USER'S MANUAL FOR USINT

A Program for Calculating Heat and Mass Transfer in Concrete Subjected to High Heat Fluxes

James V. Beci
Richard L. Knight

Date Published: May 1980

> Sandia National Laboratories Albuquerque, New Mevico 87185 operated by Sandia Corporation for the U. S. Department of Energy
> Prepared for Division of Reactor Safety Research Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission
> Washington, D.C. 20555
> Under Memorandum of Understanding DOE 40-550-75
> NRC FIN Nos. Al054 and Al198

This report is a user's manual for the intelligent application of PROGRAM USINT which is for calculation of heat and mass transfer in concrete subjected to high heating rates. The describing differential equations for energy, mass transfer of water and CO_{2} are provided along with appropriate boundary and initial conditions. The concrete is considered to contain two basic regions: wet and dry. In the wet region, steam, CO_{2} and liquid water may co-exist but in the dry region there is no liquid water. There is also the possibility of a third region in which there is only liquid water and no gases. Decomposition of the concrete is treated by utilizing first order chemical kinetic equations; three reactions are assumed that treat evaporable water, chemically bound water and CO_{2}. A modified Clausius-Clapeyron equation is used as the equation of state in the wet region.

The finite difference representations of the partial differential equations are provided including details regarding several models for Darcy's law for two phase flow. The energy equation and certain mass transfer equations are essentially parabolic for which reliable techniques are known; a general implicit procedure is employed that contains the Crank-Nicolson approximation. These procedures permit much larger time steps that the explicit procedure utilized by others. For each time step a very efficient analytical technique is provided for the solution of kinetic equations.

A test case is included that also provides a comparison of the program with some test data. The temperatures, pressures and water release are compared and show excellent agreement. The complete program is available on microfiche card that is attached.
Table of contents
Page

1. Introduction 1-2
2. Description of Model $2-3$
2.1 Assumptions 3-4
2.2 Model for Dry Region 4-5
Energy Equations 5-7
Continuity Equations 7-9
Kinetic Equations 10
Porosity Equation 11
Dependent Variables 11
2.3 Model for Wet Region 12
Energy Equation 12-13Mass Transfer EquationsDependent Variables
13-1818
2.4 Interface Considerations 18-19
3. Finite Difference Equations 19-21
Energy Equation 21-24
Heat Flux Boundary Condition 24-26
Kinetic Equations 27-29
Mass Transfer Equation for Dry Region 29-32
Mass Transfer Equation for Wet Region 32-33
Interface Conditions for the Mass Transfer 33-35Equations
Pores Completely Filled with Liquid $(\theta=0)$ 35
4. Input Parameters 35-47
5. Test Case 47-52
Concluding Comments on the Analysis of Data $52-53$

NOMENCLATURE

```
        c
    c}\mp@subsup{p}{1}{}\mathrm{ - specific heat of water vapor
    c}\mp@subsup{p}{2}{}\mathrm{ - specific heat of }\mp@subsup{\textrm{CO}}{2}{
    D - Darcy constant defined by eq. (31b)
    E - Arrhenius activation energy
E
    G1 - related to orthogonal coordinates
    h}\mp@subsup{f}{g}{}-\mathrm{ heat of vaporization of water
    hi - related to orthogonal coordinates
\Delta h _ { 1 } , ~ - ~ c h a n g e ~ i n ~ e n t h a l p y ~ d u e ~ t o ~ f o r m i n g ~ v a p o r ~ f r o m ~ t h e evaporable water per unit mass of evaporable water
\(\Delta h_{1 "}\) - change in enthalpy due to forming vapor from the chemically bound water per unit mass of chemically bound water
\(\Delta h_{2}\) - change in enthalpy due to forming \(\mathrm{CO}_{2}\) gas per
\(k\) - thermal conductivity
K - permeability
\(\mathrm{K}_{\mathrm{A}}\) - Arrhenius frequency factor; see eqs. (13)-(15).
\(k_{\mathrm{r} \ell}\) - constant in Darcy's law for liquid water;
\(k_{r m}\) - constant in Marcy's law; see eqs. (7) and (20f)
L - initial length of concrete
p - total pressure in the pores
\(p_{1}\) - partial pressure of the water vapor
\(p_{2}\) - partial pressure of the \(\mathrm{CO}_{2}\)
```

```
            q - surface heat flux
            Q}\mathrm{ - heat source term
            R - universal gas constant
            R
            s}\mp@subsup{]}{1}{}\mathrm{ - source of free water; see eq. (9)
            \mp@subsup{\stackrel{S}{2}}{2}{-}
            \mp@subsup{s}{3}{}}\mathrm{ - source term for liquid water; see eq. (201)
            t - time
            T - temperature
            u - velocity
            U - temperature
            um
            u}\mp@subsup{3}{}{ - velocity of liquid water
        V voids - volume of the voids
            V
            x - coordinate measured from the heated surface
        \mp@subsup{\alpha}{1}{\prime}
        \alpha "" - chemically bound mass fraction
            \mp@subsup{\alpha}{2}{}}-\mp@subsup{\textrm{CO}}{2}{}\mathrm{ mass fraction
            \beta}k\mathrm{ - parameter in permeability relation given by ( }8\textrm{b}
            \varepsilon - porosity, see eq. (2c)
0}=\frac{\mp@subsup{V}{\mathrm{ vapor }}{}}{\mp@subsup{V}{\mathrm{ total }}{}- volume fraction of vapor; varies from 0 conly
            #m - viscosity of the mixture
            \mu
            p - density
```

```
    O
    \rho}\mp@subsup{1}{1}{- density of water vapor
    \rho}\mp@subsup{2}{2}{}\mathrm{ - density of }\mp@subsup{\textrm{CO}}{2}{}\mathrm{ gas
    \rho}\mp@subsup{\mp@code{3}}{}{-}\mathrm{ - density of water
\rho}\mp@subsup{\rho}{2}{}-\frac{density of (n concrete}{1n}\mp@subsup{\textrm{CO}}{2}{}\mathrm{ in its solid state bound
\rho
        evaporable water per unit volume of original
        concrete
\rho}\mp@subsup{1}{1\prime\prime}{\prime\prime}\mathrm{ - total mass of concrete that can be lost
        as chemically bound water per unit volume
        of concrete
    \mp@subsup{\rho}{2}{0}- total mass of concrete that can be lost
    \sigma - surface tension
```


User's Manual for USINT

1. INTRODUCTION

This report presents a model for heat and mass transfer in concrete, finite difference approximations of the equations of the model and discussion of a computer program (USINT) for solution of the finite difference equations. Comparisons of the temperature, pressure and water release predicted by the program and measured values are provided.

For the event of an hypothetical core disruptive accident (HCDA) in the current generation of fast reactors, the inherent retention capabilities of concrete and other construction materials must be understood. In an HCDA the high temperature liquid metal coolants and molten core materials are retained by a structure predominantly composel of concrete.

The major phenomena treated include 1) conductive energy transport, 2) chemical decomposition of concrete ind
3) two phase-three component heat and mass transfer of the decomposition products: steam, liquid water and carbon dioxide. Another unique aspect of the model is the provision for the porosity to increase as the water and CO_{2} are formed from the concrete.

In the numerical solution of several of the finite difference equations, an implicit approach is used. A parameter, n, is incorporated in the equations that permit the equations to vary from forward difference to backward difference approximations; if η is equal to 0.5 , a Crank-Nicolson type approximation is used. The equations using these approximations have dependent variables of temperature and partial pressure of the water vapor. Kinetic equations for the decomposition of the concrete are solved exactly for one time step to another assuming that the temperature is known for one time step to the next and varies linearly with time. This method of exact solution greatly reduces the computation thrt would be required

If the kinetic equationss were solved using finite differtnces. The implicit approach in the equations for temperature and partial pressure also has the great advantage over the explicit approach (forward differences) in that much larger time steps can be taken without stability problems.

The numerical procedure has other features that should be mentioned. One of these is that iteration at each time step is not required. In each step a particular order of solution of the equations is used and as the quantities for the next time step become known, they are introduced as needed for the quantities yet to be found. For example, the energy equation is first in each iteration. It produces the temperatures ar the next time which can be used in the decomposition equations and mass conservation equations. Another feature is that there are fixed nodes in the code even though there is a moving drywet interface. Such nodes are easier to consider because the derivation and programming of the equations is much easier than for moving nodes.

2. DESCRIPTION OF MODEL

Upon heating to sufficiently high temperatures the concrete decomposes with a resulting increase in porosity. At the lowest decomposition temperatures (about 350 K), evaporable water begins to be released. At the somewhat higher temperature of 600 K chemically constituted water begins to be significantly released. Above 900 K carbon dioxide gas is formed and released. The model to be described includes all three of these possible chemical reactions. Since the experiments to date usually have had concrete temperatures below 900 K , the emphasis in the computer program has been on the evaporable and chemically con-
stitutea water; though parts of the program considor CO_{2}, the program is not fully operational for CO_{2}.

In developing the mathematical description of the heat and mass transfer in terms of partial differential equations, equations of state and constitutive relations, the concrete is assumed to have two regions. The first is called a "wet" region in which water and steam coexist at the same pressure and temperature conditions. This occurs at the lower temperatures. The second main region is a "dry" region in which there is steam and CO_{2} gas--no liquid water is present. If one wishes to include air initially in the pores of the concrete, then it could be simulated by having an initial concentration of CO_{2} instead since the gas constants of air and CO_{2} are not greatly different. Until, however, USINT is checked out for CO_{2} this treatment of the air is not permitted by USINT but the equations to be given can be interpreted as including CO_{2}. A third region is for only water present. This region is usually quite small so that it is not treated by special treatment of che differential equations. Instead a simple constraint is used that is discussed below.

2.1 Assumptions

The major assumptions for the heat and mass transfer in concrete subjected to high heat fluxes are given below.

1. Concrete is idealized as being homogeneous and hence permits one-dimensional analysis provided the heating is uniform over the surface and the geometry can be considered to be a flat plate, long cylinder or other simple basic geometry in which a single space variable is sufficient. Concrete, in reality, is a complex, heterogeneous material in which the temperature and pressure distributions are three-dimensional even for simple basic geometries with uniform-in-space boundary conditions. Consequently, the dependent variables (temperature and pressure,
for example) are considered to be averages over space nomal to the space (independent) variable utilized.
2. Concrete is assumed to be a porous medium with connected pores. The porosity, initially uniform in the body, is postulated to increase linearly with the volume loss of evaporable water, chemi ally constituted water and carbon dioxide.
3. Local thermodynamic equilibrium is considered to exist between the solld concrete and any vapor or liquid passing through the concrete.
4. The liquid that may be present is water and it may move.
5. The water may evaporate or condense. When both water and steam are present, a special equation of state is used to relate the pressure and temperature. The relation is a modified form of the clausius-Clapeyron equation. This latter equation is not strictly valid because the pores are extremely small. 6. In addition to steam, CO_{2} may be present in the gaseous phase.
6. Dalton's law is valid.
7. The perfect gas law is used for both the water vapor and CO_{2}.
8. Darcy's law can be used for the water vapor, CO_{2} and liquid water. The water and the gases need not have the same velocity but the components of the steam- CO_{2} mixture have the same velocity. 10. The process is assumed to involve two regions: dry and et. In the dry region, only water vapor and CO_{2} exist in the pores while in the wet region the pores may contain water vapor, 11quid water and CO_{2}.
9. Mass transfer caused by one gas diffusing into another is neglected.

2.2 Model for Dry Region

The models are somewhat different in the dry and wet regions. In each region the basic equations include conservation of energy (one equation), conservation of mass (two equations, one for
water of both phases and the other for CO_{2}) and three empirical kinetic model: given by D. Powers (Ref. 1) for the decomposition events yielding volatile products. These three events are assigned to (a) loss of evaporable water, (b) loss of chemically bound water and (c) loss of carbon dioxide.

Energy Equation

The energy equation for the dry region includes net energy transport by conduction, rate of change in internal energy of the concrete, net energy transport by the moving fluid and a heat source term due to decomposition, condensation and/or evaporation. The energy equation is

$$
\begin{equation*}
\rho c_{p_{s}} \frac{\partial T}{\partial t}+\rho c_{p_{g}} u_{m} \frac{\partial T}{\partial x}=\frac{\partial}{\partial x}\left(k \frac{\partial T}{\partial x}\right)+\dot{Q} \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
\rho c_{p_{s}} & =\rho_{0} c_{p_{c}}(1-\varepsilon)+\varepsilon \rho c_{p_{g}} \tag{aa}\\
\rho c_{p_{g}} & =\rho_{1} c_{p_{1}}+\rho_{2} c_{p_{2}} \tag{2b}\\
\varepsilon & =\frac{V_{\text {voids }}}{V_{0}}=\text { porosity } \tag{2c}\\
\rho_{0} & =\text { initial density of concrete, } \mathrm{kg} / \mathrm{m}^{3} \\
V_{\text {voids }} & =\text { volume of the voids, } \mathrm{m}^{3} \\
V_{0} & =\text { total volume, } \mathrm{m}^{3} \\
c_{p} & =\text { specific heat, } \mathrm{kJ} / \mathrm{kg}-\mathrm{K} \\
k & =\text { thermal conductivity, } \mathrm{W} / \mathrm{m}-\mathrm{K}
\end{align*}
$$

```
T = temperature, K (In USINT, T is given the
    symbol U.)
x = distance measured from the heated surface, m
    = mixture velocity, m/s
```

The subscript 1 denotes water vapor and 2 denotes CO_{2}. The porosity ε is a function of time and position. The heat source term, \dot{Q}, is present mainly as result of the endothermic reactions involving the production of the CO_{2} gas and the water vapor; it is given by

$$
\begin{equation*}
\dot{Q}=-\rho_{1}^{0}, \Delta h_{1}, \frac{\partial \alpha_{1}}{\partial t}-\rho_{1 \prime \prime}^{0} \Delta h_{1}{ }^{\prime \prime} \frac{\partial \alpha_{1}{ }^{\prime \prime}}{\partial t}-\rho_{2}^{0} \Delta h_{2} \frac{\partial \alpha_{2}}{\partial t}+\frac{\partial(p \varepsilon)}{\partial t} \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \rho_{1^{\prime}}^{0}=\text { total mass of original concrete that can be lost } \\
& \text { as evaporable water per unit volume of original } \\
& \text { concrete, } \boldsymbol{k g}_{g} \text { free water } / \mathrm{m}^{3} \text { concrete }
\end{aligned}
$$

$$
\begin{aligned}
\alpha_{1},= & \text { evaporable water mass fraction; ratio of the mass } \\
& \text { of evaporable water converted to water to the mass } \\
& \text { of initially available evaporable water in the } \\
& \text { concrete, } \mathrm{kg} / \mathrm{m}^{3} \text { converted evap. } \mathrm{H}_{2} 0 \text { to } \mathrm{kg} / \mathrm{m}^{3} \text { initial } \\
& \text { evap. } \mathrm{H}_{2} \mathrm{O} . \\
\alpha_{1 \prime}= & \text { chemically bound mass fraction; ratio of the mass } \\
& \text { of chemically bound water converted to water to } \\
& \text { the mass of initially available chemically bound } \\
& \text { water in the concrete } \\
\alpha_{2}= & \mathrm{CO}_{2} \text { mass fraction; ratio of the mass of } \mathrm{CO}_{2} \text { in } \\
& \text { concrete converted to } \mathrm{CO}_{2} \text { gas to the initial mass } \\
& \text { of con in the concrete } \\
\mathrm{p}= & \text { total pressure in the pores, } \mathrm{N} / \mathrm{m}^{2}
\end{aligned}
$$

