Near-Surface Neotectonic Deformation Associated With Seismicity in the Northeastern United States

Prenared by S. S. Alexander, D. P. Gold, T. W. Gardner
R. L. Slingerland. C. P. Thornton

Department of Geosciences
Pennsyi/jania State University

Frepared for
U.S. Nuclear Regulatory Commission

```
3911090105 891031
ODR NUKEE
PDR
```


AVAILABILITY NOTICE

Avalability of Reference Materials Ched in NRC Publications

Most documents oited in NRC putsioations will be avallable from one of the following sources

1. The NRC Public Document Room, 2120 L Street, NW, Lower Level, Washington, DC 20555
2. The Superintenderit of Doouments, U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20013-7082
3. The National Teohnioal information Service, Springfieid, VA 22161

Athough the listing that follows represents the majority of documents ofted in NRC publications, it is not intended to be exhaustive.

Referenced doouments avallable for inspection and copying for a fee from the NRC Public Dooument Room include NRC correspondence and internal NRC memoranda: NAC Office of inspeotion and Enforcement bulletins, ciroulars. information notices, inspeotion and investigation nntices: Licensee Eveit Reports; venfior reports and correspondence: Commission papers: and applicant and licensee documents and oorrespondence

The following documents in the NUREG series are avallable for purchase from the GPO Sales Drogram: formal NRC staff and contractor reports. NRC-sponsored conference proceedings, and NRC bookiets and brochures. Also available are Regulatory Guides. NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission issuances.

Documents avallable from the National Technioal Incrmation Service include NUHEG series reports and technical reports prepared by other federal agenoles and reports prepared by the Atomio Energy Commission, fererunner P-g7ney to the Nuolear Regulatory Commission.

Documents avallabie from publio and special technical libraries include all open iterature items, such as books, Journal and periodioal articles, and transactions. Federal Repister notioes, federal and state lepislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are avaliable for purchase from the organization sponsoring the publication olted.

Single copies of NKC draft reports are available free, to the extent of supply, upon written request to the Office of information Resources Management, Distribution Section, U.S. Nuciear Reguiatory Commission, Washington, DC 20555 ,

Coples of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained st tha NRC Library, 7920 Norfolk Avenue. Bethesda, Maryland, and are avallable there for referetwe usc mis public. Codes and standards are usually copyrighted and may be purchased from the originating organization or. If they are American National Standards, from the American National Standards Institute, 1430 Broadway. New York, NY 10016.

DISCLAIMER NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Govemment nor any agency thereof, or any of their employees, makes any warranty, expresed or implied, or assumes any legal liability of responsibility tor any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

Near-Surface Neotectonic Deformation Associated With Seismicity in the Northeastern United States

Manuscript Completed: July 1989
Date Published: October 1989

Prepared by
S. S. Alexander, D. P. Gold, T. W. Gardner
R. L. Slingerland, C. P. Thornton

Department of Geosciences
Pennsylvania State University
503 Deike Building
University Park, PA 16802

Prepared for
Division of Engineering
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission

Washington, DC 20555
NRC FIN D1150
Under Contract No. NRC-04-85-111-01

For the Lancaster, PA selsmic zone a multifaceted investigation revealed several manifestations of near-surface, neotectonic deformation. Remote sensing data together with surface geological and geophysical observations, and recent seismicity reveal that the neotectonic deformation is concentrated in a NS-trending fault zone some 50 km in length and $10-20 \mathrm{~km}$ in widt.). Anomalies associated with this zone include distinctive lineament and surface erosional patterns; geologically recent uplift evideared by elevations of stream terraces along the Susquehanna River: and localized contemporary travertine deposits in streams down-drainage from the inferred active fault z one.

In the Moodus seismic zone the frequency of tectonically-controlled lineaments was observed to increase in the Moodus quadrangle compared to adjacent areas and dominant lineament directions were observed that are perpendicular and parallel to the orientation of the maximum hurizontal stress direction (N80-85E) recently determined from in-situ stress measurements in a 1.5 km -deep borehole in the seismic zone and from well-constrained earthquake focal mechanisms.

One of the most important results of this study was the identification of travertine as a promising new indicator of neotectonic fault movements in areas underlain by limestone and dolomite. Using the theory, which predists that travertine deposits will occur downstream from the surface projection of active faults in carbonate-rich terranes, contemporaneous travertine deposits were discovered just downstream from the Fruitville fault which is associated with the major recent earthquake activity in the Lancaster area.

TABLE OF CONTENTS

Page
Abstract iii ${ }^{\circ}$
Executive Summary 1
Introduction 5
Rationale for Choices of Areas of Concentrated Study 5
The Lancaster Seismic Zone 5
The Moodus, Connecticut, Seismic Zone 6
Neotectonic Deformation in the Lancaster Seismic Zone 9
Summary 9
Introduction 9
Recent Seismicity 9
Geological Structures 11
Geomorphology 12
Lineaments and Remote Sensing 16
Gravity and Magnetics 31
Historical Seismicity 34
Conclusions 38
Fluvial Terraces Along the Lower Susquehanna River 39
Introduction 39
Distribution and Age of Terraces 41
Terrace Correlation 42
Neotectonic Deformation Along The Lower Susquehanna 42
Travertine As An Indicator of Recent Fault Movement 49
Summary 49
Background
Background 49 49
Discussion 50
Age Dating of Travertine Dep sits 53
Neotectonic, Geochemical and Lineament Studies of the Moodus Seismic Area 55
Summary and Conclusions 57
References 59
APPENDIX A: Contemporary Tectonics of the Lancaster, Pennsylvania Seismic Zone A1
APPENDIX B: Excerpt From Professor C.P. Thornton's Ph.D. Thesis Describing Fault Associated Travertine Deposits in Virginia B1
APPENDIX C: Neotectonic, Geochemical and Lineament Studies of the Moodus Seismic Area Cl
APPENDIX D: Published Abstracts of Technical Papers D1
Figure Page
1 Geologic index map of the Appalachian Piedmont along the Susquehanna River of Pennsylvania and Maryland 10
2 Structural map of the northern Lancaster County area 13
3 Map of the faults and the seismicity in the Lancaster Region 14
4 Map of the Mesozoic diabase and Precambrian metadiabase of southeastern Pennsylvania 15
5 Mar springs in relation to recent earthquake epicenters along the southern trace of the Fruitville Fault near Lancaster, Pennsylvania 17
6 Topographic linears of the Lancaster County area derived from topographic maps 18
7 Map showing major LANDSAT-4 lineainents obtained in a preliminary survey of the Lancaster County area 20
8 Lineaments of Pennsylvania 21
9 Lineaments from LANDSAT-1 (Band 7) Image 23
10 Overlay photo center with geology map 24
11 Overlay gully density with soil map 25
12 Gully density 26
13 Gullys from aerial photo interpretation 28
14 Topographic linears and joints of Lancaster area 30
15 Simple Bouger Grevity map of southeastern Pennsyivania and northern Maryland, contoured at 2 and 10 mgals 32
16 Composite aeromagnetic map of the Conestoga, Lancaster, and Lititz Quadangles 33
17 Map of the seismicity of Lancaster County in relation to the Fruitville Fault Zone 36
18 Maximum intensity locations and relative locations for the July 16, 1978 and the October 6. 1978 earthquakes 37
19 Composite terrace correlations for the lower Susquehanna River from Middletown to Haure de Grace 40
20 Terrace profiles of Bryn Mawr (or equivalent) and lower surfaces for three major rivers in the northern Appalachian Piedmont 45

LIST OF FIGURES (continued)

Eigure Page
21 Distribution of the Westminster Anticline shown by contour lines on the surface of the Bryn Mawr gravel 46
22 Map of travertine sites and springs in relation to recent earthquake epicenters along the southern trace of the Fruitville Fault near Lancaster, Pennsylvania 51

LIST OF TABLES

Table Page
1 Historical Seismicity of the Lancaster Region 35
2 Possible Uplift Rates along the lower Susquehanna River 44

NEAR-SURFACE NEOTECTONIC DEFORMATION ASSOCIATED WITH SEISMICITY IN THE NORTHEASTERN UNITED STATES

EXECUTIVE SUMMARY

The main objectives of this investigation were (1) to examine systematically the available imagery for selected seismically active areas of the northeastern United States for evidence of near-surface deformation; (2) to determine, via field geologic studies, the nature of these anomalies; and (3) to look for manifestations on the imagery or in the field of specific types of near-surface deformation expected from tectonic models of seismogenic structures.

The two geographic areas of investigation chosen for detailed study were the Lancaster, Pennsylvania seismic zone and the Moodus, Connecticut seismic zone. Rather than investigate a third specific site it was decided to focus on the generic problem of evaluating a new indicator of neotectonic deformation, travertine deposits in small streams.

For the Lancaster seismic zone the multifaceted investigation revealed several manifestations of near-surface, neotectonic deformation. Remote sensing data together with surface geological and geophysical observations, and recent seismicity reveal that the neotectonic deformation is concentrated in a NS-trending fault zone some 50 km in length and $10-20 \mathrm{~km}$ in width. Anomalies associated with this zone include distinctive lineament and surface erosional patterns: geologically recent uplift evidenced by elevations of stream terraces along the Susquehanna River; and localized contemporary travertine deposits in streams down-drainage from the inferred fault zone. Details of these results appear later in this report, especially in the appendices.

In the Moodus seismic zone results of previous ground-based geological studies were combined with remote sensing observations (aerial photography, SLAR imagery, and SPOT imagery) and used to look for evidence of nearsurface deformation associated with the zone of recent seismicity. Lineament frequency was observed to increase in the Moodus quadrangle compared to adjacent areas and dominant lineament directions were observed that are perpendicular and parallel to the orientation of the maximum horizontal stress direction (N80-85E), recently determir.ad from in-situ stress measurements in a 1.5 km -deep borehole in the seismic zone and from well-constrained earthquake focal mechanisms. These dominant lineament orientations are those expected in the present thrust stress regime which has generated recent
earthquakes in the Moodus area. No geochemical anomalies or travertine deposits were found to be associated with the zone of seismicity. The only potential source of travertine in the area is one metamorphic rock unit, which upon weathering produces calcium carbonate. However concentrations necessary to cause precipitation of travertine were not found in any of the streams sampled. Details of the Moodus investigation appear as an appendix to this report.

One of the most important general results of this study was the identification of travertine as a possible new indicator of neotectonic fault movements in areas underlain by limestone and dolomite. The working hypothesis (developed originally by C.P. Thornton) is that water reaching the surface along fault gouge zones will emerge saturated or supersaturated in carbon dioxide and then will quickly precipitate in nearby small streams to proctuce readily-observed travertine (tufa) deposits. No such deposits are expected to be associated with dormant faults because the high surface area to volume carbonate material in the fault gouge will have been dissolved and carried away shortly after the last fault movement. If this hypothesis is correct and generally applicable, then recently-active faults should be found just upstream from observed trevertine deposits. Alternatively stated, travertine dt insits are predicted to occur downstream from the surface projection of actuve faults in carbonate-rich terranes. Guided by this theory a ground-based survey was carried out in the Lancaster seismic zone and contemporaneous travertine deposits were discovered just downstream from the Fruitville fault which is associated with the major earthquake activity in the area; none had previously been reported for this area. The travertine is presently being deposited at all the sites where it was found.

The possibil'ty of age-dating travertine deposits suggests that the time history of nearby fault activity might be reconstructed as well. Late in this study an attempt was made to age-date a travertine deposit from the Quicksburg. VA area using a radiocarbon method. The date obtained was 4210 ± 60 yea:s, which represents a lower bound for the age of last fault movements producing the deposit. However, travertine is presently being deposited approximately 5 km upstream indicating recent fault movement there. This area has experienced historic earthquake activity indicating that neotectonic deformation is occurring. The travertine found in the Lancaster seismic zone is
currentily being deposited as evidenced by twigs and other debris entrained in the deposit and by its coating of stream pebbles. Further investigation of this new indicator of neotectonic fault movement is clearly warranted.

iNTRODUCTION

Bationale for Choices of Areas of Concentrated Study
 The Lancaster Seismic Zone

The area around Lancaster, PA historically has been one of the most active areas in Pennsylvania. The largest instrumentally-recorded event in that area was the recent Easter Sunday $\mathrm{m}_{\text {bLg }} 4.2$ earthquake on April 23, 1984, which was felt as far south as Washington, DC and northern Virginia, as far north as Connecticut and as far west as Pittsburgh. Because of the available data for this event and other smaller events in the area, it was possible to characterize the active tectonic environment in this area and better interpret potential nearsurface indicators of neotectonic deformation. The approach to looking for such indicators was to carry out an integrated study using geophysical, geological and remote sensing observations. Finally this active seismic area was chosen because there are nearby operating nuclear power plants (Three Mile Island, Peach Bottom) for which this zone constitutes part of the seismic hazard

The Moodus. Connecticut. Seismis Zone

The area around Moodus, CT is also one that has experienced a significant history of earthquake activity and it is an area where considerable geologizal, geophysical, and remote sensing data are available to characterize the tectonic environment. From a tectonic point of view this area may mark the transition from the ubiquitous ENE maximum compressive stress to the south and west to WNW (or mixed) stress domain that characterizes much of New England. A large EPRI study recently completed shows that there are mixed results from focal mechanism solutions (some ENE, some WNW maximum horizontal compressive stress directions) from Moodus northward through New England; direct siress measurements also give mixed results. Two borehole stress measurements recently made near Moodus under NRC sponsorship (NUREG/CR4623 EI-1126) indicate high horizontal stresses and WNW maximum compression. If these results reflect the tectonic stress near Moodus, then there must be a significant change between this region and the nearby Ramapo system to the southwest. Recently-completed deep (1 km) borehole stress measurements at Kent Cliffs, NY (about 80 km from Moodus) together with a large number of wellconstrained focal mechanism solutions in southeastern New York clearly establish a dominant ENE orientation for the maximum compressive stress in this neighboring region. The nature of near-surface neotectonic deformation
near Moodus is anticipated to be different, depending on which of these stress orientations is active. In particular, geomorphic evidence such as terraces and stream patterns and gradients should be sensitive to the prevailing stress conditions.

Another reason for focusing on the Moodus area was that a 1.5 km deep borehole was planned to be drilled in the Moodus seismic zone during early to mid-1987 for the purpose of measuring the tectonic stress at greater depths than the shallow NRC boreholes sampled and determining whether this zone is truly anomalous with respect to the neighboring seismicaliy active area in scutheastern NY. This experiment, jointly sponsored by the Empire State Electric Energy Corporation, Northeast Utilities, and EPRI, is highly relevant to the present study of near-surface neotectonic deformation.

As in the Lancaster case there are nearby operating plants for wihich this zone constitutes part of the seismic hazard.

A Potential New.Indicator of Geologically Recent Fault Mexement
As the initial work on this project developed, discussions with a colleague at Penn State, Piof. Charles Thornton, revealed that he had observed the distribution of travertine deposits in northern Virginia in his Ph.D. field area and concluded that they were uniquely associated with nearby, active faults. He postulated that water coming to the surface along a fault gouge zone in limestone becomes saturated with calcium carbonate and upon entering a nearby surface stream quickly becomes supersaturated and precipitates to form the travertine (tufa) deposits that he observed. They do not occur upstream of the faults even though limestone rock units do, and this process is postulated to occur only when there is freshly brecciated limestone to provide a large surface area to volume ratio for limestone to interact with the groundwater.

Localization of the travertine downstream from mapped fault traces is taken to indicate that the source of the calcium carbonate-saturated waters was the fault zones along which crushing of the limestones has resulted in their higher-than-normal solubility. However, it seems unlikely that this crushing dates from the time of origin of these faults some $250 \mathrm{~m} . \mathrm{y}$. ago--the supply of crushed limestone produced at that time should long since have been exhausted. The more probable alternative is that geologically-recent movement has occurred along these faults, producing a new supply of crushed limestone for the circulating ground water to act on. On this hypothesis, the
ages of the travertine deposits would reflect the times of movement along these faults.

Thus, it was postulated that travertine deposits may be used to identify nearby zones of geologically-recent fault movement and that, if true, there is a possibility of age dating the sequence of locai travertine deposits to fix the intervals of past active faulting. Travertine (or tufa) deposits are located along many streams in the Shenandoah Valley of Virginia, in many (and perhaps in all) instances just downstream from the points where these streams cross the outcrops of thrust faults. The closest reported travertine deposit to the Lancaster seismic zone at the start of this study was near McConellsburg, PA, approximately 30 km to the west.

If this technique proves to be generally applicable, it would be possible to search for such deposits elsewhere in the northeast using remote sensing techniques, because the deposits are distinctive in appearance and will not be obscured by vegetation along the streams. A systematic ground-based search of small streams in areas of interest would also be an effective means of locating such deposits.

NEOTECTONIC DEFORMATION IN THE LANCASTER SEISMIC ZONE Summary

This study is focused on the contemporary tectonics of the Lancaster County in southeastern Pennsylvania. The neotectonic deformation associated with recent seismicity in this zone is inferred from the source mechanism of the largest recent event in the region, the April 23,1984, magnitude 4.2. maximum intensity VI earthquake. In addition, the principal stresses thus derived, historical seismicity, and geological and geophysical observations are utilized in defining a north-south-trending zone of recent faulting, the Lancaster seismic zone. This zone is approximately 50 km in length and $10-20 \mathrm{~km}$ in width. encompassing the city of Lancaster.
Introduction
Lancaster County is the most seismically active area in Pennsylvania, with several magnitude 3.0 or greater earthquakes in the past 25 years. The goal of this part of the investigation was to understand the present tectonic conditions and associated neotectonic features of the region, and thus shed light on the cause of contemporary seismicity.

A multi-disciplinary approach toward the identification and analysis of neotectonic sites was applied to the Lancaster County region. This approach utilizes six different paths of investigation, simultaneously, in crder to arrive at the best possible interpretation. The six areas of investigation are: recent seismicity; structural geology; geomorphology; lineaments and remote sensing: applied geophysics; and historical seismicity. Appendix A contains a complete de:cription of this investigation represented by a M.S. thesis completed by David Stockar as part of the project.

Recent Seismicity

On April 23. 1984 at 1:36 U.T. ($6.36 \mathrm{pm}, 22$ April EST), Lancaster County experienced one of the largest recorded earthquakes in Pennsylvania. The region of maximum intensity ($M M=\mathrm{VI}$) for the event occurred south of the city of Lancaster, near Marticville (Figure 1). Seismic records of the event give a magnitude of 4.2 , with a strong audible component (Scharnberger and Howell. 1985).

A foreshock of magnitude 3.0 occurred on April 19, at 4:55 U.T. (11:55 pm EST, 18 April). The region of maximum intensity ($M M=I V$) for this event was centered $8-10 \mathrm{~km}$ south of the mainshock. Both of these mainshock and

EIGURE_1 Geologic index map of the Appalechien Piedeont elong the Suequohenna River of Pennaylvenia and Maryland. (modified after Wiae, 1967)
foreshock epicenters were verified by the hypocenter location program HYPOINVERSE (Klein, 1978; Lahr, 1980) and a relative location algorithm. (Baumgardt 1977, 1985).

The April 23. 1984 earthquake had numerous aftershocks which lasted well into September, 1984. The largest of these was a magnitude 2.1 event (Scharnberger and Howell, 1985). Ten of the earliest of these aftershocks were recorded by a temporary seismic network set up within a day of the mainshock. The network consisted of 9 portable seismographs (3 from Pennsylvania State University and 6 from Lamont-Doherty Observatory) including smoked paper and digital recorders. The ten recorded aftershocks defined a 3 km long, N NNE striking zone of activity within the region of the April 23 mainshock. The length of the zone was significantly larger than the location error of $\pm 0.5 \mathrm{~km}$. Therefore, the $\mathrm{N}-\mathrm{S}$ trending fracture suggested by the aftershocks appeared to be real. Equally real was the 4.5 km depth obtained from the aftershocks (Armbruster and Seeber, 1985). This depth was later verified by a modified cepstral analysis applied to a series of seismograms for the mainshock (Stockar, 1986).

The north-south fracture orientation indicated by the aftershocks was further supported by a double-couple fault plane solution based on 57 first motions from the mainshock and the aftershocks. This well-constrained solution indicates a seismogenic fault with a NNE stiike of $\mathrm{N} 10^{\circ} \mathrm{E}$, dipping $60^{\circ} \mathrm{E}$, with reverse and right-lateral displacement. It has a P-axis which is nearly horizontal and striking ENE. This is consistent with the ENE maximum compressional stress for this part of the United States, based on other earthquake generated focal mechanisms, geological data, and in situ crustal stress measurements (Zoback and Zoback, 1980; Zoback. 1986). Geological Structures

Central Lancaster County, the area of interest, is within the Lancaster or Conestoga Valley of the Piedmont. This carbonate valley is dominated by recumbent folding and thrusting in the north, and tight isoclinal folding in the south. Its southern terminus is the Martic Line where the Wissahickon Schist of the Glenarm Series is in contact with the Lower Paleozoic Conestoga limestone of the Lancaster Valley. The Martic Line and all of the Paleozoic folds and thrusts, as well as the Triassic Basin, follow the general east-west structural grain of the region (Figure 1) (Wise, 1967).

However, detailed geological mapping within central Lancaster County revealed the youngest faults to be north-south striking. As early as 1930, Stose and Jonas mapped several $N-S$ striking faults which offset all the $E-W$ striking faults and folds. According to the study, the most dominant of these $\mathrm{N}-\mathrm{S}$ striking faults is the Fruitville fault (Figure 1,2 and 3) which offsets all surrounding lithologies and structures right laterally in outcrop. In 1971, Meisler and Becker remapped this region and broke the Fruitville fault into a zone of smaller cross faults due to a lack of outcrop in this dominantly agricultural region (Figure 2). However, both studies agree that the youngest faults are $\mathrm{N}-\mathrm{S}$ trending and that the dominant of these is the Fruitville fault zone.

The youngest rocks in the Lancaster County Piedmont are radiometricallydated Late Triassic to Early Jurassic (180-200 m.y.) diabase dikes (VanHouten, 1969) which are associated with the diabase sills or sheets of the NewarkGettysburg Triassic Basin north of Lancaster Valley (Figure 4). These diabase dikes are of three separate intrusive events based on composition (Smith et al, 1973). They are all N - 10 NE -striking within the Lancaster region (Figure 4). They typically are steeply-dipping features that extend over long distances. They appear to be parallel or subparallel to the $\mathrm{N}-\mathrm{S}$ cross-faults, and crosscutting contacts between the two sets are unknown. This may suggest a similar origin.

Several sets of Precambrian metadiabase dikes occur east and northeast of Lancaster County (Figure 4). They, too, have a predominantly N-NE strike and indicate zones of weakness within the Precambrian basement which underlies the Paleozoic sediments of the Lancaster Valley. These zones may have been reactivated by the Mesozoic igneous activity and its associated normal faulting. Geomorphology

A preliminary look at the drainage pattern of the Lancaster area indicates a predominantly north-south drainage orientation (Figure 2). A study of over 300 straight segments of stream channels in central and southern Lancaster County reveals two major channel directions. One direction (approximately N $80^{\circ} \mathrm{E}$) is parallel to bedding. The other direction (approximately $\mathrm{N} 10^{\circ} \mathrm{W}$) is nearly perpendicular to bedding and parallels the genetal $\mathrm{N}-\mathrm{S}$ trend of the youngest cross faults such as the Fruitville fault (Meisler and Becher, 1971). In northern Lancaster County, in the narrow neck of the Newark-Gettysburg

EIGURE_ 3 Wap of the faulta and the ceisalcity in the Lencaster Region. The faults appear as mapped by Stoce \& Jonea (1930). (after Schernberger c Howe11, 1985)

FIGURE_S Hep of the Mesozoic diabase and Precenbrian setediabeee of southeastern Penneylvanie. (modified efter Seith, et al. 1975)

Triassic Basin, the drainage pattern is trellis, utilizing the $\mathrm{N}-\mathrm{S}$ striking crossfaults. An example is Hammer Creek which flows south for several kilometers along a fault-induced straight segment which is a direct continuation of the Fruitville fault zone (Figure 2) (Gray et al, 1958; Meisler and Becher, 1971). There is also a set of springs in central Lancaster County which align with the southern projection of the Fruitville fault (Figure 5).

Finally, as early as 1929, Knopf and Jonas observed that "the Holtwood Dam (on the Susquehanna fiver) has utilized a natural falls or rapids known as Cullys Falls." Recently, Thompson (1985) has observed evidence for large preglacial falls on the Susquehanna in this area of Holtwood, Pennsylvania. He calls them "the Great Falls of the Susquehanna." These falls are directly south of the $\mathrm{N}-\mathrm{S}$ striking Fruitville fault zone and its associated $\mathrm{N}-\mathrm{S}$ trending seismic zone, (Figure 1, Figure 3) which is discussed below. Preliminary evidence suggests that the falls are due to preglacial faulting and/or flexuring in the area, possible preglacial uplift along the Fruitville fault zone.
Lineaments and Remote Sensing
Intermediate lineaments ($10-80 \mathrm{~km}$) and long lineaments (greater than 80 km) in southeastern Pennsylvania appear to be underlain by zones of fractured and jointed rocks and represent zones of deformation that transgress Precambrian through Traissic age lithologies. They are often reflected by straight valley segments, abrupt changes in valley alignment, gaps in ridges, gully and sink hole alignment, localized springs, diffuse seepage areas, localized vegetation differences, and draınage patterns (Gold, et al., 1973, 1974).

Kowalik and Gold (1975) studied the intermediate lineaments in Pennsylvania, based on Earth Resource Technology Satellite - 1 (ERTS-1) images. In Lancaster County, they identified several lineament directions with the north-south direction dominant.

Wise (1967) used topographic maps to identify topographic linears of the Susquehanna P'edmont (Figure 6). He found that the orientations of these lineaments (rosette B, Figure 6), did not match the strikes of the 1400 groundmeasured master joints (rosette A). Thus, the lineaments represent an "apparently different system" (Wise, 1967) of fractures. It is noteworthy that Wise identified a set of $\mathrm{N}-\mathrm{S}$ striking topographic lineaments as clearly dominent within the Lancaster region (Figure 6). In fact, his topographic lineaments clearly define the Fruitville fault (Figure 1) and the Lancaster seismic zone (Figure 3), (note the location of the 1984 earthquake in Figure 6).

Figure 5. Map springs in relation to recent earthquake

EIGURE-6
Topographic inneare of the Lancaster County area derived from topographic maps. Rosette A represente ground measurements of the etrikes of 2400 sester jointe releted to the late etage of folding in the Piedmont of Penneylvania. Roeette represente the eight directions of the topogrephic ilneare on this map, appaxentiy difierent aysten from Rosette A. The dotted iine repreeenta the Fruitvilie Fault Zone, and the large solid dot is the epicenter of the April. 1984 earthquake. (modified after Mise, 1967)..

An investigation of LANDSAT-4 imagery (30 m resolution) carried out in this study reveals that clearly the dominant lineaments in Lancaster County are those of the Appalachian structural trend (nearly E-W striking) and those defining the Fruitville fault zone which trend $\mathrm{N}-\mathrm{S}$ (Figure 7). The latter are defined by gaps and drainage through the Triassic rocks, stream drainage within the Paleozoic rocks, and the right-lateral offsets in the E-W striking ridges of the Conestoga Valley (Figure 2).

A Morphotectonic Study of the Lancaster Area*

Although the Lancaster area has been known for its seismic activity (see Figure 8) ever since it was settled, little is known of the source, and almost nothing of the surface expression of any fault(s) associated with these seismic events. Not only is the ground-based geological mapping hampered by the paucity of exposed bedrock, except along the Susquehanna River, but agricultural practice (thick lowland soils, intensively cultivated, with forest cover the hilly areas) tend to subdue and mask the normal geomorphic expression of fault displacement, e.g., scarplets on the surface. The search in this aspect of the study was focussed on the more-subtle manifestations of surface movements in the drainage pattern, and in the density and rate of gully development, using a photogeologic approach.

A search for fault-related topographic features, such as scarps, sag ponds, as well as displacements and deflections of drainage, failed to reveal the presence at the surface of an active fault of moderate to large displacement. A more sensitive indicator is likely to be in the orientation, position, and density of the 4th order streams and gullies, especially those developed on a short time scale in cultivated fields. Because of other variables that are cultural in nature (e.g., ploughing direction) we have rationallized that density data are less ambiguous than strictly orientational data. The search was not limited to colinear patterns of gully concentrations or orientations, because it is possible that the strains associated with neotectonic deformation may reflect a broad fault zone, or more likely, an en echelon pattern of faults rather than a single break.

[^0]

EIGURE. 7

Map showing sejor LANDSAT-4 Iineamente (dark innee) obtained in preliminary urvey of the Lencaater County eree. The aolid dot is the epicenter of the April 23, 1984 earthquake.

LINEAMENTS OF PENNSYLVANIA

LANCASTER COUNTY
\approx

- EPICENTERS
- LINEAMENTS

2 6741
A 1984 ERTHOUMEE EPCENTR
(AFTER KOWALIK \& GOLD,1974)
Figure 8.

In addition to a lineament enalysis (Figure 9) using Landsat imagery tho scales of aircraft overflights were used for most of the detailed mapping a d analysis, viz., low altitude photographs (1:20,000) flown during 1964, and high altitude ($1: 48,000$) flown during 1978. All of the small features were mapped on 265 of the higher-resolution, low-altitude photographs. As part of a terrain analysis, the headward segments of rills and gullies were mapped on acetate overlays on alternate frames (see index on Figure 10) in a stereo-model, and transferred onto a base map. To avoid biasing the data by mapping the same area more than once only the central portion ($5^{\prime \prime} \times 7^{\prime \prime}$) of each photograph was transferred. The county boundary, reference coordinates, and the end points of the "gullies" were transferred from the base map to magnetic tape on a source bed plotter. This digital data bank was used in subsequent computer assisted statistical analyses for density and orientation parameters. Data pertinent to each frame mapped were plotted at the location of the principal point of the appropriate photograph (Figure 11). Cells of area slightly less than that covered by the aerial photograph were superimposed on the base map in order to develop density contour diagrams (Figure 12). They also facilitated the comparison of density and orientation of "gullies" and gully patterns among different areas.

The criteria and parameters in distinguishing and mapping gullies on aerial photographs are:
(1) they appear as thin, dark-grey to black lines in the checkered or striped agricultural pattern of the arable lands;
(2) gully expressions commonly are from 100 to 250 feet, but range in length from less than 50 feet to more than 100 feet;
(3) most of the gullies are either oblique or perpendicular to the topographic contour, rarely parallel to it:
(4) gully patterns vary with topography and bedrock attitude and lithlogy:
(5) the density of gullies per photo-cell ${ }^{*}$ is highly variable. A value of 15 to 20 per photo-cell was considered to be background, and more than 30 as anomalous. The largest anomalies approach values of 60 gullies per cell.

[^1]
LANCASTER COUNTY,PENNSYLVANIA

$\because 2$

$$
\begin{array}{ccc}
\text { SCALE } & 1: 312,500 \\
0 & 5 & 10 \text { MILE }
\end{array}
$$

NASA, 1973(iMAGE SCALE $1: 111,110$)

LINEAMENT FROM LANDSAT-1(BAND 7) IMAGE

LANCASTER COUNTY

$=$| N |
| :---: |
| 1 |

SCALE 1:312,500

- 510 MILE
ROCK TYPE
PHOTO INDEX AT CENTER
AERIAL PHOTOGRAPHS $(1: 20,000)$

OVERLAY PHOTO CENTER WITH GEOLOGY MAP

Figure 10.

LANCASTER COUNTY,PENNSYLVANIA

Figure 11.

LANCASTER COUNTY,PENNSYLVANIA

The mvin factors controlling gully development, distrit ation and density are:
(1) climate, inciuding rainfall distribution:
(2) farming practice, especially direction of plough furrows, i.e.. commonly the long axis of field:
(3) time-duration for natural processes to supercede anthropomorphic adjustments, e.g. ploughing to remove rills:
(4) soil thickness and type:
(5) bedrock composition:
(6) orientation and nature of bedrock fractures:
(7) slope aspect and gradient:
(8) tectonic activity (e.g. differential uplifts etc.)

The first three factors can be considered to have been constant on the scale of the county for at least the last 5 to 100 years (Custer et al.. 1985). The latter factors are sensitive to local changes, and because they are site-specific, they need to be considered independently.

A total of 5154 gullies were mapped on 265 low altitude ($1: 20,000$) aerial photographs of Lancaster Ccunty. These were transferred to the base map on a scale of 1:48,000, and then transduced to provide a digital data base from which frequency and orientation parameters could be deduced (i.e. a contour map of density (Figure 12), and histograms rose diagrams (Figure 13), depicting the degree of local anisotrophy in fracture orientations.

The gully density distribution (Figures 11 and 12) indicates three anomalously high areas in Lancaster County. The southern areas is underlain mainly by schists and micaceous gneisses of Precambiran age. The middle anomaly is located in the west-central part of the county, around the ity of Lancaster. It is underlain by clastic sediments and limestones of Cambrian age. which are deformed by folds and thrust faults (see Figure 10). Epicenters of modern earthquakes cluster along the western side of this anomaly. The third anomaly is located in the northwestern part of the country, where Ordovician sandstones and I'mestones are overlain by Triassic Redbeds, intruded by diabase dikef and Triassic/Jurassic age. A common feature to these three anomalous arees is the presence of generally north-south trending diabase dikes.

Except for the anomalously low "gully-density" swath across the northern part of Lancaster county, which correlates with the forested terrain underlain

LANCASTER COUNTY,PENNSYLVANIA

mainly by Triassic rocks, gully development is not as strongly influenced by lithology as it is by bedrock structure and attitude.

In the centrai area. the paucity of gully development is reflected by the low contour value (10 gullies/4 square miles) on the density contour map, and the small size of the rosette in the cell/rose diagram plot. In the southern part, the general background value for gully density is high. This is reflected in the trend surface, and in particular in the size of the rosettes in the corresponding cells. These anomalies are correlated with bedrock, and soil types.

An unusually high uplift rate has been established for the southern part of the county by Gardner (this study) through dating and levelling of a series of terraces along the Susequehai,na River. As a result of rapid uplift, headward erosion and downward incision are promoted until an equilibrium grade is reestablished. Bedrock conditions (e.g. the well-jointed Peters Creek Schist Formation), with only a thin soll cover also erihance the gully development.

Other factors can be eliminated as a cause for the "high density" anomaly that occurs in the southern part of the county because its north-south trend is transverse to the lithology, soil types, and uplift axis. The remaining factor of importance is a tectonic control of some sort. The north-south spike in the rose diagrams (see Figure 13) for the cells within this anomaly are transverse to bedding dip and slope and major drainage directions, suggesting a superimposed fracture control. The breadth of this anomalous belt suggests the presence of multiple north-south oriented fractures in a zone rather than a single fault. These suppositions are consistent with the location of recent earthquake epicenters, spring, and travertine dams in the Lancaster area (Stockar, 1986: Stockar et al., 1987), which indicate an active north-south trending zone of weakness subparallel to north-northeast trending diabase dikes of Triassic age.

The principal conclusions from this morphotectonic analysis are:
(1) The northwest trend of high "gully-density" anomalies reflects the geomorphic influence of the Susquehanna River, while the north-south trends in the "gully density" contours, rose diagrams of gully direction and joints. (Figure 14) coincide with regional (diabase dikes and faults) and local structures.
(2) The fossil strain reflected in the orientation of the diabase dikes and thrust faults is similar to the inodern strains manifest by gully development and the clustering of epicenters.
AREA

[^2](3) We conclude that two areas of anomalously high gully development in Lancaster county are due to near-surface deformation caused by local uplift and a seismically active fault zone. Moreover, the morphotectonic techniques developed for this study were able to discriminate between the two causes when the local fracture (gully) orientation fabric is considered. In summary, the high gully density zonis coincide with areas of anomalous uplift, and an active seismic zone. Aligned spikes in rose diagrams from the active seismic zone provide information on the strike of the crypto-fractures.

