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ABSTRACT

.

An inventory of currently available experimental critical flow data
has been performed. The results of the inventory are displayed in a table .

which lists key parameters that characterize each experimental program.
The distribution of the data base with regard to geometric parameters is
presented for three classes of test section. Recommendations for future
testing are made in light of deficiencies that have been identified.
Additional recommendations to enhance the utility of the current data base
and the results of future experimental programs are made. A bibliography
of references documenting experimental critical flow studies is also
included.
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SUMMARY

.

The phenomenon whereby the flowrate of a two-phase fluid has an upper
bound for a given set of stagnation conditions has been studied extensively--

during the past forty years. It was recently decided by the Committee on
j the Safety of Nuclear Installations (CSNI) of the Organization for Economic

Cooperation and Development (0 ECD) that the state-of-the-art of modeling
this phenomenon known as critical or choked flow will be determined and

documented. The task includes an inventory of the experimental critical
flow data base. The results of such an inventory are reported herein.

Computerized literature searches were performed on the catalogs of
seven technical information services. The resulting bibliography was

I screened and documents reporting experimental critical flow studies were
obtained and reviewed. The data base was documented by producing a large.

table containing information describing each experimental study. The-
4

principal dimensions of three classes of test sections; pipes, nozzles, and--

orifices have ber assembled in graphical form to aid in analyzing the
distribution of the geometries that have been studied.

,

The data base inventory showed that significant amounts of
I experimental data are available for pipes, nozzles, and orifices and that

the range of principal dimensions of the test sections in these three!

categories is considerable. Deficiencies appear to exist in the areas of
critical flow data for nozzles and orifice' brier than 30 mm, for standard
plumbing components (only three refereNv s t a th is subject were found), and-

for slits which are representative A e in pipe walls and in weijments
(one reference on this subject was fpund). le addition to identifying
possible deficiencies in the data base, recommendations are made to

''

increase the utility of the data that is presently available and that which
will be produced in the future. These recommendations deal with planning.

future studies to ensure that they mesh with the data presently available,
complete documentation of the stagnation state of the flow, and the
inclusion of tabuleted data and complete measurement uncertainty
information in the reporting document.

I'
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,

The report .is concluded with a bibliography of references which appear
from their abstracts to contain experimental critical flow' data. This
bibliography is included since the inventory of the experimental data base -

presented herein.is not considered to be complete because of time
constraints in performing the inventory, the unavailability of some- ~

references, and the inability of the author to review documents not written
in or translated to English.
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INTRODUCTION

The phenomenon of critical or choked flow occurs in a wide range of:
,

technologies. Because of its importance, a large number of experimental
studies of the phenomenon have been conducted during the last 40 years.

-

The importance of the phenomenon in predicting the results of a nuclear
reactor loss-of-coolant accident was primarily responsible for accelerating
the rate at which experimental-studies were conducted beginning in the
1960s. The results of the experimental studies have been used to develop
numerous analytical models of the phenomenon. It is clear to those

accustomed to utilizing the existing analytical critical flow models that
the problem of predicting the critical flow rate and the thermodynamic-

state of the choke point is not a closed case for many flow situations of
interest. This problem is a result of the large variety of flow geometries
of interest and the wide range of fluid conditions over which the,

phenomenon must be predicted.
,

i

4

- In the interest of avoiding duplication of effort, maximizing the
utility of past research, and providing direction for future research, it'

is beneficial to periodically document the level of understanding and the
art of predicting a particular physical phenomenon. At its November 1978

| meeting the Committee on the Safety of Nuclear Installations (CSNI) of the
Organization for Economic Cooperation and Development adopted a proposal by
the United States that the Committee should undertake the preparation of
state-of-the-art reports (SOAR) on selected topics of interest. At the
November 1979 meeting the Committee adopted a list of topics submitted by

'

committee members. It was further decided that two S0ARs would be preparea
in time for the November 1980 meeting. One of those reports would document
the state-of-the-art of critical flow modeling. An outline for the
critical flow SOAR was assembled by a group of technical experts in

*

January 1980. It was determined that the document would contain
inventories of the critical flow experimental data base and the available

; analytical models as well as assessments of how well the models predict the
critical flow phenomenon.

.