Continuity Equations

Conservation of mass equations are needed for both the water vapor and CO_{2}. The water vapor mass conservation equation for the dry region is

$$
\begin{equation*}
\frac{\partial\left(\rho_{1} \varepsilon\right)}{\partial t}+\frac{\partial\left(\rho_{1} u_{m}\right)}{\partial x}=\dot{s}_{1} \tag{4}
\end{equation*}
$$

The ciorsity ρ_{1} of the water vapor in a small void is the mass of the water vapor in this void divided by the volume of this void. This density is related to its partial pressure p_{1} and temperature T by the perfect gas law,

$$
\begin{equation*}
p_{1}=p_{1} R_{1} T \tag{5}
\end{equation*}
$$

where R_{1} is the Eds constant for water vapor. The total pressure p for both water vapor and CO_{2} gas being present is the sum
of their partial pressures,

$$
\begin{equation*}
p=p_{1}+p_{2} \tag{6}
\end{equation*}
$$

which is a statement of Dalton's law for this case. The velocity of the mixture of the water vapor and CO_{2}, u_{m}, is found using Darcy's law in the form

$$
\begin{equation*}
u_{m}=-\frac{k_{r m}}{\mu_{m}} K \frac{\partial p}{\partial x}=-\frac{k_{r m}}{\mu_{m}} K \frac{\partial\left(p_{1}+p_{2}\right)}{\partial x} \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mu_{m}=\text { viscosity of the } m i x t u r e, ~ \\
& \mathrm{~kg} / \mathrm{m}-\mathrm{s} \\
& p=\text { total pressure, } \mathrm{N} / \mathrm{m}^{2} \\
& \mathrm{~K}=\text { permeability }, \mathrm{m}^{2} \\
& \mathrm{k}_{\mathrm{rm}}=1 \text { for no liquid present }
\end{aligned}
$$

Many relations have been proposed for the permeability K in terms of the porosity ε. One of these is on page 141 of Scheidegger [2],

$$
\begin{equation*}
K=\frac{\varepsilon^{3}}{5 S_{0}^{2}(1-\varepsilon)^{2}} \tag{8a}
\end{equation*}
$$

which is called the Kozeny-Carman equation and where S_{0} is Carman's "specific" surface exposed to the fluid. This expression is used in USINT in the form

$$
\begin{equation*}
K=\frac{\varepsilon^{3} \beta_{K}}{(1-\varepsilon)^{2}} \tag{8b}
\end{equation*}
$$

where β_{k} is a constant to be found from tests by utilizing parameter estimation.

The source of the free water, \dot{S}_{1}, is the evaporable water and chemically bound water in the concrete; it is given by

$$
\begin{equation*}
\dot{s}_{1}=\rho_{1}^{0} \frac{\partial \alpha_{1}}{\partial t}+\rho_{1 \prime \prime}^{0} \frac{\partial \alpha_{1^{\prime \prime}}}{\partial t} \tag{9}
\end{equation*}
$$

There are several ways that the water vapor continuity equation, (4), can be written. A form is c° ssen for which the partial pressures appear explicitly. Introduc ...g (5), (6), (7), and (9) into (4) yields the water vapor continuity equation for the dry region,

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\frac{p_{1} \varepsilon}{R_{1} T}\right)=\frac{\partial}{\partial x}\left[\frac{p_{1} k_{r m} k}{R_{1} T \mu_{m}} \frac{\partial\left(p_{1}+p_{2}\right)}{\partial x}\right]+\rho_{1}^{0}, \frac{\partial \alpha_{1}{ }^{\prime}}{\partial t}+\rho_{1 \prime \prime}^{0} \frac{\partial \alpha_{1}{ }^{\prime \prime}}{\partial t} \tag{10}
\end{equation*}
$$

The primary dependent variable in (10) is p_{1}. If CO_{2} is not considered, then p_{2} is dropped in (10).

The continuity equation for CO_{2} for the dry region is

$$
\begin{equation*}
\frac{\partial\left(p_{2} \varepsilon\right)}{\partial t}+\frac{\partial\left(p_{2} u_{m}\right)}{\partial x}=\dot{s}_{2} \tag{11}
\end{equation*}
$$

which can be given in a similar manner as (10) by

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\frac{p_{2}^{\varepsilon}}{R_{2}^{T}}\right)=\frac{\partial}{\partial x}\left[\frac{p_{2} k_{r m} k}{R_{2}^{T \mu} m_{m}} \frac{\partial\left(p_{1}+p_{2}\right)}{\partial x}\right]+p_{2}^{0} \frac{\partial \alpha_{2}}{\partial t} \tag{12}
\end{equation*}
$$

Both (10) and (12) involve a first derivative of pressure with respect to time and a second derivative of pressure with respect to x. Hence, an initial condition and two boundary conditions are needed for each pressure. The equations display mainly a "parabolic" or diffusive character rather than predominantly an "hyperbolic" or wave behavior. They can be solved numerically in a similar way as the energy equation (1), which is also predominantly diffusive in character for the range of property values of interest. Both continuity equations and the energy equation are nonlinear so that a numerical method of solution is necessary.

Kinetic Equations

2
The kinetic equations describing the decomposition of the concrete have been given by Powers $[1]$. They are first order, Arrhenius rate equations,

$$
\begin{align*}
& \frac{\partial \alpha_{1} \prime}{\partial t}=K_{A 1},\left(1-\alpha_{1},\right) \exp \left(-E_{1}, / R T\right) \tag{13}\\
& \frac{\partial \alpha_{1 \prime} \prime \prime}{\partial t}=K_{A 1 \prime \prime}\left(1-\alpha_{1 \prime \prime}\right) \exp \left(-E_{1^{\prime \prime}} / R T\right) \tag{14}\\
& \frac{\partial \alpha_{2}}{\partial t}=K_{A 2}\left(1-\alpha_{2}\right) \exp \left(-E_{2} / R T\right) \tag{15}
\end{align*}
$$

where the subscripts $I^{\prime}, I^{\prime \prime}$ and 2 refer respectively to evaporable water, chemically bound water and CO_{2}. As before, T is temperature in degrees kelvin. The α^{\prime} s refer to the fraction of reactant decomposed and start at zero and increase to a maximum of unity. K_{A} is an Arrhenius frequency factor with units of $\mathrm{s}^{-1} ; \mathbb{E}$ is the Arrhenius activation energy $(\mathrm{J} / \mathrm{kg}) ; \mathrm{R}$ is the universal gas constant $(J / \mathrm{kg}-\mathrm{K})$; and t is time in seconds. The ratio E/R has been given by Powers [1] to be 5557, 20560 and 19362 K for evaporable water, chemically bound water and CO_{2}, respectively, for calcareous concrete used in Sandia's light water reactor safety program. The corresponding values of K_{A} are $21497,3.2864 \mathrm{E} 10$ and $3.296 \mathrm{E} 5 \mathrm{~s}^{-1}$.

The above constants are incorporated into the program but can be changed as better data become available. Since the values were obtained for concrete powders, at one atmosphere and at relatively low, constant rates of temperature rise, the values may not be accurate for solid concrete structures, up to eight atmospheres of internal pressure and for arbitrary and variable rates of temperature rise.

Poros1ty Equation

A relation between the porosity and certain dependent variables is also needed and is given in subroutine PORE. An assumption made by several investigators is that ε is constant. It is more reasonable to assume that it increases as the concrete decomposes. In USINT a ilnear relation between ε and $\alpha_{1}, \alpha_{1 "}$ and α_{2} is utilized. It is

$$
\begin{equation*}
\varepsilon=\varepsilon_{0}+\frac{p_{1}^{\prime}}{p_{3}} \alpha_{1^{\prime}}+\frac{p_{1}^{\prime \prime}}{p_{3}} \alpha_{1^{\prime \prime}}+\frac{p_{2}^{0}}{p_{2 s}} \alpha_{2} \tag{16}
\end{equation*}
$$

where ε_{0} is the porosity of the virgin concrete, ρ_{3} is the density of water and $\rho_{2 s}$ is the density of the CO_{2} in its solid state when chemically bound in the concrete. A relation such as (16) for the porosity predicts that ε can increase quite appreciably. For example, for magnetite concrete the initial porosity might be 0.047 but increases to 0.232 as a result of the evaporable and chemically bound water being formed. The CO_{2} decomposition would result in ε increasing substantially more. Thonguthai and Bazant $[3]$ have given an expression similar to (16) but even larger increases in ε are permitted by an additional multiplicative factor on the right hand side of (16).

Dependent Variables

There are six dependent variables for the dry region: T, $p_{1}, p_{2}, a_{1}, \alpha_{1}$, , and a_{2}. The porosity ε could also be considered a dependent variable but it can be eliminated by using (16). Also note that

$$
\begin{equation*}
\frac{\partial \varepsilon}{\partial t}=\frac{\rho_{1},}{\rho_{3}} \frac{\partial \alpha_{1} \prime}{\partial t}+\frac{\rho_{1 \prime}^{\prime \prime}}{\rho_{3}} \frac{\partial \alpha_{1 \prime \prime}^{\prime \prime}}{\partial t}+\frac{\rho_{2}^{0}}{\rho_{2 s}} \frac{\partial \alpha_{2}}{\partial t} \tag{17}
\end{equation*}
$$

which can be used in (10) and (12).

A recommended set of equations for the dry region 1 s the energy equation (1) which needs (2), (3) and (7); the continuity equations, (10) and (12); the kinetic equations (13), (14) and (15); and the porositv equation (16).

2.3 Model for Wet Region

In the wet region, water, steam and CO_{2} are considered to be in the pores.

Energy Equation

The energy equation for the wet region is

$$
\begin{equation*}
\rho c_{p_{s}} \frac{\partial T}{\partial t}+\left(\rho c_{p_{g}} u_{m}+p_{3} c_{p_{3}} u_{3}\right) \frac{\partial T}{\partial x}=\frac{\partial}{\partial x}\left(k \frac{\partial T}{\partial x}\right)+\dot{Q} \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho c_{p_{S}}=\rho_{0} c_{p_{c}}(1-\varepsilon)+\rho c_{p_{E}} \theta+\rho_{3} c_{p_{3}}(\varepsilon-\theta) \tag{20a}
\end{equation*}
$$

$$
\begin{equation*}
\theta=\frac{V_{\text {vapor }}}{V_{\text {total }}}=\text { volume fraction of vapor (including } \mathrm{CO}_{2} \text { gas) } \tag{20b}
\end{equation*}
$$

$$
\begin{align*}
\rho_{p_{g}} & =p_{1} c_{p_{1}}+p_{2}^{c} p_{2} \tag{20c}\\
u_{m} & =-\frac{k_{r m}}{\mu_{m}} K \frac{\partial p}{\partial x}=-\frac{k_{r m}}{\mu_{m}} K \frac{\partial\left(p_{1}+p_{2}\right)}{\partial x} \tag{20d}\\
u_{3} & =-\frac{k_{r \ell}}{\mu_{3}} K \frac{\partial p}{\partial x}=-\frac{k_{r \ell}}{\mu_{3}} K \frac{\partial\left(p_{1}+p_{2}\right)}{\partial x} \tag{20e}\\
\mu_{3} & =\text { viscosity of water } \\
k_{r m} & =1.1 \frac{\theta}{\varepsilon}-.1 \text { for } \frac{.1}{1.1}<\frac{\theta}{\varepsilon} \leq 1 \\
& =0 \text { for } 0<\frac{\theta}{\varepsilon}<\frac{.1}{1.1} \tag{20f}\\
k_{r \ell} & =\left(1-\frac{\theta}{\varepsilon}\right)^{3} \tag{20~g}
\end{align*}
$$

$$
\begin{align*}
\dot{Q}= & -\rho_{1}^{\circ}, \Delta h_{1}, \frac{\partial \alpha_{1} \prime}{\partial t}-\rho_{1 \prime \prime}^{\circ} \Delta h_{1} \prime \prime \frac{\partial \alpha_{1} \prime \prime}{\partial t}-\rho_{2}^{0} \Delta h_{2} \frac{\partial \alpha_{2}}{\partial t} \\
& -h_{f_{5}} \dot{s}_{3}+\frac{\partial}{\partial t}(p \theta) \tag{20h}\\
\dot{s}_{3}= & -\frac{\partial}{\partial t}\left[\rho_{3}(\varepsilon-\theta)\right]-\frac{\partial\left(\rho_{3} u_{3}\right)}{\partial x} \tag{201}
\end{align*}
$$

Expressions (20f) and (20g) are given by Scheidegger (Ref. 2, p.255).

The quantity θ defined by (20b) is the fraction of a lement of the total volume of the concrete that is occupied by vapor. If θ is equal to the porosity ε, the voids are only filled with vapor--that is, no liquid water is present. This is the case for the dry region. The other extreme θ value is zero. In this case the voids are completely filled with liquid water.