Gravity and Magnetiss

Sumner (1975) compiled gravity data for the Newark-Cettysburg basin and contoured a simple Bouguer gravity map (Figure 15), 4500 gravity stations were plotted with a station spacing of $1-5 \mathrm{~km}$ over the basin and $2-10 \mathrm{~km}$ over adjacent areas. The standard error is about 0.2 mgals .

The density contrast between the various Triassic and Paleozoic rocks underlying the area is very small, with the exception of the diabase (Sumner, 1976, 1977). Therefore, it is difficult to detect near-surface faulting within these rocks. Nevertheless, on the simple Bouguer map (Figure 15), there is some evidence for a $\mathrm{N}-\mathrm{S}$ fault zone in the area of the Fruitville fault of Lancaster County. The contour lines appear warped within this area, in contrast to their parallel, equally spaced regional trend on both sides of the proposed fault zone (Figure 15).

Bromery and Griscom (1967) compiled an aeromagnetic map of SE Pennsylvania based on several 15 -minute quadrangle surveys. The quadrangles of interest, within the proposed Lancaster seismic zone (Figure 3), are, north to south, the Lititz quadrangle (Bromery and Zandle, 1961), the Lancaster quadrangle (Bromery and Zandle, 1961), and the Conestoga quadrangle (Bromery and Zandle, 1959). The flight paths are $\mathrm{N}-\mathrm{S}$ with a contour interval of 25 gammas. These three quadrangle maps have been combined in figure 9.

Despite the large, regional scale of this aeromagnetic survey, there is clear evidence of a disturbance in the magnetic contours as they cross the area of the Fruitville fault and its $\mathrm{N}-\mathrm{S}$ extension (Figure 16). Further south, in the Conestoga quadrangle, the Martic Line contact creates an approximately 800 gamma, steeply dipping, shallow magnetic contrast (Figure 16) (Socolow, 1974). Along the southern extension of the Fruitville fault, this contact (as well as the Martic Line) trends $\mathrm{N}-\mathrm{S}$. This is also the area of the 1984 earthquake.

EEEXEE.5.: SSaple Souguer Gravity sep of coutheactern Penneylvanie and northern Maryland, eontoured at 2 and 10 mgele. The derk ilne lebelled FF, io the echeantie ropreenentation of the Fruitville Foult Sone. Also thown is the Aprid, 1931 earthquake opicenter. (nodified after Sumer, 197s)

Likewise, this area in Conestoga is the part of the Martic contact of Pennsylvania which is most highly folded, and offset in two step-like features (Figure 1) (Berg, et al, 1980). These step offsets are in harmony with the rightlateral displacement along the Fruitville fault and other $\mathrm{N}-\mathrm{S}$ trendirg faults of the area. However, at this point no causal relationship can be established.

Finally, one must keep in mind that, as in the gravity case, the uniform lithology of the Lancaster valley area makes it very difficult to identify structural features on the aeromagnetic data. The magnetization of the Paleozoic and Triassic rocks, with the exception of the diabase, is very uniform and low because of the relatively uniform composition of these clastics and carbonates (Sumner, 1977). Thus, the aeromagnetic data for the Triassic and Paleozoic sedimentary rocks has a range of less than 100 gammas. Historical Seismicity

Sharnberger and Howell (1985) did a study of the historical seismicity of Lencaster County and obtained the results of Figure 3 and Table 1. However, there is evidence that the location of the October 6, 1978 event near the town of Lititz (Figure 3) is in error. The preferred location of this event is on the northern outskirts of the city of Lancaster (Figure 17). This is based on Scharnbergei's (1978) intensity maps for the two 1978 Lancaster earthquakes (Figure 18), and on the results of applying a relative location algorithm which used the locations of the July 16, 1978 and the April 23, 1984 earthquakes to locate the October 6, 1978 event (Figure 18). Furthermore. although traditionaily the March 8, 1889 event, of intensity $M M=\mathrm{V}$, has been located in York, Pennsylvania, new studies of newspaper records have been used to relocate the event within the area around the city of Lancaster (Nottis, 1983; Armbruster and Seeber, 1985). Based on these historical locations, it is clear that a $\mathrm{N}-\mathrm{S}$ trending seismic zone dominates Lancaster County (Figure 10).

The earthquakes of largest instrumentally-recorded magnitude within this zone of seismicity, the Lancaster seismic zone (LSZ) are the recent April 23, 1984 event with a magnitude 4.2, and the May 12, 1964 event which had a published magntidue 4.5 , but which was recalculated in this study to be of magnitude 3.6 (Figure 17). The other instrumentally-recorded events in the LSZ are: The December 8, 1972 event (magnitude 2.1; Dewey and Gordon, 1984) at a depth of about 3.5 km ; the July 16, 1978 event (magnitude 3.0 : Scharnberger, 1978) at a depth of about 5.0 km ; and the October 6, 1978 event (magnitude 3.1 . Scharnberger, 1978).

IRELE 1
HISTORICAL SEISMICITY IN THE LGHMCASTER REGITM

Date	Lecetion	Mercalif Irotervsity	Cetaberil 5
1835	laracaster'f Lebarsor:	11-111	
Mar. 8, 1887	Youlle or farncaster	$v-V 1$	strongly felt in both lacat icus
Apr. 26, 1893	laricaster	171	
Арк - 1, 1959	1 arcaster	11	
May 12, 1964	Lebarions	VI	$M=3.6$
Dec. 7, 1972	larecaster	v	
J*1. i6, 1978	Larncaster	v	
Oct. 6, 1978	Larcaster	v	

FIFYN_ 17 Wep of the seienicity of Lencester County in roietion to the Fruitvilie Feult zone (derk line). Ineerted is the upper heelephere projection of the fault plane solution obteined by Arabrueter and Seeber (19e5) for the April 23, 1984 eorthqueko. (eodified efter Scharnberger 4 Howel1, 1935)

EIGURE 18 Maxisus intensity locatione and reletive locetions for the July 16, 1970 and the October 6, 1978 Earthquakes. (nodified efter Gray, et el., 1860).

Thus, it is apparent that historically the seismicity is clustered in a $\mathrm{N}-\mathrm{S}$ striking zone along the Fruitville fault. The zone appears to be about $50-60 \mathrm{~km}$ long, in the $\mathrm{N}-5$ direction, and $10-20 \mathrm{~km}$ wide, in the $\mathrm{E}-\mathrm{W}$ direction. It runs directly through the center of Lancaster County, Pennsyivania and parallels the most recent faulting in the area, such as that of the Fruitville fault zone (Figure 2).

Conclusions

Based on a multi-disciplir:ary approach, a neotectonic zone of deformation, the Lancaster seismic zone (LSZ), is identified in southeastern Pennsylvania. Historically several earthquakes have occurred in the $\mathrm{N}-\mathrm{S}$ striking, 50 km to 60 km long, 10 km to 20 km wide zone. The largest recent event of April 23, 1984 was located in the southern end of the zone at a depth of $4.5-5.0 \mathrm{~km}$. The fault plane solution for the event indicates a $\mathrm{N} 10^{\circ} \mathrm{E}$ striking fault plane with a $60^{\circ} \mathrm{E}$ dip, and a right-lateral sense of motion. Field geology identifies a $\mathrm{N}-\$$ striking fabll zone, the Fruitville fault zone (FFZ), which is coincident with the LSZ. The FFZ is in agreement with the location, the sense of motion, and the fault plane solution for the April 23. 1984 event. Furthermore, it has proven to be the youngest structural feature in the area, offsetting all surrounding structures and lithologies, except one. These are the Triassic-Jurassic diabase dikes. They parallel the youngest faults, such as the FFZ, and may be genetically related to them. Finally, a preliminary study of the drainage patterns, lineaments, and potential field data in central Lancaster County suggests the presence of a $\mathrm{N}-\mathrm{S}$ trending fracture system within the LSZ and coincident with the FFZ.

FLUVIAL TERRACES ALONG THE LOWER SUSQUEHANNA RIVER* Introduction

Fluvial terraces are preserved along the lower Susquehanna River from Harrisburg to Havre de Grace at the mouth of the Susquehanna. The lower course of the Susquehanna and the preserved terrace remnants transect the southern area of historic seismisity in the Lancaster, Pennsylvania area. It was therefore postulated that these terrace remnants could record any slow, longterm, regional, crustal deiormation resulting from neotectonic activity in the Lancaster area.

As many as six gravel-capped terraces (Figure 19) occur along the lower Susquehanna (Stose, 1928). To constrain rates of crustal deformation across the Lancaster seismic area, these terrace remnants must be accurately correlated and subsequently dated. Uplift rates can then be calculated by two possible methods. The first method estimates the uplift rate from the difference in elevation between terraces or between a terrace and the modern stream level. It assumes that stream incision to the present level is only a result of tectonic uplift and neglects stream incision caused by either eustatic sea-level change or changes in sediment load resulting from climatic change, among others. However, along the lower Susquehanna all three processes have operated during the Quaternary to affect stream incision. Uplift rates calculated from the first method could only yield maximum values if the terrace age is well constrained.

The second method estimates uplift magnitude and rate by calculating the difference in terrace elevation along any one terrace. This method is most useful where individual terraces actually develop an upstream slope as a result of tectonic deformation. In that case, the magnitude and rate of crustal deformation can be accurately estimated if the terrace age is well constrained.

Although terrace remnants are preserved along the lower Susquehanna. two significant problems must be addressed in order to estimate magnitude. rate, and age of crustal deformation; the terrace remnants must be correctly correlated along the length of the river and the terraces must be accurately dated.

[^3]
Figure 19. Composite terrace correlations for the de Grace (from Stose, 1928).

Distribution and Age of Terraces

Two detailed studies reporting the distribution of terrace remnants along approximately 100 kms . of the lower Susquehanna have been reported by Stose (1928, 1930) and Campbell (1929). At least six, gravel-capped terrace levels that are of potential use in this study tave been mapped (Figure 19) and tentatively dated. These include, from lowest to highest, the Talbot, Wicomico, Sunderland, Sub-Brandywine, Brandywine, and Bryn Mawr. They range in elevation above the river from less than 20 feet (Talbot) to approximately 300 feet (Bryn Mawr).

The three lowest terraces (Talbot, Wicomico and Sunderland) which are also the best preserved and most continuous have generally been assigned a late Pleistocene age (Stose, 1928: Schlee, 1957) and tentatively related to glaciel and periglacial processes in the headwaters of the Susquehanna. These terraces generally have a longitudinal profile that is parallel to the modern river profile. Therefore, in calculating uplift rate, the first method can be used to estimate possible maximum uplift rate.

The upper twu terraces (Brandywine and Bryn Mawr) commonly referred to as the "Upland Gravels" occurs as scattered remnants of boulder strewn, flat uplands that can be found up to three miles from the modern river course. These gravel are mineralogically distinct from the lower terraces. Clast composition consists of a mature suite of orthoquartzites and cherts quite distinct from the less mature glacial gravels of the lower terraces.

The Upland Gravels generally consist of isolated, rounded, exotic boulders and cobbles preserved in a residual soil developed on local bedrock. Because these terrace deposits are poorly preserved and deeply weathered, no dateable materials have been found in them. Tentative age assignments are based on degree of weathering and possible correlation to related marine units in the coastal plain. Assumed ages range from earliest Pleistocene to middle Pliocene (Schlee, 1957) or Jate Tertiary (Stose, 1928).

An attempt was made to constrain the age of these Upland Gravels using a micropaleontologic method. Samples were collected from nearshore marine sediments from the head of Chesapeake Bay that are correlated to these Upland Gravels. These include samples from the Sand Hill Quarry (elevation 60 ft ., Rte. 7 north of Hauredegrace), (ecil Brothers Quarry(elevation $420 \mathrm{ft} .$. Rte. 275), and York Brothers Quarry (elevation 400 ft ., Belevedere Rd.). However, all
samples were devoid of palynomorphs (see letter from Travspore Inc.). Other studies have also reported similar unsuccessful results. Therefore, the age of these "Upland Gravels" is very poorly constrained at this time. The poorly constrained age estimates will not affect estimates of magnitude of crustal deformation, but will affect all rate calculations based upon these Upland Gravels.

Iertace Correlation

To estimate the magnitude and distribution of possible crustal defermation along the lower Susquehanna River, terrace remnants must be accuratley correlated along the length of the river. Because of the poor preservation of Upland Gravel terrace remnants along the lower Susquehanna, the only two detailed studies of that area (Campbell, 1929 z.ad 1933; Stose, 1928, 1930) have produced rather disparate views on the nature of the correlation. The relevant controversy involves correlation and inferred deformation of the oldest gravelcapped terrace remnants, the Bryn Mawr Terrace of assumed earliest Pleistocene or Pliocene age (Schlee, 1957). Campbell's (1929) correlation of the Bryn Mawr Terrace remnants shows a distinct upward buige in the Bryn Mawr surface (Figure 20) centered near Safe Harbor, in the general vicinity of historic seismic activity around Lancaster. Contours drawn on this warped surface produced the Westminster Anticline (Figure 21) with nearly 100 feet of closure that extended from the Potomac River in the southwest to the Schuylkill River in the northeast. However, Stose (1930) questioned the accuracy of the terrace correlations, suggesting that the Bryn Mawr was miscorrelated by Campbell. Stose's (1930) cortelation showed no deformation along the Bryn Mawt surface. Given the poor preservation of the Bryn Mawr terrace gravels, it is not possible to determine the correct correlation at the present time. Therefore, uplift rates based on both correlations will be calculated for the lower Susquehanna.

Neotecionis Deformation Alorig. The Lower Susquehanna

Given the above limitations on age and correlation of terrace remnants, uplift and possible uplift rates have been calculated for the lower Susquehanna. (Table 2). Maximum possible uplift rates vary over an order of magnitude, but are consistantly quite low ranging from $6.5 \times 10^{-2} \mathrm{~mm} / \mathrm{yr}$ to $2.8 \times 10^{-1} \mathrm{~mm} / \mathrm{yr}$. However, these low rates could be expected for crustal deformation along a passive, continental margin. Importantly, uplift rate calculated from closure on the Westminster Anticline is centered in the vicinity of historic seismic activity
near Lancaster and may reflect deformation associated with that activity over the last several million years. However, uplift rates calculated with the first method, using terrace elevation above modern stream level, may reflect a more regional uplift pattern, extending along the entire course of the lower Susquehanna. This type of broad crustal deformation may be more reasonably related to regional isostatic uplift resulting from slow but steady erosion of the Piedmont. However, the presence of distinct convex-up tributary stream segments (Thompson, 1985) and associated geomorphi: features (Hack, 1982) support the notion that neotectonic uplift may be occurring over a more narrow region of the Piedmont upstream from the Coastal Plain. This would tend to support the deformation model suggested by Campbell (1929).

Table 2. Possible Uplift Rates along the lower Susquehanna River.

Met inod	Terrace	Elevation Difference $A Z$ (meters)	$\begin{gathered} \text { Time Interval } \\ \text { At (years) } \\ \hline \end{gathered}$	Uplift Rate $(\pi \mathrm{mm} / \mathrm{y} \times)$
Closure on Westminster Anticline (Campbell, 1929) ${ }^{1}$.	Bryn Mawr	65	1 million	6.5×10^{-2}
Elevation of Bryn Mawr above modern river level ${ }^{2}$. (Stose, 1930).	Bryn Mawr	100	2 million	1.0×10^{-1}
Elevation of Sunderland above modern river level ${ }^{2}$. (Stose, 1930).	Sunder land	38	100,000	3.8×10^{-2}
Elevation of Wicomice above modern river level ${ }^{2}$. (Stose, 1930).	Wicomico	20	70,000	2.8×10^{-1}

1. using method 2 in text
2. using method 1 in text

[^4]

Tigurc fl Distribution of the Westminster Anticline shown by contour lines on the surface of the Bryn Mawr gravel. Data from Figure 20. Contour interval 100 ft ; datum near sea level. (from Campbell, 1929).
travspore. inc.
A. D. 2. Box 380
nuntinafon Pa 16682
U. A.

22 December, 1986

Dr. Thomas Gardner Dept. of Geosciences 303 Deike Building University Park, PA 16802

Dear Toln:

We have completed our study of the four (presumably) Neogene samples you gave us to woik on, per your letter of 16 October.

I very much regret to report that the samples are utterly devoid, not only of palynomorphs, but of organic matter at all. The samples consist primarily of clean clay--kaolinite or montmorillonite probably. There are some silt-size particles which I assume must be quartz from the observed ractions:

\author{

1. no reaction in $15 \% \mathrm{HCl}$ (therefore no carbonates)
 2.violent reaction (explosive) in $52 \% \mathrm{HF}$
 3. no ZnCl_{2} (sp. gr. 2.1) float (this is really quite unusual for silty clay samples).
}

I believe you should look for a darker gray color in the field (these are practically white) - in my experience, this would indicate the probability of organic matter being present. Also, be sure to look for siltstone (these present samples are barely gritty to the teeth but are probably mostly clay?). It might be helpful to have me help do the collecting?

Per my original quote (my letter of 23 October, 1986), I enclose an invoice at $\$ 50 /$ sample $=\$ 200$.

Yours very truly,

Alfred Traverse
President

AT/et
encl: invoice

TRAVERTINE AS AN INDICATOR OF RECENT FAULT MOVEMENT

Summary

Based on Thornton's hypothesis travert'ne deposits such as those found in central Virginia, are associated with recent fault movements in carbonate terranes. Therefore, travertine deposits should now be forming in the Lancaster seismic zone. As predicted a ground-based survey revealed the presence of travertine deposits on small streams crossing the Lancaster fault zone in Lancaster, PA. Present deposition occurs downstream from the inferred fault trace which cuts the carbonate bedrock. This suggests that the seismically active fault may be mylonitizing the country rock and acting as a conduit for the calcium-carbonate-rich groundwater which supersaturates the runoff streams. It appears that this causative association of travertine with nectectonic fault movement can be used to locate and identify recently active faults in the northeastern U.S.

Background

Travertine (or tufa) deposits are located along many streams in the Shenandoah Valley of Virginia, in many (and perhaps in all) instances just downstream from the points where these streams cross the outcrops of thrust faults. Most of the deposits with which have been investigated (by Thornton) are not forming at the present time, but are being cut into by the streams that they have dammed. Along Holman Creek, between Forestville and Quicksburg, deposition of travertine was followed by a period of alluviation, so that some of the deposits are overlain marginally by stream sand and silts. This indicates that the period of travertine deposition there ended some time ago, yet the travertine is still younger than the osigin of the present valley of itolman Creek. Appendix B gives further deta.is concerning the nature and origin of these deposits.

Localization of the travertine dow stream from the fault traces is taken to indicate that the source of the calcium carbonate-saturated waters was the fault zones, along which crushing of the limestones has resulted in their higher-than-normal solubility (Thornton's hypothesis). However, it seems unlikely that this crushing dates from the time of origin of these faults some 250 m.y. ago--the supply of crushed limestone produced at that time should long since have been exhausted. The most probable alternative is that geologically-recent movement has occurred along these faults, producing a new
supply of crushed limestone for the circulating ground water to act on. On this hyputhesis, the ages of the travertine deposits would reflect the times of most recent movement along these faults.

A number of large and rather spectacular examples of these deposits are known in Virginia, such as along Tumbling Run south of Strasburg, along Marl Creek Just east of Steeles Tavern, along South River near Cornwall, and at Falling Springs north of Covington (Thornton, 1959). However, the stratigraphiic and chronologic relationships are probably better dispiayed in some of the less spectacular occurrence such as those along Holman Creek mentioned above and those along Swith Creek east of Tenth Legion. Discussion

Lancaster, Pennsylvania has been the region of recent seismic activity (Figure 17). The earthquakes, with a maximum magnitude of 4.2 (April 23 , 1984), appear to be concentrated within a seismic zone which is $10-20 \mathrm{~km}$ wide and 50 km long. As discussed earlier, the Lancaster seismic zone, is associated with a reverse fault, the Fruitville fault, which strikes NNE through central Lancaster County (Figure 17).

As discussed earlier, on April 23, 1984 a magnitude 4.2, intensity VI earthquake occurred at a depth of 4.5 km along the southern extent of the fault zone (Figure 17). The main event was followed by several aftershocks which clearly indicated a NNE strike of tie rupture (Figure 22). However, the faulting did not break the surface.

Ground surveys in the area carried out as part of this project revealed that the southern trace of the Fruitville fault zone is associated with preferential north-south drainage of the major streams in the area, the occurrence of springs, and presently active travertine depusition (Figure 22).

The ground surveys revealed four locations of present travertine deposition (Figure 22). Site 1 is located on a small stream at the southeast boundary of Millersville University campus. The source of the stream appears to be a spring near the inferred fault trace (Figure 22). The travertine is depositing within a small waterfall created by an outcrop of bedrock. The deposit is up to 1 cm thick and covers the bedrock and presently-growing algae. Site 2 is at the mouth of Stehman Run where a very thin coat (less than 0.2 cm) of travertine is being deposited on cobbles, logs, and algae within the turbulent parts of the stream. Site 3 is on the north branch of Stehman Run.

The travertine forms a layer up to 0.5 cm thick on tops of cobbles which form smali dams and agitate the stream. It is also depositing on growing algae. Site 4 is on the south branch of Stehman Run where a travertine layer of similar thickness covers dead branches and cobbles within small waterfalls.

All of the locations have several common traits. In ail cases the travertine is precipitated in agitated water, such as a small falls within the stream. It always appears dewnstream from the inferred fault trace of the Gruitville fault. Finally, in this region the travertins forms only thin veneers up to 1 cm thick which coat rocks, organic debris, and actively growing plants and algae. In other regions of Pennsylvania (Carlisle and Chambersburg) and in Virginia recent ground surveys revealed dams of travertine up to tens of meters high associated with faulted carbonates. However, most of these indicated nc present deposition as did the above-mentioned sites in the Lancaster seismic zone.

Although this survey is not extensive or exhaustive, the occurrence of the travertine deposits downstream from the Fruitville fault trace, the presence of springs aligning with the fault trace, and the recent seismic activity (Figure 22), suggest the following possible explanation. The seismically active faults in the LSZ may be mylonitizing the country rock and acting as a conduit for calcium-carbonate-rich groundwater which supersaturates the runoff streams and precipitates travertine near points of exit where there is turbulent flow duwnstream from the active fault.

Thus, association of travertine with active faults suggests that by locating travertine deposits in the northeastern U.S. (or elsewhere) one can identify nearby faults which are associated with neotectonic deformation. The technique should be tried in other zones of recent seismicity where carbonate rocks exist.

It should be noted that after this project was completed travertine deposits were discovered (by C.P. Thornton) in Giles County, VA, the site of one of the largest (about magnitude 6) historic earthquakes in the eastern U.S. This deposit was discovered based on the prediction that travertine should be present in this area of major earthquake activity, although it had not previously been reported.

While the presence of travertine implies nearby neotectonic fault movement it does not necessarily imply seismogenic faulting. f sumably
slower (non-seismic) fault movements would allow the same travertinegenerating process to operate. However, the identification of those faults in eastern North America which are experiencing activity of any type vs dormant faults is very important in understanding the nature and origin of neotectonic deformation and associated hazard.
Age Dating of Travertine Deposils
If the association of travertine deposits with fault movements is correct then the ages of these deposits should represent the periods of past fault activity. Hence age dating of travertine deposits should provide a time history of active faulting in each area. Towards the end of this project an initial attempt was made to date the travertine deposit on Holman Creek near Quicksburg, VA described originally by Thornton (1959 and Appendix B). This site was chosen because the travertine's development is well-constrained geologically. The sequence of development was: valley cutting, followed by travertine deposition, followed by valley filling with alluvial deposition over the travertine, followed by the re-excavation by streams. There was no fu.ther travertine deposition after the alluvial cover was deposited. Therefore, to fix a minimum age for the last travertine deposition at this site samples of the gastropod shells (calcium carbonate) found in the overlying, layered alluvium were sent to a radiocarbon age dating laboratory for analysis. The carbon in the gastropod shells would represent atmospheric carbon and hence not be potentially biased by the carbon in carbor, dioxide derived from host rocks. This age determination gave 4210 ± 60 years which means that the most recent nearby fault movement would have occurred earlier than this date. Because of time and budget constraints, age determinations on the travertine deposit liself were not made. It remains to be determined whether the carbon in the travertine reflects the age of deposition, the age of the parent carbonate rock or some combination of the two. If it is the former, then one must use carbonaceous material entrained with the travertine when it was deposited or material in underlying and overlying alluvial deposits as in the case just described. It is quite possible that bimodal ages will be found, one representing the age of deposition of the travertine and the other the age of deposition of the parent carbonate rock. Follow-on studies of this nature are clearly needed to establish the potential for reconstructing the history of neotectonic activity areas where travertine deposits are found.

However, in all cases where travertine deposition is presently occurring (e.g. Lancaster) associated geologically-recent movement on nearby faults (upstreain) can be inferred.

NEOTECTONIC, GEOCHEMICAL AND LINEAMENT STUDIES OF THE MOODUS SEISMIC AREA

In an attempt to identify neotectonic, geochemical, and lineament characteristics of a second seismically active area in the northeastern United States, studies were conducied during the late summer and fall of 1987 in and around the Moodus, Connecticut, area. This project focused on a six quadrangle region centered on the "Moodus seismic area," an area of anomalously high seismic activity in recent and historic times.

The study included a review of the relevant literature, particularly with regard to features that might be related to the seismic activity, and field work to locate and examine those neotectonic features. Also, the local drainage network was examined and water samples were taken to assess their degree of saturation by chemical species which might indicate deep fluid movement along active faults or fractures. Finally, remote sensing imagery at four scales (1:250,000 SLAR radar imagery, 1:100,000 SPOT satellite image, 1:80,000 highaltitude photography, and 1:18,000 low-altitude photography) were examined for the presence of lineaments on other features that may reveal bedrock fracturing and tectonic stress orientations.

No unambiguous evidence of neotectonic features has previously been reported for this area. No evicence of tectonically disturbed glacial drift or stream deposits appeared in previous reports covering the area, except possibly in one study where the critical outcrop was regraded and obscured. The geochemical studies in the present study revealed no evidence of mineral precipitates or superseturated species in 33 stream bottom samples and 8 water samples. Lineament analysis of the six-quadrangle area at the three smaller scales and the Moodus quadrangle at the $1: 18,000$ scale produced varying distributions of feature orientation, frequency, and length. These orientations are concentrated in the northwest quadrant, although secondary peaks occur in the north-northeast and east directions. The similar distribution of lineament orientations produced from the SPOT imagery and high-altitude photographic images, indicates that these similarly-scaled remote-sensing products are sampling a common set of lineaments. The differences between the distributions may be a result of stereoscopic viewing of the aerial photographs. The prominent lineament orientation peaks at azimuths of $80^{\circ}-90^{\circ}$ and $340^{\circ}-$ 350° are nearly parallel and perpendicular, respectively, to the direction of the
maximum compressive stress (ϵ_{1}) as determined from in situ stress and earthquake focal mechanisms in the area (Woodward-Clyde Consultants, 1988).
This association suggests a causal association with the present thrust stress regime. Lineament frequency was observed to increase in the Moodus quadrangle relative to adjacent study quadrangles, suggesting an increase in fracture density in the vicinity of the seismic zone.

The variation in the orientation of lineament features appears to be compatible with a first-, second-, and third-order shear couple model. Lineament frequency was observed to increase on the radar, SPOT, and highaltitude photography in the Moodus quadrangle block relative to adjacent quadrangles. This indicates that a higher degree of fracturing may be present In the vicinity of the active seismic area. In addition, scale phenomena functions related to the lineament analysis were developed. They show: 1) an exponential decay in lineament frequency per unit area with increasing scale number, and 2) a linear increase in average lineament length with increasing scale r umber.

Details of this study are contained in a report by C. Shuman presented in Appendix C.

SUMMARY AND CONCLUSIONS

For the Lancaster seismic zone the multifaceted investigation revealed several manifestations of near-surface, neotectonic deformation. Remote sensing data together with surface gealogical and geophysical observations, and recent seismicity reveal that the neotectonic deformation is concentrated in a NS-trending fault zone some 50 km in length and $10-20 \mathrm{~km}$ in width. Anomalies associated with this zone include distinctive lineament and surface erosional patterns; geologically recent uplift evidenced by elevations of stream terraces along the Sasquehanna River; and localized contemporary travertine deposits in streams down-drainage from the inferred fault zone.

In the Moodus seismic zone results of previous ground-based geological studies were combined with remote sensing observations (aeiial photography, SLAR imagery, and SPOT imagery) and used to look for evidence of nearsurface deformation associated with the zone of recent seismicity. Lineament frequency was observed to increase in the Moodus quadrangle compared to adjacent areas and dominant lineament directions were observed that are perpendicular and parallel to the rientation of the maximum horizontal stress direction (N80-85E), recently determined from in-situ stress measurements in a 1.5 km -deep borehole in the seismic zone and from well-constrained earthquake focal mechanisms. These dominant lineament orientations are those expected in the present thrust stress regime which has generated recent earthquakes in the Moodus area. No geochemical anomalies or travertine deposits were found to be associated with the zone of seismicity. The only potential source of travertine in the area is one metamorphic rock unit, which upon weathering produces calcium carbonate. However concentrations necessary to cause precipitation of travertine were not found in any of the streams samplea.

One of the most important general results of this study was the identification of travertine as a possible new indicator of neotectonic fault movements in areas underlain by limestone and dolomite. The working hypothesis (developed originally by C.P. Thornton) is that water reaching the surface along fault gouge zones will emerge saturated or supersaturated in carbon dioxide and then will quickly precipitate in nearby small streams to
produce readily-observed travertine (tufa) deposits. No such deposits are expected to be associated with dormant faults because the high surface area to volume carbonate material in the fault gouge will have been dissolved and carried away shortly after the last fault movement. If this hypothesis is currect and generally applicable, then recently-active faults should be found just upstream from observed trevertine deposits. Alternatively stated, travertine deposits are predicted to occur downstream from the surface projection of active faults ih carbonate-rich terranes. Guided by this theory a ground-based survey was carried out in the Lancaster seismic zone and contemporaneous travertine deposits were discovered just downstream from the Fruitville fault which is associated with the major earthquake activity in the area; none had previously been reported for this area. The travertine is presently being deposited at all the sites where it was found.

The possibility of age-dating travertine deposits suggests that the time history of nearby fault activity might be reconstructed as well. Late in this study an attempt was made to age-date a travertine deposit from the Quicksburg, VA area using a radiocarbon method. The date obtained was 4210 ± 60 years, which represents a lower bound for the age of last fault movements producing the deposit. However, travertine is presently being deposited approximately 5 km upstream indicating recent fault movement there. This area has experienced historic earthquake activity indicating that neotectonic deformation is occurring. The travertine found in the Lancaster seismic zone is currently being deposited as evidenced by twigs and other debris entrained in the deposit and by its coating of stream pebbles. Further investigation of this new indicator of neotectonic fault movement is clearly warranted.

Appendix D contains copies of published abstracts of papers presented at technical meetings describing the results of this study.

REFERENCES

Armbruster, J. G., and Seeber, L., 1985, Marctic April 23, 1984 earthquake and the Lancaster seismic zone in eastern Pennsylvania: (unpubl.).

Baumgardt, D. R., 1977, The application of differential travel-time residuals for the study of mantle heterogeneities (abstr.): Earthquake Notes, v. 48, p. 910.

Baumgardt, D. R., 1985, Personal communication.
Berg. T., et al., 1980, Geologic map of Pa.: Pa. Ceol. Surv., 1:250,000.
Bromery, R. W., and Zandle, G. L., 1959, Aeromagnetic map of the Conestoga quadrangle, Lancaster County, Pa: U.S. Geol. Survey, Geophys. Invest. Map GP-218.

Bromery, R. W, and Zandle, G. L., 1961, Aeromagnetic map of the Lititz quadrangle, Lancaster County, Pa.: U.S. Geol. Survey, Geophys. Invest. Map GP-257.

Bromery, R. W., and Griscom, A.. 1967, Aeromagnetic and generalized geologic map of S.E. Pennsylvania: U.S. Geol. Survey, Geophys. Inv. Map GP-577.

Campbell, M. R., 1933, Chambersburg (Harrisburg) peneplain in the Piedmont of Maryland and Pennsylvania, Geological Society of America, v. 44, p. 553573.

Campbell, M. K.. 1929, Late geologic deformation of the Appalachian Piedmont as determined by river gravels, Proc. National Academy of Sciences, v. 15, p. 156-161.

Custer, B. H., Merkel, E. J., Yaworski, M.., Knight, W. R., and Holzer, D. B., 1985. Soil Survey of Lancaster County, Pennsylvania. U.S. Dept. Agriculture, Soil Conservation Service., 152 p.

Dewey, J. W., and Gordon, D. W., 1984, Map showing recomputed hypocenters of earthquakes in the eastern and central U.S. and adjacent Canada: U.S. Geol. Survey Map MF-1699.
Gold, D. P., Parizek, R. R., and Alexander, S. S., 1973, Analysis and Application of ERTS-1 data for regional geological mapping. Technical presentations of symposium on significant results obtained from the earth resources techn. satelite-1, v. 1, p. 231-246.
Gold, D. P., Parizek, R. R., and Alexander, S. S., 1974, Applications of remote sensing to natural resources and environmental problems in Pennsylvania. Earth and Mineral Sci. Bull., v. 3, no. 7.

Gray, C., Geyer, A. R., and McLaughlin, D. B., 1958, Geology of the Richland quad.. S.E. Pa.: Pa. Geol. Soc., Atlas 167D.

Hack, J. T. 1982, Physiographic division and differential uplift in the Piedmont and Elue Ridge, U.S. Geological Survey Prof. Paper No. 1265, 49 p.

Klein, F. W., 1978, Hypocenter location program, HYPOINVERSE: U.S. Geol. Surv. Open-file Report 78-697.
Knopf. E. B., and Jonas, A. I., Geology of the McCalls Ferry - Quarryville district, PA Geol. Survey Bull. No. 799.

Kowalik, W. S. and Gold, D. P., 1974, Use of Landsat-1 imagery in mapping lineaments in Pa.: 1st. Internat. Conf. on the New Basement Tectonics; Utah Geol. Assoc. Publ. \#5, ed. R. A. Hodgson, et ai. p. 236-249.

Kowalik, S. W. and Gold D. P. 1975, Lineaments and mineral occurrences in Pa. NASA Tech. Rept., ORSER/SSEL Rept. 14-75. in M.S. thesis, Kowalik. W. S., Penn State Univ., University Park, PA.

Kowalik, W. S., and Gold, D. P., 1976. The use of Landsat-1 imagery in mapping lineaments in Pennsylvania. Proc. 1 st Int. Conf. on the New Basement Tectonics (Utah Geol. Assoc., \#5, 236-249.

Lahr, J. C. 1980, Hypoellipse/multics: A computer program for determining local earthquake hypocentral parameters, magnitude, and first motion pattern: U.S.G.S. Open File Rept. 80-159, revised April 1980 for version II. 59 p.

Mackir. J. H., 1934, Terraces in the Susquehanna valley below Harrisburg. PA, Science, v. 80, p. 140-14i.

Meisler, H., and Becher, A. E., 1971, Hydrology of the carbonate rocks of the Lancaster $15-\mathrm{min}$. quad., Pennsylvania: Pa. Geol. Soc. Progress Report 171.

Nottis, H. N., 1983. Epicenters of N.E.U.S. and S.E. Canada, onshore and offshore, time period: 1534-1980: Map and Chart Series \#38, N.Y. State Museum.

Scharnberger, C. K.. 1978, Lancaster County earthquake, July 16, 1978; and Another Lancaster County earthquake: Pennsylvania Geology, v. 9, \#5 \& \#6.
Scharnberger, C. K., and Howell, B. F. 1985, In tensities and Structural setting of the earthquake of 19 April and 23 April, 1984 in Lancaster County, Pennnsylvania: Earthquake Notes, 56(2), p. 43-46.

Schlee, J., 1957, Upland gravels of southern Maryland, Geological Society of America, v. 68, p. 1371-1410.