4
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An i entory of the critical flow experimental data base was performed
as the Unsted States Nuclear Regulatory Commission's contribution to the
production of the critical flow SOAR. The results of the inventory are -

documented herein. The principal parameters describing each experimental
study that has contributed to the data base are presented in the next ~

section. A discussion of ranges of parameters for which data is available
is presented in the third section. The fourth section of the report
contains conclusions regarding the availability of experimental critical
flow data and recommendations for future experimental work. The report is
concluded with a bibliography of references describing experimental
critical flow studies.
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DATA BASE INVENTORY4

The experimental critical flow data base was inventoried by reviewing-

as many references' documenting experimental critical flow studies as
'

possible. Documents were selected by reviewing the results of computerized
literature searches of the catalogs of the following information services
for the indicated years:

Nuclear Safety Information Service - 1967-1980
DOE Energy Data Base - 1974-1980m

Nuclear Science Abstracts - 1967-1976
Government Reports Anouncements (hational Technical Information

Service) - 1964-1980
Engineering Index - 1970-1979

Science Abstracts - 1969-1979
6 .

References for years prior to 1964 were identified by reviewing
~

reference sections and bibliographies contained in the later reports.
|
|

i The critical flow data base is summarized in Table I which lists
parameters that characterize each experimental progrxn. The table does not
present a complete inventory of the experimental data base, but does

f contain many of the experimental data sources that have been referenced in
' the literature during the past 20 years. The table entries are divided

into four groups: pipes, nozzles, orifices, and other geometries. The
entr6es within each group are listed in chronological order from the most
recent to the earliest . The author's name appearing on the reference
documenting the experiment study has been used to identify each study witn
an accompanying reference notation referring to an entry in the reference

:, section of the report. Exceptions to this convention have been made in,the
cases of data generated during the extensive test programs of the Marviken

;

i- CFT Project and the Semiscale Project. Data from these programs are

referred to by the project name. The document publication date is given
generally by month and year. This cate does not necessarily correspond
closely to when the testing was conducted. The general type of test
section or flow geometry in which choking occurred is listed followed by
.the size or range of sizes of the minimum test section cross section.'

3
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CRITICAL FLOW EXPERIMENTAL DATA BASE

PRESSURE
| 5!IE LEVEL
! SOURCE DA TE TYPE (m) FL U!D REGIPT (bars) CO M NTS

P I P E 5

Boivinl 12-79 pipe (rec) 12 50 HO sub po = 20-101 L/D = 38 - 53 ; test section lengtns not2
clearly reported

| Marviken CFT Project 2 1978-79 pipe (rec) 200-509 HO sub & sat (2e) po = 40-50 t/D = 0.3 - 3.72

Jeandey and Pinet3 6-18 pipe (sec?) 14 Hy0/N2 simulated 2e pp = 2-6 L/D = 169; stagnation conditions not
reported; pressure in upstream portion of
the pipe (p ) reportedp

Ardon and Ackerman4 6-78 pipe (sec) 26 HO sub pp = 1.4 L/D = 39; stagnation conditions not2
reported; static peessure in upstream
portion of the pipe (pp) repcrted

procreuuS 8-77 pipe (sec) 20 HO sat (2e) p,* 1.5-2.0 L/D * 124; stagnation conditions not2

a repor'ed; static pressure at the emit of

the constant section(pg) reported
Semiscale Project 6 6-71 pipe (cec) 18 HO sub & sat (2+) po 3-103 L/D = 4; system blowdown emperiment2 a

Rassokhin, et al.I 5 77 pipe (sec) 30 HO sub & sat po 1-32 L/D = 0.3; flow rates not reported2 a

Khlestkin, Kanish - 3-77 pipe (sec) 4 HO sub & sat pp = 6-228 L/D = 0.5-6.0; flow rates are in2chev, and Ke11er8 nondimensional form

Prisco Henry, 3-77 pipe (sec) 20 Freon-11 sub & sat (2e) po = 67-115 kPa L/D = 2.8 - 100.0
Hutcherson,9
and Linehan

Morrison 0 10-76 pipe (rec) 281 HO sub & sat (2e) po = $8-67 L/D = 4.82

Note: cec * conical entrance contour sat = saturated liquid State
rec = radiused entrance contour sat (2e) * Saturated two-phase state
sec = sharp entrance contour sub = subcooled state

, , * *
. 6
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CRITICAL FLOW EXPERIMEf4TAL DATA BASE (Cont.)

