SITE DEPENDENT RESPONSE SPECTRA HADDAM NECK SITE DRAFT REPORT

July 1980

prepared for

NORTHEAST UTILITIES SERVICE COMPANY



:

3

# TABLE OF CONTENTS

3

2

|     |                                                                      |                             |                                                               | Page |  |
|-----|----------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------|------|--|
| 1.0 | INTRODUCTION                                                         |                             |                                                               |      |  |
| 2.0 | THE SITE DEPENDENT RESPONSE<br>SPECTRA METHODOLOGY                   |                             |                                                               |      |  |
| 3.0 | EVALUATION OF THE GROUND MOTION POTENTIAL<br>AT THE HADDAM NECK SITE |                             |                                                               |      |  |
|     | 3.1                                                                  | .l Introduction             |                                                               |      |  |
|     | 3.2                                                                  | Regional Tectonic Framework |                                                               |      |  |
|     |                                                                      | 3.2.1                       | Piedmont Atlantic Coastal<br>Gravity Province - Site Province | 9    |  |
|     |                                                                      | 3.2.2                       | Southeastern New England Platform                             | 11   |  |
|     |                                                                      | 3.2.3                       | Western New England Fold Belt<br>Province                     | 13   |  |
|     |                                                                      | 3.2.4                       | Northeastern Massachusetts Thrust<br>Fault Complex            | 15   |  |
|     | 3.3                                                                  | Estima<br>Neck S            | ted Seismic Intensities at the Haddam<br>ite                  | 16   |  |
|     | 3.4                                                                  |                             | endations for Magnitude and Distance<br>ign Earthquake        | 18   |  |
|     | 3.5                                                                  | Haddam                      | Neck Site Characteristics                                     | 22   |  |
| 4.0 | DER                                                                  | IVATION                     | OF RESPONSE SPECTRA                                           | 23   |  |
|     | 4.1                                                                  | Strong                      | Motion Data Rase                                              | 23   |  |
|     |                                                                      | 4.1.1                       | Data Base Search                                              | 24   |  |
|     | 4.2                                                                  | Data Processing             |                                                               | 26   |  |
|     |                                                                      | 4.2.1                       | Strong-Motion Signal Correction                               | 26   |  |
|     |                                                                      | 4.2.2                       | Spectra Derivation                                            | 28   |  |

TABLE OF CONTENTS (CONT'D.)

|                                       | Page |  |  |  |  |
|---------------------------------------|------|--|--|--|--|
| 4.3 Results: Seismic Response Spectra | 29   |  |  |  |  |
| 5.0 CONCLUSION                        |      |  |  |  |  |
| REFERENCES                            |      |  |  |  |  |

TABLES

3

:

-

FIGURES

APPENDIX A EARTHQUAKE CATALOG

### 1.0 INTRODUCTION

Seismic design values for nuclear power plants are based on two basic decisions: first, the selection of the size and location of an earthquake which represents a conservative assessment of the source of maximum vibratory motion at the site; second, a conservative assessment of the resulting ground motion at the site, considering the effects of the local geologic conditions. The second assessment is generally provided in terms of a frequencydependent response spectrum.

Using seisric and geologic data, recent investigators (Aki, 1979; Bouchon, 1979, 1980a, b) have successfully computed expected motions at specific sites using an analytical methodology. The methodology, based on physical principles, models the total earthquake process, including the generation of seismic energy for a particular fault source configuration and dimension as well as the transmission of the seismic waves to the site.

Such state-of-the-art deterministic methods for computing ground motions are not presently applicable to most Eastern United States (EUS) sites, since many of the critical parameters associated with the majority of eastern seismic events, e.g., fault location, type, and dimension, etc., are not well known. The basic reason for this lack of information is the absence of any evidence of DRAFT

-2-

3

recent surface faulting that could be associated with the known seismicity. In contrast to the Western United States, EUS events are likely occurring at sufficient depth with no surface expression and are not apparently correlated to known surface geology. In the absence of a satisfactory explanation of the seismicity in terms of surface geology, seismic networks and geophysical mapping techniques have been implemented to study the subsurface in order to identify and ultimately quantify the seismogenic regions in terms of their seismic potential. To date, sufficient information has been accumulated to formulate several working hypotheses about the causes of seismicity in specific EUS regions, e.g., Cape Ann, Massachusetts, Ossipee, New Hampshire, New Madrid, Missouri, Attica, New York, etc.

Because the present understanding of EUS seismicity does not permit the discrimination of all active tectonic features, both with respect to past and future activity, the "tectonic province" approach, as defined by the USNRC in Appendix A, 10 CFR, Part 100, is the current method for determining the maximum ground motion potential at an EUS site.

For most applications, the tectonic province approach can be unrealistically conservative inasmuch as it assigns to every location a minimum seismic potential equal to the maximum historical earthquake. Equivalently stated, the approach assumes that active faults with dimensions sufficient to support the maximum historical event are ubiquitous throughout the region. This assumption contradicts the reality of the earthquake process which involves failures of crustal rocks along zones of weakness. The presence of weaker zones necessarily implies the coexistence of zones of strength, which indeed are observed as aseismic stable blocks. The clustering distributions of earthquakes in the EUS, as well as in other regions, support this contention.

Although the source of seismic potential for an EUS site cannot be more specifically answered than with those estimates made by application of the tectonic province methodology, the expected vibratory motion, can be more realistically addressed with a site-specific approach than with the established practice of using generalized response spectrum shapes. Current practice defines the ground motion associated with the maximum earthquake

-3-

potential by a standard response spectrum shape, e.g., USAEC Regulatory Guide 1.60, scaled to a "zero period" peak ground acceleration empirically determined for a maximum intensity estimated for a site. Such practice involves questionable scaling procedures wherein strong motion records representing a wide range of magnitudes, intensities, distances, and site conditions are used to abstract a generalized spectral shape which is linearly scaled to model a wide range of seismic potentials. This procedure provides unrealistic ground motion estimates except in those few cases in which the seismic setting is similar to the average conditions represented by the data set upon which the shape was based. Thus, scaling standard response spectra shapes to model a seismic scenario which is not well represented by the original data set should be avoided whenever possible.

-4-

The site-specific approach develops response spectra based on strong motion data selected under criteria that closely model the parameters used to describe the occurrence of the maximum earthquake potential, as well as the plant site conditions. Of the various parameters available to quantify an earthquake and, more specifically, the

effects of a hypothetical earthquake at a site, those determined instrumentally are more reliable than any others based on noninstrumental evaluations. For instance, the magnitude and location of an earthquake are computed from instrumental recordings. Similarly, the strong ground motions observed at specific sites are recorded on accelerographs, and the local geologic conditions at the sites can be well determined using geophysical surveys. On the other hand, the Modified Mercalli intensity at an accelerograph site is not easily evaluated and generally is assigned the intensity level prevalent in the surrounding region.

-5-

By using accelerograms selected according to three criteria, e.g., the magnitude of the event, the distance to the site, and the type of local geology, a range of expected ground motions at a site can be reasonably well established. It should be noted that many more parameters influence the resulting site ground motion. These include the fault mechanism, azimuthal directivity of the seismic wave radiation pattern, stress drop, etc. Therefore, ground motion estimates determined on the basis of only three parameters will exhibit significant scatter, which can be interpreted as a probability density function of

Weston Geophysical

expected motions. Consequently, the specification of the design ground motion at the site will involve choosing from the density function a probability level that adequately accommodates the uncertainty of the metho-dology.

The present analysis used to predict ground motions at the Haddam Neck site follows the considerations outlined above and utilizes a site-dependent response spectrum approach.

# 2.0 THE SITE-DEPENDENT RESPONSE SPECTRUM METHODOLOGY

The approach used to develop site-dependent response spectra for the Haddam Neck site is based on the evaluation of the seismic ground motion potential at the site, within the context of tectonic provinces and structures (10 CFR, Part 100, Appendix A), in terms of magnitude and 'ocation (distance to the site) of the maximum earthquake. Accelerograms that approximate the magnitude and distance characteristics for the maximum earthquake, that were recorded at sites similar to the Haddam Neck local site geology, are used for the computation of response spectra. DRAFT

-7-

Statistical processing of the response spectra data yield spectra that typify the maximum earthquake potential. Normalization or scaling of the data to peak acceleration or peak velocity is avoided, since the statistical processing is performed on the real response spectra computed from observed time histories (accelerograms).

# 3.0 EVALUATION OF GROUND MOTION POTENTIAL AT THE HADDAM NECK SITE

### 3.1 Introduction

The results of comprehensive investigations concerning the geologic history and seismicity of Eastern North America have been compiled in recent reports entitled "Eastern United States Tectonic Structures and Provinces Significant to the Selection of a Safe Shutdown Farthquake" (Weston Geophysical Corporation, 1979a), and "Geology and Seismology, Yankee Rowe Nuclear Power Plant" (Weston Geophysical Corporation, 1979b). Other recent reports provide detailed descriptions of the seismicity data base currently maintained by Weston Geophysical. These include New York State Electric & Gas Corporation,

-8-

Units 1 and 2, PSAR, 1978; Public Service Company of New Hampshire, Seabrook Station, FSAR, August 1979; and Boston Edison Company, Pilgrim Unit 2, PSAR, 1976.

Contained in these reports are the geologic, geophysical, and seismologic bases for the definition of the tectonic framework in the Eastern United States with respect to the delineation of provinces and structures and their relative levels of seismic activity. The evaluation of the seismic ground motion potential at the Haddam Neck site is based upon this definition of the tectonic framework.

3.2 Regional Tectonic Framework

Detailed information on the tectonic framework and geologic evolution of eastern North America is contained in reports previously cited in Section 3.1. Provinces located within 200 miles of the Haddam Neck site include the following:

- Piedmont Atlantic Coastal Gravity Province (site province);
- 2. Southeast New England Platform;
- 3. Western New England Fold Belt;
- Northeast Massachusetts Thrust Fault Complex;
- 5. Coastal Anticlinorium;

-9-

6. Merrimac Synclinorium;

- 7. Adirondack Uplift;
- 8. Eastern Stable Platform;
- Appalachian Plateau;
- 10. Valley and Ridge.

The configuration of these provinces with respect to the Haddam Neck site and the locations of historical earthquakes are shown in Figure 1.

Discussion will be limited to a review of the tectonics and seismicity of the first four provinces listed above. Due to their proximity and their level of seismicity, these four provinces have the greatest impact on the estimation of the ground motion potential at the site. Descriptions of the remaining provinces can be found in a Weston Geophysical Corporation study (1979a).

Earthquakes with epicentral intensities greater than III or with magnitudes greater than 3.0, located within 200 miles of the site, are tabulated in Appendix A.

### 3.2.1 <u>Piedmont Atlantic Coastal Gravity</u> Province - Site Province

Seismicity within the Piedmont Atlantic Coastal Gravity Province is of a moderate level. The maximum intensity associated with historical earthquakes is VII(MM).

-10-

The seismicity of the immediate site region (50 km) is characterized as low to moderate. The majority of the events are in the III-IV(MM) intensity range with several earthquakes of Intensity V(MM) and one, that of May 16, 1791, with an Intensity VI-VII(MM) (SER-Millstone II). This earthquake, centered in the East Haddam-Moodus area of Connecticut, was originally categorized as an Intensity VIII(MM), but was reevaluated as an Intensity V-VI(MM) by Reverend Daniel Linehan, S.J. (1964). For purposes of conservatism, it is treated in this study as being an Intensity VI-VII(MM).

Geologically, this province is characterized by a Precambrian basement overlain by Early Paleozoic metamorphic rocks which are locally intruded by plutons of Paleozoic age. The province is characterized by basement rocks which are deformed into a northe. t-trending fabric resulting in a northeast-trending gravity high (Figure 2). Within the area of Paleozoic metamorphic rocks, structural basins of Triassic age occur from New Jersey to Georgia. A residual mantle of weathered rock exists throughout the province.

The boundary of the province is clearly defined on the west by folds of the Valley and Ridge Province north of the James River, and by the thrust faults of the Southern

-11-

Appalachian Province south of the James River. To the east, the province continues under a blanket of coastal plain sediments. The southern boundary of the province is outside the area of this study and has not been investigated in detail. Because of the thick sequence of rocks overlying the crystalline basement in this province, the regional gravity data (due in part to the basement rock) contribute significantly to the eastern and northern boundaries. The gravity data generally correlate with and support the known regional geology.

3.2.2 Southeastern New England Platform

Seismically, the province is characterized by generally low and scattered activity (Figure 1); the largest historical intensity is V-VI(MM) which is associated with the August 8, 1847, event. Nonetheless, because the 1791 East Haddam event, which occurred in the adjacent Piedmont Atlantic Coastal Gravity Province, is so close to the province boundary, the Intensity VI-VII(MM) associated with this event is conservatively accepted as the historical maximum.

The southeastern New England Platform lies south of the North Border fault of the Boston Basin and largely consists of Late Precambrian-Early Paleozoic granitic

-12-

basement, with supracrustal basins containing continental sedimentary rocks (with minor interbedded volcanic units) ranging in age from older Paleozoic in the Boston Basin to Carboniferous in the Narragansett and reighboring basins of Rhode Island and southeastern Massachusetts. The platform is slightly deformed and does not have evidence of Acadian orogenic deformation. In the Boston Basin, the sedimentary rocks have been folded and thrust-faulted from the south, with apparently thin-skinned tectonic deformation (Billings, 1976). In the southwestern part of the Narragansett Basin, in southeastern Rhode Island, deformation of the Carboniferous scdimentary rocks includes folding, metamorphism, and two episodes of east-west thrusting during the Paleozoic. In eastern Connecticut, the Precambrian rocks of the Southeastern New England Platform underlie a thin cover of pre-Silurian rocks beneath the Lake Char and Honey Hill fault surfaces. Most of the platform rocks have been affected by an Alleghenian thermal or metamorphic event, locally including granitic plutonism. The platform has not, however, been deformed internally by throughgoing crustal fault structures.

