, and spacing of the transverse bars

and their effect on the effective axial stiffness must be investigated in

mora detail.

3.5 Extensional Stiffness Expression

An expression for the estimation of the unloading-reloading extension-

al stiffness KNi(i = x, y) in orthogonally precracked membrane two-way rein-

forced concrete elements is developed in this section e suming uniformly

distributed parallel cracks at an average crack spacing tcmi(i = x, y) in

the x and ,o reinforcing directions (see Fig. 3.17).
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Fig. 3.17. Idealized orthogonally cracked reinforced concrete element.
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It is assumed that the axial stiffness KNi of a reinforced concrete
prism is proportional to the amount of steel and inversely proportional

to a length Lj taken as the basis of the axial measurements in both direc-

tions, that is,

.

si smi /l (3.13)E'KNi = A i
|
|

where

= tangent effective modulus of steek (ksi) in the i = x, yEsmi

i direction, -

Asi = steel cross-sectional area in the f(x, y) direction, and

Lj = base length in the 1(x, y) direction.

lnere were no internal measurements of the steel strains conducted

in the specimens tenstoned. Instead,the external elongations recorded

on the concrete surface will be used to determine an estimate of the

average steel strain esmi as a function of the applied steel stress

f j(i = x, y). This average steel strain is calculated from the followi?-s

relation

(3.14)smi " Al /Lie i

|
where ALj is the total elongation measured within a given gage length

(in.), and Lj is the gage length P1 or 48 in.). After the steel strain

j is determined, an estimate of the tangent effective modulus Esmi can be

calculated.

. - . - _ . .- . - - .
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How accurately Eqn. 3.14 predicts the internal average steel strains

depends on the actual position of the dial gages shown in Fig. 3.18. If

for the central gage length of 24 in the targets were ideally at A and B,

that is at the midway between the orthogonal cracks, the steel strains

AL/L measured should be equal to the actual strains e because of symmetry.sm

However, if the targets happen to be closer to the points A' and B' at the

crack tips, the measurements will result in higher calculated values of

than actually exist. On the other hand, if the gage length happenscsm

to be the distance A"B" the steel strains will be underestimated. The tar-

gets for the 48 in. gage length were placed at the edges of the specimen

Target Target
48" + A L / &-

A" I - 24"+AL B"
.t . .g . g g. . g . - ).

- -, .

_ ,

\ -I' |
'
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I .|'_- . -| '
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. .
- --

*

|
. ..

' - .{
'
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| jr . . . . -

I Ij ,

l

-..

I

|
. .l

. .

o

-
.

.
... .
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l 4 i
C l_

i= t -H
Acm A cm

Fig. 3.18. Positioning of the gage-targets on the concrete surface.
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and therefore the elongations measured will result in lower steel strains

since they are not taking into account the expansion of. the concrete at

the level of the reinforcement (see Fig. 3.18). It is believed that by

utilizing the data based on both gage lengths, the accuracy of Eqn. 3.14

will be improved.
!

As shown in Figs. 3.13a to 3.13c, in the post-cracking unloading-

tensionreloading stage (af ter the specimen has been cracked at 0.6fy

level) the axial elongation AL (i = x, y) varies approximately linearlyj

versus the applied axial tension in terms of the dimensionless stress
a

/fy (i = x, y) in each direction.ratio a i * fsis

Thus, the assumed axial stiffness equation for the composite concrete-

steel element at the level of the bar during reloading is of the following

form,

(3.15)smi = c1 + c2a iC s

where c1 and c2 are determined from the available experimental data. The

constant c is the residual steel strain present after the full release
i

of the tensile load in the bars.

The trend of the data shows that for a given steel stress the average

steel strain is proportional to the steel ratio p. Thus, esmi will be

proportional to the ratio

(3.16)f(pj) = p Ejs

- _
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To determine the relative effect of the reinforcement ratio pj on

the steel strain in the three biaxial tests conducted a dimensionless

factor A is introduced,pj

pj f(pj)/f*(pj) (3.17)A =

where f(pg) is a function of pj and E , given for any specimen by the rela-s

tion 3.16, and f*(pj) is the arithmetic value of f(pj) in Eqn. 3.16 for a

specific case taken as the basis of the comparative study.

Choosing specimen C6-2(No.6 bars) as the specimen to which the other

two specimens A4-2 and B4-2 are to be compared, the following values for

f*(pj) are calculated in each direction,

i = x (single layer): f*(px) = 0.0122 x 28000 = 5.6 (ksi)

(3.18)

i = y (double layer): f*(py) = 2 f*(px) = 11.2 (ksi)

Thus, from Eqns. 3.16, 3.17 and 3.18 we get

i = x: A = 0.18 p Exs

(3.19)

i=y: A = 0.09 p Egy ys

The normalized average steel strains

e **A
mi pi 'smi (3.20)
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are plotted versus the applied biaxial tensile stress ratio a i in Fig.s

3.19 for all three axial tests.

h
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Fig. 3.19. Normalized steel strain values esmi* versus the applied bar
stress to yield strength ratio.

A linear regression analysis of the data with a correlation factor

of 0.82 and 0.78 in the x and y direction, respectively, results in the

following straight lines:

* = (4.32 + 17.4 fsx/f ) x 10-4i = x: c
smx y

* = (2.14 + 9.4 f3y/f ) x 10-4 (~ c*mx/2, for f *Isy)i = y: c sxsmy

(3.21)
,

i

|
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Although _ the scatter of the data points in Fig. 3.19'is considerable, the,

correlation factors of 0.82 and 0.78 are satisfactory since they depend
,

on variables with high experimental uncertainty.1

Substituting esmi* from Eqn. 3.20 in terms of the calculated average
-

steel strain e in each test, Eqn. 3.21 gives,smi

-3
smi = [(2.4 + 10.3 a i) o ] x 10 (3.22)i e

s

From the above Eqn. 3.22 the tangent effactive modulus Ejmi f the

specimens tensioned in the orthogonal x and y directions is given by the

following expression,

!

Ejmi ~ 100 pjEs (3.23)

In Table 3.H th3 computed values of Ejmi using relation 3.23 are<

tabulated in col. 3 for the limited extensional tests conducted here.

Also the effective modulus Esmi calculated from a regression analysis

of the data of each test specimen separately are displayed in col. 4 for

comparison. The results for steel ratios between 0.010 and 0.025 (the

steel ratios usually present in actual containments) appear reasonable.

Surprisingly, for o equal to 0.0055, values for E as low as 60% ofmi

the Young's modulus of. an unbonded bar E are computed. A possible explana-s

tion for this may be that the smaller number of cracks present normal to

the No.4 bars cause larger surface crack openings that would tend to pro-

duce unreliable estimates for the steel strains. The longitudinal steel
,

, _ , _
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Table 3.H. Comparison between the predicted and experimental effective
steelmodulusE$mi (i = x, y) values.

_

Specimen
No. Pi E$mi -(Eqn. 3.23) Edmi (Exper.)

(1) (2) (3) (4)

A4-2 0.0055_-(x) 0.6 E 0.6 Ess
(No.4) 0.0110 (y) 1.1 Es 1.7 Es

.....---------------------------------------------------------------------

B4-2- 0.0055 (x) 0.6 Es 1.0 Es
(No.4) 0.0110 (y) 1.1 Es 1.2 Es

--------------------------------------------------------------------------

C6-2 0.0122 (x) 1.2 Es 1.3 Es
(No.6) 0.0244 (y) 2.4 Es 2.0 Es

Note:

(4) The experimental measurements based on both 24 and 48 inch gage
lengths are used to compute Edmi-

strains for each specimens based only on the 24 in. gage length are plotted

together with the unbonded bar for comoarison in Fig. 3.20.

More extensive tests have to be performed with a wider variety of

steel ratios and bar sizes so that more accurate relations between the

effective tangent modulus Esm' and the steel ratio and bar diameter can

be obtained. Such an expression could be of the following power form

929p E
1 3

Esm' * (3.24)o

with g2 less than 1.0.

Based on Eqn. 3.23 for the effective initial tangent mod :lus of pre-

| cracked biaxially tensioned specimens, an expression for the initial ex-
;

tensional stiffness KNi can be formulated as follows according to Eqn. 3.13,'

{

- - . . .
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Fig. 3.20. Predicted longitudinal steel strain versus the applied bar
stress (gage length L = 24 in.).

100 p1 s (nd.2E
1K ) (k/in) (3.25)

=

gj(i=x,y) E cmi (i=x,y)

if base length Lj is taken the average crack spaci..g t
cm.i '
UThe variation of the average initial crack width c for the No.6j

. bars (Specimen C6-2) is also plotted in Fig. 3.21 versus the applied rebar

tension f in both x and y directions assuming that3

c ,j (AL/N )i (3.26)
=

c
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with

ALj = total elongation measured on the concrete surface in the

i(x,y) direction (see col. 6 in Table 3.F).

| Nci = the number of primary orthogonal cracks normal to the i(x,y)

direction and within the corresponding gage length of 24 nr

48 in.
e,

The values of ch are given in col. 7 in Table 3.F. These results are

valid for o /p equal to 0.5, an average compressive cylinder strength ofx y

concrete of about 3800. psi (26 MPa) and for the case of reinforced concrete

panels precracked at a biaxial tensile stress of 0.6f in the reinforcingy
'

bars. For a steel ratio of 0.0122 in the x direction the average initial

crack width varies from 0.0035 to 0.0175 in. (0.09 to 0.44 mm) correspond-

ing to a range of biaxial tension between 0 and 0.9f . In the y directiony
U(steel ratio equal to 0.0244) the c varies from 0.0015 to 0.007 in.<

(0.04 to 0.18 mm).

The calculated extensional stiffness values using the expression in

Eqn. 3.25 are shown in Table 3.I, for a single No.6 and No.4 reinforcing

bar in both x and y directions. Uniaxial extensional stiffness values
.

according to Eqn. 3.2 are also included in Table 3.I.

Axial tests were also performed on larger scale orthogonally rein-

forced flat specimens at Portland Cement Association Laboratories (Refs.

73 and 96). These 2 inch thick specimens were reinforced with No.14 and

No.18 bars at 12 inch spacing, as shown in Fig. 3.22. The increase in the,

crack width was measured for specimens MB1 and MB3 versus the applied bar

force as shown in Fig. 3.23. Values of extensional stiffness equal to

3000 k/in (MB1) and 4800 k/in (MB3) were calculated for the No.14 bars

, _ .__ _ _ _ . _ . _ . . _ .
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1

Ta bl e 3. I . Calculated biaxial and uniaxial extensional stiffness values
for a single No.4 or No.6 reinforcing bar and a ratio of
biaxial appliea stresses fsx/fsy = 0.5.

_ _ _ _ _ _ _ _

Bar Reinf. Crack Biaxial Uniaxial
K (k/in)KN(k/in)Spacing) (Eqn. 3.26) (Eqn. 3.2)

Reinf. Diameter Ratio, N

icmi(inDirection Steel d(in) pi

-(1) (2) (3) (4) (5) (6) (7)

x 1-No.4 0.5 0.0055 7.15 465 515
(single*

layer) 1-No.6 0.75 0.0122 7.23 2300 1160
;

,

___________________________________________________________________________

y 1-No.4 0.5 0.0110 5.65 1030 515
i (double

layer) 1-No.6 0.75 0.0244 6.56 4420 1160'

!

Notes:

(5) As the average crack spacing icm was chosen the value measured in the
, middle 24 inch wide region.

i (6) The extensional stiffness calculated per rebar corresponds to 36 in.2
.

concrete area for the single layer and 18 in.2 for the double layer.
e
4

| (px = 0.013) and 5900 k/in (MB3) and 7400 k/in (MB1) for the No.18 bars

i (py = 0.022). The average crack spacings in the direction of the No.14

(x) and No.18 (y) bars were estimated as equal to 12 and 18 in. for speci-

men MB1 and 12 and 8 in. for specimen MB3 in the x and y direction, respec-

tively. Using expression 3.25, developed from the tests on the present

smaller scale specimens with smaller size bars, the extensional stiffness
,

values predicted for a single No.14 and No.18 rebar are presented in col. 6
,

'

of Table 3.K. The measured values of KN are also included in col. 8. In

col. 7 the predicted values according to Eqn. 3.2 for uniaxial specimens

(Jimenez et al. (Ref. 61)) are also included.

.

-- - - - . - -
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! Table 3.K.' Comparison of predicted and experimental values of the exten-
sional stiffness for a single No.14 and No.18 reinforcing bar
(PCA biaxial . specimens).

Precficted Predicted Free
Bar- Biaxial Uniaxial Measured Bar

1m KN(k/in) KN(k/in) KN AE/ tem.Specimen Diameter p

No. Steel d(in) ($n) (Eqn. 3.25) (Eqn. 3.2) (k/in) (k/in)
| (1) -(2) (3) (4) (5) (6) (7) (8) (9)

No.14 1.75 0.013 12 7000 6300- 3000 5600
MB1

No.18 2.25 0.022 18 13000 10400 7400 6200
! ___________________________________________________________________________

No.14 1.75 0.013 12 7000 6300 4800 5600
MB3.

| No.18 2.25 0.022 8 29400 10400 5900 14000

|

In the above Table 3.K it appears that the expression developed from

the smaller scale specimens overestimates the measured values of extension-

al stiffness for No.14 and No.18 bars, predicting values at least twice as

large as measured, especially for the No.18 bars. This shows that the ex-j

pression 3.25 is likely to be not valid for larger size bars, since the

splitting effects and the extent of internal cracking can be significantly

higher in the latter case resulting in lower values of extensional stiff-
!

in col. 8 are smallerl ness. Also, almost all the measured values of KN

than the estimated axial stiffness ' the same size unbonded bar of length

eqt.al to the average crack spacing tcm. This perhaps indicates that the

| measured K values are. smaller than the." actually are, since they are com-p

puted based on irdividual crack width r.easurements on the surface of the

concrete. Thus, these measurements would definitely underestinate the
|
' axial stiffness of the composite concrete-steel element at the level of

the reinforcement. The predicted K values based on uniaxial test results
N

|
L

,

_ _ . _ _ _ _ _ _ - . _ . . . . _ - _ . , . _ - . . , _ - - . , ,
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!

(col.'7) approach'._the pred'icted: values based'on the biaxial' test results

| (col. 6)-particularly in the case of No.14 bars (largest'bar used in the-
|-

I uniaxial tests). Since Eqn. 3.2 depends only on the bar size (diameter d)

and does not account for different crack spacings, it gives the same value

in the case of the No.18 bars in specimens MB1-and MB3. It is afor KN

based on the uniaxial results are ' closerfact that the predictions for KN!

than those based on the biaxial tests.to the measured values of KN

In conclusion, it should be pointed out that the derived expression

for the extensional stiffness or orthogonally reinforced concrete panels

with No.6 bars (Eqn. 3.25) does not include the degrading effect of cyclic-

ally applied shear. More experimental work on different size bars is
;

needed to study this effect as the number of shear loading cycles increases.
!

l

l'

i

.

|
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CHAPTER 4
%

ENGINEEPsING MODEL OF SHEAR TRANSFER

U34.1 Introduction ?b

The accuracy of any methad used to analyze a reinforced concrete

structure is dependent upon how realistic the assumptions for the material

properties are. These assumptions have a direct influence on the calcula-

ted structural stiffness values, sucli as the effective shear stiffness of

a cracked reinforced concrete panel subjected to membrane biaxial tension

and shear. This stiffness controls the deformational behavior of the

structure over a considerable range of the shear loading, and is nonlinear

because of cracking, crack propagation, bond deterioratica, and other

effects. Cyclic loading effects must be also incorporated for reversing

loads such as seismic shear forces.

Consider a flat reinforced concrete cracked membrane element ideal-

ized from a wall of a cylindrical containment initillly subjected to nor-

mal tensile stresses oN and N , as shown in Fig. 4.1. An orthogonal
x y

reinforcement net is assumed with parallel tensile cracks already formed

perpendicular to the reinforcement bars in the x and y directions. These

orthogonal cracks are spaced at equal distances 2.cmi(i = x, y) with an
average initial crack width c (i = x, y) present at each crack, thewmi

value of which depends on the applied tension fsi(i = x, y) in the bars

and to a lesser extent, the bar diameter. At a certain level of a super-

imposed uniformly applied shear stress y, diagonal cracking forms along

i

187 '
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the direction (t) at an angle B with the x axis and perpendicular to the

maximum principal tensile strain (1) (direction (1) is normal to direction

(t) at cracking initiation). Subsequently, as the shear stress is in-

creased, additional inclined cracking and redistribution of internal

stresses cause a rotation of the principal strain directions (1) and (2)

(in gene.al not coinciding with the directions of principal stresses)

through an angle a relative to the normal (n) and tangential (t) local

f coordinates of the original diagonal cracks, respectively.

|

|
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\: ,

i The stiffness equations relating the stresses E and strain's c in the

above concrete-steel composite element, in any reference coordinate sys-
.

-
1

tem, can be written in condensed form as follows,

{a} = [K] {c) (4.1)i

_

where [K] is .the global _ stiffness matrix that includes the' stiffness due-
.

4 _to both concrete and steel. At the cracked stage the global stiffness-

[K]'is the sum of the stiffness of the concrete between the major cracks,

the contribution to stiffness due to interface shear transfer of concrete4

| along each individual crack (cracked concrete), the stiffness of the rein-

j- forcing net in the x and y directions, and the dowel action of the bars
i

i at the cracks.
:|

.

Let us assume that the directions of orthotropy .due to cracking coin-
:

i

cide with the local coordinate system (n,t) of the inclined cracking and

remain fixed, independent of the possible rotation of the principal strain;

directions (1) and-(2) as cracks propagate. In'a biaxial state of plane

j stress the composite orthotropic stiffness equations in the (n,t) coordin-
i

ate system can be formulated as,

I "N I I Nn n

n f, = [K
'

nti u M.2a)-o c
t t

.

v ,y

]
with

4

L

,

-

. - - ._ .. , ._ __ . _ - - _ _ _ _
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- ,

nn "nt nn
1

E E 0 (4.2b)
[Kntl * (1 - vnt"tn) "tn tt tt

0 0 Gcr(1 - "nt"tn);

' -

are the composite moduli in the orthotropic directions,where Enn, Ett
.

are the Poisson's ratios governing the strain in the i-direction (i =vjj
i n, t) due to a direct strain in the j-direction (j = n, t), and G is ancr

effective shear modulus of the cracked element that includes the effects

of interface shear transfer and dowel action. To assure symmetry of the

global stiffness matrix [Knt] in Eqn. 4.2b the following relation must
i

be true

,

(4.2c)"tn/"nt =Enn/Ettj

! with the composite moduli E and E being related to the extensional
nn tt

stiffness KNi (i = x, y) of the reinforced concrete element, subjected
,

to biaxial tension in both x and y directions of the reinforcing steel.|
|

The main objective of this chapter is to derive a formulation for

the shear modulus term Ger, based on the present experimental data of bi-
'

| axially tensioned specimens and additional data obtained from uniaxial
|

| tests. Under the applied shear stress v, the gross shear distortion y

due to crack. opening and slip at each crack in the reinforced concrete

! element has been measured (see Section 2.6). These experimental values

for the effective shear rigidity will be compared with the values predicted

by the expression to be formulated. The composite element shown in Fig.

4.1 has dimensions that include a sufficient number of cracks and
i

!

!
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reinforcing bars such'that an equivalent uniform distribution of internal

stresses and strains can be assumed.
_

A literature review of the stiffness and strength of the shear trans-

fer mechanisms is given in Section 4.2 of this chapter. This is followed

by a formulation.of the effective shear modulus G;p based on'a simple

engineering model of the shear stress-shear slip relation for an individual

crack-in a uniaxial case. The latter relation is generalized for two;

orthogonal sets of parallel cracks as a function of the initial crack
|

| width in both axial directions, the normal restraining stiffness, and the
1

! dowel stiffness of the bars. The experimental results of the present re-
|

search, reflecting the effects of biaxial cracking, applied bar tension

and shear stress as well as cycling, are utilized to help arrive at the

expression for the degrading shear rigidity of a cracked reinforced con-

crete panel. Finally, in Section 4.4 the type of failure mode is identi-

fied and free body equilibrium analyses for all specimens at failure con-

ditions are performed. Also, the level of bar tensions and dowel forces

and the possibility of kinking in the bars along the failure crack are
j discussed.

4.2 Literature Review

An extensive literature exists on the shear transfer mechanism in|

cracked concrete. Considerable experimental research has been conducted

involving shear on a single crack plane (untaxial tests) at various uni-i

i.
;

versities.and research laboratories, including the University of Washing-
i

| ton, Cornell University, University of California at Berkeley, University
i

- - - - . - - . , , . .,.
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of Canterbury, University of Sheffield, Cement and Concrete Association,

Universities of Darmstadt, Braunschweig, and Stuttgart in W. Germany,

University of Toronto, McGill University, Technical University of Milan,

University of Technology at Delft and others. Monotonic, repeated and

fully reversing cyclic shear loading has been studied. Only recently, ex-

perimental work has been conducted on specimens subjected to combined
;

biaxial tension and shear loads (Cornell University, Portland Cement Asso-

ciation, and the University of Toronto).

The literature survey is divided into four sections. The first two

sections (4.2.1 and 4.2.2) deal with the two main mechanisms of sheari

transfer along the interface of a single crack: the interface shear

transfer (IST) and the dowel action (DA), respectively. The expressions
i

for the shear stress-shear displacement relationships and the resulting

shear stiffness obtained by various investigators for the above two mech-

anisms in uniaxially reinforced concrete blocks are presented and critic-

ally discussed. Also some expressions for the dowel ultimate capacity of,

the reinforcing bars, crossing the shear crack under consideration, are

given. The third section (4.2.3), which is more pertinent to the present
<

work, contains a description of the analytical methods used to predict

deformations and stresses in cracked reinforced concrete flat elements

under in-plane normal tensile and shear stresses and the different ways

researchers have modeled the shear modulus of cracked concrete for analy-

sis purposes. Furthermore, the parallel experimer.tal work at the Portland

Cement Association (PCA) Laboratories on the respc..se of larger scale flat

reinforced concrete elements subjected to combined biaxial tension and

in-plo.e shear. - Finally, in the fourth section (4.2.4), the experimental
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work on the ultimate strength of precracked reinforced concrete specimens

with a single shear interface plane is reviewed.

4.2.1 Interface shear transfer stiffness (single crack)

The stiffness K due to interface shear transfer at the crack underIST

consideration is defined as the shear stress transmitted through the ir-

regularities of the concrete shearing surfaces as a result of a unit shear

displacement (slip) along the crack. The units for KIST are ksi/in
(MPa/mm).

Although experimental evidence from pavement and beam tests (Refs.1,

24, 37, 64, 65, 95, 107, 114, 118 and 124) has provided valuable informa-

tion about the contribution of the various mechanisms of shear transfer,

that research did not produce any shear stress-shear slip relationships,

and therefore it is not discussed here. A discussion of the above studies
,

was presented in Ref. 61. The researchers cited below conducted direct

shear tests on precracked concrete specimens, where they isolated the

interface shear transfer mechanism (also called aggregate interlock) and

studied the effect of the initial crack width, aggregate size and shape,

compressive strength of concrete, normal restraining stiffness, and shear

stress level on the value of shear slip. The initial crack width present

in these experimental studies ranges between 0.002 and 0.030 in. (0.05 to

0.76 mm). The major test results discussed in this section regarding

the interface shear transfer stiffness are summarized in Table 4. A.



Table 4.A. Summary of shear stress-shear slip proposed relationships for the IST mechanism (units are in
psi and inches unless stated otherwise).

_

Type
Shear Stress (VIST) vs. Shear Slip (A
Relationship Proposed (IST Mechanism)s)of c Loadwm

Reference Research in (nn) History

37, 38 E(1) 0.002 0.064) vlST = (4674 - 8410)(0.0225 /c- 0.409)(a - 0.0436 cwn )
0

s

0.015(0.38)
_____________________________________________ __ __ _ ___ ________________________________ ____

wn

( ) = (c0.005(0.127) M wm
1190/c - 8200) As - 156.3876, 97 E(1) to vlST wm

0.02(0.51) ------------------------------------------------------------------------

C Upper portion: as = 0.01 cwm [(2n + 86) + 5.72 x 10-2 VISTl ,_.
___________________________________________________________________________________________________________ e3

4:n

vIST = 57([w--)3/2'0.002(0.05) c 2 0.002 in.: 00 ^swm
58, 88 E(1) to M m

0.02(0.51)
l< 0.002 in.: v = [Go - (Go /[A(g ) +Go ])] Acwm IST g
wm

___________________________________________________________________________________________________________

116, 117 E(2) - M ---

___________________________________________________________________________________________________________

= A /2 x 10-40.02(0.51) d = 1.375 in.: v sIST126 E(3) to C(R) (after 25 cycles)

____________________________________________________________IST__"_a
/3.2 x 10-40.03(0.762) d = 1.0 in.: v s

_ _ __________________________________________

0.01(0.254)
70 E(3) to C(R) ---

0.03(0.762)
_____________________________________________________________________ _____________________________________

(Continued)
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Table 4. A. (Continued)
__ _ -

Type
0 Shear Stress (VIST) vs. Shear Slip (A

Relationship Proposed (IST Mechanism)s)
of Load

Reference' Research in mm) History

KN-700.01(0.254) M VIST = As/fa; fa = 3.9 (cwm - 0.002) + 0.0367 - 1.09 x 10 wm"c
61- E(3)- ----------- - ------------------ --- - --------- -------------------- -

C(R) As
*V n

____________________________________.____________________T__fIS a
________________________________________ __ _

2w )m; C = A c -2m; m = togeI -
3IST.= C(As +cV a wm Aa .cg2(see Refs. o su

4 A 37,38) M
c )(0.3 - 10.42 c ); Asu = 7.517 x 10-4 + 0.638 cv = (262- 702 f_______________________________________________________________'_____________________.______________________.w wu ,_,

e
*

(see Refs.
35 A 61, 62, M,C(R) vy'ST = c1(fs+KNcwm ) + c2 N sKa

70, 126)
__________________________________________________________________g________________________ ________________

IST * V r( 3 * "4|rl )
a a

(MPa); r = A /c ; v *V! V u 4 s w u o ZI
9 A (se ef. 1+ar a

4 o+cw
2

n = 0.01 Da i "3 = (N/mm );o
o

4 2

_____________________________________________________4__=
2.44(1 3_N/mm ); vo = 0.245 f 'a c

___________ _______________________________________

Notes: 'E = experimental work ((1) for constant c M = monotonic shearw
(2) for constant c /Asw
(3) for constant K ) C = cyclic shear (not reversing)N

A = analytical work C(R) = reversing cyclic shear

J



196

a) Monotonic shear

Fenwick and Paulay (Ref. 38), Paulay and Loeber (Refs. 76, 97) and

Houde and Mirza (Refs. 58, 88) conducted experiments on similar specimens

(see Figs. 4.2a, 4.3a and 4.4a, respectively). The initial width at the
2 2crack with a shearing area of 12.25 in2 (79 cm ) (Fenwick), 33.5 in

2 2(216 cm ) (Loeber) and 12.25 in2 (79 cm ) (Houde) was held constant during

the test by providing the required normal forces. Each of the investiga-

tors concluded that interface shear stiffness KIST was inversely propor-

tional to the initial crack width and proportional to the concrete compres-

sive strength (the rate of influence of the latter was greater for smaller

crackopenings). The effect of aggregate size and shape was not signifi-

cant and it depended on the quality of the aggregate used; that is, the

degree of irregularity in the shape of the crack interface.

The empirical relationships for the interface shear transfer stiffness

KIST (ksi/in) proposed by Fenwick and Houde (see Figs. 4.2b and 4.4b) are

(see also Table 4. A):

Fenwick: KIST = ( ; - 8.41)(0.0225/o - 0.409) (ksi/in) (4.3)co
wm

with

2700 s 5 8100 psico

Houde: KIST = 0.057 ( ) s W n) M
5000

with

2370 s f ' s 7340 psic

co' f ' are the cube and cylinder compressive strength of concrete,where o c

,
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Fig. 4.2. Typical results from Fenwick's investigation (Ref. 38).
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respectively (both in psi), and c is the initial crack width inwm

inches.
t

Loeber presented a bilinear shear stress-shear slip relation that was

mainly affected % the initial crack width (see Fig. 4.3b). He proposed

the following expressions for the shear stiffness:

485
KIST , .E - 8.3 (ksi/in), for vlST 5 100 psi (4.5a)

- 8.2 (ksi/in), for VHT > 100 psi (4.5b)
'

K =
IST o

I

where v is the shear transferred at the crack plane (for f ' = 5000
IST c

psi). In Figs. 4.5 and 4. 6 the shear stress vIST versus the shear dis-

placement a , and the shear stiffness KIST versus the initial crack widths

( at low shear stresses (up to 100 psi or 0.7 MPa), respectively, are

plotted for comparison of the results by Fenwick, Loeber and Houde. Fen-

wick's and Loeber's expressions give almost identical response at any

value of initial crack width. The interface shear transfer stiffness KIST
increases with decreasing initial crack width. The rate of increase in

K becomes higher as the initial crack width decreases, particularlyIST

for values of c" less than 0.010 in. Houde's expression for the shear

stiffness results in higher values at initial crack widths less than 0.010

in. (0.25 mm). For c values larger than 0.020 in. (0.5 m) all expres-

sions result in an approximately constant shear stiffness of about

10 ksi/in. (2.72 MPa/mm). At shear stresses larger than 100 psi Loeber's

experimental data shows a drastic increase in shear stiffness especially

for small initial crack width values. This large increase in shear

-
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|

|

| stiffness appears to be less severe as the initial crack width in-
|

| creases.
|

| White and Holley (Ref.126) and Laible et al. (Ref. 70) used similar <

precracked concrete block specimens with a shear transfer cross-sectional

2 (1935 cm ), respec-2
area of 240 or 280 in2 (1550 or 1806 cm ) and 300 in2

tively (see Figs. 4.7 and 4.8a). They let the crack width change for pre-

selected values of the initial crack width, maintaining a constant exten-

sional stiffness through four external rods. These clamping rods were
|

| fastened with nuts to heavy steel cross beams bolted to the top and bottom
1

of the specimen before the formation of the crack at the shear plane. The

shear load was applied to the precracked specimen by hydraulic rams acting

against a prestressed concrete test frame, as shown in Fig. 4.7. For the

positive portion of the first shrir loading cycle they found that for a
i

i .

| given shear stress the corresponding shear displacement was inversely pro-

portional to the normal stiffness K provided by the clamping rods. The
N

effect of reversing cyclic shear applied to the same specimens (see Figs.