PRESSURE
SIZE LEVEL

SOURCE DATE TYPE (m) FLUID REGIME (bars) COMT NTS

Seynnage,Giot,and 8-76 pipe (sec & 12.5, 20 HO sub pe = 1.4-6.7 L/D = 17.7 - 124.5; stagnation conditions2
Fritte cec) not reported; static pressure at the exit

of the constant area section (p ) reportedg

Hutchersonl2 11-75 pipe (cec) 108 HO sat (2e) po = 1-18 L/D = 3; system blowdown experiment2

Sont & Sutherlandl3 7-75 pipe (sec & 13 HO sub & sat (2e) po = 30-71 L/D = 0.4-1402
rec)

Priscol4 2-75 pipe (sec) 8 CCl F sub? po = 67-115 Pa L/D = 2.8-12.83

Howardl5 1-75 pipe (sec & 2-6 Freon-ll sub po = 52-165 kPa L/D = 25-300
rec)

1Edwards & Jones 6 1974 pipe (sec) 32 HO sat (2e) po = 2-54 L/D = 28; system blowdown experiment2

Mal'tsev, Knlestkin, 6-72 pipe (sec) 3, 3.5 HO sat po = 20-220 L/D = 0.5-9.02
and KellerI7

1m Klingebiel & Moulton 8 3-71 pipe (cec) 13 HO sat (2e) p, = 2-5 L/D = 44; stagnation conditions not2
reported; static pressure at emit of

constant area section (pe) reported
l9Henry 9-70 pipe (rec) 8 HO sub p, = 10-20 t/D = 115; stagnation conditions not2

conpletely reported; static pressure at
exit of constant area section (p )g
reported

Allemann et al.20 6-70 pipe (sec) 21-173 HO sub & sat (2e) po = 42-165 L/D = 0.5-4.3; system blowdown experiment2

2lHenry 3-68 pipe (rec) 3, 8 HO sub p,= 2-10 L/D = 115, 274; stagnation conditions not2
fully reported: static pressure at exit of

constant area section (pe) reported

Note: cec = conical entrance contour sat = saturated liquid state
rec = radiused entrance contour sat (2e) = saturated two-phase state
sec = sharp entrance contour sub = subcooled state



.

CRITICAL FLOW EXPERIMENTAL DATA BASE (Cont.)

PRE 550RE
SIZE LEVELSayaCE DATE TYPE .(m) FLUID pEGIME (bars) COP 90TS

Kelly 22 1-68 pipe (sec?) 2-3 Hyo sub & sat (2e) p,= 1-6 L/D = 90; stagnation conditions not
specified; static pressure at entt of

constant areas section {pe) reported
Uchida & Maria 123 8-60 pipe (sec) 4 HO sub & sat po = 0.2-0.8 L/D = 25-6252

F aushe24 1965 pipe (sec) 6 HO sat po = 7-124 L/D = 0-402

Falousek?S 1-64 pipe (cec) 13 HO sat (2e) po = 28-124 L/D = 202

Faloudek26 5-63 pipe (see t 6-16 HO sub po = 8-25 L/D = 1-62
rec)

Cruver27 1963 pipe (cec) 13 Hz0 sat (2e) p,= 1-3 L/D - 52; stagnation conditions not fully
reported; static pressure at the esit of
the constant area dact (p,) reported

Fauske & Hin28 1-63 pipe (see?) ? Freen-11 sat po = 103 kPa L/D = 2-55
F auske29 10-62 pipe (sec) 3-12, HO sat (2e) p,= 3-25 L/D * 228-830; stagnation conditions not2

repo-ted; static pressure at entt of

cons * ant area section ((p,) reported
James 30 1962 pipe (7) 76, 152 HO sat (2e) p, = 1-4 Test section length not reported;2

203 stagnation pressure not reported; static
pressure at emit of constant area duct
(p,) reported

Friedrich & Vetter3I l-62 pipe (sec & 4 Hy0 sub & sat (24) po = 6-30 L/D = 0.2-15rec)

Friedrich32 10-60 pipe (sec & l.5-4 HO sub & sat (Ze) po 2 61 L/D = 0.2 2.52 a
rec)

Note: Cec * conical entrance contour sat a saturated liquid State
rec = radiuseo entrance contour sat (29) * saturated two-phase state
sec = sharo entrance contour sub = subcooled state

, . .
S *

u
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| CRITICAL FLOW EXPERD1 ENTAL DATA BASE (Cont.)