Smith, R. C., et al., 1975, Geology and Geochemistry of the Triassic diabase in pennsylvania: G.S.A. Bull., v. 86, p. 943-955.

Socolow, A. A., 1974, Geologic interpretation of the aeromagnetic maps of southeastern Pennsylvania: Pa. Geol. Survey Inform. Circ. \#77.

Stockar, D. V., 1986, Contemporary tectonics of the Lancaster Pennsylvania seismic zone: M.S. thesis, the Pennsylvania State University, University Park, Pennsylvania, 226 pp .

Stockar, D. V., C. P. Thornton, D. P. Gold and S. S. Alexander, 1987, Travertine deposits within the Lancaster Seismic Zone, preliminary report, The Pennsylvania State University, 5 pp .

Stose, F. W., 1928, High gravels o Susquehanna River above Columbia, Pennsylvania, Bulletin Geological Society of America, v. 39, p. 1073-108C.

Stose, G. W., 1930, Is the Bryn Mawr peneplain a warped surface, American Journal of Science, v. 219, p. 177-184.

Stose, G. W. and Jonas, A. I., 1930, Lancasier quadrangle atlas: Pa. Geol. Surv.. Atlas \#168.

Sumner, J. R., 1975, Geophysical interpretation of the structural configuration of the Newark-Gettysburg Triassic basin: Report Geol. Surv. Grant 14-080001-G150, Dept. of Geol. Sc., Lehigh Univ., Pa.

Sumner, J. R., 1976, Residual gravity anomaly map of the Newark-Gettysburg Triassic basin, G.S.A. Abst. w/Prog.. v. 8, p. 280

Sumner, J. R., 1977, Geophysical investigation of the structural framework of the Newark-Gettysburg Triassic basin, Pennsylvania: G.S.A. Bull., v. 88, p. 935942.

Thompson, G. H., 1985, The preglacial great falls of the Susquehanna River, Geological Society of America Abstract with Programs, v. 17, p. 734.

Thornton, C. P., 1953, The geology of the Mount Jackson quadrangle, Virginia. Ph.D. thesis, Yale University, 211 pp .

Van Houten, F. B., 1969, Late Triassic Newark Group, northcentral N.J. and adjacent Pa, and N.Y.. in Geology of Selected Areas in NJ. and Eastern Pa. and Guidebook of Excursions: G.S.A. Annual Meeting, Rutgers Univ. Press, p. 314-330.

Wise, D. U., 1967, Radar Geology and pseudo geology on an Appalachian Piedmont Cross-section, Photogrammetric Eng., 752-761.

Woodward-Clyde Consultants, 1988, Regionill Crustal Stress Study 3: Tectonic Stress in South-Central Connecticut, Empire State Electric Energy Corp. Research Report No. EP86-46, $32 \mathrm{pp} .+9$ appendices.
Zoback, M. L.. and Zoback, M. D., 1980, State of stress in the continental U.S.: J.G.R., v. 85, p. 6113-6156.

Zoback, M. D. 1986, In-situ stress measurements in the Kent Cliff research well: prepared for the Empire State Electric Energy Corp., N.Y.. N.Y.

APPENDIX A

CONTEMPORARY TECTONICS OF THE LANCASTER, PRNNSYLVANTA SEISMIC ZONE

David ?. Stockar
Department of Geosciences
The Pennsylvania State University

TABLE OF CONTENTS

Page
LIST OF FIGURES A5
LIST OF TABLES A9
ACKNOWLEDGMENTS All
ABSTRACT A13
INTRODUCTION A15
CHAPTER
I. GEOLOGY A17
A. General Appalachian Tectonics A17
B. General Geology of the Lancaster Area A18
C. Newark-Gettysburg Triassic Basin A19
D. The Piedmont A20
II. STRUCTURE A25
A. Major Structures of Lancaster County A25
B. Diabase Intrusives A26

1. Triassic-Jurassic Diabase Sheets A26
2. Triassic-Jurassic Diabase Dikes A27
3. The Ages of the Mesozoic Diabase A29
4. The Orientation of the Mesozoic Dikes A31
5. The Rockhill (Safe Harbor) Dike A34
6. Theories of Emplacement for the Mesozoic Dikes A34
7. Precambrian Metadiabase of
Southeastern Pennsylvania A30
C. Faults A.37
8. Introduction to Faulting in the Lancaster County Region 437
9. The Martic Line 438
10. Paleozoic E-W Trending Thrust Faults A 39
11. Triassic Border Faults A4 1
12. Post-Triassic Cross Faults A4 1
13. Coastal Plain Faulting A43
D. Joints A4:
E. The Relative Ages of the Structural Features of Lancaster County A47
CHAPTER Pare
III. GEOMORPHOLOGY A49
A. The Topography and the Drainage of Lancaster County A49
IV. GRAVITY AND MAGNETICS A51
A. Gravity Survey over Lancaster County A51
B. Magnetic Survey over Lancaster County A51
C. Basement Structures A55
v. LINEAMENTS A59
A. Lineaments in the Northeastern United States A59
B. Linmaments in the Lancaster County Region A60
VI. HISTORICAL SEIEMICITY. A69
A. Seismicity in the Northeastern United States A69
B. Seismicity in the Lancaster County Region A69
VII. LANCASTER EARTHQUAKE - APRIL, 1984 A81
VIII. LOCATION OF THE APRIL, 1984 FORESHOCK AND MAINSHOCK A87
IX. DEPTH OF THE APRIL, 1984 MAINSHOCK THROUGH CEPSTRAL ANALYSIS A93
A. Theory of Depth Determination through Cepstral Analysis A93
B. Application and Results
A97
A97
C. Discussion A114
X. SUMMARY AND CONCLUSIONS A115
BIBLIOGRAPHY A119
APPENDIX 1 - PIEDMONT STRATIGRAPHY NEAR THE SUSQUEHANNA RIVER. A137
APPENDIX 2 - SEISMOGRAMS FOR THE APKIL 23, 1984 EARTHQUAKE A143
APPENDIX 3 - POWER SPECTRA FOR THE APRIL 23, 1984 EARTHQUAKE A155
APPENDIX 4 - CEPSTRA FOR THE APRIL 23, 1984EARTHQUAKEA177
APPENDIX 5 - THE RELATIVE LOCATION ALGORITHM THFORY A199

LIST OF FIGURES

Eigure Page
1 Geologic Index Map of the Appalachian Piedmont along the Susquehanna River of Pennsylvania and Maryland A22
Structural Map of the Northern Lancaster CountyAreai. 23
3 Map of the Faults and the Seismicity in the Lancaster Region A 24
4 Map of the Mesozoic and Precambrian Diabase of Southeastern Pennsylvania A28
5 Map of the Late Triassic and Early Jurassic Diabaso Dikes of the Eastern United States A32
6 Rose Diagrams for the Strikes of Rossville, York Haven, and Quarryville-Type Dikes A33
7 Mesozoic Diabase Dikes in Eastern North America, West Africa, and Northeastern South America A35
8 Top of the Basement Map of Recent Coastal Plain Faulting in Georges County, Maryland. A4 4
9 Strike of Major Joint Sets in the Inner Piedmont of Pennsylvania A46
10 Orientation of Stream Channel Segments in Central Lancaster County, Pennsylvania A50
11 Simple Bouguer Gravity Map of Southeastern Pennsylvania and Northern Maryland A52
12 Composite Aeromagnetic Map of the Conestoga Lancaster, and Lititz Quadrangles A54
13 Simple Bouguer Anomaly Map of Pennsylvania Showing Large Crustal Lineaments A56
14 Topographic Lineaments of the Atlantic Border Region A62
15 Major Fracture Orientations of the Northeastern United States A63
Eigure Page
16 ERTS-1 Satellite Lineaments of Pennsylvania A64
17 LANDSAT-1 Intermediate Length Lineament Orientations Summarized in Rose Diagrams for Cells on a Grid across Pennsylvania A65
18 Topographic Linears of the Lancaster County Area A66
19 Map Showing Major LANDSAT-4 Lineaments of the Lancaster County Area A67
20 Map of the Seismicity of Lancaster County in Relation to the Fruitville Fault Zone A75
21 Intensity Map for the July 16, 1978 and the October 6, 1978 Earthquakes in Lancaster County, Pennsylvania A 76
22 Maximum Intensity Locations and Relative Locations for the July 16, 1978 and the October 6, 1978 Earthquakes A77
23 Maximum Intensity Locations Obtained by Armbruster and Seeber (1985) for Four Large Events during the 1800's A78
24 Modified Seismicity Map for the Lancaster Area A79
25 Areas of Maximum Intensity for the Apri2 23, 1984Mainshock and the April 19, 1984 ForeshockA83
26 Map of the Location of the Aftershocks for the April 23, 1984 Earthquake A84
27
Fault Plane Solution Based on the First MotionData from the April 23, 1984 Earthquake and itsAftershocksA. 85
28 Map of the Absolute and Relative Locations for theApril 23, 1984 Mainshock and the April 19, 1984Foreshock, Using Three Different Velocity ModelsA90
29
Location of the N.E. U.S. Seismic Network StationsUsed in the Cepstral Analysis of the April 231984 EarthquakeA94
30 Test Signal TEST and Repeated Test Signal TEST-R 1100
31 Cepstra of Test Signal TEST and Repected TestSignal TEST-R.A101
32 The Sum and the Product of Cepstra for the "Best Six" Stations A 102
33 The Sum and the Product of the Cepstra for the Best Twelve" Stations Al03
34 The Sum and the Product of the Cepetra for ALL ofthe Stations Used in the Anaiysis of the April 23,1984 Enrthquake
A104
35 A Plot of the Incidence of the Direct P and the $F P$ Rays Superimposed on the Upper Hemisphere Fault Plane Solution of the April 23, 1984 Earthquake... Alll

LIST OF TABLES

Table Page
1 Density, Magnetization, and Stratigraphy of the Major Rock Units in Eastern Pennsylvania A53
2 Chronological Listing of Earthquakes which have Affected the Lancaster Region of Southeastein Pennsylvania A 71
3 List of Pennsylvania Earthquakes A72
4 Historical Seismicity in Pennsylvania A73
5 Historical Seismicity in the Lancaster Region of Fennsylvania A74
6 Absolute and Relative Locations for the April 23, 1984 Mainshock and the April 19, 1984 Foreshock A91
7 Cocrdinates of the Seismic Stations Used in the Cepstral Analysis A95
8 Azimuths between the Fault Plane of the April 23, 1984 Earthquake and the Stations Used in the Cepstral Analysis A110
9 Relative $P, p P, s P$ Amplitude Responses and Lag Fredicted for the 13 Stations of Table 7 Al12

ACKNOWLEDGMENTS

I would like to give special thanks to Dr. Shelton S. Alexander, for his guidance; Dr . Roy J. Greenfield, Dr. Peter M. Laving, Dr. David P. Gold, Dr. Benjamin E Howell, and Dr. Charles K. Scharnberger, for their expertise; Roger Felch, Kristin Vogijord, John Barry and Lily Tang, for their insights; Tess Altland for her advise; and Dr. Ernst Zurileuh for his interest and support.

This research was supported by the U.S. Nuclear Regulatory Commission under contracts \# NRC-04-85-111-01 \# NRC-04-83-021 and \# NRC-04-85-113-04

ABSTRACT

This study is focused on the contemporary tectonics of the Lancaster Seismic Zone in southeastern Pennsylvania. The neotectonic deformation associated with recent seismicity in this zone is inferred by consideration of source mechanisms of recent earthquakes and the inferred principal stresses, and geological and geophysical observations in the Lancaster area.

The hypocenter of the largest recent event in the Lancaster, Pennsylvania region, the magnitude 4.2, MM VI earthquake that ocourrec on Apxi1 23, 1984, was at a depth of 4.7 km , determined through cepstral analysis, and at a fatitude and longitude of $39.94^{\circ} \mathrm{N}, 76.325^{\circ} \mathrm{W}$ near Martioville, about 10 km . south of Lancaster. The event was preceded by a magnitude 3.0 , MM IV foreshock located near MoCalls Ferry, about 8 km directly south of the mainshock. It was followed by several aftershocks oriented in a north-south trend over a 2 km zone. The focal mechanism of the mainshock also indicates a NS-striking fault plane This strike is perpendicular to the dominant EW structural grain of the Appalachians within the Pennsylvania salient and of the Martic Line. Upon closer observation it is revealed that the youngest structures in the Lancaster region are all north-south trending and not EW-striking like the dominant Paleozoic features. Based on cross-outting relationships, the youngest rocks present are the NS-striking Triassic-Jurassic diabase dikes, and the youngest faults present are the NS-trending cross-faults which offset all other structural features and lithologies of the area. The April, 1984 event is within the dominant zone of these faults. The historical seismicity and relocated, instrumentally recorded, events also define a NS-trending zone, the Lancaster Seismic zone. It is approximately $50-60 \mathrm{~km}$ in length and $10-20 \mathrm{~km}$ in width. The seismio zone is parallel to the fault zone. The drainage pattern of the major streams is also predominantiy NS-trending near Lancaster. Potential field (aeromagnetic and gravity) anomalies and prominent remote sensing lineaments provide further evidence of the presence of the cross-structural zone inferred from the geology and seismicity, inciuding evidence for large scale basement features

INTRODUCTION

Lancaster County is the most seismically active area in Pennsylvania, with several magnitude 3.0 or greater earthquakes in the past 25 years. The goal of this investigation is to understand the present tectonic conditions and associated neotectonic features of this region, and, thus, shed light upon the cause of this seismicity

On April 23, 1984 Lancaster County, Pennsylvania experienced one of the largest earthquakes in its recent history. It registered a magnitude of 4.2 and a maximum intensity of MM V^{\top}. This mainshock was preceded by a magnitude $3.0, \mathbb{M}$ IV foreshook, on April 19 of the same year, and followed by several aftershocks which lasted until September, 1984. Immediately after the mainshock, the Pennsylvania State University and the Lamont-Doherty observatory set up a temporary network of seismometers to record the aftershocks, and for six days recorded 10 events, the largest being a magnitude 2.1 (Armbruster and Seeber, 1985). These aftershocks lined up in a $N-S$ trending zone approximately 2 km long near Marticville, about 10 km south of the city of Lancaster. Armbruster and Seeber (1985) obtained a fault plane solution based on the first arrivals from the mainshock and the aftershocks, which appeared to have the same epicenter. The fault plane solution suggested a $N 100$ Epreferred fault plane with a dip of about 60 degrees toward the east. The motion on the fault plane appeared to be right-lateral reverse, with the maximum axis of compression in the ENE direction, analogous to the maximum principal stress orientation predicted by Zoback and Zoback (1980) and Zoback (1986) for this region. This information prompted an investigation of the region, and of the possible source of the April 23, 1984 earthquake. The findings of this investigation are summed up in this paper. They were obtained by a thorough search of some 200 publications dealing with the geology, structure, geomorphology, gravity, magnetics, remote sensing and the seismicity of the Lancaster region, and of S.E. Pennsylvania, in general. Furthermore, the April 23, 1984 event, and the April 19, 1984 foreshock were located independently and relative to each other through a HYFOINVERSE (Klein, 1978; Lehr, 1980) absolute location algorithm and through a relative location algorithm
(Baumgardt, D.R., 1977 \& 1985). These locations were compared to the maximum intensity locations for the two events obtained by Scharnberger and Howell (1985), and were found to match within the 95% confidence error ellipses for the location algorithms

[^5]a N-S striking zone of seismic activity, approximately $50-60 \mathrm{~km}$ in length and $10-20 \mathrm{~km}$ in width, through the center of Lancaster County. This zone, the Lancaster Seismic Zone, appears to be associated with $N-S$ trending dikes and faults in the area, in particular the Fruitville Fault Zone (Figure 1). Furthermore, cross-cutting relationships, along with radiometric dating of the dikes, indicate that the $N-S$ striking features are the youngest.

Thus, these youngest, $N-S$ faults may be presently reactivated, in a reverse right-lateral sense, by the ENE maximum oompressional stress predicted by Zoback and Zoback (1980, 1986), for this region. This would create earthquakes such as the April 23, 1984 event. If the ENE maximum compressional stress regime is ubiguitous for the entire region, such $N-S$ trending faults may act as seismic source zones in other regions of the northeastern U.S.

Finally, in order to get a better idea of the souroe depth for the April 23, 1984 event, a cepstral analysis was conducted on data from this event received at 13 stations in New York State. The cepstral analysis predicted a 4.7 km depth for the mainshock which was in general agreement with the 4.4-4.7 depth for the aftershocks obtained through local monitoring by the Pennsylvania State University and the Lamont-Doherty Observatory in the epicentral area (Armbruster and Seeber, 1985).

GEOLOGY

Gencral Appslachian Tectondes

The tectonic provinces of the Eastern United States are outlined and described by King (1951) as three separate regions. They are the central stable region, the Appalachian orogenio system, and the Coastal Plain. King's outline of the three regions is as follows:

```
    I.) Central stable region
    a.) Laurentian shield (part of Precambrian
                Canadian shield)
    b.) Interior lowlands (bordering platforms
                covered by younger rocks)
II.) Appalachian orogenic system or tectonic province
    a.) Fold belt (roughly the Valley and Ridge
                physiographic province)
    b.) Blue Ridge belt (Blue Ridge physiographic
            province)
    c.) Piedmont belt (Piedmont physigraphic
        province and part of the Bluc Ridge
        physiographic province)
    d.) New England - Maritime belt
III.) Coastal Plain (post-orogenic deposits
    overlapping the Appalachian system)
                                    from (Hadley & Devine, 1974)
```

The central Appalachians, in which Lancaster County, Pennsylvania is located, were affected by three Paleozolo orogenies. The first was the Taconic orogeny which occurred in the middle to late ordovician ($450-470 \mathrm{~m} y$.), folloked by the Acadian orogeny of the early and middie Devonian (360-400 m.y.) and the Alleghenian orogeny of the Pennsylvanian and/or Permian (230-280 m.y.). The South Mt. anticlinorium and the lower Paleozoic rocks of the Great Valley and the Conestoga Valley (region surrounding Lancaster in Figure 1) were mainly diformed by the Alleghenian orogeny. This event was composed of several stages of deformation. The first was the thrust along a decollement of Precambrian rocks over lower Paleozoio ones in the Martic line region. This contact (Figure 1) strikes east-west through southern Lancaster County. This was followed by the folding of the decollement, and finally flat thrusting of the decollement terrane in the western margins of the Blue Ridge (Dralie, 1980)

This type of deformation may be quite sinillar to that of the Southern Appalachians. Gwinn (1964) claims that "the tectonic style of the Central Appalachians is entirely analogous to that of the Southern Appalachians". According
to this popular idea, the Valley and Ridge and the Appalachian Plateau are folded, NW moving, thin, thrust sheets, allochtonous for hundreds of kilometers on a sole thrust (decollement zone), which occurs largely within incompetent strata of middle Cambrian, upper Ordovician, upper Silurian, and middle and upper Devonian age

General Geology of the Lancaster Area

The Lancaster area is within the major salient of the Appalachians. The tectonic grain in the region has a east-west strike (Figure 1) (Wise and Kauffman, 1960). Crystalline carbonate rocks underlie nearly half of the county (Meisler and Becher, 1971), and clastic sedimentary rocks and schists dominate south of the Martio line (Bria, 1978) Quartzites, carbonates, and pelitic sediments comprise the general stratigraphy from the basement upward within the lower Paleozoic rocks of the Conestoga Valley However, in the middle Ordovician there is a gradual change from dominantly carbonate to dominantly clastic sediments (Wise and Kauffman, 1960). These Paleozoic rocks are strongly folded by at least two generations of folding. Further to the north, near the border of Lebanon County are the clastic sediments of the Newark - Gettysburg Triassic basin. These are intruded by large diabase sheets and dikes. These diabase dikes, which are predominantly N - NE striking (Figure 4), intrude all surrounding rocks of the region and are thus the youngest (Bria, 1978)

Foth (1977) offered a more detailed summation of the local geology. He mentioned that Lancaster County lies in the Piedmont physiographic province (Figure 1), which he divided into three sections, as follows:

Triassic lowlands section - This region occupies the northern tenth of Lancaster County. It is underlain by the shales and sandstones of the Gettysburg-Hammer Creek formation and the New oxford-Stockton formation, as well as diabase sheets and dikes.

Conestoga Valdey section - This section occupies the central half of the county. It is chiefly composed of carbonate rocks and shales, with minor amounts of quartzite, phyllite, and schist, as mentioned above.

Ordovician rocks (youngest to oldest)

- Cocalico formation: a fissile shale
- Conestoga formation : crystalline limestone containing clayey, graphitic, and micaceous laminae, and a basal carbonate-rock conglomerate
- Beekmantown Group: 1imestones, interbedded limestones and dolomites, and dolomites
Cambrian rocks (youngest to oldest)
- Conococheaque Group
- Elbrook-Cooks Corner formation : interbedded limestones and dolomites
- Ledger formation : dolomite
- Kinzers formation : shales with beds of limestone and dolomite
- Vintage formation : dolomite
- Antietam, Harpers \& Chickies formations : Quartzite, phyllite, and schist

Piedmont Uplands section - This region is the southern part of the county. It is underlain by Precambrian and lower Paleozoic metamorphic rocks of the Peters Creek Schist, ard the Wissahickon formation. These are schist and quartzite, and schist, respectively

Newark - Gettysburg Triassic Basin

The Triassic sedimentary rocks of the Newark Group outcrop in elongated basins along the Atlantic coast from Nova Scotia to South Carolina. Two of the largest of these basins are in Connectiout along the Connecticut River, and in Pennsylvania and New Jersey. They are thought to share a common structural history, the Palisades disturbance (King, 1961; Bria, 1978). The Newark-Gettysburg Basin of Pennsylvania (Figure 1) is approximately 225 km . Long and $6-50 \mathrm{~km}$ wide. It trends in the ENE direction across the SE corner of the state. It is the largest Triassic basin in the United States. It has a possible aggregate thickness of more than 6 km (Stose, 1932; Beck, 1965; Bria, 1978). The sediments of the Newark Group were deposited by streams and rivers from nearby uplands. Variation in topography and climate resulted in mostly poorly sorted lenticular beds. The fluviatile formations are red in color and the lacustrine formations are grey shales. These furmations include conglomerates, shales, sandstones, siltstones and argiliite. Furthermore, they contain Triassio-Jurassic silis, dikes, and irregular cross-cutting bodies whose thickness varies from less than 1 m to 1000 m . Igneous activity occurred in the late stage of deposition with some dikes being intruded atter deposition ceased (Stose, 1932; Johriston, 1966; Shaub, 1975; Bria, 1978). The sedimentary rocks themselves are upper Triassic in age, based on faunal data (Willard ec al, 1959).

The Newark-Gettysburg Basin follows the regional grain of the Appalation structures $(300-500 \mathrm{NE})$, although in the Lancaster County area it strikes due east-west. The dip of the Triassic sediments is on average $10^{0}-20^{\circ} \mathrm{NW}$., but locally it may differ widely due to warping and faulting (Van Houten, 1969). A set of faults in the oasin's NW border indicate as much as $5,500 \mathrm{~m}$ of stratigraphic displacement. This is possibly due to gradual subsidence of the basin during sedimentation, culminating in block faulting immediately after the diabase intrusion (Stose 1949; Bria, 1978)

However, it is more likely that this stratigraphical
displacement along the northern border fault was caused by tensional crustal thinning and graben formation (Beck, 1972; Bott, 1976). This conclusion is reinforced by evidence that much stratigraphical displacement also occurred along flanks of the SE border of the basin. This probably occurred along a fault zone, possibly a set of faults, not clearly expressed in the exposed rock terrain (Van Houten, 1969). A 864 ft . borehole (core) in Thomasville, west of York, Pennsylvania, was taken on the SE border of the basin. It drilled through an apparent growth fault which is covered by the overlapping New oxford formation. Cloos and Fettijohn (1973) concluded that this was evidence that the SE border of the basin was not a simple onlap, but probably a major faulting border, as appears to be the case along the northern border. Thus, they supported the full graben model for the origin of the Newark-Gettysburg Basin.

In fact, the origin of the Triassic basins has been very controversial up to the present. The three dominant theories are:

```
1. Full graben (Sanders, 1963)
2. Half graben faulted on the north side (Stose \& Jonas, 1939)
```

3. Crustal downwarp with no major fault boundaries (Faill, 1973)
Since this is a very extensive debate that is not too pertinent to the Lancaster Seismic Zone, we shall not dwell on it any longer. Some useful references on the subject arc: (Stose \& Jonas, 1939; Stose, 1949; Willard et al, 1959 ; Sanders, 1960,1963; Beck, 1965; DeBoer, 1967;
Van Houten, 1969; Phillips \& Forsyth, 1972; Faill, 1973; Cloos \& Pettijohn, 1973; Shaub, 1975; Bott, 1976; Bria, 1978; Olsen, 1980; Daniels et al, 1983; Klitgordet al, 1983). However, one thing most of these authors do agree on is that the Triassic basins of the eastern United States, like the Newark-Gettysburg Basin, formed during the onset of the rifting of the present day Atlantio Ocean and are somehow associated with it.

The Piedmont

The Piedmont physiographic province in the Lancaster area is composed of metamorphic rocks in the south and sedimentary rocks, mostly carbonates, in the north. The exact stratigraphy of the region is given in Appendix 1 , according to Wise and Kaufiman (1960).

The bulk of the recrystallization of the Piedmont appears to be around $300-350 \mathrm{~m} . \mathrm{y}$. ago, in the early to middle Paleozoic, based on ladiometric dating. The presence of 'alpine' peridotites and of serpentinites in the Inner Piedmont suggests that the region is part of the axial zone
of the Appalachian mountains. Such serpentine belts follow the Appalachian trend along the entire length of the mountain chain. The western limit of these serpentine belts crosses the Susquehanna River in SE Pennsylvanda at about the Maryland state line (Wise \& Kauffman, 1960).

There is a decreasing metamorphic intensity across the Piedmont from $S E$ to NW. The gradient of metamorphism in the Piedmont of this region is as follows (from greatest degree of metamorphism to the least degree):

1. A zone of extensive granitization and/or intrusion, with extensive basement flowage and mantle gniess domes in the Baltimore area
2. A schist belt with serpentine bodies in it
3. A zone with tightly folded Cambro-Ordovician carbonates with steeply dipping axial planes in the Lancaster Valley, accompanied by some basement uplift
4. A zone of NW recumbent folds and flowage, accompanied by some basement uplift
5. The Triassic basin, graben-like structure (not part of Piedmont)
6. The Valley and Ridge Province of folded Appalachians (not part of Piedmont)
from (Wise \& Kauffman, 1960)

FIGURE 1 Geologic index map of the Appalachian Piedaont along the Susquehanna River of Pennaylvenia and Maryland. (modified efter Wiee, 1967)

STRUCTURE

Maser structures of Lancaster County
The geology of the Lancaster area can be divided into several structural provinces. Starting at the nojthern part of the overall region (Figure 1), we encounter the Great Valley. This geological province is one large syncilinorium with its southern 1imb overturned (Grey et al, 1958). South of the Great Valley is the Newark-Gettysburg Triassio Basin. This trough appears to be confined by normal border fauls on the north and south end. The Triassic basin. which is narrow and highly faulted in the Lancaster County region, foliows the east-west trending structural grain of the region. It is dominated by several large diabase sheet intrusives within its red beds. South of the Triassic basin is the Lancaster or Conestoga valley. This carbonate valley is dominated by recumbent folding and thrusting in the north. ald tight isocinal folding in the south. As in the Triassio basin, the youngest faulting in the region is north-south striking and the youngest rocks are the north-south striking Triassic-Jurassio diabase dikes. South of this carbonate valley is the Martio Line contact where the Wissahickon schist of the Glenarm series overlaps the Conestogs limestone of the Lancaster Valley. This Martic Line contact app is to be an early paleozoio zone of imbricate thrustimi which has later been folded (Jonas \& Stose, 1930, Cloos \& Heitanen, 1941: Meisler \& Becher, 1971: Bria, 1978).

More locally the Lancaster Valley region surrounding the eity of Lancaster (Figure 2), can be subdivided into three regional, struciural domains (Meisler \& Becher, 1971). The northern regional comain is characterized by nappe structure consisting of recumbent folds, thrust faults, and gentle south-dipping axial plane cleavage. The central regional domain has variable fold-geometry and intricate faulting in which the north-south striking faults are the youngest. Finaliy, the southern regiousi domain is dominated by upright, near-isoolinal folds and steeply dipping axial plane cleavage.

Based on their field observations, Meisier and Becher (1971) postulate the structural history of the area. They suggest that multiple events occurred beginning early in the Paleozoic and continuing uy to at least the Triassic and Jurassic. Thus, epeirogenic movements caused pre-Conestoga and prc-Cocs 100 unconformaties. These are the earliest structural events (mid-Cambrian to mid-Ordovician recorded in the carbonate rocks of the ancaster palley. This was followed by the deposition of the Conestoga and Cocalico formations in the early Palenzoic (Meisler and Becher, 1971)

Abstract

The first period of deformation resulted in the development of the nappe structures and the axial plane cleavage, which dominate the northern zone of recumbent folding. This was accompenied by thrust faulting, minor thrusting and shearing on the overturned limb of the Manheim Anticiine (Figure 2). Furthermore, in the inatial stages of deformation, there occurred some strike-siip faulting and local warping of the axial plane cleavage (Meisler and Becher, 1971).

The second major deformation, which may have overlapped the first, produced the following results. In the southern part of the Lancaster Valiey it produced isuclinal or near isociinal folds, steeply dipping axial plane cleavage, and reverse faults with fairly constant strike and steep dip across the Maryland and Fennsyivania Piedmont. This deformation also formed more open folds such as the Eden Synciine and Chestnut Hill Anticiine in the south (Figure 5). In the reoumbent folding region it seemed to produce open folds in the oleavage and the bedding, or broad arches such as the Brunnerville Arch (Figure 2). The variability of the fold types, ranging from oroad, open folds to tight isociinal ones, is probaily due to the different lithologies, and to the locally different intensity of basement deformation. Finaliy, "faults as date as the Triassic age are probably present in the carbonate rock" (Mesaler \& Eecher, 1971).

Riabase intrusions

Triassic- Jurassic Diabase sheeta

Within the Newark-Gettysburg basin of southeastern Pennsylvania are various diabase intrusions varying from dikes, flows, and irregular cross-cutting bodies to the dominant sheet (sili) form with its contact metamorphism of dark hornfels (Beck,1965). These Triassic sheets occur in three predominant bodies (Figure 4), the Gettysburg, the York Haven, and the Birdsboro Diabase. They have oval and elliptical outcrop patterns, and are commoniy discordant with the surrounding sedimentary rocks. Therefore, they rarely represent true sills (Hotz, 1952). The few sil2s that do exist appear as west-dipping ring structures in the southeastern part of the basin and change into cross-cutting bodies in the north and northwest parts of the basin. They extend to the northwest edge of the basin where they are terminated by a boundary fault (Kauffman, 1967; Smath et al, 1975). At depth they appear saucer shaped with a thickness of 60-600 m. (Smith et al. 1975 ; Bria, 1978). This curved, basin shaped form may be due to
near horizontal fractures in the Triassic sediment (Hotz, 1952; Bria, 1978).

The diabase is believed to have originated from deep reservoirs below the Triassic sedimentary rocks, ascending in vents such as stocks, dikes, and cross-cutting features (Smith, 1931; Bris, 1878). The main feeder fissures are thought to be concentrated near the northwest edge of the basin, where it is the deepest, and where the cross-cutting features and the faulting is more abundant (Kauffman. 1967).

Triassis- 2urassis Riabase Rikes

Dikes in the Lancaster County region Are marked by long, low-lying, often forested ridges known as "irorstone ridges", and the presence of scattered diabase boulders known as the "float". In fields which have been cleared, they appear as soil coloration changes. Furthermore, there are steeper slopes in the vicinity of the dikes due to the differential weathering between the diabase and the surrounding carbonates. Some streams are also diverted by the dikes in the area (Lanning, 1973; Bria, 1978). differentiation and minor alteration to chiorite and sericite (Smith et 02,1975), but on the whole the Pennsylvania diabases are essentially unaltered (Bria, 1978).

These dikes and associated stocks have a large content of their original magnetite, which is a component of deep seated magma. This suggests that the magma rose up direct channels produced by faults, which extended at least some $6-7 \mathrm{~km}$, to the bottom of the thick sedimentary acoumulation in the region (Van Houten, 1969). The dikes that filled these fissures cut across the Triassic and Paleozoie rocks. Thus, they are of late Triassic age or younger (Jonas and Stose, 1930). In fact, the dikes are the only form that the diabse intrusives take in the older rocks that border the Triassic basin in Fennsylvania (Bria, 1978)

The dikes occupy steeply dipping fractures with a predominantiy north to northeast strike and extend over long distances (Van Houten, 1968; Bria, 1978). "Most of the outlying dikes intrude the metamorphic and plutonic rocks of the Piedmont province, although a few extend northward into the Paleozoic rocks of the Valley and Ridge province near Harrisburg, Pa. Southeastward many of the dikes extend to the edge of the Atlantic Coastal Plain, where they pass unconformably beneath Cretaceous and younger strata (King, 1961). Several dikes trend in the $\mathrm{N}-\mathrm{S}$ direction for

more than 150 km . and magnetic surveys indicate that many continue at depth (DeBoer, 1967). Van Houten (1969) sums it up as follows: "within the Triassic basin in SE Fennsyivania, long, siender steep-dipping. N to NE trending dikes are common throughout. These are discordant to enclosing rocks.....much straighter than the sinous basin trends, and commoniy extend beyond the basin border but are no ${ }^{*}$ offset by its faulted margin". Furthermore, some of the dikes appear as offshoots of massive diabase stocks and sheets within the basin (King. 1971).

Ages of the Mesozots Riabases

Most of the diabase silis and dikes in southeastern Pennsylvania appear to be late Triassic to early Jurassic in age $(180-200 \mathrm{~m}, \mathrm{y}$,$) (Van Houten, 1969). Although this$ general age for all the intrusions is well agreed upon, the exact sequence of emplacement for the various sheets and dikes, and thus their relative ages, is not.

A late Triassic date for the diabase sills in the Gettysburg Basin is supported by faunal evidence (Willard et al. 1959) and radiometric $K-A r$ dating (DeBoer, 1968): However, paleomagnetic evidence suggests that the "fossil magnetic direcions of the dikes coincide neither with the late Triassic nor the early Cretaceous paleomagnetic directions, which suggests a Jurassio age for the intrusions" (DeBoer, 1967). This opinion, that the N-S trending diabase dikes are the youngest rocks in the region is echoed by many authors. Lapham and Gray (1972) observe that the dikes intrude Precambrian, Paleozoio and Triassic rocks of SE Pennsylvania, and appear to be the jast phase of magmatic activity which was preceded by the flows and sheets. Likewise, Van Houten (1969) stated that the dikes commoniy extend beyond the (Triassic) basin borders but are not offset along its faulted margin. Thus, these dikes are younger than the silis and flows, their subsequent tilting, and the major faulting of the basin.". Because the dike trends and distribution appear to be structuraliy. independent of the sheets (sills), King (1961) concluded that the dikes were intruded after the sheets.

However, most of the above reasoning was based on the popular half-graben models for the origin of the Triassic basin. There was one obvious hint in the geology, which pointed toward a more complex age relationship between the dikes aid the sheets, than the simple sequence of sheet intrusion followed by dike intrusion. Although the dikes appear to transect all the igneous and sedimentary units of the Triassic basin and the sedimentary and metamorphio rocks of the Peidmont, there are very few chilled margins where the dikes are in contact with the sheets (Gray et al. 1960). Furthermore, Smith (1973) found an absence of crustal contamination in all the diabases. This suggested
that the magmt was not ponded in the crust for long periods of time, but rather that the sheets, dikes, and flows appeared synchronous. Thus, the prevailing theory, is that the diabase sheevs and dikes are the youngest rocks in $\$ E$ Pennsylvanis, but that they were intruded synchronousiy, in three consecutive phases, during the late Triassic and early Jurassic (Smith et al, 1975).