4.8b and 4.8c) is discussed in Section 4.2.lb. Laible's data points for

! the shear stiffness are included in Fig. 4.6 for comparison. It appears
1

that they form a lower bound for the KIST values computed by Eqns. 4.3 to

| 4.5.

Jimenez et al. -(Ref. 61) proposed an interface shear stiffness rela-

|
tion for both constant and changing crack width. The normal stiffness in

their untaxially tensioned specimens (see Fig. 4.9)was provided by Grade 60
,

embedded reinforcing bars ranging in size between No.7 and No.14 and cross-
2ing a shearing area of 225 in2 (0.145 m ). By regression analysis of the

. experimental ~results of Fenwick and Houde (for constant crack width)-and

._. .. . . - - _ .-
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Loeber (for varying crack width) they obtained the following equation for

the interface shear transfer stiffness K at the 1st cycle of shear load-
IST

ing (maximum shear stress of 300 psi or 2.07 MPa) and initial crack width
! values between 0.005 and 0.030 in. (0.13 and 0.76 mm),

0 -7 ~

KIST = [3.9(c , - 0.002) - 1.09 x 10 - + 0.0367] (ksi/in)

(4.6)
,

where K is the extensional stiffness in kips /in.
N

Jimenez et al. also ar.4:lyzed Laible's results and proposed an alterna-

tive interface shear transfer stiffness relation as follows

5.4 x 10-3 g"M
(ksi/in) (4.7)K *

IST o
cwm

where c was in the range of 0.010 and 0.030 in. and the applied shear

! stress was less or equal to 180 psi (1.24 MPa).

In Fig. 4.10, taken from Ref. 61, the shear stiffness determined by

Eqns. 4.6 and 4.7 is plotted versus the initial crack width for two values
,

of the extensional stiffness K equal to 3420 and 7840 k/in (599 and 1373
N

,

kN/mm). Both equations give similar shear stiffness values for any value
0

of c at K equal to 7840 k/in, and for c larger than or equal to
N

0.020 in, at KN equal to the lower value of 3420 k/in. In general,the

interface shear transfer stiffness for a given initial crack width in-
|

creases with increasing normal extensional stiffness.

Al-Mahaidi (Ref. 4), assuming a toothlike idealization for the crack

interface and using experimental data by Fenwick, proposed the following

nonlinear formula for the shear stiffness K as a function of the current
IST

_, _ - .
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Fi g. 4.10. IST stiffness versus initial crack width according to Eqns.
4.6 and 4.7.

crack width c and crack slip A , the initial crack width c , , the crackw s

slip A and shear stress v at failure, and the cylinder compressivesu u

strength of concrete f ''
c

2
w )mKIST = C(A +cs ,

where

C=Ack-2m (4.8)
(^su2+c 2

a

w)3
' vum = toge E ~An o2o su cwm

a

v = (262 + 702 f ')(0.3 - 10.42 c )u c w

A = 7.517 x 10~4 + 0.638 c, su w

_.
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This expression gives results that are in good agreement with Houda's ,

and Fenwick's experimental data for initial crack widths larger than 0.005

in. (0.13 mm). For initial crack width values less than 0.005 in., however,

the above expression results in significantly different values of inter-

; face shear stiffness.

Fardis and Buyukozturk (Ref. 35) performed a statistical analysis on
,

!

data from experiments done at Cornell University (Refs. 61, 62, 70, 126,
,

127) in order to predict the shear transfe'r stiffness of precracked rein-'

forced concrete. They formulated two- and three-dimencional mathematical

I models and implemented them in a finite element analysis p'rogram. The

major factors that influence the shear stiffness Ks (including both inter-

face shear transfer and dowel action contributions) in their expression

are the normal restraining stiffness K , the initial crack width cb ,
N

and the additional force applied perpendicular to the crack plane. Assum-

ing a linear monotonic response for the 1st load cycle they proposed the

following shear stiffness relationships for the combined effect ofinterface
.

shear transfer and dowel action

| K *KDA' f " V 5 KDA (b c ) (4.9a)
s i

i

and
K

+KDA, for v 2 KDA (b c ) (4.9b)Ks" i

,

where K is the dowel stiffness to be determined and bi = 0.29, b2 * l 12
DA

are crack surface parameters evaluated from the experimental behavior.

Parameter b denotes' the amount of the " free slip" taking place at the
y

crack interface at the initiation of shear loading and parameter b2

-~ __
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represents the contribution of the interface shear transfer mechanism to

shear resistance. The above expressions with b and b constant indicated
y 2

that the interface shear transfer stiffness

K

K IST = (4.10)
2

is only a function of the extensional stiffness K , which as they pointed
N

out is inconsistent with the experimental evidence showing a strong influ-

ence of the initial crack width c on K '
N

Leombruni et al (Ref. 73) improved the above equation by evaluating

the coefficient b as a function of the initial crack width c for the2 wm

1st cycle average slip by regression analysis of experimental data from

direct shear tests performed at Cornell University (Refs. 61, 70, 126 and

127) as follows

linear form: b2 = 62.4 c (4.11a)

.637power form:
b2 = 642.7 c (4.11b)

Initial crack width values in the range of 0 < c 5 0.03 in. were con-

sidered. The above two functions for b are plotted together with the ex-
2

perimental data in Fig. 4.11. The data for large initial crack widths of

about 0.03 in, strongly influences the form of the function describing the

parameter b . Since there is considerable scattar in the data and both2

proposed expressions for b do not show satisfactory correlation with the2

. _.
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4

b
2 e average values6. .

,exper. values,
-

.

4 -
** * 642.7 c 1.637(power form)

*

_ *: *

. y-2 ' * * *

*

O'
. ,y , 62.4 c (linear form)

O = ' ' '=
0.01 002 003 0.04
Initial crack width, c,0 (in ),

Fig. 4,11, Influence of the initial crack width c on b from shear
2slip data (Ref. 35).

experimental values, especially for low values of the initial crack width,

use of the more complex power form appears to be unjustified.

Bazant and Gambarova (Ref. 9) recently proposed a basic approach to

predict the shear transfer and confinement across a rough crack. They

fitted a nonlinear stress-strain relation to the exper: mental data by

Loeber and Paulay (Ref. 97), and neglecting the dowel stiffness, concluded

that the shear stiffness due to interface shear transfer primarily depended

on the ratio of the crack slip to crack width, r = A /c , according tos g

the following expression (see Fig. 4.12)

IST " V r ( 3 + 4|rf)
a

(MPa), (4.12)V
u 4

1 + a4r

with
"o

o( 2)v *V
u

o+Cya

--
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b) Comparison with Fenwick's results

Fig. 4.12. Proposed shear stress-shear slip equations by Bazant and
Gambarova (Ref. 9).
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|

|
'4

"3 = (MPa)
YO

a4=2.44(1-hMPa)o

v = 0.245 f ' (MPa),ando c

"o = 0.01 Da

where v is the limiting value of the maximum shear stress vu (in MPa)o

when c approached zero, and 0, is the average aggregate size in mm.w

In spite of the extensive experimental data and analytical studies

available, the use of empirical expressions with their limitat' ions and

simplifications of the actual response are still unavoidable. A fully

rational approach to the problem appears impossible due to the scatter of

the data regarding the initial crack width measurements in addition to the

random shape of the interface at the crack. However, the accumulated

knowledge from each research program has contributed to a better under-

standing of the factors and their influence on the behavior of the inter-

face shear transfer. It is well established that the shear resistance

provided by the interface shear transfer mechanism at a preformed crack

in a reinforced concrete member is an efficient means to transmit shear

loads.

A linear or a bilinear shear load-shear slip reldtionship has been

found to describe very well the measured response during tests with mono-

tonically applied shear stress of up to 300 psi (2.07 MPa). The major

parameters that affect the interface shear transfer stiffness KIST are

,
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the initial crack width (inversely proportional and highly nonlinear

variation) and the extensional stiffness in the direction normal to the

crack plane (proportional variation). The compressive strength of con-

crete (for typical values between 3000 and 4000 psi or 21 and 28 MPa), the

reinforcing pattern at the crack and the externally applied normal tensioni

l have a relatively minor effect. The influence of the loading history

(cyclic loading and shear stress level) is discussed in the next section.
!

| b) Cyclic shear

The effect of cyclic shear loading has been investigated on the same
|

| direct shear tests described in the previous Section 4.2.la, by White and

! Holley (Ref. 126), Paulay and Loeber (Ref. 97), Laible et al. (Ref. 70),

and Jimenez et al. (Refs. 61, 62).

White and Holley studied the effect of fully reversed shear to simu-

| late seismic loads in pressurized nuclear containment vessels. Each con-

crete block specimen was subjected to reversing shear stresses between

| 120 psi and 160 psi (0.83 MPa and 1.1 MPa) for a maximum of 55 load

cycles. Representative shear stress-shear slip hysteresis loops are

shown in Fig. 4.8c for preset crack widths of 0.030 in and 0.020 in.

(0.76 mm and 0.51 mm). The measured interfac? shear stiffness at any

peak shear stress after 25 cycles of loading it a preset initial crack

width of 0.030 in. and normal restraining stiffness provided by four

steel rods of diameter d was nearly constant and equal to
|

KIST = 5 (ksi/in), for d = 1.375 in. (4.13a)
and

KIST = 3.1 (ksi/in), for d = 1.0 in. (4.13b)
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This implies that the total slip after 25 load cycles is a linear function
~

of the applied shear stress (see Fig. 4.8b). The unsupported length t of

these external rods with t cross-sectional area equal to As provided an

equivalent extensional stiffness A E /t that could be easily changed toss

a certain extent by varying the length of the rods. The height of the

specimen t, which was equal to 36 in. (91.4 mm), was chosen to provide a

very conservative reoresentation of the clamping flexibility for the verti-

cal reinforcing bars in secondary nuclear containment vessels. The above

shear stiffness values (Eqns. 4.13a and 4.13b) showed a 60% increase in

shear stiffness for a 90% increase in the normal restraining stiffness

present at the crack olane.

This research program was extended and additional tests were conducted

in similar specimens by Laible. Fully reversing shear of about 180 psi

(1.24 f1Pa) was applied to the majority of the specimens for 25 cycles.
1

! Laible proposed that when the interface shear transfer was the predominant

| mechanism, the applied shear stresses were resisted by two major modes:

the bearing mode, in which shear was transferred through contact of the

concrete asperities of the crack surfaces and not much overrid'ng occurred;

and the frictional mode, in which the normal restraining stiffness pro-

vided the required friction along the interface for the shear transfer.

| This meant small changes in crack widths and crack slips during the

| 1st loading cycle (especially for small crack openings) when the bearing

| mode predominated, and large crack slins and crack widths in subsequent

cycles (or at large initial crack openings), when the latter mode was con-

trolling behavior. Thus the normal extensional stiffness in the rein-

forcement crossing the crack was a significant factor only in the
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frictional mode. Laible found that for the 1st cycle and especially for

small initial crack widths of less than 0.010 in. (0.25 mm), the bearing

mode of shear transfer along the irregular asperities prevailed at the

crack plane. At subsequent cycles or at earlier cycles and initial crack

| widths larger than 0.010 in, the frictional mode of interface shear tran<,-
|

fer controlled. Cyclic loading resulted in a nonlinear hardening type

response with increasing stifteess after the initial " free slip" took place

| (see Fig. 4.13). This was attributed to the grinding action of the fric-
|

tional mode at the crack interface, which increased the effective contact

area of the crack surfaces due to crushing of the protruding particles.

As a result, an incraase in shear stiffness took place at high shear

stresses. The relatively low shear stiffness observed at small shear

stresses during reloading was also due to the above degradation of con-

crete at the crack plane.

Paulay and Loeber studied the effect of repetitive (but not reversed)

shear loads producing very high shear stresses of 800 to 830 psi (5.52 to -

| 5.73 MPa) for 33 cycles, while the crack width was kept constant. A bi-
1
' linear representation of the shear stress-shear slip relation was adopted

for a given value of initial crack width (see Fig. 4.3c). The following

expression for the shear slip of the upper portion of the load-displace-

ment curve as a function of the applied shear stress level vlST, the

initial crack width c (inches), and the number of cycles n was deter-wm

mined from the experimental data

as = 0.01 c [(2n + 86) + 5.72 x 10-2U
3 (I"*) (4 14)V IST

.

where V is in psi.
IST

- - , ..- __ . _ . , ._
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In the above equation the residual slip at zero shear

a (r) = 0.01 ch (2n + 86) (4.15)s

increases with increasing number of cycles and initial crack wiu;h.

The upper portion of the loading curve (high shear stresses) exhibited

a nearly constant tangent interface shear transf 2r stiffness according to

the relation

(ksi/in) (4,16)KIST = 1.75/ctm

Again, the shear stiffness KIST showed a nonlinear dependence on the

initial crack width, and increased with decreasing c0m . Although the

secant shear stiffness at each shear stress level decreased with cycling,

the tangent shear stiffness of the steeper portion of the curve remained

approximately unchanged for a given value of the initial crack width.

Jimenez et al. performed additional experiments on large block spect-

mens with larger size embedded bars and found results similar to those of

Laible. From a regression analysis of Laible's experimental data, they

obtained an expression for the ratio of the shear disolacement A (U) at
s

the nth cycle to the shear displacement A (1) at the 1st cycle as a func-
3

tion of the number of cycles n and the initial crack width c0m as fo llows ,

,(STn)=n(5.2c0m+0.12) (4.17)I

This expression (Fig. 4.14) is valid for initial crack widths from 0.010
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Fig. 4.14. Increase in maximum shear displacement with cycling (Ref. 61).

,

to 0.030 in. (0.25 to 0.76 mm) and steel ratios between 0.0107 and 0.0214.

Thus, the maximum displacement at cycle n is given by the expression

s" = As 4 (4.18)a

where
1

3 (1) , GIST y
s IST

is calculated from Eqn. -4.6 for monotonic shear loading.

Jimenez et al. also modeled the experimental shear stress-shear slip

hysteresis loops with linear segments for the loading and unloading por-

tion (see Fig. 4.15) and developed a computer program to predict the shear
~

displacements at a certain shear stress level and load cycle number.
,

:

!
L

1
l'

_ ._ ._ _ -_ -.
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I
t

According to the experimental evidence reviewed in this section, it

is evident that fully reversing cyclic shear loading greatly affects the

response of the interface shear transfer mechanism and its shear stiffness,

particularly at large initial crack widths (larger than 0.020 in.). The

| influence of cyclic shear depends on both the peak shear stress and the
i

magnitude of the initial crack width. For small initial crack widths

(less than 0.010 in.) an increase in the peak shear stress results in an
| irreversible damage of the shearing surfaces. The resulting gains in

crack width and slip are more severe than those which would have been
i
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'

i

caused by cycling at the same peak shear stress level. - At a fixed shear

i stress level .the shear displacements increase with cycling, the rate of

i increase being higher in the initial load cycles, as shown in Fig. 4.14.

A stable condition is reached unless the applied shear approaches the ulti-
,

i mate shear capacity. Aggregate size becomes relatively more effective in ,

i resisting slip as the number of load cycles increases. Peak shear slips
1

: increase with decreasing aggregate size.

After several load cycles at each peak shear stress, little additional

crushing and smoothening of the concrete takes place at the' shear plane.i

;

i As the two opposite faces of the crack siide they also move apart from
!

!. each other. due to the introduced dilatancy, and the local roughness becomes

| less important as a viable means to transfer shear. Therefore, the same

amount of shear requires larger slips to occur, causing a faster decrease

in shear stiffness. Similar loss in shear stiffness occurred at the
.

! beginning of cycling but for larger talues of initial crack width.

The main characteristics of the observed nonlinear stiffening response

; of the interface shear transfer mechanism are:

a) Significant reduction in the initial shear stiffness at low shear!

stresses (less than 50 psi or 0.34 MPa) due to the finite size of
|

; the crack and the loose material at the crack. '

b)' Distinct increase in the tangent shear stiffness for shear stresses

larger than 50 psi due to increase in shear resistance after the'

open crack' closes and the crushed concrete is compacted. The

mechanism in this hardening region is very efficient in transfer-'

! ring shear stresses with relatively small increases in shear dis-

placements.

:

i
i

i-

- _ - - . - , , . . , . . . - - _ - - _ _ - - _ ..._ _ _ _
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c) Tangent shear stiffness during unloading is either equal to or
!larger-than that observed during loading, resulting in an increas-

ing value of residual slip and hysteretic behavior. Very rarely

were the measured slips at zero shear as.small as 50% of the slips

at peak shear. Usually they were as large as 80 to 90% of the peak

values (see Fig. 4.8c). This was probably the main reason for the

j soft response at low shear stresses during subsequent reloading

in the opposite direction.

d) The area enclosed by the shear stress-shear slip hysteresis loops

(see Fig. 4.13b(1)) which is a measure of the hysteretic damping
,.

i coefficient of the structure, decreased with cycling. In other

words, the ability of the cracked region to absorb energy by direct
,

bearing or by friction at the rough interface decreased with in-

creasing number of shear load cycles.

4.2.2 Dowel stiffness and strength (single crack)

Different types of tests have been performed to study the dowel stiff-

ness KDA (k/in), that is, the relation between the shear dowel force and

the corresponding shear displacement of an embedded bar crossing a single

crack. There are three main modes of deformation for a rebar subjected to

a shear ',ad; bending, shearing, and kinking, shown in Fig.4.16 (Ref. 98)

together with the shear capacity corresponding to each mode.'

Experiments have been conducted on pavement joint, divided beam, beam-
~

end, and direct dowel specimens. Dowel stiffness and dowel splitting load
i

expressions proposed by each investigator .re given in Taule 4.B.

|
.

ep -, -- ~ .e - w.-- g ,n ,



Table 4.B. Summary of dowel force-dowel slip relationships for DA mechanism.
.____ _ _ ____ _ ___ _ _ _ _ _ _ _ _ _ __ _ ___.__ _ ___ _ _ ____ _ _ __

Type
of Load Dowel Force (VDA), Dowel Slip ( Asd)

Reference Test Histcry Relationship Dowel Splitting Load (Vdo)
3

ss sd 4 kd3E I 6 A f
42 Analysis of M VDA = 3+68t+6(8t)2+2(8t)3; 6 *

I4E I
---"B0EF" ss

kg = 21.5 f ' (MPa/mm)c
___________________________________________________________________________________________________________

68 Divided beams M VDA = cl/f ' (dI b )1/4 ___3
c t

___________________________________________________________________________________________________________

p n st(s <5.875")DA = 445 V o do (before cracking) V o = 0.174s b f37,38 Direct shear V da d r
(long and H

n st(s >5.875") Mshort dowel) Ado 5 0.0023 in. for bottom cast Vdo = 1.02b f r "
dowel s

o=204+0kbik5 Divided be s 1 -- V ftn
___________________________________________________________________________________________________________

DA = 317 V o do (before cracking)V da
32 (after cracking); Vdo = 0.045 b d/f 'sd =Y Vo DA7 Divided beams M a n c

x2sYo = 0.45 g______________________________________________t____________________________________________________________
Analysis of Eb

63 "BOEF" With M ---

(kf=hc n)
---

Stirrups ef
__

_______________________________________..__________________________________9_____________________________
1 DA 2 co

tan (V 1) 0 2d f sin 6[ l +0.03f sin 6 _j)30 D.irect Shear M a

(Inclined Bars) s d = 10 d, 2 y ,z
- 6 o

co du y
________________________________________________________________._______________________________
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Table 4.B. (Continued)
- - - _ _.--. - _. _ ,,-.. .- ---..--.. - - - - ,- ,-, ,-- ----,,-.. --. - ------- - - - -

Type
of Load Dowel Force (V A), Dowel Slip (Asd}D

Reference Test History Relationshio Dowel Splitting Load (Van)

Beam-End VDA = 2000 Vdo do (before cracking) 3a
58 Specimens M V o = 0.040 bn/f 'd c

ado s 0.005 in.
bb brectShear M,b(R) dfb 2b k lbbb(ksihin) -VD =k

----__ -----__-_-----------_------_---- ...--__---__ ---_----_ -----__---_-__--_-_---_--- -----_--_--------
4 ge

... -_ --_- $$-__ $ ___. .). - ___ _ 000f__f_[_[_re __}____________________________
ksf r n

- ... __ _

VDA = c1 + c2(m + 1) ed ; c1 = Dsoi
m
N4 Analysis M D -D (see Ref. 30) "

sf so 1

c2 = m=
(Dso) - 1

m '
a

d Dsf
--------_-__-----_-_-_-____ --_-_-_-_-_---___- -_-- -_ -_-__---_-__-__----__----_---_ -___--_----.

(M):VDA " (3.2x10-3)kd do " nb E0'47 + b
; V #" ~

n verse
2+d steel)

61 Direct Shear M,C(R) kf= 750(ksi/in) , at 1st cycle with "b
VDA 5 5 ksi/bar;

("B0EF") + U "bc -8,5)pt yt (withfm

(C):A (dn)* D( A)A(;y( = 0.029n + 0.97 steel)
transverse

s D s

Notes: M = monotonic shear. "B0EF" = beam on elastic foundation.
C(R) = cyclic reversing shear.
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VDA N
" Bending y J Shear V KinkingDAj

b//gDAA / d
+

"dV- DA *

M

2M 4dA f Afsy V = A f sineU= 8Y V du sy=
V =. 3n du 73-du f

Fig. 4.16. Dowel action mechanisms of shear transfer at a crack,

a) Monotonic shear

The majority of the beam-end specimens by Gergely (Ref. 46), Houde

(Ref. 58) and Kemp et al. (Ref. 67), shown in Fig. 4.17, and the divided

beam specimens by Krefeld and Thurston (Ref. 68), Taylor (Ref.115) and

Baumann (Ref. 7), shown in Fig. 4.18, failed by horizontal concrete split-
Theting along the reinforcement, where the concrete cover'was minimum.

major variables influencing the dowel stiffness in a beam subjected to

monotonic shear were found to be the minimum o ncrete cover c . the netm

width of concrete bn, the bar diameter d, the compressive concrete strength

f ', and the distance of the crack to the first stirrup. The influence
c

of the inclination angle of the rebar to the crack plane on dowel stiff-

n:n was not studied in the beam tests mentioned above.

As far as the dowel strength is concerned, it was determined that in

the beam-end tests the bar diameter did not have a significant influence

on bond splitting wht:n no transverse steel was present. Transverse

|
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reinforcement placed at less than 1 in. (25 mm) distance from the crack

could improve the behavior by preventing dowel splitting and confining

the surrounding concrete. This was also observed by Sharma (Ref.107)

in his experiments on the splitting strength of concrete.

The effect of a simultaneous axial tension in the bar on the dowel

stiffness was studied by several researchers in the above beam tests (Refs.

58, 67 and 107). It was found that the axial stress had to be at least 70

to 80% of the yield strength of the bar to have a significant effect in

reducing the dowel stiffness by partially plastifying the bar.

Since the response of the dowel mechanism in planar structures (such

as in the flct specimen in the present experimental investigation) is much

different than that in the beam tests, a detailed description is under-

taken below only of the experimental and analytical studies performed on

direct dowel specimens. The interested reader can find additional infor-

mation on the beam-type tests in Ref. 61. In planar structural elements,

due to the existence of a larger concrete depth under each bar, the support
,

provided by the concrete to each bar is far better than in a beam. Redis-

tribution of stresses and higher dowel stiffnesses are possible in the
' fonner case, while in the latter snlitting along the bar usually controls.

A sketch of the different dowel stiffness response in the cases of a beam

and a planar element is given in Fig. 4.19 (see Ref.120).

In the direct dowel tests under monotonic shear, specimens tested by

Eleiott (Ref. 33)(see Fig. 4.20), Stanton (Ref.109)(see Fig. 4.21), and

Jimenez et al. (Ref. 61)(see Fig. 4.9b) failed by splitting in the concrete,
,

while those by Dulacska (Ref. 30)(see Fig. 4.22a), and. Paulay et al. (Ref.

98)(see Fig. 4.23a) by yielding of-the reinforcement. The latter failure

;

l
*
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mechanism was mainly due to the presence of better confinement provided

. by the transverse steel.

Dulacska performed direct dowel tests with bars inclined to the shear

crack at preselected angles 6 (10, 20, 30 and 40 degrees) to study also

the effect of the inclination angle on the dowel stiffness and strength.

The specimen, shown in Fig. 4.22a, consisted of two concrete blocks sepa-

rated by two 0.0078 in. (0.20 mm) thick layers of brass to ensure that

the relative slip of the two blocks would be resisted only by the dowel

forces in the reinforcement crossing the artificial crack provided. Rein-

forcement in the form of closed stirrups with a diameter of 0.39 in. (10

mm), 0.254 in. (6.5 mm) arJ 0.546 in. (14 mm) was used.

The empirical dowel force-displacement relation determined from the

experiments was similar to that of an ideally elastoplastic behavior (see

Fig. 4.22b) and was of the following form

3V Y
DA I 1

tan (yduDA n) (in.) (4.19)A

sd " d x 10 73 oco

where a d is the dowel slip (in.), V the dowel force (kips), Vdu thes DA

ultimate dowel force (kips), d the diameter of the reinforcement (in.),

and e the cube compressive strength of concrete (ksi). Compressiveco

strengths of concrete in the range from 1420 psi (9.8 MPa) to 4540 psi

(31.3 MPa) were measured. The effect of the bar inclination 6 was found

to be insignificant compared with the effect of the bar diameter and the

compressive strength of concrete.

.

c-- -- -- r- . -
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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The main parameters that . influenced the ultimate dowel force Vdu were

the bar diameter d and the concrete cube compressive strength o accordingco

to the relationships given below,

2 co
Vdu = 0.2 d f sin 6 [\ 1 + - 1], f r 6 > 0 deg. (4.20a)y 2

y -0.03f sin 6. y
and

2
Vdu = 1.16 d #f f r 6 = 0 deg. (4.20b)y co ,,

.

where f is the yield strength of the steel and 6 is the inclination angley

(degrees). For a given value of f and a the maximum dowel force is+

y co

directly proportional to the square of the bar diameter.
s

Paulay et al. (see Fig. 4.23) concluded that the dowel shear stiff-

ness was proportional to the reinforcement ratio available at the shear

crack and independent of the bar size. According to them, among the three

j- possible dowel mechanisms (see Fig. 4.16), the major ones were direct

shear and kinking of the bar, the latter mechanism being more important

for larger crack width values. The dowel load-dowel slip curves given in
i

Fig. 4.23(b,c) showed a nonlinear response similar to Dulacska's relation
" (Eqn. 4.19).

Eleiott's smaller scale specimens (described in the previous section);

i were used to study the behavior of the dowel action mechanism for embedded

2No.4 and No.6 reinforcing bars crossing a 15 in shearing area with

4 - greased steel plates. Although the shear loading was cyclic, the response

i during the'Ist cycle under monotonically increasing shear will be presented

here. Eleiott modeled the reinforcement as a beam on an elastic foundation

and proposed the following dowel stiffness relation for the 1st load cycle,

4

II

,p -,e- ,--g - - - - - -- y - , '- <--ray
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3/4
d /0.23 (k/in) (4.21)KDA = kf

where k is the effective foundation modulus assumed to be equal to 1000
f

ksi/in for the narrow range of bar sizes studied, and d is the bar diameter

(inches). The above relation indicated that dowel stiffness was propor-

' tional to the bar diameter, while Dulacska found that it was proportional

to the square of the bar diameter.

Substituting the value of 1000 ksi/in for kr in the above Eqn. 4.21

a value for the dowel stiffness KDA under monotonic shear equal to

KDA = 773.2 d (k/in) (4.22)

is obtained as a function of the bar diameter only.

Several analytical studies were based on the above mentioned model

developed by Friberg (Ref. 42), considering the embedded bar as a beam on

an elastic foundation ("BOEF"). Various tests were performed on contrac-

tion pavement joints aiming for an estimate of the foundation modulus of

concrete k , a very importani, parameter of dowel stiffness. In Friberg'sf

model the concrete around the bar and in the opposite direction of the

dowel displacement was ignored and the bar was assumed to be supported by

the concrete under the bar, acting as an elastic foundation with a

modulus k . According to "B0EF" model, the dowel stiffness depended on
f

the " free length" of the bar 21, which is the total unbonded length of<

the bar due to.the relative slip of the bar and crushing of the concrete

at the crack (see Fig. 4.24), the bar diameter d, and especially on the

concrete foundation modulus kr.

i
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Fig. 4.24. Reinforcing bar as a beam on elastic foundation (Friberg,
Ref. 42).

If the reinforcing bars are inclined to the crack, for example in

the case of an orthogonally reinforced planar concrete element with diagon-

al cracking, the " free length" of the bar is influenced also by the in-

clination angle 6 between the bar axis and the direction normal to the

crack. According to Schaefer (Ref.105), the " free length" of the bar

21 was proportional to the inclination angle 6. Also, according to

Leonhardt (Ref. 74), kinking of the bar and wedging action was enhanced

in the case of bars inclined to the crack.

The determination of the foundation modulus k is a very difficult
f

task, due to the fact that it is affected by the axial stress in the bar,

' the level of concrete confinement, the concrete cover and load cycling.

In a review by Finney (Ref. 39) the values of kf varied from about 700 to

8800 ksi/in (190 to 2400 MPa/mm) with average values from 900 to 2600

, _ _ _
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ksi/in (250 to 700 MPa/mm). Ths expressions for kf given by various re-

searchers are shown in Table 4.B.