The basement offshore to the south, in the area of the Long Island Shelf (Schlee, 1977), slopes to the south and

is blanketed by a seaward-thickening wedge of loosely consolidated Coastal Plain sediments of Cretaceous and Tertiary age. Based on geophysical data, Sheriden (1974) has interpreted the basement of the Southeastern New Englar<sup>4</sup> Platform to extend roughly 100 kilometers south to the southern New England shoreline. The southwestern boundary of the province continues under Long Island where it is defined as the eastern edge of a distinct gravity high.

# 3.2.3 Western New England Fold Belt Province

This province is defined as a separate seismolectonic province on the basis of geologic structure, geophysical signature, and a relative lack of seismic activity (Figures 1 and 2). Seismically, the province is characterized by a low level of infrequent activity (Figure 1). Intensity V(MM) is representative of the historical upper limit of this province, even though, within the province, two earthquakes of Intensity VI have occurred. The first is the Quebec-Maine border event of June 15, 1973, associated with a seismotectonic structure, the Megantic intrusives of southeastern Quebec, one of the mafic intrusives of the White Mountain Plutonic Series. The second one, although listed as Intensity VI(MM), must be characterized by a much lower value. This earthquake, which occurred on

-13-

-14-

January 30, 1952, near Burlington, Vermont, had an extremely small felt area (50 square miles). Such a small perceptible area is certainly not typical of events characterized by an Intensity VI(MM). The probability is that this event was caused by freezing conditions as cracks were noted in the frozen ground near the Winooski River. The occurrence of cryoseisms in New England is well known; these are very small events and have no effect on the selection of design earthquakes for a tectonic province.

The geologic structures which define the province are large-scale, north-northeast-trending thrust faults and folds of Paleozoic are. Geophysically, the province is characterized in part by a pronounced north-trending gravity high in its axial region.

The eastern boundary of the Western New England Fold Belt is defined as the eastern termination of the northsouth structures associated with the Bronson Hill Anticlinorium. The western boundary is placed along the limit of Paleozoic overthrusts which have been termed Logan's line or Logan's structure. On the south, the province boundary is generally located along the western edge of a pronounced gravity high associated with the Piedmont Atlantic Coastal Gravity Province where the structural

-15-

features, as well as the seismicity, appear to change. The northern boundary of the province in eastern Quebec lies north of the study area.

### 3.2.4 Northeastern Massachusetts Thrust Fault Complex

Seismically, this province is characterized by a distinctive pattern of activity (Figure 1) which suggests that any seismic event would tend to migrate along the trend of well defined geologic structures. The largest earthquakes in the province (Intensity VIII) have been located where these northeast trends are disrupted, for example, at the mafic pluton of the White Mountain series of intrusives which is nearly in the middle of the offshore continuation of the province.

The Northeastern Massachusetts Thrust Fault Complex is readily distinguished from neighboring provinces by its high frequency of post-Acadian faulting. The complex is bounded on the northwest by the Clinton-Newbury fault, dated at Middle Permian (Public Service Company of New Hampshire, Seabrook FSAR, 1974), and is delineated on the southwest by the North Border fault of the Boston Basin. The complex narrows and ends in a southwesterly direction based on both geo.ogic data and geophysical (aeromagnetic) signature; it can be projected for tens of miles to the

-16-

east on the basis of aeromagnetic patterns. The predominant pattern of deformation in the Complex is moderately to steeply northwest-dipping thrust faulting, commonly with right-lateral, west-over-east displacements (Skehan, 1968; Dennen, 1978). The Complex is a superimposed tectonic structural feature which exhibits extreme mechanical deformation of rocks both of coastal anticlinorium affinities (Goldsmith, 1978) to the north and of Avalonian affinities to the south. The boundary between these two distinctive terranes is the Bloody Bluff fault system, the principal deep crustal fault of the complex (Nelson, 1976).

# 3.3 Estimated Seismic Intensities at the Haddam Neck Site

The maximum ground motions at the site, in terms of Modified Mercalli intensities, were computed using an attenuation model appropriate for the EUS. Equation 1, which is formulated on observed Modified Mercalli intensity attenuation for Central United States earthquakes (Gupta and Nuttli, 1976), was used in this analysis.

$$I(R) = I_0 + 3.7 - 0.0011R - 2.7 \log R (R > 20 km)$$
 (1)

Table 1 lists the parameters of the largest earthquakes located in the Northeast, the distances of these

-17-

events to the site, and the estimated site intensities as computed from Equation 1.

Equation 1 is formulated on intensity data observed at a variety of foundation conditions, most of which are soil sites that have experienced various degrees of local amplification, due to the impedance contrast between soil layers and the underlying baserock. Because of the manner in which Equation 1 was formulated, the predicted intensities at distance are best estimates at average foundation conditions, e.g., at sites overlain be some thickness of soils. The intensity observed on sound foundations, e.g., rock foundation, as in the case of the Haddam Neck facility, is lower than the values predicted by Equation 1, since local soil amplification is not a factor at a rock site.

The information in Table 1 indicates that the maximum intensity on average foundation conditions in the immediate vicinity of the Haddam Neck facility, is a Modified Mercalli Intensity VI-VII. On the basis of the previous discussion, the intensity at the rock foundation at the site would be lower than a Modified Mercalli Intensity VI-VII. -18-

The worst case scenario for effects at the site from hypothetical events located in adjacent provinces is associated with an Intensity VIII earthquake located 100 km from the site at the southwest corner of the Northeast Massachusetts Thrust Fault Complex. The Haddam Neck site intensity for this hypothetical event, using Equation 1, is Modified Mercalli Intensity VI.2.

On the basis of the site intensities listed in Table 1, and also on a review of the effects associated with hypothetical events located in adjacent provinces, the maximum ground motion potential at the Haddam Neck site is specified to be an Intensity VII at the site, resulting from the maximum historical earthquake known for the site province occurring at the site (at a focal distance of 15 km).

# 3.4 Recommendations for Magnitude and Distance of Design Earthquake

As discussed previously, the maximum ground motion potential for the Haddam Neck site is an Intensity VII earthquake occurring at the site. For the reasons discussed in Section 1.0 of this report, and to facilitate the data base search for appropriate accelerograms, it is necessary to convert this intensity to magnitude.

-19-

Several empirical methods are available to estimate the body-wave magnitude of historical earthquakes from Modified Mercalli Intensity data. One approach is to compute the magnitude from the observed maximum intensity. This procedure is only approximate since the same intensity can be produced by earthquakes from a wice range of magnitudes, depending on the focal depth of the events and the local site amplification effects.

Another more refined approach, is to estimate magnitude from the total intensity pattern of the earthquake, rather than on the singular determination of epicentral intensity. The amount of energy released in an earthquake, which is directly related to the definition of magnitudes, is assumed to be proportional to the affected area. On this basis, empirical studies have produced formulae to estimate magnitude from perceptible areas (Nuttli and Zollweg, 1974; Nuttli et al, 1979). The magnitude of the several intensity VII earthquakes in the site province have been estimated using both techniques. vuttli and Herrmann (1978) provide the following body wave magnitude-intensity relation for earthquakes occurri in the Central United States:

$$I_0 = 2.0 m_p - 3.5$$
 (2)

or conversely,

$$m_b = 0.5 I_0 + 1.75$$
 (3)

Using Equation 3, an epicentral intensity VII earthquake is converted to a magnitude 5.25, or rounded to 5.3  $m_{\rm b}$ .

Next, the magnitudes of the intensity VII events in the site province, were computed from total felt areas,  $A_f$ , using Equation 4 (Nuttli et al, 1979).

 $m_{bLg} = 3.25 - 0.25 \log A_f + 0.098 (\log A_f)^2$  (4)

where  $A_f$  = total felt area in square km

Table 2 lists these computed magnitudes.

-21-

The magnitudes evaluated from the felt areas are smaller than the magnitudes calculated by converting observed intensities into magnitudes. This suggests that observed intensities are somewhat anomalous. This effect could be due to either a shallow focal depth for the events, or more likely due to local amplification of quaternary coastal plain sediments occurring in the province or exaggeration of the historical intensities (Linehan, 1964). As noted above, the amplification effect does not apply to the rock foundation condition for the Haddam Neck site.

Although the largest earthquakes in the site province have magnitudes lower than 5.0  $m_b$ , the historical occurrence of earthquake activity near the HadJam Neck site warrants some conservatism in the selection of the design earthquake magnitude. For this reason the mean magnitude for the maximum earthquake potential is designated to be a 5.3  $m_b$ .

In the interest of making more records available for statistical analysis of spectral ordinates and definition of the density function of ground motion, the following

criteria are defined as a range of magnitudes and distances for these events:

Magnitude Range<br/>(mb)Focal Distance Range<br/>(km)5.3 (40.5)15 (±10)

Only accelerograms recorded on foundation . nditions approximating the local site geology at Haddam Neck are accepted in the development of the site response spectrum.

Since the maximum earthquake is located near the site, parameters, such as fault orientation and mechanism could have significant effect on ground motions. No formal treatment is attempted to account for these effects. The manner in which all of the unknown parameters are accommodated is through the choice of a conservative estimation of earthquake magnitude.

3.5 Haddam Neck Site Characteristics

The Haddam site is underlain by the Monson gneiss and the Tatnic formation. In the site area, the Monson gneiss is a light grey biotite-quartz-plagioclase gneiss with local occurrences of hornblende bearing gneiss; the Tatnic formation is a biotite-muscovite schist. A seismic survey performed by Weston Geophysical Engineers (1962) determined the compressional wave velocity of the principal overburden to be 5,300 fps. The velocity of the bedrock, which is the foundation of the Haddam Neck plant, is in the range of 11,000 to 14,000 fps. This velocity range indicates a rather competent rock. The shear wave velocity of the bedrock is estimated to be in the range of 5,000 to 7,000 fps.

## 4.0 DERIVATION OF RESPONSE SPECTRA

4.1 Strong Motion Data Base

United States agencies that disseminate digitized accelerograms include: California Institute of Technology (CIT), Environmental Data Services for National Oceanic and Atmospheric Administration (EDS/NOAA) and United States Geologic Survey (USGS). Weston Geophysical Corporation (WGC) strong motion data base consists of all recordings that are available by these agencies. This data base includes recordings of earthquakes that have occurred not only within the Western United States, but also in Japan, Italy, Peru, and Nicaragua.

Site characteristics of strong motion recording stations have been the object of additional research. The

-23-

DRAFT

amount of information available on the foundation conditions of each station is highly variable. It ranges from very general descriptions to detailed information including test borings and seismic surveys which provide data on layer thicknesses, and compressional and shear wave velocities. For cases where details of recording site foundation conditions are not directly available, site foundation conditions have been estimated from available geologic maps, and where applicable, from geotechnical and geophysical data extrapolated from adjacent sites.

### 4.1.1 Data Base Search

The strong motion data base was searched to find all recordings with parameters matching those used to characterize the maximum earthquake potential. These parameters were defined as:

| 1. | Magnitude      | 5.3 ( <u>+</u> 0.5) m <sub>b</sub>                                            |  |  |
|----|----------------|-------------------------------------------------------------------------------|--|--|
| 2. | Distance       | 15 ( <u>+</u> 10) km                                                          |  |  |
| 3. | Site Condition | Competent Foundation Bedrock<br>with Shear Wave Velocity of<br>5000-7000 fps. |  |  |

The search provided twenty horizontal component recordings for seven different earthquakes. Information describing the selected accelerograph sites is presented in Table 3, while the earthquake identification parameters

-24-

-25-

and the peak accelerations observed at these sites are listed in Table 4.

A critical review of Tables 3 and 4 indicates that the selected strong motion data are in good agreement with the defined magnitude, distance and site conditions criteria, with only two exceptions. First, on Table 3, the site conditions at the Cedar Springs Dam Pump House are described as "Shallow gravelly alluvium over granite." The recordings obtained at that station were accepted despite that reference to alluvium, because numerous reviewers have classified the site as hard due to the shallow thickness of the overburden (Trifunac and Brady, 1975). Second, on Table 4, the distance of the Temblor No. 2 station is listed as 31 km, in excess of the established distance criterion. The two accelerograms were nonetheless included in the set because the exact distance is considered uncertain in view of the fact that the fault rupture was extensive. An alternate measure of the distance considers the nearest point of approach of the rupture; this is based on the fact that seismic energy is realeased all along the surface of dislocation. Kanamori and Jennings (1978) in their study of Parkfield accelerograms have listed 10.7 km as the distance between Temblor No. 2

-26-

and the nearest point of rupture; this distance is in agreement with the criterion. For conservatism, the longer distance of 31 km was used in Table 4.

# 4.2 Data Processing

The general outline of the methodology used to compute response spectra is described in the flow chart (Figure 3). As discussed previously, all recordings within the data base were not obtained from the same source. Therefore, the degree of processing performed on the chosen records is not uniform. The following sections discuss the general techniques used to generate response spectra.

4.2.1 Strong-Motion Signal Correction

The data obtained from CIT and from EDS/NOAA were already corrected for the instrument response, digitization errors, and baseline drift and were ready for the spectra-generation process. However, the Friuli accelerograms were obtained in an uncorrected form, i.e., only digitized and corrected for instrument sensitivity, scaled to g/10.

The general procedure and the computer program (EQCOR) used to correct these data are described in detail by

-27-

Trifunac (1970) and Trifunac and Lee (1973). Since publication of these reports, several advances have been made in the correction process; specifically, in the choices of the low-pass filter values (Basili and Brady, 1978). Their method requires that the pass-band of the filters for EQCOR be based on both the duration of the strong motion part of the record and length of the entire record. Previously, a standard pass-band (.07-25. Hz) was used for all records. The quality of the correction process is determined by examining the computed displacements. If long-period displacements are so large that they dominate short-period ones, the correction is considered as inadequate because these long-period waves are actually unwanted noise. If this is the case, new filters must be chosen to remove this long-period noise. The choice of the pass-band becomes more critical for short duration, strong motion signals rich in high frequencies such as the Friuli sequences. Examples of uncorrected accelerograms are presented in Figure 4. Figures 5 and 6 snow the corrected accelerograms for these records along with the computed velocity and displacement time histories.