These are the three types of Triassic diabase in SE Pennsylvania based on chemical composition (Figure 4) (Smith et al., 1975):

Quarryvilde type - oldest

Yors Baven type

- occurs as an olivine tholeilte dike swarm
- intermediate in age
- quartz tholeiite sheets. dikes, and flows
Bosgyidate type
- youngest
- quartz tholeilte sheets and dikes

Within the same diabase type, there is a very uniform composition Based on calculated cooling rates, homogeneities in each magma type, and paleomagnetice, Smith et al (1975) concluded that there was a short period of intrusion for each diabase type.

Field evidence in the form of cross-outting relationships supports the above age classification. The Quarryvilie dike group (Figure 4) partially intrudes the Triassic basin. Therefore, it is younger than late Triassic age (Smith et al., 1975). It also contains a cleavage structure at, at least, half the locations (Lanning, 1972). This deformational structure is not present in the ayproximately 500 samples of Rossville and York Haven dikes, sheets, swarms, or flows (Smith et al., 1975). The Rossville type dike intrudes the Quarryville swartm. Based on float distribution, Lanning (1972) concluded that a Quarryville dike is out by a Rossville dike. Therefore, the Quarryvilie diabase type is older than the Rossvilie diabase type. Likewise, in the Gettysburg sheet near the town of Gettysburg (Figure 4), "the chilled contact of Rossvilie (type diabase) cutting across York fiaven diabase shows that the Rossvilie is younger then the York Haven by at least the few thousands of years required for the cooline of the York Haven magma as found from heat flow calculations" (Smith et al., 1975). Just south of Ge*tysburg, nesr Greenmount, a York Haven diabase sheet is out by a Rossville diabase dike with chilled contact Southwest of Birdsboro (Figure 4) a NE-trending dike of Rossville age also cuts a T-shaped York Haven type dike All the sheet intrusives of the Triassic basin are of York Haven age, except for the inner part of the Gettysburg sheet, which is of Rossville age (Figure 4) (Smith et al
1975), and the St. Peters - Birdsboro sheet (Figure 4), which approaches the age of the Rossvilie intrusives based on radiometric aging (Beck, 1965).

The age distribution above is also supported by paleomagnetic data for the Lancaster region. The Rossville and the York Haven type diabase differ in their respective magnetic domain structure. Paleomagnetic studies place Rossvilie type diabase at a $185 \mathrm{~m}, \mathrm{y}$, age which is approximately the late Triassic and early Jurassic boundary. The study reveals that it is the youngest recognized diabase in the area (Yolk, 1977)

Finale and Gulp (1962) used muscovite from a contact zone, chlorite schist to date the York Haven type sheets at $195 \mathrm{~m} . \mathrm{y}$. Thus, they are older than the Rossville type diabase

Orientation of the Mesozoic Dikes

The diabase dikes are distributed along the entire length of the Appalachian mountains. Locally the dikes have a common trend, but regionally it varies with latitude (Figure 5). In the 400 mile segment of the Appalachians from Alabama to North Carolina the dikes trend NW. In southern Virginia this trend changes to NNW, in Virginia to N, in Maryland and SE Pennsylvania to NNE, and continues NE through New England. In eastern Canada, northern Maine, and Nova Scotia the diabase dikes extend for large distances in the ENE direction (King, 1961,1971: DeBoer, 1967)

The dikes are nearly vertical, and have not intruded into rocks of Cretaceous age or younger. They occur in relatively narrow zones, and their trend is everywhere discordant to older structures. In fact, they are often cutting perpendicularly across the Appalachian trend (King, 1961; DeBoer,1967; Bra, 1971).

Likewise, "in Pennsylvania and adjacent states, the dikes are not deflected by the marked sinuosities in the trend of the Newark rocks and their associated faults"(King, 1961), but trend across them (Figure 4) They have thicknesses from about 10 m to 80 m in the Triassic basin, and often extend into the surrounding Paleozoic rocks (Socolow, 1966).

In general, the dikes in the Lancaster area strike N NNE (Figure 4) (Socolow, 1966; Smith, 1973; Olsen, 1980). Thers are several of these diabase dike swarms in Lancaster County and eastern York County. They are of all three ages (types), thus proving that this N - S zone of crustal weakness was reactivated during all three of the intrusive events (Figure 4). The strike of the three separate diabase types can be seen in Rose diagrams of Figure 6 . (Smith, 1973) with the average values as follows:

Quarryville dikes strike $=\mathrm{N} 270 \mathrm{E}$

EIGURE. 6 Roae diagrams for the strikes of Rosaville, York Haven, and Querryvilie-Type Dikes. The seale 10 0.1 en per 1.6 ks of dike for Rosaville and York Heven, and 0.1 en per 0.48 km of dike for the Querryville-type. (after Salth, 2972)

York Haven dikes strike $=\mathrm{N} 50 \mathrm{E}, \mathrm{N} 32^{\circ} \mathrm{E}$

Rossville dikes strike (bimodal
Thus, all three types of dikes have a NNE strike with the York Haven fnas having s binodal distribution. This is misleading because one of the main York Haven dikes, the Rockhill (Safe Harbor) dike, with its 65 km length of exposure (into Maryland), strikes approximately N 200 E, which filis the minimur between the two maxima, ithe Rose diagram. It is this dike which is worth oonsideriug in more detail because of its proximity to the area of interest, within Lancaster County.

The Rockhild (Safe Harbori) Dike

As mentioned above, this diabase dike is of the York Haven type. It is 65 km long and changes strike from NN. in Maryiand and York County io N in the area of interest (south of the city of Lancaster) to NNW in northwester. Lancaster County (Figure 4) (Smith et al., 1975; Grey et al. 1980). The overall variation in its strike is from N 140 W to $\mathrm{N} .130^{\circ} \mathrm{E}$ and in width from 2 - 12 m (Bria, 1978).

In the area of interest (Tigure 4), near the April 23, 1984 earthquake, the Rockhill dike is in a wooded area of ironstone with a maximum relief of 42 m (Lanning, 1973; Bria, 1978). In outorop, it dips 65-80 degrees to the west. A magnetic ground survey by Bria (2978), using ten traverses perpendicular to the structure, suggests a 10 m wide, nearly vertical dike in this region. The dike diverts the Conestoga Creek, which runs N - S, parallel along it until it enters the Susquehanna River (Bria, 1978; Grey et a1. 1980).

Theories on the Emplacement of the Mesozois Dikes

Many theories abound on the intrusion of the diabase dikes in the late Triassic and early jurassic. Most of these theories associate the dike intrusion with the opening of the present Atlantic Ocean. However, much of the agreement ends there.

One popular theory is that well after the initiation of rifting and basin formation along the proto-Atiantio margin, a set of basic dikes was injected radialiy, with its center located off of the coast of the S. \mathbf{E}. United States in the vicinity of the Bahama platform and the Blake plateau (Figure ?). This is in agreement with the radial distribution of these diabase dikes along eastern North America, northwestern Africa, and the coast of northern South Anerica (Figure 7) (May, 1970, 1971; King, 1971 ; Klitgard, et al., 1983; Armbruster and Seeber, 1985)

There are several other theories which are also based on diabase intrusion due to the extensional stress regime

EIGURE_2 Musozoic diabase dikes in eascern North America, weat Africa, and northeastern South Aaerice, with the continente restored to thedr redetive peaition in the Triaasie. (after May, 1970)
associated with rifting, (King, 1961; Siedner and Miller, 1968; Van Houten, 1968; Dietz and Holden, 1970; Smith and Hallam, 1870 ; Rogers, 1970 ; Lapham and Gray, 1872; Bria, 1978). A12 these are basically a variation on the first idea

An aternative theory is proposed by DeBoer, (1967). He believes that the dikes may have been intruded in a regime dominated by shearing stresses, rather than an extensional regime. The pure shear system would be associated with sinistral rotation along NE trending fault zones. The idea is backed by paleomagnetic rotations in Newfoundland and New Brunswick (Block, 1964)

Finally, in a more local srudy, Volk (1977) propozed d reconstruction of the tectonic history and diabase intrusion of S.E. Pennsylvania, through paleomagnetic data in association with the geochemical and relative ages obtained by Smith, et al., (1975). Her reconstruction is as follows:

1. Deposition of sediments, probabiy in a crustal downwarp
2. York Haven type diabase dikes and sheets intruded while Triassic sediments remained relatively undeformed
3. Approximately a 10 degrees NW tilting of the Triassic basin and possibly of the surrounding area by rotation on small fault blocks
4. Rossvilie type diabase intruded in dikes and sheets
5. Folding along NW trending axis and continued NW tilt of blocks
The folds in the last phase are temporaliy and spatialiy related to the N to $N E$ trending dikes, suggestive of a $N E$ to $S W$ axis of principle compression which persisted durine the rifting of the North American and European plates. The fault block rotation model (step 3, above) can explain the nonuniform rotations observed within the basin that neither the full, the half graben, nor the downwarp models for the Triassic basin formation can explain. The NW tensional stress, during dike intrusion and early Atiantic rifting, is in agreoment with that found by Dietz and Holden (1970) in their reconstruction of the continents during the iate Triassic, the period of the initis? breakup of the pangean supercontinent.

Erecambrian Metadiobase of S.E. Rennsylvanis

Precambrian metadiabase occurs in the form of batholiths, lenees, and especially dikes (Bascom and Stose, 1938). These metadiabase dikes are dark gray, fine grained intrusives Locally, in S.E. Pennsyivania, their minerology is altered, and they appear greenish in color. They are located in the Precambrion granitic and hornblende gniesses
of the Reading Prong, and within a small exposure north of the town of Lancaster, just north of the thin neck of the Newark-Gettysburg Triassic basin (Figure 4). Here, they strike primarily in the N and NNE directions. They also appear in the Precambrian gniesses within an exposure just north of Downington, Pi. (Figure 4). Here in Chester County they have a more NE to LNE trend (Berg, et al., 1980). underile the Paleozoic and Triassic sedimentary rocki of Lancaster County and vicinity. They appear to cut all of the Frecambrian rocks. Thus, they are probably associated with a period of diabase intrusion in the iate Frecambrian (Ereg, et al., 1980).

The N to NE strike of the Precambrian metadiabase dikes of the Lancaster area is the same as that of the Triassio-jurassic diabase dikes of the same region (Figure 4). This paraliel trend suggests a possible reactivation of a preexisting structursh zone of weakness within the basement and the cover rock. The Triassic-Jurassic diabase could have utilized these weakness planes, and could have been confined to them (5 m ith, et al.. 1875).
Precambrian gniesses throughout the Atlantic belt. They form important parts of the Precambrian complex of the Adirondacks. They, also, appear in the Highiand of New Jersey where they are described as Losee gniess (diorite) and Pchuck gniess (gabbro) (Bascom and Stose, 1938).

Eaults

Introduction to Ealdingg in the Lancaster County Region

Most of the known faults in the Appalachian area are believed to extend to relatively shallow depths, probably less than 7 to 8 km (Hadies and Devine, 1974). Therefore, they are not projected into the basement (Hadiey and Devine, 1374). However, these "presently inactive faults, associated with past tectonic ocourrences, may indicate an inherent weakness in the area. An active surface trace is not requifed inasmuch as a fault may tend to be active at depth without surface evidence." (Fox, 1970).

The first set of faults in Lancaster County is a E-W striking set of thrust faults of Palenzojo age. The largest of these appears to be the the Martic Line contact in southern Lancaster County (Figure 1). However, it is not the only one. Several other $E-W$ striking thrust fault occur north of the Martic line (Figure 2).

The second and younger set of faults in Lancaster County is the $N-S$ striking set. These faults are perpendioular to the geologic trend, and offset all the ilthologies as well as structural features, including the

E-W striking thrust faults (Figure 2). Thus, chey are often termed "oross faults" in the liturature. They appear to have formed initialiy as normal faults associated with the period of extension in the late Triassic and eardy Jurassic. Subsequentiy they appear to have been reactivated as oblique reverse faults in the present stress regime. It is important to remember that faults in the Lancaster area are difficult to confirm and many more may be present. This difficulty results from the sparsity of bedrock exposures in this well farmed region, and the jack of distinctive mappabie 1ithologic units (Socolow, 1966)

The Martis tine

The Martic iine is a contact which is traced for hundreds of kilometers along the Appalachians (Wise and Kauffman, 1960). In Lancaster County, it separates rocks of known Peleozolo age in the north from uncertain age rocks of the Glenarm series to the south (Figure 1) (Anderson, et al. 1965).

There are two major opinions on the nature of the contact, stemming from the undetermined age of the Glenarm series. The first theory is that the Gienarm series is Precambrian, and that the Martic Line is a large, far travelled overthrust separating Precambrian rocks from Lower Paleozolc ones. The second theory is that no major overthrust exists, and that the Wissahickon schist of the Gienarm series is a highly metamorphosed facies of the Ordovician Martinsburg shales which rests normaily above the Ordovician limastones. Thus, both of these theories try to explain the fact that the Wissahickon schist clearly rests on vop of the metamorphosed Conestoga Iimestones and other Lower Paleozoic formations (Cloos and Heitaner, 1941). In recent years the thrust fault thenzy has become popular in much of the literature but this may change.

This theory, that the Martic Line is a major thrust, is the older of the two ideas. When the area was first mapped in detail, in 1929, Knopf and Jonas (1929) described it as the "Martic overthrust". They said that it was the major fault of Lancaster County, which "seems to place Wissahickon schist (Precambrian or Lower Palpozoio) of the S.E. Piedmont northwestward over the Paleoroic sediments of the Lancaster Valley" (Knopf and Jonas, 1929). They also estimated the displacement along this thrust to be about 33 km .

The Paleozoic structures associated with the Martic Line strike E-W (Armbruster and Seeber, 1985). These structures are folds and small scale thrust faulis, whach result in a five-fold repetition in the stratigraphic sequence. However, in the field, chere appears to be no evidence of mylonitization, brecciation, or any other trace of extensive movement. In stead, "the repeated section has
been thoroughly deformed after repetition by a uniform act of tolding which overturned all folds southward and produced a unique oleavage which dips to the north" (Clous and Heitanen, 1841). Thus, all the deformations cross the Martic line without change, indicating that this thrust zone predates all the major folding in the Lancaster region (Cloos and Heitanen, 1941; Freedman, et al., 1964). Thus, the Martic Line does not separate structurad provinces, since all structures transgress it or are parallel to it.

The stages in the development and deformation of the Martic line are best summed up by Wise (1970) as:
2. Thin-skioned imbricate thrusting
2. Regional metamorphism and flow to the NW, with major basement folding and thrusting
3. Brittle movement of large basement blocks near the inne, with folding of earlier basement thrusts 4. More brittie behavior with locally intense folding 5. Development of kink bands and joints

Thus, the Martio Line is either a Lower Paleozoic facies change or a Lower Paleozoic thrust zone which has been extensively deformed in the later Paleozoic, and which has been inactive ever since.

Paleqzois E-W Trending Thrust Faults

There are several E-W trending thrust faults, is the Lancaster County region, which are Paleozoic in age. They appear to be associated with the formation of the Appalachian Mountains, and thus, of the same age as the $E-W$ trending folds of the region (Berg, et al., 1980) The first of these major $E-W$ trending thrust faults is the Stoner Thrust (Figure 1). It lies on the south side of York valiey and crosses the Susquehanna Niver into Lancaster County west of the town of Lancaster (Figure 1). Here, in the Susquehanna River gorge, the lower bøds of the Chickies formation ure thrust against the Conestoga limestones. Thus, there is considerable horizontal shortening. All the rocks of the Stoner thrust are olcsely folded. Furthermore, the fault's sinuous outiine (Figure i) indicates a low angle dip, which was folded diring and after thrusting. This deformation involved all the Paleozole rocks. The magnitude of these folds and thrusts and their parallelism with those of the Great valley, indicates that they were formed during the Alleghenian orogeny (Kauffman, 1967)

A second major thrust fault in the area is the Chickies thrust (Eigure 1). This fault emerges from under the Gettysburg Triassic basin in northern York County and crosses the Susquehanna River, with an E-W strike, into Lancaster County. There, as in the case of the Stoner

Thrust, it becomes unrecognizable in outcrop within the Conestoga limeztone, west of the eity of tancaster. The fault is diagonal to the regional folding, truncating the Chackies Fock, Accomac, and Trout Run anticiines
(Figure 1). Based on the outcrops, the diagonal movement is in part a thrust, and in part a horizontal shear along the bedding. The chickies thrust cuts out several thousand meters of section, and apparently marks a major line of demarcation between the sedimentary facies to the north and to the south. There is no exposure of Conestoga iimestones north of this zone (Figure 1) (Gray, et al., 1960; Kauffman, 1967; Grey, et al., 1980).

Tha third major Paleozoic thrust fault in the area is the Yellow Breeches thrust, just south of Harrisburg, and Just north of the Triassic basin (Figure 1). It truncates the plunging nose of the South Mountain anticiinorium, strikes E-W across the Susquehanna River, and disappears in the carbonates of the Great Valley. It separates the lithology and structure of the Cumberland Valiey from that of the Lebanon Valley to the east. There are vast differences in the facies across the trus*, but only minor differences w.thin each sequence. The thrust is nearly horizontal, even north dipping at times, with thrusting juxtaposing distant sequences of a pre-deformational. depositional besin. The thrust is associated with minor steep faults (Gray, et al., 1960; Kauffman, 1967; Berg, et a1. , 1980).

On the more local map of the north-central part of Lancaster County (Figure 2), there are several smaller thrusts which may be associa ed with the larger Stoner and Chickies thrusts mentioned boove. They, too, strike E-W with the south side allochthonous and are accompanied by overturned folding.

In the northern section of Figure 2, between Manheim and Lititz are the Kissell Hill thrust and the Fairland-Millway thrust. The Kissell Hill thrust dips south and strikes $E-W$, and has a maximum stratigraphical throw of about 1300 m , with the displacement established at several kilometers. Some of this displacement may be due to reactivation of the fault in the Triassic. North of this fault is the Fauland-Miliway thrust which also dips to the south, and strikes E-W. It has a displacement of about 1.7 km . To the south is another $E-W$ striking thrust, the Mechanicsvilie thrust, which is also south dipping and E-W striking. All of these faults are oifset b: N-S striking cross faults which will be discussed below (Gray, et al., 1960; Meisler and Becher, 1971; Berg, et al., 1980).

Triasgis Border Eaults

The faults bordering the Triassic basin are E-W striking, parallel to the structural grain. Although the amount of displacement along them, and thus their importance in relation to the Triassic basin is still disputed, a northern border fault is well documented (Figure 1). The southern border fault, if it exists at all, is not as clear in outcrop, for most of it appears to be covered by sediments. It is typically thought to be a few kilometers north of the end of the Triassic ondap (Sumner, 1975). For more details on the geology of the Triassic basin see the section titied "Newark-Gettysburg Trisssic Basin" above.

Eost-Trasesde cross Faudts

The youngest structural features of the Lancaster, Pennsylvania region are the north-south trending, post-Triassio normal faults. They offset all of the lithologies in the region, as well as the east-west striking Paleozolo folds and thrust faults (Gray, et al., 1960; Berg, et al.. 1980). The strike of these youngest faults is analogous to that of the Triassic-Jurassio dikes, and the fauls appear to te associated with the dike swarns (Smith, et al., 1975).

These normal faults rur continuously through the Triassic rocks of the Newark-Gettysburg basin and the surrounding Paleozoic rocks. Their formation appears to be contemporaneous with the Mesozoic rotacion of the Triassic basin during the initial opening of the Atlantic Ocean. The downthrown side of these iaults is on the SE side (Root and MacLachlan, 1978).

Jonas and Stose (1930) first described the cross faults of Lancaster Cointy as Lollows: "The northerly system (of faults) is apparently the most recent, for the faults of this system offset all the others. This is very strikingly shown by the north-south fault through Fruitvile." This Fruitvilie fault is the largest of the cross faults mapped by Jonas and Stose (1930), with a right lateral separation of about a quarter of a mile (400 m). Furthermore, it is located at the center of the north-south trending cone of seismicity (Figure 3), and is thus of considerable interest in this study.

A smaller fault, the Marietta Junction fault of Jonas and Stose (1930), parallels the Fruitvilie fault to the west, and also displays right lateral separation (Figure $3)$.

The above interpretations of the post-Triassic faulting, done by Jonas and Stose (1930), were used on the 1960 Geologic Map of Pennsylvania (Gray, et al., 1960)
(Figure 3). However, Meisler and Becher (1971) mapped severs smaller eross faults, with strikes varying from NW to NE, in place of the larger faults of jonas and Stose (1930). These faults were mapped within the more resistant ridges of clastic rock, but along the same north-south faudt zone as the Fruitville fault, and with the same right lateral separation (Figure 2). This is the interpretation placed on the 1980 Geologio Map of Pennsylvania (Berg, et al.fer 1980). In short, the lengths of the cross faults differ on the two maps, but both agree that they are the youngest structural features, associated with primarily right latezal separation, and striking in a predominantiy north-south direction (Figure 2).

The apparent discrepancy in the two maps is rather to be expected considering the lack of outcrop in this historically very agriculturad region. Furthermore, as Fox (1970) states, "Although active faults are not common in the eastern U.S.. presentily inactive faults associated with past tectonio occurrences may indicate an inherent weakness in the area. An active surface trace is not required inasmuch as earthquakes originate at depth; a fault may tend to be active at depth without surface evidence." The inherent weakness, which Fox (1970) mentions above, is indicated by the predominantiy north-south strike of not only the post-Triassic normal faults, but also the predominantly north-south strike of the Precambrian and Triassic-Jurassic diabase dikes swarms associated with them (Gray, et al., 1960; Berg, et al., 1980).

Further evidence for a north-south trending zone of weakness within the Lancaster area is the large density of cross faults, of a N-S strike, within the narrow neck of the Newark-Gettysburg Triassic basin. This area is within the northern part of the seismicaliy active region of Figure 3 (Gray, et a2., 1960; Berg, et al., 1980).

When the Triassic basin is divided into domains, based on areas where the bedding attitude is relatively constant, there is a region, within the narrow nesk, where the bedding domains are small, numerous and very random in dip direction. This area coincides with the area of highest faulting, mentioned above (Fail2, 1973)

Most of the faults in this block faulted, narrow neck of the basin are steeply-dipping, $N-S$ striking, normal faults which are nearly at right angle to the E-W trending basin (Kquffman, 1967; Faili, 1973; Bria, 1978; As early as 1938, Bascom and Stose (1938) noticed that " the faulting presumably involved in some degree both the underlying and the adjacent Paleozoic and Pre-Paleozoic rocks. Such faults have been traced in the Psieozoic formations, but because of the absence of weli-defined beds, it is not possible to trace them for any great distance in the Fre-paleozoic crystalline rocks. "They
identified one fault in the region where movement occurred after the red Triassic sediments were deposited and intruded by the diabase, since " the Triassic rocks here adjacent to the diabase are red and are not baked by the diabase, as they would be if the diabase intruded them. " Likewise, north of Manheim (Figure 2), in the northwestern part of the seismically active area of Figure 3, is a Worth-south trending fault which offsets, with a right lateral separation of a few hundred meters, both a York Haven type diabase sheet and a Triassic border fault (Jchnston, 1966). Finally, in the Cornwall area (Figure 3), several smajl faults, and one major fault, offset all the lithologies including the diabase. The major fault is 3 km in outcrop. Therefore, the crosscutting relationship indicates that the north-south trending normal faldts are generally younger than the surrounding late Triassic sedimentary and igneous rocks (Lapham and Gray, 1972)

All the drainage of the region, within the narrow neck of the Triassic basin and within the northern part of the seismio zone (FiJure 3), including Hammer Creek (Figure 2) appears to follow the $N-S$ striking faults. Most of these fauls have displacements of a few hundred meters but two have throws of thousands of meters (Gray, et al., 1958). The largest displavement in the area is associated with a $\mathrm{N}-\mathrm{S}$ striking diabase dike, about 1.7 km west of Hammer Creek. The strata is offset about 2.4 km in a right lateral direction across the dike, with a throw of about $1,500 \mathrm{~m}$ upward on the west side. The strike of the Triassic ridges on either side of the dike is discordant by fully 30 degrees (Gray, et al., 1958).

Lanning (1973) found petrographic evidence that shear displacement occurred along the Quarryville and York Haven type diabase within the Piedmont. Due to the lack of shearing in the youngest diabase of the Rossville type, he concluded that the shearing accompanied the intrusion of the Rossville. This is further supported by evidence of offset of 100 m of beds along a large Rossville dike near Doe Run, east of Lancastec. The fracture cleavage within the Quarryvilie and York Haven diabase 2 s in the north-south direction, which parallels the orientation of the dikes and youngest cross faults of the region (Lanning, 1973)

Coastal Plane Faudting

Due to a lack of post-Triassic rocks in the Lancaster region of Pennsylvania, it is difficult to date more recent movement along the faults observed in outcrop. However, there is evidence within the Coastal Plain sediments that faulting is a continuous, ongoing process along the Eastern U. S.

EIGURE, 8 TOP of the besenent map of recent Cosetal plein faulting in Georges County, central Maryland, sbout 20 km southeast of Washington D.C. (after Jecobeen, 1972)

The geographically closest example of recent faulting within the Coastal Plain comes from a study done in Fince George and Charles Counties of Maryland, about 15 to 25 km SE of Washington D.C. (Jacoleen, 1972). Seismic evidence indicates two east dipping, north-south trending, high angle, reverse faults within the Coastal Piain. This system, the Brandywine system (Figure 8), is divided into two enechion faults, both extending to the north and to the south bayond the study area. The maximum throw on the southern fault, the Danville fault, is over 75 m at the top of the granitic basement and tive top of the lower Cretaceous Arundel formation (Figure 8). The throw on the northern fault, the Cheltenham fault is about 30 m . Both of the faults indicate reverse faulting with the SE block upthrown. Stream anomalies and lineaments are clues to the fault location at the surface. However, recent dridiing shows no rupture reaching the surface. The fault displacement is absorbed upward, and oniy folding occurs in the Tertiary sediments (Jacobeen, 1972). However, based on seismic profiles across the area, the Danville fault comes very close to the surface, since near surface beds appear to be offset. Furthermore, it was olear that the faulting occurred from the Cretaceous to the Miocene, since the fault cuts basement and Cretaceous rocks, and flexes Eocene and Miocene sediments. These sediments are up to 550 m thick. Coastal Plain fauiting activity is not unique to these two faults. Other faults outting upper potomac and younger sediments have been observed at the surface in the Washington, D.C. area (Jacobeen, 1972)

soints

The jointing pattern observed in the Lancaster, Pennsylvania region is fairly consistent with the fold pattern. Wise and Grauch (1967) examined 100 master joints in 14 different areas of the Piedmont in Lancaster County. Their findings are shown in the Rose diagram of Figure 9. The cross joints, which are perpendioular to the nearly east-west fold axis, strike N 15-350W. They are the major symmetry plane of Figure 9, with conjugate fractures which strike NNE and NW. The strike joints, which parallel the trend of the foids, strike N 65-80OE (Wise and Grauch 1967).

The dynamic interpretation of this joint pattern i: based on traditional brittle yield theory. Wise and Grauct (1967) state that "the conjugate pair of joint sets represent conjugate shears with their acute bisector pointing in the direction of maximum compression
(N $15-200 \mathrm{~W}$). Any pure shearing parallel with the compression direction would tend to form fractures parallel with the acute bisector ($\mathrm{N} \quad 15-200 \mathrm{~W}$). With relaxation of

[^6]compression, expansion fracturing would occur at right angles to the former compression, producing the distinctive set of obtuse bisector joints at $N 65-800 \mathrm{E}$

Clios and Heitanen (1841) examined 200 joints randomly throughout southern Lancaster County. They found a dominant joint set striking at N 100 W and conjugate joint sets to the NW and NE, analogous to those of Wise and Grauch (1976) above Rios (1966) looked at jointing in Quarryvilie, Pennsylvania, SE of the city of Lancaster. Within Lancaster County (Figure 1). He found a well defined pair of joint sets which dominated the Glenarm series and the Paleozoic rocks near the Martic Line. The joint sets had strikes of $\mathrm{N} \quad 80 \mathrm{~W}$ and N 320 W with dips of 760 E and 880 E respectively. Kink planes were associated with the joints but the displacement sense may have been considered normal or reverse.

Therefore, the joint sets seem to reflect the Paleozoic deformation associated with the last stage of folding in the region (Rios, 1966). However, since they are zones of weakness within the rock fabric, it is important to note their dominant strike directions.
The Relative Ages of the Structural Features of Lancaster County

The cross-cutting relationships between the main structural features of the area, the E-W striking faults, the N-S striking faults, and the diabase, suggest the following relative ages (oldest to youngest):

1. The E-W striking, predominant iv thrust faults are out by all the Mesozoic diabase intrusives and offset by the $N-S$ striking cross faults. They are, therefore, the oldest structural features, other than the few Precambrian metadiabase intrusives. These E-W striking faults appear to be the result of the paleozoic orogenies which formed the Appalachian mountains
2. The Mesozoic diabase bodies were intruded in three separate episodes within the Late Triassic-Early Jurassic period of rifting. The oldest is the Quarryville diabase, then the York Haven diabase, and finally the Rossville (Smith. 1972). They are all predominantly $N-S$ trending and cut across all the $E-k$ striking features. Of the three diabase types, only the youngest, the Rossvilie, is not clearly offset by the $N-3$ striking cross faults. Although, it is on occasion bordered by them (Johnston, 1966; Lapham and Gray, 1972). Therefore, the diabase sills and dikes are older than the $N-S$ striking faults with the possible exception of the Rossville

Fig In the area of seismicity within Lancaster County pargre ${ }^{\text {3) }}$ the Fruitville fault zone runs north-south. parallel to the $76^{\circ} 20^{\prime}$ longitude line. This fault offsets all the lithologies. Spacifically, it outcrops on a quartzite ridge, in the Neffsvilie anticilne, 3 km north of the city of Lancaster, where it right-laterally displaces the ridge (Figure 2) (Jonas and Stose, 1930; Meisier and Becker, 1966). Further north it offsets the Cocalico shales (Ordovician) and the Kissell Thrust, just SW of the town of Lititz (Figure 2) (Jonas and Stose, 1930; Meisler and Becher, 1966). This displacement is also right lateral. Thus, this is the youngest fault in the region, and the one along whose length the historical seismicity olusters (Figure 3).

It may be possible that at least some of the youngest, N-S trending faults may be currently reactivated as high angle, right-lateral, reverse faults by the present ENE striking maximum compressional stress derived by Zoback and 2oback (1984) for this region of the country.

GEOMORPHOLOGY

The Topography and the Drainage of Lancaster County

Carbonate rocks dominate the Lancaster County region, and so does the gentle roliing topography. The maximum relief in the carbonate rocks is approximately 75 m with local relief of $6 \mathrm{~m}-60 \mathrm{~m}$. The relief is controlled by the erosional resistivity of the various rocks. The dominant carbonate group in the area, the Conestoga formation, has grecter relief than the surrounding formations, and is more finely dissected by streams. These differences may be due to lithologic contrast and emphasized by the near-vertical dip of the cleavage and the bedding within the Conestoga (Meisler and Becher, 1971).

A preliminary look at the drainage pattern of the Lancaster area shows the lerger streams generally flowing in the north-south direction (Figure 2). A study of over 300 straight segments of stream channels in central and souther: Lancaster County, the area dominated by carbonates, shows two major channel directions. One direction (approximately N 800E) is parailel to bedding. the other direction (approximately N 100W) is nearly perpendicuiar to the strike of the bedz (Figure 10) (Meisler and Becher, 1971).

In the northern part of the Lancaster region, within the area of the Lebanon County line, the drainage pattern is distinctiy treilis in the north-south direction. It is clearly controlled by the $N-S$ striking cross faults within this narrow neck of the Newark-Gettysburg Triassio basin. Here, the streams flow along the $N-S$ faults which offset all other features in the area. This region is north of the towns of Lititz and Manheim. The dominant stream, the Hammer Creek, also has a several-kilometer-iong N-S trending straight segment in this area (Gray, et al., 1958; Meisier and Becher, 1971). Interestingly, it is a direct continuation of the Fruitville fault zone (Figure 2)

As early as 1929, Knopf and Jonas (1929) observed that
the Holtwood Dam (on the Susquehanna River) has utilized a natural falls or rapids known as Cullys Falls", Recently, Thompson (1985) has observed evidence for large preglacial falls on the Susquehanna in this same area of Holtwood, Pennsylvania. He calls them the "Great Falls of the Susquehanna". These falls are directiy south of the $N-S$ striking Fruitvilie fault zone and its associated $N-S$ trending seismic zone (Figures \& \& 3). Preliminary evidence suggests that the falls may be due to preglacial faulting or flexuring in the area (Thompson, personal communication) indicating recent uplift along the Fruitville Fault zone

QRAVITY AND MAGNETICS

Gravity Suriey of Lapsester County

Sumner (1975) compiled gravity data for the Newark-Gettysburg basin and contoured a simple Bouguer gravity map (Figure 11). Over 4500 gravity stations were plotted with a station spacing of $1-5 \mathrm{~km}$ over the basin and $2-10 \mathrm{~km}$ over adjacent areas. The standard error was about 0.2 mga 2 s .

The density contrast between the various Triassio and Paleozoic rocks is very smadl, with the exception of the diabase (Table 1) (Sumner, 1976,1977). Therefore, it is difficult to pick up near surface faulting within these focks. Nevertheless, on the simple Bouguer map (Figure 11), there is some evidence for a $N-S$ fault zone in the area of the Fruitvilie fault of Lancastar County. The contour lines appear warped within this area, in contrast to their parallel, equally spaced regional irend on both sides of the proposed fault zone (Figure 11) (Sumner, 1975).

Magnetis Survey of Lancaster County

Eromery and Griscom (1967) compiled an aeromagnetic map of S.E. Pennsylvania based on several 15 -minute quadrangle surveys. The quadrangles of interest, within the proposed Lancaster seismic zone (Figure 3), are, north to south, the Lititz quadrangle (Bromery, et al., 1961), the Lancaster quadrangle (Bromery, et al., 1961), and the Conestoga quadrangle (Bromery, et al., 1959). The filght paths are $N-S$ with a contour interval of 25 gammas. These three quadrangle maps have been combined in Figure 12.

Despite the large, regional scale of this aeromagnetic survey, there is ciear evidence of a disturbance in the niagnetic contours as they cross the area of the Fruitville fault and its $\mathrm{N}-\mathrm{S}$ extension (Figure 12). Further south, in the Conestoga quadrangle, the Martic Line contact creates an approximately 800 gamma, steep dipping, shallow magnetic contrast (Figure 12) (Socolow, 1974). Along the southern extension of the Fruitvilie fault, this contact (as well as the Martic Line) trends $N-S$. This is also the area of the 1984 earthquake.

Likewise, this area in Conestoga is the part of the Martic contact of Pennsylvania which is most highiy folded, and offset in two step-like features (Figure 1) (Berg, et al. 1980). These step offsets are in harmony with the right lateral displacoment along the Fruitville fault and other N-S trending faults of the area. However, at this point no causal relationship can be established

Finally, as in the gravity case, the uniform lithology of the Lancaster valley arec makes it very difficult to

EIGUEE-11 Simple Bouguer Gravity map of southeastern Pennaylvania and northern Maryland, contoured at 2 and 10 mgela. The dark line labelled FF, is the schematic representation of the Fruitville Fault Zone. Also shown is the April, 1984 earthquake epicenter. (modified after Sumner, 1975)

(after Suminer, 1377)

identify structural features on the aeromagnetic data. The magnetization of the Paleozoic and Triassic rocks, with the exception of the diabase, is very uniform and low (Table 1) because of the relatively uniform composition of these clastics and carbonates (Sumner, 1977). Thus, the aeromagnetic data for the Triassic and Paleozoic sedimentary rocks has a range of less than 100 gammas. Socolow (1974) sums up the problem, in the Lancastier region, well, when he says, "Considerable faulting and folding are involved in the area, but the sodiments have stich similar magnetic properties that the structures are not indicated by the magnetic data." A ground magnetic survey, with its higher resolution, may be useful to help verify the proposed fault zone.