Johnston (Ref. 63) presented an analytical model for beams that com-

bined the idea of "B0EF" with the inclusion of stirrups as elastic supports

in resisting the applied dowel forces after the concrete cover cracked

horizontally. Depending on the value of critical dowel deflection that

caused the longitudinal cracking, the dowel stiffness decreased generally

with increasing axial tensile stress. It was found that for ratios of

axial stress to yield strength higher than 0.8, the presence of axial

stress in the rebar had a more severe influence on dowel stiffness. The

critical deflection of the bar causing horizontal cracking on the cover,

the modulus kf and the stirrup elastic spring constant were not determined

in his study, but reasonable assumptions were made for their values.

Stanton, using Friberg's expression for the dowel stiffness, calcu-

lated the effect of the " free length" for several values of the foundation

parameter 8 equal to
7

4

f = /k /4 E I (in. ) (4.23)E f ss

where E I is the bending stiffness of the rebar. Reinforcing bars withss

a diameter of 1.375 in or 35 mm (No.11) and 2.25 in. or 57 mm (No.18)

were employed in his specimens, shown in Fig. 4.21. In a plane stress

elasticity analysis of a bar bearing on one half of its perimeter against

the ccncrete (see Fig. 4.25b), he found that kf depended only slightly

upon the bar size and that horizontal splitting would tend to form before

the vertical splitting. He proposed the following dowel stiffness relation
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for the 1st load cycle of his experimental results, assuming that no local
_

concrete crush'ing took place under the applied dowel force (" free length"

i equal to zero) and neglecting the effect of shear strains in the rebars,
|

3 f '' f'4
| KDA = E I Bs s f (4000)3/2bE k 3 (4000)3/2"d (k/in) (4.24)

8 sf
!

| where f ' is giv2n in psi. For a nonzero " free length" the expression forc

dowel stiffness was given as follows
,

EI8 /(3 + 6t + 6t + 2t ) (k/in) (4.25)K =

DA ssf

where t = B t with S determined from Eqn. 4.23 and t being the half " free
f f

length" (in.). The dowel stiffness for a single No.11 and No.18 bar is;

plotted versus the half " free length" for various values of the parameter

in Fig. 4.25a.87

Jimenez et al. investigated the dowel behavior for No.9 and No.14

bars (test series D ) in the same specimens as in test series'(C) but
'

with greased steel' plates placed at the crack plane to eliminate the inter-

face shear transfer action. They also used the "B0EF" model to evaluate
,

,

the foundation modulus k from the test series (D) specimens, assuming that
f

the effect of the half " free length" of the bar 1 was of the same order as
' the initial crack width and therefore could be neglected. An average value

of 750 ksi/in (200 MPa/mm) was obtained for k . The dowel stiffness
f

expression proposed for the 1st cycle and for dowel shear stresses less

than or equal to 5 ksi (34.5 MPa) had the following form,

K = 312 n d .75 (k/in) (4.26)l
DA b

. . - .. .
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where nb is the number of bars per layer and d the bar diameter (in.).

Regarding the dowel capacity of the rebars, Jimenez et al. developed

a dowel splitting load expression from a regression analysis of divided

beam and beam-end specimen tests (Refs. 7, 58, 67, 68, 115) with or with-

out transverse reinforcement. The dowel load (in kips) requi.~ed to pro-

duce a concrete splitting failure was

db 0.54 c
V '4 + (kips) (4.27)do * nb b

( "2 + d)
"b

where c is the minimum concrete cover, d the bar diameter, b the netm n

width at a layer of bars (perpendicular to the shear force), and n
b

the number of bars in a layer, with all dimensions in inches.
,

Al-fiahaidi (Ref. 4) in his analysis of reinforced concrete deep mem-

bers proposed a nonlinear dowel force-dowel displacemc;it rdation in terms

of the slip asd (in.) in a determinate form represencj hy a polynomial

based on Dulacska's experimental results as follows,

0.198
) A (kips) (4.28)VDA = (667 - 1208asd sd

assuming an initial tangent dowel stiffness of 667 k/in (117 kN/mm), a

value estimated from the test results. This form of force-displacement

resulted in the following nonlinear dowel stiffness as a function of Asd'

*

KDA = 667 - 1447 A g (k/in) (4.29)g
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In Table 4.C -the dowel stiffness values K at %e 1st load cycle
DA

(monotonic shear) for a single No.6 and No.14 reinforcing bar predicted by

Eqn. 4.24 (Stanton, Ref. 109), Eqn. 4.21 (Eleiott, Ref. 33), Egn. 4.26e

(Jimenez et al., Ref.'61), Eqn. 4.19 (Dulacska, Ref. 30) and Eqn. 4.29

( Al-Mahaidi, Ref. 4) are compared. Foundation modulus values of concrece

k from 750 to 3000 ksi/in have been assumed for Eqns. 4.24 and 4.21 that
f

= 750 ksi/ininclude k as a parameter. Eqn. 4.15, developed assuming kf
f

for No.9 and No.14 bars, gives the lowest dowel stiffness value of 190

k/in for a No. 6 bar, for which a higher foundation modulus than 750 ks1/in

is likely to be true. Since Eqns. 4.21, 4.19 and 4.29 were based on test

results with relatively small size bars (0.39 to 0.75 in. bar diameter),

they give more similar KDA values for the No.6 rebar than for the No.14

rebar. For the No.14 rebar Eqn. 4.21 (Eleiott) predicts approximately

values than Eqn. 4.24 (Stanton), which is probably moretwice as large KDA

appropriate for large size bars (No.14 and No.18).|

Summarizino, the "B0EF" model seems to be a good assumption for the

case of membrane elements with in-plane shear forces, at least for low
'

and intermediate shear stress levels. The dowel response at that load
,

stage can be approximated as linear. On the contrary,for higher shear

stresses a nonlinear behavior was observed. Another important point de-
,

rived from the experimental work is that the chances of a splitting failure

before the full shear capacity of the bar is reached are increased with

increasing bar size.

'
b) Cyclic shear

.

The major objective in the direct dowel tests performed by Eleiott

(Ref. 33), Stanton (Ref.109), and Jimenez et al. (Ref. 61), descriued in

i

, _ ._
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- Table 4.C. Comparison of predictive' expressions on dowel stiffness KDA of a single No.6 or No.14 reinforc-
ing bar at the 1st load cycle (Es = 28000 ksi, f ' = 3800 psi)., c

_ ___ _ _ _ _ _ _ _ _ _ _ _ _ _ .

KDA (k/in) for one No.6 bar KDA (k/in) for one No.14 bar
,

k 750 1000 1500 2000 3000 kf = 750 1000 1500 2000 3000
(f =i/in) (ksi/in)Reference ks

109
(Eqn. 4.24) 214 265 360 447 606 500 620 841 1043 1414

33
. (Eqn. 4.21) 467 580 786 975 1322 1090 1353 1834 2275 3084

61 '

(Eqn. 4.26) -190 - - - - 830 - - - -

,,
w

(a) VDA/Vdu = 0.25: *

30 894 894 894 894 894 2087 2087 2087 2087 2087
(Eqns. 4.19 and 4.20) ----------------------------------------------------------------------------

V(b) VDA/ du = 0.5:

576 576 576 576 576 1343 1343 1343 1343 1343

4
(Eqn. 4.29) 667 667 667 667 667 667 667 667 667 667

t

Notes: For Ref. 30 (Dulacska) the dowel stiffness KDA is calculated at two force levels VDA/V u equal tod
0.25 and 0.5 since the relation in Eqn. 4.191s nonlinear (Vdu = 12 kips for a No.6 bar and 64 kips
for a No.14 bar assuming fc' = 3800 psi, 6 = 0 deg., and fy = 61 ksi).

'

4
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the previous section, was to study the effect of cyclic shear on the dowel

stiffness and strength. The ~ influence of the applied shear stress level'

and axial stress in the reinforcing bars was also investigated in the ex-

periments by Eleiott, and Jimenez et al.

Eleiott studied the effect of 15 to 20 load reversing cycles at a

steel shear stress level equal | to either 5.1- ksi (35.2 MPa) per No.6 bar

or 13.5 ksi (93.2 MPa) per No.4 bar. Both No.4 and No.6 reinforcing bars

- were used. 'For zero axial stress in the bars the load-slip hysteresis

loops and the slip versus the number of load cycles are given in Fig. 4.26a.

For the same shear stress level the rate of increase in the slip de-

creased with increasing number of cycles (see stable behavior after 10

cycles at a steel shear strass of 11.2 ksi (77.3 MPa) per No.4 bar in
:

Fig. 4.26a. After increasing the shear stress level, the rate of increase'

of slip increased again, but the response was not influenced strongly by-

i

the initial 15 load cycles at 11.2 ksi. The hysteretic behavior was simi-
i

lar to that of the interface shear transfer mode with the only major dif-

ference of much smaller residual slips at zero stress. Eleiott was not4

able to quantify the effect of the bar size on the dowel stiffness be-

cause of the inconsistency and unreliability of some of the test results.
,

Eleiott also found that after a number of cycles the concrete did not

j show signs of additional crushing. An increase in the dowel stiffness was

evident after the free slip took place at low shear stresses. The bar
f

could eventually come into full contact with the compacted concrete as the
i

shear stresses increased. As a result,the shear stiffness of the bar
,

increased.
1

1

i
_ - ._- - . - . _ - _ - - - . _ . ... . - - - . -
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; Fig. 4.26. (Continued).

Regarding the effect of the axial stresses in the bar, an applied

axial tension of 25 ksi (172.5 MPa) caused deterioration of the bond trans-

fer doubling the average crack width after 15 cycles with most of the in-
.

crease happening during the 1st cycle (see Fig. 4.26b). The abovt. tension

level also caused approximately a 50% increase in the slip, thus lowering

! the corresponding dowel stiffness. Further increase of the axial stress

to 50 ksi (345 MPa) resulted in severe damage of the concrete and caused
,

I

dowel-induced cracking and subsequent splitting failure. The detrimental
;

effect of the axial tensile stress on the dowel stiffness is shown in

Fig. 4.26c.

Stanton, in his linear relation for dowel stiffness given in the pre-

vious section for monotonic shear, did not take into account the hardening

response of the load-displacement curves (see Fig. 4.27). The effect of

axial tension on the dowel behavior and the determination of the dowel
.

t

3 -

- ._ ,



.

243

1000 -

:
::- -

'

5 500 -

I
[2 i ,

io
O 20 40 60

Applied f ood, (kips)

a) Stiffness versus arealied load

$ o.05
-a

/
.4
I O ' ' '

5 10 156

e Number

-no5 -

b) Shear disp. versus cycle number
_

E Cycle
,, 2 3o - 5
37
s8

i O-.
-o;o4 , -O,o2 , g, , ,

.. -;84'' ' O.02
- 10 Shear disp.,(In)

-30
c) Shear load versus displacement

Fig. 4.27. Typical results from Stanton's investigation on dowel action
(Ref. 109).

splitting load were not included in his model. In all specimens tested

under cyclic shear a splitting failure was initiated at the shear plane,

causing premature loss of the shear resistance and probably not allowing

the full dowel capacity of the bars to be developed.

Jimenez et al. arrived at conclusions similar to those of Eleiott

and Stanton insofar as far as the influence of the cyclic loading was con-

cerned. As in Stanton's tests, the use of relatively large bars by Jimenez

et al. (No.14) as dowels resulted in splitting of the concrete. The effect
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cf fully reversin; shear up to 200 psi (1.38 MPa)(corresponding to a

steel shear stress- of 111.25 ksi or 77.3 MPa for a No.9 bar and 10 ksi

or 69 MPa fc. a No.14 bar) was taken into account in the dowel stiffness

model proposed through a correction factor 40A(n), the ratio of the peak

dowe' displacement Asd(U) aftei' n number of cycles to the peak dowel dis-

placement a d at the 1st cycle, as followss

DA sd /Asd(I) = 0.029 n + 0.97 (4.30)4 *A

Thus, the peak dowel displacement at cycle n under a dowel force VDA

(kips) was given according to the following relation.

(4.31a)ad *#DA ads ,s

with

sd( } = K -1 V (4.31b)A DA DA
i

-I
where KDA was the dowel flexibility given by Eqn. 4.26 for monotonic

:

; shear. ' Employing the above expressions and assuming a bilinear relation-

ship for dowel response after the 1st cycle of loading, the actual dowel!

stress-dowel slip loops, shown in Fig. 4.28a, were idealized by linear seg-

ments, as shown in Fig. 4.28b. Since the degrading influence of increas-

ing bar tension is not included in Eqn. 4.30, it is expected to predict

much smaller losses in shear stiffness with increasing bar tension.

It is well established by the direct dowel tests reported in the liter-'

ature that reversed cycling, in cases where the applied shear is resisted

only by dowel action at a preset crack, caused severe crushing of concrete,



- . . _ _ _ _ _ . - -

245

.

-

2 200--(11.25) Cycle 40
% 2 ,f'l.= := '
% 150--(8.4) E 150--(8.4) / 8
E, Cycle 36,/ ,8

'
I 100--(5.6) E 100--(5.6) / /
g Cycle 125 3 ,8 /

,I $ ' '
6

'
3 50--(2. ,/,/ ; 50--(2.8) j
s m ,

O q "I -Op4 -092 , ,, y ' sd,IIAI
' OII' ''

-0;O2 .g. ,
s

, , ,

F '
,- O.02 0.02

p'
.8)-

Shear 'stip Shear slip

// -50 (-2.8F -50
,

o'! !

|
l-5.6F--1OO ,t (-5.6).--LOO

#

/ 36
(-8.41---150 ,' (-8.4F--150,

-
" 46

Dows hear force
a) Test D4-9C ''c =05djV mo>g

YDAF--
N(d

n)

f

M Oowel slip, Osd
--_

n) '-' g(sd

moa-

b) Idealized dowel action hysteresis curves.

Fig. 4.28. Dowel tests uader cyclic shear by Jimenez et al. (Ref. 61).
- - - - - -

___
_ ... .. .

-

]

|
|

. _ _ _ _ _ . _ . . _



<

246

>

mainly in the initial cycles. As the concrete was compacted the dowel

stiffness increased and the response became more stable with no appreciable

increases in dowel displacements, unless failure was approached. Also, in

contradiction to the interface shear transfer behavior, negligible amounts

of residual dowel slips were measured. In addition, the area enclosed by

the hysteresis loops was smaller compared with that of the interface shear

transfer loops, showing smaller energy absorbing ability for the dowel

action mode.

The tests with varying axial tensile stress confirmed the fact that

increasing tenrile stresses in the-bars caused reduction in the dowel

stiffness. As the bond stresses increased, microcracks formed inclined

to the bars (see Refs. 14, 49, 77, 94 and 112) and resulted in softening

of the surrounding concrete close to the crack by increasing the unbonded>

free length of the bar. Negligible amounts of residual dowel slips were

measured.

| In general, according to studies on dowel action, the dowel mechanism

could contribute a significant amount to the overall shear stiffness, rang-

ing from about 10 to 40%. The dowel action contribution increased with

increasing crack opening. The ability of the reinforcement bars to trans-

fer shear depended on the specimen configuration and the size of the bars.

4.2.3 Shear stiffness in reinforced concrete panels

| Reinforced concrete walls or panels subjected to in-plane biaxial and

shear loads have been studied by various investigators. The different

points of vi,ew and assumptions for the analysis of the above membrane ele-

~ ~ -- / .-- ments by each researcher are given in Section 4.3.2.1.
.
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4. 2 .3 .1 Analytical and experimental models for' membrane elements

Flugge (Ref. 40) in his analysis of shells under membrane tensile

normal forces N , Ny and shear loads V assumed that cracking in the con-x

crete was normal to the reinforcement. The normal forces (both tensile

and compressive) were sustained by the steel and the shear forces by the

concrete by means of friction along the existing cracks. No tension was

sustained hy the concrete. Flugge did not attempt to satisfy compatibil-

ity between the tensile strains of steel and the compressive strains in

concrete. Although his analysis included in an approxiraate fashion the

influence of interface shear transfer mechanism through friction, other

mechanisms such as dowel action were excluded. Also,1f the cracks are not

normal to the reinforcement, as he assumed, axial forces in the rebars can

resist some of the applied shear loads.

Falconer (Ref. 34) presented a theoretical analysis of the two-

dimensional stress state induced in a two-way reinforced concrete element.

He assumed that the existing compression in the concrete was inclined to
I

the vertical normal applied stress at an unknown angle B (see Fig. 4.29).

He developed the three equilibrium relations for the applied and resisting

forces in the element and realized that having 4 unknowns (the direct
,

stresses in the reinforcement oi, 2, the concrete stress o and the in-c

clination angle B) and three available equations, the problem of detennin-

! ing the internal stress distribution had one degree of indetenn,inacy.

His theory did not provide that additional relation needed to determine

the fourth unknown, the angle 8

Peter (Ref. 100) tested and analyzed a number of square concrete

plates with orthogonal reinforcement inclined to the direction of principal

.. _ . - -.
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Fig. 4.29. Reinforced concrete shell element subjected to membrane forces
(Ref. 34).

stress at a varying angle of 0 to 45 degrees. A uniform plane stress

state in an arbitrary direction was considered. In addition to the equi-

librium. relations he considered the displacement compatibility relations

assuming a simplified cracking pattern, with the cracks forming normal to

the uniaxial load or to the direction of the maximum principal tensile

stress. He also took into account the shear stress transferred at the

crack surface.

Baumann (Ref. 8) presented two different approaches to this problem.

The first was an application of the principle of limit design in determin-

ing the angle as the orientation of the cracks or as the angle 8 that cre-

ated a failure mechanism. No strain requirements had to be satisfied, as

the tensile strain in concrete could assume any value and continuity be-

tween strain in concrete and steel was satisfied automatically. When the

yield stage was reached in the steel and the steel stress did not change

|
!

i
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while the reinforcement deformed,: the compressive strains contributed in

attaining a geometrically possible state of plastic strain. An . additional

relation was obtained by minimizing the required amount of reinforcement.

From this relation an optimum angle sopt was determined.

In his alternative approach, he considered in addition to the equili-

brium equations' the' compatibility relation of the displacements at a crack.

He minimized the complementary stress energy Qc of the internal stresses

in the system, which were the' tensile stresses in the reinforcement, the.

compressive stress in the concrete and the shear stress, v, at the crack

interface. From the above relation (aQ /av = 0) he calculated the shearc

force-along the crack,-obtaining in that manner an additional relation in

terms of the statically indeterminate angle B, which made possible its cal-

culation. Thus, Baumann employed energy principles to obtain another equa-

tion (equivalent to Pe compatibility equation) to determine the angle B.

| Gupta (Ref. 50) discussed the proposed code requirements by ACI

Committee 349 (Ref. E). Making the assumption that the reinforcement was

provided in two orthogonal airections, he applied the optimum limit design

approach or the so-called principle of maximum resistance. The latter
l' states that in a safe design the component of the resisting forces, Nj*

(i = x, y) and 'l*, should be greater or equal to the component of the ap-

plied forces, Nj and V (Nj*/2Nj and V* 2 V).
! He concluded that the ACI recommendation in Section 19.3.3 to provide

reinforcement "in te or more directions . . . to resist the component of

the principal membrane tensile stresses in each direction" gave insuffi-

cient reinforcement in the case of combined membrane biaxial tensile

stresses and shear stresses, and that the ACI approach did not take into

i

I

, . - .
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account properly the applied shear force. Therefore, in the case of a

two-way orthogonal reinforcement the steel provided would not be -Tully

stressed under the normal tensile forces. For example, in the case of a

high pressurization condition in a nuclear containment vessel, the only

way to transfer superimposed high membrane shear forces would be by means

other .than axial shear forces in the rebars, such as dowel action or inter-

face shear transfer. As a result of the above argument, ACI Committee 349

revised its code requirements to state that reinforcement should be pro-
,

vided "in two or more directions and shall be p.oportioned such that its

! resistance in any direction exceeds the component of applied forces in that
,

direction." Brondum-Nielsen (Ref. 17) obtained expressions similar to

those of Gupta using graphic means to solve the equilibrium equations in

the limit state.

Also, in Ref. 51 Gupta considered the case of two- or three-way mem-

brane reinforcement in shells and concluded that for an orthogonal pattern

(and when crack size was not a significant design consideration) the mini-

mum total principal tensile strain in concrete would be in the order of

2.5 times the yield strain of steel for a critical value of angle s equal

to 45 degrees. Larger tensile strains in the concrete could be obtained

for other values of the angle 8 This analysis, which was based on both

equilibrium and compatibility considerations, showed that the mag;.itude

of deformation in the concrete in the post-cracking condition could be very

large, resulting in undesirable crack width values for the above two-way

reinforcing pattern. .

Duchon (Ref. 29) presented an analysis of a reinforced concrete wall

section of a ' nuclear containment structure with a four-way reinforcement

- _ _.
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in directions independent of the principal directions. The membrane ele-

ment was subject to combined biaxial tensile stresses and shear stresses.

Smeared fine diagonal cracks were assumed to form throughout the concrete

block element (see Fig. 4.30) perpendicular to the direction of the maximum

principal tensile strain and inclined at an angle 8 to the horizontal.

JWy

| 3
-Q a ^

4
T ,1 3 mi 3=

4N -

2
,

/ ) N
g gE - a

\
ddealizedcracknattern

Reinforced cement

Fig. 4.30. Typical cracked reinforced concrete wall element (Ref. 29).
,

Using both equilibrium and comnatibility conditions, he solved for the

three unknowns, that is, the principal concrete strains cy, c11 and the

laclination angle 8 (see Appendix B). The concrete was assumed to act in

compression only and the reinforcement steel in tension and compression.

The value of the angle 8 was determined by an iterative process until the

.
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assumed value of 8 and the calculated values of cy and e satisfied the
gg

constraint equations of equilibrium and compatibility.

Collins (Ref. ' 25) -proposed a diagonal compression field theory for a '

more rational design of reinforced concrete members under shear. He fo-
*

cused on the fact .tha't the angle of inclination of the concrete compres-

! sion struts was not usually 45 degrees, as it is assumed to be in most cur-

rent building codes for-the design of shear reinforcement. The provision

for the contribution of concrete to shear resistance is, of course, an

improvement on the ACI code after realizing that the e5 degree truss anal-
~

ogy gave conservative results. Assuming the inclination angle's (see Fig.

4.31) as a variable would definitely improve the understanding of the

response and behavior of reinforced concrete under shear.
|

To determine the value of the angle 8, Collins employed both the

| equilibrium and compatibility relations, including also the effect of pre-

st essing in the longitudinal steel of a reinforced concrete beam. He de-

rived the following quadratic equation in terms of the angle 8 and for a

given value of the transverse strain ct'

*

j (l'+ npt1) b
24 t tan s - 1 = 0 (4.32)

1 tan 8 + I + "PE)" "tI (1'+ no )-g

where pg, pt were the longitudinal and transverse steel ratios, respective-
~

ly, n = E /E was the moduli ratio and c* a strain parameter indicatings c

the intensity of prestress and axial load. Actually, Duchon's analysis
i
' would result in exactly the same equation, if the longitudinal and

I

!

|
-

- . . . . - - .
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Fig. 4.31. Diagonal cracking in a reinforced concrete beam (Ref. 25).

transverse steel were thought of as a two-way orthogonal reinforcement

in the uncracked concrete element assumed by Duchon.

Collins predicted that after the transverse steel had yielded, the

applied shear could be resisted only tv increasing the transverse steel

strain until the longitudinal steel also eventually yielded, or when the

concrete compressive strain reached its limiting value.

Bazant and Gambarova (Ref. 9) developed a so-called " rough crack"

model for a cracked reinforced concrete plate element subject to in-plane

forces (see Fig. 4.32). Neglecting extensional stiffness, dowel action,

and kinking'of the steel reinforcement along the cracks, they determined

the overall tangent stiffness matrix [il] for reinforced concrete by adding

the contribution of the steel net (average strains in steel were assumed

equal to those of the cracked concrete as a whole) to that of the cracked
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Fig. 4.32. Diagonally cracked reinforced concrete element subjected to

in-plane-forces (Ref. 9).

i

and uncracked concrete. Interface shear transfer at the crack was taken

into account and only monotonic loading was considered.

A parallel experimental program was conducted at the Portland Cement

Association (PCA) Laboratories by Oesterle and Russell (Ref. 96) to study

.

the shear transfer in larger scale flat concrete specimens orthogonally re-

f
inforced with No.14 and No.18 bars, as shown in Fig. 3.22a in Section 3.5.

|
The latter specimens with steel ratios of 0.013 and 0.022 in the direction

! of No.14 and No.18 bars, respectively, were 60 inch square and 24 inch!

thick concrete slabs. They were subjected to combined biaxial tension

(specimen MB3 at 0.6f tension and specimen MB1 at 0.9f tension) and mem-y y

brane monotonic shear. The shear stress-shear strain response for the PCA

specimens MB1 and MB3 is shown in Fig. 4.33 along with the curves of the

companion snecimens .6(M) and .9(M) of the present study (see Chapter 2).

The tangent shear stiffness measured for shear stresses higher than 100 psi

is essentially the same in both the present and the PCA specimens. There

is, however, a significant shift of the data for specimens .6(M) and .9(M)

to higher total shear distortions at low shear stresses. A possible reason
|

may be the.effect of more shrinkage cracking in the smaller specimens be-I

fore the shear was applied. Apparently curing conditions for the latter
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specimens seem to have a great influence on the shear stiffness at low

shear stresses. The failure cract: in the specimens with No.6 bars formed

inside the gage length for measuring the diagonal deformations at the cen-

tral region, whereas it was outside the instrumented grid in the PCA'.s

larger specimens. Thus, inelastic deformations near failure were recorded

only in the smaller specimens.

4.2.3.2 Effective shear modulus

The most common representation of the effective shear modulus G incr

the cracked stage is to assume one of the following three cases:

o (full shear transfer capability, same as in the uncrackeda) G =Gcr

stage)

b) G = O_(interface shear transfer and dowel action ignored)
cr

c) G = aG , with a < 1 (reduced shear transfer capability)cr o

Full shear transfer capability was assumed by Zienkiewicz et al.

(Ref. 129), Swoboda (Ref. 111), Nielsen and Braestrup (Ref. 93), Thuerif-

mann (Ref. 119) and CEB-Model Code (Ref. 20) in their analysis of rein-

forced concrete beams subjected to shear. Cervenka (Ref. 23), on the other

hand, assumed zero shear transferability after cracking; that is, the con-

tribution of interface shear transfer and dowel action was neglected.

Thus, the cracked concrete was assumed to be capable of carrying tensile

or compressive loads parallel to the crack only. In the above studies

only monotonic shear was considered.

An alternative approach to retain some shear stiffness after cracking

is to employ a shear transfer factor a (a < 1) that results in a reduced

shear modulus of

.

. . . - . - ,
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6 0, (4.33a)*cr 0

where

G = E /2(1 + v) (4.33b)o c

is the shear modulus for the uncracked concrete. If a constant value for

G is assumed in the post-cracking range the mechanisms of interfacecr

shear transfer and dowel action are not properly modeled, since a decrease

of G is expected as the cracks increase in number and size.cr

This type of formulation for the shear modulus under monotonic load-

ing conditions was employed by Hand et al. (Ref. 52)(a = 0.4), Suidan and

Schnobrich (Ref. 110)(a = 0.5), Krishnamoorthy and Panneerselvam (Ref. 69)

and Salem and Mohraz (Ref. 103). The latter found no effect of the value

of a (as long as it was not zero) on the ultimate load of shallow beams.

For deep beams,where failure was more likely to be in shear rather than

flexure, they suggested that a critical value of a existed, below which

premature failure was predicted.

Yu7.ugullu and Schnobrich (Ref.128), in their finite element analysis

of shear wall frame systems, compared load-displacement curves resulting

from use of various values for a (1.0, 0.25, 0.125 and 0). The influence

of the factor a for one particular structure (specimen A-1) can be seen

in Fig. 4.34. Up to about 75% of the monotonically applied failure load

the different assumed values of a resulted in similar response, with a =

0.125 showing the closest agreement with the test data. Above this load

level, all values of a gave displacements that were too small.

Agrawal et al. (Ref. 3) based their proposed analytical model on the

elasto-plastic idealization of the stress-strain curve of concrete. They
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Fig. 4.34. Influence of the shear reduction factor a on the load-displace-
ment curves of a shear-wall-frame system (Ref.128).

predicted the behavior of a shear panel, using a shear reduction factor

a = 0.5 for one set of parallel diagonal open cracks and a = 0.25 for two

sets of open cracks (each set orthogonal to each other). The latter case

was supposed to model the effect of reversing cyclic shear in a simplified

fashion, assuming a constant 50% reduction in the effective shear modulus

for any number of cycles. They concluded that neglecting the effect of

shear transfer altogether would lead to numerical instability of the sys-

tem, when for examole, all the elements around a specific node have two

sets of open cracks.

Isenberg and Adham (Ref. 59) derived a mathematical model of stress-

strain relations for reinforced concrete from the properties of the
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reinforcing steel, the concrete, and the bond-slip behavior, assuming- |

orthotropic behavior during cracking. The following expression for the

effective shear modulus of reinforced concrete membranes, subjected to

monotonic shear and normal stresses in the plane of the membrane cracked

in the orthogonal (x) and (y) directions, was presented

1 E Ecx s
.O

cr " 2f I(1 - "bx)2(1 + vyx) + 2(1 + v )s
i

E E

+ [(1 - aby)2(1 + vxy) 2(1 v) #
'

s

where subscripts x, y denote the orthotropic directions (perpendicular to

| the orthogonal tension cracks) and abi(i = x, y) is a variable bond slip

| modulus given by the formula
!

I bi = cwmiAcwmi + Icmi), (4.35)

|
-

where c ,j and temi were the average crack width and crack spacing in the

(1) direction,respectively. Eqn. 4.35 was used to estimate the reduced

stiffness of the section at various stages of loading. In the above ex-
,

pression for Gcr (Eqn. 4.34), Eci (i = x, y), E and v were thes xy ' "yx ' "s
concrete initial modulus in tension, the modulus of steel and the Poisson's

ratios, respectively. Although this formula took into account (in an aver-
!

age fashion) the effects of cracking, progressive degradation of bond, in-

j elasticity in compression and confining stress in the stress-strain rela-

tions, it.was not based on any experimental evidence. In several i

l-

. . . -. __ _.
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calculations, for typical examples, G varied from 0.75 to 1.0 times thecr

shear modulus for uncracked concrete.