Mass Transfer Equations

The conservation equation for water vapor and liquid can be derived to be

$$
\begin{equation*}
\frac{\partial\left(\rho_{1} \theta\right)}{\partial t}+\frac{\partial\left(\rho_{1} u_{m}\right)}{\partial x}+\left[\frac{\partial}{\partial t} \rho_{3}(\varepsilon-\theta)+\frac{\partial\left(\rho_{3} u_{3}\right)}{\partial x}\right]=\dot{s}_{1} \tag{21}
\end{equation*}
$$

where \dot{s}_{1} is given by (9). Notice that the term inside the brackets of (21) is equal to the negative of \dot{s}_{3}, which is defined by (201). Using \dot{s}_{3} in (21), and putting \dot{s}_{3} on the right hand side indicates that the bracketed term can be considered to be a source term for a water vapor continuity equation; the \dot{s}_{3} term
would represent a source of $11 q u 1 d$ water.
If Darcy's law is introduced in (21), the water vapor and 11quid continuity equation becomes

$$
\begin{equation*}
\frac{\partial}{\partial t}\left[\rho_{1} \theta+\rho_{3}(\varepsilon-\theta)\right]=\frac{\partial}{\partial x}\left[K\left(\frac{\rho_{1} k_{r m}}{\mu_{m}}+\frac{\rho_{3} k_{r \ell}}{\mu_{3}}\right) \frac{\partial p}{\partial x}\right]+\rho_{1}^{0}, \frac{\partial \alpha_{1} \prime}{\partial t}+\rho_{1 \prime}^{0} \frac{\partial \alpha_{1 \prime \prime}^{\prime \prime}}{\partial t} \tag{22}
\end{equation*}
$$

An equation of state is needed in the wet region to
relate the pressure and temperature of the water vapor. A number of investigators have used the Clausius-Clapeyron equation for this purpose. One of these is Dayan $[4 \mid$ although he did not explicitly state how it was utilized. For a liquid being in equilibrium with its vapor, Ref. $|5|$ gives

$$
\begin{equation*}
\frac{d p}{d T}=\frac{p h_{f g}}{R T^{2}}=\frac{p h_{\mathrm{fg}}}{T} \tag{23}
\end{equation*}
$$

where the perfect gas law is used and the volume of the liquid is neglected compared to the volume of the vapor. The p in (23) is the partial pressure p_{1} of the water vapor and R is the water vapor gas constant. If $h_{f g}$ is independent of tre temperature $T,(23)$ can be integrated from $p_{1}=p_{0}$ to $p_{1 s}$ and $T=T_{0}$ to T to get

$$
\begin{equation*}
p_{1 s}=p_{0} \exp \left[-\frac{h_{f g}}{R}\left(\frac{1}{T}-\frac{1}{T_{0}}\right)\right] \tag{24a}
\end{equation*}
$$

The $\exp \left(\mathrm{h}_{\mathrm{fg}} / \mathrm{RT}_{0}\right)$ term could also be included in the constant before the exponential. If that is done, one can fit the recommended values given by Irvine and Hartnett $[6 \mid$ to within 2% between one and six atmospheres by the equation

$$
\begin{equation*}
p_{1 s}=4.76 \mathrm{ElO} \exp (-4872 / \mathrm{T}) \tag{24b}
\end{equation*}
$$

where $p_{1 s}$ is in N / m^{2} and T is in kelvin.

Unfortunately (24b) is not completely satisfactory as an equation of state inside the concrete even though Dayan $\lceil 4\rangle$ and others have been able to f1t the measured pressures fairly well using this model. Postma, McCormack and Schur $|7|$ have also matched their data with a model but their model includes more complex relations than the Clausius-Clapeyron equation. Postma et al relate the amount of sorbed water held in the concrete at any position and time to the local temperature and relative humidity $\left(p_{1} / p_{s}\right.$, where p_{s} is the saturation pressure for a given temperature and is given by $p_{1 s}$ of (24b).) In their view there are three water phasez that are in local thermodynamic equilibrium: vapor water, liquid water and solid water. (In the present model the same view is taken although the same terms are not used.) By vapor water is meant ordinary steam that fills a portion of the pores. Liquid water is ordinary unbound water also in a portion of the pores; in their view liquid water can exist only for relative humidities of unity. Solid water is water sorbed by the cement paste and they state that it includes gel water, capillary water and chemlcally bound water. (In the present paper "evaporable" and chemically bound water are considered.) In effect, the Postma et al $|7|$ relationships involving the sorbed (solid) water and a modified perfect gas relationship provide their equation of state; at least 6 empirical constants are involved.

Another approach similar to that taken by Postma et al $[7]$ is that due to Bazant and Thonguthai $\{3 \mid$. They give sorption 1sotherms (Fig. 2a in [3]) which are the free water to cement ratio versus relative humidity for fixed temperatures. They also use empirical relations, some of which were found using parameter estimation. The sorption 1sotherms have three riggions: relative humidities 0 to $.96, .96$ to 1.04 and finally larger than 1.04. Notice that Bazant and Thonguthai $[3]$ specifically include relative humidities greater than unity.

As pointed out by Bazant and Thongutha土 $[3]$ and azsc Whitaker $[8]$, the 11quid water being in extremely small capillaries has the effect of greatly increasing the pressure over that given by the Clausius-clapeyron relation unless the vapor-liquid interface is flat. When surface tension effects are important, one must take into account the effect of curvature and surface tension on the vapor pressure-temperature relation. In the capillary condensation region Defay et al 8, p. 237] suggest that $t . .3$ vapor 1 sotherms can be represented by the Kelvin equation in the form

$$
\begin{equation*}
p_{1 s}=p_{0} \exp \left(-2 \sigma / r \rho_{3} R T\right) \tag{25}
\end{equation*}
$$

Here r is the arius of the capillary meniscus and σ is the water surfa e tension. Whitaker $|8|$ combines the Kelvin equation and the usausius-clapeyron equation to get

$$
\begin{equation*}
p_{1 s}=p_{0} \exp \left\{-\left[\frac{2 \sigma}{r \rho_{3} R T}+\frac{h_{g}}{R}\left(\frac{1}{T}-\frac{1}{T_{0}}\right)\right]\right\} \tag{26}
\end{equation*}
$$

which has exactly the same explicit dependence on temperature T as does the Clausius-Clapeyron equation.

Rather than utilize the relatively complex relations for the equation of state given in $[3]$ and $[7]$, which are different and involve a number of empirical constants, it was decided to modify the clausius-Clapeyron equation. In the future as more consistent information becomes available a better equation of state can be introduced into computer program USINT.

For the lower temperatures an equation of the clausiusClapeyron form is chosen that gives approximately one atmosphere partial pressure at room temperature. The expression is

$$
\begin{equation*}
p_{1 s}=2.654 E 7 e^{-1594 / T} \tag{27}
\end{equation*}
$$

from the lowest temperatures to 437.6 K above which (24b) is utilized. At 286 K , (27) gives a partial pressure of about one atmosphere.

The steam density in the wet region is found by using the perfect gas law with the pressure replaced by either (27) for $T<437.6 \mathrm{~K}$ and (24b) above 437.6 K . More explicitly

$$
\begin{align*}
& \rho_{1}=C_{1} /\left(R_{1} T e^{C_{2} / T}\right) \text { for } T<437.6 \mathrm{~K} \tag{28a}\\
& \rho_{1}=C_{3} /\left(R_{1} T e^{C_{4} / T}\right) \text { for } T>437.6 \mathrm{~K} \tag{28b}
\end{align*}
$$

where $C_{1}=2.654 \mathrm{E} 7, C_{2}=1594, C_{3}=4.76 \mathrm{ElO}$ and $C_{4}=4872$.
Consider (22) again. The dependent variable is θ. The steam density is simply a function of temperature as indicated by (28). The water density ρ_{3} is also a function of temperature and is

$$
\begin{equation*}
\rho_{3}=1000 /\left[1+((T-273.15) / 475)^{2}\right] \tag{29}
\end{equation*}
$$

which gives water density values accurate to 2% to about 600 K . Even considerably below that temperature, our calculations (and measurements of others) indicate liquid water would not be present. The pressure p on the right side of (22) is $p_{1}+p_{2}$ but p_{1} is given by $p_{1 s},(24 b)$ or (27). Furthermore, ε and T can also be considered known in (22). Hence the dependent variable is θ as stated above; θ appears explicitly on the left of (22) and implicitly on the right through $k_{r m}$ and $k_{r \ell}$ which are given by (20f) and (20 g). Unlike the other partial differential equations, (22) does not involve a second derivative in space of the dependent variable.

A continuity equation is also required for the CO_{2} gas in the wet region. One form for it is

$$
\begin{equation*}
\frac{\partial\left(\rho_{2} \theta\right)}{\partial t}+\frac{\partial\left(\rho_{2} u_{m}\right)}{\partial x}=\rho_{2}^{0} \frac{\partial \alpha_{2}}{\partial t} \tag{30}
\end{equation*}
$$

which can also be written as

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\frac{p_{2} \theta}{R_{2} T}\right)=\frac{\partial}{\partial x}\left[\frac{p_{2}}{R_{2} T} D_{1}\left(\frac{\partial p_{1}}{\partial x}+\frac{\partial p_{2}}{\partial x}\right)\right]+\rho_{2}^{0} \frac{\partial \alpha_{2}}{\partial t} \tag{3la}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{1}=\frac{k_{\mathrm{rm}} \mathrm{~K}}{\mu_{\mathrm{m}}} \tag{31b}
\end{equation*}
$$

and p_{1} is the known function of T as given by (24b) and (27). Here the dependenc variable is p_{2} and (3la) appears to be in the form of a nonlinear parabolic (or diffusion) equation.

Dependent Variables

For the wet region the dependent variables are T, θ, p_{2}, $\alpha_{1}, \alpha_{1^{\prime \prime}}$ and α_{2}. There is a coupling between all the equations but each equation can be identified with a particular dependent variable. The temperature T is found from the energy equation, (19). The kinetic equations, (13), (14) and (15), are the same as for the dry region and are associated with $\alpha_{1}, \alpha_{1 \prime \prime}$ and α_{2}, respectively. The pressure of the CO_{2} gas, p_{2}, is identified with (31) and θ with (22).

2.4 Interface Considerations

At the interface between the dry and wet regions the solution for the two regions must be matched. There must be continuity of T, P_{1}, p_{2} and θ in the x-direction. In addition there must be conservation of energy and mass.

Some of the equations pose little difficulty since they are solved in a finite difference procedure in exactly the same manner on either side of the interffe. The kinetic equations (13), (14) and (15) have this characteristic. The energy equations (1) and (19) are quite similar for both regions. For this reason the energy equation approximated by finite
difference equations is solved for both regions simultaneously. The p_{2} equations for both regions are also nearly the same.

The continuity equations for the water, however, must be treated in quite different ways in the two regions. In the dry region, (10) has p_{1} as the dependent variable and the equation is similar in structure to the energy and p_{2} equations, that is, a first derivative on time and a second derivative in space are present. In the wet region θ is the dependent variable. At the interface, $\theta=\varepsilon$ and there must be conservation of mass of the water.

3. FINITE DIFFERENCE EQUATIONS

In this section a set of finite difference equations is given that closely approximates those in USINT. Since the program at present does not have the CO_{2} option checked-out, the CO_{2} terms are not considered for all the equations. The program was written to permit various one-dimensional systems rather than just the cartesian coordinate x. For this reason the x derivatives have been written as

$$
\begin{gather*}
\frac{\partial}{\partial x}\left(A \frac{\partial U}{\partial x}\right) \rightarrow G_{1} \frac{\partial}{\partial x_{1}}\left(G_{2} A \frac{\partial U}{\partial x_{i}}\right) \tag{32a}\\
\frac{\partial U}{\partial x} \rightarrow G_{3} \frac{\partial U}{\partial x_{i}} \tag{32b}
\end{gather*}
$$

where x_{1} is a generalized orthogonal coordinate and

$$
\begin{align*}
& G_{1}=\frac{1}{h_{1} h_{2} h_{3}} \tag{33a}\\
& G_{2}=\frac{h_{j} h_{k}}{h_{1}}, 1, j, k \text { cyclic } \\
& G_{3}=\frac{1}{h_{1}} \tag{33c}
\end{align*}
$$

For cartesian coordinates the h_{i} 's are all unity. For cylindrical coordinates the h_{1} 's are

$$
\begin{equation*}
h_{1}=1, \quad h_{2}=r, \quad h_{3}=1 \quad(r, \theta, z) \tag{34}
\end{equation*}
$$

and for spherical polar coordinates,

$$
\begin{equation*}
h_{1}=1, \quad h_{2}=r, \quad h_{3}=r \sin \theta \quad(r, \theta, \varnothing) \tag{35}
\end{equation*}
$$

Another change in the program from the notation given above is that U represents temperature instead of T which denotes time in USINT.

In all the partial differential equations of the parabolic type (that is, all except θ and α) a Crank-Nicolson type approximation is utilized. Parameters called ETA and ZETA are introduced that permit a forward difference approximation by setting ETA and ZETA equal to zero, Crank-Nicolson by setting equal to 0.5 and backward difference (fully implicit) approximation by setting ETA and ZETA equal to unity.

The basic subroutines that are used for the dry and wet regions simultaneously existing (the most commonly occurring case) are the following:

1. H1DP - for temperature, denoted U(I)
2. DECOMP - for fraction of reactants decomposed; for evaporable water Al(I), for chemically bound water $\mathrm{A} 2(\mathrm{I})$, and for CO_{2} gas $\mathrm{A} 3(\mathrm{I})$
3. PORE - for calculating the porosity in the concrete, denoted EP(I)
4. PlWET - for calculating the steam pressure in the wet region, denoted Pl(I). (This subroutine contains the modified Clausius-Clapeyron equations.)
5. P1DH20 .. for calculating the steam pressure in the dry region, denoted Pl(I)
difference equations is solved for both regions simultaneously. The p_{2} equations for both regions are also nearly the same.

The continuity equations for the water, however, must be treated in quite different ways in the two regions. In the dry region, (10) has p_{1} as the dependent variable and the equation is similar in structure to the energy and p_{2} equations, that is, a first derivative on time and a second derivative in space are present. In the wet region θ is the dependent variable. At the interface, $\theta=\varepsilon$ and there must be conservation of mass of the water.

3. FINITE DIFFERENCE EQUATIONS

In this section a set of finite difference equations is given that closely approximates those in USINT. Since the program at present does not have the CO_{2} option checked-out, the CO_{2} terms are not considered for all the equations. The program was written to permit various one-dimensional systems rather than just the cartesian coordinate x. For this reason the x derivatives have been written as

$$
\begin{gather*}
\frac{\partial}{\partial x}\left(A \frac{\partial U}{\partial x}\right) \rightarrow G_{1} \frac{\partial}{\partial x_{i}}\left(G_{2} A \frac{\partial U}{\partial x_{i}}\right) \tag{32a}\\
\frac{\partial U}{\partial x} \rightarrow G_{3} \frac{\partial U}{\partial x_{i}} \tag{32b}
\end{gather*}
$$

where x_{i} is a generalized orthogonal coordinate and

$$
\begin{align*}
& G_{1}=\frac{1}{h_{1} h_{2} h_{3}} \tag{33a}\\
& G_{2}=\frac{h_{j} h_{k}}{h_{1}}, 1, j, k \text { cyclic } \tag{33b}\\
& G_{3}=\frac{1}{h_{1}} \tag{33c}
\end{align*}
$$

For cartesian coordinates the h_{i} 's are all unity. For cylindrical coordinates the h_{1} 's are

$$
\begin{equation*}
h_{1}=1, \quad h_{2}=r, \quad h_{3}=1 \quad(r, \theta, z) \tag{34}
\end{equation*}
$$

and for spherical polar coordinates,

$$
\begin{equation*}
h_{1}=1, \quad h_{2}=r, \quad h_{3}=r \sin \theta \quad(r, \theta, \varnothing) \tag{35}
\end{equation*}
$$

Another change in the program from the notation given above is that U represents temperature instead of T which denotes time in USINT.