-28-

### 4.2.2 Spectra Derivation

Response spectra are plots of the maximum response of a simple oscillator (one-degree of freedom) to ground acceleration as a function of the natural period and damping of the oscillator. The spectra are computed by solving the equation of motion for the oscillator:

 $x + 2\beta\omega x + \omega^2 x = -a_t$ 

where: x is the relative displacement of the simple oscillator;

at is base (ground) acceleration at time t;

 $\boldsymbol{\omega}$  is the natural frequency of vibrations of the oscillator;

B is the fraction of critical damping.

The details of the derivation of the solution to this equation and the computational procedures involved are discussed by Nigam and Jennings (1968).

Examples of response spectra generated for the same records discussed in the previous section are presented in Figures 7 and 8. These are plotted at damping ratios .04 and .07. Damping ratios imply fractions of critical damping; .07 damping ratio means the system is seven percent critically damped. -29-

### 4.3 Results: Seismic Response Spectra

The response spectra of the twenty horizontal components listed in Table 4 were computed for several values of critical damping. Spectra at 5% of critical damping are shown over-plotted in Figure 9. The large scatter, more than an order of magnitude, in spectral accelerations, velocity, and discplacement, observed in Figure 9, clearly demonstrates the probablistic nature of earthquake motions when defined on the basis of three parameters: magnitude, distance, and site conditions. The reason for the observed scatter is that encompassed by the general criteria is a variety of specific parameters of the earthquake sources and transmission media that are primarily responsible for the observed motion. The addition of more records according to the three criteria (magnitude, distance, and site conditions) would not necessarily reduce the scatter, but would tend to reinforce it, since additional specific parameters, such as fault orientation, dimensions, stress drop, etc., previously not included would then come into play.

-30-

The task at hand, then, is to carefully examine the specific parameters of the selected earthquakes and resulting strong motion records to establish the extent to which they typify the earthquake potential accepted for the Haddam Neck site, and then on the basis of this review, to choose an appropriate design response spectrum from the data shown in Figure 9. An evaluation of the selected accelerograms suggests that even though these data meet the criteria, they nevertheless constitute a conservative estimate of the ground motion at this EUS site. The review of the data reveals that several of the recordings were obtained from earthquakes that produced surface faulting, e.g., the Oroville Earthquake, August 1, 1975; the Parkfield Earthquake, June 28, 1966. Using these recordings to model EUS ground motion is conservative since surface faulting is not characteristic of any eastern earthquakes observed to date.

Further examination fo the specific details of the selected data reveals that the most conservative aspect of the data set is the inclusion of the Temblor records for the Parkfield earthquake. This earthquake has been extensively researched due to the high accelerations recorded near the fault. Following is a summary of some important characteristics of this earthquake.

The magnitude of the Parkfield earthquake ranges widely from  $5.3m_b$  to  $6.4M_s$  and is typically assigned a Richter magnitude of 5.5 or 5.6. Filson and McEvilly (1967) who examined amplitude spectra for the event suggest that there was an uncharacteristic greater attenuation of high frequencies relative to longer periods, thereby making body wave magnitude estimate low at  $5.3m_b$ . Wu (1968) computed magnitudes of  $5.8m_b$  and  $6.4M_s$  for the Parkfield event; therefore, the published material defines a range of body wave magnitudes for this event of 5.3 to  $5.8m_b$ , and a surface wave magnitude of  $6.4M_c$ .

Analysis of the earhtquake mechanism suggests a fault rupture length of 30 km with the rupture propagating at 2.2 km/sec. towards the southeast (McEvilly et al, 1967; Filson and McEvilly, 1967). Bouchon (1979) explains that the high accelerations recorded at an accelerograph near the fault trace is the result of this fault rupture propagating toward the site. Other analyses of the observed strong motion for the Parkfield earthquake indicate high acceleration-short duration motions near the fault with rapid attenuation with distance from the fault (Cloud and Perez, 1967).

-31-

-32-

The particular characteristics of the Parkfield earthquake, including the long fault length, extensive surface rupture, and large surface wave magnitude do not represent the design earthquake recommended for the Haddam Neck site. Furthermore, the occurrence of a large ground motion resulting from the directivity effect of the fault rupture propagation is regarded as a remote probabilistic event at the Haddam Neck site, since no active faults are currently known. For these reasons, the use of the Temblor records consitutes a conservative assessment.

The amount of conservatism that results from the inclusion of the Parkfield earthquake can be evaluated by computing the mean and 84<sup>th</sup> percentile peak accelerations for the data in Table 4, excluding the Temblor records. The log normal mean peak acceleration of the 18 remaining records is 74.0 cm/sec<sup>2</sup>, a reduction of 22%, while the 84<sup>th</sup> percentile peak acceleration is 107.5 cm/sec<sup>2</sup>, a reduction of 27%.

The previous discussion illustrates the conservative aspects of the Temblor records and their effects on the computed average spectral level. On this basis, the data set is regarded to be a conservative representation of the expected ground motions at Haddam Neck. The choice of an

appropriate design response spectrum considers this fact, while also taking into account the critical nature of the nuclear plant design and accomodating the uncertainty inherent in the methodology of predicting strong ground motion from small data samples.

Considering these factors, the log-normal mean response spectrum computed for the 20 accelerograms listed in Table 4, is a conservative assessment of the design response spectrum appropriate for the Haddam Neck site. Figure 10 shows the log normal mean and 84<sup>th</sup> percentile response spectra for five percent critical damping. It should be noted that not all 20 components were averaged at all periods. The number of spectra averaged decreases with increasing period since each accelerogram has its own pass-band selected during the correction process (see Section 4.2.1). Table 5 shows the actual number of spectra averaged in various period ranges.

The irregular shape of the recommended design spectrum, which has a pronounced spectral gap in the period range of 0.4 to 1.2 sec., is interpreted as a statistical gap resultant from averaging a small data sample, rather than a real characteristic of spectra observed at short distance at rock sites. The inclusion of additional suitable records would tend to smooth out the peaks and troughs; therefore, the recommended design spectrum is visually smoothed as the envelope of the peaks in the log normal mean curve. Figure 11 shows the final recommended smoothed design response spectra, plotted at

various levels of critical damping.

Finally, the recommended site-dependent response spectrum is compared in Figure 12 to several other specifications of response spectra for the Haddam Neck site. These include the original design spectrum at Haddam Neck, the Regulatory Guide 1.60 shape anchored to .21g, and the NUREG 0098 shape anchored to the USNRC SEP Task Plan A-40 recommendations of .21g peak acceleration for the Haddam Neck site.

5.0 CONCLUSION

It is concluded from this research that the recommended site dependent response spectra constitute a more realistic representation of the ground motion than those of the standard Regulatory Guide 1.60 and NUREG 0098 shapes, while also affording an appropriate level of conservatism required in the design of critical facilities. Figure 12 also illustrates that the original seismic design of the Haddam Neck facility is adequate and conservative. REFERENCES

2

The list of references will be included in the final report.

1

1

1

1

1 1

1

44

LARGEST EARTHQUAKES IN THE NORTHEAST REGION AND THEIR EFFECTS AT THE HADDAM NECK SITE

| Year | Month | Day | Lat. (N) | Long. (W) | Io     | Distance<br>(km) | Estimated<br>Site Intensity | Province/Structure                              |
|------|-------|-----|----------|-----------|--------|------------------|-----------------------------|-------------------------------------------------|
| 1966 | Feb.  | 5   | 47.6     | 70.1      | x      | 705              | 5.2                         | LaMalbaie Structure                             |
| 1727 | Nov.  | 9   | 42.8     | 70.6      | VII    | 214              | 4.2                         | Northeast Massachusetts<br>Thrust Fault Complex |
| 1732 | Sep.  | 16  | 45.5     | 73.6      | VIII   | 455              | 4.0                         | Western Quebec Seismic Zone                     |
| 1737 | Dec.  | 18  | 40.8     | 74.0      | VII    | 146              | 4.7                         | Site Province <sup>1</sup>                      |
| 1755 | Nov.  | 9   | 42.8     | 70.6      | VIII   | 226              | 5.1                         | Northeast Massachusetts<br>Thrust Fault Complex |
| 1774 | Feb.  | 21  | 37.3     | 77.4      | VII    | 626              | 2.5                         | Site Province                                   |
| 1791 | Мау   | 16  | 41.5     | 72.5      | VI-VII | 2                | 6.0-7.0                     | Site Province                                   |
| 1840 | Nov.  | 11  | 39.8     | 75.2      | VII    | 294              | 3.7                         | Site Province                                   |
| 1875 | Dec.  | 23  | 37.6     | 78.5      | VII    | 670              | 2.3                         | Site Province                                   |
| 1884 | Aug.  | 10  | 40.6     | 74.0      | VII    | 159              | 4.6                         | Site Province                                   |
| 1927 | Jun.  | 1   | 43.3     | 73.7      | VII    | 182              | 4.4                         | Site Province                                   |
| 1931 | Apr.  | 20  | 43.4     | 73.7      | VII    | 235              | 4.0                         | Adirondack Uplift                               |
| 1940 | Dec.  | 24  | 43.8     | 71.3      | VII    | 275              | 3.8                         | White Mtn. Plutonic Series                      |
| 1940 | Dec.  | 24  | 43.8     | 71.3      | VII    | 275              | 3.8                         | White Mtn. Plutonic Series                      |
| 1944 | Sep.  | 5   | 44.97    | 74.9      | VIII   | .433             | 4.1                         | Western Quebec Seismic Zone                     |

lsite Province = Piedmont Atlantic Coast Gravity Province

1

3

| Year | Month | Day | Lat.<br>(N) | Long.<br>(W) | Epicentral<br>Intensity | Felt Area<br>Km <sup>2</sup> | Converted<br><sup>m</sup> bLg |
|------|-------|-----|-------------|--------------|-------------------------|------------------------------|-------------------------------|
| 1737 | 12    | 13  | 40.8        | 74.0         | VII                     | NA                           |                               |
| 1774 | 02    | 21  | 37.3        | 77.4         | VII                     | 150,000                      | 4.6                           |
| 1791 | 05    | 16  | 41.5        | 72.5         | VI-VII                  | 90,000                       | 4.4                           |
| 1840 | 11    | 11  | 39.8        | 75.2         | VII                     | NA                           |                               |
| 1871 | 10    | 09  | 39.7        | 75.5         | VII                     | NA                           |                               |
| 1875 | 12    | 23  | 37.6        | 78.5         | VII                     | 130,000                      | 4.5                           |
| 1884 | 08    | 10  | 40.6        | 74.0         | VII                     | 180,000                      | 4.6                           |
| 1927 | 06    | 01  | 40.3        | 74.0         | VII                     | 8,000                        | 3.8                           |

#### INTENSITY VII EARTHQUAKES WITHIN PIEDMONT ATLANTIC COASTAL GRAVITY PROVINCE

Weston Geophysical

#### SITE CONDITIONS OF SELECTED ACCELEROGRAPH STATIONS

| Name                            | Location            | Instrument<br>Type                                | Site<br>Characteristics                                                |
|---------------------------------|---------------------|---------------------------------------------------|------------------------------------------------------------------------|
| Carroll College                 | Helena, Montana     |                                                   | Hard Rock <sup>4</sup>                                                 |
| Temblor No. 2                   | Parkfield, Californ | ia AR-240 <sup>1</sup>                            | Serpentine and fractured ultrabasic complex <sup>2</sup>               |
| Oroville<br>Seismograph Station | Northern California | S-MD <sup>1</sup>                                 | Metavolcanic Schist                                                    |
| Cedar Springs<br>Allen Ranch    | Southern California | AR-240 <sup>2</sup>                               | Granite <sup>2</sup>                                                   |
| Cedar Springs Dam<br>Pump House | Southern California | AR-240 <sup>2</sup>                               | Shallow gravelly allu-<br>vium over granite <sup>2</sup>               |
| Somplago D                      | Friuli, Italy       | SMA-1 (.25g range,<br>turbine level) <sup>3</sup> | Fractured lime-<br>stone and dolomite<br>P-vel 4300 m/sec <sup>3</sup> |
| San Rocco                       | Friuli, Italy       | SMA-13                                            | Fissured limestone <sup>3</sup>                                        |

Iworld Data Center A(1979)

2Hudson (1971)

3Muzzi and Vallini (1977)

<sup>4</sup>Chang (1978)

<sup>5</sup>Silverstein (1978)