Basement Structures

There is mounting gecphysical evidence that the eastern U.S. is characterized by large, NW striking basement blocks. Regional gravity, magnetics, LANDSAT imagery, and geologicai information suggest several such blocks in the Pennsylvanis and New York area (Gold, et al, 1974; Lavin and Alexander, 1981; Lavin, et al., 1982). The major lineaments defining the block boundaries can be seen in the simple Bouguer anomaly map of the area (Figure 13) (Lavin and Alexander, 1981; Lavin, et al., 1982). They are defined according to offsets in the gravity anomalies. These inferred fracture zones appear to penetrate deep into the crust, possibly the mantle. This is suggested by their continuation through a variety of geological terrains and geophysical expressions, as well as their great length and inearity. The more prominent of these inferred fracture zones are the Tyrone-Mount Union (TMU) and the Pițsburgh-Washington (PW) Iineaments (Figure 13). "The extensions of the Tyrone-Mount Union and the Fittsburgh-Washington lineaments bound a distinct crustal block (the Lake Erie-Maryland block) over 100 km wide and probably more than 600 km in length" (Lavin, et al., 1982) During the Precambrian to Lower Ordovician, this block may have moved NW at least 60 km , with later movements being predominantiy vertical with respect to the surrounding blocks. Similar structures are identified in New York State (Diment, et al. 1980)

Further evidence for the Lake Erie-Maryland crustal block comes from an offshore gravity and magnetic study by Taylor et al., (1968). They found a major magnetio feature which runs offshore, down the east coast, approximately parallel to the coast line, and located directly over the continental slope. This magnetic feature coincides with the +30 mgal Bouguer gravity anomaly. However, the magnetic feature deviates from the continental slope between the

Abstract

39th and 40 th parallel, where it takes a bend 2 andward, and is possibly offset. This offset is consistent with the NW offset on the Lake Erie - Maryland crustal block mentioned above.

Kimberlite structures in Pennsylvania, New York, Kentucky, and Tennessee appear to be at intersections of the Rome Trough (NE crending), with its down-to-the-east basement faulting, and the major structural (NW trending) ineaments mentioned above. The kimberlites radiometric ages decrease from Mississippian-Permian in Tennessee to mid-Jurassic in New York "perhaps reflecting the gradual opening of the modern day Atlantic Ocean" (Parrish and Lavin, 1982).

It is noteworthy that the dominant of these NW trending lineaments, the Tyrone-Mount Union lineament, runs through the vicinity of the Lancaster area (Figure 13). As yet there has been no direct correlation of the seismicity of this region and the inneament. However, it represents a crustal-wide inhomogeneity that may serve to concentrate stresses in the area. This remains to be investigated.

Lineaments in the Northeastern Undted States

As early as 1904, Hobos (1904) fol NW trending ineaments, by observing that many of t. arge scale rivers and lakes in the NE U.S. aligned the elves in a given direction for several hundrede of kilometers (Figure 14). He defined a set of NNE striking linear featires and a set of NW striking ones. The NW lineaments are very analogous to the NW lineaments geophysically identified by Lavin, et al., (1982) (Figure 13), above. Likewise, Wheeler, et al., (1974) used detailed mapping and structural analysis to describe 17 NW striking lineaments in the Plateau Province. They discovered 5 lineaments in Fennsylvania, and 12 in West Virginia. They varied in length from 13 km to 172 km , averaging 71 km . They strike from N .90 W to N 910 W , with an average of N 530 W (Wheeler, et al., 1974). Based on field studies, all these cross-structures in the NE U.S. are not simple tear faults or joints, but rather complex zones of clossiy fractured rocks (Wheeler, et al., 1978).

Wise (1974) used shadow methods on raised plastic relief maps of the NE U.S. to produce psuedo-radar photo maps, and to analyze them for linear components. He concluded that " the most pervasive fracture systems striking $N 20^{\circ} \mathrm{E}, \mathrm{N} 25^{\circ} \mathrm{W}$, and N 700 E , extend at least from Lake Ontario to Pennsylvania to Maine. These topographic linears, ranging from 20 km to 200 km in length, are ubiquitous, independent of rock type, local geological provinces or curvatures of the mountain system, and do not change patterns near the coastlines." (Figure 15). This suggests that these linears are the latest deformation superimposed on all the structures. A detailed area in NW Massachusetts was used to compare these linears to ground measured brittle fractures and to ERTS (Earth Resource Technology Satellite) imagery lineaments (Wise 1974). The study concluded that a strong correlation in the strike directions of the fractures and the linears does exist

In the Lancaster, Pennsylvania area Wise (1974) identified three ineament directions using the above method (Figure 15). One N-NNE in strike, the second ENE in strike, and a weaker striking NW. The ENE striking ineaments seem to reflect the Paleozo-c structural trend of the Appalachian mountains in the region. The weaker NW trending lineaments are possibly those described by wheeler
et al, (1978) and Lavin, et al., (1982), above. Finally, the $N-N N E$ lineament may be assooiated with the cross faults of the region, such as the Eruitville fault and the seismic zone around it (Figure 3).

Lineaments in the Lansaster County Region

Lineaments have the same morphological characteristic as fracture traces except that they are wider, onger, not at all obvious in the field, and exert a major influence on the topography (Gold, et al., 1973). This is also the case for the lineaments identified in Pennsyivania

$$
\text { Gold, et al. }(1973,1974) \text { located major lineaments }
$$

(greater than 80 km) in Pennsylvania based on EFTS-1 (Earth Resource Technology Satelilte - 1) images. Most of these ineaments were straight and appeared independent of regional stractural trends. Many are nearly perpendicular to the NE-SW Appalachian belt (Figure 16).

Kowalik, et al. (1975) studied the intermediate lineaments (10 - 80 km) in Pennsylvania, also based on ERTS-1 data. In the Lancaster region (the thick bordered square of Figure 17), they recognized several lineament directions with the $N-S$ direction dominant.

Both the intermediate and long lineaments in SE Pennsylvania appear to be underlain by zones of fractured and jointed rocks and represent zones of deformation (Gold, et al., 1973). They transegress Precambrian through Triassic age lithologies, and must represent either a rejuvenated crustal fracture system..., and in a sense are a reflection through the oover rocks of active crustal joints" (Gold, et al., 1973). They are often reflected by straight valley segments, abrupt changes in valley alignment, gaps in ridges, gully and sink hole alignment, localized springs, diffuse seepage areas, and drainage patterns (Gold, et al., 1973, 1974)

Wise (1967) used topographic maps to identify topographic linears of the Susquehanna Piedmont (Figure 18). He found that the orientations of these lineaments (Fosette B, Figure 18), did not matoh the strikes of the 1400 ground measured master jo2nts (Rosette A). Thus, the iineaments represent an "apparently different systen (Hise, 2967) of fractures. It is noteworthy that Wise identified a set of $N-S$ striking topographic lineaments as clearly dominant within the Lancaster region (Figure 18). These topographic ineaments clearly define the Fruitville fault (Figure 1) and the Lancaster seismic zone (Figure 3), (note the location of the 1984 earthquake in Figure 18

```
The preiiminary investigation of LANDSAT-4 imagery \((30 \mathrm{~m}\). resolution) reveals that clearly the dominant ineaments in Lancaster County are those of the Appalachian structural trend (nearly E-W striking) and those defining the Eruitville fault zone which trend \(N-S\) (Figure 19). The latter are defined by gaps and drainage through the Triassic rocks, stream drainage within the Paleozoic rocks, and the right latoral offsets in the E-W striking ridges of the Conestoga Valley (Figure 2)
```


EIGURE_14 Topographie lineaments of the Atlantie Border
Region in relation to Lencaster, Penneylvenia
(after Hobbs, 1904).

EIGURE-25

Major Fracture Orientations of the Northeastern United Stetes on equadrangje-by-quadrangle basis using a topographic shadow technique. The contrasting line types are used to suggest correlations among the various fracturea. The quadrangle with the dark borders is the one which includes Lancaster, Pennaylvania. (after wise, 1974)

EIGURE- 16

ERTS-1 ateliite iineaments of Penisylvanie and the location of historic epicenters of earthquakes, including the April 23, 1984 event shown by the triangle. (efter Gold, et al., 1974)

EIGURE 17 LARDSAT-1 intermediate length lineament orientations sumearized in rose diagrase for cella on grid acrose Penneylvania. The dark bordered cell is the one for the Lancester eree. The acen line dizection, aun azimuth, and general strike of bedrock are superimposed on the diagras. The densety of lineaments in one cell can be judged by the sum of their lengthe, recorded in kiloweters in the lower corner. (after Koweilk s. Gold, 1974).

EIGURE_18

```
Topogreph-c Iinears of the Lancester County area
derived fron topographic maps. Rosetta A represente
ground meawurements of the strikes of 1400 meste:*
joints related to the late stage of folding in the
Piedmant of Penneylvania. Rocetta B representa the
eight directions of the topographi= lineara on this
map, apparently a different syetem Erom Rosetta A.
The dotted line represents the Fruitville Fault Zone,
and the lerge solid dot ia the epicenter of the April,
1984 earthqueke. (modified after Wise, 1967)..
```


E-GURE-29

Map showing ajor LANDSAT-4 inearance (ciark inea)
obtainsd in a preilminary aurvay of the nencaater
County area. The arild dot is tha opicenter of the
April 23, 1984 ar inquake.

HISTORICAL SEISMICITY

Seiamacity in the Northeastern United States
It appears that the historical earthquake activity and the present seismic events bear no consistent relationship to tectonic provinces. Rather, seismic zones usually out across their boundaries (Hadley and Devine, 1974). Furth: imore, "for small magnitude events, abula half of the instrumentally recorded earthquakes that have been stidied, are in persistant source zones. The remainder are more than 20 km from other earthquakes" (Diment, et al., 1983). There is mounting evidence that one of these source zones is the area of Lancastar County in the vicinity of the Fruitville fault (Figure 3).

Selsmicity in the Lansaster County Region

The Lancaster area has been shaken by several distant earthquakes (Table 2), the largest of which have had intensities of up to MM IV. However, Pennsylvania has had a fair amount of seismicity of its own (Table 3; Table 4) (Nottis, 1983; Scharnberger ant Howell, 1985), and it is the local activity that has created the highest intensities felt in Lancaster (intensity MM VI).

Sharnberger and Howell (1985) did a study of the historical seismicity of Lancaster County and obtained the results of Figure 3 and Table 5 . However, there is evidence that the location of the October 6, 1978 event near the town of Lititz (Figure 3) is in error. The preferred location of this event is on the northern outskirts of the city of Lancaster (Figure 20). This is based on Scharnberger's (1978) intensity maps for the two 1978 Lancaster earthquakes (Figure 21), and on the results of appiying a relative location algorithm which used the locations of the July 16,1978 and the April 23, 1984 earthquakes to locate the Octcber 6, 1978 event (Figure 22). Furthermore, although traditionally the March 8, 1889 event, of intensity MM V, has been located in York, Pennsylvania, new studies of newspaper records have been used to relocate the event within the area around the city of Lancaster (Auttis, 1983; Armbruster and Seeber, 1985)

Thus, it is apparent that the seismicity is clustered in a N-S striking zone along the Fruitville fault. The zone appears to be about $50-60 \mathrm{~km}$ long, in the $N-S$ direction, and $10-20 \mathrm{~km}$ wide, in the $E-W$ direction. It runs directly through the center of Lancaster County and the city of Lancaster, Pennsylvania (Figure $\mathcal{C} O$). Armbruster and Seeber (1985) have called this zone, the Lancaster Seismic zone (LS2)

[^7]magnitude within the LSZ are the recent April 23, 1984 event with a magnitude 4.2, and the May 12, 1964 event which had a privious magnitude 4.5 , but which was recaloulated, in thas study, to be of magaitude 3.6 (Figure 20). The other instrumentally recorded events in the LS2 are: the December 8, 1972 event (magnitude 2.1, Dewey and Gordon, 1984) at a depth of about 3.5 km ; the July 16,1978 event (magnitude 3.0, Scharnberger, 1978) at a depth of about 5.0 km ; and the October 6, 2978 event (magnitude 3.1. Scharnberger, 1978).

Armbruster and Seeber (1985) conducted a systematio search of newspapers from the years $1750-1900$, and found 13 new epicenters for known and previously unknown earthquakes. They showed a $N-S$ trending eeismic zone (the Lancaster Seiamic Zone) which completely overlaps and matches the one identified by Scharnberger and Howell (1985) in Figure 3. However, they presented the new location of several events not on Scharnberger and Howell's map. They are as follows:

29 November 1800 - magnitude 4.1
21 August 1820 - magnitude 3.4
5 February 1834 - magnitude 4.0
8 March 1889 - magnitude 4.3 (new location).
The location of these earthquakes is seen in Figure 23 \& Figure 24. It is clear that a $N-S$ trending seismic zone dominates Lancaster County (Figure 20 \& Figure 24) and paralleis the most recent faulting in the area, such as that of the Fruitville fault zone (Figure 20).

T2FxE 2

Date	Lat. - N2. -	beng. -- CH -	Eateentra: 	Distance from 	$\begin{aligned} & \text { \$1: } \\ & \text { inさeviniy_ } \end{aligned}$
Feb. \%, 16¢2	47.6	70.1	x	E10 NE	1:: - : V
Dee. 18,1737	40.8	74.0	V1:	186 E	IV
Nov.18,17EE	4. 9	70.6	v: : :	360 ENE	:1:
Dec.16,101:	3C. 6	09.6	$x:-x: 1$	720 Wmw	iv
Jan, 22, 1812	36.6	E9. 6	x!-x! !	780 W5w	iv
Feb, 7, 1812	3 3. 6	89.6	$x:-x: 1$	720 W5w	iv
Mar, 9, 1628	37.5	78.0	V1	2.10 sm	1:1
Aug. 10,1864	40.6	74.0	V1:	14\% E	iv m, s
Hus. 31.1866	32. 9	80.0	$1 x-x$	S-0	1:1-1v *, s
May 21, :097	37.3	80.7	V11!	320 sw	1:-1:
Aor. 9, 2916	$3 \mathrm{E}$.	70.4	$v-v:$	140 sm	1:-1:
Nov, 1, 1935	25.8	79.1	V1:	48 NNW	:1-1:
Sept, 4, 1944	4.4 9	74.9	V1:1	34O NNE	: :-: : \% *

* Intensity estimatec.
* Intensity geterminec from isoseismal mads.
s intensity getermanee from lscad acsounta.
(efter mislt, 137き)

Day	Year	Plact	Mercaili Intensity	Reference
Oe. ?	1722.	Philadeiphia	?	Winkier, 1978
Der. ?	1738	Dauphin 6 e.	?	Winkier, 1978
Oes. 30	1763	Bucks County	?	Sione. 1963
Avr. 25	1772	Deiaware Valiey	IV	Winkier, 1978
Nor, * \& 23	1777	Philacieipha	?	Winkier, 1978
Nov, 29	1780	Bucks County	?	Stone. 1978
Nov, 29	1783	Philadeipha	IV.V	Winkiet, 1978
Nor, 30	1783	Philacelphia	IV	Winkier, 1998
Mar. 17	1799	Philadeiphia	?	Winkier, 1978
Mat, 19	1800	Prilacteipha	?	Coffman, Von Hake. 1975
Mar. 29	1800	Philadeiphia	$?$	Winkier, 1978
Nov. 20	1800	Dauphin County	*	Winkier, 1978
Nor, 29	1800	Philadeiphia	IV	Geffman, Von Hake, 1973
Nov, 12	1801	Philadeiphia	?	Winkier, 1978
Dec. 1	1811	Philatciphia	V11	Winkier, 1978
Mar. 14	1828	Pinisburgh	tIJ-IV	Winkier, 1978
Nor, 11414	1840	Philagelphis	iv	Winsier, 1978
Aus. 17	1873	Sharon. Pa.	IV	Fredenck, 1979
$\text { May } 31$	1886	Allentown	V	Coffman. Von Hake, 1973
Mar. 1	1889	York	\checkmark	Landsbert, 19380
Mar, 9	1889	York	?	Landsbert $1938{ }^{\text {c }}$
May 31	1908	Allentown	V1	Coffman, Von Hake, 1973
Oth. 29	1934	Ene	\checkmark	Colfman. Von Hake. 1973
Nov. 3	1974	NW Pa.	[1]	Neutnang. 19.16
Aus 26	1936	Merser County	III	Neumann. 1936
June 1 Juiy is	1937 1938	Reading. Pa.	?	Neumann. 1940
Juiy is	1938	Blair County	V1	tandsberg. 1938a
Aus. 28	1938	Philaceiphia	9	Sione, 1943
Apr, 1	1939	Lancaster	?	Bodie. 1941
Nov. 15	1939	Philaceiphia	?	Stone. 194]
Mar 24	1940	Hartisourt	?	Neumann. 1942
Oes. 16	1981	Centre County	?	Siene, 1943
Nor. 23	1951	Allentown	?	Muruny, Cloud. 1953
Jan, 9	1954	Sinking Spring (many a fierinocks)	V1	Miurphy, Cloud. 1956
Feb. 21 Feb. 21	1954	Wilkes-Barte	VII	Murphy, Cloud. 956
Feb. 219 Jan. 19	1954 1958	Wilkes-Barte	VI	Murphy, Sloud. 1956
Jan. 19 Sept. 14	1955 1961	Berks County Lehign Valley	IV	Murphy, Sloud. 1957
Des. 29	1961	Lehigh Valley Pa.	V	Lander, Clouc. 1963
Sepi. 9	1962	Fuiton County	?	U.S.C.C.S. lisi
Oer. 10	1963	Fuiton County	?	U.S.C.C.S. lisi
Feo. 13	1961	Blait County	V	News reports
May 12	1964	Cornwal	V1	Von Haxe. Cloud. 1960
Des. 9	1972	Lancasier County	v	Colfman. Von Haxe. 1974
Fet. 28	1973	NJ\&S. Phila.	V. V_{1}	Sbar el 21.1975
Juiy 16	1978	Lancarter County	v	Person. 1979
Os. 6	1978	Lancaster County	V	News reporls

TABLE＿4
HISTORICAL SEIC AHCITY OF PENNSYLVANIA

	E27t		0eteit	710t	（601）	Etit	EME＊			Wacm！	TEet	7wif			
vean	mestr	Bat	H0．	min．	SEC．	m．${ }^{\text {a }}$ A1．	v．IENS．	（Em．）	\％F\％	vie．	18PE	(ヘッ)	＊F\％		
1900	＊上5	3	－－	－		39.30	15． 20		18				18		PMikgrtonia
1208	＊22	29	－	－		39.20	19． 10		112			\％	18	＊	PMikabipuia
1800	－0\％	29	－			39.25	15.10		10		－	F	10	Pa	Paftabetimsa
1884	＊＊＊	31	－			40.40	35.50		10			4	10	P	Attewievm
1889	mar	08	23	40		40.06	16.60		16			5	10	P	1AMCASt
1961	3ak	10	10	00		41.26	17． 10		101			4	0		vititanspent
1908	＊＊	31	11	42		46.48	15．50		10			3	10	Pa	
1921	StP	2	08	32		42.10	10．20		161			3	101	12	Eeit
1934	8 CB	19	20	er		42.60	10． 20		49	－		5	69		ERIE
1934	216	24	09	00		41.48	90．40		11	－		3	102	\％	SREFWVIL
1931	jum	09	00	04		40.36	15． 93		12			5	162	＊	C9
1938	jut	\％	22	45		40.40	18．20		51			5	58	\％	Camiaste
1939	＊＊	01	03	00		4θ ． 08	16． 30		3			2	102	\％	mandisitas
1940	＊＊	28	20	es		40． 30	16． 98		14			2	162	＊	mentiseuk
$194 ?$	bet	24	11	21		41.00	10		132	3.8					
1946	fE ${ }^{\text {a }}$	es	16	22		10． 20	14．20		102	3.1	6				Sutwambern
1948	ef：	28	20	36		43.50	14.60		102	3.	8				coront
1950	Hat	25	42	55		41.50	75． 80		102	3.3	6			P1	M．af scommem
1951	＊ov	23	es	45		40.60	15.50		107				107		
1954	fan	01	81	25		40．30	34.00		107	－			102	\％	Sinking speimes
1954	Jan	24	03	30		40．30	16．00		107	\ldots			102	\％	SimFing speincs
1954	2166	11	d 3	40		40．30	14.06		102	－			102	\％	Simaing spaincs
1954	${ }^{16}$	24	11	e0	－	46.30	14.00		102				167	Pi	
1955	3AN	20	03	00		40.30	16．00		102						CARBENBAE
1960	3AN	22	20	53		41.50	15.90		19	3.4			19		CHith vat
19\％	SEF	15	02	18		40.00	15.50		84						10
1963	＊＊＊	02	20	24		18	15．70		6	3.2					maxtis 3s
1264	EfB	$1)$	19	68	46.10	48.38	17－96		31	3.2					tamastia
1954	may	12	08	45	10.10	40． 30	14．41		122	3.	6				Soutrufstitin
1985	bit	68	02	17		46.10	19．24		32	3.3	0				tancastea
1912	eft	es	03	80	13． 36	46.15	76． 14.		133	3.3		6	23		tancasifa
1978	ect	06	19	25	4	49.05	14．e9		13	3.8	${ }_{H}$				181 m
1980	nan	e）	11	54	41.90	40.21	13.09		112	5		3－4	140		cimmiem
1980	nax	05	11	ec	16．50	40.11	15.07		112						APInGtem
1982	mas	05	11	20	17.10	40． 18	15．0：		112		H	4－5	148	＊	antwiam
1980	man	11	08	00	26．90	40.15	15．09		112	2． 2	\cdots	－5	148		ABtmetom
1988	＊＊＊	11	16	18	95． 50	40.15	14.99		113	2.8	\cdots				t
1980	may	62	13	23	23.30	40.16	1.97			3.0	－				
19＊6	＊＊＊	62	19	6^{2}	24.40	48.24	13.03		113						

TRELE 5
HISTORICAL SEISMICITY OF HE LANCASTER REGION

SEISMICITY
 Fruitvilie Fault Zone (dark line). Inserted is the upper hemiephere projection of the fault plane solution obteined by Armbruster and Seeber (1985) for the April 23. $\$ 984$ enrthquake. (aodified after Schernberger $\&$. Howell, 1985)

EIQURE-21 Intenaity map for the July 16,1978 and the October 6, 1978 earthquakes in Lalicaster County, Pennoylvanic. (after Scharnberger, 1978)

EIGURE 22 Meximum intanaity locations and relative locatione for the July 16,1978 and the Oetober 6, 1978 Earthquekea. (modified after Gray, et al., 1960).

EIGURE_23 Maximum intenaity locations obtained by Armbruater and Seeber (1985) for four large events during the 1800'. (efter Arabruster \& Seeber, 1985)

FIGURE 24 Modified seismicity map for the Lancaster area. Tha July, 1978 and the Merch, 1889 events have been relacated, and fall north of the city of lancester. The aclid dote indicate the approximate locations of the four events in Figure 23. (modified efter Scharnberger \& Howell, 1985)

LANCASTER EARTHQUAKE -APRIL 1984-

On Apri1 23, 1984 at $1: 36$ U.T. ($6: 36 \mathrm{pm}, 22$ April EST), Lancaster County experienced one of the largest recorded earthquakes in Pennsylvania. It was felt from Westchester County, New York to Cambria County, in western Pennsylvania, to Washington, D.C. and Sussex County, Delaware. The region of maximum intensity ($M M=V I$) for this event occurred south of the city of Lancaster, near Marticville (Figure 25). Seismic records of the event give a magnitude of 4.2 , with a strong audible component (Scharnberger and Howell, 1984).

This mainshock was preceded by a foreshock of magnitude 3.0 on April 19, at $4: 55 \mathrm{U} . \mathrm{T}$. (11:55 pm, 18 April EST). The region of maximum intensity (MM $=I V$) ocourred in the southern portion of the mainshock maximum intensity area, south of Martieville (Figure 25). The epicenter for the foreshock based on all the intensity data, appears to be several kilometers south of the mainshock (Scharnberger and Howe 11,1984)

The April 23 mainshook was followed by many aftershocks which lasted well into September, 1984. They were of varying magnitude, the largest a magnitude 2.1 (Scharnberger and Howell, 1984). Ten of the earliest of these aftershocks were recorded by a temporary seismic network, set up in the mainshock region, within a day of the event, and operated for several days by the Pennsylvania State University and the Lamont - Doherty Geological Observatory (Armbruster and Seeber, 1985). The network consisted of 9 portable seismographs (3 from Penn State and 6 from Lamont-Doherty), including smoked paper and digital recorders. The location of these 9 stations and the location of the 10 recorded aftershocks is seen in Figure 26. Armbruster and Seeber (1985) observed that these aftershocks created a zone abo'at 3 km long and N-NNE in strike. The length of the zone is significantly larger than the location error of -0.5 km . Therefore, the $N-S$ fracture suggested by the aftershocks appears to be real (Armbruster and Seeber (1985). The epicenter of these aftershocks is near Martioville the area of the maximum intensities observed for the April 23, mainshock (Figure 25)

Furthermore, Armbruscer and Seeber (1985) report that a 21 the aftershock hypocenters fall in an insignificantly wide range (-0.5 km) about the 4.5 km depth. They state that "this depth does not correspond to a discontinuity in the assumed velocity structure and the narrow depth range cannot be solely an artifact of the location procedure

A double couple fault plane solution based on 37 first motions from the mainshock and the aftershocks indicates a seismogenic fault with a NNE strike of about N $10^{\circ} \mathrm{E}$, dipping about $50^{\circ} \mathrm{E}$, with reverse and right-iateral
displacement (Figure 27) (Armbruster and Seeber, 1985). This solution is generally supported by 20 first motions for the April 23, mainshock recorded by the NE U.S. Seismic Network obtained in this investigation (Figure 27). The fault plane solution of Figure 27 has a P axis which is nearly horizontal and strikes ENE. This is oonsistent with the ENE maximum compressional stress for this part of the U.S., based on other earthquake generated focal mechanisms, on geological data, and on in situ crustal stress measurements (Zoback and Zoback, 1980; Zoback, 1986).

The surface projection of the seismogenic fault (dashed line in Figure 26), based on the aftershock data and the fault plane solution, falls near the town of Conestoga, about 2 km east of the aftershock epiventers. This inferred fault is in direct inne, along strike, with the Fruitvilie fault zone, which outcrops about 15 km to the north. The two features have about the same strike, approximately $\mathrm{N}-\mathrm{S}$, which is also the approximate strike of the preferred plane on the focal mechanism solution (Figure 20 \& Figure 26 , insert). Thus, the mainshock and its aftershocks indicate a seimogenic fault several kilometers south but on-strike with the youngest of the geologically mapped faults in the area. The faults strike between $N 0 \circ E$ and $N 120 E$ (Figure 20)

Furthermore, 2 km west of the projected outcrop of the aftershook-inferred fault is a Triassic-jurassic diabase dike, of the same strike (Figure 26). This dike, the Rockhill dike, and the many other $N-S$ striking dikes in the Lancaster area (Figure 4) may be indications of a N-S trending, historically persistent, zone of weakness, which is favorably oriented to be activated in the present stress

AREAS OF MAX. INTENSITY
FIGURE 25 Arees of meximum inteneity for the Apris 23, 1984 meinahock (MK = V-VI) and the April 19. 1984 foreshock (MM = IV). (after Schernberger © Howell, 1995)

\triangle SEISMIC STATIONS -EPCLITTR /ROOOHLL, VIRASSKC OIKE (TDEK MAVENTTPE) OES CONESTOGA FM H.AMESTONE) COh ANTETAM B HARPERS FWE (OUARZTE S SMIST) EV. VINTAGE FM (DOLOMITE A MARBLE XWC WISSAMIOKON FM (SNIST)

EIGURE. $\mathbf{Z 6}$

Mep of the loeation of the aftershock for the April 23, 1984 earthquake, and their relation to the geologicel etructurae wathin the area. Inaerted ia the fault plane solution with the preferred plane etriking NNE, peraliel to the line of aftershocka The deahed itne is the aurface trece of this plane. (modified after Armbruater 6 Seeter, 1985).

[^8]
LOCATION OF THE APRIL, 1284 FORESHOCK AND MATNSHOCK

As the intensity data suggest (Figure 25), the foreshock of Aprid 19,1984 was centered several kilometers south of the mainshock of April 23 (Scharnberger and \#owe 21 , 1984). Furtheraore, the epicenter, obtained from the intensity data for the mainshock, fell 2 km gR of the aftershock zone (Armbruster and Seeber, 1985).

In order to verify the locations of the foreshock and the mainshock, the hypocenter location program, HYPOINVERSE (Klein, 1978; Lahr, 1980) was used. The travel time data for various stations in New York, New Jersey, Delaware, and Virginia were used for the mainshock locations and data from Fennsylvania and New Jersey stations were used for the foreshock location.

To reinforce the validity of the results obtained by HYPOINVERSE, a relative location algorithm (Baumgardt, D.R., 1977 \& 1985) was applied. The HYPOINVERSE mainshock location was used to predict the foreshock location. The location error for che GYPOINVERSE program is given by a 85% confidence eliipse. The location error of the relative location program is about -2 km or less, which is based on the use of this program in the location of the two 1978 Lancaster earthquakes (see Historical Seismicity) (Alexander, personal communication).

In order to utilize the HYPOINVERSE and the relative location algorithms, one needs a body wave, regional, orustal velocity model. Several velocity models for the Pennsylvania area and for the Piedmont geological province have been pubiished, among them: Katz, 1955 ; Birch, 1961 : Abriel 1978 ; Isaacs, 1979; Sienko, 1982 ; and Bollinger and Sibol, 1985. Of these various velocity models, the ones which best located the Lancaster, April 23,1984 mainshock, in relation to the felt area shown by the intensity maps (Figure 25), were the following:

$\frac{\text { Lancaster Maded }}{\text { (Alexander, }} 1984$)	$\begin{gathered} \mathrm{V}_{\mathrm{p}} \frac{(\mathrm{kmo} / \mathrm{s})}{6.1} \\ 6.75 \\ 8.1 \end{gathered}$	$\begin{array}{r} \mathrm{v}_{\mathrm{g}}\left(\frac{\mathrm{~km} / \mathrm{g})}{3.55}\right. \\ 3.92 \\ 4.71 \end{array}$	$\frac{1.8 k_{1}(\mathrm{~km})}{18}$
$\frac{\text { Lancester Moced }}{\left(\text { Sienko }, \frac{1982)}{\text { In }}\right.}$	$\frac{\mathrm{V}_{2}\left(\frac{\mathrm{~km} / \mathrm{s})}{6.1}\right.}{\frac{1}{6.75}} \begin{gathered} 8.1 \end{gathered}$	$\begin{array}{r} V_{\Sigma}\left(\frac{\mathrm{km} / \mathrm{s} 2}{3.55}\right. \\ 3.92 \\ 4.71 \end{array}$	$\frac{t h i c k .(k m)}{28} \frac{12}{12}$
$\begin{gathered} \text { Bodilnger Moded } \\ (\text { Bolilinger } \\ \text { Sibol, } 1985) \end{gathered}$	$\begin{array}{r} \underline{V}_{\mathrm{E}}\left(\frac{\mathrm{~km} / \mathrm{s})}{6.09}\right. \\ 6.50 \\ 8.18 \end{array}$	$\begin{array}{r} \underline{v}_{\mathrm{s}}\left(\mathrm{~km} / \frac{\mathrm{s})}{3.5} 3\right. \\ 3.79 \\ 4.71 \end{array}$	$\frac{t h \pm c k}{\frac{1}{5}} \frac{(k m)}{16}$

The Lancaster I and Lancaster II velooity models vary only in the thickness of the two crustal layers. The Lancaster I model uses a thinner upper layer relative to the lower layer, and the Lancaster II model has a thicker top layer
relstive the results of the HYPONNERSE algorithm and the listed in Tabie 6 .

The absolute locations (HYPOINVERSE) for the mainshock indicate that it was located in the same area as the aftershocks of Figure 28, The velocity model of Bollinger and Sibol (2985) for the Piedment and the Lancaster : velocity model (hlexander, 1984) docated the mainshock in the center of the maximum intensity area of Scharnberger and Howell (1984) (Figure 28). The Lancaster II velocity model (Sienko, 1982) located the event too far north relative to the intensity data (Figure 28). The 95\% confidence ellipse for these locations had a N-G axial length of less than 3 km and an E-W axial length of less than 2 km (Figure 28; Table 6)

The absolute location (HYPOINVERSE) for the foreshock is approximately 10 km south of the mainshock and the aftershocks (Figure 28). This more southern location of the foreshock is also indicated by the intensity data (Figure 25). Based on these intensities, Scharnberger and Howell (1984) concluded that the foreshock is "centered several kilometers south of the mainshock". The Lancaster I and the Lancaster II velocity models used in the HYPOINVERSE algorithm result in foreshock locations on the southern part of the maximum intensity area (Figure 28) near Holtwood, Pennsylvania. The error ellipses for these two locations hud a $N-S$ axis less than 11 km in length and an $E-W$ axis of less than 6 km in length. The increased size of these 95% confidence ellipses relative to those of the mainshock, is primarily due to the fact that a smaller number of stations was used in the foreshock location than in the mainshock location. The Bollinger velocity model failod to predict a satisfactory solution relative to the intensity data.

The relative location algorithm, which located the foreshock relative to the HYPOINVERSE mainshock location for each velooity model, also indicates that the foreshock was located several kilometers south of tho mainshock and aftershock zor a. Like the absoluto locátion (HYPOINVERSE) for the fore hock, the relative locations also fell in the Holtwood area. The tivo solutions for the two methods, and their error bars, overlap (Figure 28). Thus, within the error margins, the solutions are neariy identicad. The Lancaster Il model gave a foreshock solution which was too far south relative to the intensity data.

Therefore, in summary, the location of the April 1984 seismicity is as follous. The absolute locations (HYPOINVERSE) indicate that the mainshock is centered near Marticville (in the area of the aftershocks), and that the foreshock is centered 10 km south. The results of the relative location algorithm for the two events confirm this as do the maximum intensity locations of Scharnberger and
howed2. (2984). All the events, the foreshock of April 19, the mainshock of April 23 , and the aftershocks recorded by Armbruster and Seober (1985), fall along the projected continuation of the N-S striking Fruitvilie fault zone which outcrops near the city of Lancaster. The closest geologically mapped outcrops of this fault are approximately 10 km north of the Marticville, mainshock location (Figure 28).

Finaliy, of the three crustal velocity models used, the ones with the thinner upper velocity layer, the Lancaster I and the Bcllinger models, performed better in establishing locations which agreed with the intensity data, than did the Lancsster II model with the thicker upper velocity layer (Figure 28, Table 6)

[^9]

RE = FHE GPRTL 23 - 1984 MJTNSHOCK

The April 23, 1984 earthquake offered an idea? opportunity to test the use of cepstra in identifying p-pp and $P-s F$ arrival time delays, and, thus, predicting a depth for the event, using previousiy established body-wave, crustal velocity models. The aftershocks of the April 23, 1984 event, which occurred in the same location as the mainshock and predicted the same fa.lt plane solution (Aymbruster and Seeber, 1985) as the mainshock, indicated a depth of $4.4-4.7 \mathrm{~km}$. As shown above and in Table 6, the absolute locstion algorithm, HYPOINVERSE (KIein, 1978; Lahr, 1980), and the relative location algorithm (Baumgardt, D.R., 1977 \& 1985) for the mainshock, also indicated a shallow event. Therefore, the mainshock's hypocen er is well-constrained to a depth of $4-5 \mathrm{~km}$. The cepstral analysis of 17 seismograms for the April 23, 1984 mainshock, received at 13 stations operated by Woodward-Clyde Consultants in the New York State area (Figure 29, Table 7), was conducted in order to try to obtain an independent depth estimate for the event.