Holland and Eunkeby (Ref. 55) discussed the above research by Isen-

' berg and Adham and proposed that a reasonable approximation after cracking

was to assume-that G was equal to zero, although there was some contribu-cr

| tion to stiffness between the cracks in the direction normal to the crack

due to the embedded reinforcement. Using experimental data from tests by

Peter (Ref.100), who tested a number of reinforced concrete plates with,

1

orthogonal reinforcement deviating at an angle of 0 to 45 degrees from the

principal stress direction, they computed the crack directions assuming

zero tensile and shear stiffness in the concrete and elastic steel with

axial stiffness that included the contribution of concrete in tension.
.

Since no experimental shear-strain relationship fer cracked concrete
:

was available, Franklin (Ref. 41) and Darwin and Pecknold (Ref. 28) related

G to the orthotropic stiffnesses Ei and E2 parallel to the principalcr
directions (1) and (2), according to the relations,

E (1 - v2) + Ep(1 - viji

(Ref. 41) (4.36a)Gcr " 4(1 - v1"2)

Ei+E2-29 Q
(Ref. 28) (4.36b)Gcr " 24(1 - v )

where v , v2 were the Poisson's ratios in directions (1) and (2), respec-
i

| tively. Poisson's ratio v used by Darwin was a simplified equivalent

Poisson's ratio equal to /viv2 to insure that neither direction was favored.
,

The above expressions (Eqns. 4.36) for Ei=E2=Ec and v1 = v2 reduce to

the shear modulus of uncracked concrete G .o
|

|

- .
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For one set of cracks (monotonic shear) perpendicular to the direction

of principal tension (1), that is for Et = 0 and v = 0 Eqns. 4.36a and
1

4.36b result in the following expression for the shear modulus,

O = 0.25 E (4.37)cr- c

For v = 0.16,Eqn. 4.36 takes on the value

G = 0.58 G (4.38)cr o

From the great variability in methods for determining Gcr, it is clear

that the ft"mulation of the shear modulus should result from a more refined

model for shear transfer which reflects the variation of the shear rigidity
1 as a function of the crack width, shear slip, the level of the applied

shear stress, and the type of loading. Recently, several analytical ex-

j pressions have been presented for the lateral shear rigidity of shear walls

and cylindrical containment structures (such as nuclear containment ves-

sels). For the special case of a pressurized containment, horizontal and

vertical cracks would be present and the ability of the shear transfer

mechanisms to transmit the required shear forces is very important, es-
,

pecially for fully reversing shear loading due to seismic forces.

Castellani and Fontana (Ref.18) gave a simplified formula for G

based on the experimental findings of Paulay and Loeber (Ref. 97) for

monotonic shear as follows,

cr * Ik + tj G
em

_ - _-
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where t average crack spacing=
cm

a = crack slips

; v = shear stress

K = shear stiffness along the cracks
s

>

It is not clear how this expressW. (Eqn. 4.39) accounted for both

interface shear transfer and dowel action. It seemed that the effective

shear modulus G was practically independent of changes in crack spacinger
increased the crack width and the shear flexibility

| tcm, since when tcm

1/K were proportionally increasing, also.s

Cedolin and Dei Poli (Ref. 22) suggested a linear relation for G ascr

a function of the principal tensile strain normal to the crack ey, assumingi

smeared representation of cracking, as follows

0 , for cy < c (4.40a)G *
; cr 0 to

=F(1-[C), for cy ? cto, (4.40b)3cr
c

where c was equal to a value of 0.004 to 0.005 that corresponded to a4

c

tensile strain in concrete resulting from a crack width of about 0.75 nm

(0.03 in.)(interpolation from Ref. 97), and cto the cracking tensile1

strain of concrete (~ 0.0002). The above value of c corresponded to ac
l negligible ability to transfer shear along the cracks. The constant F

was a function of the shear modulus for uncracked concrete G , that is,
o

a function of the Young's modulus of concrete E . Values such as 0.2E 'c c

O.1E and 0.01E were input for F to study the influence of the shearc c

constant. 'The best results for a shallow beam tested by Bresler and

,

h

d

e , . - r , , . . -
. , -.c --- -
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Scordelis (Ref. 12) were found using c = 0.004 rad F = 0.1Ec = 0.24G .c o ;

G reduced to zero at a principal strain of 0.004, which was about 20cr

times the cracking tensile strain cto. H wever, in experiments on shear

panels, the maximum tensile strain at failure was found to be about 5 times

the cto. Thus, the reduction of G to a very small value appeared to takeer

place at strains close to Scto rather than 20cto*

Al-Mahaidi (Ref. 4), in postulating an analogy between the (Gcr' CI)
relation and the shear stiffness at a single crack, suggested the following

,

expression for Ger'
!

Gcr = G , for ci < cto (4.41a)o

= 0.4 G /(cy/*to), for ci t cto (4.41b)Gcr o

These expressions assumed that at the inception of cracking (ci = cto) Ger

reduced to 40% of G . At failure of the shear panels (c = Scto) theo i
shear rigidity became 0.08G , a value that was considered small enough too

reflect the severe degradation of cracked concrete with large crack open-:

ings. In Fig. 4.35 a comparison of suggested expressions for Gcr/0 is0

given for shear panels and deep beams.

j Geistefeldt (Ref. 44), in his refined nonlinear three-dimensional
l mechanical model for reinforced concrete, included the contribution of

concrete between cracks to the tension stiffness normal to the cracks and

the reduction of shear modulus G with crack opening. For the uniaxialcr

case he modeled the relation of shear stress y and shear strain y by in-

f troducing a " shear spring" k of length I as followss
!

|

|

, u;w- - - - - - w s-
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Fig. 4.35. Prcposed expressions for the shear modulus ratio Gcr/Go|
| (Ref. 4).
I

Y = V(t/k ) (4.42)

' The overall shear strain y was the sum of three components: uncracked

|
reinforced concrete with perfect bond (u), reinforcement free in surround-

| ing concrete (r), and a " crack part" which included the shear strains due
|

|
to shear transfer along the cracks and proportional to the ratio of crack

l

| slip to crack width (c). The above three components were treated as three
|

" shear springs" in series, in which the shear stress in each one was equal

to the applied shear stress and the shear strains were proportioned accord-

ing to fictitious spring lengths a1 , sit and yit, as follows (for t = 1)2

i
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Y = (- +

r+k c) v (4.43a)u
k ks s s

with

Y"1 81 _

*Iu+k +g]1, and at + Si+Y =1 (4.43b)Gcr r c
k k

s s s

For the case of two sets of parallel cracks in two different directions,

under a biaxial stress state, the previous relation (Eqn. 4.43) was general-

ized by introducing new component factors to account for the effect of thei

cracking in one direction on the properties in the other direction (see
,

|

| Fig. 4.36).
l
i Collins (Ref. 25) studied the behavior of symmetrical reinforced con-

crete beams monotonically loaded in shear, considering both equilibrium

and compatibility conditions that existed between average stresses and

strains in various directions, respectively. Predicting the response of

f f 2
#

v p.-)_ b =

C

%" *
I

_ 3 ygn:

$, -_yy y T. u . Th ' 2Gd ,_
-

2T '- ' '', ,-

k O /
2I Ib) Shear transfer in cracked reinforced"concrete: shear springs in series |

U a
vn 2 2 1 2b

u
y --

u -

-

g____. t ._____.;
V W o, * @y *l

a) 1-dimensional " shear spring" c) Biaxial model
I

Fig. 4.36. Shear transfer model in cracked reinforced concrete according
to Geistefelat (Ref. 44).
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.

; two reinforced beams prior to yielding (tested by Arbesman in the Univer-

) sity of Toronto (Ref. 5)), he arrived at the following linear expression

between the applied shear stress v and the resulting shear strain y,
!

Y= [l + l'+ npt "1
I-

.j defining an effective shear modulus G for diagonally cracked reinforcedcr
'!

i concrete as
!

} 0.5Ec (4,45)G =
Cr

1+[(1+np)(I+np)
g g

!

f where E was the modulus of elasticity of concrete, n the modular ratio
c

1

E /E ' P the reinforcement ratio of the longitudinal passive steel ands c t

pt the reinforcement ratio of the transverse steel. For values of Ec"
!

3500 ksi, n = 8, p = 0.0122 and pt = 0.0244, Eqn. 4.45 results in a valueg

of G equal toer
.

G = 0.125 G (4.46)o

l

; for Go = 1500 ksi. The above values for E ' "' Pt' Pt, and G correspondc o
?
* to the Properties of the biaxial test specimens in the present study for

; a zero axial tension in both orthogonal directions of the reinforcement.
i

Fardis and Buyukozturk (Ref. 35) used a simple mathematical model;

based on statistical analysis of available experimental data of tests per-

formed at Cornell University (Ref. 61, 62, 70, 126 and 127) to estimate4

tha shear slip during shear transfer across the cracks in reinforced con-

crete. Assuming unifordity of strains and stresses in a cracked block

having equally spaced cracks in both directions i and j, they developed

the following effective shear rigidity relacionship between the shear"

. - - - - . - . _ . - - .-.. ..
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jj and shear strain y$3 (see Fig. 4.37),stress v

Uii
t t t t t t tVij
= * =e.. -= --a . =e. -

$) I_ _ -

crack !f Im g_.

Ac
h.~. -.- . . . . - . - . h [

~,i j
#

y,j + + + t i t +
'

UIi
Fig. 4.37. Idealized cracked concrete element (Fardis and Buyukozturk,

( Ref. 35).
I

1 c c
1 y

(p+1 + 1 ) (Yij . (1 + 8 ) 'ii ~ (1 + 8 ) 'jj '
Vj*i 1

*

i j
o 1 J

where G = shear modulus of uncracked concrete,o

"m * E ,i + c2 EDA,i) Ec m/c2 (* * I ' d ) *N

/K ,i (* * I ' d ) 'E = c2 Km DA,i N

cjj, ejj = an effective uniform normal strain by summing the incre-

ments in crack widths over all the cracks along the i and

j directions, respectively, if the concrete tensile

stresses were neglected,

c1, c2 = 0.23, 1.16 = constants based on statistical analysis of the

test data,

E = extensional stiffness in the m(= i, j) direction per unitN,m

area,

EDA,m = dowel stiffness in the m(= 1, j) direction per unit area, and

E = crack spacing in the m(= i, j) direction.c,m
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They reported effective shear rigidity values of the order of 10% of the

uncracked concrete shear modulus.

Assuming for simplicity that the shear rigidity relation did not in-

volve normal strains, the effective shear modulus was given by the follow-

ing expression

!

-1
D b

11 = [1- + *c,1(E ,i + bK'DA,1) + E (4.48)c,j(K ,j + KDA,j)3G =cr
NYij o N

!

where b = 1.72. They pointed out that the above functional model, devel-

oped to predict the shear modulus under monotonic shear, could also incor-

porate cyclic behavior by inciading the effect of cycling through the co-
.

efficients b in Eqn. 4.48 09d c., c in Eqn. 4.47. These coefficients
2

were a function of the internal friction angle and the friction due to

the local roughness. The degrading influence of cyclic shear on these

friction coefficients could be expressed in terms of tne number of cycles

They agreed, however, that the reported information was not enough ton.

support a predictive model taking into account fully cyclic response.

4.2.4 Ultimate strength

During the last decade the ultimate shear capacity of precracked re-

inforced concrete connections with or without tension in the reinforcement

crossing the shear plane has been studied by-several investigators. Both

monotonic and cyclic reversing shear loading have been considered in these

investigations. In the work reviewed below the shear load was always ap-

plied along a single crack. The empirical design relations and the
|
?

!

;

!

. - - - - - - . _. ,, . -
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mechanical models proposed were developed to predict the maximum shear

stress transferred at a predefined single crack by means of the combined

mechanisms of the interface shear transfer and dowel action in the rein-

forcement normal to the crack plane. Of course, in the case of the rein-

forcement being inclined to the crack plane, axial forces in the reinforc-

ing bars would al.so resist a portion of the applied shear load. The latter
,

hts to be taken into account in the present work since diagonal cracks in-
4

clined to the orthogonal reinforcement formed during the application of

shear.

Seeking a simple method to design connections in precast reinforced

; concrete, composite beams and corbels Birkeland and Birkeland (Ref.11)

and Mast (Ref. 80) introduced the concept of shear-friction. According to
:

this concept,the applied shear stresses at the crack interface are resisted
.

'

by the friction along the rough shear plane. These frictional stresses in

the concrete are induced by the normal component of the stresses in the

reinforcement crossing the crack. The separation of the crack surfaces

as slip takes place under the shear load produces tensile forces N I"s

I the steel and equal normal compressive forces N in the concrete at thec

crack interface. Thus, the ultimate shear force V transnitted at the crack
u

at yield of the reinforcing bars is proportional to the compressive force

N. A proportionality factor p was defined as the coefficient of friction: c

or in other words the tangent of the angle of internal friction 4 assuming

a certain condition at the interface. A schematic representation of the

; shear-friction model is shown in Fig. 4.38.

According to the above figure, vertical equilibrium results in the

following expression for the ultimate shear capacity.
i

- - . - . . . .- ..
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Fig. 4.38. Schematic diagram of the shear-friction concept.'

V *Af tant forces) (4.49)
u sy

v *P f tant (stresses) (4.50)u y

where o is the steel ratio at the crack. In the above. equations

dowel action was assumed insignificant and it is neglected. Since shear
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is' transferred by tension in the reinforcement, the reinforcing bars should

be well anchored on both sides of the failure crack in order to be able to

develop their yield strength. In addition,the concrete in the vicinity

of the crack should be well confined so that premature splitting does not

occur. Also,1f external tension was present in the steel, additional rein-

| forcement should be provided over that required by the shear-friction
!

| theory, since the applied tension would decrease the effective clamping
|

| force across the shear plane.
l

| The coefficient of friction p = tan 4 for various interface conditions
!

| was determined experimentally. Recommended values of tan 4 to be used in
|
' design are given in Table 4.D (see Ref.11). These values for the

Table 4.D. Recommended values for p according to Ref.11.
| . _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ __

|

| Recommended
! Crack Interface Condition u = tan 4
l Concrete to concrete (rough interface) 1.4

Concrete to concrete (smooth interface) 0.7

Concrete to steel (composite beams) 1.0
'

Concrete to steel (field-welded inserts) 0.7

:

coefficient of friction-are valid for monotonic shear loading and for normal

weight concrete only. If cyclic shear is applied reduced values should be
:

i used.
|

| Fattah Shaikh (Ref. 36| in his suggested revisions to the shear-fric-

| tion provisions contained in 3ection 2.2 of the PCI Manual on Design of

|
t

$

- - ,-,.--m. u - .- - , . - , , - - - - , , - + , - - - --
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Connections for Precast Prestressed Concrete (Ref. 99), proposed to account

for all friction mechanisms by means of an effective coefficient of fric-

tion v determined by the following relation presented by Raths (Ref. 102),
e

(4.51)v = cR Pe P fyu

where v is the nominal ultimate shear stress along the interface and cR
u

is a capacity reduction factor (equal to 0.85).
,

|
This effective coefficient of friction p is calculated from the

e

relation-

4

p = 1000 cd U/Ve u
s

!.

f where cd is a constant denoting the density of the concrete (cd = 1.0

i for normal weight concrete, cd = 0.85 for sand-light weight concrete and

[ cd = 0.75 for all-light weight concrete) and p = tan 4 the coefficient of

i static friction. The constant of 1000 used in Eqn. 4.52 nrovided a reason-

able value for a safe lower bound in the case of uncracked direct shear
i

tests, according to Fattah Shaikh.

Based on the experimental results by Birkeland and Raths,the previous-
i

ly defined effective friction coefficient p could be expressed as followse

| Birkeland and Birkeland:

p = 1122/v = 33.5/ % (p = 1.4) (4.53a)
| e u

~with
.

!

| v = 33.5/ofy (psi), andu

.

k

h

!
:

1
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Raths:

p = 1400/v = 37.4/ % (p = 1.4) (4.53b)e u

; with

= 37.4 % (psi)vu

Mattock (Ref. 81 to 86) perform 6d an extensive experimental study on

various types of precracked and uncracked specimens subjected to pure

shear (see Fig. 4.39). He suggested that a cohesional shear strength at

the interface was apparent at low values of steel ratios p. He also

concluded that an external normal stress a (negative when tensile) at

the crack plane, acting simultaneously with the shear stresses, had a simi-<

lar effect on the shear transfer strength as the change in the stress

parameter (pf ). Thus, the use of the combined expression (ofy+ N) I"-y

stead of (of ) was appropriate.y

By fitting the available data for initially cracked specimens a,

friction coefficient of p = 0.8 with a mean cohesional strength of 400

psi (2.76 MPa) was determined. He proposed the following credictive equa-

tions for the mean and the lower bound value of the ultimate strength v u

under monotonic shear

mean value: v = 400 + 0.8 (ofy + oN) (PSI)u

or (4.54a)

v = 2.76 + 0.8 (ofy+oj (MPa)u N

lower bound value: v = 200 + 0.8 (ofy + oN) (psi)u

or (4.54b)

v = 1.38 + 0.8 (of + oN) (itPa)u y
with vu less or equal to 0.3fc'-

_ . . ~ ,. . . _ . . -
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Mattock's expressions sugg'sted the following effective friction co-e

efficient, according to the revised expression

= v /(Dfy + "N), (4.55)ve u

'

mean value: pe * (v 00) "_(of N)
,

0.8 v 200
lower bound value: pe"v - 200 pfy+ N

+ 0.8 (4.56b)*
;

u

For comparison the ultimate strength v and the effective friction
u

coefficient p were plotted versus the axial stress parameter normal to
e

the crack (ofy+ N) according to various investigations in Figs. 4.40a and

4.40b (see Ref. 36), respectively, for normal weight concrete and mono-

tonic shear. Data derived only from tests on precracked specimens with

or without applied tension across the shear plane was considered. Very

small differences exist in the values of the ultimate strength vu predicted

by the various proposed expressions except for the shear-friction theory

h (p = 1.4). The latter gave conservative results for (ofy+ N) less than
500 psi (3.45 MPa). This' was due to the fact that the shear-friction

theory with p = 1.4 underestimated the effective coefficient of friction
,

'

p for small values of (ofy+ N) despite the fact that values of pe e

greater than 3.0 could be reached in that region. Mattock's linear ex-

pressions (Eqns. 4.54a and 4.54b) appears to be the simplest of all and

adequately describing the available experimental data.

Hermansen and Cowan (Ref. 53) and Cowan and Cruden (Ref. 27) ques-

-tioned, as did Mattock, the original form of the cohesionless shear-

- .
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friction formulation. They concluded, from tests on reinforced concrete

brackets, that including an apparent cohesive stress would provide more

realistic ultimate strength values for small steel ratios.

Cowan pointed out that the shear-friction concept should not be used if

a rotational rather than a sliding failure mechanism was indicated by a

free-body analysis. He suggested that the former failure mode, although

rare, could control in the case of reinforced concrete brackets with a

shear load eccentricity to bracket depth (from the top to the bottom steel)
I
l ratic a/bd larger than 0.65 (long brackets). In that case, equilibrium

of moments about the compression center should be applied instead:
,

Va=Afz (4.57)3y

where z was the lever arm between the centers of tension and compression.

This indicated that for a non-sliding failure with a number of reinforcing

bars t..ossing the priery crack the effective lever z would depend on how

many bars could reach their yield strength.

A possible diagonal tension opening mode of failure in reinforced

concrete panels subjected to combined biaxial tension and shear is related

to the above described behavior in that depending on the effective axial

stiffness of reinforcing across the crack, a rotation of the separated

concrete blocks is possible if yielding occurs only in a limited number

of bars with the rest remaining understressed. This failure mechanism

| will .undoubteCy result in a lower ultimate shear transfer capacity as

,

compared with a mechanism that would cause yielding in all bars at failure.

|

|
,
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Of course, dowel forces have to be taken into account since they can be
' significant, as will be shown later in this chapter.

Regarding the effect of repeated cyclic shear, Mattock (Ref. 84) con-

cluded that typical cyclic loading histories resulted in a decrease of

! about 20% in the ultimate strength as compared with the monotonically

} loaded specimens. |

! The experimental work reviewed to this point was related to specimens

| with small size bars that were confined with heavy transverse reinforce-
;

; ment at the shear plane, which guaranteed reinforcement yielding and ex-

cluded other premature modes of failure such as splitting in the concrete. ,

| Jimenez et al. (Ref. 61) conducted shear transfer tests on block specimens
1

with No.7, No.9 and No.14 bars under combined uniaxial tension and mono-

! tonic or cyclic shear, and found that as the bar size increased a concrete
l'
I splitting failure occurred. No transverse confinement steel was present

at the shear plane in these tests. Specimens C4-7A with four No.7 and

i C4-9A with four No.9 rebars failed at 850 and 900 psi (5.86 and 6.21 MPa)

) shear stress, respectively, from yielding in the reinforcement. However,
,

specimens C2-14A to C2-14D with two No.14 rebars failed at a much lower
|.

shear stress of about 260 psi (1.79 MPa) due to tka formation of splitting

; cracks along the reinforcement. This demonstrated the detrimental effect
:-

of the larger size bars on the integrity of the surrounding concrete as
'

the dowel forces increased with increasing bar size.

! The following predictive expression was. proposed by Jimenez et al.
u e

for the ultimate strength v attained by means of the combined mechanismsu

of the interface shear transfer and dowel action
!

;

i

.. , - _ , ,_ _ _ _ . _ __.. __ ,
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u " f * 4b d [0.47 + b]; 1 - (psi), (4.58)
V 0.54c Nn

v '

Ac c n N+d so
q"b

where b was the net width of the concrete (in), d the bar diameter (in),n

A the shearing area at the crack plane (in ), c the minimum concretec m

cover (in),n the number of rebars, N the externally applied tensileb s

force in the reinforcement and N the splitting axial force given by theso

! relation
I

dL c /f '
N *

so (35.4d + 0.573 L )d

where L was the development length of the rebar (in).d

The above Eqn. 4.58 is plotted in Fig. 4.41 for different values of

L /d expected in actual secondary containment vessels with No.18 bars,d

together with Mattock's lower bound expression (Eqn. 4.54b). By consider-

! ing the reduction in the bar development length to diameter ratio due to

cracking in the vessel and assuming a value of L /d equal to 5.33 both
d

equations showed similar results for N /N ra;ios larger than about 0.6s sy

(N is the yield strength of the bar under pure axial load). For axialsy .

stress levels smaller than 60% of the yield strength in the steel ttttock's

; expression predicted much higher ultimate strengths (above the 8

level) as the ratio N /N decreased. This difference in the ultimates sy

strength at low values of applied uniaxial tension was due to the al-

ready mentioned heavy transverse confinement provided in Mattock's speci-

mens and probably due to the smaller size bars employed in his tests.

!

- , - - ..- -, ,.
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i Fig. 4.'41. Ultimate strength under monotonic shear predicted by Jimenez
et al. (Ref. 61) and Mattock et al. (Ref. 85).

The same results on ultimate strength under cyclic shear and uniaxial

i tension from the experiments conducted by Jimenez et al.(Ref.61) along with

the results obtained on the biaxially tensioned flat specimens described in

Chapter 2, are also plotted in Fig. 4.42 in terms of the shear stress pa- ),

!

rameter v /V versus the normal stress parameter (pf N). The straightu y

! line from the shear-friction theory with a friction coefficient of 1.4 to-
!

| gether with Mattock's results are also included in the above figure.
i

! An approximately 50% vari' tion in strength is observed in the presenta

results with applied biaxial tension ranging from 0 to 0.9f . For lowy

values of (of - og), less than about 200 psi (1.38 MPa), the results fromy

the present experiments on biaxial specimens correlate well with Mattock's

results, while the shear-friction theory is on the conservative side. As

the applied tension decreases or the reinforcement ratio increases, the
!

strength of the biaxially tensioned specimens are substantially lower than

those predicted by Mattock's expressions. For the latter case, where the

rebar tension is smaller thar. 0.6f , the shear-friction theory givesy
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Fig. 4.42. Comparison of the ultimate strength results by Mattock,
Jiminez and shear-friction theory.

unconservative results. The effects of bidirectional cracking, biaxial

tension, and the absence of any effective concrete confinement (no stirrups

were used) combine to produce these somewhat lower strength values. The

ultimate strength values found by Jimenez et al. in the univaxial specimens

that failed due to steel yielding are at least twice as large as those

measured in the present biaxial specimens. On the contrary, if the uni-

axial specimens failed due to splitting in the concrete, they showed lower

ultimate strength compared with the biaxial specimens.
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!

!

I Concluding, it appears that in both the uniaxially and the biaxially
!

|
tensioned reinforced concrete specimens the ultimate strength v increasedu

with increasing reinforcement ratio and decreasing applied tension in the

|
rebars. However, the level of the maximum shear stress transferred de-

| pended also upon the mode of failure (yielding of the reinforcement or

! splitting in the concrete) and the type of the failure mechanism (sliding,

opening or rotational). Cycling was found to cause a decrease in the
!

|
shear capacity u'nder monotonic shear of about 15 to 20%. The influence

of the biaxially applied bar tension and the bidirectional cracking on
|

j the mode of failure and the ultimate strength will be discussed in Section
. ,

4.4.

|

4.3 Shear Transfer Engineering Model

Duchon's compression-tension truss model (Ref. 29) predicts a con-

servative upper limit estimate for stresses and strains in a reinforced

concrete containment wall, since concrete tensile strength is neglected.

Duchon assumed no shear transfer taking place along the already formed

orthogonal cracks produced by internal pressurization in the containment

vessel. Thus, he neglected the ir;terface shear transfer and dowel action

at low membrane shear stress levels before the formation of the diagon-

al cracks. As a result, his model becomes unrealistic at shear stresses

less than 100 psi (0.70 MPa). Also, as the combination of diagonal ten-

sion and compressive concrete struts becomes the major shear resistance
~

mode after the formation of additional diagonal cracks, the dowel action

in the rebars along these diagonal cracks was not accounted for.

. - -. - - - .- .
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However, a shear force could exist at the diagonal cracks that would

be equilibrated by the axial forces in the reinforcing bars inclined to

the cracks, the dowel forces, and the possible shear forces in the steel

due to kinking of these bars at large crack openings. Therefore, in ddi-

tion to the separation of the crack surfaces, a slip is possible along

the diagonal cracks. As a result, the orientation of the principal

stresses could be different from that of the principal strains parallel

and normal to the plane of the diagonal cracks.

In Fig. 4.43 the calculated average shear strain in the present

j tests for monotonic shear (1st positive cycle) and different levels of

! bar tension are compared with the predicted response given by Duchon's
i

model described in Appendix B (see Fig. B.1).!

Since shear transfer due to slip at the orthogonal cracks is neglected,

in this model,large total shear distortions are calculated at low shear

stresses. The tangent shear stiffness values predicted can be realistic

only for shear stresses higher than about 100 psi, at which level the di-

dgonal Cracks start forming. A constant tangent shear modulus value Ger
of about 0.13Go (linear response) is predicted by Duchon, independent

of the biaxial tension level, compared with the 0.05G to 0.07G valueso o

measured in the biaxial tests.

Duchon's mathematical model for two-way orthogonal reinforcement (see

Appendix B) is modified in this section to include shear transfer by the
,

combined mechanisms of interface shear transfer and dowel action through

| sliding along the preexisting orthogonal cracks at shear stresses lower

than about 100 psi. This will cause an increasc in the secant shear

modulus predicted by Duchon at shear stresses less than 100 psi. In other
|

|

.

o

-- _ . . , .
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words, there will be a shift of Duchon's shear stress-shear strain (v, y)

plot to the left for low shear stresses.

Duchon assumed that the concrete was a continuum with an infinite

number of fine diagonal cracks perpendicular to the direction of the maxi-

mum principal tensile strain. Thus, no bond transfer and consequently no

concrete tension stiffening effect was accounted for in determining the

average steel stresses o and ch in the vertical and horizontal reinforce-y
|

| ment (see constitutive Eqns. B.3 in Appendix B). However, in reality the

rebars, especially at the central nortion of the specimen, were partially

| bonded with the uncracked concrete contributing to the effective axial

tension stiffness. An estimate of the effective axial stiffness is em-

ployed in this work based on experimental results from the axial tests

described in Chapter 3. It is true that as the applied shear stresses

approach the failure level the contribution of concrete in tensicn de-

creases and becomes insignificant for high shear stress levels. Therefore,

it may be neglected in that case, and Duchon's model should predict quite

well the effective total shear distortion of a cracked reinforced concrete

panel under in-plane shear forces approaching failure.

I

4.3.1 Shear transfer sliding mode
,

At low shear stresses and before the formation of the diagonal cracks
i the applied shear force is carried by the combined mechanisms of inter-

face shear transfer (IST) and dowel action (DA) along the existing ortho-

| gonal tension cracks. The embedded reinforcing bars are normal to the
!
; orthogonal cracks.

_

.-. -
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a) Single crack

First, the possible shear transfer mechanisms existing along an ideal-

ized saw-tooth type single crack, as shown in Fig. 4.44, will be identi-

fied. A total tensile load N is applied thrr agh a uniformly distributed

reinforcing bars crossing the crack at right Engles (see Fig. 4.44a).

This causes an average initial crack width cwm (Stage I), with its magni-

in the direction paralleltude depending on the extensional stiffness KN

to the reinforcing bars. The upper and lower parts of the concrete block

are then subjected to a uniform shear force V parallel to the crack. To
a transfer this force across the crack a relative slip of the crack inter-

faces is required. The amount of that slip at a given applied shear force

defines the shear stiffness K at that crack.s

Initially, the applied shear is resisted by the dowel forces in the

bars (Stage II, Fig. 4.44b) until the asperities of the rough surfaces at

the crack interface come into firm contact. Then, the shear res' stance

is increased, since the IST mechanism is mobilized (Stage III, Fig. 4.44c).