In all the partial differential equations of the parabolic type (that is, all except θ and α) a Crank-Nicolson type approximation is utilized. Parameters called ETA and ZETA are introduced that permit a forward difference approximation by setting ETA and ZETA equal to zero, Crank-Nicolson by setting equal to 0.5 and backward difference (fully implicit) approximation by setting ETA and ZETA equal to unity.

The basic subroutines that are used for the dry and wet regions simultaneously existing (the most commonly occurring case) are the following:

1. HlDP - for temperature, denoted $U(I)$
2. DECOMP - for fraction of reactants decomposed; for evaporable water Al(I), for chemically bound water $\mathrm{A} 2(\mathrm{I})$, and for CO_{2} gas $\mathrm{A} 3(\mathrm{I})$
3. PORE - for calculating the porosity in the concrete, denoted $E P(I)$
4. PlWET - for calculating the steam pressure in the wet region, denoted Pl(I). (This subroutine contains the modified Clausius-Clapeyron equations.)
5. P1DH2O - for calculating the steam pressure in the dry region, denoted PI (I)
6. THWH2O - for calculating θ in the wes region, denoted THETA (I)

For a given time step the basic equations are solved in the order indicated by these subroutines: $U, \alpha_{1}, \alpha_{1 "}, \alpha_{2}, \varepsilon, p_{1}$ and θ. No iteration at each time step is used. Note, however, that U values at times t_{n} and t_{n+1} ("present" and "future" times) can be used for all the other variables, ε can be calculated using the α^{\prime} s at times t_{n} and t_{n+1}, and so on. The temperatures U_{i}^{n+1} (for locations x_{i} and times t_{n+1}) must be calculated, however, using quantities known only at time t_{n}.

Energy Equation

The energy equation for both the wet and dry regions (which are coded in subroutine HlDP) can be written in the form

$$
\begin{equation*}
\rho_{p s} \frac{\partial U}{\partial t}=G_{1} \frac{\partial}{\partial x}\left(G_{2} k \frac{\partial U}{\partial x}\right)-\left(\rho c_{p_{g}} u_{m}+\rho_{3} c_{p_{3}} u_{3}\right) G_{3} \frac{\partial U}{\partial x}+\dot{Q} \tag{36}
\end{equation*}
$$

A finite difference form of this equation for node x_{1} and time t_{n} is

$$
\frac{\left(p c_{p_{s}}\right)^{n}}{\Delta t}\left(U_{i}^{n+1}-U_{i}^{n}\right)=\frac{G_{1 i}\left(G_{2} k\right)_{1+1 / 2}^{n}}{(\Delta x)^{2}}\left[n\left(U_{i+1}^{n+1}-U_{i}^{n+1}\right)\right.
$$

$$
+(1-n)\left(U_{i+1}^{n}-U_{i}^{n}\right)\left|-\frac{G_{1 i}\left(G_{2} k\right)_{i-1 / 2}^{n}}{(\Delta x)^{2}}\right| n\left(U_{i}^{n+1}-U_{i-1}^{n+1}\right)
$$

$$
\left.+(1-n)\left(U_{1}^{n}-U_{1-1}^{n}\right)\right)^{\prime}-\frac{31}{2 \Delta x}\left(p_{c_{p}} u_{m}+p_{3} c_{p_{3}} u_{3}\right)_{i}^{n+n}
$$

$$
\begin{equation*}
\left.\mid n\left(U_{i+1}^{n+1}-U_{i-1}^{n+1}\right)+(1-n)\left(U_{i+1}^{n}-U_{i-1}^{n}\right)\right]+\dot{Q}_{i}^{n+n} \tag{37}
\end{equation*}
$$

The symbol η in (37) is denoted ETA in the program and is a Crank-Nicolson parameter mentioned above.

Define for convenience the following where a FORTRAN-11ke notation is used:

$$
\begin{align*}
& c 11_{1}^{n}=\frac{\left(\rho c_{p_{s}}\right)_{1}^{n}}{\Delta t} \tag{38}\\
& c l 1_{1}^{n}=G 11_{1} k_{1+1 / 2}^{n} \tag{39a}
\end{align*}
$$

where

$$
\begin{align*}
& \mathrm{G} 11_{1}=\frac{\mathrm{G}_{11} \mathrm{G}_{2,1+1 / 2}}{(\Delta x)^{2}} \tag{39b}\\
& C 13_{1}^{\mathrm{n}}=G 12_{1} \mathrm{k}_{1-1 / 2}^{n} \tag{40a}
\end{align*}
$$

where

$$
\begin{gather*}
G 12_{1}=\frac{G_{11} G_{2}, 1-1 / 2}{(\Delta x)^{2}} \tag{40b}\\
c 14_{1}^{n}=G 13_{1}\left(\rho c_{p_{g}} u_{m}+\rho_{3} c_{p_{3}} u_{3}\right)_{1}^{n+n} \tag{41a}
\end{gather*}
$$

where

$$
\begin{align*}
& G 13_{1}=\frac{G_{11}}{2 \Delta x} \tag{41b}\\
& t_{n+1}=t_{n}+\Delta t \tag{42a}\\
& x_{1+1}=x_{1}+\Delta x \tag{42b}
\end{align*}
$$

Using the above definitions (38-41) in (37) and collecting terms permits writing

$$
\begin{equation*}
-A_{1}^{n} U_{1+1}^{n+1}+B_{1}^{n} U_{1}^{n+1}-C_{1}^{n} U_{1-1}^{n+1}=D_{1}^{n} \tag{43}
\end{equation*}
$$

where

$$
\begin{gather*}
A_{i}^{n}=n\left(C 12_{i}^{n}-C 14_{i}^{n}\right) \\
B_{i}^{n}=C 11_{i}^{n}+n\left(C 12_{i}^{n}+C 13_{i}^{n}\right) \tag{44b}\\
C_{i}^{n}=n\left(C 13_{i}^{n}+C 14_{i}^{n}\right) \tag{44c}\\
D_{i}^{n}=C 11_{i}^{n} U_{i}^{n}+(1-n)\left[C 12_{i}^{n}\left(U_{i+1}^{n}-U_{i}^{n}\right)+C 13_{i}^{n}\left(U_{i-1}^{n}-U_{i}^{n}\right)\right. \\
\left.+C 14_{i}^{n}\left(U_{i-1}^{n}-U_{i+1}^{n}\right)\right]+\dot{Q}_{i}^{n+n} \tag{44d}
\end{gather*}
$$

Let the one-dimensional segment of concrete have the length of

$$
\begin{equation*}
L=(I M-1) \Delta x \tag{45}
\end{equation*}
$$

where IM is the number of nodes which is one more than the number of $\Delta x^{\prime} s$. Then (43) can be used to generate finite difference equations for nodes $i=2, \ldots, I M-1$.

At present there are two boundary conditions permitted at $x=0$, a constant prescribed heat flux and a time-temperature history of arbitrary time dependence that is entered through a table of temperatures with a corresponding time table. Another prescribed temperature history can be specified at $x=L$. A prescribed surface temperature is easily incorporated into the program, Suppose that the surface at $x=0$ is to have a specified temperature at time t_{n+1} of T^{n+1}. Then (43) would be replaced by

$$
\begin{equation*}
U_{1}^{n+1}=T^{n+1} \tag{46}
\end{equation*}
$$

or in other symbols, $1=1, A_{1}=B_{1}=n, B_{1}=1$ and $D_{1}^{n}=T^{n+1}$. The tridiagonal set of equations formed from (43) and appropriate boundary condition equations comprises a set of algebraic equations that can be solved very efficiently. The algorithm used is the one given on page 200 of Richtmyer and Morton [9].

Heat Flux Boundary Condition

The heat flux boundary con "ition used in USINT is

$$
\begin{equation*}
q=-\left.k \frac{\partial U}{\partial x}\right|_{x=0} \tag{47}
\end{equation*}
$$

Where q is the surface heat flux and is given by QFLUX in the program. In the present form of the program q may only be a constant value but it is not difficult to prograin a time variable condition. The boundary condition given by (47) does not include any terms for ablation or movement of gases through the surface. The energy carried by gases through the surface may not be large, however.

The first node is located at $x=0$ and the second one is at $x=\Delta x$ but the finite volume associated with the first node is from $x=0$ to $\Delta x / 2$. Assume now that the various terms in the partial differential equation given by (36) is to be evaluated at $x=\Delta x / 4$. Hence
$\left.k \frac{\partial U}{\partial x}\right|_{\Delta x / 4} \approx \frac{1}{2}\left[\left.k \frac{\partial U}{\partial x}\right|_{x=0}+\left.k \frac{\partial U}{\partial x}\right|_{\Delta x / 2}\right] \approx \frac{1}{2}\left[-q+k_{3 / 2} \frac{U_{2}-U_{1}}{\Delta x}\right]$

$$
\begin{equation*}
\left.\left.C \frac{\partial U}{\partial x}\right|_{\Delta x / 4} \approx \frac{1}{2}\left|C \frac{\partial U}{\partial x}\right|_{x=0}+\left.c \frac{\partial U}{\partial x}\right|_{\Delta x / 4}\right]_{2} \approx \frac{1}{2}\left[-\frac{c_{1} q}{k_{1}}+c_{3 / 2} \frac{U_{2}-U_{1}}{\Delta x}\right] \tag{48b}
\end{equation*}
$$

$$
\begin{align*}
& \left.\frac{\partial}{\partial x}\left(G_{1} k \frac{\partial U}{\partial x}\right)\right|_{\Delta x / 4} \approx \frac{\left.G_{1} k \frac{\partial U}{\partial x}\right|_{\Delta x / 2}-\left.G_{1} k \frac{\partial U}{\partial x}\right|_{0}}{\Delta x / 2} \\
& \left.\approx \frac{2}{\Delta x}\left[G_{1,3 / 2^{k}}^{3 / 2} \frac{U_{2}-U_{1}}{\Delta x}+G_{1,1}\right] \right\rvert\, \tag{48c}
\end{align*}
$$

The time derivative is approximated using

$$
\begin{equation*}
\frac{\partial U}{\partial t} \approx \lambda \frac{U_{1}^{n+1}-U_{1}^{n}}{\Delta t}+(1-\lambda) \frac{U_{2}^{n+1}-U_{2}}{\Delta t} \tag{48d}
\end{equation*}
$$

The best choice of λ is usually 0.75 . (The input symbol for λ is LAMBA and it is declared real.)

Introducing the above relations in (36) and rearranging in the form

$$
\begin{equation*}
B_{1} U_{1}^{n+1}-A_{1} U_{2}^{n+1}=D_{1} \tag{50a}
\end{equation*}
$$

one finds the B_{1}, C_{1}, and D_{1} coefficients to be

$$
\begin{align*}
& B_{1}=C 14+C 10-C 17 \tag{50b}\\
& A_{1}=C 10-C 15-C 17 \tag{50c}\\
& D_{1}=C 14 U_{1}^{n}+C 15 U_{2}^{n}+n q^{n+1}\left[\frac{2 G_{1}, 3 / 2_{2} G_{2} 1}{\Delta x}+\frac{C_{11}}{2 k_{1}^{n}}\right] \\
& +(1-n)\left\{\frac{2 G_{1}, 3 / 2}{\Delta x}\left[G_{2,3 / 2} k_{3 / 2}^{n} \frac{U_{2}^{n}-U_{1}^{n}}{\Delta x}+G_{2,1} q^{n}\right]-\frac{C 13 C 16}{2}\right. \\
& \left.+\frac{q^{n} C 11}{2 k_{1}^{n}}\right\}+\dot{Q}_{1}^{n+1} \tag{50d}
\end{align*}
$$

where

$$
c 10=\frac{2 \eta G_{1,3 / 2^{G}}, 3,3 / 2^{k_{3}^{n}}}{(\Delta x)^{2}}
$$

$$
\begin{aligned}
& C 11=\left[\left(\rho c_{p_{g}} u_{m}+\rho_{3} c_{p_{3}} u_{3}\right) G_{3}\right]_{1}^{n} \\
& C 12=\left[\left(\rho c_{p_{g}} u_{m}+\rho_{3} c_{p_{3}} u_{3}\right) G_{3}\right]_{1}^{n} \\
& C 13=\frac{1}{2}(c 11+c 12) \\
& c 14=\left[\frac{\lambda \rho c p}{\Delta t}\right]_{1}^{r} \\
& C 15=\left[\frac{(1-\lambda) \rho_{p}}{t}\right]_{2}^{n} \\
& C 16=\frac{U_{2}^{n}-U_{1}^{n}}{\Delta x} \\
& c 17=\frac{n c 13}{2 \Delta x}
\end{aligned}
$$

The one subscript refers to node 1 (at the heated surface, $x=0$); the two subscript refers to node 2 ; and the $3 / 2$ subscript refers to midway between nodes 1 and 2 .

Kinetic Equations

The kinetic equations for evaporable water, chemically bound water and CO_{2} are solved in subroutine DECOMP.

A typical kinetic equation can be written as

$$
\begin{equation*}
\frac{\partial \alpha}{\partial t}=K_{A}(1-\alpha) \exp (-E / R U) \tag{51}
\end{equation*}
$$

It is assumed from one time step to another that the temperature U varies linearly with time. The temperature at time t_{n} is U^{n} and at time t_{n+1} is U^{n+1}. For convenience, define the rate of change of temperature with time at a particular location as β,

$$
\begin{equation*}
B=\frac{U^{n+1}-U^{n}}{\Delta t} \tag{52}
\end{equation*}
$$

If U varies linearly with time over some interval, then α can be considered to be a function of U,

$$
\begin{equation*}
\alpha(t)=\alpha(U(t)) \tag{53a}
\end{equation*}
$$

where the space dependence of α is omitted. Differentiating α with respect to t, permits (53a) to be written as

$$
\begin{equation*}
\frac{\partial \alpha}{\partial t}=\frac{\partial \alpha}{\partial U} \frac{\partial U}{\partial t}=\beta \frac{\partial \alpha}{\partial U} \tag{53b}
\end{equation*}
$$

Using (53b) in (51) then gives

$$
\begin{equation*}
\beta \frac{\partial \alpha}{\partial U}=K_{A}(1-\alpha) \exp (-E / R U) \tag{54}
\end{equation*}
$$

Separating the variables in (54) and integrating gives

$$
\begin{equation*}
\int_{\alpha}^{\alpha^{n+1}} \frac{d \alpha}{1-\alpha}=\frac{\pi_{A}}{\beta} \int_{U^{n}}^{U^{n+1}} e^{-E / R U} d u \tag{55a}
\end{equation*}
$$

which has the solution

$$
\begin{equation*}
\alpha^{n+1}=1-\left(1-\alpha^{n}\right) \exp \left\{-\frac{K_{A}}{B}\left[U^{n+1} E_{2}\left(\frac{E}{R U^{n+1}}\right)-U^{n} E_{2}\left(\frac{E}{R U^{n}}\right)\right]\right\} \tag{55b}
\end{equation*}
$$

The function $E_{2}(\cdot)$ is an exponential integral and is defined by

$$
\begin{equation*}
E_{2}(x)=\int_{1}^{\infty} t^{-2} e^{-x t} d t \tag{56a}
\end{equation*}
$$

which for large values of the argument x can be closely approximated by

$$
\begin{equation*}
E_{2}(x) \approx \frac{e^{-x}}{x+\frac{2}{1+\frac{1}{x+2 \cdot 6}}} \tag{56b}
\end{equation*}
$$

In realistic cases for concrete and using measured values of E / R, the argument of $E_{2}(\cdot)$ should be about 10 and larger. For $x=5$, the error is less than $.1 \%$ and for $x>10$, the error is at most in the 6th significant figure.