Theory sf Repth Netermination through Cepstral Analysis

The following is an overview of the cepstral theoly, and its use for depth estimarion. It is especialiy useful for shallow earthquakes where the $p P$ and s P phases are not obvious by inspection of the seismogram (Bogert, 1963).

Let $z(t)$ be a time signal composed of the direct P-wave arrival $f(t)$ plus a pP and a sP phase, delayed by Tp and Is, respectively.

$$
z(t)=f(t)+A f(t-T p)+\sum f(t-T s) \quad c-2
$$

where $T p=t p p-t p$ or the difference in the arrival times of the $P P$ and P phases.
and where is = tsp - tp or the difference in the arrival times of the $s P$ and P phases.
and where A and B are scaling constants ($-1 \leq A, B \leq 1$). Take the Fourier Transform of the time seriee to obtain:

$$
\begin{aligned}
F \cdot T \cdot(z(t)) & =z(w)=\int_{-\infty}^{\infty}=(t) e^{-i w t} d t \\
& =F(w)\left\{1+A e^{-j w T p}+B e^{-i w T s}\right\} \quad c-2
\end{aligned}
$$

where $F(w)$ is the spectrum of $f(t)$.

EIGURE_29 Location of the N.E. U.S. Selamic Network stetiona used in the eepatral analyais ef the Aprid 23, 1984 earthqueke. These atations are operated by Woodward-Clyde Conaultanta, of woyne. N.J. (modified after Woodward-Clyde Coneultants, 1985)

The power spectrum is:

$$
\begin{aligned}
P(w)= & 2(w) 2(w)^{*}=|2(w)|^{2} \\
= & \mid F\left(w X ^ { 2 } \left\{1+A^{2}+B^{2}+A e^{+i w T p}+A e^{-i w T p}\right.\right. \\
& +B e^{+i w T s}+B e^{-i w T s}+A B e^{-i w(T s-T p)} \\
& \left.+A B e^{+i w(T s-T p)}\right)
\end{aligned}
$$

where $2(w)$ is the complex conjugate of $2(w)$.
From equetion C-3, it is apparent that if Tp, for example, equals 2 sec., the power spectrum peaks for the T_{p} duiay times will have a pariodicity of 0.5 Hz

Thie logarithn o! the power spectrum is not taken in the cepstral analysis applied here. This whitening of the spectrum idealiy should increase the number of 'eycles' of the sought-after modulation pattern in the cepstrum by converting the multiplicative terms of iguation c-3 to additive terms. However, for a practical jase of a 'noisy' spectrum, it inereases the number of weaker periodioities (Cohen, 1870). Thus, it has the negative aspect of ereating additional harmonies that are intiroduced by the sharpening of the spectrad nulls Kemerait and Sutton, 1982). The cepetrum of the logarithmic power speotrum was tried for several seismograms of the April 23,1984 event, but as in the case of Kemerait and Sutton (1982), the additional harmonics created obscured the results. Thus, best results were btained when the simple power spectrum was used in the cepstral analysis

The cepstrum was obtained by taking the Fouriez Transform of the simple power spectrum:

$$
\begin{aligned}
F \cdot T \cdot(P(w))=C(u)= & \int_{-\infty}^{\infty} P(w) e^{-1 w u} d w \\
= & \left(1+A^{2}+B^{2}\right) h(u)+A h(u+T p) \\
& +A h(u-T p)+B h(u+T s)+B h(u-T s) \\
& +A \Sigma h(u+(T p-T s)) \\
& +A B h(u-(T p-T s)
\end{aligned}
$$

where

$$
\left.F T \cdot|F(w)|^{2}\right)=h(u)
$$

where u is the quefrency domain which is in seconds.
For only the positive values of quefrenny (seconcs),
one gets the following equation for the cepstrum:

$$
\begin{aligned}
C(u)= & \left(1+A^{2}+B^{2}\right) h(u)+A h(u-T p) \\
& +B h(u-T s)+A B h(u-(T s-T p)) \quad C-6
\end{aligned}
$$

Thus, the cepstrum is set of values in the quefrency (secon ${ }^{-s}$) domain coaresponding to the $\mathrm{P}-\mathrm{pP}$ and $\mathrm{P}-\mathrm{sP}$ delay times ai ell as their differences.

The cepstral theory was tested on a time series which consisted of simple cosine and a 2 second delayed smajier scaled cosine (see TEST in Figure 30), and on a tame series which was composed of a repeating set of cosines (see TEST-R in Figure 30). When the cepstrum of the 2 sec delayed cosine of the 'TEST' signal was taken, the resultant cepstrum had peak at 2.0 sec in quefrency (see TEST in Figure 31). This peak was equivalent to the 2.0 sec delay in the cosines of the time series (see TEST of Figure 30). When the cepstrum was obtained for the repeated cosines 'TEST-R', it revealed peaks at ali four combinations of the delay times $1 \mathrm{e}, 2 \mathrm{sec}, 5 \mathrm{sec}, 7 \mathrm{sec}$. and θ cec (see TEST-R of Figure 3i) between the cosine peaks of the original time series (see TEST-R of Figure 30).

In order to enhance the delay time peaks on the cepstrum rilative to other information, or noise, the cepstra for ald thie stations were added together, and multiplied together. However, because the largest peak,
which occurs at zero seconds of quefrency in each station's cepstrum, has no information on the delay times, it was rumoved from eacn case. This was done by setting the first 0.5 seconds of each cepstrum equal to zero. Then, each cepstrum was normalized so that the highest remaining peak was equal to one. After this, the cepstra for all the stations were summed along quefrency in one case, and multiplied along quefrency in the second case. The resultant peaks should occur at quefrency seconds equal to the $\mathrm{PP}-\mathrm{P}$ and the $\mathrm{sP}-\mathrm{P}$ delay times and/or their sums and differences.

These delay times can be used to estimate the depth of the earthquake given a crustal velocity model for the area. The abov steps are performed on each seismogram. If all the stations are at regional distances, say within 500 km of the eirthquake epicenter, the $P P-P$ and the $s p-P$ delay times can be assumed to be the same for each station, since the distance the ray travels is about the same for each station.

ARELication and Besuits

The theo. $\cdot v$ and procedures, mentioned in the previous section, were used in order to determine the depth of the

April 23, 1984 earthquake in Lancaster, Pernsylvenia. A set of seismograms from 13 stations of the N.E. United States Seismic Network's Mid Hudson Area Network and North Central Area Network were used fer the cepstral analysis of the event. All these stations are located in New York State (Figure 29, Table 7), and opersted by Woodward Clyde Consultants (Woodward Ciyde Consultants, :985). They are all within 500 km of the Lancaster earthquake.

The first 40 secinds of the seismograms for the April 23. 1984 event are shown for ecch station in Appendix 2 . The QNTR staition of Ontario, N.Y. and the OSWG station of Oswego, N.Y. have all three components of the seismogram CONTR \& OSWG = racial, ONTR2 \& OSWG2 = tangential, ONTR3 \& OSWG3 = vertical). The remaining stations have ondy the vertical component of the data (Appendix 2).

The power spectrum of each seismogram was taken at three different time windows. The first time Hindow was only in the noise interval of the time series, before the first P arrival. The noise energy spectrum was smoothed over a 5 sec interval and normalized through division by the time domain window length to obtain the power spectral density (PSD). The resulting PSD's were plotted as the dashed lines in the plots of Appendix 3. Furthermore, the signal from each station was windowed at a 10 sec and a 20 sec time window (listed in Appendix 3). The energy spectra. thus obtained, were normalized through division by the 10 sec and the 20 sec time windows, respectively, in der to produce the PSD. The resulting PSD's for each seismogram are shown in the top and bottom plots of Appendix 3. All the plots for given station are normalized relative o the largest value present within both the pure noise, und the two windowed sighal and nodse PSD's. It is worth noting that the amplitude of the noise PSD is low relative to tha*, of the windowed signal and noise PSD in all cases (Appendix 3). Although for some stations (ABRN, GERM, \& LCNA) the magnitude of the noise spectrum is significant in frequency band less than 1.0 Hz , it is worth noting that the PSD of most of the windowed signals have a clear per dicity of 0.5 Hz . This is due to the periodicity of the cosine components of equation $\mathrm{C}-3$ in the previous section. This suggests a dominant P-pP or P-sP delay time of about 2 sec within most of the time seriss used.

After the two windowed PSD's ar obtained for each of the seismogr ms, they are windowed in the frequency band where the magnitude of the PSD of the noise relative to that of the signal is minimal. These frequency winduws are listed in Appendix 4. As in the case of windowing in the tine domain, above, all the frequency windows are padded with zeros to an equal length, which is a power of 2 and is larger than the widest sompling window used, before they are Fourier transformed. Furthermore, a 10% taper is
applied to both erds of each sampling window, in time and in fruquency, before Fourier transforming. After Fourier transforming from the frequency domain, one obtains the cepstra in the juefrency domain (seconds) for each station. They are plottod in Appendix 4. The top plot in Appendix 4 . for each station, is the cepstrum of the 10 sec time windowed signal and noise, and the bottoia plot is the cepstrum of the 20 sez time windowed signal and noise.

After anal'zing the cepstral plots of Appendix 4, it is difficult to pick out dominant peaks that are common to all the stations. In order to get a better idea of these peaks, the sum and the product of the cepstra of a 22 the 20 sec time windowed signals are computed. The cepstra of the larger windowed signals are chosen since they inciude substantial cepstral peaks beyond the quifrency of 2 sec . Therefore, they contain information on louger delay times than the cepstra of the 10 sec time windowed signals. In fact, the 10 sec time window appears to be to small for obtaining sepstral peaks above $1.5-2.0$ sec in quefrency, and, thus, delay vimes longer than $1.5-2.0 \mathrm{sec}$.

Because the largest pea's in each station's cepstrum, which occurs at zero seconds in quefrency (Appendix 4), has no information on the delay times, it is removed in each case. This is done by setting the ilrs: 0.5 sec of each cepstrum equal to zero. Then, in order to equally weight the input of each station, the remaining maximum peak of each station's cepstrum is normalized to 1.0. Following this, the cepstra of all 17 seismograms are summed (top plot of Eigure 34) and multaplied (bottom plot of Figure 34). The same is done for the cepstra of the "Best Six" original seismograms (ABRN, ELNV, ONTR3, PHEL, ROTD, SONY). The "Best Six" seismograms were chosen based on the clarity of the two P phase arrivals on the trace. The: all appear Lo have a time ag of approximately 2.0 sec (Appendix 2). They act as a check of the cepstrally defined time lags for the two P phases. The sum and the product of the cepstra of these "Best Six" seismograms are shown in Figure 32. Both Flots indicate a peak centered at 1.9 sec in the quefrency domain.

The same approach used for the "Best Six" cepstra, above, was applied to the "Best Twelve" cepstra ("Best Six" plus GERM, LILH, ONTR, ONTR2, OSWG, OSWG3) The "sest Twelve cepstra were chosen because they are dominated by a few large, low frequency peaks, rather than many small. high frequency ones. The sum and the product of the "Beli Twelve cepstra are plottea in Figure 33. The sum, and especially the prorluct, show one dominan: peak. This time it is centered at about 1.85 sec , or 0.05 st iigher in the quefrency domain than the peak for the "Best ...x" cefstra

Finaliy, when the sum and product of all the stations. normalized cepstra is taken, one obtains the results of

EIGURE_3I Copatre of teat aignal TEST and repeated teat aignal TEST-R.

[^10]

CEPSTRUM 1.0 SEC. TIME NINDON
FIRST 0.5 SEC. SET TO 2EAO

EIEURE.34 The sum and the product for all the stationa weed in the eepatral analyase of the Aprid 23, 1984 -arthquake.

Figure 34. It is clear that the plots of Figure 34 are double peaked. The peak at 1.95 sec remains, and a second peak appears at approximately 1.0 seconds in the quefrency domain.

In order to evaluate these cepstral peaks, and the lag times they may represent, we must determine the presence ard the relative significance of the p P and the s Parrivals at the stations used in the cepstral analysis (Figure 29). Thus, we must calculate the relative displacements and the lag times for the P, pP, and sP arfivals at each station

The distance of the stations, in Figure 29, from the epicenter of the April 23,1984 earthquake is between 250 km (2.25 degrees) and 450 km (4.05 degrees), and the event is at a depth of $4.0-5.0 \mathrm{~km}$, based on aftershock data (Armbiuster and Seeber, 1985). This is well within the top, 8 km , Paleozoic layer. Thus, we may apply the equations for cylindrical displacements at teleseismic distances for a point source dislocation arbitrarily oriented in a halfspace, as given by Langston and Helmberger (1975). The total vertical displacement of the P-wave is:
$W=R p z\left\{U_{p}(t)+R_{p p *} U_{p}\left(t-d t_{q}\right)+\left(R s p *\left(n_{p} / n_{g}\right)\right)\right.$

$$
\left.* U_{g}\left(t-d t_{2}\right)\right\} * S(t) * I(t) * Q(t) \quad R-1
$$

where $S(t), I(t)$, and $Q(t)$ represent the far field source time function, instrumental response, and attenuation operator, respectively.

Since only the relative magnitudes of the displacement for the $P, P P$, and $s P$-waves are of interest at each station, the above equation $(R-1)$ may be broken down into the $P, p P$, and $s P$ far-field displacement components. Thus, the $S(t), I(t), Q(t)$, and Rpz (receiver function) are not considered, and the relative displacement for the direct F-wave (W_{F}) is given by the following equation:

$$
W_{P}=U_{P}, \quad R-2
$$

where U_{p} is the P-wave displacement potential
$U_{p}=M_{0} /(4 \pi p) * \sum_{i=1}^{3} A_{1}(s, r, d) * C_{i} *\left\{H\left(t-R / V_{p}\right) / R\right\}$
where V_{p} is the P-wave velocity,
The relptive displacement for the pp-wave is:

$$
W_{p p}=R p p * U_{p}\left(t-d t_{1}\right), \quad R-4
$$

where U_{p} is the same as above, and it f is the time lag of the p arrival relative to the direct P arrival. This
time lag is given by:

$$
d: 1=2 * h * n_{p} \quad, \quad \hat{R}-5
$$

where h is the depth of the event and n_{p} is the slowness for the f-wave, as defined below. Finally, the relative displacement for the sp-wave is:

$$
W_{s p}=R s p *\left(n_{p} / n_{g}\right) * U_{s}\left(t-d t_{2}\right), \quad R-6
$$

where U_{S} is the $S V$-wave displacement potential:
$U_{s}=M_{0} /(4 \pi \rho) * \sum_{i=1}^{3} A_{i}(s, r, d) * S V_{i} *\left\{H\left(t-R / V_{g}\right) / R\right\}$,
R-7
and V_{s} is the S-wave velocity and $d t_{2}$ is the time lag of the $s P$ arrival relative to the direct P arrival. It is given by:

$$
d t_{2}=h *\left(n_{p}+n_{g}\right) \quad R-8
$$

where h is the depth and n_{p} and n_{g} are the slowness for the F and S-waves, respectively

Since we are concerned with only the magnitudes of the relative displacements, the displacement potentials of equations $R-3$ and $R-7$ become:

$$
U_{P}=\sum_{i=1}^{3} A_{i}(s, r, d) * C_{i} \quad R-9
$$

and

$$
U_{s}=\sum_{i=1}^{3} A_{i}(s, r, d) * S V_{i} \quad R-10
$$

respectively, The three terms in the summation $i=1,2,3$ represent the fundamental dislocation terms, vertical strike-silp, vertical dip-silp, and a 45 degree dipping dip-silp. The $A_{i}(s, r, d)$ describe the horizontal radiation pattern, and they are given by:

$$
\begin{aligned}
A_{1}(s, r, d)= & \sin (2 s) * \cos (r) * \sin (d) \\
& +0.5 * \cos (2 s) * \sin (r) * \sin (2 d) \\
A_{2}(s, r, d)= & \cos (s) * \cos (r) * \cos (d) \\
& -\sin (s) * \sin (r) * \cos (2 d) \\
A_{3}(s, r, d)= & 0 . \varepsilon * \sin (r) * \sin (2 d)
\end{aligned} \quad R-12
$$

where,
$s=s t r i k e$ from the ind of the fault plane
$r=r a k e$ angle measured from the horizontal upward
$d=d j p$ angle of the fault.
The C_{i} and $S V_{2}$ describe the vertical radiation pattern for the F and $S V^{2}$-wave potentials, respectively.

$$
\begin{aligned}
& C_{1}=-p^{2} \\
& C_{2}=2 * E * p * n_{p} \\
& c_{3}=\left(p^{2}-2 * n_{p}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& S V_{1}=-E * p * n_{s} \\
& E V_{2}=\left(n_{p} 2-p^{2}\right) \\
& S V_{3}=3 * E * p * n_{5}
\end{aligned}
$$

where,

$$
E=\left\{\begin{array}{lll}
+1 & z>h & \text { (down-going ray) } \\
-1 & z<h & \text { (up-going ray) }
\end{array}\right.
$$

$V_{p}=$ compressional velocity at the source
$V_{\mathrm{s}}=$ shear velocity at the source
$p=\sin (i) / V p$ ray parameter
$i=i n c i d e n c e$ angle
$n_{V}=\left\{\left(1 / v^{2}\right)-p^{2}\right) / 2$
Mo is the seismic moment, D is the density, and $1 / R$ is the geometric spreading factor. In the relative magnitude calculations for the displacements, these three factors are left out of the potential equations $R-9$ and $R-10$.
$R p p$ and Resp are the $F \rightarrow P$ and $S \rightarrow P$ free surface reflection coefficients, respectively. The two dimensional Cartesian reflection coefficients are given as:
$R_{p p}=$

$$
4 * n_{p} n_{s} * p^{2}-\left(n_{s} 2-p^{2}\right)^{2}
$$

$$
4 * n_{p} * n_{g} * p^{2}+\left(n_{g} 2-p^{2}\right)^{2}
$$

and

$$
-4 * n_{s} * p *\left(n_{s}^{2}-p^{2}\right)
$$

Resp $=$

$$
4 * n_{p} * n_{g} * p^{2}+\left(n_{s} 2-p^{2}\right)^{2}
$$

The study assumes a homogeneous source structure, and is only concerned with the far-field medium response for the F-wave

In order to determine the $P, P P$, and $s P$ displacements at the various stations used in the cepstral analysis, we
must obtain the incidence angle for the $P, p P$, and $s P$ -waves, the velocity etructure, the fault plane orientation, the station locations, and estimate the depth. Let us first look at the incidence angles and the velocity structure

The distance of the stations from the epicenter of the April 23,1984 carthquake is between 250 km (2.25 degrees) and 450 km (4.05 degrees) north. At this distance, the Pn-wave, refrscted from the Mohorovicic discontinuity, is the first arrival according to the Herrin tables of F-wave travel times (Herrin, et al., 1968).

The best fitting velocity model, based on the location results above, is the Lancaster I velocity model. This model predicts a depth of 40 km to the Mohorovicic discontinuity, and an average p-wave velocity of $8.1 \mathrm{~km} / \mathrm{sec}$ below it. In the top crustal layer, the source layer, this model predicts an S-wave velocity of $3.5 \mathrm{~km} / \mathrm{sec}$. Furthermore, Abried (2978) and Sienko (1982), both assign a P-wave velocity of $5.0 \mathrm{~km} / \mathrm{sec}$ to the top 8 km of Paileozoio rocks in the Lancaster. Pennsylvania region.

Using these velocities, and Sneli's Law, we can find the ray parameter and the incidence angle of the ray which critically refracts at the Mohorovicic discontinuity

$$
P=1 / V_{m}=\sin \left(i_{1}\right) / V_{p} \quad R-16
$$

where p is the ray parameter, and is constant for al2 the velocity layers. V_{m} is the P-wave velocity below the Moho, and V_{p} is the P-wave velocity at the source. Using the above expression and the above values for the velocities, we obtain the following incidence angle for the Fn-wave:

$$
\begin{aligned}
i_{1} & =\sin ^{-1}\left(v_{p} / v_{m}\right)=\sin ^{-1}(5.0 / 8.1) \\
& =28.10
\end{aligned}
$$

$$
R-17
$$

This incidence angle is the same for the $p P$ ray, which originates in the upper hemisphere of the focal sphere Likewise, the incidence angle for the sp ray can be derived through Sneli's Law using the P-wave velocity $\left(V_{p}\right)$ and the S-wave velocity (V_{g}) for the Faleozolc source layer, as given above

$$
P=\sin \left(1_{1}\right) / V_{P}=\sin \left(1_{2}\right) / V_{g}, \quad R-18
$$

where p is the ray parameter, and i_{1} and i_{2} are the inciuence angles for the P and S-wave, respectively.
Solving for i2:

$$
i_{2}=\sin ^{-1}\left(v_{s} * p\right)=25.60 \quad R-13
$$

one obtains an inmidence angle of 25.6° for the s P ray
Having obtained the incidence angles and the velocity structure, we must determine the fault plane origntation, the deoth of the event, and the azimuth between this fault plane and each station

The fault plane solution derived for the April 23, 1984 event by Armbruster and Seeber (1985) (Figure 27) indicates that the preferred fault plane strikes approximatedy N a 100 E , dips about 600 E , and has a rake of $140 \circ$ The locstion of the earthquake is $39.94^{\circ} \mathrm{N}$ and $76.32^{\circ} \mathrm{W}$. and the location of the seismic stations used in the cepstral analysis is given in Table 7. Using the N $10^{\circ} \mathrm{E}$ strike of the fault plane and the station locations, we calculate the azimuth between the fault plane and each station. These azimuths are shown in Table for the New York State stations of Figure 29. They are measured from $N \quad 20^{\circ} E$ in a clockwise direction. Finaliy, the depth of the April 23, avent is estimated to be between 4.4-4.7 km based on aftershock data (Armbruster and Seeber, 1985). The aepth of 4.5 km was used as a rough estimate of depth for the calculations.

The above strike and depth information, combined with the incidence angies, the velocity structure, and the fault plane orientation data, was applied to the equations of displacement listed above in order to predict the relative displacement magnitudes, and the time lags for the direct P, $p P$, and $s P$-waves on each station's vertical seismic reoord. These relative amplitudes and time lags are listed for each station in Table 9

In Table 9, the 'Rpp' column is the relative amplitude of the p p arrival with respect to the direct P arrival. The very small values of the relative p p amplitudes indicate that looking at the seismic records for the stations, we would not expect to pick out the pp phase for the April 23 , 1984 earthquake. Plotting the azimuth and incidence angles for the pP rays, recoived at the 13 stations of Figure 29, on the fault plane solution, reveals that the pp rays originate on or very near a nodal plane (see the smal? squares in Figure 35). Therefore, again, we would not expect to see the $p P$ phase on the seismic records. The direct P phase is expected to be apparent since most of the stations plot away from the nodal planes, and within the compressional quadrant (see the small circles in Figure 35). Comparing the values of the direct P-wave amplitudes ('AMP' column in Table 9) with their incidence locations cn the fault plane solution (small circles in Figure 35), we can see that the stations closer to the nodal planes, such as GERM, ELNV, and ROTD have the smallest direct F-wave amplitudes, as expected if the fault plane solution is correct.

Although the pP phase doeq not appear to be very

TABLEES

AZIMUTHS BETWEEN THE FAULT PLANE

 OF THE APRIL $23,19 A 4$ EARTHQUAKE AND THESTATIONS USED IN THE CEPSTRAL ANALYSIS

Statagn_E2.

ABRN
Ansle_in_degrees

ELNV

348

23GERM 25
LCNA 354
LILH 334
ONTR 339
OSwG 349
PHEL 341
ROTD 18
SONY 343
WEST 348
WKNY 354
WTVE 3

[^11]
TARLE．E

REL．ATIVE $D_{1} \quad$ PP，SP AMPI．ITUDE RESPONSES AND LAG TIMES PREDICTED FOR THE THIRTEEN STATIONS OF TABLE 7 GIVEN ThI FOLLDWING PARAMETERS：

FALILT PLANE QRIENTATION：
STRJKE N $10^{\circ} \mathrm{E}$ DID＝ $60^{\circ} \mathrm{E}$ RAKE $=140^{\circ}$
ESTIMATED DEPTH OF EVENT $=4.5 \mathrm{~km}$ ．
INCIDENCE RNELE OF P－WAVE＝ 38.12°

Station	REP	R 3 P	玉t】	¢上？	EMP
ABRN	0．308E－03	2． 48	1.42	1．87	－．347E－01
ELNV	－．730E－02	1． 62	1.42	1．87	－．140E－01
GERM	－．823E－O2	1． 65	1．42	1.87	－．127E－01
LCNA	－．278E－6．	1． 49	1． 42	1． 87	－．319E－01
LILH	0．926E－03	$1 \cdots$	1． 42	1． 87	－．S90E－0：
ONTR	0．819E－03	1.46	1． 42	1． 87	－．378E－01
OSWG	0．225E－0．	1．4E	1.42	1．87	－．343E－01
PHEL	0．742E－03	1．48	1．42	1． 07	－．372E－01
ROTD	－．535E－02	1.57	1.42	1.87	－．173E．01
SON	C． $344 E-$－ 2	1． 48	1．42	1．87	＊．366E－01
WE：	0．30EE－03	1． 48	1．42	1． 47	－．347E－0：
WMNY	－．278E－03	1． 49	1.42	1． 87	－．219E－01
WTVE	－159E－02	1． 51	1.42	1． 87	－． $\mathrm{ESFE}_{\text {－01 }}$

significant on the seismic records, the relative amplitudes of the s ? arrivals, column 'Rap' of Table 9 , with values of 1.5 ± 0.2 observed for all the stations, indicate that the sp phase should be clearly present in all the seismic records. In fact, they should be approximately 1.5 times the amplitudes of the direct p-waves, whose values are isted in the column labeled 'AMP' in Table 9 . Thus, the s P base should dominate the seismic record in comparison with the p phase, which is indistinguishable from the noise level at each station.

$$
\text { Furthermore, the time lags for the } p P-P \text { and } s P-?
$$ phases have been predicted using equations $R-5$ and $R-8$ above, and are listed in Table 9 in columns 'dts' and 'dt2', respectively. One should note that the P-sP lag time is 1.87 in Table 9 . This is close t? the value of 1.95 sec of the cepstral peak given by the sum and product of the cepstra in Figures 32,33 , and 34 . Thus, the 1.95 sec cepstral peak appears to represent the $s P-P$ lag time for the April 23, 1984 event. Assuming the same ray parameter for the $F, P F$, and $S P$ waves, the $s P-P$ time lag can be given by:

$$
d t_{2}=h *\left(n_{p}+n_{s}\right) \quad R-20
$$

The depth (h) of the earthquake based on the $1.95 \mathrm{gec} s p-p$ lag time obtained through the cepstral analysis can be estimated by:

$$
h=d t_{2} /\left(n_{p}+n_{g}\right) \quad, \quad R-21
$$

where n_{p} and n_{s} are the slowness for the P and S waves, respectively. They are defined, as above, by:

$$
n_{V}=\left(1 / v^{2}-p^{2}\right) 1 / 2, \quad R-22
$$

where v is either the P or S-wave velocity in the source layer, and p is the ray parameter. Using a f wave velocity of $5.0 \mathrm{~km} / \mathrm{sec}$, an S-wave velocity of $3.5 \mathrm{~km} / \mathrm{sec}$, a ray parameter of:

$$
p=1 /(8.1 \mathrm{~km} . / \mathrm{sec} .) \quad, \quad R-23
$$

and th cepstrally derived $s p-\xi$ time lag of $d t_{2}=1.95$ sec, al above, equation R-21 gives a cepstrally predicted depth (h) of :

$$
\mathrm{h}=4.7 \mathrm{~km}
$$

for the April 23, 1984, Lancaster earthquake This depth is in agreement with the $4.4-4.7 \mathrm{~km}$ depth obtained through the aftershock data by Armbruster and Seeber (1985). Thus, the mainshock appears to have occurred at the base of the aftershock activity

Finally, the significance of th first peak at 1.0 sec in the product of all the station' :epetra (Figure 34) is
unclear. This peak is unlikely to be the pp-p lag time, since the pP phase is negligible on the seismic records for our set of stations, and hos a predicted lag time of 1.42 $s e c$, as obtained by the direct $P, p P$, and $s p$ responsa calculations performed above. This is reinforced by the fact that the ppincidence rays from the earthquake to our stations all fall on, or very near, one or both of the nodal planes of the P-wave focal mechanism (Figure 35). Nor is this peak likely to be the sum or difference between the $\mathrm{PP}-\mathrm{P}$ and the $\mathrm{sP-P}$ delay times, since the amplitude of the pp arrival is so small. This peak does not seem to cominate the cepstral product plots of the 'Best Six' and 'Best Twelve stations (Figure 32 and 33, respectively). Not until the LCNA, WMNY, WEST, and WTVE stations are added to the data set, does this peak become apparent in the cepstral product. Since all four of the stations are within the same region, this peak may be dide to reverberations along a local crustal anomaly, or some other local phenomenon.

Discussion

The use of cepstra as means of obtaining tne depth of an earthquake appeared to work in the case of the April 23. 1984 Lancaster, Pennsylvania event. The $s P-P$ delay time obtained was about $1.9-1.95 \mathrm{sec}$. The cepstral peak corresponding to this $s P-P$ delay time was most clearly visible when the cerstra of all the seismugrams were normalized to a maximum value of 1.0 , and multiplied together over each eecond in the quefrency domain. The resultant composite epstrum (bottom plot of Figure 34) produced two main peaks. The peak at $1.9-1.95 \mathrm{sec}$ appears to correspond to the $s p-P$ arrival time delay. This was verified by a comparison to calculated amplitude responses and time lags using ray theory, for the $P, p P, s P$ arrivals, given the fault plane orientation, station locations, "elocity model, and a rough estimate of the depth of the earthquake, based on the aftershock data. A P-wave velocity of $5.0 \mathrm{~km} / \mathrm{sec}$ and an S-wave velocity of $3 \mathrm{Ekm} / \mathrm{sec}$ were used for the sourc, iayer. The second paak appears at 1.0 seconds of quefzenc, in the cepstrum product (bottom plot of Figure 34), when stations LCNA, WMNY, WEST, and WTVE are added. This peak does not appear to be due to the pp-p lag time, or the sum or difference of the $P P-P$ and $s P-P$ delay times. Rather, since all four of these stations are in the same region of New York State (Figure 29), this peak may be due to reverberations along a local crustal anomaly.

The 4.7 km depth for the April 23,1984 mainshock
obtained by the cepstral analysis indicates that it occurred at about the same depth as the aftershocks which were located at a depth of $4.4-4.7 \mathrm{~km}$ based on local aftershock monitoring

SUMMARY AND CONCLUSIONS

Although the Lancaster, Pennsylvania area is dominated by an $E-W$ striking structural trend associated with Paleozoic deformation, there is evidence that the less obvious $N-S$ striking structural features have betn the dominant zones of tectonic activity from the Mesozoio into the present. A Dloser Luok st the geology of the Lancaster, Fennsylvania region resulta in the observation that the youngest structural features are the $N-S$ striking ones, and not the E-W striking ones, such as the Martic Line (Figure 1). Based on cross-cutting relationships, the youngest rocks of the area are the N-S striking Late Triassic. Early Jurassic diabase dikes. Likewise, the youngest faults in the region are sets of $\mathrm{N}-\mathrm{c}$ trending cross faults. The dominant of these sets of faults is the Fruituille Fault Zone, which outcrops just north of the city of Lancaster, and continues north, almost up to the Triassic basin (Figures 1 \& 2). These cross-faults offset all the other structural features and lithologies in the area. Historical seismicity and reiocated instrumentally recorded events appear to cluster around this main set of cross faults the Fruitville Fault Zone of Lancaster County (Figure 20).

The April 23, 1984 earthquake, which was a magnitude 4. 2 and a maximum intensity of $M M=V I$ event, fell along the southern extension of this Fruitville Fault zone at 39.940 N and 76.3250 W . The April 19,1984 , magnitude 3.0. intensity $M M=I V$ foreshock also was located at the southern extension of this fault zone (39.84 ${ }^{\circ} \mathrm{N}$, 76.350 W) (Figure 20), as were the 1 C aftershocks (Figure 26). This $N-\mathcal{E}$ trending, seismically defined ne, the Lancaster Seismic Zone, is approximately $50-60 \mathrm{~km}$ in length and $10-20 \mathrm{~km}$ in width. The April 23,1984 earthquake was among the largest events along this zone, which is characterized by events of maximum intensit/ MM=VI (Figure 20).

The drainage pattern of the major streams is $\mathrm{N}-\mathrm{S}$ trending in the Lancaster area (Figures 2 \& 10). In 'dition, there is evidence that along the southern e. iension of the Fruitville Fault Zone, there had been a pre-glaciai falls on the Susquehanna River, called the Great Falls by Thompson (1985). These falls may have been due to a fault scarp and/or an antjolinal uplift in. the area

There is some geophysical ev dence that the Fruitvilie Fault Zone extends to the basement. There are some $N-S$ trending gravity and magnetic anomalies in the area of the fault zone (Figures 11 \& 12). However, due to the similarity of the carbonates on either side of the fault, a
more precise ground survey may be necessary to clearly define the fault.

Various remote sensing methods, including topographical studies (Wise, 1967), and LANDSAT-1 and LANDSAT-4 images, have revealed major $N-S$ striking lineaments through the Lancaster region. The sataliite detected ineaments and the potential field data, also, suggest. one of several large scale basement features, possibly faults, striking NW through the recion (Lavin, et al. 1982).

As mentioned, the April 23, 1984 mainshock and the April 19, 1984 foreshock, both fell along the Lancaster Seismic Zone. These locations were based on maximum intensity areas (Scharnberger and Howell, 1985), on absclute location using HYPOINVERSE (Klein, 1978 ; Lahr, 1980), and on the results from a relative location algorithm (Baumgardt, 1977 \& 1985). The mainshook and the aftershocks were located near Marticville, approximately 10 km south of the city of Lancaster. The foreshock was located some $5-10 \mathrm{~km}$ south of the mainshock, along strike of the Lancaster Seismic Zone, near MoCalls Ferry and Holtwood (Figure 28) The aftershocks of the April 23, 1984 event were observed to be at a depth of $4.4-4.7 \mathrm{~km}$ determined from the records of 10 such events. These were reoorded by a temporarily assembled local network of 9 stations (3 from Penn State and 6 from Lamont-Doherty) located directly over the location of the mainshook near Marticville (Armbruster and Seeber, 1985).

A cepstral analysis of 17 seismograms from 13 stations of the N.E.U.S. Seismic Network (Figure 29, Table 7), revealed a depth of approximately 4.7 km for the April 23, 1984 mainshock. Therefore, the source of the mainshock appears to be located at about the same depth as the 4.4-4.7 km ceap source of the attershocks. These results were based on a $5.0 \mathrm{~km} / \mathrm{sec}$, P-wave velocity, and a 3.5 $\mathrm{km} / \mathrm{sec}$. S-wave velucity for the top 8 km Paleozoic layer (Abriel, 1978; Sienko, 1982; Alexander, 1984).