Additional shear forces are transferred across the crack contact surface

areas E, the normal (bearing ) o and tangential (frictional) stresses at
n

in the concrete. An additional shear slip is induced, as the crack sur-

faces try to override each other. This shear slip results in increasing'

the initial crack width and consequently the steel tensile forces in the

embedded bars at the vicinity of the crack.

During the shear transfer S',g2 "II (see Fig. 4.45) equilibrium be-

tween the applied forces N, 't ..'W. she resisting forces in the concrete

and steel results in the b,liow.r.3 aquations in the directions parallel

and nonnal to the crack direction.

P

r,- -,, -
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Parallel to the crack (IX = 0):

V=VIST + VDA " ( n sinc + ot cos4) Acc + "b b S (4.60a)AV

Normal to the crack (IY = 0):

N=Nc+N *(t sint - coso) Acc * "b s s (4.60b)A
s n
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'

where

t.= concrete frictional stress tangential to the contact surface

n = concrete bearing stress normal to the contact surfaceo

A total contact area=
cc

s = bar tensile stress at the cracko

s = dowel shear stress per bar at the crack (including kinking)v

A = bar cross-sectional areas

b = number of reinforcing bars crossing the crackn

VDA = total dowel shear force resisted by the bars (including kinking)

VIST = total shear force resisted by the IST mechanism in the concrete

N = total normal compressive force at the concrete interfacec

N = total normal force resisted by the barss

4 = inclination angle of the concrete teeth

The above idealized angle 4 depends on the aggregate size and orientation

of the shear plane and the friction coefficient of the rough interface.

According to Eqn. 4.60b, the increase in bar tension (N - N) due to
s

the increase of the crack widt'- (dilatancy) is equilibrated by an equal

: normal compressive force in the concrete interface N -
c

Solving for oN from Eqn. 4.60b,

N-N
s

on " O tant (4.61)
-

Substituting o from Eqn. 4.61 in Eqn. 4.60a, the total shear forcen

V transferred across the crack is given by the following relation

AOt ccV= - (N.- N ) tan 4 + V (4.62)cos4 s DA
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Dividing by the shearing area A at the crack, Eqn. 4.62 can bec

written in terms of stresses as follows

=v=vfST+(P"s~#N) tant + vDA * V ST + V"ST * V *

DA

with
A

V
_ "t cct

~ cost AIST
c

|

v"ST " (P"s ~ "N) tant

*N "
and

- (4.64)

v A " PVsD
!.

wherevfST is the frictional shear stress carried solely by the concrete,

vA is the total shear stress transferred by dowel action and kinking (atD

large crack openings or shear slips), p is the steel . ratio in the direc-

tion normal to the crack and oN the applied normal tensile stress in the

same direction, calculated relative to the projected crack area.

The tensile force N is applied by tensioning the embedded bars. Thus,

the total applied normal stress o is equal to
N

N * "b 3 3A f /A * Pf '(4.65)c s

Substituting oN from Eqn. 4.65 in Eqn. 4.63, the total shear stress

transferred at the crack is equal to

.

.
.
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y=vfST+PI - I ) tan $ + vDA (4.66)s s

The second part_of the right hand side in Eqn. 4.66 denotes the shear

stress

vyST"(PA s) tant (4.67)

transmitted across the crack by means of friction due to the compressive

stresses

* P(Os - f ) * PA (4.68)s sc
.

in the concrete caused by the increase in bar tension at the crack. The

effective shear friction coefficient p = tant can be determined only ex-

perimentally. The above restraining stress o depends on the extensionalc

| stiffness K '
N

The shear stress transferred by means of the IST and the DA mechanisms

is given by the fol kwing equations

vlST " V ST + V"ST " V ST + PIP ("s - I )] (4.69a)s

and

(4.69b)vDA " PVs

To satisfy compatibility of displacements, the shear displacement re-

quired to mobilize the.IST and DA mechanisms at the crack plane is equal

to the measured relative slip, A , of the crack interfaces. Therefore,'

3
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v- =Y azgy g

(4.70)

VDA = KDA so

where KIST and KDA are the shear stiffnesses at the single crack correspond-

ing to interface shear transfer and dowel action (possible kinking is in-

cluded at large shear slips), respectively.

During the initial free slip a[, which is a func';on of the initial
0crack width c , before the crack surfaces come into contact, dowel action

is the major shear transfer mechanism. Therefore, the plot of shear

stresses y versus the corresponding slips a will exhibit a hardenings

Dresponse for slip values larger than A , as shown in Fig. 4.46. For shear

the IST mechanism is also mobilized and bothslips a larger than v /KDAs n

shear stiffnesses (KIST and KDA) contribute to shear transfer. Thus, the

slip predicted for a given applied shear stress v is given by the follow-
,

ing expressions (assuming constant stiffnesses KDA, KIST up to a shear

stress v )x
,

y

as"K *fTV 5Vo (" KDAa[), (4.71a)x
DA

and
v -V o K V

x o IST x
, for vx>v (4.71b)0+K + KIST + KDA

a =A4

KIST + KDA
s

IST + KDAs;

with a
c

Uaj=t = 6 (4) c (4.72a)
1

and

0 (4.72b)c =62+63 s " *sm cmE
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Fig. 4.46. Bilinear idealization of the shear stress-slip relationship
along an orthogonal crack parallel to the x direction.

where coefficient 6 is a function of the slope 4, which models the crack
1

roughness, and coefficients 6 , 63 are a function of the steel ratio o and2

the average crack spacing t as described in Chapter 3.em

From Eqn. 4.71b it is true that the tangent shear stiffness of the

(v, A ) relationship for combined (IST + DA) is equal to3

K (tangent) = KIST + KDA (4.73)3

The shear stiffness due to IST only, according to Eqn. 4.69a, is a function

of both the extensional stiffness K and the initial crack width c , that
N

is the initially applied and constantly maintained steel stress. Also,

KDA is not actually constant, particularly as v increases.

For the evaluation of an effective shear stiffness at a single crack,

expressions for the individual stiffnesses KIST' KDA and KN are required.
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In the work reported here (see Chapter 2) measurements of slips and crack

width changes Juring the application of shear were conducted for selected

orthogonal cracks. These results, although they provided information on

the shear stiffness at one small region of the crack (where the gages

were mounted), cannot really be utilized to determine a goed estimate for

the average stiffness along the entire length of the crack under shear

loading. They may be used only for qualitative conclusions.

and KDA, expressions haveRegarding the stiffness components KIST

been developed from experimental studies on uniaxial specimens with a

single preexisting crack performed at Cornell, McGill, and the University

of Canterbury. Jimenez et al. (Ref. 61) proposed the following expression

for the K stiffnessIST

-7
K - (3.9(c - 0.002) + 0.0367 - 1.09 x 10 ]-I (ksi/in)

IST m cwm
(4.74)

for initial crack widths between 0.005 and 0.030 in., applied shear

stresses less than 300 psi and concrete compressive strengths between 3000

increases withand 4000 psi. In the above expression (Eqn. 4.74), KIST

decreasing applied tension (or initial crack width) and increasing normal |

restraint stiffness provided by the reinforcement. The initial crack

width c in Eqn. 4.74 can be expressed in terms of the applied tension f 's

steel ratio p in the direction normal to the crack, the average crack

spacing A for a set of parallel cracks, and the extensional stiffness
cm

K according to the following relation derived from the present biaxial
N

tests described in Chapter 3 (see Eqn. 3.22)

;
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m"(2.4+10.3[f)(p-) x 10
1 f -3o

c ,= t ,cy e y s

i = 0.0024 +fK (n . 5)sNs

The shear stiffness KIST, given by Eqn. 4.74, is valid only for monotonic-

ally applied shear. For reversing cyclic shear, a reduction factor should

be used based on experimental data, as follows

KIST (cyclic) = q KIST (mon tonic), (4.76)

l

where q is less than 1.0 and depends on the applied tension f , the number
s

of cycles, the maximum shear stress level,and the steel ratio p.

The major difficulty in determining the dowel stiffness K for mono-DA

tonic shear is the estimation of the effective foundation modulus Lf con-

crete k , which influences significantly the stiffness provided by thef

dowel. As pointed out in the literature review in this chapter, a large

scatter exists for the measured values of k . In Ref. 73 an approximate
f

linear relation between k and the applied tensior. f , based'on experiment-
~

f s

al data from uniaxial dowel tests (Refs. 61 and 127), has the following

form

3
kf = 2961 - 29 f (k/in ) (4.77)s

:
,

Computing kf from Eqn. 4.77,the dowel stiffness per bar may be cal-
:

culated from the relation
i

l

i

-

_.
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4

0) (k/in) (4.78)KDA " fi s 4

given in Ref. 109 for bar sizes up to No.14. The effect of crack width

on the dowel stiffness given by Eqn. 4.78 is built in the parameter of

the effective foundation modulus of concrete k .
f

Assuming an average foundation modulus of 750 k/in3 (Ref. 61) the

expression for the dowel stiffness of a single bar of diameter d is given

by

KDA = 312 d (k/in) (4.79)

b) Two-way orthogonal cracking

In precracked reinforced concrete panels with two sets of orthogonal

cracks assumed equally spaced and subjected to uniformly distributed total

normal tensile forces N , N and pure shear V, the shear slips and crackx y

widths in the x and y directions will result in an average shear distor-

tion y of the panel (see Fig. 4.47).

An effective tangent shear modulus G can be evaluated in a similarcp

way described in Ref. 73 by adding the average distortions of the un-

cracked concrete blocks between the orthogonal cracks (y(u)) and the dis-

tortions caused by the relative slips along the cracks (y(cr)), that is

y = y(u) + yI ) (4.80)

with

y(u) = (V/A ) G -I (4.81a)c o ,

and

i.
_ _ ______ _
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N Ncx cy
E E

A a(cr) , (cr) , (cr)_j-1 sxi ,i=1 syi , a ^sysx , (4.81b)x y b b L Ly x cmy cmx

where G is the shear modulus for uncracked concrete, asxi and asyio are the

crack slips at the ith crack in the x and y directions, bx (= Ncx cmy) andi

by (= Ncy cmx) are the panel dimensions, N and N are the number ofcx ey

orthogonal cracks parallel to the x and y directions and a are thesx' Asy
total average estimated slips in the x and y directions.

Substituting a and A from Eqn. 4.71 in Eqn. 4.81b,sx 3y
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(cr) = ( 1 1 (4.82a)+ )v, for v 5 vy o
K A E A

DA cmy DA cmy

and

o X
g A K(cr) , A ISTIST

( y , sysx )
({ST+EIST + K*DA

A Kcmy K cmx
DA

1 1 (4.82b)+ ]v, for v > vg

+[(KfST+Eli (KYST+KDA)*cmxDA ciny

where v is taken as equal to 50 psi, at which level an increase in shearg

stiffness was observed in the present biaxial tests.

From Eqns. 4.80, 4.81a and 4.82 the following expressions are derived

for the effective tangent shear modulus for the cracked concrete panel

Gcr (see Fig. 4.48)

Gfr * I x + + ] , for y 5 yo (4.83a)
K E EDA cmy A cmx ,

[Diagonalcracking;
'v '

>

E r (Eqn. 4.83b) Interface shear trans-
fer plus dowel act:ono q

PE

U.i
ger50 psi.s:: - - - - - - - - - - - - .

Gh(Eqn. 4.83a) Dowel action
1 j only

_

-
.

# Average shear strain 7

Fig. 4.48. Idealized shear stress-strain bilinear curve when orthogonal-
cracking is present.

- _ _ - _ .
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and

t y 1 1 -1G ,I +
xcr

(EIST + KDA)*cmy (kST+'kA)*cmx

where y is the shear strain at a shear stress v equal to about 50 psi.o g

4.3.2 Shear transfer diagonal tension mode

With the. occurrence of the first diagonal cracks at a shear stress of

about 100 psi the diagonal cracks tend to close (see Figs. 2.26 from the

| present results and 4.49 from the PCA biaxial tests) and the major shear
|

transfer mode gradually changes from that of sliding to a diagonal tension-|

| compression strut system. An expression for the shear rigidity will be

derived for shear stresses above the 100 psi level transferred by means

of the latter mode. Before formulating the governing equations of the

shear transfer, the fact that diagonal cracks were initiated at relative-

ly low shear stresses will be discussed in the following section.

a) Diagonal cracking

After all bars were tensioned up to 36 ksi and all primary orthogonal

cracking had taken place there would be a certain bond stress distribution

between two adjacent cracks at the steel-concrete interface. As shown in

Fig. 4.50a, the orthogonal cracks tend to form along the transverse rein-

forcing bars in both dirNtions.

It appears reasonable to assume that in addition to the shear stresses

v due to the applied shear forces, there will be additional local, zed

j shear stresses-rb due to bond on the edges of the uncracked concrete block

ABCD in Fig. 4.50a. For the applied shear and tension shown in this

:

i

, .
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Fig. 4.49. Crack width change versus applied shear stress in PCA's
specimen MB3 (Ref. 96).

figure, the bond stresses at the upper left and lower right corners of

the concrete block will result in a higher total shear stress. This can

cause diagonal cracking at a lower applied shear stress level than ex-

pected in the case of pure shear without biaxial tension.

The average value of bond stress that will contribute to the forma-
|

|
tion of diagonal cracking depends on the critical bond stress that causes

first internal cracking during the initial tensioning. As the tension in
present at

f the bar increases, high diagonal principal tensile stresses og

i
the interface can cause internal inclined cracking at an angle of 45 toi

i

60 degrees to the bar axis, as shown in Fig. 4.50a. This has been con-'

firmed experimentally by Broms and Lutz (Ref.16), Goto (Ref. 49)(see

|

!
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Fig. 4.51) and analytically by Bresler and Bertero (Ref.13). The latter

performed a three-dimensional axisymmetric fir te element analysis of ai

reinforced concrete cylindrical prism with an embedded bar, and calculated

principal tensile stresses og high enough to cause internal transversal

cracking. As the tensile load increases new internal inclined cracks form

farther from the primary cracks. This results in progressive degradation

of the tension stiffening effect in concrete. The severity of this in-

ternal inclined cracking at the bars can be seen in the present experiment-

al results from the fact that even at zero tension (after bars had been

tensioned at 0.6f,) diagonal cracks appeared at the low shear stress level

of about 100 psi.

-
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Fig. 4.51. Deformation of concrete around reinforcing steel after forma-
tion of internal cracks according to Goto (Ref. 49).

The critical bond stress to initiate internal transverse cracking

depends mainly on the tensile strength of concrete f ', the concretet
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cover, and the type of loading (Tassios, Ref.113). For moderate confine-

ment (radialconcretestresskcy!<f'),asshowninFig.4.52takent

from Ref. 113, and tensile longitudinal concrete stresses 0 < cx<f't

the critical bond stress i ,cr could reach a value equal to f ' (~ 400 psib t

for an average concrete compre :,1ve strength of f ' = 3800 psi, assumingc

f ' = 6.5/f '). Radial compression ( cy) due to shrinkage or other con-t c

to values higher than f ' (see Fig.fining effects could increase Tb,cr t

4.52).
, , . , , ,
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Fig. 4.52. Effect of longitudinal (o ) and radial (oy) king) according
stresses on the

xcritical bond stress 'b,cr (transverse crac
to Tassios (Ref. 113).

Bresler and Bertero (Ref. 13) computed in their analysis maximum

princ.? pal tensile stresses in the concrete at the steel-concrete interface

that wt.re approximately equal to twice the maximum bond stress (oy -

2 Tb, max), as shown in Fig. 4.53. This means that at first transverse '

cracking the maximum bond stress will be equal to

~ 0.5 f ' (4.84)'b, max t
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Ismail and Jirsa (Ref. 60) also calculated average bond stresses of

about 240 to 450 psi for applied tensile stresses between 10 and 40 ksi

(f = 48 ksi) in a No.9 rebar (Specimens T20 and T40). The correspondingy
relative percentage contribution of concrete to carry tensile strains was

estimated as 30 to 5% for the above steel stress levels.
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To get a rough estimate of the average bond stresses 7bm # "9"

No. 6 reinforcing bar (diameter d = 0.75 in.) tensioned at a relatively

low stress f 19 ksi (3 0.3f ) the following simplified expression iss y

used

2(o - c.)A 2Ao As 1 s ss7 = ,

bm ndt ndt (4.85)
cm cm

A linear distribution of steel stresses is assumed along each average half

distance tcm/2( 3 in.) of two primary cracks, as shown in Fig. 4.54.
i

|

| T.

1
#s 7 = i9hsi5_______ ______

.cg =15ksi
i

- \ f: tr . -b f-
d, As, . L pb.p! -;"'

" ,-
.

- - -

Us -*-- S
. _4m hm *

P"WW)--* #s
.. .

-

- - --| Tb m ,' ~~! ' . Primary crack
Nc/8' l[E/Ni'/ ''

' 3" T 3"
'

Fig. 4.54. Simplified steel stress distribution for estimating the
average bond stresses Tbm-

The relative contribution of concrete E is given by the relation
c

o -c. La
S 1

c 2a
- Sg a

2 (4.86)
s s

Assuming a reasonable value for E equal to 10%,
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A 2 x 0.1 x 19 = 3.8 ksi (4.87)
s

and

, 2 x 3.8 x 0.44 = 236 psi (4.88)7
bm n x 0.75 x 6

Thebondstressof236psiisindeedwithinthe0.5f{<Tbm # It
range that other researchers have cited. It appears that even a rela-

tively low tensile stress of 0.3f in the present specimens couldy
initiate internal inclined cracking. Since the above value of 236 psi

close to the cracks couldis an average value, the maximum value Tb, max

be about twice as much.

Consequently, in addition to the applied shear stress y at the-

level of the reinforcement, there will be a localized shear stress

distribution due to bond Tg , as shown in Fig. 4.50b. The shear stresses

due to bond acting within an equivalent height equal to md and 2nd in the

single and the double layer direction, respectively, could substantially

increase the total actual shear stress transferred along the edges of the

corners A and C in Fig. 4.50a. These arguments confirm, at least quali-

tatively, the experimental results which indicated that diagonal cracking

started forming on the concrete surface at an applied shear stress of
,

about 100 psi. It should also be pointed out that the existing internal |

transverse cracks near the intersection region of the orthogonal bars

could propagate under the applied diagonal tension and furthermore insti-

gate the occurrence of the surface diagonal cracks at an earlier stage.

The fact that the diagonal cracks initiated next to bar intersections

was confirmed in the present experiments.
,

,

_. .. ..



. . .

307

b) Shear rigidity of diagonally cracked concrete (v > 100 psi)

At initiation of diagonal cracking at about 100 psi the applied

shear is mainly resisted by corapressive stresses e:d in the concrete

struts between the diagonal cracks and tensile stresses in the orthogonal

steel (see Fig. 4.55). There will still be some slipping at the ortho-

gonal cracks as the diagonal compression stress increases with increasing

shear. With most of the orthogonal cracks closing (especially at the
,

central region of the specimen) and with additional diagonal cracks form-

ing, the major shear transfer mode is that of diagonal tension (resisted

by the steel) and diagonal compression (resisted by the concrete). The

shear rigidity of the cracked panel then depends mainly on the extensi-

bility of the panel nonnal to the diagonal cracks and the compressibility

of the concrete struts parallel to the diagonal cracks. It is obvious

that this compression-tension type of load transfer will eventually result

in predominantly diagonal crack opening.
.

Assuming that the first diagonal cracks formed at an angle B to the

horizontal axis x, the diagonal strut compressive stress o will resultcd
in compressive stresses ocx' "cy and shear stresses v along a horizontal
and a vertical cross section (see Fig. 4.56). From equilibrium of

stresses,the required compressive stresses in the concrete are

!
Ucx " tans

(4.89)

cy " " "8

where v is the applied shear stress.

!
,

_ _ _ , _ _ . . .
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Fig. 4.55. Diagonal tension-compression strut mode.

If we neglect the tensile stresses in the concrete (principal

diagonal tension o = 0), the Mohr circle for average concrete stressesg

and strains is shown in Fig. 4.57a and 4.57b, respectively. The average

diagonal compression o is equal to the principal compressive stress
cd

0 in the direction tangential to the diagonal cracking and is equal |77
1

to

cd " tans + v tanB = v(tanB + tans} " sin 8cos6
(4.90) i

This relation is identical to the third equilibrium equation (B.lc')

(see Appendix B) in Duchon's model. Since there were no tensile stresses

allowed in the concrete, no shear stresses are transferred parallel to
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Fig. 4.57. Mohr's circle for stress and strain (concrete tensile
stren es are neglected).

i

the diagonal crack, as shown in element 2 of Fig. 4.56. This means that

no shear transfer (IST and DA) is taking place along the diagonal cracks.

A more realistic picture is given in Fig. 4.58 (see Baumann, Ref. 8).

The stress state in element 2 along the diagonal crack that formed at

an applied shear stress v is given in this figure as the shear stress in-

creased to v'. In general, the directions of principal stresses (o ,ogy)y

will change, rotating at an angle w relative to the previous directions

normal and parallel to the initial diagonal cracks (inclined at an angle

B to the horizontal). If the concrete strut can carry tensile stresses

(o less than the concrete tensile strength f'), a shear stress T will be
g

present at the existir.g diagonal crack interface and normal to the strut.

The corresponding Mohr circle for the stresses in concrete in the latter

case is shown in Fig. 4.58. Since there are tensile stresses carried

by the concrete, the compressive stress o will be given by the following
cd

relation

cd = v (tans + ta 8) - I (4*9I)
I

I
L
t

I

> |
'

|

L
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i'ig. 4.58. Shear transfer along the existing diagonal cracks.

The value of computed using the above Eqn. 4.91 will be smaller
cd

than that resulting from Eqn. 4.90, where no shear transfer was assumed.

As the applied shear stress v is increasing, new diagonal cracks may

form perpendicular to the direction of the maximum principal tension when

o reaches the value of the concrete tensile strength f'. The additionalg

cracking will lower the tensile stresses in concrete and eventually the

Mohr circle,shown in Fig. 4.58,will shrink, becoming identical to the

>
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;

case shown in Fig. 4.57. The new diagonal cracking' inclined at an angle

8' = 8 - w to the horizontal is shown in Fig. 4.58 with dashed line.

With the maximum principal tensile strain cy (see Fig. 4.57) in-

creasing, the shear strain y will also increase, further decreasing the

effective shear rigidity of the panel. The stress condition described

in the previous paragraph may exist again until either the reinforcing

bars crossing the new diagonal crack yield or the concrete struts fail

under the compressive stress o In the present experimental work it
cd.

was found that the former failure mode controlled the shear capacity of

the reinforced concrete panels subjected to biaxial tension and shear.

To be sure that the panel's shear rigidity is not overestimated, at

least for shear stresses higher than 100 psi, and since not enough experi-

mental evidence exists on the amount of shear carried by the concrete

struts, Eqn. 4.90 is adopted here.

The governing equations developed by Duchon (Eqn. B.4' in Appendix

B), resulting from the consideration of both equilibrium and compatibility,

are repeated here with consistent notation

0 8"O (P cos S +Nx x x

( , sin g , sin
22

) Co =E P cos B n I 'ny s y

-sinBcos8 c
| v i 0 yg

" '
i i - -

where n is the ratio of the Young's modulus of steel E to an effective
s

and the applied normal stressesYoung's mo6*' ts of concrete Ece' Nx Ny

and o ' P the steel ratiot in the x and y direction, respectively.
x y
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The equivalent concrete modulus in compression Ece, described by

the constitutive relationship

E I (4.93)ce " cd 'cd ,

where c is the compressive concrete strain in the diagonal strut, willcd

definitely depend on the actual stress conditions shown in Fig. 4.59. It

appears that the' compressive axial stiffness of the concrete struts will

be negatively affected by the transverse expansion due to crack opening

at the diagonal cracks, which depends on the stiffness of the shear

transfer mechanisms and the tensile stresses in the reinforcing bars

crossing the cracks.

'"sy

\[ ,\id \
\ :$x Reinforcing bar%

4f"y \\J
\ ?

s. f L x 3x
'

i
\s q \\

\. h - _ - -
7\SX

\, - _SX
_

%# \"cd\
""sy Reinforcing bar;

Fig. 4.59. Stress condition for a diagonal concrete strut.
.
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According to the experimental evidence reported by Collins (Ref. 25)
r

on shear tests of beams, where the average principal compressive stress

were computed from the applied shear'ando and compressive strain ccd
'

cd
and c depends onthe inclination angle 8, the relationship between ocd cd

That is, for given value of cyg, the valuethe strain ratio ymax/CII.

of decreases with increasing y,,x/cyg, or ,in other words, with
cd

increasing strain normal to the diagonal cracks (less confinement for

the struts). Thus, a decrease in the compressive modulus in the concrete
1

j struts, as shown in Fig. 4.60, is expected compared with the stress-

strain relationship of a cylinder test. Due to the scatter of the above

experimental results and the lack of more extensive data the effective

compressive modulus E is taken as equal to the ultimate secant modulus
ce

E measured in the cylinder tests. As shown in Fig. 2.2 in Chapter 2,
cu

the average value of the secant modulus at ultimate is equal to about
i

1900 ksi (initial modulus E = 3500 ksi). Therefore, the moduli ratio
co

n in Eqns. 4.92 is computed from

n = E /E I4*94) '

3 cu

It is evident that the use of Ecu,instead of Eco,for the compressive

modulus in concrete will result in lower values for the tangent shear

modulus G f cracked concrete in the relationship
cr

.

(4.95)v=yG er

- To determine the expression for the effective shear modulus Gcr'
~

the shear strain as a function of the applied shear stress v, the normal
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Fig. 4.60. Compressive stress-strain relationship for the diagonal
concrete strut.

istresses o and and the inclination angle 8 of the compressive strutsNx Ny

is first determined. From Eqn. B.8 in Appendix B the average shear

strain of the panel (see also Fig. 4.57) is given by

y = (c +C - 2cgy) sin 2B , (4.96)cx cy

where c and c are the average tensile strains in the concrete carriedcx cy

entirely by the steel.

From the equilibrium equations in the x and y direction the above

tensile strains can be obtained from the following relations

2o *C EP + "cd sin gNx cx s x

(4.97)
2P *Ny " Ccy s y cd cos g

with

E

II cu = -v (tans + tans) * ~ sin 8coss (4.98)"cd " C

.

---
. . . -
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Thus,

#
~ Nx + vtanB (4.99a)C _ pE DE cx *

sx
s xs

and

Ny v (4.99b)+ E tanB " Ccysy " p E P
C

ys ys

Also,

(4.100)II " E sinScos8C
cu

Thus, Eqn. 4.96 reduces to

* O+Y = [p E p,E tanB + E s Scos8cu s ys

2 2

=h-[1+(1+n ) sin 0 + (I + no )cos g3 g E] sin 28+

uu x y xs ys

(4.101)

The second part of the right hand side of Eqn. 4.101 depends on ;

the applied normal stresses and the inclination angle B and denotes the

effect of normal stresses o and o on the shear rigidity of a rein-
Nx gy

forced concrete panel (see Fig. 4.61).

The tangent shear modulus given by

E
t cu (4.102)G ,

2 2
2[1 + (1 + np ) sin g , (j + np )cos g)cr

x y
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j Fig. 4.61. Shear stress-strain diagram according to Eqn. 4.101.

depends also on the inclination angle 8, mainly a function of the
i

applied shear stress y, ano certain properties of the panel such as

i the moduli ratio n = E /E and the steel ratios p , p in the direction3 cu x y
~

: of the reinforcing bars. For standard values of 8 between 30 and 60

degrees,the diagonal compressive stress is approximately linearcd

with the applied shear stress v, since it varies as (tan 8 + tan 8). The

latter expression remains approximately constant, especially for small

variations of the. angle S. Thus, since y is basically proportional to
,

cd (see Eqns. 4.97 and 4.98), the tangent shear modulus given by Eqn.

4.102 and shown in Fig. 4.61 is expected to be nearlf constant.
,

! It should be pointed out here that, according to Eqn. 4.101, the
t

tangent shear modulus Gcp, given by Eqn. 4.102, is nearly independent of

the level of the applied normal stresses. There is only an insignificant

. influence of the value of o and "O since the inclination angleNx Ny cr
6 will be related somewhat differently to the shear stress y for various

i

I

-. , . _ . - . _ , . .
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.

. levels of applied normal stresses.

The shear stress-strain relationship obtained above will be adopted
~

,

here for values of shear stress y higher than 100 psi, at which diagonal
,

cracking formed. The equation that relates the applied normal and shear

stresses with the corresponding inclination angle 6 of the principal

tensile strain to the y axis may be obtained by equating the expressions
?

for c given by the second and third equations of Eqn. 4.92.
, yy

i Thus,
!

J

22 cos 0 "Nx), (4.103) ;cos8 (- sin 8 o +sv=- x y y
i

where D is the determinant of the system of equations in Eqn 4.92 and

j is given by Eqn. B.6 in Appendix B.
4

I Dividing both sides of Eqn. 4.103 by cos 6 and rearranging terms,

we get the following quadratic transcendental equation'

.

tan 6 + ( Ny) , [ Nx)
p (1 + np )3 o o tans o

4 an 6 =0 (4.104)1 + np

!

According to Eqn. 4.104, there will be certain limitations on the'

range of the angle 6 for the model to be valid for given values of n,
|If the Mohr circle for stresses in the concretep'P' Nx and aNy.'

x y
(see Fig. 4.57) properly described the stress state, it would be expected ;

that for S equal to 45 degrees the shear stress v would approach infinity.

It is clear, however, that for v approaching infinity the angle 6 approaches
,

avalueBywhich atisfies the relation

tan 6{ = Y(1 + np*)
p

4 (4.105)
p (1 + np )
x y,

,

4

)
r

|

,.,-_ _ _ . , , , .-. -_ , -. -- _ _ . . .,_ - - -_
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This value of By is different from 45 degrees for the general case

with unequal steel ratios o and p,. Act'ually,for S equal to By thex

system becomes unstable and the system of Eqns. 4.92 are no longer

valid. They are valid only for S less than By when oNy # "Nx and S

largerthanBywhenoNy # "Nx. Incidentally,theabovevalueByis
the angle for. pure shear (no biaxial tension), in which case the effective

shear modulus given by Eqn. 4.102 is independent of the angle B and is

equal to

"
(4.106)G

'=
cr

2[1+[(1+n )(I + np )]
x y

This is identical to the expression for G in diagonally cracked rein-
cr

forced concrete beams developed by Collins (Ref. 25).