If due to a problem with stability the calculated temperatures become much too large, then another approximation can be used; it is

$$
\begin{equation*}
\alpha^{n+1}=1-\left(1-\alpha^{n}\right) \exp \left[-K_{A} \Delta \operatorname{texp}\left(-E / R U^{n}\right)\right] \tag{56c}
\end{equation*}
$$

which is used in DECOMP if

$$
\begin{equation*}
\frac{E}{R U^{n}}<0.01 \tag{56d}
\end{equation*}
$$

This modification helps to prevent DECOMP from becoming a cause of the program becoming unstable.

MASS TRANSFER EQUATION FOR DRY REGION

The finite difference approximations of the mass transfer equtici: for the water vapor in the dry region is coded in subroutine PlH2O. The partial differential equation to be approximated can be obtained from (10). The finite difference equation in P1H2O does not include CO_{2} so that p_{2} is dropped in (10). In addition, T is replaced by $U, k_{r m} K / \mu_{m}$ is replaced by D_{1} and generalized orthogonal coordinates are used. The resulting equation is

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\frac{p_{1} \varepsilon}{U}\right)=G_{1} \frac{\partial}{\partial x}\left(\frac{G_{2} D_{1}}{U} p_{1} \frac{\partial p_{1}}{\partial x}\right)+R_{1} \dot{s}_{1} \tag{57a}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\frac{p_{1} \varepsilon}{U}\right)=G_{1} \frac{\partial p_{1}}{\partial x} \frac{\partial}{\partial x}\left(\frac{G_{2} D_{1}}{U} p_{1}\right)+\frac{G_{1} G_{2} D_{1}}{U} p_{1} \frac{\partial^{2} p_{1}}{\partial x^{2}}+R_{1} \dot{S}_{1} \tag{57b}
\end{equation*}
$$

Because $\varepsilon=\theta$ in the dry region, the finite difference approximation in P1H2O starts with

$$
\left(\frac{\theta}{U} p_{1}\right)_{1}^{n+1}-\left(\frac{\theta}{U} p_{1}\right)_{1}^{n}=\left.\frac{G_{1} \Delta t}{4(\Delta x)^{2}}\right|^{n}\left[\left(\frac{G_{2} D_{1}}{U} p_{1}\right)_{1+1}^{n}\right.
$$

$\left.-\left(\frac{G_{2} D_{1}}{U} p_{1}\right)_{1-1}^{n}\right]\left(p_{1, i+1}^{n+1}-p_{1, i-1}^{n+1}\right)+(1-n)\left[\left(\frac{G_{2} D_{1}}{U} p_{1}\right)_{1+1}^{n+1}\right.$
$\left.\left.-\left(\frac{G_{2} D_{1}}{U} p_{1}\right)_{i-1}^{n+1}\right] \cdot\left(p_{1, i+1}^{n}-p_{1, i-1}^{n}\right)\right\}$
$+\frac{n \Delta t}{(\Delta x)^{2}}\left(\frac{{ }_{1} G_{2} D_{1}}{U} p_{1}\right)_{1}^{n}\left(p_{1,1+1}^{n+1}-2 p_{1,1}^{n+1}+p_{1,1-1}^{n+1}\right)$
$+\frac{(1-n) \Delta t}{(\Delta x)^{2}}\left(\frac{G_{1} G_{2} D_{1}}{U} p_{1}\right)_{1}^{n+1}\left(p_{1,1+1}^{n}-2 p_{1,1}^{n}+p_{1,1-1}^{n}\right)$
$+R_{1} \Delta t \dot{s}_{1,1}^{n+1}$
Notice that the nonlinear terms are handled in such a manner that $\eta=0$ does not yield an explicit procedure. This approximation is more accurate than the more common Crank-Nicolson procedure in which all the terms with the (1-n) coefficient are evaluated at time t_{n}.

Define in a FORTRAN-like form the following:

$$
\begin{gather*}
C T 11=\Delta t /\left(4(\Delta x)^{2}\right) \tag{59a}\\
C T 20=\Delta t /(\Delta x)^{2} \tag{59b}\\
G 1 I=G_{11} \tag{59c}\\
G 2 I=G_{21} \tag{59d}\\
H 10_{1}=\frac{G_{11} \Delta t}{4(\Delta x)^{2}}=G 1 I * C T 11 \tag{60a}\\
H 11_{1}=\frac{G_{11} G_{21} \Delta t}{(\Delta x)^{2}}=G 1 I * G 2 I * C T 20 \tag{c}\\
\left.C 10_{1}^{n}=H 10_{1}^{n}\left[\frac{G_{2} D_{1}}{U} p_{1}\right)_{1+1}^{n}-\left(\frac{G_{2} D_{1}}{U} p_{1}\right)_{1-1}^{n}\right] \tag{60i}\\
C 11_{1}^{n}=H 10_{1}(1-n)\left(p_{1,1+1}^{n}-p_{1, i-1}^{n}\right) \tag{60d}
\end{gather*}
$$

$$
\begin{gather*}
c l 2_{i}^{n}=H 11 n\left(\frac{D_{1} p_{1}}{U}\right)_{i}^{n} \tag{60e}\\
c 13_{i}^{n}=H 1 l_{1}(1-n)\left(p_{1, i+1}^{n}-2 p_{1,1}^{n}+p_{1,1-1}^{n}\right) \tag{60f}
\end{gather*}
$$

Using the above definitions in (58) yields

$$
\begin{align*}
& \left(\frac{\theta}{U} p_{1}\right)_{i}^{n+1}=\left(\frac{\theta}{U} p_{1}\right)_{i}^{n}+C 10_{1}^{n}\left(p_{1,1+1}^{n+1}-p_{1, i-1}^{n+1}\right) \\
& +C 11_{1}^{n}\left[\left(\frac{G_{2} D_{1}}{U} p_{1}\right)_{1+1}^{n+1}-\left(\frac{G_{2} D_{1}}{U} p_{1}\right)_{1-1}^{n+1}\right] \\
& +C 12_{1}^{n}\left(p_{1,1+1}^{n+1}-2 p_{11}^{n+1}+p_{1, i-1}^{n+1}\right)+C 13_{1}^{n}\left(\frac{D_{1} p_{1}}{U}\right)_{1}^{n+1}+R_{1} \Delta t s_{1 i}^{n+n} \tag{61}
\end{align*}
$$

which can be simplified and written as

$$
\begin{equation*}
-A_{i}^{n} p_{1, i+1}^{n+1}+B_{i}^{n} p_{1 i}^{n+1}-C_{i}^{n} p_{1, i-1}^{n+1}=D_{i}^{n} \tag{62}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{i}^{n}=C 10_{i}^{n}+C 11_{i}^{n}\left(\frac{G_{2} D_{1}}{U}\right)_{i+1}^{n+1}+C 12_{i}^{n} \tag{63a}\\
& B_{i}^{n}=\left(\frac{\theta}{U}\right)_{i}^{n+1}+2 C 12_{1}^{n}-C 13\left(\frac{D_{1}}{U}\right)_{i}^{n+1} \tag{63b}\\
& C_{i}^{n}=C 12_{i}^{n}-C 10_{1}^{n}-C 111_{i}^{n}\left(\frac{Q_{2} D_{1}}{U}\right)_{i-1}^{n+1} \tag{63c}\\
& D_{i}^{n}=\left(\frac{\theta}{U} p_{1}\right)_{i}^{n}+R_{1} \Delta t \dot{s}_{11}^{n+n} \tag{63d}
\end{align*}
$$

In the coefficients A, B and C certain terms are to be evaluated at time t_{n+1}. This is done whenever possible; it can be done, for example, for U and also for \dot{S}_{11}^{n+n} which is

$$
\begin{equation*}
\dot{s}_{11}^{n+n}=n \dot{s}_{11}^{n+1}+(1-n) \dot{s}_{11}^{n} \tag{64}
\end{equation*}
$$

where \dot{s}_{1} is defined by (9). This is because in a given time step U and the α^{\prime} s have been calculated prior to p, for the dry region. On the other hand, D_{1} is a function of ε (a function of the α 's) and θ. Here θ cannot be used at t_{n+1} because it has not been evaluated.

A boundary condition for p_{1} at $x=0$ is a prescribed value, denoted P1B in the input.

MASS TRANSFER EQUATION FOR WET REGION

The wet region finite difference approximations for the mass transfer of steam and liquid water are given in subroutine THWH20. The dependent variable of interest is θ. The pressure in this region is first calculated using subroutine PlWET which uses the modified Clausius-Calpeyron equations, (24b) and (27). Using this latter subroutine the pressure is found as a function of U_{1}^{n+1}.

The mass transfer equation for both water vapor and liquid water can be written as

$$
\begin{equation*}
\frac{\partial}{\partial t}\left[\rho_{1} \theta+\rho_{3}(\varepsilon-\theta)\right]=G_{1} \frac{\partial}{\partial x}\left[G_{2}\left(\rho_{1} D_{1}+\rho_{3} D_{3}\right) \frac{\partial p_{1}}{\partial x}\right]+\dot{s}_{1} \tag{65}
\end{equation*}
$$

A difference approximation of this equation is
$\frac{1}{\Delta t}\left\{\left[\left(\rho_{1}-\rho_{3}\right) \theta+\rho_{3} \varepsilon\right]_{1}^{n+1}-\left|\left(\rho_{1}-\rho_{3}\right) \theta+\rho_{3} \varepsilon\right|_{1}^{n}\right\}$
$=\frac{G_{11} G_{2,1}+1 / 2}{2 \Delta x^{2}}\left[\left(\rho_{1} D_{1}+\rho_{3} D_{3}\right)_{1}^{n+n}+\left(\rho_{1} D_{1}+\rho_{3} D_{3}\right)_{1+1}^{n+n}\right]$
$\cdot\left[n\left(p_{1,1+1}^{n+1}-p_{11}^{n+1}\right)+(1-n)\left(p_{1,1+1}^{n}-p_{11}^{n}\right)\right]$
$\left.\left.+\frac{G_{11} G_{2,1-1 / 2}}{2 \Delta x^{2}} \right\rvert\,\left(\rho_{1} D_{1}+\rho_{3} D_{3}\right)_{1}^{n+n}+\left(\rho_{1} D_{1}+\rho_{3} D_{3}\right)_{1-1}^{n+n}\right]$
$\left.\cdot\left(p_{1,1-1}^{n+1}-p_{11}^{n+1}\right)+(1-n)\left(p_{1,1-1}^{n}-p_{11}^{n}\right)\right]+\dot{s}_{11}^{n+n}$
The unknown in this equation is θ^{n+1} which appears explicitly in the left and implicitly in D_{1}^{n+1} and D_{3}^{n+1}. The implicit dependence in solving for θ is neglected. Though tedious, it is not difficult to solve (66) for θ_{i}^{n+1}.

INTERFACE CONDITIONS FOR THE MASS TRANSFER EQUATIONS

Since the mass iransfer equations for the wet and dry regions must be solved in different ways, an interface condition is needed. Though at some time it might be desirable to develop a moving interface condition, USINT uses the more simple and straightforward method of fixed nodes, even for the interface. This then causes the lo ation of the interface to jump from one node to the next one further in the body. The condition used to indicate when the interface has moved is that A in the wet region becomes squal to ε. In the calculations thus far this node is always the one adjacent to the interface. Actually the θ values in the wet region invariably drop quite appreciably near the near interface, reach a minimum at some location and finally increase deeper inside
the body. This is illustrated in later figures.
For the wet region, θ is calculated; the interface condition for θ is simply $\theta=\varepsilon$. For the dry region the interface condition is that the interface pressure p_{1} is equal to the value of pressure given by the modified Clausius-Clapeyron equation of state for the temperature at the present interface node just before the interface last moved. This causes the pressure p_{1} to be constant at the interface until the interface moves. In reality the calculations indicate that the pressure p_{1} tends to drop with distance from the interface in the dry region. In other words the pressure p_{1} tends to be at or near its maximum at the interface and this interface moves deeper into the body as it is heated. Hence, for a fixed location just inside the dry region the pressure should tend to decrease slowly with time (after the interface has passed by). The approximation used in the program (subroutine PIDH2O) uses the constant p_{1} condition (until the interface moves) at the interface node. Actually the true interface would have mo ad ezeper into the body at that time and as a consequence the correct pressure might have decreased at that location. This interface condition is considerably better and more stable than some other conditions that were investigated.

One of these latter conditions involved calculating the interface node pressure p_{1} using the temperature existing at the node in the modified Clausius-Clapeyron equations of state. This caused the interface node pressure (for a given node) to continually increase in time when the surface of the concrete is heated. Since the Clausius-Clapeyron relations are highly dependent on temperature, the interface node pressure could then increase very considerably while the interface was assumed to be at that node. But as mentioned above, the true interface would have moved deeper into the body resulting in a possible
drop, rather than increase, in the pressure at that location. Hence, this approach is not satisfactory.

Another approximation for the interface treats θ as mentioned above but the pressure boundary condition for p_{1} of the dry region is that calculated from the temperature one node inside the wet region. This allows the pressure to vary with time at the interface but again tends to increase the pressure with time at a given interface node. It works fairly well, but the constant p_{1} condition at the interface mentioned above appears to be better.

PORES COMPLETELY FILLED WITH LIQUID $(\theta=0)$

In addition to the dry and wet regions another region is possible. This is the case of the pores being completely filled with water. Sometimes this region is very narrow or not even exists in the calculations. For this reason the program simply restricts θ to being not less than zero since $\theta=0$ corresponds to the pores being completely filled with water. The vapor pressure is still found using a modified Clausius-Clapeyron equation of state. This treatment of the $\theta=0$ region is a part of the program that could be improved upon in the future.

4. INPUT PARAMETERS

The present version of USINT has most input quantities separate from the programming and is intended for batch processing. Hence it is convenient to discuss the input in a card io card basis. For each input card, 80 spaces are divided into 8 blocks $\cap f 10$ spaces. In each block a single number appears so that at most each card contains eight numbers.