The fault plane solution (Figure 27) based on the first arrivals from the mainshock and the aftershocks, predicts a preferred fault plane which strikes approximately N 100E and dips 600 E . This fault f.ane solution indicates that the motion along this fault was right-lateral reverse for the April 23,1984 event and its aftershocks. The strike of this seismogenic fault is analogous to that of the cross faults within the Fruitville Faul Zone, end its overall N-S trend (Figure 20). Furthermore, these cross-faults, like the fault plane solution for the April, 1934 mainshock and aftershocks, reveal a right-lateral component of motion, based on their

```
offsets of all the other structural features in the region
The P-axis of the iault plane solution (Figure 27) is in
the ENE direction. This is the same direction as the strike
of the maximum compressional stress axis for the N.E.
United States, as obtained from other fault plane
solutions, from in situ stress reasurements, and from
geological data (Zoback and Zoback, 1980; 2oback, 1986). In
gitu stress measurements in the kent Cliffs research well
of southeastern New York also indicate a maximum
compressional stress direction of N 500E (Zoback, 1986).
Data from fault plane solutions for several events nearby
Annsville, New York, also, suggest ENE maximum compression
(Seburowski, et al., 1982)
            Therefore, this suggests that the Lancaster area of
S.E. Fennsylvania is in a ubiquitous ENE maximum
compressional stress regine, with the youngest N-S trending
faults, seemingly of Mesozoic age, being reacrivated in a
predominantly reverse sense with a right-iateral component.
This conclusion is supported by the previously-mentioned
fact that the historical seismicity within Lancaster
County, Fennsylvania appears to be confined to a N-S
trending zone, approximately 50-60 km long and 10-20 km
wide zone, which we have named the Lancaster Eeismic Zone.
At the center of this zone is found the highest
concentration of the youngest faults whioh form the N-S
trending Fruitville Fault Zone (Figure 20).
```


BIBLIOGRAPHY

```
Abdypoor, G., and Bischke, R. E., 1982, Earthquakes felt in
    the state of Pennsylvania: with emphasis on
    earthquakes felt in Philadelphia, Pa, and surrounding
    areas.: Temple Univ., Dept. of Geology, PhjJadelphia,
    354pp.
Abriel,W. L., 1978, A ground-based study of the
    Everett-Bedford lineament of Pennsylvania: M.S
    thesis, The Pennsylvania State University, University
    Park, Pennsylvania.
Agrarwall, Y. P., 1978, Eazthquakts, faults, and nuclear
    power plants in southern New York and northern New
    Jersey: Soiance, v. 200, p. 425-429.
Alexander, S.S., 1984, Fersonal communication.
Alexander, S. S., and Stockar, D. V., 1984, 'The earthquake
    of April 23, }1984\mathrm{ near Lancaster, Pa and its
    associated seismo-tectonic setting: Paper presented at
    Eastern Section Meeting, Seismological Society of
    America, October 11, 1984: Earthquake Notes, Oct. 11,
    1984 meeting.
Anderson, T. H., Drake, D. E., and Wise, D. U., 1965, Megapetrofabric of the Coatsville - Doe Run area Pennsy:vania: Pa. Acad. Sc. Proceed., v. 38, no. 2, p. 174-182
Armbruster, J. G., and Seeber, L., 1985, Martio April 23, 1984 earthquake and the Lancaster seismic zone in eastern Fennsylvania: (unpubl.).
Bahat, D., and Engelder, T., 1984, Surface morphology on cross-fold jointz of the Appalachian Plateau, New York and Pennsylvania: Tectonophys., v. 104, p. 299-313
Barstow, N., Schlesinger-Miller, E, and Karka, A., 1981, Earthquakes in New York state and adlacent areas. 1981: U.S.Earthquakes, 1981, U.S.Ges1. Soc. Spec. Publ p. 108-109
Bascom, T., हnd Stose, G. W., 1938, Geology and mineral resources of the Honeybrook and Fhoenixville quads Fa.: U.S.Geol.Soc.Bull., v. 891, p. 76-78
```

Baumgardt, D. R., 1977, The application of differential travel-time residuals for the study of mantle heterogeneities (abstr.): Earthquake Notes, v. 48, p. $9-10$.

Baumgaret, D. R., 1985, Personal communication.
Beck, M. E., Jr., 1965, Paleomagnetic and geological implications of the magnetic properties of the Triassic diabase of S.E. Pennsylvania: Jour. Geophy. Res.. v. 70, p. 2845-2856.

Reck, M. E., Jr., 1972, Paleomagnetism of the upper Triassic diabase from S.E. Pennsylvania: further resulta: Jour. Geophys. Res., v. 77, p. 5673-5687

Bell. H. III, and others, 1978, Comparison of anomalies detected by airborne and truck-mounted magnetometers in the Haile-Brewer arəa, S. Carolina: in Geological investigations of the eastern Piedniont, southern Appalachians; Carolina Geol. Soc. Guidebook; ed. A. W Snoke; p. 21-27

Berg, T., and others, 1930, Geologic map of Pa.: Pa. Geol Surv., 1:250,000

Black, R. F., 1964, Paleomagnetic support of the theory of rotarion of the western part of the island of New foundland: Nature, v 202, p. 945-948.

Bogert, B.P., Healy, M.J., and Tukey,J.W., 1963, The quefrency analysis of time series for echoes: cepstrum, psuedo-autocovariance, cross-cepstrum, and saphe cracking, in Symposium on Time Series Analysis, Brown Univ., ed. Rosenblatt, M., 1963, p. 206-24s.

Bollinger, G. A., Teague, A.G., Munsey, J.W., and Johnston A.C., 1985, Focal mechanism analysis for Vireinia a 1 eastern Tennessee earthquakes (1978-1984): Prepared for U.S. Nuclear Regulatory Commission, NUFEG/CR-4288

Bctt, M. H. F., 1976, Formation of sedimentary basins of graben type by extention of the continental crust: Tectonophys., v 36, p. 77-86

Eria, J. J., 1978, Tectonic setting for the emplacemert of dikes in the Millersville Area, Lancaster County, Pa M.B, thes $\leq s$, Millersville State Collese, Millersville Fs.

Bromery, R. W. and Zandle, G.L., 1959, Aeromagnetic map of the Quarryville quadrangle, Lancaster County, Pa.: U.S.Geol. Survey, Geophys.Invest. Map GP-219

Bronary, R. W. and Zandie, G.L., 1959, Aeromagnetic map of the Conestoga quadrangle, Lancaster County, Pa : U.S.Geol Survey, Geophys. Invest.Map GP-218.

Bromery, R. W. and Zandle, G.L., 1961, Aeromagnetio map of the Litite quadrangle, Lancaster County, Fa. U.S.Geol. Survey, Geophys. Invest. Map GF-257.

Bromery, R. W. and Zandle, G.L., 1961, Aeromagnetic map of the Lancaster quadrangle, Lancaster County, Pa.: U.S.Geol. Survey, Geophys. Invest. Map GP-259.

Bromery R. W., and Griscom, A. 1967, Auromagnetio and generalized geologic map of S.E. Pennsylvania: U.S. Geo1. Survey, Geophys. Inv. Map GF-577

Burch, C. I., Jr., 1985, Enhancement and determination of linear features with application to the Appalachian region: M.S thesis, The Pennsylvania State University, University Park, Pa

Campbell, D. L., 1978, Investigation of the stress concentration mechanism for intreplate earthquakes: Geophys.Res.Lett. 5, P. 477-479

Carts, D. A., and Bollinger, G. A., 1981, A regional crustal velocity model for the southeastern U. S.: Seis. Soc. Am. Bull., v. 71, P. 1829-1847

Cloos, E., and Heitanen, A., 194a, Geology of the "Martic overthrust and the Glenarm series in Pennsylvania and Maryland: Geol. Soc.Am. Sp.Paper \# 35, 207 pp

Cloos, E., 1971, The south border of the Triassic graben in Fennsylvania: Fault or graben? (abs.): Geol Soc. Am. Abst. with Frog. v. 3, \# 7, F. 526

Cloos, E., and Fettijohn, F. J., 1973, Southern border of the Triassic basin, West York, Pa. Fault or uverlap?: Geol. Soz. Am. Bull., V. 84, P. 528-536

Cohen, T.J., 1970, Source-depth determinution using spectral psuedo-autocorrelation, and cepstral analysis: Geophys. Jour Royal Astr. Soc, 叉. 20 P. 223-231

Cook, F. A., Albaugh, D.S., Brown, L. D., Kaufman, S., Oliver, J.E., and Hatchor, R.D., Jr., 1979. Thin-skinned tectonics in the crystalline southern Appalachians; COCORP seismic-reflection profiling of the Blus Ridge and the Piedmont: Gnology, v. ?, P. 563-567.

Daniels, D. L., Zietz, I., and Popenoe, P., 1983, Distribution of subsurface lower Mesozoic rocks in the S.E. U.S., as interpreted from reginal aeromagnetio and gravity maps: U. S. Geol. Surv. Prof. Paper $1313-\mathrm{k}, 24 \mathrm{pp}$.

DeBoer, J., 1967, Paleomagnetic - tectonic study of Mesozoic dike swarms in the Appalachians: Jour. Geophy.Res., v. 72, p 2237-2250.

DGBoer, J., 1968, Paleomagnetic differentiation and corrolation of late riassic volcanic rocks in the central Appalachians: Geol.Soc.Am. Bull., v. 79, p. 609-626.

Dewey, J. W., and Gordon, D. W., 1984, Map showing recomputed hypocenters of earthquakes in the eastern and central i S. and adjacent Canada: U.S.Geol. Surv Map ME-1699.

Diet A, R. S., and Holden, J. C., 1970, Reconstruction of Fangea: breakup and dispersion of continents, Permian wo present: Jour. Geophy.Res., v. 75, p. 4939-4955.

Dimert, W. H., Urban, T.C., and Revetta, F.A., 1972, Some geophysical anomalies in the eastern U.S.: in Nature of the solid earth; MuGraw-Hill, New York, ed. E. Pibertson, P. 544-572.

Dimeju, W. H., Muller, O.H., and Lavin, P.M, 1980, Basement tectonics of New York and Per ssylvania as revealed by gravity and magnetic studies: Virg. Folytech. Inst. Geol. Memoirs \#2, The Caledonides in the USA, ed. D. R. Wones, p. 221-227

Diment, W. H., Mokeown, F.A., and Thenhaus, P.C., 1983 , Northeastern U.S. seismic sourc zone: U.S.Geol. Surv. Circular \#898, p. 24-31.

Dooley, R. E. and Wampler, J. M., 1983, K-Ar relations in the diabase dikes of Georgia: U.S. Geol. Surv. Prof Fapers 1313-M, 24 pp

Drake, A. A. Jr., 1890 , The taconides, acadicies, and alleghenides in the central Appalachians: Virg. Polytech. Inst. Genl. Memoirs \#2, The Cnledorides in the USA, ed. D. R. Wones, p. 179-187.

Drake, C. L., 1963, Appalachian curvature, wrenci faulting end offshore šructures: N.Y.Acad.Sc.Trsns., v. 26, p. 48-63.

Ebel, J. E., Vudier, V., and Celata, M., 1982, The microearthquake swarm near Moodus, Conn. : Jour. Geophys. Res., v. 9, p. 397-400.

Engelder, T. and Geiser, P., 1980, On the use of regional joint sets as trajectories of paleostress fields Uuring the development of the Appalachian plateau, \therefore Y.: jour Ceophys.Res., v. 85. 6319-6341.

Epstein, J. B., 1966, Structural control of wind gaps and of stream capture in the Stroudsburg area, Pa, and New Jersey: U. S. Geoi. Surv. Prof. Paper 550 P, p. B80-T,86.

Erickson, G. P. and Kulp, J. L., 1981, K-Ar measurements on the Palisades Sills, New Jersay: Gool.Soc.Am. Bu: 1., v. in, p 649-652.

Faill, R. T., 1973, Tectoric developement of the Triassic Newark-Gettysburg basin in Pennsylvania: Geol. Soc. Am. Bull., v. 84, p 725-740.

Fanale, F. P. and Kulp, J. L., 1962, Helium method and age of the Cornwall, Pa. magretite ore: Econ. Geciogy, v. 57, p. 735-746.

Fleming, R. S. and Sumner, J. R., 1975, Interfretalion of geophysical anomalies over the arciate Appalachians: Geol. Soc. Am. Abst. with Prog., v. 7, \#1, p. 58.

Fox, F. L., 1970, Seismic Geology of the Eastern U.S.: Bull. Assoc. Eng Geol., v. 7, p 21-44

Freedman, J., Wise, D.U., and Bentley, R.L., 1964, Fatterns of foided folds in the Appalachian Piedmont along the Susquehanna Niver: ©001. Soc.Am. Bul1., v. 75, p 621-638.

Fullagar. P. D. and Bottino, M. L., 1969, Tertiary felsite intrusions in the Valley and Ridge province, Virg Geol. Soc. Am. Bul?, v. 80, \# 9, p 1853-1858

Qeyar, A. R., Gray, C., Molaughlin, D.B., and Mosely, A.R. 1958. Geologic at? as of Pa.: Geology of the Lebanon quad., S.E. Pa.: Pa.Geol.Soc., Atlas 16 TC .
Gir, R, Subhash, S.M.G., and Choudhury, M.A. 1978 , Investigation of crustal structure by the analysis of reverberaion periodicities: S.S.A. Bull, V. 68 , p. 1387-1397.

Gold, D. P., Parizek, R.R., and Alexander, S.A., 1973, Analysis and Applibation of ERTS-1 data for regione 1 geo.ogical. mapping: Technical presentations of symposium on significant results obtained from the earth resources techn satellive-1, v. 1, p. 2.31-246.
Gold, D. P., Alexander, G.A., Parizek, R.R., $19 \% 4$, foplication of reiote sensing to nature resourcos and environmental problems in Pa: Marth and Mineral So., Fenn. State Univ., V. 43, \#7.

Gray, C., Geyer, A. R., and MoLaughlin, D. B 1958, Geolegy of the Dichland quad., S.E. Pa.: Fa. Geol. Soc., Atlais 167

Gray, C. a th Shepps, V. C., 1960, Geolotic Map of Pa. : Pa Gect. Surv, 1:250,000.

Griscom, A., 1963, Tectonic significance of the Bouger gravity field of the Appalachian system : (abs.) Geol. Soc. Am. Sp. Paper \#73, p. 163-164.
Gwinn, V. E, 1964 Thin-skioned tectunios in the placeau and N.W. Valley and Ridge province of the central Appalach: ans: Geol. Soc.Am.Bull., v. 75, p $863-920$.
Hadley, J. B. and Devine, J. F, 1974, Selsmotectronic map of the eastren U.S.: U.S.Geol.Sury Misc. Field Studies Map, MF-620

Harder. E. C., 1910. Structure and oligin of magnotite deposits near 2i.lsburg, York Co., Fa.: Econ. ieciog. v. $5, \# 7, p$. $569 \cdots 622$

Herrin, E., and o hers, 1968, 1978 Seismologica: tables for P phases: Sais. Soc. Ar. Bull , v. $58, \# 4$.
Hermann. R.B., 1976, Focal depth fetarmination from the S.gnal character of long-period P wave S. S A Bull v. 56 , p. 122!-123?

Hersey, J. B., 1944, Gravity investigation of central eastern Fa.: Geol.Scc.Am. Bull., v. 5E, p. 417-444.

Hobbs, W. H., 1904, Lineaments of the Atlantic border region: Seol.Scc. Ani. Bull., v. 15, p. 483-506.

Hodgson, R.A., 1y74, Review of significant early studies in L-neament tonics: Proc. of First International Cunference C. Kics Basement Tectonics: Utah Geol Assoc. Publ. \# 5, p. 1-1م.

Holt, R. J., 1972, Seismicity analysis, Three Mile Island, Susquehanna River, Pa.: Neston Geophysical fosearch for Gilbert Assco. Inc

Hotz, P. E., 1952, Form of diabase sheets in S.E. Fa.: Am. Jour Se., v. 250, p. 735-788

Howell. B. F. Jr. and Schultz, T. R., 1975, Attenuation of modified Mercalli intensity with distance frum the epicenter: Seis. Soc. Am. Bull., v. 65, p. 651-665.

Howell, B. F. Jr., Earthquake expertancy in Pa Proc. Pa Acad. Sei., V. 53, p. 205-208.

Isaacs, C. H., 1979, State'Jllege, Pennsylvania custal structure: by modeling of long-period F wave-8urms from teleseismic earthquakes: M.S. paper, Pennsylvania State University, University Paik, Fa., 82 pp .

Isachsen, Y. W., 1974, Fracture analysis of New York state using multi-stage remote sensor data and ground study: possible application to plate tectonic modeliag: Proc. ist. Int. Conf. on Nem Basement Tectonics; Utah Ceol A3s00. Publ. $\# 5$, p. 200-217.

Jacobeen. F. H. Jr., 1972, Seismic evidence for high angle reverse faulting in the coastal plane of Fwince Georges and Charles counties, Maryland: Maryland Geol Surv. Int. Circ. \#13, 21 p

Jeffreys H. . d Bullen, K. E., 1940, Sejsmological tables Brit. Assuc for the Advancement of Sc., Liondon

Johnston, H. E., 1966, Hydrology of the New Oxford formation in Lancaster county, Pa.: Fa. Geol Soc. Ground Water Report W23

Jonas, A. I. and Stose, G. W., 193C, Topographic and geologic atlas of Pa : L Lancaster quadrangl: Ia. Geol. Surv., Atlas \# 168

Kane, M. F., 1977, Correlation of major eastern wart juake centers with mafic/ultramafic masses: U.S. Gesl. Surv. Prof. Paper 1028-0.

Katz, S., 1955, Seismic study of the orustal structure in Pa. and N.Y.: Seis. Soc. Am. Bull., v. 45, f. 303-325

Kauffman, M. E., 1967, Geological investigation of Three Mile Island and vicinity: Jan. 14, 1967 Report to Gilbert Assoc. Inc.

Keith, A., 1923, Outline of Appalachian structure: Geol. Soc.Am. Bull., v. 34, p. 309-380.

Kemerait R.C., and Sutton, A.F., 1982, A multidimentional approach to seismic event depth estimation: Geoexploration, V. 20, p. 113-130

Kerr, R. A., 1985, Signs of an eastern quake?: Science, Nov. 1, 1285

King, E. R. and Lietz, I., 1978, N. Y. -Alabama lineament: Geophysical evidence for a major crustal break in the basement beneath the Appalachian Basin: Geology, v. 6, p. $312-318$.

King, F. B., 1951, The tectonics of middle North America: Princeton University Press, Princeton, N.J., 203 p.

King, P. B., 1961, Systematic pattern of Triansic dikes in the Appalachian region: U.S. Geol. Surv. Prof. Faper 424-B, P. B93-B95.

King, P. B., 1971, Systematic pattern of Triassic dikes in the Appalachian region -second report: U.S. Geol Surv. Prof. Faper 750-D. P. D84-D88

Klein, F. W, 1978, Hypocenter location program HYPOINVERSE: U.S. Geol. Surv. Open-file Report 78-697

Klitgord, K. D. Dillon, W. P., and Popenoe, P., 1983, Mesozoic tectonics of the scutheastern U.E. coastrol plain and continental margin: U.S. Geol. Surv. Prof Paper 1313-P, 15 pp

Knopf, E B, and Jonas, A I., 1929, Geology of the McCall Ferry - Quarryvili: district, Pa.: U.S. Geol. Surv. Bull. \#799.

Kowalik, W. S. and Gold, D. P., 1974, Use of Landsat-1 imagery in mapping lineaments in Pa.: 1st. Internat. Conf. On the New Basement Tectonics; Utah Geol. Assoc. Publ. \#5, ed. R. A Hods n, et al. p. 236-249.

Kowalik, W. S., 1975, Use oi Landsat-1 imagery in the analysis of lineaments in Fa.: M.S. thesis. Penn State Univ., University Park, Pa.

Kowalik, W. S. and Gold, D. P., 1975, Jineaments anc mineral oncurrences in Pa.: NASA Tech. Rept., ORSER/SSEL Rept. 14-75 in M.S. thesis, Kowalis, W. S., Penn. State Univ., University Park, Fa.

Lehr, J.C., 1980, Hypoellipse/multics: A computer program for deter mining local earthquake hypocentral paramoters, magnitude, and first motion pattern: U.S.G.S. Open File Rept. 80-159, revised April 1980 for version II, 59p.

Langston, C.A., and Helmberger, D.IJ., 1975, A procedure for modeling shallow dislocation sources: Geof:ns. Jour. Royal Astrol. Soc. \#42, p. 117-130.

Lanning, K.M., 1973 An olivine tholeiite dike swarm in Lancaster, county Pennsylvania: ii.. thesis, Pennsylvania Stare Univ.

Lapham, D.M. and Gray, C., 1972, Geology and origin of the Triassic magnetite deposits and diabase at Cornwall, Pennsylvania: I!.S.G.S. Bull. M56

Laving, P.M., and Alexander, S.S., 1981, Evidence for block tectonic structural elements in the eastern U. S. and their present tectonic significance; Earthquake Notes, v. 53, \# 3, p. 19.

Lavin, P.M., Chaffin, D.L., and Davis, W.E., 1982, Major lineaments and the Lake Erie - Maryland crustal block: Tectonics, $v .2,2.431-44 \mathrm{C}$

Le Pichon, Y., and Fox, P.J., 1971, Marginal offsets, fracture zones, and the early opening of the North Atlantic: Jo :r. Jeophys. Res. v. 76, p. 6234-6308

Liaw, Z.S., 1984, A modified cepstral method and its application to DWWSSN broadband data: M.S. thesis, Pennsylvania State Univ.

Lloyd, O.B., and Growitz, D.J, 1977, Ground-water resources of central and southern York county, Fennsylvania: Pa. Geol. Surv., Water Resource Report \# 42 .

Mackin, J.H., 1962, Structure of the Glenarm Series in Chester County, Pennsylvania: G. S. A. Bull., v. 73. P. 403-410.

May, P.K., 1971, Pattern of the Triassic-Jurassic diabase dikes around the North Atlantic in the context of predrift positions of the continents: G. S. A. Buli., v. 82. p. 1285-1292.

Mokeown, F.A., 1978, Hypochesis: Many earthquakes in the central and southeastern United States are causally related to mafic intrusive hodies: Jour. Res. U. S. G. O1. Survey 6, p. 41-50.

McKinstry H., 1961, Structure of the Glenarm Series in Chester County, Penzsylvaila: G. S.A. Bull., v. 72 , P. 557-578.

McLaughlin, D.B., 1Ұ41, The diztribution of minor faults in the Triassic of Pennsylvania: Papers of Mich. Acad. of Sc. Arts \& Lit., v. 27, p. 465-479.
McLaughlin, D B., 1961, Some features of the Triassic north bordur in Pennsylvania: Fa. Acad. of Sc. Proceed., v. 35 , P. 124-128.

MoLaughlin, D.B., 1963, Nowly recugnizel folding in the Triassio of Pennsylvania: Pa. Acad. of Sc. Proceed., v. 37 , F. 156-159.

Meisler, H., and Eecher, A.E., 1971, Hydrology of the carbonate rocks of the Lancaster $15-\mathrm{min}$ quad., Pennsylvania: Pa. Geol. Soc. Progress Report 171
Hetcalf, T., and Deboer, J. 2., 1981, Fost-Triassio stress patterns along the Aopalachians: $207-8 \mathrm{~m} . \mathrm{y}$. B.P. (abstr.): G. S. A. Abst. W/ Prog. \# 13, F. 510.
Minstei, JB., and Jordan, T.F., 1978, Presenr-day plate
motion: motion: J. G. R., v. 83, P. 5331-5354.

Moore. T.P., 1979, Upper crustal velocity structure in southwestern Virginia: M.S. Thesis, Virg. Polytech. Inst.

Mudge, $M . R$. 1968, Depth control of some concordant
intrusions: G. S.A. Bull, v. 79, p. 417-428.
Muller, OH , and others, 1979, i preliminary gravity map of Pennsylvania: G. S. A. Abst. W/ Prog., v. 11, \#1, p. 46 .

Muller, O.H., Diment, W.H., and Lavin, F.M., 1980, Transverse gravity features and seismicity in New York and Pennsylvania: G. S. A. Abst. w/Prog., v. 12, 母 2, p. 74 .

Muller, O.H., Diment. W.H., and Lavin, F.M., 1980, The nature and geological implications of three inneaments which terminate or offset geophysical anomalies in New York, Pennsylvania, Michigan, and Ontario: G.S.A. w/ Prog., v. 12, \# 7, p. 488

Muller, O.H., Diment, W.H., and Lavin, P.M., 1980, Major N.W. trending Precambrian strike-slip fault in Fennsylvania: EOS. A.G.U. Trans., v. 61, \#17, F. 360

Mulier, O.H., and Diment, W.H., 1981, Persistent zones of weakness in North America: EOS, A.G.U. Trans., v. 62. \# $45,0.1032$.

Muller, O.H., and Diment, W.H., 1981, Is the Scranton Gravity High part of the sentral North American rift system? (abstr): G.S.A. Abst. w/ Prcg., v. 12, \# 7, p. 516 .

Nettleton, L.... 1941, Relation of gravity to structure in the northern Appalachian area: Geopnys., v. 6, p. 270-296.

Newe11, V.L., and Wise, D.U., 1965, Independent joint system superimposed on the metamorphic fabric of the Glenarm Series near Coatsville, Pennsylvania: Pa Acad. of Sc. Prozeeu., v. 38, \# 2, p. 150-153

Newmark, N.M., and Hall, W.J., 1971, Final sa'ety analysis report for the Three Mile Istand nuclyar station Consulting Eng. Ser., Urbsua, Ill

Notris. II.N., 1983, Epicenters of N.E.U.E. and S.E. Canada, onshore and offshore, time period: 1534-1980: Map and Chart Series $\# 38, N . Y$. State Museum.

Oliver, J.R., Kovach, R., and Dorman, J., 1961, Crustal structure of the New York - Pennsylvania area: J.G.R., v. 66, p. 215-225.

Oliver, J.R., Johnson, T., and Dorman, J., :970 Postglacial faulting and seismicity in New York and Quebec, in Symposium on Recent Crustal Movements, Ottawa, Canada., 1969, Papers: Canadian Jour. Earth Sc., v. 7, \#2, rt. 2, p. 579-530.

Olsen, P.E., 1980, Triassic and Jurassic formations of the Newark Basin, in Field Studies of New Jersey Geology and Guide to Field Trips: 52nd Meeting of the New York State Geol. Assoc., ed. Man eizer, W.

O'Neill, B.J. Jr., 1975, Potential hish.calcium limestone resources in the Mount Joy area, Lancaster County, Pennsylvania: Pa. Geol. Soo. Info. Cir. \#76.

O'Neill, D.C., 1983, Determining crustal structure in parts of eastern North America: M.S. Thesis, Pennsylvania State Univ.

Owens, J.P., 1970, Post-Triassin tectonic movements in the central and southern Appalachians, in Studies in Appalachian Geology: Central and Jouthern, 1970, ed. Fisher, G.W., P. 417-427.

Fage, R.A., Molnar, F.H., and Oliver, J., 1968, Seismicity in the vicinity of the Ramapo fault, New Jersey and New York: S.S.A. Bull., v. 58, p. 681-687.

Parrish, J.B., 1978, Relationship of geophysi al and remote sensing lineaments to regional structure and kimberlite intrusions in the Appalachian Flateau of Fennsylvania: M.S. Thesis, Fennsylvania State Univ

Parrish, J. B., and Lavin, P.M., 1982, Tectonic wodel for kimberlite emplacement in the Appalachian Plateau of Fennsylvania: Geology, v. 10, p. 344-347

Phemister, T.D., 1824, A note on the Lancaster Gap Mine Jour. Geology, v. 32, p. 498-10

Phillips, J.D., and Forsyth, D., 1972, Plate tectonics paleomagnetics, and the opening of the Atlantio: G.S.A. Bull., v. 83, p. 1579-1800.

Poth, C.W., 1977, Summary: Ground-water resources of Lancaster County, Pennsylvania: Pa. Geol. Soc. Water Resource Report \# 43
Rios. J.H., 1966, Geology of the Quarryville-Octoraro area, Lancaster County, Pennsylvania: M.S. Thesis, Franklin and Marshall College.
Rogers, J., 1964, Basement and no-basement hypothesis in the Jura and the Appalachian Valley and Ridge, in Tectonics of the Southern Appalachians, ed. King, F. p. 71-80.

Root, S.I., 1970, Structure of the northern terminus of the Blue Ridge in Pennsylvania: G.S.A. Bull., v. 81, P. $815-830$.

Root, S.I., 1973, Structure, basin development, and tectogenesis in the Pennsylvania portion of the folded Appalachians, in Gravity and Tectonics, 1973, eds. Dejong ana Scholten, p. 343-359.
Root, S.I., 1973, Sequence of faulting, southern Great Valley of Pennsylvania: Am. Jour. Sc., v. 273 , P. $97-112$.

Root, S.I., and Hoskins, D., 1977, Major cross structures in Pennsylvania (Parts I \& II): Pa. Geology, v. 8, \# $2, \mathrm{p}, 8-11$, \& \# 3, p. 4-7.
Root, S.I., and Hoskins, D.M., 1977, Latitude 400 fault zone, Pennsylvania, a new interpretation: Geology, v. 5, p. 719-723.

Root, S.I., and MacLachlan, D.B., 1978, Western limit of Teconic allochthons in Pennsylvania: G.S.A. Bull v. 89, p. $1515-1528$.

Sanders, J E., 1960, Structural history of the Triassic rocks of the Connecticut Valley belt and its regional implications: N. Y. Aced. of Sc. Trans., v. 23 , p. 119-132

Sanders, J.E., 1962, Strike-slip displacement on faults in the Triassic rocks of New Jersey: Science, $v .136$, D. 40-42.

Sanders, J.E., 1963, Late Triassic tectonic history of the northern United States: Am. Jour. So., v. 261, P. 501-524

Sbar, M. L., and Sykes, L.R., 1973, Contemporary compressive stress and seismicity in eastern North America: G.S.A. Bull., v. 84, p. 1861-1882.

Scharnberger, C.K., 1978, Lancaster County earthquake, July 16, 1976; and Another Lancaster County earthquake: Pennsylvania Geology, v. 9, \# 5 \& \# 6.
Scharnberger, C.K., and Howell, B.F., 1985, Intensities and structural setting of the earthquake of 19 April and 23 April, 1984 in Lancaster County, Pennsylvania: Earthquake Notes, $56(2)$, p. 43-46.

Seborowski, K. D., Williams, G., Kelleher, J.A., and Statton, C.T., 1982, Tecionic implications of recent earthquakes near Annsville. N.Y.: S.S.A Bull., v. 72 , p. 1601-1609.

Shauk. F.J., 1975, Interpretation of a gravity profile across the Gettysburg Triassic tasin: M.S. Paper, Pennsylvania State Univ.

Siedner, G. and Miller, J.A., 1968, K-Ar age determination on basaltic rocks from S.W. Africa and their bearing on continental drift: Earth \& Planetary Sc. Letters, Northland Pub. Co., Amsterdam, p. 451-458.

Sienko, D.A., 1982, Crustal structure of south-central Fennsylvania determined from wide-angle reflections and refractions: $\mathbb{K} . S$. Thesis, Pennsylvania State Univ

Sinha, A.K., Hanon, B.B., Sans, J.R., and Hall, S.T., 1980, Igneous rozks of the Maryland Fiedmont: Indicators of crustal evolution: Va. Polytech. Inst. Dept. Geol. Sc. Mem., \# 2, "The Caledonides in the USA", ed. Wones, D. F., P. 131-135.

Smith, L.L., 1991, Magnetite deposits of French Creek, Pennsylvania: Pa. Geol. Surv., 4th ser., M-14

Smith, R.C., 1973, Geochemistry of the Triassic diabase from southeastern Pennsylvania: FhD. Thesis annsylvania State Univ.

Smith, R.C., Rcse, A.W., and Lanning, R.M., 1975, Geology and Geochemistry of the Triassic diabase in Pennsylvania: G.S.A. Bull., v. 86, p. $943-955$

Socolow, A. A., 1974, Geologic interpretation of the deromagnetic maps of Cnutheastern Fennsylvania Pa. Geo2. Survey Infor. Circ. \#77

Socolow, A.A., and others, 1980, Geologic map of Pa:
Pa. Topog. \& Geol. Surv., Map \#1., 1:250,000.
Southwick, D.L., 1970, Structure and petrology of the Harford County part of Baltimore-State Line gabbroperidotite complex, in Studies of Appalachian Geology: Central and Southern, ed. Fisher, G.W., 1970, p. 397-415.

Stose, G.W., and Lewis, J.V., 1916, Triassic igneous rocks in the vicinity of Gettysburg, Pennsylvania: G.S.A. Bull., v. 27, F. 623-643.
Stose, G.W., 1927, Possible Post-cretaceous faulting in the Appalachians: G.S.A. Bull., v. 38, P. 493-504.

Stose, G.W. and Jonas, A.I., 1930, Lancaster quadrangle atlas: Pa. Geol. Surv, Atlas $\# 168$.

Siose, G.W., and Jonas, A.I., 1932, Geologic map of southeastern Pennsylvania: Pa. Geol. Surv., Bull. W-2.

Store, G.W., and Jonas, A.I., 1933, Geology and mineral resources of the Middletown quadrangle, Pennsylvania: U.S. G.S. Bull. \# 840 .

Stose, G.W. and Jonas, A.I., 1939, Geology and mineral resources of York County, Pennsylvania: Pa. Geol. Surv. Bull. C-67.

Stose, G.W., 1949, Fault at the western edge of the Triassic in southern Pennsylvania: Am. Jour. Sc., v. 247, p. 531-536.

Stover, C.W., Regor, B.G., and Algormissen, S.T., 1981, Seismicity map of the state of Pennsylvania: U.S. G.S., Map MF-1280.

Sumner, J.K., 1975, Geophysical interpretation of the structural configuration of the Newark-Gettysburg Triassic basin: Report Geol. Surv. Grant 14-080001-G150, Dept. of Geol. Sc., Lehigh Univ., Pa.

Sumner, J.R., 197E, Residual gravity anomaly map of the Newark-Gettysbure Triassic basin, G.S.A. Abst. W/ Frog., v. 8, p. 280.

Sumner, J.R., 1977, Geophysical investigation of the structural framework of the Newark-Gettysburg Triassic basin, Pennsylvania: G.S 4. Bull., V. 88, p. 935-942.

```
Sykes, L.R., 1978, Interplate seismicity, reactivation of preexisting zones of weakness, alkaline magmatism, and other tectonism postdating continental fragmentation: Rev, Geophy. Space Phys., \#16, p. 621-688.
```

Taylor, P.T., 2ietz, I., and Dennis, L.S., 1963, Geologie implications of aero-magnetic data for the eastern continental margin of the United States: Geophysics, v. 33 , p. 755-780.

Taylor, S.R., and Toksoz, M.N., 1979, Three dimensional crust and upper mantle structure of the N.E. U.S.: J.G.R., v. 84, P. 7627-7628.

7 rompson, A.M., 1978, Lineaments and brittle structural evolution of a portion of the middle Atlantic seaboard region, Del. and Pa.: Proc. of 3 rd . Inter. Conf of Easement Tectonics.

Thompson, G.H., 1985, The preglacial Great Falls of the Susquehanna River (Abstr.), G.S.A. Abstr. w/ Prog., G.S.A. Meeting in Orlando, Fla., Oct. 28, 1985.

Van Houten, F.B., 1965, Composition of the Triassic Lockatong and associated formations of the Newark group, central N. J., and adjacent Pa.: Am Jour. Sc., v. 263, Dec. 1965 , p. 825-863.

Van Houten, F.B., 1969, Late Triassic Newark Group, northcentral N.J. and adjacent Pa. and N.Y., in Geology of Selected Areas in N.J. and Eastern Pa, and Guidebook of Excursions: G.S.A. Annual Meeting, Rutgers Univ. Press, p. 314-330.

Van Houten, $\mathrm{F} . \mathrm{B}, \mathrm{M}, 1977$, Triassic-Liassic deposits:
A.A.P.G., V. $61, \# 1, \eta, 79-99$.
Vogfjord, K.S., 1984, P-wave mediun. response for a shallow dislocation source in a half-space: unpubl.

Voight, B., 1969, Evolution of the North Atlantic Ocean: Relevance of rock-pressure measurements in the North Atlantic geology and continental drift: Am. Assoc Petroleum Geologists Mem., \#12, p. §55-962

Volk, K.W., 1977, Paleomagn. of Mesozoic diabase and the deformational history of southeastern Pennsylvania: PhD. Thesis, Pennsylvania State Univ

IMAGE EVALUATION TEST TARGET (MT-3)

IMAGE EVALUATION TEST TARGET (MT-3)

Von Hake, C.A., 1976, Earthquake history of Pennsylvania: Earthquake Inform. Bull., v. 8. \# 4, p. 28-31.