The other critical value of 8 is at shear stress y equal to zero.

According to Eqn. 4.104, this occurs when B is equal to By given by

2
PI P (4.107)tan g ,

Nx y Ny x

i

If the normal stresses and o are applied by tensioning the
Nx Ny

reinforcing bars in the x and y direction, respectively, as it is the '

case here, they are equal to
,

"Nx " 0 'sx
i

(4.108)Ny " P Iyso ,

where f is the applied tensile stress in each bar.
s

<

I
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Thus, Eqn. 4.107 becomes ;

2* (4.109)1,tan 0 a
2

which results in

*
= 45 deg. (4.110)

82

Indeed, the initial diagonal cracks in the specimens tested were inclined

at an angle to the axis very close to 45 degrees.

Concluding, the value of the angle 8 should be within the following

limits

* *
8 <8< , for o > O (4.111a )

2 gy Nx

and

* *
# (4.111b)8 >5>6 ' fUI Ny # Nx2

Substituting o =0.0122, p =0.0244 and n=14.7 (E =28000 ksi and Ecu"
x y s

1900 ksi) in Eqn. 4.105, 8 becomes equal to about 49 degrees, independent
1

of the applied bar tension in the x and y direction. According to Eqn.

gy > Nx , the present model gives sensible4.111a, since p,. > o or o
x

results only for 45 < 8 < 49 degrees in the case of the biaxial specimens

with No.6 bars described in Chapter 2.

The predicted values for the effective shear modulus according to the
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shear transfer model presented in this section and Section 4.3.1 are com-

pared with the experimental results from both the present research program

and a parallel research at the Portland Cement Association in Section 4.3.3.,

. .

.e

4.3.3 Theoretical predictions versus experimental results (shear stress-

shearstraincurves)

First, the predicted values for the effective shear rigidity based

on the 3-stage stiffness model, described in Sections 4.3.1 and 4.3.2,
'

are compared with the experimental results of the present biaxial tests
i

with No. 6 reinforcing bars. Four selected biaxial tension levels of 0,

0.3f , 0.6f , and 0.9f plus monotonically applied shear are consideredy y y
in this section.

:

Then,the predicted response of biaxially tensioned specimens with

larger size bars (No.14 and No.18) is compared with the measured data

from the experiments at PCA (Ref. 96). The orthogonal reinforcing bars in

: these specimens (see Fig. 3.22a) are tensioned to a stress of 0.6fy (MB3)

and 0.9fy (MB1) and the shear stress (applied through special fixtures at

three positions along each side of the specimen) is increased monotonically

until failure is reached by yielding in the steel.

a) Present tests-(small size bars)

The following variables are either measured or given:

d = diameter of the No. 6 bars in x and y directions = 0.75 in.

p = steel ratio in x direction (single layer) = 0.0122x,

p = steel ratio in y direction (double layer) = 0.0244, y

E = secant Young's modulus in compression of concrete at ultimatecu

= 1900 ksi.

-- , _ -
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E = elastic Young's modulus of steel = 28000 ksi
3

n = moduli ratio = E /Ecu " I4 7s

G = initial shear modulus of uncracked concrete = 1500 ksig

t = average spacing of the orthogonal cracks normal to the x
cmx

direction = 7.2 in.

E = average spacing of the orthogonal cracks normal to the y
cmy

direction = 6.5 in.
0

c = average initial crack width estimate for the cracks normal to

the x direction (according to Eqn. 4.75 ) at selected biaxial
,

tension levels = 0.004 in. (zero tension).

= 0.008 in. (0.3f tension).y,

'

= 0.013 in. (0.6f tension).y

= 0.018 in. (0.9f tension).y
0

c = average initial' crack width estimate for the cracks normaly
to the y direction (according to Eqn. 4.75 ) at selected

biaxial tension levels = 0.002 in. (zero tension)

= 0.004 in. (0.3f tension)y
i

= 0.006 in. (0.6f tension)y

= 0.007 in. (0.9f tension) |
'y

B = inclination angle of the diagonal cracks to the x direction

= 45 deg.
<

The predicted shear stress-shear strain relationship is represented
t

by three tangent shear stiffness expressions (shear modulus Gcp) within

certain shear stress ?evels, as follows:

,

4

, - .- - - . ,
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Segment 1 (for v 150 psi;only DA at the orthogonal cracks):

-1Gti , [ , , ] (ksi) (4.112a)
1 1 1

cr x yg g g A GDA crqy DA cmx o

Segment 2 (for 50 < v i 100 psi; combined (IST+DA) at the orthogonal

cracks):

-I

i.

Gt2 , [ . 1 1 1, + ) (ksi) (4.112b)cr
(KfST*KDA)cmy (K{ST*KDA) cmx o

Segment 3 (for v > 100 psi; diagonal tension-compression strut mode):

;

J
EGt3 , cu

'

(ksi) (4.112c)
2 2

2 [1 + (1+ np ) sin g + (1+ np )cosg)
x y

The shear stiffness values for dowel action , KDA, and interface.

shear transfer mechanism, KIST, are calculated from Eqns. 4.78 and 4.74

(Section 4.3.la), respectively. These values for the four biaxial tension

levels studied are shown in Table 4.E.

Since the measured total extensional stiffnesses in the direction of

the reinforcing bars,
L

4

K = 2300 x 8 = 18400 (k/in)Nx

K = 4400 x 16 = 70400 (k/in) , (4.113)g

are higher than the suggested limit value of

i

. . . . _ , . . _ , . . . . _ - _
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,

|

5
c[mi (i=x,y) , (4.114)K = 3.4 x 10

N

given in Ref. 61, the shear stiffness of IST is calculated using the

following expression

- -1
K = [3.9 ( c mi-0.002)] (ksi/in) (4.115)

T

This is the case of infinite axial stiffness, at wiich the normal axial

stiffness does not affect the interface shear transfer stiffness KIST *
t

The computed values for the tangent effective shear modulus G andcr
t

the corresponding ratio Gc /G for each of the three segments of theg

Table 4.E. Shear stiffness values assumed for present tests.

Specimen
No. .0(M) .3(M) .6(M) .9(M)

f (ksi) 0 18.3 36.6 54.9
s

(I)k (k/in ) 2960 2430 1900 13703
f

fj(psi) 3320 3940 3500 3600

(2)gDA(ksi/in) 14 15 11 9

(3)gy (ksi/in) 27 30 21 17
DA

K{ST
"

(4)K 3 (ksi/in) 1000 128 64 51

Notes:
(1) Foundation modulus kf is calculated from Eqn. 4.77 (Section 4.3.la).

(KDA per bar)x(number of bars)
(2),(3) The total normalized DA stiffness =

2effective shearing area (=288 in ),
U

(4)K{ST = 1000 ksi/in is an arbitrarily chosen large number since c y
happens to be equal to 0.002 in (see Eqn. 4.115).
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shear stress-shear strain curve are given in Table 4.F.
,

The predicted response according to the above values is compared with

the experimental results at each tension level in Fig. 4.62a (measured

average data points for the 1st load cycle are shown as full dots in Fig.

4.62a). As shown in this figure, the predicted shear stress-shear strain

Table 4.F. Pred.icted values for the tangent effective shear moduli during
the 1st cycle of shear loading.

a'

0 0.3f 0.6f 0.9f.

n y y

Oc *(Ocr/G ) 59(0.039) 66(0.044) 46(0.031) 38(0.025)
(v < 50 psi) g

(ksi)

Gcr'(O I0 ) 532(0.35) 240(0.16) 146(0.10) 112(0.07)(50 < v < 100) cr 0
-

(ksi)

Oc '(O IO ) 154(0.10) 154(0.10) 154(0.10) 154(0.10)(v > 100 psi) cr o
(ksi)

curves are shifted to the left relative to the experimental findings, as
expected. Significant shrinkage cracking present prior to the application

of the shear load could be the major cause of the low shear stiffness

values measured at shear stresses less than 50 psi. For shear stresses

higher than 50 psi (see Table 4.G), the proposed expressions predict at

least twice as large tangent shear modulus values as the measured average

val ues. These high values could be explained from the fact that in the

simplified model the DA and the IST stiffnesses are assumed constant and

independent of the applied shear stress v. However, with increasing shear

. _ _ .- _ ..
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I

Table 4.G. Comparison of the predicted and measured shear modulus
values for cracked reinforced concrete.

i

Biaxial 0 0.3f 0.6f 0.9f
Tension y y y

tG /0 Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred.
c7 3

50 < v < 100' psi 0.17 0.35 0.05 0.16 0.06 0.10 0 05 0.07
_

v > 100 psi 0.06 0.10 0.05 0.10 0.06 0.10 0.05 0.10

stress both shear transfer mechanisms become less effective in resisting

shear forces (nonlinear effect). Therefore, the effects of DA and IST

are not additive. As the tensile stresses in the steel increase due to

shear slip or opening of the cracks, the DA shear transfer mechanism be-

comes less effective permitting larger shear distortions. Also, as the

diagonal cracks open due to increasing diagonal deformations at shear

stresses higher than 100 psi, the IST mechanism offers less resistance

causing further increase in the average tensile stresses in the reinforce-

ment. The value of the foundation modulus of concrete, k , decreases with
f

ithe progressive crushing of the concrete adjacent to the bars at thi. pri-

mary cracks,as the tension in the steel increases and kinking of the bars

becomes more significant. All the above factors could interact to sub-

|
stantially lower the predicted effective shear rigidity of the reinforced

| concrete panels. The level of biaxial tension does not appear to affect
|

appreciably the effective tangent shear modulus for cracked concrete,

!

!

-

- - . . _
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especially after the diagonal cracks have formed. Of course, increasing
3

biaxial tension results in increasing total shear deformations and conse-

quently causes a decrease in the secart shear stiffness.

Because the proposed shear stiffness model does not account for all

the flexibility resulting from the extensive diagonal cracking, particu-
.

larly for shear stresses above 100 psi, a modified version is shown in

Fig. 4.62c. The experimental curves compare well with the predictions

of the less stiff.model, in which the effective tangent shear modulus
t

G for shear stresses above 100 psi is taken as half the value given bycp

Eqn. 4.ll2c. It should be mentioned again here that the predicted shear,

,

stiffness response partly depends on the assumed value of the effective

compressive modulus for the cracked concrete, taken in the case of Fig.

4.62a as equal to Ecu.(= 1900 ksi).
!
!

| b) PCA tests (large size bars)

For the two specimens (MB1, MB3) considered in this comparison the

following are given:

d, = diameter of No.14 bars parallel to the x direction
|-

= 1.75 in.

d = diameter of No.18 bars parallel to the y directiony

| = 2.25 in.
2

p = eight No. 14 bars in a (60x24) in shearing area of concretex

= 0.013

2
.o = eight No. 18 bars in a (60x24) in shearing area of concrete

I Y

| = 0.022

1

1

|
, _, , . _ _. - _ _ . ._ . -
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i

E = initial compressive Young's modulus of concrete = 3380 ksi
co

E Eco/2 = 1690 ksicu

E = 27500 ksi (specimen MB3)
s

= 29000 ksi (specimen MBl)

n = 16.3 (specimen MB3)

= 17.2 (specimen MBl)

G = 1450 ksig

A *E = 15 in. for both specimens (a representative orthogonal
cmx cmy

cracking pattern is shown in Fig. 3.22b)

c =c = 0.02 in. (specimen MB3 ; f = 36 ksi)
x j s

= 0.03 in. (specimen MB1 ; f = 54 ksi)
s

8 = 45 deg.

Since the measured axial stiffnesses in both specimens (given in

Ref. 73) in the x and y directions,

K = 4800 (k/in) x 8 = 38400 (k/in)Nx

K = 5900 (k/in) x 8 = 47200 (k/in) [ specimen MB3]
Ny

[

|
and

K = 3000 (k/in) x 8 = 24000 (k/in)
Nx

K = 7400 (k/in) x 8 = 59200 (k/in) [ specimen MBl] |
Ny

i

are higher than the upper limit Kgj , given by Eqn. 4.114, Eqn. 4.115

is again used to compute the interface shear transfer stif ffness KIST *

The calculated values for KDA, Kyg,andGharesummarizedin

Table 4.H. The experimental (v,y) curves are drawn together with the

predicted curves in Fig. 4.62b for comparison. The predicted shear

|
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Table 4.H. Predicted results for PCA's larger scale tests.

Specimen MB3 MB1

No. (f =36 ksi) (f =54 ksi)s s

3k (k/in ) 1920 1400
f

(I)KDA(ksi/in) 5 4

( }KDA(ksi/in) 10 8

KIST (ksi/in) 14 9

.

EfST(ksi/in) 14 9

tl
i (v < 50 psi) Gcp(G /G ) 45(0.03) 36(0.025)g

(ksi)
t2 t2

I (50 < v < 100) Gcp(g /G ) 141(0.10) 102(0.07)c7 g

(ksi)

(v > 100) Gt3(Ge /G ) 147(0.10) 152(0.10)
t3

g
,

2Notes: (1),(2) To find the DA stiffness per in of effective concrete'

shearing area the total dowel stiffness of all bars (k/in) is
divided by a tributary concrete shearing area,rather than the

"

total cross-sectional area of (60 x 24)in2,

i stiffness for shear stresses less than 50 psi and biaxial tercion of

0.6f appears to be approximately three times as large as the experi-y

mental data-(predicted effective shear modulus equal to 0.11G versusg

the n = vi~sd value of 0.03G ). This means that either the No. 14 andg

No.18 bars offer higher dowel resistance than estimated from Eqn.

4.78 (Section 4.3.la) or that appreciable amount of shear is also

carried by the IST mechanism. Due. to the relatively large thickness
.

; (24 in.) in the PCA specimens compared with the smaller scale specimens

,

- - , -
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(6 in. thick) more orthogonal cracks exist that do not penetrate the

| full thickness in the former specimens. Thus, the IST mechanism is

likely to be mobilized faster in the larger scale specimens, increasing

the overall shear rigidity at very low shear stresses (v < 50 psi).

For shear stresses above 50 psi,the engineering model predicts an

effective tangent shear modulus of approximately 0.10G compared withg

a value of about 0.05G measured in the PCA tests. As mentioned forg

j the smaller scale specimens, this could be explained from the fact that

the degradation due to bidirectional cracking and nonlinear behavior

of the shear transfer mechanisms (especially at shear stresses higher

than 100 psi) are not fully accounted for in the proposed shear stiff-

i ness model.
I
' The results of the more flexible modified predictive model with

half as much shear stiffness for shear stresses higher than 100 psi are
,

plotted together with the PCA test results in Fig. 4.62d. As in the case

I of the smaller scale specimens, the latter model predicts a response

much closer to the experimental findings.

4.4 Equilibrium Model at Failure
J

As the failure load was approached, a major diagonal crack formed
|

near a corner of the specimen, where the tensile component of the shear
i

load was applied (see cracking patterns in Fig. 2.15 of Chapter 2). The

inclination angle 8 of this failure crack to the horizontal (single

layer of. bars) was approximately 45 degrees for the 0.9f, tension and

increased to about 60 degrees as the tension decreased to zero. Thus,

at low biaxial tension levels the failure crack crossed more bars in;

- ,, _ _ - - - _ _ __



333

the direction of the single layer and less bars in the orthogonal direction

as compared to specimens with high applied bar tension.

It appears that behavior characterized by diagonal tension opening

at the cracks resulted in yielding of the steel, causing further increase

in shear deformations and eventually an inability to transfer additional

shear. To investigate the above failure mechanism, the equilibrium of

applied and resisting forces of a free body at the corner where failure

occurred is considered, as shown in Fig. 4.63. Since average crack open-

ings larger than 0.050 in. were observed at :e failure diagonal crack at

; ultimate load, no shearing forces in the concrete along the crack (IST)

are assumed.

T* T
Diagonal failure

y crack

90
x Y\

T,* DF [y
Vu

]n.r ;
. g .

T, 3 N x

5V u

UNy

Fig. 4.63. Applied and possible resisting forces.

The external forces are the applied corner nominal shear force at

failure (half of the total ultimate shear force Vu) and the tensile loads

in the bars N , N determined from load cells and electrical wire gages,x y
respectively. The resisting forces are the axial tensile forces T '

x

T and the dowel shear forces V in the bars crossing the primaryDA' A a

_.
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diagonal crack at failure in the x (single layer of bars) and y direction

(double layer), respectively. The resisting forces T and T ,shown inx y

Fig. 4.63, correspond to the axial forces in the bars if kinking is

taken into account. This would cause a reorientation of the bars at

the crack of an angle e and 0, relative to the original x and y direc-x

tions, respectively (see Fig. 4.64). The latter phenomenon of kinking,

which would result in additional resisting shear forces in the bars,

will be discussed later in this section.
Y

t
T = A, esy11 y

v

I \'O Diagonaly

A| -failure crack

V | 8
V'

| N .8 +'.:x

I f

T = A, cr , N, xx s =
+ . . - .. __- ,

Crushed # - N |-
'

concrete

I N
| .

| kCwd N

\

/ LB=,
Y
I f

Fig. 4.64. Exaggerated sketch showing bar kinking.
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Assuming only dowel action in the bars and simultaneous yielding

in the reinforcement, equilibrium of forces in the f(= x.y) direction *

results in the following equation

V

=A f Y A-Nj (4.117)si y

where
3

|
V = total applied nominal ultimate shear force

u
:

A = cross-sectional area of bars in the i(x,y) direction '

si

V = dowel force in the bars perpendicular to the 1(x,y) direction
DA

N = nonnal force applied in the 1(x,y) directiong

Substituting the applied forces into Eqn. 4.117, the dowel forces

per bar,VDA,are calculated for all specimens and are shown in columns 6

1 and 7 of Table 4.I. Included in this table are the number of bars active

in resisting shear (columns 4 and 5) and the net resisting axial forces

! in the steel (Asi y ~ N ) (columns 8 and 9). The free body equilibriumf i
diagrams at failure for selected specimens at biaxial tension levels of

0, 0.3f,, 0.6fy yand 0.9f are given in Fig. 4.65. The dowel forces in the

innermost horizontal and vertical bars are neglected because these bars
,

'

have relatively short development lengths and the concrete will probably

split at low shear loads, thus permitting axial forces at the crack not

; larger than the applied bar force.

For tr.onotonic shear and biaxial tension of 0.9fy (specimen .9(M))
dowel forces of 5.9 kips and 9.2 kips are calculated per bar in the

. . - - - --- .
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Table 4.1. Dowel forces calculated at full or partial yielding in the active reinforcing steel.

Dowel Forces
Per Bar For Net Resisting Dowel Forces- Net Resisting
Full Yield- Axial Force Per Bar For Axial Force

Active Steel- ing of In Stecl Partial In Steel (Par-
At Failure Active Steel (Full Yield- Yielding tial Yielding)

Ultimate Crack (kips) ing)(kips) (kips) (kips)
Speci- Type of Shear At Single Double Single Double Single Double

men Shear Corner Layer layer Layer Layer Layer Layer
No. Loading :(kips) (x) (y) (x) (y) (x) (y) (x) (y) (x) (y)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

.0(fi) 70.6 3-No.6 4-No.6 (-12.2) (-2.5) 80.4 107.2' (-3.3) 4.2 53.6 80.4

.3(M) 64.8 3-No.6 6-No.6 (-16.0) 1.4 56.4 112.8 (-3.5) 4.5 37.6 75.2
Monotonic

.

.6(M) 54.0 4-No.6 6-No.6 ( -2.6) 3.6 32.1 64.2 2.8 5.4 21.4 42.8'

.9(M) 43.2 3-No.6. 6-No.6 9.2 5.9 7.8 15.6 10.9 6.3 5.2 10.4
----------------------------------------------------------------------------------------------------------- u,

*
.0(A) 61.2 3-No.6 4-No.6 (-15.3) (-4.8) 80.4 107.2 (-6.4) 1.9 53.6 80.4
.0(B) 61.2 3-No.6 4-No.6 (-15. 3) (-4.8) 80.4 107.2 (-6'4) 1.9 53.6 80.4.

.0(C) 68.4 3-No.6 4-No.6 (-12.9) (-3.0) 80.4 107.2 (-4.0) 3.7 53.6 80.4

.3(A) 54.0 3-No.6 4-No.6 ( -7.1) (-0. 6) 56.4 75.2 (-0.8) 4.1 37.6 56.4

.3(B) 54.0 3-No.6 4-No.6 ( -7.1) (-0.6) 56.4 75.2 (-0.8) 4.1 37.6 56.4

.3(C) 57.6 3-No.6 4-No.6 ( -5.9) 0.3 56~.4 75.2 0.4 5.0 37.6 56.4
CycH e 46.8 3-No.6 6-No.6 ( -5.8) 2.5 32.1 64.2 1.3 4.2 21.4 42.8.6(A) -

.6(B) 39.6 4-No.6 6-No.6 ( -6.2) (-1.1) . 42.8 64.2 (-0.8) 2.2 26,7 42.8

.6(C) 43.2 3-No.6 6-No.6 ( -7.0) 1.8 32.1 64.2 0.1 3.6 21.4 42.8

.9(A) 32.4 3-No.6 6-No.6 5.6 4.1 7.8 15.6 7.3 4.5 5.2 10.4
i .9(B) 39.6 4-No.6 6-No.6 6.0 4.8 10.4 15.6 7.3 5.5 6.5 10.4 '

.9(C) 36.0 3-No.6 6-No.6 6.8 4.7 7.8 15.6 8.5 5.1 5.2 10.4

Notes: Cols. (6), (7), (10), (11): Negative sign means that the bar forces in the orthogonal direction
are overestimated.

Cols. (8), (9), (12), (13): Net axial bar forces are the difference between resisting and applied |
ibar forces.

, , _ . - , _ _ _ _ _ - -
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Fig. 4.65. Free body equilibrium diagrams at failure for selected specimens (full yieldinn of active
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double and the single layer, respectively (see Fig. 4.65 (dl)). Under

cyclic shear and 0.9f, tension (specimen .9(A)), however, lower dowel
bar forces of about 4.1 and 5.6 kips exist at the diagonal crack in the

double and the single layer, respectively (see Fig. 4.65 (d2)), because

cycling weakens the DA mechanism. Negative dowel forces found for lower

biaxial tensions (positive direction of dowel forces is shown in Fig.

4.63) indicate that in that reinforcing direction the assumed resisting

forces are larger than the applied forces. This means that either not

all the bars are yielding (in the weak reinforcing direction of the

single layer) or no yielding at all takes place (particularly in the

strong reinforcing direction of the double layer of bars).

As shown in Fig. 4.65, the development lengths of the bars crossing

the inclined crack are shorter for those bars further away from the sides

of the specimen. Thus, it is more likely (especially at low biaxial

tension levels) that an assumption of partial yielding would be more

realistic than that of full yielding. A linear distribution of the axial

bar forces is postulated assuming yielding only in the bar (single layer)

or pair of bars (double layer) with the largest development length. The

corresponding free body equilibrium diagrams for selected specimens and

the applied and resisting forces assuming partial yielding in the steel

are shown in Fig. 4.66. The dowel forces calculated are given also in

columns 10 and 11 of Table 4.I. As expected, larger dowel forces are

needed in this case since the net axial forces in the bars resisting

the applied shear load (columns 12 and 13) are smaller than those in the

case of simultaneous yielding in' all bars. For biaxial tension of 0.9fy

similar results are found in both cases because the bar forces are only

. .. .

_ _ _ _ _ - - _ _ .
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within 10% of the yield strength and simultaneous yielding in both

directions is very possible. This was also confirmed experimentally.

The crack opening was practically uniform along the diagonal failure

crack in the case of the 0.9f tension. . As the biaxial tension decreased,y

the crack opening became more uneven, being largest at the level of the

outermost bar in the single layer. This indicates that yielding was

probably initiated in that bar.

The shear forces of 9.2 and 10.9 kips per bar in the single layer

of specimen .9(M) calculated for full and partial yielding, respectively,

seem relatively high. Similar high dowel forces exist in specimens

.9(A),.9(B)and.9(C). A peak dowel force (parallel to the crack direc-

ticn) of about 8.1 kips is calculated using Dulacska's Eqn. 4.20 for a

No. G bar inclined 45 degrees to the crack with no tension (12 kips for
|

a No. 6 bar n" mi to the crack). Therefore, considering the degrading

effect of the extremely high tension of 0.9f ~and the fact that the sheary

force in the bar at zero tension would.be smaller than the above estimated

value of 8.1 kips (about 8.1 cos45 = 5.7 kips), it does not seem possible

that DA alone could resist those high shear forces at yielding. Other

mechanisms must be present. Interface shear transfer in the concrete,

although possibly present at low biaxial tension when the failure diagonal

crack widths are much smaller, is not likely to be mobilized at 0.9fy
.bar tension with crack openings larger than 0.10 in. near failure. The

only possible mechanism that could be present in addition to DA is

kinking of the No. 6 bars due to the above large crack openings (see Fig.

| 4.63).
|
|'

[ .

'

;
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Assume the reinforcing bar is inclined to the crack direction (see,

Fig. 4.64). As the crack width increases under the application of shear,

the bar adjacent to the crack would tend to remain perpendicular to the

separating crack surfaces. The same could happen to a rebar normal to

the crack direction due to a shear slip parallel to the crack. In both

cases, the so-called " kinking effect" causes a reorientation 0$ of the

bar axis at the crack,resulting in additional shear forces Ty sin 04 (see

Fig. 4.64), where the bar force at the crack Ty is roughly equal to the

assumed axial bar force Tj (Tj=Tycosej =Ty). This angle o due tog
~

kinking, assumed to be constant at the crack opening, is expected to
'

increase with increasing crack opening, inclination angle 6 of tha bar
4

; axis to the direction normal to the crack, and compressive strength of

concrete (progressive crushing and compacting of concrete under the bar

results in straightening of the bar) or with decreasing bar diameter.!

In Ref. 71,Lenschow and Sozen discussed the effectiveness of rein-

forcing bars inclined to principal stress axes as they investigated the

possibility of reorientation of the bars due to kinking. In their analy-
i

sis they assumed a secono order shape for the bent portion of the bar and

an increase of shear force due to kinking uniformly distributed over an

equivalent length te (see Fig. 4.67), and proposed the following expression

for 0

tans = c sin 6/t 0 (rad.) (4.118)
.

wd e

where c is the average crack opening of the diagonal crack.wd

Assuming also an equivalent uniform stress distribution of the

reaction forces (beam on an elastic fourdation) to the applied dowel4

- _ - _ _ _ _ - - _ _ _ - ._ . _ _ _ -
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shear force VDA (see Fig. 4.6/) and considering only the stress block

of length t , the following expression can be derived for te (see Refs.e

4 and 30)

L = 0.5 V /d e (I") (4*II9)
e df co

where V is the total dowel force at failure in kips, d is the bar
df

diameter in inches and c is the cube compressive strength of concrete
co

in ksi ( co " I'4 f')*
From Eqns. 4.118 and 4.119 we get

0 = 2c d sin 6/V (rad.) (4.120)
wd co df

In the above Eqn. 4.120,the dowel force at failure is proportional to d

and the yield strength of steel f . Thus, kinking is expected toy
i decrease with increasing bar size.

:

!
n j

Diagonal f
v

2 t* t* e\ 8 crack i:: ::: s;

|.. - i
--*,

Rebor
I f T'

,

:
Crushed V

| DA
concrete

i

!
;

I

Fig. 4.67. Single bar subjected to dowel force.

|
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For a No. 6 reinforcing bar, assuming a dowel force at failure of

5 kips, inclination angle 6 = 45 degrees and a =5.3ksi(ff=3.8ksi),co

the kinking angle e is estimated for different crack openings c Thesewd.

0 values together with the calculated shear forces due to kinking,V *
dk

T sine,for a bar force T equal to 53.6 kips (0.9f )are shown in Table 4.J.y

It can be seen that for a crack opening of 0.10 in. kinking of about
,

7 degrees is estimated. This woula result in about 6.5 kips additional

shear. Thus, the values of dowel shear forces calculated at a bar tension

of 0.9f , shown in Table 4.I, are justifiable if kinking in the barsy

is taken into account.

Table 4.J. Estimated values of kinking angle e and kinking shear
forces Vdk for a single No. 6 bar (f = 61 ksi, 6 = 45 degrees,y
f[ = 3800 psi, Vdf = 5 kips).

c
wd 0.010 0.020 0.040 0.080 0.10

(in)

1 1 3 5 7(degrees)

Vdk 0.9 0.9 2.8 4.7 6.5
j (kips )

:

Concluding, the second term of the right-hand side in the ultimate
"

strength Eqns. 2.7a and 2.7b (Chapter 2) 0.005 (pf -o) ry N

0.3(pf - o ) (f r .an average compressive strength of concretey N

.- - - --
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R

I

f' = 3800 psi), suggests that only about 1/3 of the total number of |

bars in the. weak reinforcing direction (single layer) is really effec-

tive in resisting the applied. shear near failure at all biaxial tension
.

levels. This confirms the fact (shown in Table 4.I, column 4), that
i

the active No. 6 bars in the single layer crossing the failure diagonal
1

crack are only three out of a total of eight bars. The above finding

also shows that the ultimate strength values predicted by Eqns. 2.7a and
:

2.7b are conservative. Because of the way the pure shear stress state'

was simulated by pushing and pulling on the corners of the specimens,

I half cf the total nominal shear applied on the corner (based on the

total cross-sectional area of the specimen) is resisted only by about'

1/3 of the total amount of reinforcement.

,

,
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CHAPTER 5

DESIGN CONSIDERATIONS FOR NUCLEAR SECONDARY CONTAINMENT VESSELS
,

Based on the experimental results of this work on the shear stiffness
- and strength of precracked orthogonally reinforced concrete panels under

- combined biaxial tension and membrane shear, implications in the design

of nuclear containment vessels are discussed in this chapter. First,,

the code criteria for the loading case of combined internal pressuriza-

-tion (p) and membrane shear (V) according to the current code provisions

are presented in Section 5.1. Typical reinforcing patterns and membrane

stresses in the wall of a containment vessel are included in Section 5.2.