PRESSURE
SIZE LEVEL

SOURCE DATE TYPE (m) FLUID REGIME (bars) CO M NTS

!sbin, Mgy, and 9-57 pipe (cec) 10-26 HO sat pe = 27-296 kPa L/D = 23-64 assuming L = 610 an (2 f t.)2
Da Crur33 stagnation conditions not reported; static

pressure at exit of constant area section
(pe) reported

Moy34 1 55 pipe (cec) 6-25 HO sat (2e) p,= 27-296 kPa L/D = 35-96; stagnation conditions not2
reported;' static pressure at exit of

constant area section (pe) reported
i

P asava35 5-52 pipe (sec & 1-3 Freon-12 sub & sat 6-9 L/D = 4 24
rec)

L innug36 1952 pipe (sec?) 1.5.3 HO sub po 2 t/D = 1125, 24002 a

j Burne1137 12-47 pipe (sec & 5-38 HO sat po = 1-12 L/D = 0-6562
j rec)

Silver & Mitche1138 1945 pipe (rec) 5.13 HO sub & sat po = 1-3 L/D = 0.3-11.42
N Danforth39 5-41 pipe (rec) 3 HO sub po = 3-7 L/D = 12

N 0 7 Z L E S

Martinec 0 12-79 Nerzle 3 Freon-11 sub po * 16-22
4

Zimer et al.41 4-79 Nozzle 25 HO sub po = 1-102

Semiscale Project 42 12-78 Nozzle 17 HO sub & sat (2e) po = 3-100 System blowdown experiment2

Karasev, Vazingar, 6-77 Nozzle 4,19 HO sat po = 20-1002and Mingaleeva 34

l

|

l
1

l
Note: cec = conical entrance contour sat = saturated licuid state

rec = radiused entrance contour sat (26) = saturated two-phase state
sec = snarp entrance contour sub = subcooled state

I
i

|
|

|
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CRITICAL FLOW EXPERIMENTAL DATA BASE (Cont)

PRE SSURE
SITE LEVEL

SOURCE DATE TYPE (mm) FLUID REGIME (bars) CO M NTS

Semiscale Project 44 6-77 Nozzle 25 HO sub & sat (2e) po = 3-90 System blowdown experiment2

Semiscale Project 45 j.77 noyzie a HO sub & sat (2e) po = 17-124 System blowdown experiment2

Morrison10 10-76 Nozzle 28 HO sub & sat (26) po = $8-672
e

i Shrock, Sgrkmann, 8 76 NO221e 4-11 HO sub & sat (Ze) po = 8-912and Brown

Semiscale Project 47 7-76 NO221e 13 HO sub & sat (2e) po = 3-110 System blowdown experiment2

$1moneau48 12-75 Nozzle 4 N2 sub po = 5-66
Semiscale Project 49 11-75 Nozzle 18 HO sub & sat (20) po = 6-103 System blowdown experiment2

Hendricks, moneau, 9-75 Nozzle 4 N2 sub & super- po = 9-102and Barrows
critical

Sozzi & SutherlandI3 7-75 Norrle 13-76 HO sub & sat (2e) po = 30-712

m Dryndrozhik51 2 75 Nortle 6.11 HO sat (2e) po 2-52 a

Adachi & Yamamotf52 12-74 Nozzle 10 HO sat (2e) po = 18-302

Hendricks,5}imoneau, 8-72 Nozzle 3 N2 sub & super- po = 12-102and Ehlers critical

Deich et a1.54 4 69 Notzle 32.5 HO sat (2e) po = 12

Vogrin55 7 63 Nozzle 5 Air /H O simulated 2e po = 1-72

Neuser56 1-62 Norrie 6,11 HO sat (2e) po = 8-652

Note: cee = conical entrance contour sat = saturated 11ould state
rec = radiused entrance contour sat (29) = saturated two-phase state
sec = sharp entrance contour sub = subcooled state