4

# ACCELEPOGRAMS SELECTED TO REFREENT MAXIMUM GROUND WOTION FOTENTIAL AT THE HADDAM NECK SITE

| DATE<br>mo-day-yr                                                                  | hr min         |       | LOCATION/NAME | REFERENCE<br>NUMBER | MAGNITUDE | EPICENTRAL<br>INTENSITY                     | DEPTH<br>(km) | DISTANCE<br>(km) | ACCELERATION<br>(CB/Sec <sup>2</sup> ) | COMPONENT                                  | STATION                           |
|------------------------------------------------------------------------------------|----------------|-------|---------------|---------------------|-----------|---------------------------------------------|---------------|------------------|----------------------------------------|--------------------------------------------|-----------------------------------|
| 10-31-35                                                                           | 18 3           | 381   | Helena, Mont. | .szoa               | 5.41      | (534) • 1 IIIA                              | 8.0*          | 6.6              | 143.5                                  | NS<br>Ew                                   | Carroll College                   |
| 06-28-66                                                                           | 04 3           | 361   | Parkfield, CA | *1£08               | e1C.2     | (MSI) z IIA                                 | 8.6           | 31.0*            | 340.8"<br>264.3                        | 825 <sup>0</sup> w<br>N65 <sup>0</sup> w   | Temblor No. 2                     |
| 09-12-70                                                                           | 14 30          | 105   | Southern CA   | *SEEW               | 5.2*      | VII <sup>18</sup> (194)                     | .0.6          | 20.8*            | 69.8°<br>54.9                          | 585 <sup>0</sup> £<br>505 <sup>0</sup> #   | Cedar Springs<br>Allen Ranch      |
| ~-12-70                                                                            | 14 30          | 301   | Southern CA   | *95EM               | 5.2*      | (N04) e 1 IIA                               | .0.6          | 23.3'            | 69.4°<br>55.9                          | \$36 <sup>0</sup> #<br>\$54 <sup>0</sup> £ | Cedar Springs<br>Dam, Pump House  |
| 08-01-75                                                                           | 20 20          |       | Northern CA   | T749 <sup>8</sup>   | 5.82      | (M24) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 15.02         | 12.01            | 90.6*<br>82.5                          | NOTOE NUTOE                                | Oroville Seismo-<br>graph Station |
| 09-11-76                                                                           | 16 31          | 11,   | Friuli, Italy | 1221                | \$.07     |                                             | a.o.          | 15.5*            | 66.6*<br>35.5                          | EN<br>NS                                   | San Rocco                         |
| 09-11-76                                                                           | 16 31          | 31.8  | Friuli, Italy | 134                 | \$.0*     | •                                           | .0.6          | 10.0*            | 27.8*                                  | S N                                        | Somplago D                        |
| 09-11-76                                                                           | 16 35          |       | Friuli, Italy | 1961                | 5.37      | (234) 11 IIA                                | •.0           | 14.0*            | 84.9*<br>64.2                          | 2                                          | Sen Rocco                         |
| 09-11-76                                                                           | 16 25          | 35.   | Friuli, Italy | 142*                | ٤.3'      | VII <sup>11</sup> (NUS)                     | e.0*          | 6.0              | \$3.0°                                 | RM<br>NS                                   | Somplage D                        |
| 09-15-76                                                                           | 151 60         |       | Friuli, Italy | 1531                | 5.7       | VIII <sup>11</sup> (HKS). 9.0"              | .0.6          | •0.6             | 118.6°<br>59.8                         | EW<br>NS                                   | San Rocco                         |
| Mean Values<br>Standard Deviations                                                 | ations         |       |               |                     | 5.3<br>25 |                                             | 8.9           | 14.9<br>7.9      | 95.0*<br>148.1**                       |                                            |                                   |
| <ul> <li>log-normal mean</li> <li>log-normal 84<sup>th</sup> percentile</li> </ul> | mean<br>B4th p | ercen | tille .       |                     |           |                                             |               |                  |                                        |                                            |                                   |

Arinitzaky and Chang (1975) World Data Center A (1979) CHEN-ENEL (1978) Chang (1978) Chang (1978) Morethan (1978) Morethan (1979) Multetin of the International Seismological Centre, September, 1976 Muzzi and Vallini (1977) Muzzi and Vallini (1976) Muzzi and Vallini (1976) Muzzi and Vallini (1976) Muzzi and Vallini (1976) Muzzi and Vallini (1976)

1

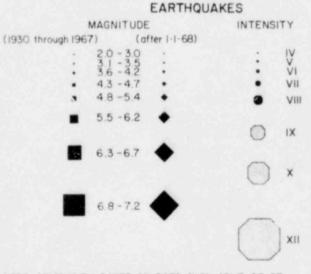
-

4

#### NUMBER OF RESPONSE SPECTRA ORDINATES AVERAGED IN JARIOUS PERIOD RANGES

| Period<br>(sec) | Number of Response<br>Spectra Ordinates |
|-----------------|-----------------------------------------|
| .0409           | 20                                      |
| .91-1.0         | 18                                      |
| 1.2             | 14                                      |
| 1.6-2.0         | 10                                      |
| 2.4-7.2         | 8                                       |

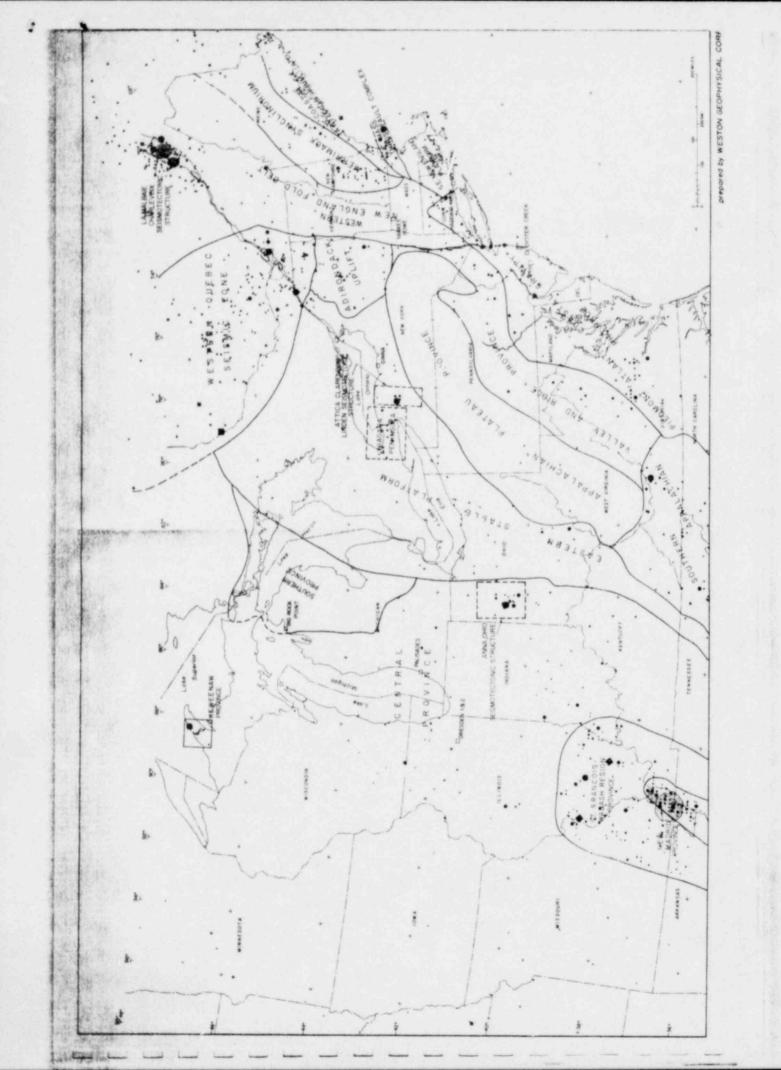
#### REGIONAL TECTONIC AND SEISMOTECTONIC PROVINCES


/

4

:

1


PROVINCE BOUNDARY (DASHED LINE INDICATES RELATIVE UNCERTAINTY OF BOUNDARY)



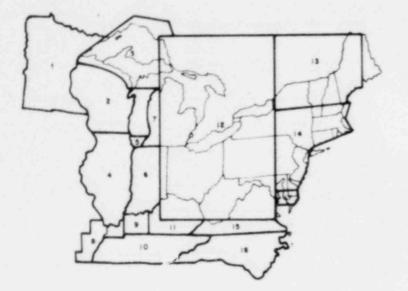
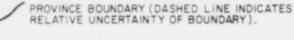
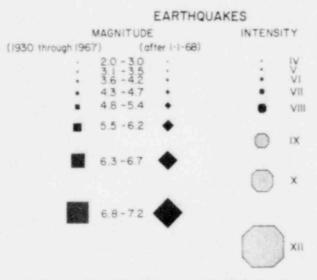

NOTE SEISMICITY BASED ON DATA AVA!LABLE AS OF JANUARY 1979.

FIGURE 1


EARTHOUAKES WITH (SEISMO) TECTONIC PROVINCES/ STRUCTURES OF NORTHEASTERN AND NORTH-CENTRAL UNITED STATES.



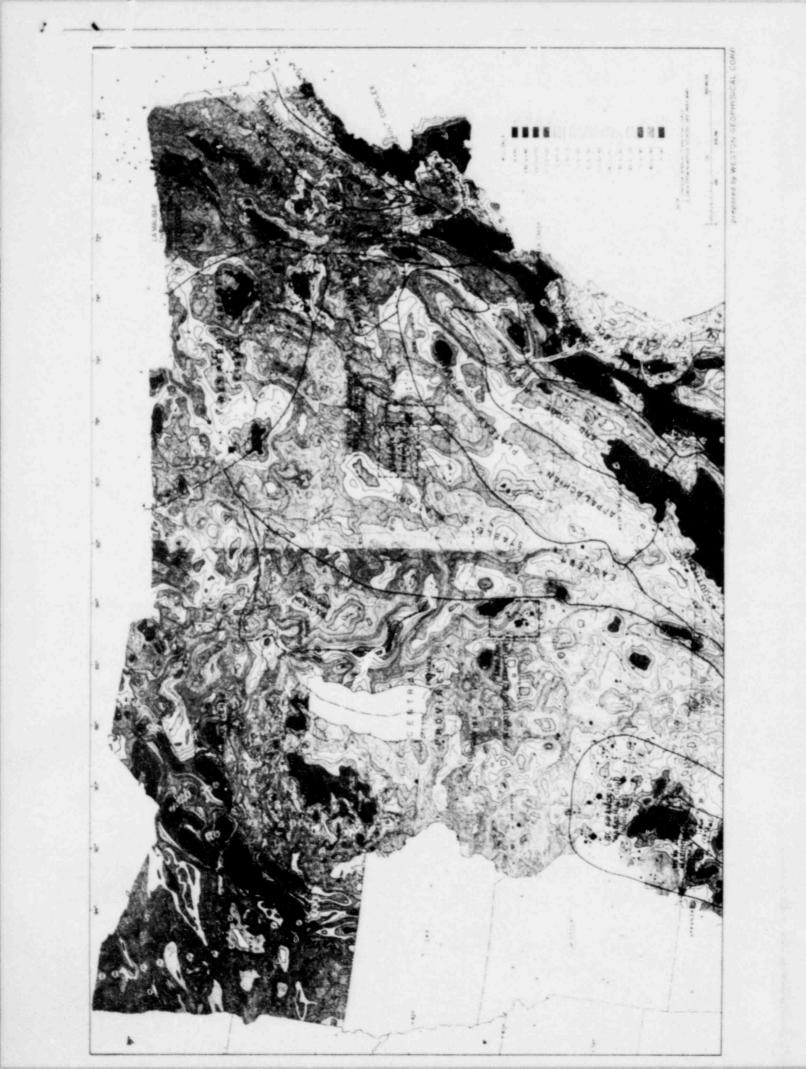

#### INDEX MAP OF GRAVITY DATA SOURCES

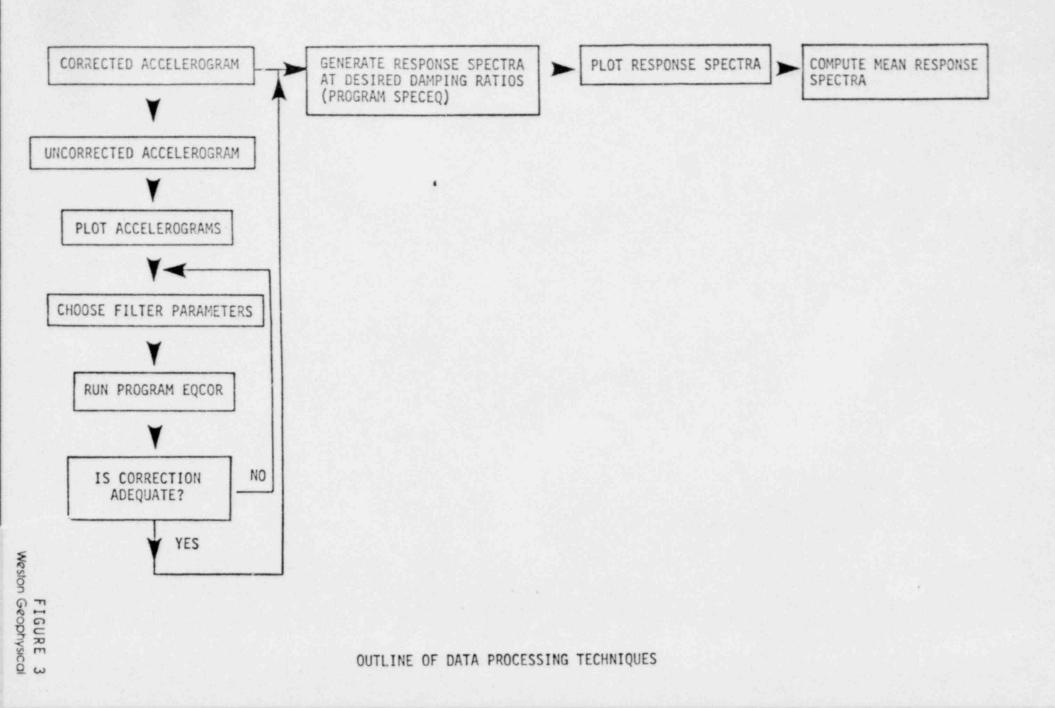


#### REGIONAL TECTONIC AND SEISMOTECTONIC PROVINCES



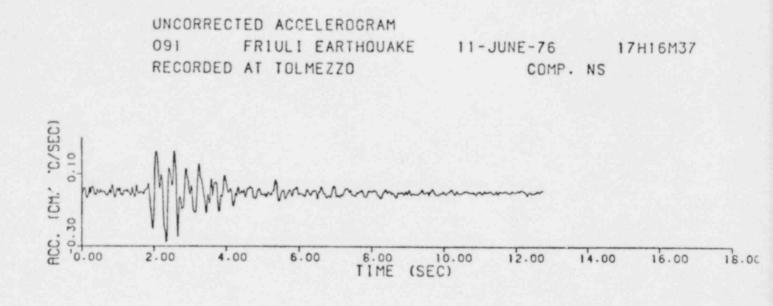


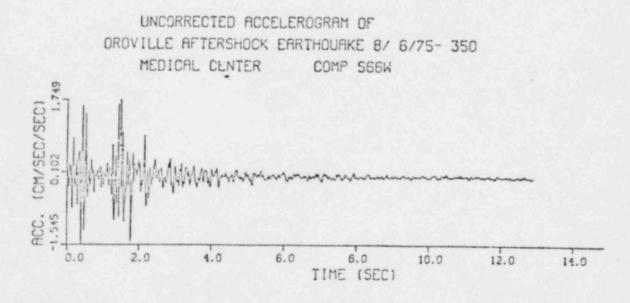

NOTE SEISMICITY BASED ON DATA AVAILABLE AS OF JANUARY 1979.