Finally, tentative recommendations on the design of reinforced concrete

containment vessels with two-way orthogonal steel are given in Section
!

5.3.

i

5.1 Code Design Criteria for Combined Internal Pressurization and
Membrane Shear

|. One criteria load combination in the design of reinforced concrete

secondary nuclear containment vessels is the combined accidental internal
t

7
pressurization (p) plus shear forces generated by an earthquake (E). Ac--

cording to the current .,SME-ACI 359-77. code provisions for the design of-

concrete reactor vessels and containments (Ref. 6), the following factored

load combinations are considered:

a) 1.25Pa + 1.25Eo (Abnormal / Severe Environment loads)

b)-1.0Pa + 1.0Ess (Abnormal / Extreme Environmental loads)

345
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where P is the design internal pressure load (45 to 65 psi or 0.31 toa

0.45 MPa) and E , Ess are the shear loads generated by the operatingo

basis earthquake and the safe shutdown earthquake, respectively. In com-

puting the seismic response forces due to either the E or Ess. earthquake,g

only the dead load and existing live loads need be considered.

For the containment to be accepted as a safe structure, according to

Article CC-6200 of ASME Code on structural acceptance requirements, it
,

is subjected to an internal pressurization acceptance test. The internal

pressure is increased from atmospheric pressure to at least 1.15 times

the design pressure Pa and the structure is checked to assure that

a) No yielding develops in the conventional reinforcement as deduced

from crack width measurements and strain gage and deflection gage

data.
'

b) No visible signs of permanent damage have occurred to either the'<

concrete wall or the steel liner.

c) The deflection recovery at maximum expected deflection points
t

within 24 hours after depressurization is not less than 70% in

i reinforced concrete containment vessels (not less than 80% for

prestressed concrete containment vessels).

Due to the internal pressure p the concrete wall will first crack

in the vertical direction since the principal tensile hoop stress is twice

the-meridional principal tensile stress. Horizontal cracks will also form

separating the wall in a large number of concrete blocks held together by

the reinforcement and the internal steel liner. Under the above biaxial

membrane stress state the reinforcement crossing the orthogonal cracks

will be subjected to tensile stresses.

.- _ _ _ .
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According to the currently proposed revisions in the ASME-ACI 359-77

Code (paragraph CC-3421.5.1) by the ACI Joint Committee JC-6-87, the allow-

able shear stresses for the factored load combinations cT the Abnormal /

Severe Environmental and Abnormal / Extreme Environmental categories (see

page 345) carried by the interface shear transfer (IST) mechanism in the,

concrete, v , should not exceed 60 psi (0.41 MPa) provided thatc

a) The specified design compressive strength of concrete is not less

than 3000 psi (20.7 MPa).

b) The maximum loss by weight of the coarse aggregate is not higher

than 40% when tested according to ASTM C 131 requirements.

Otherwise v should not be higher than 40 psi (0.28 MPa).c

When the peak membrane shear stress due to the seismic forces vu is

larger than the above allowable shear stress vc in the concrete, diagonal

steel must be added to resist the remainder of the shear (vu-Vc). A
meridional and hoop reinforcing system may be used for the Severe Environ-

mental and Extreme Environmental loading categories (no biaxial tension)

provided that the peak membrane shear stress v is not higher than 8.5/fc'u

(470 to 540 psi or 3.24 to 3.73 MPa, for 3000 5 fc' 14000 psi or 20.7

5 f ' s 27.6 MPa). If v exceeds this limit, diagonal steel is requiredc u

and v should not be higher than 160 psi (1.1 MPa).c

Regarding the shear capacity of reinforced concrete containments, the

membrane tangential shear, v , allowed by the ASME Code is based on experi-c

mental results of isolated cracks with the shear resistance being provided

by the IST mechanism alone. The allowable shear stress values guarantee

negligibly small slip displacements rather than preclude failure in steel

(yielding) or the concrete (crushing). Also, the shear resistance
1

, , . _ _ . _



348

provided by the dowel action (DA) was not considered in determining the

limiting values for shear stresses. Thus, these recommended shear stress

values are expected to be very conservative.

The influence of biaxial tension and cyclic shear on the shear stiff-

ness of a containment is not dealt with in the code provisions.

5.2 Typical Reinforcing Schemes and Stresses in Containments

Typical dimensions for a secondary reinforced concrete containment

are shown in Fig. 5.1. A 1/4 to 1/2 inch thick steel liner plate is

T

1/2"to 1/4" / __,\
steel plate / s

'

liner i
{ j

| d i
I i

| | 200'-

ii4

4._. 5.'3 [ l 30' ,! 4_.5'
,
i i

reinforced ; | g
.

,,

concrete
wall

Fig. 5.1. Dimensions of a reinforced cone ete containment vessel.

anchored to the 4.5 ft. thick concrete wall to assure leak tight integrity

during the service life of the containment. The steel liner is not, how-

ever, counted on to provide additional strength. Reinforcement ratios be-

tween 0.015 and 0.025 are provided in the vertical and horizontal direc-

tions (the reinforcement ratio in the vertical direction is smaller than
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that in the horizontal direction). A representative orthogonal reinforc-

ing pattern in a containment wall consists of three and four layers of

No.18 bars spaced at about 16 in. in the vertical and the horizontal di-

rection, respectively.
'

In the case of two-way orthogonal reinforcement (horizontal and

vertical) and neglecting bending effects in the wall away from the base

of the cylindrical vessel, the following principal tensile stresses in

the hoop direction, oh, and meridional direction, o , can be calculated form

an internal pressure p equal to 50 psi (0.34 MPa), as shown in Fig. 5.2,
! oh = pR/t = 722 psi (4.98 MPa)

(5.1)
m = pR/2t = 361 psi (2.49 MPa)o

where R is the radius of the cylindrical _ vessel and t is the wall thickness.

P P j<
*- e ~

m
# #

h h
, e- --> >

&m
1 . 2R 1=

; e- ->

Fig. 5.2. Principal tensile stresses in the cylindrical wall of a contain-
ment due to internal pressure p.
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To be conservative, the dead load effect of the reinforced concrete contain-

ment wall on the meridional principal stress om (Eqn. 5.1) is not taken

into account.

Assuming that the steel ratios in the horizontal and vertical direc-

m * Ph/2 = 0.0122, respectively, astions are equal to ph = 0.0244 and o

chosen in the experimental program described in this report, the reinforc-
) ing bars will be tensioned to a stress equal to approximately 30 ksi. This

is about 50% of the yield strength of the steel.

I The membrane tangential shear stresses resulting from an earthquake

loading must be transferred across the existing orthogonal cracks by means

of the IST and DA shear transfer mechanisms causing shear slips at the
i
' cracks and shear distortion in the wall. As diagonal cracks start forming

at shear stresses as low as 75 psi (0.52 MPa), the diagonal tension mode

becomes the major means to resist the applied shear. This is basically

accomplished through the axial tensile forces in the reinforcement cross-

ing the cracks and the compressive forces resisted by the inclined struts
:
'

of concrete.

Normally a four-way reinforcing arrangement is used in the design of
|

reinforced concrete containments. Diagonal steel (No.18 bars) is placed
|

at 45 degrees to the orthogonal steel (hoop and meridional) to carry the

! remainder (vu - Vc) of the shear stresses in the wall. This inclined
steel requires continuously curved reinforcing bars which are expensive

! to fabricate as well as creating congestion problems. Therefore, the

elimination or at least the reduction of the additional diagonal steel

is highly desirable. Experimental results regarding the study of the ef-

fect of diagonal steel on the cracking distribution and the shear stiffness

|
!

;

-. _.
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and strength of biaxially tensioned reinforced concrete' panels by Conley,

White, and Gergely will be soon reported in Ref. 26.

5.3 Tentative Design Recommendations (Two-way Orthogonal Steel)

A major problem in the design of reinforced concrete containment v.es-

sels is to determine the level of shear stress that can be safely trans-

ferred in the cracked cylindrical wall without yielding in the reinforce-

ment. This was the failure mode in the biaxial tests conducted with either

No.6 (Cornell) or No.14 and No.18 bars (PCA). Another important design

aspect is to establish whether the use of a two-way orthogonal reinforcing

pattern (without diagonal bars) is a more efficient way to transmit shear

forces in precracked reinforced concrete vessels.

The experimental data on the shear capacity of precracked reinforced

concrete panels reinforced with No.6 bars and subjected to monotonic or

cyclic shear plus biaxial tension can contribute to improve the recommended

design values of peak membrane shear. The ultimate strength results from

the biaxial tests with No.6 bars are shown in Figs. 5.3a and 5.3b as a

function of the stress parameter ofy (1 - f /f ). In the above expression,s y

o is the steel ratio in the weak direction (yielding in the steel will

first occur in that direction) and f /f is the ratio of the applied ten-s y

sile stress to the yield strength of the steel (biaxial tension level).

The stress parameter of (1 - f /f ) denotes the maximum axial resistingy s y

force that the reinforcing bars could provide normal to the orthogonal

cracks before reaching their yield strength, as the applied shear stress

increases. Fig. 5.3b includes the effect of the compressive strength of

_
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Fig. 5.3. Lower bound values of ultimate strength as a function of the
stress parameter of (1-f /f ) in the biaxial specimens.s y
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concrete f ' on the ultimate strength v in terms of the shear stressc u

expression v /V. The biaxial tests by PCA (specimens MB1, MB3 and MB4u

with No.14 and No.18 bars) under monotonic shear (Ref. 96) are also' plotted

in the above two figures. Since the experimental data demonstrated that

the ultimate strength increases with increasing reinforcement ratio p or

decreasing biaxial tension level fs/f , the tentative recommended valuesy
'

for the ultimate shear v will be given as a function of the aforementionedu

parameter pf (1 - f /f )-y s y

Until additional data for critical reinforcement ratios larger than
-

O.0122 and results from the cyclic tests at PCA with larger size bars are'

available, the lower bound straight lines, shown in Figs. 5.3a and 5.3b,

can conservatively provide the recommended design values for shear strength

in the presence of biaxial tension between 0 and 0.9 f . The range of they

parameter of (1 - f /f ) is between 75 psi (0.52 MPa) and 744 psi (5.13y s y

MPa) for specimens with No.6 bars. For values of the above parameter of

less than 75 psi, it is assumed that the ultimate strength v decreasesu

linearly, becoming zero for p = 0 or fs = f . For of (1 - f /f ) largery y s y

than 744 psi, the allowable shear stress is set constant at 7 V or 400

psi (2.76 MPa), since no data exists to justify higher values. At these

high shear stress levels, which will correspond to either large values of

p or low biaxial tension levels, the compressive strength of concrete f 'c

could control instead of the yield strength of the steel.

According to Figs. 5.3a and 5.3b, the following values of ultimate

strength v are tentatively recommended:u

.

vu = 0.05 of (1 - f /f ) (psi) (5.2a)y s y
,

i

|

. .. . -. .. . >
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or

v * 2*9 Pf (1 - f /f ) (psi), for of (1 - f /f ) 5 75 psi (5.2a)
u y s y y s y

= [3.3 + 0.005 pf,(1 - f /f )} #f ' (psi)v s y cu

or
v = 200 + 0.27 of (1 - f /f ) (psi),

u y s y
(5.2b)for 75 < ofy(1 - f /f ) 5 744 psis y

and

u " 7#f ' (psi)v c

or
u = 400 (psi), for pf (1 - f /f ) > 744 psi (5.2c)v y s y

The above recommended values of v for biaxially tensioned orthogon-u

ally reinforced concrete panels are valid for initial crack widths at the

orthogonal cracks smaller than 0.020 in., compressive strength of concrete

in the range 3000 s fc' 5 4000 psi (typical of containment structures) and

Grade 60 steel. These allowable membrane shear stresses, although higher
i

than those given by the current code, are still considered to be conserva-

tive. The diagonal tension failure mode observed near a corner in the

biaxially cracked specimens causing yielding of the reinforcing bars is

not as likely to occur in the wall of a containment. The uncracked concrete#

blocks in the wall are restrained from moving.far apart, since the contain-

ment is a continuous cylindrical structure. Furthermore, the stress values

plotted in Fig. 5.3 are calculated on the entire cross section of the

specimen (288 in 2), while failure occurred in a corner of the specimen.

Also, the reinforcing bars in the hoop and meridional directions are not

tensioned Lat the same stress as it is the case in the experiments. In
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<

addition, due to the fact that the distribution of membrane shear stresses-

in a cylindrical 'shell is sinusoidal the shear stress will be zero at

some regions in the wall. Thus, the diagonal cracks forming in the wall

cannot propagate all the way around the periphery of the shell. Also,

the nonlinear response of the cracked wall and the overturning effect

which would close the cracks in one half of the shell and open them fur-

ther in the other half will result in redistribution of the shear stresses.
As a result, the inclined (diagonal) cracks will tend to be discontinuous

:

making it very difficult for a diagonal opening type mode to occur at

failure. Nonlinear finite element analysis including the effects of both

horizontal and vertical cracking has to be used to predict the actual

shear distribution in the cracked containment wall (see Ref.108). Also,

tests on models of containments are needed to study the combined effects

of seismic shear and internal pressurization and correlate these findings

with the results on isolated flat specimens reported in this report.

Values of the shear modulus G for the cracked vessel usually used
'

er
in design range between 0.4Go to 0.6G , where G is the shear moduluso o

of uncracked concrete. In the concrete panels reinforced with orthogonal

steel only (No.6 bars) the effective tangent shear modulus in the cracked

stage and prior to the yielding of the steel was found to be about 0.05Go
to 0.07G , for biaxial tension larger than 0.3fy and shear stresseso

higher than 125 psi. For low values of fully reversing cyclic shear

(less than 50 psi), extremely low values for the shear modulus equal to

0.01Go to 0.02Go were measured. At least for intermediate shear stresses

during the 1st load cycle, no appreciable influence of the level of bi-

axial tension on the tangent shear modulus was evidenced. The secant

!
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shear modulus, on the other hand, decreased with increasing applied tension

in the reinforcing bars due to larger total shear deformations occurring

at larger crack openings.

The rate of degradation increased with shear cycling and increasing

shear stress level. All this indicates the severity of the cracking in

the concrete mainly due to the simultaneous action of biaxial tension and

shear that produced diagonal cracks in addition to the already existing

orthogonal cracks. Therefore, the response of structural elements such as

the steel liner and the anchors supporting it,on the concrete wall should
i be carefully studied and the possible implications in controlling the large

shear deformations should be reconsidered. The low shear stiffness of the

concrete will result in a substantial transfer of shear forces into the

liner. Thus,, the composite behavior of the wall and the liner under re-
,

j versing shear and biaxial tensile loads has to be investigated. Of course,

the actual distribution of shear stresses around the circumference of the,

; vessel and the frequency content of the seismic excitation will have a

major influence on the effect of shear deformations on the stresses and

strains in the steel liner.^

Cycling at the same peak shear stress decreased the area contained

under the experimental shear stress-shear strain hysteresis loops, par-I

j ticularly at the initial cycles. Thus, the effective hysteretic damping

decreased initially with a tendency to stabilize after 10 load cycles at

. the same peak shear stress. The above factors plus the highly nonlinear
J

hysteretic response can have significant implications in a dynamic analy-

sis of a containment structure (see Refs. 47 and 108).
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Concluding, it should be pointed out that the upper shear stress

limit of vu = 8.5 V, recommended in the ASME-ACI 359-77 Code for no

biaxial tension, appears relatively high unless steel ratios above 0.025

are used. Furthermore, at this stress level the resulting shear deforma-

tions would be very high. For zero biaxial tension and reversing shear

(assuming fy = 60 ksi), Eqns. 5.2b become as follows

:

i u = (3.3 + 3000) (psi)v

or
(5.3)

v = 200 + 16200p (psi)u

For a typical steel ratio of p = 0.015, Eqns. 5.3 result in ultimate
strength values of about 7.8 /f ' or 440 psi (3.04 MPa). However, ac

'

more realis cic case of loading would be that of combined biaxial tension

of 0.6f and reversing shear, as described in Section 5.2. In this casey
,

and for f = 60 ksi and p = 0.015, Eqns. 5.2b result in much lower ultimatey

strength values of about vu = 5 V or 300 psi (2.07 MPa). Before more

final recommendations can be suggested regarding the upper limit of the

membrane tangential shear stress in reinforced concrete containments,

additional information is needed from parallel research programs on shear

; transfer.

The results.of the research program at PCA on cyclically loaded speci-

mens with No.14 and No.18 bars are necessary to avoid unconservative pre-

dictions by extrapolating design values from experiments with relatively
small size bars, such as No.6 bars. Mso, tentative recommendations on

four-way reinforcing patterns will be contained in a companion NRC report
*
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on additional NRC-sponsored experiments (Ref. 26). - Based on the 'above

I studies, provisions on the limitation of shear deformations in containment

! -walls' depending on the biaxial tension level have to be incorporated in

j the ASME Code.
i
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CHAPTER 6

CONCLUSIONS AND COMMENTS ON FUTURE RESEARCH NEEDS

6.1 Conclusions

The major accomplishments of this research work are summarized here:

a) The effective shear stiffness of precracked concrete panels ortho-

gonally reinforced with No.6 bars and subjected to simultaneous

biaxial tension and shear (monotonic or fully reversing cyclic) was

determined. This evaluation of the effective shear modulus of

cracked concrete will contribute to an improvement in the static

and dynamic analysis of similar structural elements loaded in mem-

brane shear.

b) Ultimate strength interaction curves were established for monotonic

and cyclic shear with simultaneous biaxial tension. The ultimate

strength was expressed as a function of the applied bar tension,

which was held constant in both orthogonal reinforcing directions

during the application of shear. The effect of cycling on the

ultimate strength was also determined.

c) An engineering model was formulated to predict the shear stress-

shear strain relationship of the cracked reinforced concrete

panels with orthogonal steel. Shear resistance is provided by the

interface shear transfer and dowel action mechanisms, when only

orthogonal cracking is present, and by axial forces in the rein-

forcing bars and compressive strut action in the concrete after

diagonal cracking becomes the predominant mode of deformation.
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d) The observed failure mechanism under combined shear and biaxial

tension is described and the relative amounts of tensile stress,

dowel force, and kinking effect in the reinforcement are estimated'

performing free body equilibrium analyses under failure load con-

ditions for all specimens.

e) The initial extensional stiffness in the two reinforcing directions

is given, based on a series of axial tests with No.4 and No.6 em-

bedded bars. Thus, the average initial crack widths corresponding

andto the preselected biaxial tension levels of 0, 0.3f , 0.6fyy4

0.9f can be indirectly estimated also.y

Based on the experimental study of biaxially tensioned orthogonally

reinforced concrete panels with No.6 bars subjected to simulated seismic
,

membrane shear, the following main conclusions are drawn:'

Strength:

1) The major failure mode is diagonal opening along an inclined crack

forming near the corner that is loaded in tension from the equivalent shear
i

i loading, and not that of sliding along an orthogonal crack. The shear

I capacity appears % be governed by yielding in the reinforcement of the

single layer (weak direction with p = 0.0122) at least for values of

of (1 - fs/f ) up to 744 psi. No data is available for values of thisy y

stress parameter higher than 744 psi; at some higher transition level, con-

crete. compressive strength could control. Until additional experimental

under cyclic loadingevidence becomes available, the peak shear stress vu

should not exceed 0.1 f ' to assure yielding of the steel prior toc

splitting or crushing in the concrete.

.

-- - ,
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2) For-pf equal to 744 psi (5.13 MPa) in one direction (single layer)y

and twice as much in~ the orthogonal direction (double layer) the peak mono-

tonic shear v decreases approximately linearly with increasing biaxialu

tension in the orthogonal steel. The mean values of v are given by theu

following straight line ' relations:2

'vu (monotonic) = (8.5 - 4.0 f /f ) If7, s y

or (6.1)

vu (monotonic) = 510 - 220 f /f (psi)s y

This corresponds to a peak shear of 8.5 V or 510 psi (3.52 MPa) at

zero tension (after specimens were precracked) decreasing to a value of

about 5 /f ' or 310 psi (2.14 MPa) at 0.9f applied tension in the rebarsc y
d'".-ing the application of shear.

3) A reduction of about 15 to 20% in shear capacity (relative to the

monotonically loaded specimens) is caused by a fully reversing cyclic

shear. Ten fully reversing load cycles were applied at each prespecified

; peak shear _ stress level, _beginning at a shear stress of 125 psi (0.86

MPa) and increasing to higher levels in increments of 50 psi (0.34 MPa).

The mean ultimate strength values v under cyclic shear also decrease
u

'

linearly with increasing tension and are given by the following relations:

vu (cyclic) = (7.4 - 3.7 f /f ) /f '3 y c

or (6.2)

.vu (cyclic) = 428 - 200. fs/f (psi)y

i

- . - - - - ,



_ _. _ _ _ _ _ _ _ _ _ _

|

362

A maximum shear of 7.4 /f ' r 430 psi (2.97 MPa) at zero tension decreases
c

to about 4 /f ' or 250 psi (1.72 MPa) at 0.9f . The difference betweenc y

the ultimate strength for monotonic and cyclic shear is approximately 75 ,

psi (0.52 MPa).

4) A lower bound expression for design ultimate strength, given in

terms of pf , V, and the ratio f /f , is shown in Fig. 5.3.y s y

5) Free body equilibrium analyses were performed for all specimens

at the ultimate shear load assuming simultaneous yielding in the reinforce-

ment in both orthogonal directions and no interface shear transfer in the

concrete along the failure diagonal crack, where crack openings larger

than 0.05 in. were evidenced. To satisfy equilibrium, dowel forces of

about 6 kips per bar in the double layer and 9 kips per bar in the single

layer were calculated for specimen .9(M). With decreasing applied bar

tension, as shown in Section 4.4, the net resisting axial forces in the

bars increase, and as a result smaller dowel forces are needed to transfer

the applied shear. The better bond transfer at low applied tensions, due

to less deterioration of the concrete near the bars, can indeed enhance

the ability to transfer shear by means of axial forces in the bars inclined

to the diagonal cracks. It is experimentally confirmed that the number of

active bars resisting the applied shear in the weak single layer direction

increases with decreasing biaxial tension. That is, the inclination angle

of the failure crack to the horizontal (single layer direction) increases

from about ~45 degrees to about 60 degrees with decreasing bar tension

from 0.9f to 0, respectively.y
6) At biaxial tension higher than 0.6f , kinking of the bars is pos-y

sible'for. diagonal crack openings larger than 0.05 in. For a diagonal

.

.- m
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crack inclined at 45 degrees to the horizontal and with an average crack

opening of about 0.10 in., kinking of about 7 degrees is estimated for a

No.6 bar. This corresponds to a shear force provided by the bar at the

crack of about 3 kips with the bar tensioned to 0.9f , an appreciabley
force compared with the dowel force wdues given in the previous paragraph.

7) The ultimate shear stresses v measured in the present tests areu

conservative because they are based on the total cross-sectional area of

the specimen and failure occurred along a diagonal crack. Since the pure

shear stress condition is approximated by pushing and pulling on the cor-

ners, half of the total shear applied at each corner is resisted in each

direction by the axial and shear forces in the bars crossing the failure

crack. However, according to the equilibrium checks, the number of rein-

forcing bars resisting 50% of the total shear corresponds to about 25 to

30% of the total amount of steel in the same direction.

Cracking and stiffness behavior:

1) Orthogonal cracks that formed during the application of biaxial

tension follow very closely the reinforcing pattern of the specimen. This

shows that the spacing of the transverse reinforcing bars in orthogonally

reinforced concrete panels plays a significant role in the formation of

the cracks produced by tension in the bars.

2) Diagonal cracking occurs at relatively low shear stress levels of

about 100 psi (0.69 MPa), and sometimes as low as 75 psi (0.52 MPa), and

causes further degradation of the shear stiffness as the shear distortion

increases with the opening of the diagonal cracks. This is a major reason

for the irreversible loss in shear stiffness and strength. The diagonal
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tension-compression strut system gradually becomes the prevailing shear

transfer mode that finally results in a diagonal tension opening failure
,

near a corner of the specimen.

3) Tangent extensional stiffness in the direction of the double layer-

is about twice that provided by the single layer, after the specimens

in both directions.were initially cracked at a bar tension of 0.6fy

Smaller average crack widths are calculated at the tension cracks normal
;

' to the double layer than those normal to the single layer. As a result,

more cracks (smaller crack spacing) are observed in the direction normal

to the double layer of No.6 bars. Residual crack widths of about 0.002

and 0.004 in. are estimated for zero tension in the orthogonal cracks nor-
t

mal to the double and the single layer of bars, respectively.

4) Measured effective shear n'odulus values in the cracked panels

under monotonic shear are less than 10% of that for uncracked concrete

j (G ). The biaxial tension level does not seem to affect the tangent shear
o

:|

modulus, which remains approximately constant at about 0.05Go to 0.07G'

o

for intermediate shear stress levels. For shear stresses less than 50

i psi (0.34 MPa), dowel action is the major shear transfer mechanism until

the interface shear transfer mechanism is mobilized as the two crack sur-

faces come closer to each other.

5) Reversing cyclic shear and an increase in the peak shear stress

level results in progressive degradation of the shear stiffness due to

increased diagonal cracking, especially for lower biaxial tension levels.
,

Cumulative gains in shear deformations of about 10 to 20% were measured

at selected peak shear stress levels after 10 full cycles of reversing,

shear. At high tensions the increase in deformations is approximately

~ - - .-
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constant, becoming higher near failure. An approximately constant 5%

increase was recorded at the end of the 2nd cycle at a peak shear stress

level lower than 0.8 times the shear capacity. Changes in the peak shear

stress are more critical in lowering the shear stiffness at biaxial ten-

sion levels higher than 0.6f .y

6).For cyclic shear stresses less than 50 psi, extremely low shear

rigidity values of about 0.01G to 0.02G are measured with dowel actiono o

resisting most of the shear forces. As the shear stress increases,

slipping at the orthogonal cracks results in the mobilization of the com-

bined mechanisms of (IST + DA). Thus, the effective tangent shear rigidity

shows a significant increase for shear stresses larger than 50 psi. At

zero bar tension, a large decrease in the tangent shear stiffness from

about 0.45G down to 0.08G results after some 80 load cycles at selectedo o

shear stress levels. With 0.9f tension in the bars, the shear stiffnessy

remains practically constant at 0.04G , showing an insignificant influenceo

of cycling at these high tension levels. For shear stress ratios v/vu

less than 0.9, it is possible to have as much as 250% increase in average

peak shear deformations relative to the peak. deformation at 125 psi shear

stress. For shear stresses higher than 125 psi the unloading portion of

the shear stress-shear deformation curves is almost vertical, exhibiting

large residual deformations at zero load.

General:

1) The area under the hysteresis loops for shear stress reversals

decreases initially with an increasing number of cycles and seems to remain

essentially constant after at least two load cycles have been completed.
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Thus, cycling leads to a reduction in the ability to absorb energy during

cracking, which in other words means a decrease in the effective hysteretic

damping of the structure. This is very important for the dynamic analysis

j of the cracked containment wall under a simulated seismic loading.
|

2) The effect of diagonal steel will be determined after additional

tests at Cornell Universitv are completed. Also,the results from the ex-

perimental work at PCA on larger scale specimens subjected to cyclic shear;

|
are needed to determine any potential splitting effects of large size bars.

!
,

6.2 Coments on Future Research Needs
1

The following suggestions for further research related to the shcar

transfer phenomenon are outlined here:

1) The results from the experimental study currently underway at

Cornell on the effect of smaller size bars (No.4) as orthogonal steel, as

well as the influence of additional diagonal bars on the shear stiffness

and strength of similar specimens, will be reported soon (see Ref. 26).

The results from PCA's larger scale tests under cyclic shear are also

| considered to be essential in formulating final design guidelines.

| 2) The effect of lower peak shear stress levels after an application

of relatively high shear stresses should be studied more extensively, par-

ticularly for determining the shear rigidity of the specimen. A similar

type of loading may occur during an earthquake.

3) The composite action of the concrete containment wall and the steel

liner under combined biaxial tension and cyclic shear has to be given

further attention. The low shear stiffness values observed in the present
;
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tests raise the question of structural integrity for the steel liner which

is forced to undergo the same shear distortions as the concrete wall. In

addition to theoretical studies, experiments can be cenducted on flat con-

crete specimens with a steel plate anchored on one side. That way the

actual response of a cracked containment would be more accurately modeled.

4) More strain measurements on the reinforcing bars are needed at

locations near expected cracking to measure the actual bar tension in-

creases during the application of shear. Since the exact position of the

orthogonal cracks is not known, probably the best approach would be to

mount the strain gages on the rebars at distances equal to the spacing of

the transverse bars. By instrumenting two bars in each direction a good

estimate of the average tensile stresses in the steel at the cracks can be

achieved.

5) A study of the possible shrinkage effects on the residual strains
,

and stresses in the concrete prior to the application of shear is very

important. The influence of the specimen size, casting method and curing

conditions on shrinkage cracking should be probably taken into considera-

tion. This may help explain the soft response evidenced at the initiation

of shear loading.

6) Experiments conducted on specimens with two-way reinforcement but

i with tension applied to the bars in only one direction will provide data

to help determine the effect of initial cracking on shear stiffness and

strength. The effect of initial compression can also be studied on pre-

stressed flat specimens, so that the degrading influence of diagonal

cracking alone (no orthogonal cracks) on the shear rigidity of the struc-

ture can be investigated.

.
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.7) The experiments performed at Cornell and elsewhere to study the

effect of reversing cyclic shear are performed under static shear loads.

A true dynamic loading, such as a simulated earthquake excitation of

specific frequency, would provide important information on the actual re-

sponse of a containment. This type of loading might further reduce-the

-shear stiffness, since the frictional component of the IST mechanism is

expected to b~ecome less effective. The observed dynamic behavior from

these tests should be compared to the results of a dynamic analysis utiliz-

ing the experimental shear rigidity values in the biaxial tests. Additional

simulated dynamic tests on containment models would definitely complement

the above suggested work, helping also to identify the primary failure

mode in the containment wall under combined internal pressurization and

simulated seismic loading.