The subroutine INPUTS is used for the input into the program. It also prints out with headers the input in the same
form that it was entered. The numbers that are printed 00 are the same as the input except for the situation in which the measured temperature histories are in degrees Fahrenheit and kelvin is desired. In this exception (associated with the index IPTOK being 1) the input is in ${ }^{\circ} \mathrm{F}$ but the values used later in the program and those printed out are in K . Another feature of INPUTS is that it contains a dictionary of input and other quantities used in USINT.

A consistent set of unfts, such as SI, should be used In the input.

Card 1, (format: 4F10.0, 2I10, P10.0, I10)
CASE - case number (not used in program)
DATE - date (not used in program)
ETA - Crank-N1colson parameter n
LAMBA - heat flux boundary condition parameter λ. See (48d).
NPRNI - printing index, $=1$ to print each time step, $=2$ to print every other time step, etc.
NOPT - Index to solve simple heat conduction model, $=0$ to skip all subroutines except H1DP (hence simple conduction model), $=1$ for heat and mass transfer model

7ETA - Crank-Nicolson parameter in THWH2O (e calculations)
ISTATE - equation of state index used in PIWBT, $=0$ for Clausius-Clapeyron equation of state, $\neq 0$ for modified equation of state

Card 2, (format: F10.0, 7110)
DX - Dx width, \quad t
IM - Total number of nodes, length of body is (IM-1) Δx

IDEBUG - =0 for omitting NAMELIST DEBUG in subroutine THWH2O, $=1$ for calling NAMELIST DEBUG
ICOEFF $\quad-=0$ for omitting NAMELIST COEFF in subroutine HIDP, $=1$ for calling NAMELIST COEFF
IHEAT $\quad=0$ for omitting NAMELIST HEAT in subroutine HlDP, $=1$ for calling NAMELIST HEAT
IDARCY - = for omitting NAMELIST DARCY in subroutine CARCO, $=1$ for calling NAMELIST DARCY
IPIDH $\quad-=0$ for omitting NAMELIST PlDH in subroutine P1DH2O; $=1,2,3, \cdots$ for calling NAMELIST $1,2,3, \cdots$ times
IVDAR - =0, 1 for omitting NAMELIST VDAR in subroutine VDARCY, $=2$ for printing NAMELIST VDAR

Card 3, (format: F10.0, 3I10, 4F10.0)
DT - time step, s
NTS - total number of time steps
IDARCO - =Maximum number of times that subroutine DARCO is to be called; usually IDARCO>NTS Fixes Darcy coefficients at the value at the time index equal to IDARCO.

MDARCO - =0 for HEDL form of Darcy coefficients $=1$ for HEDL form of Darcy coefficients with void fraction corrections $=2$ for $G E$ form of Darcy coefficients $=3$ for form of Darcy coefficients described above in this report, has corrections for void fraction and porosity
UMIN1 - lowest temperature for which decomposition for evaporable water is calculated, K
UMIN2 - lowest temperature for whicn decomposition for chemically bound water is calculated, K
UMIN3 - lowes C temperature for which decomposition for CO_{2} is calculated, K
D10C - Darcy factor for MDARCO $=2$ or 3 (See discussion on pages 39-4..)

The index MDARCO is used to designate several different forms of the Darcy coefficients, as indicated above. Each of these models is given in subroutine DARCO. The units for the Darcy coefficient D_{1} are $m^{3}-s / k g$ for SI units. The vapor and liquid water velocities are given by

$$
\begin{equation*}
u_{m}=-D_{1} \frac{\partial p}{\partial x}, \quad u_{3}=-D_{3} \frac{\partial p}{\partial x} \tag{67}
\end{equation*}
$$

where D_{1} and D_{3} are given by

$$
\begin{equation*}
D_{1}=\frac{K}{\mu_{m}}, \quad D_{3}=\frac{K}{\mu_{3}} \tag{68}
\end{equation*}
$$

where K is called the permeability and μ is the viscosity.
For DARCO equal to zero, the HEDL $[7 \mid$ expressions are given for K for magnetite. They are functions of temperature only (not porosity and/or θ). These functions are for temperatures below $230^{\circ} \mathrm{F}$,

$$
\begin{equation*}
\mathrm{K}=3.16 \mathrm{E}-27 \exp (0.038376 \mathrm{~T}) \tag{69a}
\end{equation*}
$$

and above $230^{\circ} \mathrm{F}$,

$$
\begin{equation*}
K=2.54 \mathrm{E}-21 \exp (0.01867 \mathrm{~T}) \tag{69b}
\end{equation*}
$$

where T is in degrees Rankine and K is in ft^{2}. At $230^{\circ} \mathrm{F}\left(690^{\circ} \mathrm{R}\right)$ the K value given by both these equations is about $10^{-15} \mathrm{ft}^{2}$ which is about the value shown $[7]$ on Figures 9 and 11 which are for magnetite and limestone concrete. At $1200^{\circ} \mathrm{F}$, however, ($69 b$) gives the value of $7 \cdot 3 \mathrm{E}-8 \mathrm{ft}^{2}$ which is almost 8 orders of magnitude larger. Though the above mentioned figures in $[7]$ show a strong temperature dependence, it is not that large. For example, Fig. 9 which is said to de for magnetite concrete $[7 \mid$
has a K value of about $2 \mathrm{E}-12 \mathrm{ft}^{2}$. This value is about? orders of magnitude larger than the $230^{\circ} \mathrm{F}$ value; though the temperature dependence is large it is not nearly as severe as predicted by (69 b). Because of this extremely large temperature dependence given by (69b) and also because it does not fit the data given by Fig. 9 for magnetite concrete another expression is used instead of (69b) in DARCO; it is

$$
\begin{equation*}
K=4.2510 E-18 \exp (0.007869 \mathrm{~T}) \tag{69c}
\end{equation*}
$$

where again T is in ${ }^{\circ} R$. This equation was found by fitting the exponential at $236^{\circ} \mathrm{F}\left(690^{\circ} \mathrm{R}\right)$ to the values of $1 \mathrm{E}-15$ and $2 \mathrm{E}-12 \mathrm{ft}^{2}$ mentioned above. Hence, the MDARCO $=0$ option though called the HEDL values utilizes ($69 a, c$), one of which was not given explicitly by HEDL. Conversion factors are used in DARCO to change the temperature in ${ }^{\circ} R$ to K and the units from ft^{2} to m^{2}.

Also the viscosities of steam and liquid water are given by curve fits. The expressions are

$$
\begin{align*}
& \mu_{\mathrm{m}}=2.5 \mathrm{E}-7\left(\frac{\mathrm{~T}_{\mathrm{R}}}{660}\right)^{1.24} \tag{70a}\\
& \mu_{3}=1.42 \mathrm{E}-5\left(\frac{\mathrm{~T}_{\mathrm{F}}}{100}\right)^{-1.15} \tag{70b}
\end{align*}
$$

where μ is in $l b_{f}-s / f t^{2}, T_{R}$ is in ${ }^{\circ} R$ and T_{F} is in ${ }^{\circ} F$. Proper conversion factors are again used for SI units.

The values calculated forthe Darcy coefficients ($D=K / \mu$) at $383 \mathrm{~K}\left(230^{\circ} \mathrm{F}\right)$ using $(69 \mathrm{a}, \mathrm{c})$ and $(70 \mathrm{a}, \mathrm{b})$ are

$$
D_{1}=7.9 \mathrm{E}-12 \mathrm{~m}^{4} / \mathrm{N}-\mathrm{s}
$$

$$
D_{3}=3.8 \mathrm{E}-13 \mathrm{~m}^{4} / \mathrm{N}-\mathrm{s}
$$

and at $589 \mathrm{~K}\left(600^{\circ} \mathrm{F}\right)$,
$D_{1}=9.3 \mathrm{E}-11 \mathrm{~m}^{4} / \mathrm{N}-\mathrm{s}$
$D_{3}=2 \cdot 3 \mathrm{E}-11 \mathrm{~m}^{4} / \mathrm{N}-\mathrm{s}$
If $\operatorname{MDARCO}=1$, the "HEDL" values discussed above are multiplied by the θ corrections given by (20f,g).

For MDARCO $=2$ the General Electric $[4]$ form of the Earcy coefficients is utilized in the program. GE also used (67) and (68) with D_{1} and D_{3} given by

$$
\begin{align*}
& D_{1}=K_{c} \theta /\left(\varepsilon \mu_{m}\right) \\
& D_{3}=K_{c} / \mu_{3} \tag{71}
\end{align*}
$$

and hence, the vapor Darcy coefficient has a void fraction dependence. (It seems that GE like HEDL keep ε constant throughout the calculations.) The quantity K_{c} is simply the permeability of dry concrete. A K_{c} / μ value chosen by $G E|4|$ for water vapor is $5 \mathrm{E}-11 \mathrm{~m}^{4} / \mathrm{N}-\mathrm{s}$ and the corresponding $\mathrm{K}_{\mathrm{c}} / \mu$ for water is $5 \mathrm{E}-15 \mathrm{~m}^{4} / \mathrm{N}-\mathrm{s}$. In other words the Darcy coefficient for the 11 quid water 1 s one 10^{4} th of the water vapor. In another $G E$ report $[10 \mid$ the permeability/viscosity (gas) is given the value $2.4 \mathrm{E}-11 \mathrm{~m}^{2} / \mathrm{N}-\mathrm{s}$ and the permeability/viscosity (wet) is given the same value; these values are associated with magnetite concrete. At 383 K the liquid water to water vapor ratio for viscosity is about 21 while at 589 K it has dropped to about 4. Hence, a ratio of 10^{4} is much too high while a ratio of 1 is too low. The MDARCO $=2$ ratio is taken to be 10^{4} because this value is explicitly given by GE. The magnitude of the coefficient is arbitrary, however, and is specified by the last number, D1OC, on card 3 and a factor of 10^{-10} to make the coefficient about 1 . More explicitly for MDARCO $=2$ the Darcy coefficients are given by

$$
\begin{equation*}
D_{1}=D 10 C \cdot 10^{-10_{\theta ; \varepsilon}} \tag{72a}
\end{equation*}
$$

$$
\begin{equation*}
D_{3}=D 10 C \cdot 10^{-14} \tag{72b}
\end{equation*}
$$

The MDARCO $=3$ option is the one discussed in Section 2 of this report. A θ and ε dependence is included and a temperature effect enters through the temperature dependence of the viscosities. The same viscosity-temperature relations, (70a,b), proposed by HEDL are used. The expressions for D_{1} and D_{3} are

$$
\begin{align*}
& D_{1}=\frac{\left(\varepsilon / \varepsilon_{0}\right)^{3} \text { D10C }}{(1-\varepsilon)^{2} \mu_{m}}\left(1.1 \frac{\theta}{\varepsilon}-0.1\right) 10^{-20} \tag{73a}\\
& \text { for } 1-\frac{1}{1.1}<\frac{\theta}{\varepsilon}<1 \\
& D_{1}=0 \text { for } 0<\frac{\theta}{\varepsilon}<1-\frac{1}{1.1} \tag{73b}\\
& D_{3}=\frac{\left(\varepsilon / \varepsilon_{0}\right)^{3} D_{10 C}}{(1-\varepsilon)^{2} \mu_{3}}\left(1-\frac{\theta}{\varepsilon}\right)^{3} 10^{-20} \tag{74}
\end{align*}
$$

Notice that in this case of MDARCO $=3$ a factor of 10^{-20} is associated with the multiplicative factor DIOC; it is related to β_{k} of (8 b) and the initial porosity ε_{0} by

$$
D 10 C=B_{k} \varepsilon_{0}^{3} E 20
$$

Card 4, (format: 6F10.0, I10, F10.0)
UP - Initial temperature, K
EPO - initial porosity
THETAO - initial theta (must be between zero and EPO)
P10 - initial partial pressure p_{1} of water vapor, $\mathrm{N} / \mathrm{m}^{2}$
P20 - Initial partial pressure p_{2} of $\mathrm{CO}_{2}, \mathrm{~N} / \mathrm{m}^{2}$ (not used presently)
VOLATM - volume of atmosphere in subroutine PATM, m^{3} (Used only for NFLAG=0)

```
NPLAG - index in subroutine PATM
    =0 for calculation of pressure in volume VOLATM
    assumed at the heated surface
    =1 to set partial pressures at the surface equal
    to zero.
    =2 to set surface p, equal to P1B and surface
    p
P1B - surface pressure at }x=0\mathrm{ for NFLAG = 2 (see
just above), N/m
```

Card 5, (format: 7F10.0, IlU)
QFLUX - applied heat flux at $x=0, W / m^{2}$. Used if index KBOUND=0

KBOUND - boundary condition index.
$=-i$ for prescribed temperature condition
$=0$ to specify heat flux boundary condition
NTMBCA - number of times for table of prescribed temperature history at $\mathrm{x}=0(1 \leq$ NTMBCA $\leq 150)$
NTMBCB - number of times for table of prescribed temperature history at $\mathrm{x}=\mathrm{L}(1 \leq \mathrm{NTMBCB} \leq 150)$
IFTOK - index to indicate units of input tempera- w ture histories at $x=0$ and L (and internally if given) $=0$ for input temperatures at $\mathrm{x}=0$ and L in kelvin
$=1$ for input temperatures at $\mathrm{x}=0$ and L in degrees
Fahrenheit. These values are converted to
kelvin and the kelvin values are printed.
NKTEMP - number of thermal conductivities in input table ($1 \leq$ NKTEMP ≤ 20)
NCTEMP - not used
IKCAL - =0 for omitting NAMELIST KCAL in subroutine KCALC
$=1,2,3, \cdots$ for calling NAMELIST KCAL $1,2,3, \cdots$
times

Card 6, (format: 8F10.0)
Note: this "card" and the following four may not be only one "card" each

TIMA(i), $I=1$, NTMBCA - times associated with prescribed surface temperature history at $\mathrm{x}=0$ (s)

Card 7, (format: 8F10.0)

$$
\begin{aligned}
& \text { TBCA (I), I=1, NTMBCA - prescribed temperatures for } x=0 \\
& \text { associated with TIMA (I) (May be in } \\
& K \text { or }{ }^{\circ} \text {; see IFTOK on card } 5 . \text {) }
\end{aligned}
$$

Card 8, (format: 8F10.0)
$\operatorname{TIMB}(I), I=1, N T M B C B$ - times associated with prescribed temperature history at $\mathrm{x}=\mathrm{L}$ (s)

Card 9, (format: 8F10.0)
$\operatorname{TBCB}(I), I=1, N T M B C B$ - prescribed temperatures for $x=L$ associated with times TIMB(I)(May be in K or ${ }^{\circ} \mathrm{F}$; see IFTOK on card 5.)