#### GRAVITY DATA SOURCES

- Craddock, C., H. M. Mooney, and V. Kolenmainen, 1970, Simple Bouguer Gravity Map of Minnesota and Northwestern Misconsin, U.S. Geological Survey Miscellaneous Map Series, Map M10.
- Ervin, C. P., and S. Hanmer, 1974, Bouquer Anomaly Gravity Map of Misconsin, University of Misconsin-Extension, Misconsin Geological and Natural History Survey.
- Klasner, J. S., R. J. Wold, W. J. Hinze, L. O. Bacon, N. W. O'Hara, and J. M. Berkson, 1978, Bouquer Gravity Anomaly Map of Northern Michigan and Lake Superior, U.S. Geological Survey Open-File Report 78-211.
- McGinnis, L. D., P. E. Heigold, C. F. Erwin, and W. Heidari, 1976, "The Gravity Field and Tectonics of Illinois," Illinois State Geological Survey Circular 494.
- O'Hara, N. W., K. J. Wold, and W. J. Hinze, 1971. Regional Gravity and Magnetic Study of Southern Lake Michigan - Southern Lake Michigan Geophysical Study.' Proceedings 16th Conf. Great Lakes Res., p. 431-440.
- Henderson, A. R., and I. Zeitz, 1958. "Interpretation of an Aeromagnetic Survey of Indiana," U.S. Sepisgical Survey Prof. Paper 316 B, 37 p.
- Hinze, W. J., R. L. Kellogg, and D. W. Merritt, 1971, Gravity and Aeromagnetic Anomaly Maps of Southern Peninsula of Michigan, Michigan Dept. of Natural Resources, Geological Survey Division, Rpt. of Invest. 14.
- Hildenbrand, T. G., M. F. Kane, and W. Stauder, S.J., 1977, Magnetic and Gravity Anomalies in the Northern Mississippi Embayment and Their Spacial Relation to Seimicity, U.S. Geological Survey niscellaneous field Studies Map M.F. -914, 2 sheets.
- Keller, G. R., R. K. Soderberg, and G. M. Graham, M. L. Dusing, and C. B. Austin, 1978, Bouguer Gravity Map of Kentucky, Western Sneel, Kentucky Geological Survey Series X.
- Jonnson, R. W., Ur., and R. G. Stearns, 1967, Sougaer Gravity Anomaly Map of Tennessee. State of Tennessee Dept. of Conservation, Division of Geology.
- Watkins, J. S., 1963, Simple Bouguer Gravity Map of Kentucky, U.S., Gerrorical Survey, Geophysical Investigation, Map GP-421.
- Weston Geophysical Corp., 1979, Gravity Map of East-Central United States and Southern Canada, compiled from numerous sources which are listed on Table 3.
- New York State Electric & Gas Corp., 1978, New Haven PSAR, Section 2.5, Figure 2.5-27, Total Bouquer Bravity Anomaly Map.
- Weston Genphysical Corp., 1978, Bouguer Gravity Anomaly Map of the Mid-Atlantic Region of the United States, compiled from several sources which are listed on Table 4.
- Johnson, S. S., 1978, Gravity Mac of Virginia, Simple Bouguer Anomaly, Commonwealth of Virginia, Dept. of Conservation and Economics Development, Division of Mineral Resources.
- Mann, Virgil I., "Bouguer Gravity Map of North Earolina", Southeastern Geology, Vol. 3, No. 4, op. 207-220, 1 map.
- Sabet, M. &., 1977, "Gravity Anomalies Associated with Salisbury Embayment, Maryland-Southern Deleware," Geology, V. 5, No. 7, p. 433-436.

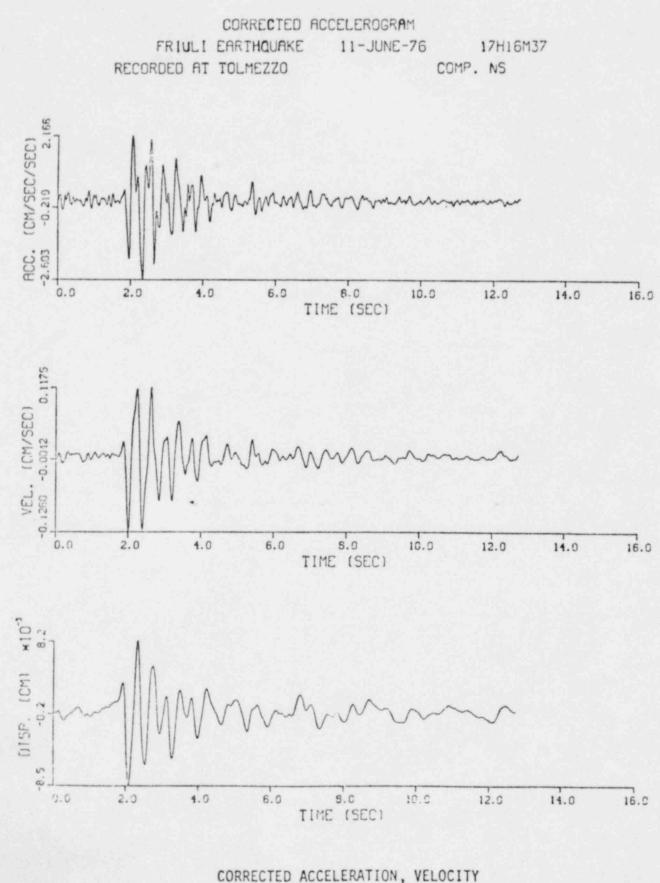
#### FIGURE 2


GRAVITY, AND EARTHQUAKES, WITH (SEISMO) TECTONIC PROVINCES/STRUCTURES OF NORTH-EASTERN AND NORTH-CENTRAL UNITED STATES.



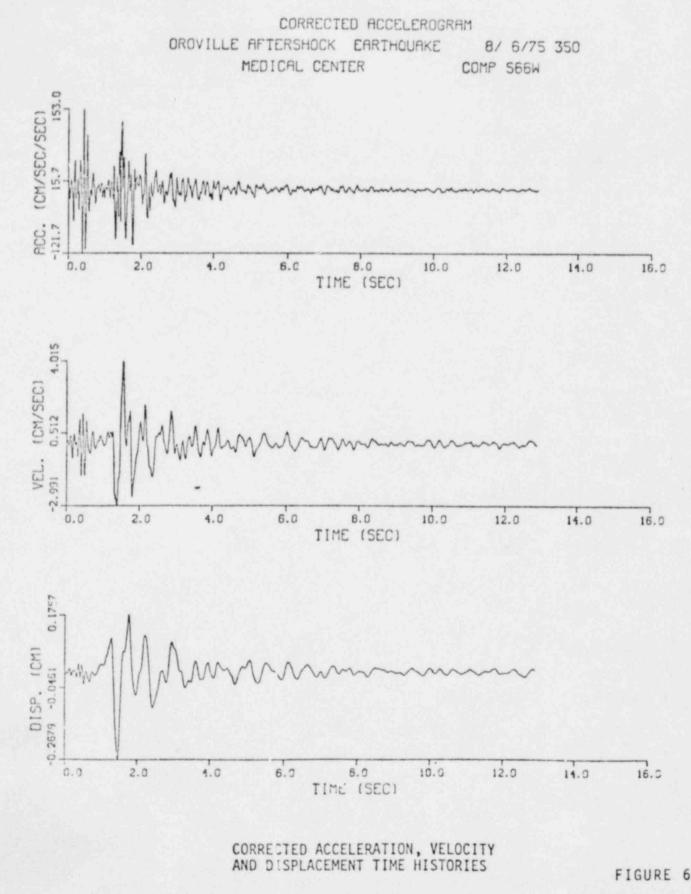



.