8) After additional data on the effects of parameters, such as rein-

forcement ratio, bar size, true dynamic loading, frequency level of the

excitation, and diagonal steel are available more rational design guide-
|

| lines for containments or other similar heavy-walled concrete structures

! can be established.

t

:

!

!
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Table A.1. -Test'results at peak shear stress levels for all specimens under combined biaxial' tension and -

shear, reinforced with No.6 reinforcing bars (all units are in (in x 10-3)).
t uestionable data, * Failure.Q~ Notes:

M0N0T0NICALLY L0ADED SPECIMENS

Shear .0(M) .3(M) .6(M) .9(M)
Stress
v(psi) C1 S1 C2 S2 ad C1 S1 C2 S2 ad C1 S1 C2 S2 ad C1 S1 C2 S2 ad -

;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |

i 25 - - - - - -0.8 2.3 ?.1 12.8 2 3 2 4 26 1 -11 0 5 83
50 3.3 - 0.' 1 2.0 0.9 5.8 - -1.2 1.2 -3.1 19.0 3 5 6 8 40 1 -13 -1 5 88

.

75 2.8 -0.6 1.8 1.5 10.3 - -1.6 1.0 -3.6 23.5 7 6 11 9 54 1 -13 -2 5 ~90
100 2.2 -1.3 1.7 2.3 15.3 - -1.8 -0.3 -3.9 28.7 8 6 15 10 64- 1 -15 -2 5 96
125 1.5 -1.9 1.6 3.0 20.0 - -1.9 -2.4 -4.3 36.2 9 6 18 10 72 1 -16 -3 5 101
150 1.0 -2.6 1.6 3.9 25.0 - -2.0 -2.8 -4.5 39.2 10 6 2010 80 1 -17 -4 5 109 M

*-'
175 0.6 -3.7. 1.4 4.4 30.2 - -2.0 -3.7 -4.8 44.6 11 6 2111 89 1 -18 -5 6 118
200 1.0 -6.1 0.7 4.2 37.4 - - 1. 9 -5.0 -5.0 51.9 11 6 2311 96 2 -19 -5 6 136
225 1.2 -7.9 0.1 3.9 42.2 - - 1. 7 -6.0 -5.2 59.9 12 6 23 12 104- 2 -20 -6 7 170
250 2.1 -10.2 -0.3 4.4 48.6 - -1.5 -6.8 -5.6 67.1 12 7 24 12 112 2 -20 -6 7 242'

275 2.1 -11.5 -0.4 2.6 52.4 - -1.3 -6.8 -6.4 71.8 12 7 25 12 123 2 -20 -6 7 318
300 1.6 -13.5 -0.7 - 1. 0 59.0 - -1.0 -6.6 -9.4 77.4 13 7 25 12 141 3* -18t -3t 7 441*-
325 1.6 -14.9 -0.7 -2.6 63.9 - -0.8 -6.7 -11.~1 81.0 13 7 25 12 182 - - - - ' -

350 1.6 -17.4 -0.9 -3.9 71.8 - -0.7 -6.8 -13.4 86.9 13 7 26 13 265 - - - - - -

375 1.6 -18.4 -1.9 -4.7 77.6 - -0.6 -6.8 -14.3 91.1 13* 7 27 13 401* - - - - - -,

i 400 1.4 -18.6 -3.5 -5.5 87.2 - -1.0 -3.4 -14.1 98.2 - - - - - - - - - -
t

425 1.4 -19.4 -4.4 -6.3 95.4 - -1.0 -2.6 -14.3 103.4 - - - - - - - - - -

450 1.8 -26.6 -5.7 -6.3 111.4 - -0. 7 0.3 -14.8 120.7 - - - - - - - - - -

! 475 1.9t -31.lt -6.5t -5.2t 145.0t - - 1. 0* 1.3 -15.2 156.2* - - - - - - - - - -

| 480 * - - * 200.0t _ ._ _ _ _ _ _ _ _ _ _ _ _ _ _

4

;
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Table A.1. (Continued)
- - _ - -

CYCLICALLY L0ADED SPECIMENS
Peak
Shear Cycle 1 Cycle 2 Cycle 10

Spec. Stress
No. v(psi) C1 S1 C2 S2 Ad C1 S1 C2 S2 Ad C1 S1 C2 S2 Ad

+25 3.5 -1.0 9.5 3.0 15.0 9.5 -4.0 13.0 6.5 30.0 16.0 -3.5 15.5 6.5 32.0
-25 7.5 1.0 10.0 4.0 17.0 11.5 0.5 ~15.0 5.0 18.0 15.5 1.0 17.0 0.5 15.0
+50 20.0 -5.0 19.5 7.0 34.0 22.5 -5.0 20.5 6.0 34.0 26.5 -5.0 21.0 5.5 33.0
-50 17.5 1.0 17.5 0.5 19.0 20.0 1.5 18.0 -0.5 22.0 21.0 2.0 18.5 -2.5 27.0
+75 27.0 - 5. 5 22.0 5.5 36.0 27.0 -6.0 22.5 5.5 38.0 31.0 -9.0 26.0 2.5 44.0
-75 21.5 2.0 18.5 -3.0 31.0 20.5 2.0 18.5 -2.5 31.0 25.0 2.5 21.0 -4.0 35.0

+100 33.5 -9.5 27.0 3.5 49.0 34.5 -9.5 27.0 3.0 47.0 37.0 -11.5 30.0 1.0 42.0
-100 24.0 2.5 20.0 -5.0 41.0 26.0 3.0 21.0 -5.0 47.0 24.5 3.5 21.0 -7.5 60.0 ,,

+125 37.0 -12.0 30.0 0.5 42.0 37.0 -12.5 30.5 -0.5 45.0 38.0 -15.0 32.0 -5.5 42.0 oo
"

.9(A) -125 26.0 3.5 22.0 -7.0 62.0 25.5 4.0 22.0 -8.0 66.0 21.5 3.5 23.5 -10.5 80.0
+150 38.5 -15.5 32.5 -7.0 46.0 39.0 -17.0 33.0 -9.5 44.0 41.5 -23.0 35.0 -20.0 46.0
-150 21.5 3.5 23.0 -11.0 82.0 23.0 4.0 24.5 -12.0 88.0 21.0 4.0 27.0 -14.5 108.0
+175 42.0 -23.5 35.5 -23.5 46.0 42.0 -24.5 36.5 -26.5 63.0 45.5 -28.5 36.5 -28.0 111.0
-175 20.5 5.0 27.5 -19.5 106.0 21.0 4.5 27.5 -20.5 107.0 17.5 3.0 26.5 -29.0 100.0
+200 50.0 -34.0 37.5 -30.0 140.0 54.0 -38.5 39.0 -31.0 155.0 54.0 -45.5 33.0 -31.5 187.0
-200 16.5 -1.5 29.5 -38.0 98.0 12.5 -1.5 26.5 -43.5 104.0 1.5 1.5 24.5 -61.0 -

t t f t+225 51.5 -48.0 35.5 -32.5 190.0 52.0t -49.0 34.5 -34.0 203.0 _ _ _ _ _

-225 -6.5 1.0 26.0 -65.0 200.0 -7.5t 1.0t 24.5t -67.0 198.0t _ _ _ _ _t
(the loading for Cycle 2 was not incremental)

____________________________________________________________________________________________________________

+125 5.5 -19.5 5.5 4.0 77.0 2.0 -21.0 7.0 2.5 78.0 3.0 -27.5 11.0 -4.0 83.0
-125 6.5 14.0 13.5 -12.0 63.0 5.0 14.5 15.0 -14.5 68.0 10.0 10.5 19.5 -23.0 85.0
+175 0.5 -32.5 10.5 -4.0 92.0 -1.0 -34.0 11.5 -8.5 81.0 -7.0 -45.0 13.0 -9.0 82.0

.9(B) -175 9.5 7.5 20.0 -25.5 94.0 9.5 8.5 21.5 -30.5 116.0 7.0 -1.0 24.0 -35.5 142.0
+225 -17. 5 -51. 5 14.0 -9.5 97.0 -33.0 -65.5 5.5 -8.5 136.0 - - -15.5 11.0 338.0
-225 4.5 1.0 26.0 -42. 172.0 -7.5 -2.5 24.0 -36.0 216.0 - - 21.5 -25.0 352.0
+275 - - -20.0 15.5 390.0 - - - - - - - - - -

______:2Zj___;_____;_____29g___1g!_p92g____;______;_____;______;_____;______;,____;_____;______;______;_,

_ - _ _
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Table A.1. (Continued )
_ _ _ _ _ _ _ _ _______________m___--_ ----

CYCLICALLY LOA 0ED SPECIMENS
Peak
Shear Cycle 1 Cycle 2 Cycle 10

Spec. Stress '

No. v(psi) C1 S1 C2 S2 ad C1 S1 C2 S2 ad C1 S1 C2 S2 ad

+125 -4.0 -20.5 - 12.0 62.0 -2.0 -20.0 - 12.0 58.0 -1.0 -22.7 - 10.5 50.0
-125 -2.0 7.0 - -5.5 40.0 -2.0 7.4 - -6.0 42.0 -3.0 5.0 - -4.7 50.0
+175 -2.0 -33.5 - 14.5 76.0 -1.5 -34.0 - 14.5 77.0 -0.5 -32.3 - 12.3 70.0
-175 -3.0 3.5 - -5.5 59.0 -3.2 4.0 - -5.5 61.0 -3.6 8.5 - -10.3 84.0

.6(A) +225 -1.5 -33.2 - 10.8 71.0 -1.5 -33.7 - 10.8 72.0 -1.7 -33.3 - 8.3 74.0
-225 -5.0 11.0 - -12.9 100.0 -5.1 11.3 - -13.2 103.0 -9.5 15.1 - -18.7 125.0
+275 -2.4 -33.9 - 8.8 84.0 -3.6 -35.8 - 8.7 93.0 -3.0 -40.3 - 9.5 131.0
-275 -10.5 15.7 - -19.3 134.0 -11.9 15.5 - - 20.5 142.0 -14.0 15.7 - - 24.5 175.0
+325 -5.5 -47.8 - 9.0 * - - - - - - - - - -

-325 -16.8 18.9 - -22.5 * - - - - - - - - - -

gg
____________________________________________________________________________________________________________ co

+125 13.0 -3.0 -3.0 1.0 27.0 13.0 -2.5 -5.0 -2.5 31.0 14.5 -3.0 -9.0 -9.5 40.0
-125 -7.5 4.5 1.0 -15.5 50.0 -6.5 4.5 3.0 -16.5 56.0 -7.0 2.5 3.5 -24.0 67.0
+175 15.0 -3.5 -9.5 -11.0 46.0 14.0 -4.0 -9.5 -12.0 49.0 -10.0 -6.0 -5.5 -19.5 51.0

.6(B) -175 -8.0 2.5 4.0 -26.5 72.0 -8.0 2.5 4.0 -27.0 76.0 -27.0 1.0 7.0 -32.0 93.0
+225 -12.0 -7.0 -5.5 -21.0 57.0 -12.0 -7.0 -5.0 -21.5 58.0 -20.5 -8.0 -4.0 -26.0 70.0
-225 -28.0 1.0 8.5 - 33.5 101.0 -28.0 1.0 8.0 -32.5 102.0 -29.0 0.0 9.0 -35.5 117.0
+275 -24. 5 -10.0 -4.5 -27.5 80.0 -27.0 -10.0 -5.0 -28.0 81.0 -13.0 -4.0 -4.0 -24.0 *

-275 -30.0 0.0 9.0 -35.5 129.0 -30.0 0.0 9.5 -35.0 150.0 -5.St _4.0t 3.0 -31.5t _*t

______________________________________________________._____________________________________________________
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Table A.1. (Ccntinued)-
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CYCLICALLY L0ADED SPECIMENS
I Peak.

Shear Cycle 1 Cycle 2 Cycle 10
Spec. Stress
No.-v(psi) C1 -S1 C2 S2 ad C1 S1 C2 S2 ad C1 S1 C2 S2 ad

+125 -1.0 -4.0- -1.0 3.0 30.0 -1.0 -3.0 0.0 3.0 34.0 -1.0 - 1. '0 0.0 4.0- 39.0
-125 0.0 3.0 7.0 2.0 13.0 -1.0 3.0 7.0 2.0 12.0 -1.0 3.0 7.0- 2.0 11.0
+175 0.0 -1.0 -1.0 5.0 48.0 0.0 0.0 -1.0- 5.0 51.0 0.0 1.0 -1.0 6.0 53.0
-175- 0.0 4.0 8.0 2.0 9.0 0.0 4.0 7.0 1.0 11.0 0.0 4.0 8.0 2.0 17.0
+225 0.0 2.0 -1.0 6.0 56.0 1.0 3.0 0.0 6.0 57.0 2.0 3.0 0.0 7.0 59.0'

.3(A) -225 -0.0 4.0 8.0 1.0 '23.0 1.0 4.0 9.0 1.0 26.0 1.0 5.0 9.0 1.0 32.04

+275 2.0 3.0 1.0 7.0 63.0 2.0- 3.0 1.0 7.0 64.0 2.0 2.0 1.0 8.0 72.0
-275 1.0 5.0 9.0 0.0 39.0- 1.0 5.0 8.0 0.0 41.0 1.0 6.0 8.0 2.0 45.0
+325 2.0 2.0 1.0 8.0 76.0 2.0 1.0 1.0 8.0 77.0 1.0 1.0 2.0 9.0 78.0 S$

#'

-325 -1.0 6.0 8.0 2.0 53.0 -2.0 6.0 8.0 2.0 57.0 -5.0 6.0 8.0 3.0 62.0
<

+375 1.0 1.0 2.0 9.0 80.0 0.0 2.0 2.0 9.0 80.0 - - - - -
'

-375 -7.0 6.0 8.0 2.0 72.0 -7.0 6.0 8.0 2.0 78.0 - - - - -

i - ____________________________________________________________________________________________________________

+125 2.0 0.1 4.8 -4.2 29.0 2.0 0.5 5.9 -3.9 30.0 2. 0 0.4 6.0 -4.4 37.0
-125 0.0 0.0 5.8 1.3 10.0 0.0 0.5 6.9 1.4 10.0 0.0 0.2 7.6 2.4 14.0
+175 2.0 0.4 5.9 -4.8 44.0 2.5 0.4 6.3 -2.6 44.0 3.0 0.1 6.1 -0.6 45.0
-175 0.5 -0.4 7.4 3.6 20.0 0.5 -0.8 7.4 4.3 22.0 0.5 -1.5 7.1 5.6 27.0 ,

+225 3.0 0.0 6.1 -1.0 50.0 3.5 0.2 6.3 -0.8 50.0 4.0 0.5 7.4 -0.8 41.0
2 .3(B) -225 1.0 -1.7 7.1 6.3 32.0 1.0 -1.7 7.0 6.4 35.0 0.5 -1.6 4.0 7.5 43.0 -

+275 4.0 0.6 7.2 -1.4 45.0 4.0 0.9 6.9 -2.0 46.0 4.0 1.0 7.0 -2.4 44.0
-275 0.0 -1.6 1.6 8.3 48.0 0.0 -1.5 1.7 8.0 47.0 0.0 -2.3- 1.7 8.9 45.0
+325 4.0 1.2 7.0 -3.2 47.0 4.0 1.1 6.7 -3.7 48.0 6.0 0.3 7.4 -3.7 44,0

,

| -325 0.0 -3.1 0.0 9.3 53.0 -0.5 -3.7 -0.3 9.5 55.0 2.0 -11.5 0.6 9.1 68.0
+375 7.5 0.4 7.5 -4.4 49.0 8.0 0.7 5.5 -5.6 54.0 - - - - -

-375 3.0 -10.7 -0.8 10.0 82.0 2.5 -11.3 -0.5 9.1 92.0 - - - - -

__________________________________________________________________________________ _________________________
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Table A.1. (Continued)
__ __

CYCLICALLY L0ADED S P : C I M E N S-
,

Peak'

Shear Cycle 1 Cycle 2 Cycle 10
Spec. Stress-
No. v(psi)~ C1 S1 C2 S2 ad C1 S1 C2 S2 ad C1 S1 C2 S2 ad

+125 0. 7 ' O.3 -2.6 -3.1 2.6 0.2 0.5 -2.2 -3.5 4.6 -1.2 0.2 0.3 -5.3 5.2
-125 0.5 -0.5 5.9 6.2 18.6 -0.7 -0.6 6.6 7.0 19.6 -2.4 -0.6 7.7 7.8 19.6
+175 -2.0 0.1 -0.2 -7.7 8.4 -2.8 -0.2 0.4 -8,5 9.4 -2.8 -0.3 4.3 -11.4 15.9
-175 -5.1 -0.4- 8.8 8.5 19.4 -6.4 -0.4 8.7 8.0 17.8 -7.5 0.2 9.2 6.8 18.3 -

+225 -3.2 -0.2 4.7 -13.8 20.8 -3.0 -0.2 5.2 -14.3 21.6 -3.0 -0.5 6.3 -14.0 22.3
i -225 -9.7 0.4 9.6 7.7 20.0 -10.3 0.3 9.6 8.0 21.7 -10.3 -0.2 9.9 8.5 25.2
i .0(A) +275 -3.6 -0.7 6.0 -17.1 27.8 -3.6 -0.8 5.8 -17.3 29.2 -3.4 -0.7 6.3 -15.2 29.5

-275 -11.5 -0.7 10.3 8.0 31.0 -10.5 -2.1 10.4 6.9 33.6 -8.5 -3.6 11.0 7.7 35.1
+325 -3.7 -0.7 5.2 -18.4 36.1 -3.7 -0.7 5.0 -18.1 38.0 -2.5 0.1 4.5 -19.6 42.3 c8

'"-325 -9.3 -4.5 11.4 7.1 41.8 -8.9 -4.9 11.4 6.8 43.4 -7.6 -4.5 11.2 5.9 41.7
+375 -3.1 0.8 7.1 -17.1 46.1 -2.8 1.3 5.7 -21.8 51.5 -2.2 3.1 2.5 -48.7 73.6
-375 -9.3 -5.3 12.4 4.3 55.2 -9.6 -5.4 12.4 3.7 57.1 -8.4 -5.3 12.4 -0.6 62.9
+425 -3.4 3.5 2.8-206.5t 175.4* - - - - - - - - - -

-425 - - - - - - - - - - - _ - - _

____________________________________________________________________________________________________________

+125 2.6 2.6 11.9 4.1 24.2 2.6 2.4 12.7 4.1 26.2 2.3 2.4 13.2 4.6 25.2
-125 1.1 0.4 2.0 -0.3 15.7 1.2 0.3 2.2 -0.4 17.0 1.4 0.3 2.6 -0.6 18.0
+175 2.3 2.5 13.7 4.9 28.4 2.2 2.4 13.9 5.1 29.5 -0.8t 2.3 13.6 5.3 34.2
-175 1.5 0.2 2.2 -1.2 18.1 1.9 0.0 2.8 -1.5 18.0 1.7 -0.2 4.5 -1.4 18.6

.0(B) +225 -2.0t 2.1 13.7 5.7 38.2 -2.6t 1.8 13.4 6.2 39.0 -2.7t 1.3 13.6 6.6 42.3
-225 1.9 -0.7 4.2 -1.5 17.9 2.1 -0.9 4.1 -1.1 16.8 2.2 -1.5 5.3 -0.3 16.8
+275 -3.8t 0.7 13.6 6.9 46.6 -3.lt 0.1 13.6 7.4 45.6 -3.3t -0.2 13.1 7.5 48.2
-275 2.3 -3.1 4.6 -0.2 19.5 1.6 -3.9 4.7 0.3 20.4 1.7 -2.9 5.3 -0.4 20.2
+325 -3.7t -0.2 13.0 6.2 53.3 -3.8t 0.1 12.9 6.3 55.2 -3.7t -0.1 12.4 6.0 55.8
-325 0.4 -2.3 4.0 -0.3 24.4 0.7 -1.6 3.5 -0.1 26.5 0.4 -0.3 2.7 1.3 27.4
+375 -5.lt 0.7 12.2 6.3 68.3 -4.9t 0.9 12.1 6.5 63.4 -8.4t -1.0 11.0 5.6 69.7

____________________________________________________________________________________________________________

._ -_ _
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Table A.l. (Continued)
_ ________ ___ _ ___ _ __ _ __ _

CYCLICALLY L0ADED SPECIMENS
Peak
Shear Cycle 1 Cycle 2 Cycle 10

Spec Stress
No. v(psi) C1 S1 C2 S2 Ad C1 S1 C2 S2 ad C1 S1 C2 S2 Ad

-375 0.2 0.8 1.8 1.9 29.6 0.0 1.6 1.0 2.9 26.2 - (No Reading) -

.0(B) +425 -9.St -1.4 11.6 5.9 104.6 -8.8t -1.6 13.3 6.2 153.6
Cont. -425 - (No Reading) - - (No Reading) - (Failed at 3rd Cycle)
____________________________________________________________________________________________________________

0 - - - - 0
+125 - - - - 32.0
+150 - - - - 35.0
+175 - - - - 45.0

.9(C) +200 - - - - 53.0 $
'"

+225 - - - - 67.0
+250 - - - - 111.0
+250 - - - - 172.0 - - - - 301.0
-250 - - - - 136.0 - - - - 402.0

____________________________________________________________________________________________________________

0 0.0 0.0 0.0 0.0 0.0
+125 -2.2 5.1 -2.3 -6.4 23.9
+150 -1.8 6.3 -1.8 -6.9 28.8
+175 -1.8 7.2 -1.7 -6.9 31.8
+200 -1.7 9.1 -1.5 -6.4 37.8
+225 -0.1 10.3 -1.5 -6.5 43.4

.6(C) +250 0.9 11.6 - 1. 5 -7.1 52.6
+275 1.3 12.1 -1.4 -7.4 58.2
+300 2.5 13.6 -1.3 -8.0 82.8

'

+300 3.3 15.2 -0.8 -7.1 129.4 1.8 17.2 -1.3 -2.1 188.7

______2 -__ 1 ___ l_____ 1 __$ 1 __ _1 __'_ 1 ___ 1 __ _ ___'__I - I______{[a!!gdap_73h_Cyclg!______
' ' '

_
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CYCLICALLY L0ADED SPECIMENS
Peak
Shear Cycle 1 Cycle 2 Cycle 10

| Spec. Stress
'

No. v(psi) C1 S1 C2 S2 ad C1 S1 C2 S2 ad C1 SI C2 S2 ad

0 0.0 0.0 0.0 0.0 0.0
+125 2.4 -0.2 8.3 7.0 35.0
+150 3.4 -1.2 9.1 7.0 38.0
+175 3.9 -1.2 9.2 7.0 42.0
+200 4.4 -1.2 9.9 7.5 47.5
+225 4.7 -1.2 10.1 8.0 52.0
+250 5.2 -1.2 10.7 8.0 59.2

.3(C) +275 5.4 -1.2 10.9 8.0 65.2
+300 6.4 -1.1 11.9 8.5 73.0 8'
+325 6.7 -1.0 12.1 9.0 77.5 '"

+350 7.5 -0.6 12.6 9.0 87.2
+375 7.8 1.1 12.9 9.0 95.5
+375 9.3 -0.8 14.2 9.0 109.5 10.3 -4.6 16.5 8.5 116.5 11.8 - 17.6 7.0 240.0
-375 2.4 -3.6 -0.5 -7.5 60.0 -2.3 -12.6 -0.7 -8.0 76.0 -5.0 - -8.0 -7.0 230.0
+400 11.6 - 17.3 7.0 302.0
-400 * * * * *

____________________________________________________________________________________________________________

+25 0.1 0.2 -1.1 0.0 1.0
+50 0.1 0.2 -1.8 -0.3 2.6
+75 0.1 0.0 -2.5 -0.8 4.1

.0(C) +100 0.1 -0.3 -2.9 -1.1 4.7
+125 -0.1 -0.6 -3.3 -2.2 53
+150 0.1 -1.1 -3.8 -2.8 6.4
+175 -0.4 -1.6 -4.2 -3.5 7.8

____________________________________________________________________________________________________________



Table A.1. (Continued )
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CYCLICALLY L 0 .. D E D SPECIMENS
Peak
Shear Cycle 1 Cycle 2 Cycle 10

Spec. Stress
No. v(psi) C1 S1 C2 S2 ad C1 S1 C2 S2 ad C1 S1 C2 S2 ad

+200 -0.6 -1.9 -4.5 -4.2 8.3
+225 -1.4 -2.4 -4.6 -5.1 10.0
+250 -1.8 -2.8 -4.6 -5.7 13.4
+275 -2.2 -3.1 -4.6 -6.4 16.6

D(C) +300 -2.6 -2.9 -3.9 -7.1 21.7
Cont. +325 -2.7 -2.7 -3.4 -7.2 26.2

+350 -3.1 -1.6 -3.0 -7.8 31.8
+375 -3.1 .4 -2.8 -7.8 36.5
+400 -3.0 'i. 2t -2.3 -8.1 43.4 E8
+425 -3.0 -0.2t -1.9 -8,5 48.9

+425 -1.2 -0.8 1.9 -9.2 57.2 0.7 2.2 -4.7 -8.0 60.0 3.5 4.8 -12.8 -10.9 68.4
-425 3.5 1.8 -11.0 2.4 48.3 4.6 6.3 -21.0 3.7 52.5 8.7 9.0 -29.6 3.5 66.8
+450 4.1 4.9 -17.3 -12.8 74.4 4.6 3.6 -21.7 -13.4 76.1 6.5 f.0 -35.8 -14.0 84.2
-450 10.2 9.0 -33.7 3.5 72.6 10.8 8.9 -36.6 3.5 74.6 9.7 7.6 -65.0 -53.4 69.1
+475 9.6 3.6 -74.7 -92.0 132.4

_ _ _ - _ _ _ _
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MATHEMATICAL MODEL BY DUCHON (Ref. 29)

The governing equilibrium, compatibility and constitutive equations

for a typical wall element (see Fig. B.1) subjected to combined biaxial

tension (N , N ) and shear (V) are given as follows:y x

J kNy

| 3

T-Q ") a
^

4 3 =1 3=

4N -

[2
\c )

j NxE a-

g

ddealizedcracknattern
Reinforced cement

Fig. B.1. Typical reinforced concrete wall element,

a) Equ'ilibrium equations:
2 2 2

= pio; + p3 3 cos a3 + P4o4 cos a4 + ogy sin s (B.la)N /A 0y c

2 2 2
sin a3+P44 sin a4 + o y cos s (B.Ib)Nx/Ac*P22+P33 g

sin a cos a -o sinscos s (B.lc)sin a cos aV/Ac"P33 3 3+P44 4 4 gy

390
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where 99, og are the steel percentage ratios and the steel stresses in

the i = 1 to 4 directions, respectively, and A is the concrete shearing: c

area.

b) Compatibility equations:

2 2c; = ci cos 8 + c y sin 8 (B.2a)r

2 2cp = ci sin 8 + c;g cos 8 (8.2b)

2 2
c3 " CI cos (8-a3) + CII sin (8-a ) (B.2c)3

c4 = cy cosks-a)+c sinks-a) (B.2O4 yy 4

where e are the strain components in the i = 1 to 4 for the steel and inj

the i = I and II for the c'.ncrete (principal strains).

c) Constitutive equations:.-

Steel:

aj = cj s (i = 1 to 4) (B.3a)E

Concrete:

oy = 0 (tension) (B.3b)-

"Il " CII c (compression) (B.3c)E

where E and E are the Young's moduli for steel and concrete, respectively.s c

For a given value of the inclination angle 8 of the diagonal cracks,

.the unknown concrete strains ci and cgy can be calculated from any two equa-

tions (B.1), that represent a nonhomogeneous system. By an iterative

.
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process the correct value of 8 can be determined so that the third equation

.

is also satisfied.
1

In the case of an orthogonal reinforcing net (steel bars in the 1, 2

directions), which is pertinent to the present work, the above Eqns. B.1
:

to B.3 take the following form (see Fig. B.2).

|
!

lyAc

| = V/Acwg x

#f- hh
_ ,

il

Pry y

Fig. B.2. Equilibrium of applied and resisting stresses (orthogonal steel).

| a) Equilibrium:

2
| N/Ac" vPv+ II sin 8 (B.la)'
|

2
D cos 8 (B.lb)'| N /Ac " "h h + IIx

| V/A * ~ II sin 8 cos 8 (B.lc)'c
l

b) Compatibility:

sin 8 (B.2a)'= c; cos 8 + cygcy

2 2
l ch * 'I sin 8 + cgy cos 8 (B.2b)'
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!
l c) Constitutive:

E. oy = cy s

Ech " Ch s (B.3a)'
i

'

c1 = 0 (B.3b)'
'

r

E"II " CII e (B.3c)'
L

where directions 1 and 2 have been substituted with v and h, respectively.

Substituting the relations (B.3)' in the equilibrium Eqns. (B.1)' and
;

; utilizing the compatibility Eqns. (B.2)' we get the following set of equa-

tions
.

sin g , sin )2N p cos 8 (p
, y y y n

fCI
2SI" 8 (Ph cos g , cos ) (B.4)'N =AE Dx ss h n

'II
-sin 8 cos 8

V 0
) "

--

where n = E /E 's c

Solving for I and II from the set of the first two equations in (B.4)'
4

we find
,

cy (ph cos 8 + cos ) (-P SIU 8 - )n V AEcs

=h 2 N (B.5)x
gy -ph sin 28 p cos 8e y _j AEcs

A i

with a determinant D equal to

:
4

- , . , - , ,. .--,a- - m, - - .. .
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2 co
y y - Ph (B.6)D = p ch (cos 8 - sin 8) + p,

!

The principal concrete strains ci and cig for given applied external ;

loads fl ,tix (normal), and V (shear) are computed using Eqns. (B.5) so thaty

the third equation of (B.4)'

'II " sin 8 cos 8 A
'

s

1

is also satisfied for a certain value of the angle 8.

Knowing ci and c y the shear strain yvh is calculated from ther

relation

h * ('I - CII) sin 28 (B.8)v

:

. . - .
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