Card 10, (format: 2F10.0)
TKPROP(IK) - temperature for IKth entry of conductivity table (K)
CK(IK) - IKth thermal conductivity ($W / m-K$)

Card 11, (format: 4F10.0)
RHO1C - density of concrete due to evaporable water, ($\mathrm{kg} / \mathrm{m}^{3}$ of concrete)
RHO2C - density of concrete due to chemically constituted water $\left(\mathrm{kg} / \mathrm{m}^{3}\right.$ of concrete)
RHO3C - density of concrete due to $\mathrm{CO}_{2}\left(\mathrm{~kg} / \mathrm{m}^{3}\right.$ of concrete)
RHO4C . - density of concrete for all other constituents ($\mathrm{kg} / \mathrm{m}^{3}$ of concrete)

Card 12, (format: F10.0)
CPO - specific heat of concrete (J/kg-K)

Card 13, (format: 5I10, 3F10.0)
NULOC - number of locations for experimental temperature histories ($0 \leq$ NULOC ≤ 5)
NUTIM - number of times for experimental temperature histories ($0 \leq N U T I M \leq 150$)
NPLOC - number of locations for experimental pressure histories $(0 \leq N P L O C \leq 4)$
NPTIM - number of times for experimental pressure histories ($0 \leq N P T I M \leq 150$)
NWRTIM - number of times for experimental water release ($0 \leq$ NWRTIM ≤ 150)
WEIGHTI - estimated standard deviation for experimental temperatures (a weighting factor in sum of squares function)
WEIGHT2 - estimated standard deviation for pressures measured inside concrete
WEIGHT3 - estimated standard deviation for experimental water release

Program USINT can be used for estimating parameters ky minimizing a sum of squares. The sum of squares is calculated using the equation,
$S=\sum_{i} \sum_{j}\left(Y_{T_{1 j}}-U_{1 j}\right)^{2} \frac{1}{\text { WEIGHTI**2}}$
$+\sum_{i} \sum_{j}\left(Y_{p_{1 j}}-p_{i j}\right)^{2} \frac{1}{\text { WEIGHT2**2}}$
$+\sum_{1}\left(Y_{W_{i}}-W_{i}\right)^{2} \frac{1}{\text { WEIGHT } 3 * * 2}$

Whens

$Y_{T_{i j}}$ is the measured temperature at time t_{i} and location
$U_{1 j}$ is the calculated temperature at time t_{i} and x_{j},
$Y_{p_{i j}}$ is the measured pressure at time t_{i} and location x_{j},
$p_{1, j}$ is the calculated pressure at t_{i} and x_{j},
$Y_{W_{i}}$ is the measured water release at time t_{i} and
W_{1} is the calculated water release at time t_{i}.

In this summation the calculated temperature $U_{i j}$ must correspond to the measured temperature $\mathrm{Y}_{1,}$ and same is true for the pressure and water release. It is not necessary, however, that the locations and times be the same for the temperatures, pressures, and water release. Notice that the tables given below permit different locations for temperature and water release and also permit different time entries for temperature, pressure and water release. Each temperature history has the same associated time values. This is also true for the pressures but the tings table need not be the same as for the temperatures. Calculated values must occur at times at which measurements are but there may be many times at which values are calculated ? measured quantities are unknown. Usually the measured U, p and water release values are taken at convenient uniformly-spaced times. This is not true, however, for the locations of the sensors. For this reason a node need not be positioned at each sensor; instead linear interpolation in space is employed to obtain calculated temperatures and pressures when a sensor does not happen to be at a node.

If $N U L O C=0$, go to card 17.
Card 14, (format: 8F10.0)
TIMEU(I), $I=1$, NUTIM - time for measured temperatures, s

Card 15, (format: F10.0)
EULOC(J) - location of Jth temperaiure sensor, m

Card 16, (format: 8F10.0)
$\operatorname{EU}(I, J), I=1$, NUTIM - measured temperatures at location EULOC (J)

If IFTOK=0, these temperatures are in kelvin. If IFTOK=1, these temperatures are in ${ }^{\circ} F$ and are converted to K by the program. Note that the boundary condition temperatures and the measured temperatures should have the same units, either ${ }^{\circ} \mathrm{F}$ or K .

Cards 15 and 16 are alternately read in until all the NULOC locations are considered.

If $\mathrm{NPLOC}=0$, go to card 20.

Card 17, (format: 8F10.0)
TIMEP(I), I=1, NPTIM - times for experimental pressures, s

Card 18, (format: F10.0)
EPLOC (J) - location of the Jth pressure sensor, m

Card 19, (format: 8F10.0)
$\operatorname{EPR}(I, J), J=1, N P T I M$ - pressures associated with measured pressures at location EPLOC(J), $\mathrm{N} / \mathrm{m}^{2}$

Cards 18 and 19 are alternately read in unt 11 all the NPLOC locations are considered. If $N W R T I M=0$, no further input is needed.

Card 20, (format: 8F10.0)
TIMEWR (I), I=1, NWRTIM - times for the measured water release, s

Card 21, (format: 8F10.0)
EINTWR(I), I=1, NWRTIM - measured values of the water release, $\mathrm{kg} / \mathrm{m}^{2}$

5. TEST CASE

In order to illustrate the use of program USINT a test caso is provided. This case corresponds to the Test 1 data given in a HEDL report $[7]$. A magnetite concrete slab 12 inches thick was heated by an electrically heated steel plate on one side with a gap for venting of the steam. On the opposite face there were cooling coils. On both surfaces the water release was measured but for Test 1 the water release at the cooled surface was less than 5% of that at the heated surface.

Input data for the test case is given in Table l. The input is quite extensive so that each input number cannot be discussed but a few are noted. Though the slab is one foot thick, ineasured temperature histories are impressed at the location of the first thermocouple $(x=0)$ and the last one $(x=0.938 \mathrm{ft}=0.2859 \mathrm{~m})$. In the calculation $I M=31$ nodes are chosen. Hence, there are $30 \Delta x^{\prime}$ s so that $\Delta x=D X=.2859 / 30=.00953 \mathrm{~m}$.

The time steps, D_{1}, are each 60 seconds and there are 420 time steps so that the maximum time is $60(420)=25200 \mathrm{~s}=7$ hours. A short numerical study was performed to determine the time and space steps mentioned. For the same thermal properties and other parameters, DX and DT were varied and the overall sum
of squares was noted; for this particular case it was found that these values of $D X=.00953 \mathrm{~m}$ and $D T=60$ s gave acceptable accuracy. Reducing DX and DT Uid not significantly affect the accuracy but can affect the computer running time considerably.

These large time steps of 60 s are possible due to the implicit calculational procedure. (In a similar calculation performed by $G E$ with $\Delta x=.00762 \mathrm{~m}$, slightly less than .00953 m , the step times had to be as small as 0.037 s as a result of the explicit calculational procedure. Explicit methods are much easier to program but may have severe time limitations.)

Measured temperature histories are prescribed at both $\mathrm{x}=0$ and $x=0.2859 \mathrm{~m}$. Experimental internal temperature histories are given at $x=.0351 \mathrm{~m}, .0872 \mathrm{~m}, .1335 \mathrm{~m}, .1777 \mathrm{~m}$ and .2365 m . These experimental temperatures are used in the sum of squares function along with pressures measured at .r. 3505 and .1777 m and also the measured water release at $v j$. The input times in each case are in seconds. The pri ed temperatures are in kelvin, the pressures are in N / m^{2} and the water release in $\mathrm{kg} / \mathrm{m}^{2}$.

The different contributions to the density are 111.6, $73.4,975$, and $2579 \mathrm{~kg} / \mathrm{m}^{3}$ for evaporable water, chemically bound water, CO_{2} and concrete, respectively. See RHOIC, etc. A constant concrete specific heat of $800 \mathrm{~J} / \mathrm{kg}$ is used.

The thermal conductivity is specified as three linear segments from 0 K to 1200 K but the values below 290 K and above 800 K are not relevant for the calculations as the temperatures in the body are between 290 and 800 K during the time interval of interest, i.e., to DT*NTS $=60 * 420=25200 \mathrm{~s}$.

Sample output produced by USINT for the input data given in Table 1 is displayed in Tables 2 and 3. The complete set of output for this case is recorded on an attached microfiche card. The initial conditions of temperature, pressure, $\alpha_{1^{\prime}}$, θ and other quantities are provided in Table 2. Temperature is denoted U; QDOT is Q defined by (20h); Al is α_{1}; SIDOT is for steam and is called \dot{s}_{1} in (21); S2DOT is \dot{s}_{2} given by the right side of (30) which is for CO_{2}; and S3DOT is for liquid water and is defined by (201). On the second page of Table 2, P1 is the pressure p_{1} in $\mathrm{N} / \mathrm{m}^{2}$; EP stands for epsilion ε, the porosity; p is pressure; $A 2$ is α_{1}; THETA is θ; and $V 1$ is vapor velocity in m / s. For every time except zero the EP column contains the porosity valies; the time $=0$ entries are the atmospheric pressure entered as P 20 .

At the end of Table 2 are five lines that are not initial quantities. Instead they contain output of measured and calculated values of pressure and water release at 1800 s. Since the time step, DT, is 60 s and the temperatures, pressures and so on are to be printed every 60 time steps (since NPRNT=60), the first time after zero that complete spatial information is to be printed is $60^{2}=3600 \mathrm{~s}$. The measured temperatures are given at 3600 s intervals and the measured pressures and water release are given at 1800 s steps. Consequently the bottom five lines of Table 2 are given before the first printed calculated spatial quantities which are at 3600s.

At 1800 s and .03505 m the measured pressure 1 s about 1 atm. or . $101 \mathrm{E} 6 \mathrm{~N} / \mathrm{m}^{2}$ and the corresponding calculated value is $.191 \mathrm{E} 6 \mathrm{~N} / \mathrm{m}^{2}$. The difference of these values is

$$
\text { PINT-EPR }=-.903 E 5
$$

which when divided by WEIGHT2 $=E 5$ and squared is equal to $\operatorname{SUM}=.815$. The next pressure location is .1777 m and the pressure difference
is -.141E5; dividing this latter value by WEIGHT2, squaring and adding to the previous sum yields the new sum of .835 . Two of the terms of the sum of squares function defined by (75) are obtained in the manner just described. A third term is obtained from the water release data on the bottom line of Table 2.

The first time beyond zero of spatial output is listed in Table 3. These are given after 60 time steps of 60 s each. The surface temperatures of 480.48 and 297.32 K are prescribed values. See the TBCA and TBCB arrays in Table 1 . The temperatures drop smoothly down from the maximum value at $x=0$ to about the initial value of 294 K and then increase slightly near $\mathrm{x}=\mathrm{L}$. The QDOT behavior is much different from U in that QDOT is both positive and negative and varies over many orders of magnitude. The negative values can denote endothermic reactions in which heat is absorbed such as the production of water. Loss of energy for change of phase from water to steam can also cause QDOT to be negative; this is what is occurring at $x=.0191 m$. The positive GDOT at $x=.0286 \mathrm{~m}$ indicates that net condensation or net production of water from steam is occurring.

The Al column of Table 3 (which is for α_{1}) has some zero and nonzero values. The zeros are a result of the production of evaporable water being restricted to being above 350 K , the value of UMIN1 given in Table 1 . There are three values of Al=1 and thus for these nodes all the possible evaporable water has been produced.

The last column of the first page of Table 3 lists S3DOT values with positive values denoting net production of liquid water. Notice that the greatest production is at $x=.0477 \mathrm{~m}$ which is also where SIDOT is the largest. This occurs at the location where Al has the greatest change with time.

On the second page and second line of Table 3 there is a quantity IGPM which is equal to 2 . This means that the interface
between the wet and dry regions is at node 2. Notice that EP and THETA are equal only for the first two nodes and that the largest partial pressure $\left(p_{1}=5.4 E 5 N / m^{2}\right)$ occurs at the second node, the interface.

Plots of results given by USINT for the input data of Table 1 have been obtained. The results to be displayed, however, come from a calculation which uses finer time and space steps but the resulting values are nearly the same. The time step is 20 s rather than 60 s and there are 46 nodes (with an appropriate $D X$ value) rather than 31.

To make the plotting simpler, USINT produces a file called TAPE20, that cintains input experimental temperatures, pressures and water release values and the corresponding calculated values. This is done in the main program.

Figures $1-5$ provide a comparison of the measured and calculated temperatures for five locations. The calculated values are illustrated by the continuous lines and the measured values with dots. The time scale goes out to 25200 s or 7 hours. The agreement of the calculated temperatures with the experimental values is good. Since the heated surface has the temperature prescribed, the measured temperature histories near the surface usually would be expected to be calculated most accurately and those deepest in the body the least accurately. For the curves shown, however, all of the calculated temperature histories agree quite well with the measured values.

In Figures 6 and 7 the measured pressure histories at two locations are shown along with the calculated values. The results for $x=.0351 \mathrm{~m}$ which are shown by Fig. 6 gives reasonabiy good agreement but the Fig. 7 results for $x=.1777$ do not show good agreement. This lack of agreement in Fig. 7 can be attributed to several different factors. One of these is that the model in the program is not adequate and another is that the experimental conditions may be different from those expected. Many possibilities
exist regarding discrepancy in the experimental conditions. One of these is that there may be cracking of the concrete in the vicinity of the pressure sensor and another is that the sensor may not be located at the given depth.

Other aspects of the difficulty with the pressure measurements are suggested in Ref. 7. HEDL ran two tests reported in Ref. 7 only one of which is analyzed herein. In Test 2 (called WRD-2 by HEDL) the temperatures rose to considerably higher values than in Test 1 but the maximum pore pressure measured was less than two atmospheres while in Test 1 the pressures reached 8 atmospheres. HEDL $[7]$ stated that "the very low pressures measured in WRD-2 may be anomalous, and tend to cast doubt upon the validity of the method used. In particular, abnormally low pressures would be measured in the case of cracking or poor bonding of the pressure taps to the concrete." Further improvements in methods of pressure measurement inside concrete are clearly needed.

The integrated water release in $\mathrm{kg} / \mathrm{m}^{3}$ for both measured and calculated values is shown in Fig. 8. In general the agreement is quite good between the two with the maximum difference occurring at 25200 s and being about 15%.

Concluding Comments on the Analysis of Data

In the above test case agreement was obtained between the measured values and calculated values by varying three parameters: the low and temperature thermal conductivities and the Darcy factor DIOC. The procedure in determining these parameters was to vary the parameters in a more or less systematic way and to observe the value of the sum of squares, called SUM in the output. This is an inefficient procedure and much better metho's are available [11] for estimating parameters simultaneously and automatically. One difficulty, however, is that the calculations for the parameters require many complete solutions of the tempera-
ture, pressure, etc., histories and thus the computer time for solution may be in excess of what is practical on a time-sharing system. For the data given in Table 1 about 14 s of CDC6600 time is used for each case. A computer program to automatically search for the minimum sum of squares might take 50 complete solutions or about 700 s which is excessive for normal CDC6600 time-sharing usage. It could readily be handled on the CD~7600 which would require considerable less time to perform the same calculations.