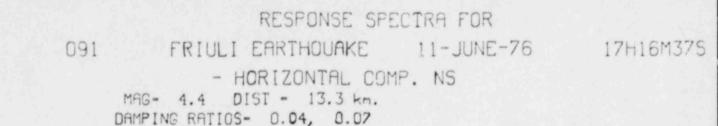

1






EXAMPLES OF UNCORRECTED ACCELEROGRAMS

Weston Geophysical



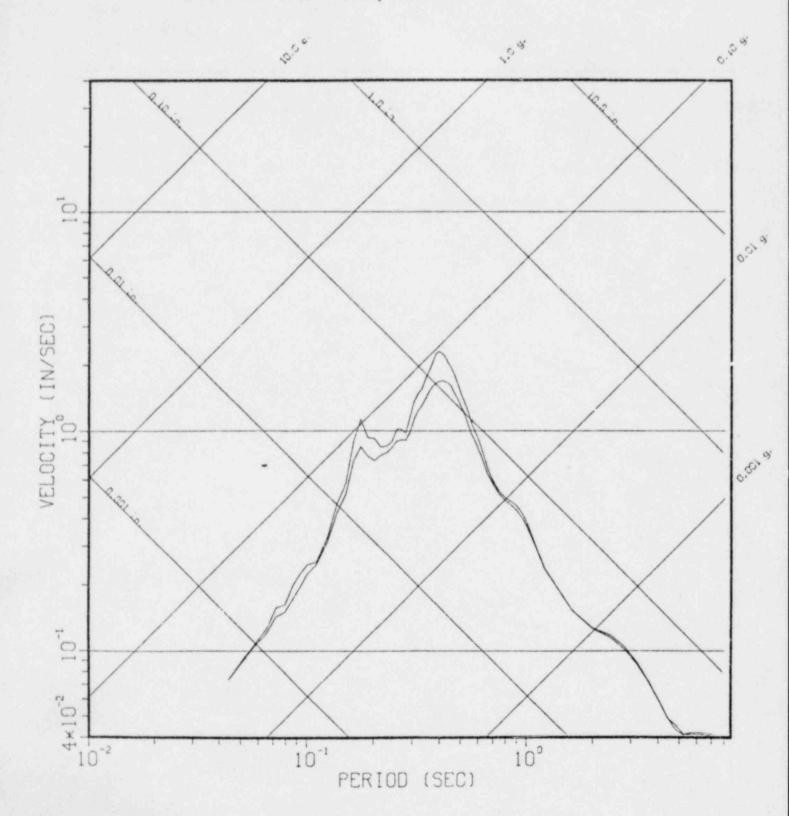

CORRECTED ACCELERATION, VELOCITY AND DISPLACEMENT TIME HISTORIES

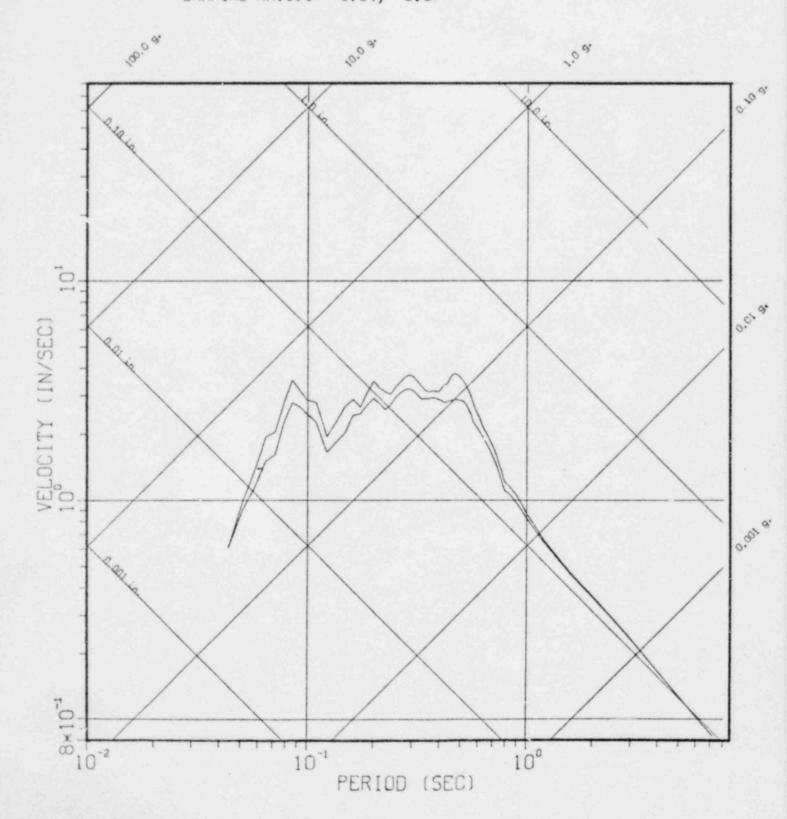
FIGURE 5 Weston Geophysical

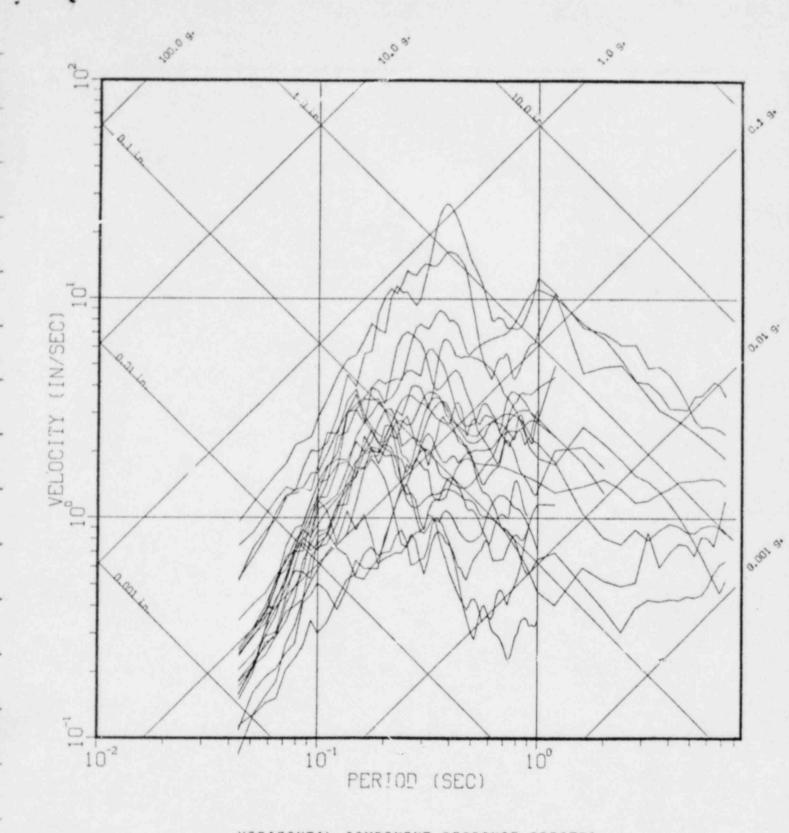


Weston Geophysical





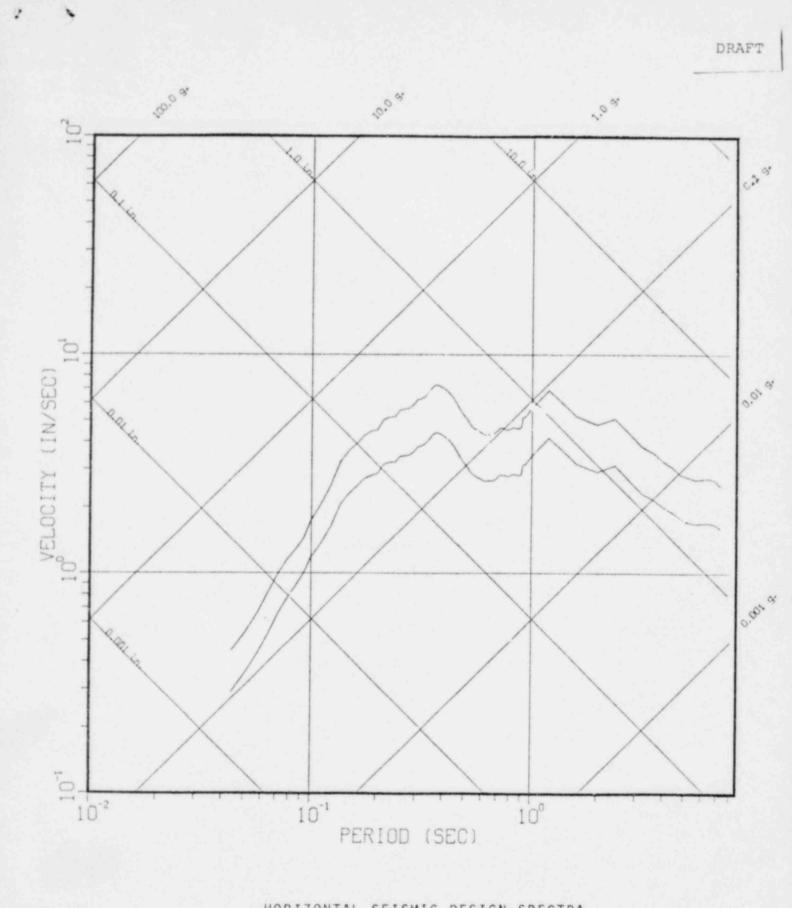


FIGURE 7 Weston Geophysical


1.

# RESPONSE SPECIRA FOR

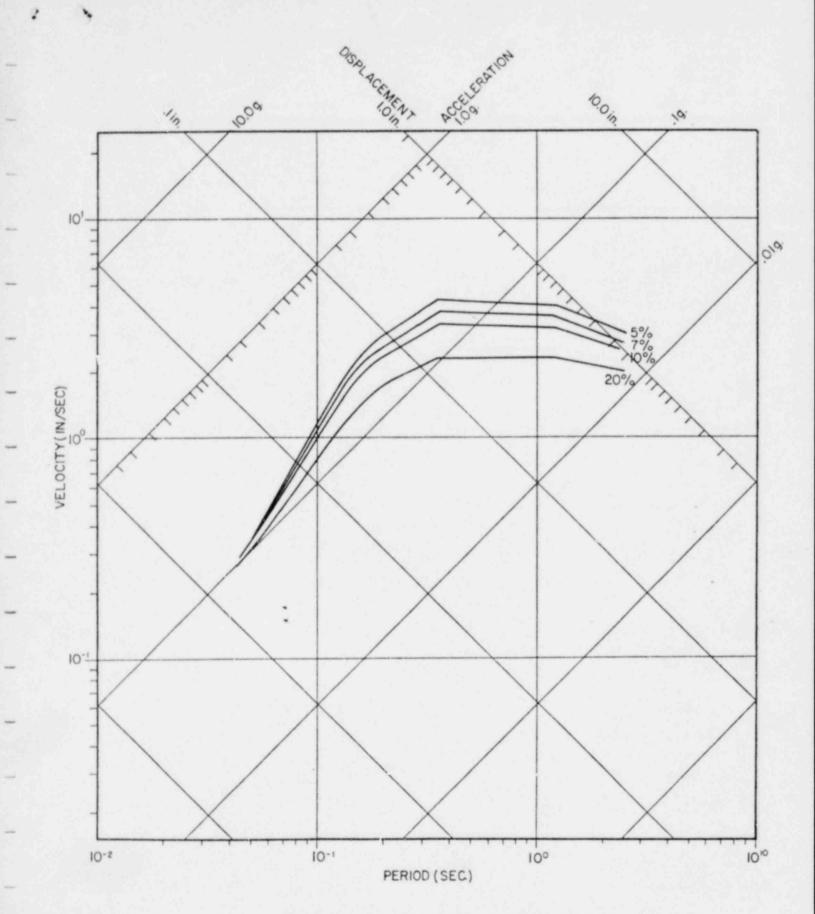
OROVILLE AFTERSHOCK EARTHQUAKE 8/ 6/75 350 MEDICAL CENTER

- HORIZONIAL COMP SEGW MAG- 4.7 DIST - 2.1 km. DAMPING RATIOS= 0.04, 0.07






HORIZONTAL COMPONENT RESPONSE SPECTRA 20 COMPONENTS MEAN MAGNITUDE = 5.3 mb MEAN EPICENTRAL DISTANCE = 14.9 km 5% CRITICAL DAMPING


FIGURE 9

Weston Geophysical



HORIZONTAL SEISMIC DESIGN SPECTRA MEAN AND 84th PERCENTILE SPECTRA 5% CRITICAL DAMPING

FIGURE 10 Weston Geophysical



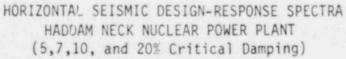
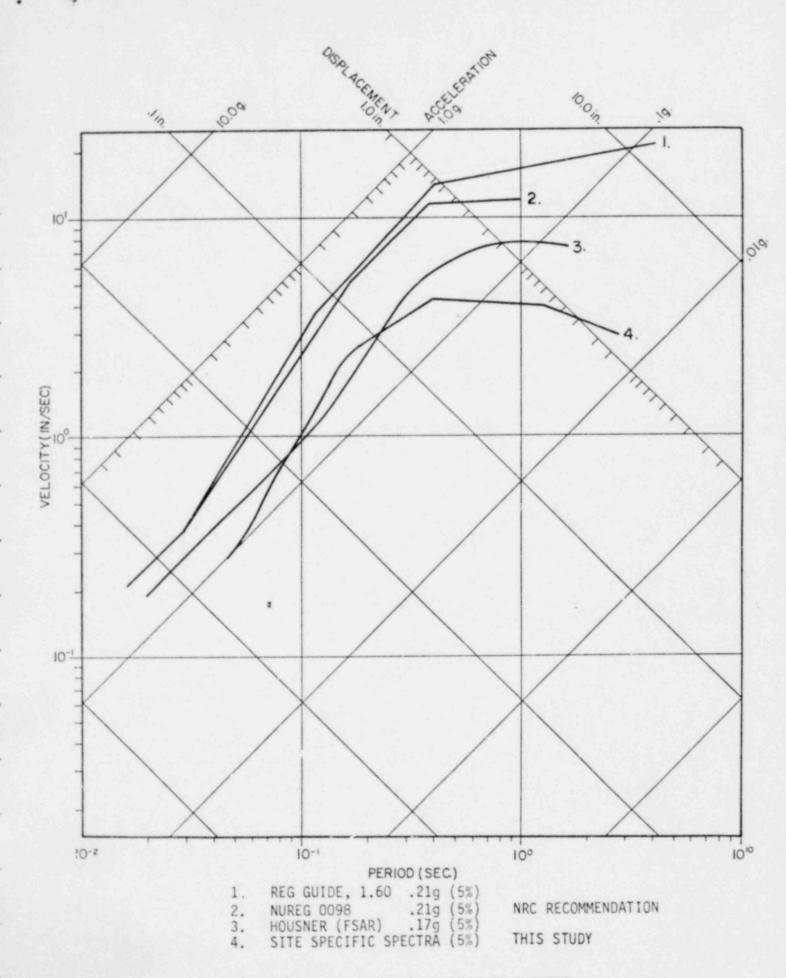




FIGURE 11



COMPARISON OF HORIZONTAL RESPONSE SPECTRA

FIGURE 12 Weston Geophysical APPENDIX A

1

-

#### EARTHQUAKES WITH INTENSITY > III OR MAGNITUDE > 3.0 LOCATED WITHIN 200 MILES (322 KM) OF THE HADDAM NECK SITE

|                | EFICENTER<br>Lat(N) Lons(W) |     |       |
|----------------|-----------------------------|-----|-------|
| 1647 611 13 0  | 42.800 70.800               | IV  | 202.4 |
| 1677 1213 0 0  | 41.050 73.530               | IV  | 98.4  |
| 1685 218 0 0   | 42.700 70.800               | IV  | 194.6 |
| 1705 627 0 0   | 42,350 71,060               | IV  | 153.0 |
| 1727 11 9 2240 | 42.800 70.600               | VII | 214.1 |
| 1727 11 9 2335 | 42.800 70.600               | IV  | 214.1 |
| 1727 1110 215  | 42.800 70.600               | IV  | 214.1 |
| 1727 1114 17 0 | 42.800 70.600               | - V | 214.1 |
| 1727 1118 1120 | 42.800 70.600               | IV  | 214.1 |
| 1727 12 1 0 0  | 42.800 70.600               | IV  | 214.1 |
| 1727 1216 0 0  | 42.800 70.600               | IV  | 214.1 |
| 1727 1219 10 0 | 42.800 70.600               | IV  | 214.1 |
| 1727 1228 2230 | 42.800 70.600               | IV  | 214.1 |
| 1728 1 4 23 0  | 42.800 70.600               | - V | 214.1 |
| 1728 2 4 2130  | 42.800 70.600               | IV  | 214.1 |
| 1728 2 8 630   | 42.800 70.600               | IV  | 214.1 |
| 1728 210 1530  | 42.800 70.600               | V   | 214.1 |
| 1728 516 0 0   | 42.800 70.600               | IV  | 214.1 |
| 1728 730 10 0  | 42.800 70.600               | IV  | 214.1 |
| 1728 8 2 315   | 42.800 70.600               | IV  | 214.1 |

1

|      |      |      |        |        | INTENSITY<br>MM Scale | DISTANCE<br>To Site(km) |
|------|------|------|--------|--------|-----------------------|-------------------------|
| 1729 | 330  | 14 0 | 42.800 | 70.600 | IV                    | 214.1                   |
| 1729 | 86   | 0 0  | 41.400 | 73.500 | IV                    | 83.7                    |
| 1729 | 1125 | 8 0  | 42,800 | 70.600 | IV                    | 214.1                   |
| 1729 | 12 8 | 20 0 | 42,800 | 70.600 | IV                    | 214.1                   |
| 1730 | 39   | 145  | 42.800 | 70.600 | IV                    | 214.1                   |
| 1730 | 423  | 20 0 | 42.800 | 70.600 | IV                    | 214.1                   |
| 1731 | 112  | 19 0 | 42.800 | 70.600 | IV                    | 214.1                   |
| 1731 | 122  | 24 0 | 42.800 | 70.600 | IV                    | 214.1                   |
| 1731 | 1012 | 23 0 | 42.800 | 70.600 | IV                    | 214.1                   |
| 1736 | 1123 | 2 0  | 42.800 | 70.600 | IV                    | 214.1                   |
| 1737 | 920  | 1020 | 42,800 | 70.600 | IV                    | 214.1                   |
| 1737 | 1218 | 0 0  | 40.800 | 74.000 | VII                   | 146.4                   |
| 1744 | 614  | 1015 | 42.500 | 70.900 | VI                    | 173.7                   |
| 1744 | 614  | 17 0 | 42.520 | 70.920 | IV                    | 173.9                   |
| 1755 | 1118 | 412  | 42.700 | 70.300 | VIII                  | 226.0                   |
| 1755 | 1118 | 529  | 42,700 | 70.300 | IV                    | 226.0                   |
| 1755 | 1122 | 2027 | 42.700 | 70.300 | v                     | 226.0                   |
| 1755 | 1217 | 2015 | 42.700 | 70.300 | IV                    | 226.0                   |
| 1757 | 78   | 1430 | 42.350 | 71.100 | IV                    | 150.5                   |
| 1761 | 11 1 | 20 0 | 43.100 | 71.500 | IV                    | 197.5                   |