* *. .
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CRITICAL FLOW EXPREIMENTAL DATA BASE (Cont.)
|

|

PRESSURE
SIZE LEVELSOURCE DATE TYPE (m) FLUID REGIME (bars) CO MENTS

0 R I F ! C E 5i

Covelli57 1976 orifice 22.5. 30 sand / water sat (2e) 2-4
1Edwards & Jones 6 1974' orifice 22.5 HO sat (2e) po = 2-54 System blowdown experiment2

i Ucnida & Narial23 8-66 orifice 4 HO sub & sat po = 0.2-0.82

| Zaloudek26 5-63 orifice 13 HO sub po = 82

Friedrien & Vetter31 1-62 orifice 4 HO sub & sat (?e) po = 6-302

Friedrich32 10-60 orifice 1.5-4 HO sub & sat (2+) po = 2-612

Monroe 58 ' 57 orifice 6-16-

HO sat po = 2-112
! Pasqua35 5 52 orifice 1-3 Frenn-12 sub & sat po 6-9

Silver & Mitche1138 1945 orifice 5 HO sub & sat po = 1-32
* Benjamin & M111er59 7-41 orifice 6 22 HO sat po = 1-212

0 T H E R

Mar t inec40 12-79 globe valve. 3 Freon-ll sub po = 6-22
relief valve 4

Grison & Lauro60 12-78 pump 80 ent- HO sat (2e) pt * 35-85 Stagnation conditions not reported; static2
rance

pressure at pump inlet (pg) reported
Zaloudek61 3-65 tee, elbow 16 HO sat (2e) pe = 1-6 Stagnation conditions not reported; static2

pressure near exit constant area section
(pe) reported

1
t

Note: cec = conical entrance contour sat = saturated liquid state
rec = radiused entrance contour sat (26) = saturated two-phase state
sec = sharp entrance contour

,

sub = subcoaled state
!

!
|
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CRITICAL FLOW EXPERIf1EtiTAL DATA BASE (Cont.)

PRESSURE
$!2E LEVEL

50U9fE DATE TYPE (m) FLUID RfGIME lbars) 00 M NT5

Fauske & Min 28 1-63 aperture d = ?-? Freon 11 sat po = 103 kPa
(9 shapes) eactvalent

Falett162 12-59 annulus (cec) d = 5-9 H0 sat (2e) p, a 2-7 Eauivalent L/D = 3-107; Stagnation2
equivalent conditions not coreletely reported; static

pressure at emit of constant area section
(p,) reported

34 1-55 annulus d = 6-25Moy HO sat (2e) p,= 27-296 kPa Equivalent L/0 = 35-96; stagnation2
equivalent conditions not reported; static pressure at

exit of area section (p,) reported

w
o

Note: cec = conical entrance Contour sat * 4aturated IlQuid state
rec = radiused entrance contour sat (24) = saturated two-phase state
sec = sharp entrar e contour sub = subcooled state

$

8 e, ,

L
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Sizes are given to the nearest half millimeter. The fluid that was used to-

perform the tests is indicated in the table. While the majority of the
experiments were conducted using water as the test fluid; Freon, nitrogen,
and gas-water mixtures were also used. The thermodynamic regime (s) in-

which the flow stagnation conditions resided is listed in the table as
'

"sub", " sat" or " sat (2 )". These abbreviations denote subcooled
conditions, saturated liquid conditions, and saturated two-phase mixture
conditions respectively. In order to convey "where the data is"
thermodynamically, a range of pressures at which data was recorded is
included as a table parameter. It was intended that this parameter would
refar to stagnation pressure; however, some of the references did not
report stagnation pressures. In these references, the pressure measurement

nearest the end of the constant area section was considered of prime
importance. Therefore, the range of this pressure has been substituted for
these references. A commment section follows the carametric data. These

comments provide supplementary information requireu to adequately describe
>

the experiment ar the availability of information.-

.

Several naming conventions have been used in Table 1 to refer to test
sections. All test sections containing a constant area section have been
oesignated as " pipes" regardless of size unless the constant area section
was both preceeded and followed by a varying area section. The type of
entrance contour is indicated for each test section that has been
designated as a pipe. A 90-degree entrance to the constant area section is

! indicated by "SEC" denoting sharp entrance contour, a rounded er, trance is
indicated by " REC" denoting rounded entrance contour, and a conical
entrance is indicated by " CEC" denoting conical entrance contour. The exit
contour following the constant area duct has not been indicated. Most of,

the pipes had 90-degree exits. However, some had conical exit contours
(e.g., Henryl9 2l, PriscoI4, Reocreux ). The term " nozzle" has been5

used to denote flow geometrles having a varying area section preceding and,

following the minimum area section. The entrance or diffuser sections may
have been conical or of varying radius. The nozzle throat may have been a-

single cross section or a short constant area section. The term " orifice"

| has been used to denote flow geometries havir.g a 90-degree entrance and a
constant area section having an L/D of 0.1 or less.