There is another problem in addition to computer capacity, however. As USIIT is presently written, the interface jumps from one node to an adjacent one. This "Jumping" can cause difficulties in automatic seeking of the minimum sum of squares because the sum may have several local minima.

Advantages of the present relatively inefficient method of estimating parameters include that it is very flexible since any particular combination of parameters may be found. Moreover it is capable of finding the global minimum even though local minima exist, although this depends on the skill of the one doing the search.

TABLE 1
SAMPLE INPUT DATA FOR USInT

TABLE I (CONTINUED)

TIMEU(I), $\mathrm{I}=1$, NUTIM							
0.00	3600.00	. 7200.00	10800.00	4400.00	18000.00	21600.00	25200.00
28800.00	32400.00	36000.00	39600.00	43200.00	46800.00	50400.00	54000.00
57600.00	61200.00	64800.00	68400.00	72000.00	75600.00	79200.00	82800.00
86400.00	90000.00	93600.00	97200.00	100800.00	104400.00	108000.00	11
$115200.00118800 .0012<4400.00126000 .00$							
EXPERIMEN	TAL TEMPER	ATURES AT	$X=\quad .03$	100			
293.43	384.82	437.59	484.43	526.93	563.26	591.54	16.65
636.82	654.43	673.54	688.76	700.71	710.37	718.93	26.59
733.15	739.09	744.15	748.93	753.43	757.87	161.59	763.82
766.09	769.54	771.87	773.76	776.09	777.71	779.26	780.26
780.98	781.71	781.87	781.76				
EXPERIMENTAL TEMPCRATURES AT $X=0.087200$							
293.43	321.71	365.98	398.93	422.98	441.26	461.21	81.26
498.82	516.65	534.48	550.26	564.54	576.21	585.71	593.32
599.93	605.48	610.65	615.32	619.21	623.48	627.48	630.59
633.54	636.09	638.98	641.48	644.37	646.48	648.59	析
651.93	653.26	659.04	654.37				
EXPERIMENTAL TEMPERATUR SS AT $\mathrm{X}=0.133500$							
293.59	314.26	325.82	353.43	374.43	391.87	406.32	417.32
426.21	428.98	436.93	452.15	466.15	477.43	486.98	37
502.54	508.87	514.43	519.87	524.54	529.21	531.98	535.26
538.76	541.93	544.43	546.82	549.48	551.82	553.93	555.71
557.32	558.09	558.59	560.09				
EXPERI MENTAL TEMPERATURES AT $X=$							
293.37	298.32	303.26	317.87	336.32	353.87	368.43	380.87
388.82	396.32	404.26	410.21	415.21	420.21	424.59	428.87
432.54	436.2.	439.48	443.04	446.32	449.65	451.32	453.76
456.82	460.09	462.87	465.71	468.21	470.65	472.54	475.09
476.71	478.04	479.37	479.87				
EXPERIMENTAL TEMPERATURES AT $X=$. 236500							
293.09	298.26	303.43	308.82	313.76	321.76	330.87	339.71
347.37	353.93	360.21	364.26	367.54	371.26	373.87	376.54
378.87	381.09	382.93	384.54	386.43	388.15	390.65	391.04
392.82	393.48	395.21	396.37	397.54	398.48	398.82	399.98
400.32	400.37	400.32	40				
TIMEP (1), $\mathrm{I}=1$, NPTIM							
0.00	1800.00	3600.00	5400.00	7200.00	9000.00	10800.00	12600.00
14400.00	16200.00	18000.00	19800.00	21600.00	23400.00	252	27000.00
EXPERIMENTAL PRESSURES AT $X=$. 035050							
101000.00	101000.00	411000.00	443000.00	655000.00	820000.00	784000.00	738000.00
101000.00101000 .00101000 .00101000 .00 336000.00 508000.00 571000.00 616000.00							
632000.00 625000.00615000 .00604000 .00593000 .00581000 .00568000 .00553000 .00							
0.00	1800.00	3600.00	5400.00	7200.00			
EINTWR(0.00	$\begin{array}{r} 1, I=1, N R W T \\ .09 \end{array}$	13	2.75	4.14	5.57	6.95	8. 33
9.13	11.03	12.23	13.45	14.52	15.58	16	17.62

\therefore ABLC
SAMPLE OUTPUT FOQ USINT. TIME EOUALS ZERO

TABLE 2 (CONTINUED)

$$
A B=3
$$

OUTPUT FROY USINT FOR TEST CASE. TIME EQUALS 3600 S

X(I)
0.0000
.0095
.0191
.0276
.0381
.0477
.0512
.056
.0752
.0854
$3.1036 \mathrm{E}+02-3.2832 \mathrm{E}+00$
$3.0630 E+02-3.6191 E+00$
3.0310E+02-3.2156E+00
$.12393 .0060 \mathrm{E}+02-3.1866 \mathrm{E}+00$
$.13342 .9368 \mathrm{E}+02-2.7629 \mathrm{E}+00$
$.1430 \quad 2.9122 \mathrm{E}+02-2.3241 \mathrm{E}+00$
$2.9613 E+02-1.9153 E+00$
$.1620 \quad 2.9534 \mathrm{E}+02-1.5605 \mathrm{E}+00$
$.17152 .9478 \mathrm{E}+02-1.2052 \mathrm{E}+00$
$.18112 .9441 \mathrm{E}+02-1.0328 \mathrm{E}+00$
$.1906 \quad 2.941$ RE $+02-8.5551 E-01$
$.20012 .9408 \mathrm{E}+02-7.2769 \mathrm{E}-01$
.2097 2.9409E $+02-6.4198 \mathrm{E}-01$
$.2192 \quad 2.9419 \mathrm{E}+02-5.9114 \mathrm{E}-01$
$.2281 \quad 2.9437 \mathrm{E}+02-5.6833 \mathrm{E}-01$
.23 H3 2.9404E+02 $-5.6730 \mathrm{E}-01$
$.2418 \quad 2.9499 \mathrm{E}+02-5.9238 \mathrm{E}-01$
$.25732 .9543 E+02-6.0838 E-01$
.2059 2.9う9bE+02-6.3423E-01
$.27042 .9558 \mathrm{E}+02-1.7012 \mathrm{E}+02$
$.2859 \quad 2.9732 \mathrm{E}+02 \quad 0$.

SIDOT(STM) S2D01(CO2) 0
$\therefore .0000 \mathrm{E}+00 \quad 1.2074 \mathrm{E}-08$
$1.0000 \mathrm{E}+00$
$9.9893 \mathrm{E}-01$
$9.0084 \mathrm{E}-01$
$1.5995 \mathrm{E}-01$
0.0 . $3.5112 \mathrm{E}-10$ 0. $-2.62 \mathrm{E}-02$ $2.0624 \mathrm{E}-03$ U. $\quad 8.36 \mathrm{E}-03$ 7.3335E-02 0. 8.49E-02
2.9750E-01 0. $\quad 1.19 \mathrm{E}-01$
0.
$0 . \quad 1.43 \mathrm{E}-06$
-6.89 E-07
$-1.64 E=06$
$-1.99 \mathrm{E}-06$
$-2.02 \mathrm{E}-06$
$-1.89 E-06$
$-1.67 E-06$
$-1.43 \mathrm{E}-06$
$-1.19 \mathrm{E}-06$
$-9.75 \mathrm{E}-07$
-7.91E-07
$-6.40 \mathrm{E}-07$
$-5.21 \mathrm{E}-07$
-4.31E-07
-3.06E-07
$-3.23 E-07$
-2.98E-07
$-2.87 E-07$
-2.87E-07
-2.95E-07
$-3.09 \mathrm{E}-07$
$-3.24 \mathrm{E}-07$
$-7.50 \mathrm{E}-05$
0.

REFERENCES

1. Powers, D., "Empirical Models for the Kinetics of Calcareous Concrete Decomposition," Sandia memo to R.L. Knight, Jan. 28, 1977.
2. Scheidegger, A.E., Physics of Flow Through Porous Media, University of Toronto Press, 1974.
3. Bazant, Z.P., and Thonguthai, W., "Pore Pressure and Drying of Concrete at High Temperature," ASCE Journal of the
Engineering Mechanics Division, Vol. 104, No. EM5 Oct., 1978, pp. 1059-1079.
4. Dayan, A., "COWAR-2 User's Manual," General Electric GEFR-00090(L), May 1977.
5. Keenan, J.H., Thermodynamics, John Wiley \& Sons, Inc., N.Y. 1941, p. 349.
6. Irvine, T.F., Jr., and Hartnett, J.P., Steam and Air Tables in SI Units, Hemisphere Publishing Co., 1976.
7. Postma, A.K , McCormack, J.D. and Schur, J.A., "A Study of Water and Gas Release from Heated Concrete," Hanford Engineering Development Laboratory, HEDL TC-996, Dec. 1977.
8. Whitaker, S., "Simultaneous Heat, "ass and Mementum Transfer in Porous Media: A theory of Drying," Chapter in Advances in Heat Transfer, Edited by Hartnett, J.P. and Irvin, T.F., Jr., Academic Press, New York, Vol. 13, 1977, pp 119-203.
9. Richtmyer, R.D., and Morton, K.W., Difference Methods for $\frac{\text { Initial Value Problems }}{1 \text { Ishers, New York, } 107}$. Second Edition, Interscience Pub-
10. "Advanced Safety Analysis Eleventh Quarterly Report MarchMay 1977," General Electric, GEFR-14038-11, UC-796, June 1977.
11. Beck, J.V., and Arnold, K.J., Parameter Estimation in Engineering and Science, John Wlley \& Sons, New York, 1977.

Fig. 1 Plot of calculated and measured temperatures at $x=.0351 \mathrm{~m}$ for HEDL Test Nu. 1 data [7].

Fig. 3 Plot of calculated and measured temperatures at $x=.1335 \mathrm{~m}$ for HEDL Test No. 1 data [7].

Fig. 5 Plot of calculated and measured temperatures at $x=.2365 \mathrm{~m}$ for HEDL Test No. 1 data [7].

Fig. 6 Plot of calculated and measured pressures at $\mathrm{x}=.0351 \mathrm{~m}$ for HEDL Test No. 1 data [7].

Fig. 8 Plot of calculated and measured value of integrated water release for HEDL Test No. 1 data [7].

Distribution:

```
U.S. Nuclear Regulatory Commission
    (360 copies for R7)
Division of Docrment Control
Distribution Services Branch
7920 Norfolk Avenue
Bethesda, Maryland 20014
U.S. Nuclear Regulatory Commission (4)
Division of Reactor Safety Research
Office of Nuclear Regulatory Research
Washington, D.C. }2055
Attn: C. N. Kelber, Assistant Director
                Advanced Reactor Safety Research
    R. T. Curtis, Chief
        Analytical Advanced Reactor Safety
        M. Silberberg, Chief
        Experimental Fast Reactor Safety
    T. Walker
        Experimental Fast Reactor Safety
U.S. Department of Energy
Office of Nuclear Safety Coordination
Washington, D.C. }2054
Attn: R. W. Barber
U.S. Department of Energy (2)
Albuquerque Operations Office
P.O. Box 5400
Albuquerque, New Mexico }8718
Attn: J. R. Roeder, Director
        Operational Safety Division
    D. L. Krenz, Director
        Special Programs Division
        For: C. B. Quinn
        D. Plymale
```

University of Michigan
Niclear Engineering Department
Ann Arbor, Michigan 48104
General Electric Company (5)
Communications Document Center
M/C S-14
310 DeGuigne Drive
Sunnyvale, California 94086
Attn: R. A. Meyer, Mgr. Analytical Engineering
S. A. Davies, Mgr. Conceptual Design Study
J. W. McDonald, Mgr. Containment \& Radiological
Evaluation
N. W. Brown, Mgr. Licensing \& Systems Engineering
"erme. ${ }^{\prime} g{ }^{2}$. Safety Criteria \& Assessments

```
Distribution Con't
W. E. Nyer
P.O. Box }184
Idaho Falls, Idaho 83401
Power Reactor & Nuclear Fuel (3)
    Development Corporation (PNC)
Fast Breeder Reactor Development Project (FBR)
9-13, 1-Chone, Akasaka
Minato-Ku, Tokyo
Japan
Attn: Dr. Mochizuki
Dr. Watanabe (2)
Projekt Schneller Brueter (4)
Kernforschungszentrum Karlsruhe GMBH
Postfach }364
D75 Karlsruhe
West Germany
Attn: Dr. Kessler (2)
    Dr. Heusener (2)
H. J. Teague (3)
UKAEA
Safety and Reliability Directorate
Wigshaw Lane
Culcheth
Warrington, WA3 4NE
England
R. G. Bellamy
Reactor Fuels Group
AERE Harwell
Oxfordshire, OX11 ORA
England
R. G. Tyror, Head
Reactor Development Division
UKAEA - Atomic Energy Establishment
Winfrith, Dorchester
Dorset
England
Argonne National Laboratory (2)
FRSTMC
9 7 0 0 ~ C a s s ~ A v e n u e ~
Argonne, Illinois 60439
Attn: L. Baker, Jr.
    E. Gluekler
```

```
Distribution Con't
Hanford Engineering Development Laboratory
P.O. Box }197
Richland, Wasinington 99352
Attn: L. Muhlestein
    R. Peak
1100 C. D. Broyles
    Attn: J. D. Kennedy, }111
        T. L. Pace, }112
        G. L. Ogle, 1125
1537 N. R. Keltner (5)
1537 R. U. Acton
1537 B. F. Blackwell
1537 T. Y. Chu
1550 F. W. Neilson
    Attn: O. J. Burchett, }155
                                J. H. Gieske, }155
4000 A. Narath
4231 J. H. Renken
4400 A. W. Snyder
4 4 1 0 ~ D . ~ J . ~ M c C l o s k e y ~
4420 J. V. Walker (5)
4422 R. L. Coats
4 4 2 2 ~ D . ~ A . ~ P o w e r s
4422 J. B. Rivard
4423 P. S. Pickard
4424 M. J. Clausen
4424 J. T. Hitchcock
4424 M. Senglaub
4425 W. J. Camp
4425 R. J. Lipinski
4425 A. Suo-Anttila
```

Distribution Con't
4441 R. Cole
4441 M. L. Corradini
4441 J. F. Muir
4442 W. A. Von Riesemann
4450 J. A. Reuscher
5500 O. E. Jones
5510 D. B. Hayes
5530 W. Hermann
5534 J. C. Smaardyk
5541 W. Luth
5800 R. S. Claassen
5820 R. E. Whan
5830 M. J. Davis
5846 R. Marion
5846 R. A. Sallach
8266 E. A. Aas
3141 T. L. Werner (5)
3151 W. L. Garner (3)
For DOE/TIC (Unlimited Release)
3154 R. P. Campbell (25)
For NRC Distribution to NTIS