2

|      |      |      |        |        |   |     | DISTANCE<br>To Site(km) |
|------|------|------|--------|--------|---|-----|-------------------------|
| 1766 | 1217 | 1840 | 43.100 | 70,800 |   | IV  | 227.4                   |
| 1783 | 1129 | 1050 | 41.000 | 74,500 |   | VI  | 175.2                   |
| 1790 | 725  | 50   | 41.450 | 72.460 | - | IV  | 4.9                     |
| 1791 | 516  | 80   | 41.500 | 72.500 | - | VII | 2.0                     |
| 1800 | 1220 | 0 0  | 43,700 | 72.300 |   | IV  | 246.7                   |
| 1801 | 3 1  | 1530 | 43.070 | 70.770 |   | IV  | 226.4                   |
| 1805 | 425  | 1820 | 42,500 | 70.900 |   | IV  | 173.7                   |
| 1807 | 113  | 23 0 | 43.000 | 71.000 |   | IV  | 208.7                   |
| 1807 | 5 6  | 13 0 | 43.480 | 70.470 |   | IV  | 277.1                   |
| 1810 | 11 9 | 2115 | 43.000 | 70.800 |   | V   | 218.8                   |
| 1814 | 1128 | 1914 | 43.700 | 70.300 | - | v   | 304.8                   |
| 1817 | 10 5 | 1145 | 42.500 | 71.200 | - | VI  | 155.8                   |
| 1823 | 723  | 655  | 42.900 | 70.600 | - | v   | 221.7                   |
| 1827 | 823  | 00   | 41.400 | 72.700 | - | v   | 19.0                    |
| 1837 | 115  | 70   | 42.500 | 70.950 |   | IV  | 170.6                   |
| 1837 | 412  | 00   | 41.700 | 72.700 | - | v   | 29.3                    |
| 1840 | 116  | 20 0 | 43.000 | 75.000 | - | VI  | 265.6                   |
| 1840 | 8 9  | 1530 | 41.500 | 72,900 |   | v   | 33.3                    |
| 1840 | 1111 | 0 0  | 39.800 | 75.200 |   | v   | 294.2                   |
| 1845 | 1026 | 1815 | 41.200 | 73.300 |   | VI  | 73.6                    |

|      |      |      |        |        |   |     | DISTANCE<br>To Site(km) |
|------|------|------|--------|--------|---|-----|-------------------------|
| 1845 | 11 0 | 0 0  | 43.600 | 72.300 |   | IV  | 235.7                   |
| 1846 | 530  | 1330 | 42.700 | 70.300 |   | IV  | 226.0                   |
| 1846 | 825  | 445  | 42.500 | 70.800 |   | V   | 180.1                   |
| 1847 | 8 8  | 10 0 | 41.700 | 70.100 | - | VI  | 200.6                   |
| 1847 | 929  | 0 0  | 40.500 | 74.000 |   | v   | 166.3                   |
| 1848 | 98   | 22 0 | 40.400 | 74.000 |   | v   | 173.9                   |
| 1852 | 110  | 1140 | 41.200 | 71.400 |   | IV  | 96.8                    |
| 1852 | 1127 | 2345 | 43.000 | 70.900 |   | V   | 213.7                   |
| 1854 | 1024 | 22 0 | 42.900 | 72.300 |   | IV  | 158.3                   |
| 1854 | 1211 | 030  | 43.000 | 70.800 | - | v   | 218.8                   |
| 1855 | 116  | 18 0 | 44.000 | 71.000 |   | v   | 305.1                   |
| 1855 | 116  | 1920 | 44.000 | 71.000 |   | IV  | 305.1                   |
| 1855 | 2 6  | 2330 | 42.000 | 74.000 |   | v   | 136.9                   |
| 1855 | 1217 | 14 0 | 43.300 | 73.700 |   | IV  | 224.5                   |
| 1856 | 312  | 22 0 | 41.400 | 72.600 |   | IV  | 12.3                    |
| 1858 | 630  | 2245 | 41.300 | 73.000 | - | v   | 46.3                    |
| 1862 | 2 2  | 20 0 | 41.500 | 72,500 |   | IV  | 2.0                     |
| 1871 | 720  | 0 0  | 43,200 | 71.530 |   | IV  | 205.5                   |
| 1871 | 10 9 | 940  | 39.700 | 75.500 |   | VII | 321.0                   |
| 1872 | 711  | 525  | 40.900 | 73.800 |   | v   | 126.3                   |

2 3

|                | EPICENTER      |          |       |             |
|----------------|----------------|----------|-------|-------------|
| Year MoDa HrMn | Lat(N) Long(W) | MM Scale | mb ML | To Site(km) |
|                |                |          |       |             |
| 1872 1118 14 0 | 43.200 71.600  | - V      |       | 204.5       |
| 1874 1 6 0 0   | 43.500 71.200  | IV       |       | 258.0       |
| 1874 125 12 0  | 42.600 71.350  | IV       |       | 156.1       |
| 1874 1124 0 0  | 42.700 70.900  | IV       |       | 188.8       |
| 1874 1210 2225 | 40.900 73.800  | VI       |       | 126.3       |
| 1875 728 410   | 41.900 73.000  | V        |       | 62.2        |
| 1875 12 1 0 0  | 42.900 72.300  | IV       |       | 158.3       |
| 1876 921 2330  | .530 71,280    | - V      |       | 101.5       |
| 1877 910 959   | 40.300 74.900  | - V      |       | 240.3       |
| 1878 2 5 1120  | 40.000 73.800  | V        |       | 197.5       |
| 1878 10 4 230  | 41.500 74.000  | v        |       | 124.7       |
| 1879 1025 2230 | 42.980 71.470  | IV       |       | 186.6       |
| 1880 512 745   | 42.700 71.000  | - V      |       | 183.1       |
| 1880 720 19 0  | 42.980 71.470  | 13       |       | 186.6       |
| 1881 10 6 5 3  | 43.200 71.550  | 10       |       | 206.0 .     |
| 1882 417 0 ú   | 43.200 71.700  | ΙV       |       | 201.7       |
| 1882 1219 1724 | 43.200 71.400  | v        |       | 211.0       |
| 1883 2 4 20 5  | 43.600 71.200  | IV       |       | 258.0       |
| 1883 227 2330  | 41.500 71.300  | v        |       | 99.8        |
| 1884 118 7 0   | 43.200 71.700  | IV       |       | 201.7       |
|                |                |          |       |             |

# AFPENDIX A

2

5

PAGE A- 6

|      |      |      |        |        |     | DISTANCE<br>To Site(km) |
|------|------|------|--------|--------|-----|-------------------------|
| 1884 | 531  | 0 0  | 40.600 | 75,500 | v   | 269.5                   |
| 1884 | 810  | 19 7 | 40.600 | 74.000 | VII | 159.2                   |
| 1884 | 911  | 0 0  | 40.500 | 74.000 | - V | 159.2                   |
| 1884 | 1112 | 0 0  | 43,200 | 71.550 | IV  | 206.0                   |
| 1984 | 1123 | 1230 | 43.200 | 71.700 | v   | 201.7                   |
| 1884 | 1217 | 0 0  | 43.700 | 71.500 | IV  | 259.4                   |
| 1886 | 1 5  | 1910 | 42.900 | 71.500 | IV  | 177.6                   |
| 1886 | 117  | 1714 | 42.770 | 71.450 | IV  | 167.1                   |
| 1885 | 125  | 0 0  | 41.580 | 73.800 | IV  | 108.5                   |
| 1887 | 630  | 21 0 | 43.200 | 71.530 | IV  | 206.6                   |
| 1889 | 38   | 0 0  | 43.450 | 71.580 | IV  | 231.1                   |
| 1889 | 810  | 0 0  | 43.430 | 73.720 | IV  | 238.2                   |
| 1891 | 5 1  | 1910 | 43.200 | 71.600 | v   | 204.5                   |
| 1891 | 529  | 19 0 | 43.100 | 71.500 | IV  | 197.5                   |
| 1892 | 1211 | 1130 | 44.300 | 71.700 | IV  | 319.5                   |
| 1893 | 39   | 030  | 40.600 | 74.000 | v   | 159.2                   |
| 1893 | 314  | 0 0  | 42.350 | 72.660 | IV  | 97.2                    |
| 1894 | 410  | 0 0  | 41.600 | 72,500 | IV  | 13.1                    |
| 1894 | 1217 | 0 0  | 42.470 | 73.800 | IV  | 153.4                   |
| 1895 | 91   | 69   | 40.700 | 74.800 | VI  | 211.0                   |
|      |      |      |        |        |     | <br>*****               |

: 1

-

-

-

|      |      |        |        |        |   |    |  | DISTANCE<br>To Site(km) |
|------|------|--------|--------|--------|---|----|--|-------------------------|
| 1896 | 521  | 228    | 43.080 | 75,230 | - | IV |  | 285.8                   |
| 1896 | 1022 | 530    | 44.300 | 71.770 |   | IV |  | 318.4                   |
| 1897 | 7 1  | 420    | 43.700 | 71.600 |   | IV |  | 256.9                   |
| 1897 | 9 5  | 0 0    | 41.500 | 72.500 |   | IV |  | 2.0                     |
| 1898 | 611  | 145    | 42.830 | 72.560 |   | IV |  | 149.7                   |
| 1899 | 516  | 2015   | 41.600 | 72,600 |   | v  |  | 15.5                    |
| 1903 | 424  | 1230   | 42.700 | 71.000 |   | IV |  | 183.1                   |
| 1905 | 830  | 1040   | 43.100 | 70,700 |   | v  |  | 232.6                   |
| 1905 | 1126 | 030    | 41.500 | 71.300 |   | IV |  | 99.8                    |
| 1905 | 5.8  | 1330   | 41.500 | 72.500 |   | 19 |  | 2.0                     |
| 1906 | 1019 | 00     | 43.500 | 70.500 |   | IV |  | 277.4                   |
| 1907 | 124  | 1130   | 42.800 | 74.000 |   | IV |  | 191.4                   |
| 1907 | 629  | 00     | 43.500 | 70.500 |   | IV |  | 277.4                   |
| 1907 | 1016 | 010    | 42.800 | 71.000 |   | v  |  | 191.4                   |
| 1908 | 531  | 1742   | 40.600 | 75.500 |   | VI |  | 269.5                   |
| 1908 | 1123 | 13 0   | 43.450 | 71.650 |   | IV |  | 229.3                   |
| 1910 | 123  | 130    | 43.800 | 70,400 |   | IV |  | 309.2                   |
| 1910 | 821  | 1845   | 42.700 | 71.100 |   | IV |  | 177.7                   |
| 1910 | 830  | 1430   | 43.400 | 72.100 |   | IV |  | 215.4                   |
| 1011 | 3 2  | 2 2130 | 43.200 | 71.530 |   | IV |  | 205.5                   |

# AFFENDIX A PAGE A- 8

1 3

-

-

See

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

|                |               |      | MAGNITUDE DISTANCE<br>mb ML To Site(km) |
|----------------|---------------|------|-----------------------------------------|
| 1913 810 515   | 44.000 74.000 | IV   | 305.1                                   |
| 1913 11 3 1430 | 41.400 71.400 | IV   | 91.9                                    |
| 1915 221 2 3   | 42.800 71.100 | IV   | 186.2                                   |
| 1916 1 5 1356  | 43.700 73.700 | v    | 265.0                                   |
| 1916 2 3 426   | 43.000 74.000 | v    | 208.7                                   |
| 1916 6 8 2115  | 41.000 73.800 | IV   | 120.9                                   |
| 1916 11 2 232  | 43.300 73.700 | v    | 224.5                                   |
| 1916 12 2 9 0  | 41.500 72.450 | - IV | 4.6                                     |
| 1917 216 9 0   | 41.500 72.450 | IV   | 4.6                                     |
| 1919 811 0 0   | 41.470 72.450 | IV   | 4.4                                     |
| 1920 523 8 0   | 43.100 71.500 | IV   | 197.5                                   |
| 1921 119 10 0  | 43.300 73.700 | IV   | 224.5                                   |
| 1921 126 2340  | 40.000 75.000 | v    | 266.9                                   |
| 1921 127 0 0   | 43.300 73.700 | IV   | 224.5                                   |
| 1922 5 7 2240  | 43.400 71.400 | IV   | 231.2                                   |
| 1925 1 7 13 7  | 42.600 70.600 | v    | 199.8                                   |
| 1925 3 9 0 0   | 42.930 71.470 | IV   | 181.7                                   |
| 1925 424 756   | 41.700 70.800 | - V  | 143.1                                   |
| 1925 10 9 1355 | 13.700 71.100 | ٧I   | 271.5                                   |
| 1925 1029 0 0  | 41.500 72.450 | IV   | 4.6                                     |

1,

|      |      |      |        |        |   |     | MAGNITUDE<br>mb ML | DISTANCE<br>To Site(km) |
|------|------|------|--------|--------|---|-----|--------------------|-------------------------|
| 1925 | 1114 | 13 4 | 41.700 | 72.400 |   | v   |                    | 25.6                    |
| 1925 | 1116 | 620  | 41.770 | 72.700 |   | IV  |                    | 36.0                    |
| 1926 | 1 4  | 0 0  | 41.600 | 71.800 |   | IV  |                    | 59.6                    |
| 1926 | 126  | 2340 | 40.000 | 75.000 |   | v   |                    | 266.9                   |
| 1926 | 318  | 21 9 | 42.800 | 71.800 |   | v   |                    | 157.2                   |
| 1926 | 512  | 330  | 40.900 | 73.900 |   | V   |                    | 133.6                   |
| 1927 | 39   | 48   | 43.300 | 71.400 | - | v   |                    | 221.0                   |
| 1927 | 330  | 0 0  | 41.670 | 72.780 |   | IV  |                    | 31.2                    |
| 1927 | 6 1  | 1223 | 40.300 | 74.000 |   | VII |                    | 181.9                   |
| 1927 | 820  | 0 0  | 42.300 | 71.000 |   | IV  |                    | 153.6                   |
| 1928 | 113  | 1950 | 41.200 | 71.600 |   | IV  |                    | 81.2                    |
| 1928 | 428  | 22 7 | 43.200 | 71.500 |   | IV  |                    | 207.6                   |
| 1530 | 214  | 615  | 43.400 | 71.700 |   | IV  |                    | 222.7                   |
| 1930 | 319  | 015  | 43.300 | 71.600 |   | IV  |                    | 214.9                   |
| 1931 | 420  | 1954 | 43.400 | 73.700 |   | VII | 4.7 5.0            | 234.5                   |
| 1931 | 7 1  | 245  | 41.600 | 73,400 |   | IV  |                    | 75.9                    |
| 1933 | 117  | 530  | 41.630 | 70.930 |   | IV  |                    | 131.4                   |
| 1933 | 125  | 2 0  | 40.200 | 74.700 |   | v   |                    | 233.1                   |
| 1933 | 1029 | 0 0  | 43,000 | 74,700 |   | IV  |                    | 247.1                   |
| 1934 | 130  | 1030 | 41.300 | 72.500 |   | IV  |                    | 36.3                    |

1.