11
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DISCUSSION

The experimental critical flow data inventory presented in Table 1 has
several noteworthy aspects. It is clear that the majority of the

~

experimental critical flow data has been obtained using constant area ducts
.

(References 1 through 39). A significant number of critical flow
experiments have been conducted using converging-diverging nozzles
(References 10, 13, 40 through 56). Data for critical flow occurring in
orifices are also available (References 16, 23, 26, 31, 32, 57 through 59),
but are quite limited compared to those available for the other two classes
of geometry. Only three references docunenting studies of critical flow in
plumbing components were found: one using tees and elbows (Reference 61),
one using valves (Reference 40), and one using a pump (Reference 60). Data

on critical flow through geometries resembling a split or crack in a pipe
wall or a weldment also seem to be very limited. Only one reference for

I this type of geometry was found (Reference 28). It is also noteworthy that
little of the pipe and nozzle data were obtained using flow geometries that

~

can be cor.sidered ideal from the standpoint of an avoidance of flow
,

separation at the entry to the constant area section or throat.

.

The length and diameter of pipe geometries for which ref erences of
experimental studies were found are presented in Figure la. Only
dimensions of geometries that were tested using water as a test medium are
presented. Differences in entrance contour are denoted in Figure la by

j clear synbol to denote data for 90-degree entrances, by using a solid
I synbol to denote data for rounded entrances, and by using a partially solio
j symbol to denote data for conical' entrances. Figure la shows that critical

flow data are available for pipes having diameters ranging from 1.5 to;

500 m, and lengths ranging from 0.6 to 2800 mm. It is clear from

! Figure la that a great deal of data are available for test sections having
diameters less than or equal to 13 mm. On the other hand, the data from -

. the Marviken CFT Project are the only data that were found for test
sections having diameters greater than or equal to 200 mm. In addition,

'

only five experiments were found that were cenducted with test sections
having diameters between 30 and COO m.

I
|
|
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Several studies have been conducted using test sections having the same
diameter, but differing in length over a wide range (References 13, 23, 24,
and 38). Data are also available for cases in which the test section

- length was held constant and the diameter was varied (References 20, 29,

.

and 33), although the range of diameter variation was generally more
limited than the variation in length at constant diameter in the
aforementioned studies.

In order to illustrate the availability of critical flow data in pipes

of constant length-to-diameter ratio (L/D), lines of constant L/D have been
added to data presented in Figure la to produce Figure Ib. This figure
shows that data are available for L/Ds ranging from less than 1.0 to over
500. Figure Ib shows that data produced using test sections covering a
wide range of size are available at the same L/D for L/Ds less than four.
However, comparing experimental results at the same L/D would be hampered
by differences in entrance contour. Some of the data were obtained using

' 90-degree entrance contours while other data were obtained using rounded or
conical entrance contours. Another factor which would complicate the

.

comparison of data at the same L/D is that the data are seldom available at
the same stagnation conditions.

The throat sizes of converging - diverging nozzles for which
experimental critical flow data were found are presented in Figure 2.

Q Horrison' O Shrock,Starkman, and
O Sozzi and Sutherlandit Brown't
O Zininer, et a12' QSemiscale'2

| DSemiscale 87 O Semiscale"
! A Karasev, Vazinger O Dryndrozhik"'8I'

andMingaleeva 8 Adachi and Yamamoto'7
pSemiscale' O Deich*'
dSemiscale'' O Heusen"

~

O MQb n
dA-oooooo-o-@-too o-o

9 Throat diameter (nn)
'

i i i - i i i .i i , , i,,,,, , , , , , , , ,
i 2 3 4 5 6 7 8910' 2 3 4 5 6 78910 2 3 4 5 6 7 8 9 102 3

Figure 2. Converging - diverging nozzle throat diameters.
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The throat sizes vary from 4 to 75 m. The data in Figure 2 show that
there is little redundancy in size. It noteworthy that the nozzles vary
in entrance contour (conical versus rounded) and in the extent of the

,

minimum area section (a single axial locati;n versus short constant area
section). -

.ie sizes of orifices for which experimental critical flow data was
found are presented in Figure 3.