6

|      |      |      |        |         |      |         | DISTANCE    |
|------|------|------|--------|---------|------|---------|-------------|
| 1691 | moua | Arnn | Lat(A) | LONS(W) |      |         | To Site(km) |
| 1934 | 82   | 1458 | 42.500 | 70.700  | IV   |         | 193.4       |
| 1934 | 8 2  | 1459 | 43.700 | 70.300  | IV   |         | 304.8       |
| 1934 | 83   | 230  | 43.700 | 70.300  | IV   |         | 304.8       |
| 1935 | 424  | 124  | 42.170 | 70.220  | IV   |         | 203.4       |
| 1936 | 1110 | 246  | 43.550 | 71.430  | V    |         | 245.7       |
| 1937 | 719  | 351  | 40.720 | 73.710  | IV   |         | 131.9       |
| 1937 | 727  | 910  | 41,830 | 72.430  | IV   |         | 39.1        |
| 1938 | 623  | 357  | 42.620 | 71.420  | IV   |         | 154.5       |
| 1938 | 8 2  | 92   | 41.080 | 73.700  | - IV |         | 109.6       |
| 1938 | 823  | 336  | 40,100 | 74.500  | V    | 3.9 4.6 | 227.5       |
| 1938 | 823  | 54   | 40.250 | 74.250  |      | 4.0 4.8 | 200.7       |
| 1938 | 823  | 73   | 40.250 | 74.250  |      | 3.7 4.6 | 200.7       |
| 1939 | 1115 | 254  | 39,600 | 75.200  | V    |         | 309.0       |
| 1940 | 128  | 2311 | 41.630 | 70,800  | v    | 2.6 4.3 | 142.1       |
| 1940 | 32   | 415  | 41.500 | 72.500  | IV   |         | 2.0         |
| 1940 | 313  | 129  | 41.500 | 72,500  | ΙV   |         | 2.0         |
| 1940 | 1220 | 727  | 43.800 | 71.300  | VII  | 5.4 5.8 | 275.3       |
| 1940 | 1224 | 1343 | 43,800 | 71.300  | VII  | 5.4 5.8 | 275.3       |
| 1940 | 1225 | 53   | 43.800 | 71.300  |      | 3.7 4.0 | 275.3       |
| 1940 | 1227 | 1956 | 43.800 | 71.300  |      | 3.8 3.9 | 275.3       |

1

-

( days

-

Test

-

-

-

|      |      |      |        |        |    |         | DISTANCE<br>To Site(km) |
|------|------|------|--------|--------|----|---------|-------------------------|
| 1941 | 121  | 227  | 43,800 | 71.300 |    | 2.8 3.6 | 275.3                   |
| 1942 | 1024 | 1727 | 40,970 | 75,250 |    | 3.4     | 236.4                   |
| 1943 | 314  | 14 2 | 43.700 | 71.570 |    | 3.9     | 257.7                   |
| 1944 | 2 5  | 1622 | 40.800 | 76,200 |    | 3.7     | 318.3                   |
| 1944 | 1214 | 315  | 41.600 | 72.800 | IV | 3.5     | 28.1                    |
| 1947 | 1 4  | 1851 | 41.030 | 73.580 | IV |         | 103.1                   |
| 1948 | 54   | 223  | 41.380 | 71.830 | IV |         | 56.9                    |
| 1949 | 417  | 015  | 41.600 | 71.500 | IV |         | 84.1                    |
| 1950 | 320  | 2255 | 41.500 | 75.800 |    | 3.3     | 274.3                   |
| 1950 | 329  | 1443 | 41.050 | 73.600 | IV |         | 103.5                   |
| 1951 | 126  | 327  | 41.500 | 72.500 | IV |         | 2.0                     |
| 1951 | 331  | 350  | 42.200 | 72,200 | IV |         | 83.5                    |
| 1951 | 610  | 1720 | 41,500 | 71.500 | IV |         | 83.1                    |
| 1951 | 93   | 2126 | 41,250 | 74.250 | v  | 3.8 4.4 | 148.0                   |
| 1951 | 1123 | 645  | 40.600 | 75.500 | IV |         | 269.5                   |
| 1952 | 825  | 07   | 43.000 | 74.500 | v  |         | 235.3                   |
| 1952 | 10 8 | 2140 | 41.700 | 74.000 | v  |         | 126.8                   |
| 1953 | 327  | 850  | 41.100 | 73.500 | V  | 3.0     | 93.5                    |
| 1953 | 331  | 1258 | 43,700 | 73.000 | v  | 4.0     | 249.6                   |
| 1953 | 511  | 613  | 43.980 | 71.130 | IV |         | 298.9                   |

5 2

-

-

-

|      |      |      |        |        |     |         | DISTANCE<br>To Site(km) |
|------|------|------|--------|--------|-----|---------|-------------------------|
| 1953 | 817  | 422  | 41.000 | 74.000 | IV  |         | 136.1                   |
| 1954 | 1 7  | 725  | 40.300 | 76.000 | VI  |         | 321.6                   |
| 1954 | 331  | 2125 | 40,250 | 74.000 | IV  |         | 185.9                   |
| 1954 | 729  | 1957 | 42.700 | 70.700 | v   | 4.0     | 200.6                   |
| 1955 | 121  | 840  | 42.970 | 73.780 | v   |         | 195.8                   |
| 1957 | 323  | 19 2 | 40.630 | 74.830 | VI  |         | 216.7                   |
| 1958 | 56   | 19 0 | 42.650 | 73.820 | IV  |         | 169.2                   |
| 1958 | 719  | 1745 | 43.600 | 70,200 | v   |         | 301.0                   |
| 1958 | 1121 | 2330 | 43.970 | 71.680 | IV  |         | 284.1                   |
| 1959 | 413  | 2120 | 41,920 | 73.270 |     | 3.4     | 80.2                    |
| 1960 | 122  | 2053 | 41.500 | 75.500 |     | 3.4     | 249.4                   |
| 1961 | 914  | 2117 | 40.750 | 75.500 | v   | 4.3     | 263.6                   |
| 1961 | 1227 | 17 6 | 40.500 | 74.750 | v   | 4.3     | 217.7                   |
| 1962 | 410  | 1430 | 44.100 | 73,400 | v   | 5.0     | 299.7                   |
| 1962 | 1229 | 619  | 42.800 | 71,700 | V   | 4.3     | 160.4                   |
| 1963 | 3 2  | 2024 | 41.510 | 75.730 |     | 3.4     | 268.5                   |
| 1963 | 519  | 1914 | 43.500 | 75.230 |     | 3.5     | 316.3                   |
| 1963 | 7 1  | 1959 | 42.570 | 73.750 |     | 3.3     | 158.7                   |
| 1963 | 1015 | 1531 | 42.500 | 70.800 | v   | 3.9 4.2 | 180.1                   |
| 1963 | 1030 | 1736 | 42.700 | 70.800 | - V | 2.4 5.0 | 194.6                   |

|      |      |      |        |        |   |    |         | DISTANCE<br>To Site(km) |
|------|------|------|--------|--------|---|----|---------|-------------------------|
| 1963 | 12 4 | 2132 | 43.600 | 71.500 | - | v  | 3.7     | 246.3                   |
| 1964 | 4 1  | 1121 | 43.600 | 71.500 |   | IV | 1.8     | 248.9                   |
| 1964 | 626  | 11 4 | 43.300 | 71.900 |   | v  | 2.6 3.6 | 207.7                   |
| 1964 | 1117 | 17 8 | 41.200 | 73.700 |   | v  | 4.3     | 104.8                   |
| 1965 | 929  | 1557 | 41.400 | 74.400 |   | IV |         | 158.3                   |
| 1965 | 1024 | 1745 | 41.300 | 70.100 |   | V  | 4.3     | 200.8                   |
| 1965 | 12 8 | 3 3  | 41.700 | 71.400 | - | V  | 4.3     | 94.4                    |
| 1966 | 1023 | 23 5 | 43.000 | 71.800 | - | V  | 3.1     | 178.0                   |
| 1967 | 2 2  | 1340 | 41.400 | 71.400 |   | V  | 2.4     | 91.9                    |
| 1967 | 515  | 2247 | 42,300 | 69,900 |   |    | 3.2     | 233.2                   |
| 1967 | 1122 | 2210 | 41.200 | 73,800 |   | V  |         | 112.7                   |
| 1968 | 11 3 | 833  | 41.400 | 72.500 |   | v  |         | 9.1                     |
| 1968 | 1210 | 412  | 39.700 | 74.600 |   | V  | 2.5     | 265.4                   |
| 1969 | 8 6  | 16 3 | 43.800 | 71.400 |   | v  |         | 272.5                   |
| 1969 | 10 6 | 0 0  | 41.000 | 74.600 |   | IV |         | 183.2                   |
| 1970 | 919  | 1335 | 42,950 | 71.870 |   | IV |         | 171.0                   |
| 1971 | 1021 | 054  | 42.700 | 71.150 |   | v  |         | 175.0                   |
| 1973 | 228  | 821  | 39.720 | 75.440 |   | V  | 3.8     | 315.6                   |
| 1974 | 428  | 1419 | 39.750 | 75.550 |   | IV |         | 320.9                   |
| 1974 | 67   | 1945 | 41.570 | 73.940 |   |    | 3.3     | 120.0                   |

EARTHQUAKES WITH INTENSITY > III OR MAGNITUDE > 3.0 LOCATED WITHIN 200 HILES (322 KH) OF THE HADDAM NECK SITE

| DA   | TE   | ORIGIN | EPICE  | ENTER   | INTENSITY | MAGNITUDE | DISTANCE    |
|------|------|--------|--------|---------|-----------|-----------|-------------|
| Year | MoDa | HrMn   | Lat(N) | Lons(W) | MM Scale  |           | To Site(ka) |
|      |      |        |        |         |           |           |             |
| 1975 | 11 3 | 2054   | 43.890 | 74.640  |           | 3.9       | 319.2       |
| 1975 | 11 3 | 21 6   | 43.890 | 74.650  |           | 4.0       | 319.7       |
| 1976 | 311  | 829    | 41.560 | 71.210  |           | 3.5       | 107.5       |
| 1976 | 413  | 1539   | 40.800 | 74.030  |           | 3.1       | 148.6       |
| 1976 | 424  | 1022   | 41.460 | 72.490  | IV        | 2.2       | 2.6         |
| 1976 | 510  | 134    | 41.540 | 71.010  | v         | 2.7       | 124.0       |
| 1977 | 1220 | 1744   | 41.822 | 70.758  | IV        | 3.1       | 149.3       |
| 1977 | 1225 | 1535   | 43.200 | 71.641  | IV        | 3.2       | 203.3       |

THIS CATALOG CONTAINS 268 EARTHQUAKES

# APPENDIX A

PAGE A-14

EARTHQUAKES WITH INTENSITY > III OR MAGNITUDE > 3.0 LOCATED WITHIN 200 MILES (322 KM) OF THE HADDAM NECK SITE

|      |      |      |        |        | INTENSITY<br>MM Scale |     | DISTANCE<br>To Site(km) |
|------|------|------|--------|--------|-----------------------|-----|-------------------------|
| 1975 | 11 3 | 2054 | 43.890 | 74.640 |                       | 3.9 | 319.2                   |
| 1975 | 11 3 | 21 6 | 43.890 | 74.650 |                       | 4.0 | 319.7                   |
| 1976 | 311  | 829  | 41.560 | 71.210 |                       | 3.5 | 107.5                   |
| 1976 | 413  | 1539 | 40.800 | 74.030 |                       | 3.1 | 148.6                   |
| 1976 | 424  | 1022 | 41.460 | 72.490 | IV                    | 2.2 | 2.6                     |
| 1976 | 510  | 134  | 41.540 | 71.010 | v                     | 2.7 | 124.0                   |
| 1977 | 1220 | 1744 | 41.822 | 70.758 | IV                    | 3.1 | 149.3                   |
| 1977 | 1225 | 1535 | 43,200 | 71.641 | IV                    | 3.2 | 203.3                   |

THIS CATALOG CONTAINS 268 EARTHQUAKES