O Edwards and Jones 16 o Silv e and Hitchell38
O Uchida and Nariai23 D Covellis7
U Friedrich and Vetter31 O Benjanin and 11 iller 95
0 Friedrich32 O Zaloudekst

D
U O O
S <>C C O-GO-G-c

Orifice diameter (crn) .

I t I | t !Iii i f I f t t Iil f f f I f II f.

1 2 3 4 5 6 78910' 2 3 4 5 6 78910 2 3 4 5 6 78910
2 3

Figure 3. Orifice diameters.

The range of sizes (4 to 30 mm) was quite limited compared to the other two
classes of geometries. The orifice size range is reduced to 4 to 22.5 m
if Covelli's data (Reference 57), which were obtained using a sand
suspenion in water as the test medium, are not considered. Figure 3 shows
that there are only three orifice sizes that have be~. used in more tnan

one experimental study.
.

.
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CONCLUSIONS AND RECOMMEND /: IONS

.

The general conclusions that can be drawn from a review of the
critical flow data inventory that has been made are presented in this, .

section. Recommendations for remedying deficiencies in the data base and
for improving the design and reporting e' future experimental programs are
given.

Conclusions

2. A large amount of experimental critical flou data is available.

Sixty-two documents were found that described experimental critical
flow studies and contained experimental data. The studies
investigated critical flow in constant area ducts,

.

converging-diverging nozzles, orifices, pipe tees and elbows, valves,
and slits..

2. The majority of the data was obtained using constant area ducts.

More than half of the references found documented critical flow

| studies conducted with constant area ducts. The test sections covered
large ranges of diameter (1.5 to 500 mm) and length (0.6 to 2800 mm).

3. Significant amounts of critical flou data are available for converging-
diverging nossles and orifices over a limited range of sizes.

Nineteen references were found documenting critical flow studies using-
converging-diverging-nozzles and 10 references were found. documenting

!* critical flow studies using orifices. The nozzle throat and orifice
diameters ranged from 4 to 75 mm and 4 to 30 mm respectively.

.
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4. Little data are available for critical flou occurring in standard piping
componento and for geometries recembling piping failures other than

,

a guittotine break.
.

Three references were found in which critical flow was studied in
standard plumbing components. These studies utilized small scale
elbows, tees, valves, and a small scale pump. Only one reference was
found fn which critical flow was studied in slits simulating a
localized pipe f ailure and again the apparatus used was small scale.

5. Critical floo data obtained at loca-of-coolant accident fluid conditions
and obtained using futt-acate test apparatus io very limited.

The 27 tests conducted during the Marviken CFT Project are the only
known source of data obtained at high pressure / temperature conditions

.

using test sections having diameters greater than 200 mm. Data for
test section diameters in the tens of millimeters are also quite '

limited. Large amounts of data are available only for diameters less
than 13 mm.

G. Little data are available for ideali::ed floo geometries tint are

designed to avoid entmnce separation.
.

Most of the constant area ducts had 90-degree, conical, or small
radiused entrances (i.e., approximately equal to half the test section

diameter). Most of the nozzles had conical entrances of large
half-angle and many had an abrupt change in slope at the entrance of
the minimum area section and large half-angle diffusers. Very few

test sections had gradual approaches to the minimum area section with
~

a continuous change in slope.

.
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7. Utilization of some of the data io hampered by dissimilarities in test
acetion geometry and fluid conditions and by a lack of essential infomation.

.

Differences in test section entrance contour, nozzle throat geometry,.

and diffuser angle would contribute additional. uncertainties if the
data were used to assess the effect of geometric variables. Such

assessments would also be complicated by a lack of data at common;

stagnation conditions. Several references did not contain sufficient
data to completely specifiy the stagnation state of flow passing

j through the nozzle which greatly limits their usefulness for critical
'

flow model assessment and development.

Recommendations

L. Future experimental critical flou studies should be designed to ensure
,

optimal use of and integration uith the present data base.
1 .

A large amount of experimental critical flow data is available. This

data base should be carefully reviewed as part of planning for future
critical flow research to ensure that testing is directed towards
expansion of the distribution of geometries for which data is
available instead of unnecessary duplication of effort. Test section
geometries and stagnation fluid conditions should also be selected to

; ensure that straightforward comparisons can be made with existing data.

2. Tabulated experimental data including a complete specification of the
stagnation condition of the flou at the entmnce to the tcat scetion should

,

be included in the document reporting a critical flov atudy or a reference
i to the cource from which sucii data can be obtained should be included.

The enclosure of tabulated data in the document reporting an
j experimental critical flow study greatly increases the usefulness of

the information. This practice eliminates the need for taking data

i
i-
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from report figures. Extracting data from report figures produces
data of questionable quality due to possible distortions of the data
in producing the plot or in report reproduction, a lack of resolution

.

when using small report figures, and possible errors in reading the .

data from the plot. Reporting of sufficient data to completely define
the stagnation thermodynamic state of the choked flow is important
because the flow rate and critical thermodyanamic state are primarily
a function of the stagnation state. Furthermore, most critical flow
models require the stagnation state as input to compute the critical
flow rate and critical state. Experimental data which does not
include a complete definition of the stagnation state thus cannot be
used for model assessment.

3. Additional data on critical flou in plumbing cor.ponento and in pipe
failure geometrica other than the guillotine break appear to be needed.

.

The current interest in small break loss of coolant accidents would .

seen to increase the need for critical flow data in plumbing
components and pipe failures. Modeling of critical flow through
safety and relief valves has already been identified as an' area of
study by the USNRC and other agencies. With the consideration of
small breaks, the path to where the flow is being exhausted to the
containment may be long and contain numerous plumbing components which'

! are prospective choking locations. The interest in breaks having
higher probabilities of occurrence than the guillotine break should
increase the interest in critical flow in pipe failure geometries such
as pipe splits and weldment cracks.

4. Ti:e range of cizac of converging-divezying no==les and orifices for
uhich critical flow data is available is rather limited and may need to -

be c panded.
.

Most of the data for converging-diverging nozzles and orifices have
been obtained with test sections having minimum area sections ranging

i in size from 4 to 20 or 30 m. Additional data may be required if
|
[
i
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larger scale applications for hardware from these two classes are
identified. The most likely requirement would come from a need to

meter flow since these two geometries are typically used in metering,

devices.
.

S. More complete infonnation on the uncertaintics of all measurements made
in a critical flou study are needed uith particular emphasis on the
uncertainty of the measured flou rate.

Less than half of the references found included measurement
uncertainty information. The information that was reported included
fluid property measurement uncertainties but generally did not include
the uncertainty of the flow rate measurement. In most cases the
uncertainty information was not explained so it could be properly
interrupted. Inclusion of measurement uncertainty is essential to
determine if significant differences in the data exist that might,

indicate parametric influences. Measurement uncertainties are also
*

essential in performing analytical model or system code assessment
since a clear picture of the uncertainty of the model or code requires
knowledge of the uncertainty associated with the data being used to
assess the model or code.

G. The critical flou data for pipes that are available should be used to
assess the offect of scale on critical flou phenomena.

A basic 4umption in performing reactor safety studies is that models
based on small-scale data can be used to predict the hydraulic
response of full-scale systems. The phenomena modeled are thus

assumed to be independent of scale or a method of adjusting the
modeling techniques for the effect of scale must be known. Since

.

critical flow data are av:ilable for constant area ducts ranging in
diameter from 1.5 to 500 mm, it appears that the effect of scale can,

be assessed for critical flow through a geometry representative of a
reactor vessel nozzle and attached pipe stub. Such a study may be

21



complicated by a lack of data obtained using test sections having the
same entrance contour and length-to-diameter ratio and obtained at the
same stagnation conditions. Future testing should be defined to add .

to the data set needed for a straightforward demonstration of the
effect of scale.

.

7 The experimental critical flou data identified in this study should be
ascembled in a topical data bank to be included in the US"RC Data Bank.

The utility of the existing experimental data would be greatly
increased if it were available in a uniformly formatted form with
supporting software for rapid retrieval and data display and
manipulation. The USNRC Data Bank currently provides software which

allows rapid retrieval and data display and manipulation. Adding of
the existing data to the data bank would be a time consuming but not
insurmountable task. The benefits of increased understanding of the

'

phenomenon and of improving the state of the art of critical flow
.

prediction justify the effort.

.
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