Watson, E.H. 1955, Triassic fallting near Cwynedd, Pa. Pa. Acad. of Sc. Proceed., v. 29, P. 122-127.

Wentworth, C.M., and Keefer, M.M., 1983, Regenerated faults of small cenezoic offset - Probable earthquake sources in the southeastern U.S.: U.S.G.S. Prof. Paper 1313-S, 18 pp .

Weston Geophysical Research Inc., 1967, Seismicity and response spectra analysis; proposed nuclear power plant, Three Mile Island, Susquehanna River, Pa.: Report for Gilbert Assoc. - purchase order \# 154720 Dated Dec. 29, 1986.

Wheeler, G., 1939, Triassic Fault-line deflections and associated warping: Jour. of Geol., v. 47, p. 337-370.

Wheeler, R.L., Mullennex, R.H., Henderson, C.D., and Wilson, 1.H., 1974, Major cross strike structures of the central sedimentary Appalachians: Progress Report, Proc. W. Va. Acad. Sc.: v. 46.

Wheedor, R.L., and others, 1978, Cross-strike structural a'scontinuities in the thrust belts, with speoial reierence to the Appalachians: Proc. of 3rd. Inter. Corf. of Basement Tectonics.

White, W.A., 1952, Post-Cretacous faults in Virg. and N.C., G. £. A. Bull. , v. 63, p. 745-748.

Wise, D.U. and Kauffman, M.E., 1960, Some tectonic and strur,tural problems of the Appalachian Piedmont along the Susquehanna River, $P a,:$ Guidebook. 25 th Annual Field Conference of Pa. Geologists.

Wise, D.U., 1967, Radar geology and psuedo-geology on an Appalachian Piedmont cross-section: Photogrammetic Eng., July, 1967, p. 752-761.

Wise, D.U., and Grauch, R.I., 1967, Regional Joint pattern superimposed on the metamorphic rocks of Southern Pa .: Pa . Acad. of Sc. Proceed., v. 40, P. 104-110

Wise, D.U., 1968, Regional and sub-continental sized fracture systems detected by topographic shadow techniques: Geal. Surv. Canada Paper 68-52. p.175-199
Wise, D.U., and Werner, M.L., 1969, Tectonic transportdomains and the Pa. elbow of the Appalachians: A.G.U.Trans., v. 50, \# 4, p. 313.
Wise, D.U. 1970, Multiple deformation, geosynclinal transitions and the Martic problem in Pennsylvania, in Studies of Appalachian Geology: Central and Southern, ed. Fisher, G.W., 1970, p. 317-333.
Wise, D.U., 1974, Sub-continental sized fracture systems etched into the topography of New England: Proc. First Int. Conf. on the New Rasement Tectonics, 1974, Utah Geol. Assoc. Publ. \# 5, P. 416-422.
Withington, C.F., 1974 , Basement tactonics of the Atlantic Coastal Plain as seen from ERTS-1 imagery (Abstr.), in Proc. Ist Int. Conf, on New Basement Tectonics, Utah Geol. Assoc. Publ. \# 5, p. 423.
Wood, G.H., Arndt, H.H., and Carter, M.D., 1969, Systematic jointing in the western part of the anthracite region of eastern Pennsylvania: U.S. G.S. Bull. 1271-D.
Woodward, H.P., 1957, Structural elements of the northeastern Appalachians: A.A.P.G. Bull., v. 41, p. 1429-1440.
Woodward-Clyde Consultants Inc., 1985, Aug. 1985, Report on the North Central Area Network and the Mid-Hudson Area Network: Aug 1985, 80c4086 Monthly Report (ESEERC)
Woollard, G.F., 1943, Geologic correlation of aerial gravitational and magnetic studies in N, J, and vicinity: G.S.A. Bull., v. 54, p. 791-818.
Zartman, R.E., Brock, M.R., Hey 1, A.V., and Thomas, H.H., 1967, $\mathrm{K}-\mathrm{Ar}$ and $\mathrm{Rb}-\mathrm{Sr}$ ages of some alkalic intrusive rocks from central and eastern U.S.:Am. Jour. Sc., v. 265, p. 848-870.
Zoback, M.L., and Zoback, M. D. 1980, State of stress in the continental U.S.: J.G.R., v. 85, P. 6113-6156.
2oback, M. D., 1983, State of stress in the 1ithosphere: Rev. of Geophys and Space Phys., v, 21, p. 1503-1511
Zoback, M.D., 1986, In-situ stress measurements in the Kent Cliff research wel1: prepared for the Empire State Electric Energy Corp., N.Y., N.Y
APPENDIX 1
PIEDMONT STRATIGRAPHY NEARTHE SUSQUEHANNA RIVER(after Wise and Kauffman, 1960)

```
PIESICNT STRATIGRAPHY NENR THE
    SUSCUENANNA RIVER
    Mazvin E. Kauffman
Frariklin and Marshald Coldege
```


TRIASS:C

```
Upper Tziassie
```

 Gettysburg formation
 Shale member - soft red sh3de with Intezzededed
 coarse zed sandstone and conglomerate tongues
 which decome the Roseson conglomezate in Chester
 County.
 Elsabeth Furnace conglemerate memser - basal
 pebbly sandstone and conglomerate up so 2500 feet
 thiek.
 New Oxford formation (Stocxton fermation of eastern
 a583s
 Ajkoses, zanging from very coarse to fine-grained,
 with some quartz pebble conglomezates, minoz amounts
 of shade, siltstone, and some impure nodular lime-
 stone and limestone conglomerates.

CRDCVIC:AN

Upper Ordovocian
Conestoga limestone (exact age uncertain, possibly equivalent in paz: to Martinsourgeocalico)

Blue limestone, closely folded, thin-bedded, argillaceous, with eazk graphitic shale or slate and coarse conglomezate and breceia of 1 imestone foragments in darx azaillaceous and calcareous matixx (mose tha ... feet thick). Contains St=oohomena st: is unconformably on formations as; Geekmantown and as old as Antietam.

Mareinsburg formation
Gray to black shale, argillaceous sandstont, with purple and zed shale near base; contains voleanic conturdbutions in Jonestown area; Cocalico shale of Lancastar County is probably equivalent to the Martinsburgi it also contains blubshoblack and dark gray fissile shale with some pusple, green, and red shale near the base, possibly derived form voleanic ash (?). Contains some graptolites.

Midele Ordovisian

Hezshey limestone
Dazk gray-black, thin bedded limestone; weathers to brownishogray surface and shows weld devel oped cleavage (200-350 feet thick in Lebanon area)
Myerstown 1Linestone
Gray-tan, thin bedded limestone, gzaphitic at base, usually medium to finely c-ystaliine (250 feet thiex in lebanon azea).

Annville limestone

Light gaay, high eadesum 2 imestore, massive or thick-becced, weathers to white suga-y-appearing surface (450 feet thick in Lepanon area).
Lower Oravoiesan

Beekmantown group

Ontelaunee, Lolez, Risxenbach, and Storehenge formations comprise this group in the bevanon area, Light to orrk gray limestone and dolomite with cFystalilne anc fossilifezous secs: some dark gray chert ane edgewise songlomerate (2000-2800 feet thick). Contains isochinina seelvi (Whitilele),

 gevotoz20n steelid.

CAMERZAN

Upper Cambzian
Conocrcheague limestone
Impure, dark-blue limestone, with bands of black chert, oolites, edgewise conglomerates, ane eryptozooan zeefs; contains several dolomite beds. (Susdivided into following memsers in northern Lancastez and adjacent counties: Richland, M111bach Schaeffers*own, Snitz Creek, and Buffalo Scrings mertess Contalin gyvotozoon prolitezem and C uncylatum ($1000-1300^{\circ}$ zeet $\operatorname{tni} 6 \pi /$.

```
M1dele Cambrian
```


E1brook limestone

```
Thin-bedded, shaly, daminated, fine-grained argillaceous limestone and dolomite: weathers to buif suriace (approximateiy 1000 feet thisk).
Lower Camezian
Ledgez dolomite
Llght gay to white coarsely czystalline dolomite; weathers to sough sugazy surface (approximately 1000 feet thick).
Kinzers formation
Dark banded argillaceous dolomite, spotied mazble, and darx calcareous shale; contains many bower Camezian fossils inciueing gonnia, Olenelius. Mannezia, and paecumias ( \(0-500\) ieet thasx).
Vintage dolomite
Gray thicx bedded, knotty dolomite with argillaceous paztings and mazble at base. Contains Sajiezplia egnica. (up to 600 feet thiex).
Antietam quaztzite
Gray-tan quartzite and ruariz or miea schist wish a ealear*ous, ferzuginous, vitueous, granulaz Guarezite at the ton (200-800 feet thack). Contains ohensilus, Camezelia, oboledia, Holishes, Scolis.hus.
Harpess phyllite
Fine-grained albite schist, gray-çreen, quartzose phyllite, dazk shaje and siate approximately 1000 feet :hick..
Chickies quaztzite
Thick-oecced, 1 gght colored, vitweous guartzite;
locally schistose with sericite paztings arid
interzedcec black siate. Zontains Seshithus dineazis. ( \(500-600\) feet thiek)
Hellam conglomerate (not well developed in bancaster County)
M1Ky-quaztz pebbles up to six inches long in finez Guartz-sezicite matisix; some pepoles and cobbles of red and black fasper and quaztzite and som bluishgreen quaz*z.
```


PREEAMERIAN

Czystalline basement complex

Soltimore gneiss, Eyzum gneiss, Plekering greiss, Pochuck gheiss, metaciabase, gapbso, graphitic gneiss, anorthesite, granodiorite, quarta monzonite, ane serpentine.

```
ROCKS OF QUSTIONABLE AGE (PFobably Lower paleozole)
    Glenarm Series
```


Peach Bottom Slate

Dark bluish-gray to bluish black slate, consisting of muscovite, quartz, andalusite, and graphite wi th some magnetite and pyrite.
Cerdiff Conglomerate
Quartz pebbles in schistese fine quartz, sericite, and chlorite matitix.

Peters Creek Schis:
Chlorite and sericise auartz schists with schistose quartzites and conglomerates.
Wissahiekon formation
tight gray to bluish gray mica sehist with abundant biotize, muscovite, quartz, eeicote, oligoclase, albite, hornolende, and chlorite.

Cuckeysville Marble
White to light bluish gray marble.
Setters Formation
Whise feldspathic quartzite with gray mica gneiss and sehis:.

APPENDIX 2
 SEISMOGRAMS FOR THE AFRIL 23, 1984 EARTHQUAKE

SEISMOGRAMS FOR THE APRIL 23.1984 EARTHQUAKE

The following plots are the first 40 seconds of the seismic signal used in the cepstral analysis of the April 23. 1984 earthquake of Lancaster County, Pennsylvania. The seismograms are from stations in the Mid-Hudson Area Network and the North Central Area Network of New York State. They are operated by Woodward-Clyde Consultants of Wayne, New Jersey. The four letter identification oode for a particular station appears in the upper left-hand corner of each seismic trace. The location of each station is given in Figure 29 and Table 7 . The maximum value for the first 40 seconds of each seismogram appears above the center of each trace. The signals are plotted on a scale of 5 seconds per tick mark.

```
NOTE: Stations ONTR and OSWG have all three components
    plotted. The identification is as follows:
    ONTR = RADIAL component from station ONTR
    ONTR2 = TANGENTIAL component
    ONTR3 = VERTICAL component
    OSWG = RADIAL component from station OSWG
    OSWG2 = TANGENTIAL component
    OSWG3 = VERTICAL component
    The remaining stations have only the VERTICAL
    component plotted, and only this component was used
    in the cepstral analysis.
```


LIST OF FIGURES FOR AFFENDIX_2

Station In Page
ABRN A148
ELNV A148
GERM A148
LCNA A149
LILH A149
ONTR (radial) A152
ONTR2 (tangential) A152
ONTR3 (vertical) A152
OSWG (radial) A153 A153
OSWG2 (tangential) A153
OSWG3 (vertical) A153 A153
PHEL A149
ROTD A150
SONY A150
WEST Al50
WMNY A151
WTVE A151

EIGURE $2-2$ Firat 40 sec of the selamograse (vertical componente)
for atetions LCNA, LILH, and PHEL.

K21/15235 00 's

K211/5238 00 's

EIGURE_2-3 First 40 sec of the seiamograme (verticel componante)
for etations ROTD, SONY, end WEST.

FIGURE 2-4 First 40 sec of the aismograne (vertical componente) for atations WWNY and WTVE.

EIGURE 2-5 Firat 40 sec of the radial (ONTR), tangential (ONTR2). and vertical (ONTR3) componente for etation ONTR.

A153

APPENDIX_3

POWER SPECTRA FOR THE APRIL 23, 1984
EARTHQUAKE

POWER SPECTRA FOR THE APRIL 23, 1984
 EARTHQUAKE

The following plots are the first 10 Hertz of the power spectra for the stations used in the cepstral analysis of the April 23, 1984 earthquake of Lancaster County, Pennsylvania. Two plots are given for each station. The top plot shows the smoothed noise power spectrum (dashed line) superimposed onto the signal and noise power spectrum for a 10 second time window. The lower plot shows the smoothed noise power spectrum (dashed ines) superimposed onto the signal and noise power spectrum for a 20 second time window. The maximum values for the 10 second and the 20 second windowed power spectra are listed in the upper right-hand corner of the top and bottom plot respectively. The three power spectra for each station are plotted on the same vertical scale which is determined by the maximum value of all of them. The time windows used for each station is listed on the following page.

LIST OF EIGURES FOR APEENDIX 3

EIGURE_3-1 Power apectral denaity for a 10 see window (top) and a $20 \mathrm{sec} w$ indow (bottom) of station ABRN.

FIGURE_3-2 Powar apectral denaity for a 10 sec window (top) and 20 sec window (bottom) of atation ELNV.

FIGURE_3-3 Powar apectral denalty for a 10 sec window (top) and a 20 sec window (botton) of atation GERM.

EIGURE_3-4 Powar apectral denalty for : 10 sec window (top) and 20 sec window (bottom) of atation LCNA.

EIGURE 3-5 Power apectral denalty for a 10 sec window (top) and a 20 sec window (bottom) of atation LILH.

EIGURE_3-6 Power apectral denaity for a 10 aec window (top) and a 20 sec window (bottom) of station ONTR (radial).

EIGURE-3 27 Power ap*etral denalty for a 10 eec window (top) and a 20 window (bottom) of station ONTR (tangential).

EICURE $3=8$ Power apectral donaity for - 10 eac window (top) and a 20 ece window (bottom) of station ONTR (vertical).

EIGURE_3-9 Power apectral denaity for a 10 sec window (top) and a 20 sec window (bottom) of station OSWG (radial).

EIEURE_ $3=19$ Power apectral density for a 10 sec window (top) and a 20 sec window (botion) of station OSWG (tangential).

 and . 20 sec uindow (botton) of atation OSWG (vartical).

EZGURE-3-12 Power apectral denaity for e 10 sec window (top) and a 20 sec indow (bottom) of atation PHEL.

EIGURE_3-13 Power apectral denalty for . 10 sec window (top) and a $20 \mathrm{aec} w$ indow (botton) of atation ROTD.

EIGURE_3-15 Powar apectral denaity for a 10 see window (top) and a 20 see window (botton) of etation SONY.

EIGURE-3:15 Power apectral denalty for a 10 see window (top) and a 20 ee window (bottom) of station WEST.

EEGURE_3-16 Power apectral denaity for a 10 aec window (top) and a 20 sec window (botton) of atation WMNY.

EIEURE-3212 Powar apectral denaity for e 10 sec window (top) and - 20 eec window (botton) of station WTVE.

ABPENR:X_4

CEPSTRA FOR THE APRIL 23, 1984 EARTHQUAKE

CEPSTRA EOR THE APRIL 23. 1984 EARTHQUAKE

The following plots are the first 10 quefrency seconds of the cepstra for the windowed power spectra from the stations used in the cepstral analysis of the April 23 , 1984 earthquake in Lancaster County, Pennsylvania. Tko plots are shown for each station. The top plot is the cepstrum of the 10 second windowed signal, and the bottom plot is the cepstrum for the 20 second windowed signal. The power spectrum was windowed in the region were the noise to signal ratio is minimal. Each frequency window was padded to the same number of points. The frequency window used for each station is listed at the bottom of each plot, and in the table on the following page.

LIST OE EIGURES FOR APPENDIX 4

Station_ID Erequency Window Used Page
ABRN $2-7 \mathrm{~Hz}$ A182
ELVN $1-8 \mathrm{~Hz}$ A183
GERM $1-\hat{3} \mathrm{~Hz}$ A184
LCNA $1-9 \mathrm{~Hz}$ A185
LILH $1-7 \mathrm{~Hz}$ A186
ONTR (radial) $2-6 \mathrm{~Hz}$ A187
ONTR2 (tangential) $2-7 \mathrm{~Hz}$ A1 88
ONTR3 (vertical) $1-6 \mathrm{~Hz}$ A189
OSWG (radial) $1-6 \mathrm{~Hz}$ A190
OSWG2 (tangential) $0-8 \mathrm{~Hz}$ Al91
OSWG3 (vertical) $1-8 \mathrm{~Hz}$ A192
PHEL $0-5 \mathrm{~Hz}$ A193
ROTD $1-8 \mathrm{~Hz}$ A194
SONY $2-7 \mathrm{~Hz}$. A195
WEST $1-9 \mathrm{~Hz}$ A196
WMNY $1-10 \mathrm{~Hz}$. A197
WTVE $1-8 \mathrm{~Hz}$ A198

EIEURE_4:2 The eopatrua for e 10 sec window (top) and a 20 aec window (bottom) of station ABRN.

EIGURE_ $4=2$ The eepatrus for 10 sec window (top)

EIGURE_4:3 The eepetrun for a 10 sec undow (top) and a 20 sec window (botton) of atation GERM.

EIGURE_4Z4 The copatrua for 10 sec window (top) and a 20 am window (bottom) of atation LCNA.

EIGURE_4=5 The copatrua for a 10 sec window (top) and a 20 sec wincow (botton) of atation LILH.

EEGURE_ $5=6$ The copetrun for a 10 aec window (top) and a 20 sec window (bettom) of station ONTR (radial).

EIGYRE-4z? The eopatrun for e 10 sec window (top) and a 20 sec window (botion) of station ONTR (tangential).

EEGURE_ $5: 8$ The copatrue for 10 see window (top) and e 20 sec window (botton) of station ONTR (vertical).

EKGYRE $4=12$ The eepatrun for © 10 ace window (tep) and a 20 sec window (botton) of station OSWG (tangentiel).

 and a 20 sec window (bottom) of etation OSWG (vertical).

EZEVEE 9:12 The eopatrus for a 10 eece uindou (top) and - 20 eoc uindow (botton) of station PHEL.

EIGYRE.SE13 The copatrua for a 10 see windor (top) and e 20 aee window (botton) of atation ROTD.

EIGURE_S=19 The eepatrua for 10 see window (top)
and a 20 sec window (botton) of station SONY.

EIGURE_IE15 The eepatrue for a 10 see window (top) and 20 sec window (bottea) of atation WEST.

EEEYRE- $1=16$ The sepatrum for a 10 eec uindow (top) and a 20 uec window (botton) of atation WKNY.

EIGURE_I-12 The eepatrua for a 10 sec window (top) and - 20 sec window (botton) of atation WTVE.

APPENDIX 5

THE RELATIVE LOCATION
 ALGORITHM THEORY

THE_RELATIVE_LOSATION_ALGORITHM_THEORY

The relative location algorithm works in the following

 manner:12

$$
\begin{aligned}
& \theta, \lambda, 2, \tau=\text { unknown parameters } \\
& \theta_{R}, \lambda_{R}, z_{R}, \tau_{R}=r e f e r e n c e \text { event parameter a }
\end{aligned}
$$

where θ is the latitude, λ is the longitude, z is the depth, and T ia the origin time, and if

$$
\begin{aligned}
& t_{i} \text { - N travel times observed for the unknown event } \\
& t_{R_{i}} \text {. N travel times observed for the reference event }
\end{aligned}
$$

then

$$
\overline{\Delta t} \quad=\left[\begin{array}{ccc}
t_{1} & - & t_{R_{1}} \tag{5-1}\\
t_{2} & - & t_{R_{2}} \\
\vdots & \\
\vdots & \\
t_{N} & \cdots & t_{R_{N}}
\end{array}\right]
$$

where $\bar{\Delta}$ is the relative time difference vector, and

$$
\overline{\Delta P} \cdot\left[\begin{array}{lll}
\theta & - & \theta_{R} \tag{5-2}\\
\lambda & - & \lambda_{R} \\
z & - & z_{k} \\
\tau & - & \tau_{k}
\end{array}\right]
$$

where $\overline{\Delta P}$ is the perturbation vector, and where

are the parameter vector for the unknown and the reference events, respectively. Those,

where A is the condition matrix, ana

$$
\bar{E}=\left[\begin{array}{llll}
e_{R}^{\prime}, & e_{R}^{2} & \ldots . . & e_{R}^{i} \tag{5-6}
\end{array}\right]
$$

where 14 the error vector, The relative time difference vector $\bar{\Delta} t$, thus equals:

$$
\overline{\Delta t} \cdot A \cdot \overline{\Delta P} \cdot \overline{0}
$$

$$
\text { . }(5-7)
$$

The least squares solution is obtained by minimizing the nora (X) With respect to the perturbation $\overline{\Delta P}$:

$$
\overline{\Delta P}=\left\langle A^{T} \cdot A\right)^{-1} \cdot A^{T} \cdot \overline{\Delta t}
$$

$$
\text { , }(5-8)
$$

and the norse 10 given by:

$$
\begin{equation*}
x=\overline{\Delta t} \cdot \overline{\Delta t} \tag{5-9}
\end{equation*}
$$

The estimated location of the unknown event de:

$$
\begin{equation*}
\bar{p}_{t} \cdot\left(A A^{\top} \cdot A\right)^{-1} \cdot A \cdot \Delta t \cdot \bar{p}_{R} \tag{5-10}
\end{equation*}
$$

and the estimated travel time difference vector ia:

$$
\begin{equation*}
\overline{\Delta t}_{E}=\hat{A} \cdot\left(\bar{p}_{E}-\bar{P}_{A}\right) \tag{5-11}
\end{equation*}
$$

The estimated travel time difference standard deviation ia:

$$
\begin{aligned}
\tilde{\sigma}_{t}^{2} & \left.=1 /(N-2) \cdot t \overline{\Delta t}-\overline{\Delta t})^{\top} \cdot t \overline{\Delta t} \cdot \overline{\Delta t}\right) \\
& =1 /(N-2) \cdot \sum_{i=1}^{N}\left(\Delta t_{E}^{i}-\Delta t^{i}\right)^{2}
\end{aligned}
$$

$$
\text { . }(5-12)
$$

The variance - covariance matrix of the eatineted
perturbation $(\overline{\Delta P})$ da:

$$
u=\bar{\sigma}_{i}^{2} \cdot t A^{T} \cdot E^{-1} \cdot A J^{-1} \quad(5-13)
$$

where E ts the error matrix:

$$
\mathbf{E} \cdot\left[\begin{array}{lllll}
\sigma_{1}^{2} & & & & \tag{5-14}\\
& \sigma_{2}^{2} & & & \\
& & \ddots & \\
& & & \ddots & \\
& & & & \sigma_{i}^{2}
\end{array}\right]
$$

and σ_{i} is the estimated travel time variance at station 1 . The equation of the confidence ellIpse is:

$$
\begin{equation*}
\overline{\Delta P}^{\top} \cdot s^{-1} \cdot \overline{\Delta P} \cdot c_{2}^{2} \tag{5-15}
\end{equation*}
$$

```
Whare }\mp@subsup{C}{2}{2}\mathrm{ is the suitable 
for the F-diatribution:
C2}=2/(N-2)\cdotF:100.(2-a):\mp@subsup{F}{E}{2},N-2) (5-16
ualng two degreea of freedom, and for the ehi-squered
facter:
\[
\begin{equation*}
c_{1}^{2}=X^{2}: 100 \times(1-a): 21 \tag{5-16}
\end{equation*}
\]
using two degrees of freedom.
```

 For this reletive loection algorithm, one needa two
 uventa which are located within eppreximately i degree of
each of each other. Otherwise, the two eventa may have
ersetic disaimidaritiee in their treved petha.
The reletive location algorithm removes earth rodel
and travel tiae path errors from the caleulation aince the
same travel path is aswumed for both of the eventa.

```

\section*{APPENDIX B}

EXCERPT FROM PROFESSOR C.P. THORNTON'S PH.D. THESIS DESCRIBING FAULT-ASSOCIATED TRAVERTINE DEPOSITS IN VIRGINIA

\section*{Tufa Daposits}

Tufa, acoording to Pettijohn (1949, p. 308), is a spongy perous dimestone that forms a thin surfioial deposit about springs and seeps and exceptionally in rivers. It is to be distinguished from travertine, whion is more dense and banded. The deposits found in the Valley of Virginia are commonly called travertine by workers there, but are actually tufa according to the definition given above. The tufa oocurs in two different ways, although in both cases it is a stream deposit. Large amounts of the material are deposited as dams across some of the smaller streams at points where the stream chamel widens abruptly: such dams are rather spectacular featuras, reaching hitghts of up to four feet. Tufa is also deposited in conoretionary masses, genarally formed around small peboles or pleces of wood, so that the floor of the stream channel appears to be covered with white pebbles of rather uniforasize.

Within the Mount Jackson quadrangle, tufa dams are found along Sinith Creek and Holman Creek west of the Massanutten Range; tufa pellets ocour along a small tributary to Passage Creek in the northern Massanutten Range. Kolman Creek tufa. The first tufa dam orosses the stream at the east side of Forestville just below the abandoned mill on State Road 767 . The dam appears to be still growing. It is composed of soft, porous lithestone, apparently of algal origin, whion forms the rounded struotures of whioh the dam is built. In some cases imprints of leaves and other apparently organio structures such as root molds are found. The surface of the dam has a greenish-yellow color due to the presence of a thin f1lm of algae over the damp parts of the rook. Pookets and basins along the front of the dam contain dark-green fllimentous algae of undetermined identity. The ocourrence of this first tufa dam appears to be controlled by an outorop of Edinburg limestone that orosses the stream Just above the dam.

The second dam occurs about half a mile downstream from the first one. It is about one foo high, l.e., water flowing over it falls a distance of about one foot, and in other respects it is quite similar to the first one.

No tufa oocurs through the next two miles of the stream's course. The next dam is found a few hundred feet downstream from the point where state Road 698 crosses the oreek, and from this point to the Southern Railway bridge over the oresk a series of tufa dams can be seen. The first dam in the series is four to five feet high and apparently lacks any stratigraphio control. It is composed of soft brown or yellow porous limestone, locally containing impressions of leaves of sycamore trees such as are still growing along the banks of the stream. At places parts of this dam are overlain by as much as four feet of alluvial clay, but other parts of the dam seem to be still growing. About eighty feet downstream is a second dam, this one only about one foot high. At the edge of the stream channel it is overlain by geven feet of alluvium. At places the tufa is conglomeratio, consisting of stream gravels cemented by travertine. This dam does not appear to be aotively growing at present, Other dams, with approximately the same features, occur downstream all the way to the rallroad bridge.

In the case of these dams near Quicksburg the situation is somewhat unique. Just below the first dam in this group, the dam east of State Road 698. Holman Creek turns abruptly to the south, outting its ohannel through a f112 terrace, then turning slowly northward until it again flows to the east. Further investigation shows that the former stream ohannel is a rather straight east-west extonsion of its course above the first tufa dam. At some time in the historic past a dam was built across the oreek just below the firs c tufa dam and the water of the stream was diverted into a millrace northeast of the stream to operate a small mill that lay downstream from the
artificial dam. From this mill, now represented only by its stone foundations, the water was returned to the stream. The stream has since succeeded in bypassing the dam, however, by overflowing onto the fill terrace to the southwest and outting a new channel down through this fill. In the process of cutting its new channel, however, the stream has uncovered a series of tufa dams whi oh were formerly buried beneath the alluvium in the fill terrace. It would thus appear that most of the tura dams now exposed
 along the oreek near Quioksburg are anclent ones, the building of which was followed by a period of alluviation. No such alluviation is indicated in the case of the tufa dams farther upstream, however, and deposition would appear to be limited to the mouthward parts of the stream. Smith Creek tufa. The tufa dams along Smith Creek are not so numerous as those along Holman Creek; they are, however, more impressive in both height and width. The dams ocour along the oreek from a point just south of state Road 608 to a point about half a mile south of State Road 698. Thus tuf a fonmation here is restricted to a smaller part of the stream's course than along Holman Creek.

The terraces here are much like those along Holman Creek in the character of the material of whion they are constructed. Like the Holman Creek dams, they are in some cases overlain by alluvium along the banks of the stream, although this allurial cover is generally only about one foot thick. The orsek here is wider and the dams are thus longer. The trace of the dams

b. Iufe dam several mandred yprcie downstrean from the one


Tufa dam on Rolman Oreek west of Quicksiburg, Shen-
andoah County.
```

across the stream is often quite sinuous
and the dams are generally formed Just a
tew feet upstream from especially wide
parts of the stream's channel. The
height of these dams is generally about
four feet; they were visited during a
period of high water, however, and they
may be larger than this.
The firgt of these dams, that is,
the one farthest upstream, is located
just solith of the bridge on State Road
608, from whion it is olearly visible.
The second tufa dam, apparently the largest
of the group, is looated about 400 yards
upitream from the bridge on State Road
698. Its form is shown in the diagram
produced above. Downstream from this bridge three more tufa dams are found,
oniy the last one being of any appreciable size.
Fort Valley tufa. A much smaller, but somewhat different deposit of tufa was
found along an east-flowing tributary to Pasuage Creek about a haif-mile
northeast of Camp Roosevelt. The stream is small and intermittent, but the
deposit is of some Interest. Small tufa dams have been formed at various
points along the stream and are apparently still active; they are controlled
In oocurrence by outorops of the Romney shales. In addition the floor of the
stream is covered by vast members of small white pellets ranging in size from
two to flfteen millimeters. These pellets show a rather poorly developed
concentrio structure and have at their centers grains of sand or, sometimes,

```
pleces of wood. The deposition of tufa is brought about by even the slightest irregularity in the stream channel; roots, leaves, stioks, pebbles, etc., all have at least a thin covering of the material.

Source of the tufa. In all three areas of tufa deposition the material is deposited from a stream at points downstream from where the stream crosses a fault. In two of the cases (Holman and Smith Creeks) the fault actually outs through 11 mestone layers where it outcrops; in the third case, it is probable that the fault outs or at least shatters ilmestone formations below the surface. The calolum carbonate is brought to the surface by underground waters oirculating in the fault plane or fault zone; the orushed condition of the limestone makes their solution easy. Travertine terraces have not been found in this quadrangle along streams which cross these same formations where they are not affected by faulting and they have not been found along these same streams headward from the fault zones.

The cause of deposition of the tufa is another problem. Along Holman Creek in many cases the dams were found to be covered with algae, which may or may not be responsible for the formation of the tufa. The algae may be present because of the abundance of dissolved calclum carbonate. Some of the dams appear to be controlled by bedrock outcrops. Water saturated in calcium carbonate would lose some of its dissolved carbon dioxide on flowing over irragularities in the of annel, and this in turn would reduce the solubility of the calcium carbonate, causing some of it to be deposited. The process would be self-accelerating; the higher the dam is built, the more tufa will be precipitated. In other cases the tufa dams ere associated with wide spots in the stream channel. Sudden widening of the stream rould expose more of the water to the air and to the sun; this inorease in heated surface would cause some reduction in the dissolved carbon dioxide and pernaps bring about deposition of tufa

\section*{APPENDIX C NEOTECTONIC, GEOCHEMICAL, AND LINEAMENT STUDIES OF THE MOODUS SEISMIC AREA}

\title{
NEOTECTONIC, GECCHEMICAL, AND LINEAIENT STUDIES OF THE YOODUS SEISMIC AREA
}

\section*{A Report to the Nuclear Regulatory Commission Contract Number: NRC-04-85-111-01}

Christopher A. Shuman, M.S.

\section*{TABLE OF CONTENTS}
Section Page
ABSTKicT ..... C7
LIST OF FIGURES ..... C9 ..... C9
ACKNOWLEDGMENTS ..... C9 ..... C9
1.0 Introduction ..... C1I
1.1 Purpose of Investigations ..... C11
1.2 Scope of Investigations ..... C11
1.3 Review of Literature ..... C11
2.0 Setting of Study Area ..... C14
2.1 Physiographic Setting ..... C14
2.2 Geologic Setting ..... C14
3.0 Geochemical Studies of Stream Waters ..... C16
3.1 Methodology ..... C16
3.2 Discussion of Results ..... C17
4.0 Lineament Analysis of the Study Area ..... C17
4.1 Methodology ..... C19
4.2 Side-Looking Aerial Radar Imagery (SLAR) ..... C21
4.3 SPOT Satellite Imagery ..... C21
4.4 High-Altitude Aerial Photography ..... C23
4.5 Low-Altitude Aerial Photography ..... C25
4.6 Discussion of Results ..... C25
5.0 Conclusions and Recoumendations ..... C33
5.1 Conclusions ..... C33
5.2 Recommendations ..... C34
BIBLIOGRAPHY ..... C35
TABLE A Results of Geochemical Water Analyses ..... C41
TABLE B Data on Side-Looking Radar Imagery Lineaments ..... C43
TABLE \(C\) Data on SPOT Satellite Imagery Lineaments ..... C45
TABLE D Data on High-Altitude Aerial Photography Lineaments ..... C47
TABLE E Data on Low-Altitude Aerial Photography Lineaments ..... C51
PLATE 1 Location Map of Study Area Features ..... 55

Ir. an attempt to identify neotectonic, geochemical, and lineament characteristics of a seismically active area in the northeastern United States, studies were conducted during the late summer and fall of 1987 in and around the Moodus, Connecticut, area. This project focused on a six quadrangle region centered on the "Moodus seismic area", an area of anomalously high seismic activity in recent and historic times.

This study included a review of the literature, particularly for mention of features that might be related to the seismic activity, and field woris to locate and examine those neotectonic features. Also, the local drainage network was examined and water samples were taken to assess their degree of saturation by chemical species which might indicate deep fluid movement aiong faults or fractures. Finally, remote sensing imagery at four scales ( \(1: 250,000\) SLAR imagery, \(1: 100,000\) SPOT satellite image, \(1: 80,000\) high-altitude photography, and \(1: 18,000\) low-altitude photography) were examined for the presence of lineaments that may reveal bedrock fracturing and tectonic stress orientations.

The results of this study are limited, but the techniques involved do offer an interesting approach which may be applied in future studies of seismically active zones. No distinct, positive evidence of neotectonic features or activity was round during this study. No evidence of tectonically disturbed glacial drift or stream deposits appeared in previous reports covering the area, except possibly in one study where the critical outcrop was regraded and obscured. The geochemical studies revealed no evidence of mineral precipitates or supersaturated species in 33 stream bottom samples and 8 wate samples. Lineament analysis of the six quadrangle area at the three smaller scales and the Moodus quadrangle at the \(1: 18,000\) scale produced varying data on lineament orientation, frequency, and length. The lineament orientations are concentrated in the northwest quadrant, although secondary peaks occur in the north-northeas: and east directions. The similar distribution of lineament orientations produced from the SPOT and high-altitude images, incicates that these similarly scaled products may be sampling a common set of lineaments. The differences between the distributions may be a result of stereoscopic viewing of the aerial photographs. The overall orientation of lineaments is reasonably compatible with other lineament studies in this ragion, as well as, the contemporary state of stress in the subsurface. An easterly orientation peak at 080 degrees correlates well with the orientation of the maximum compressive stress ( \(O_{1}\) ) determined from recent in situ stress and seismic data analyses.

The variation in the orientation of lineament features appears to be compatible with a first-, second-, and third-order shear couple model. Lineament frequency was observed to increase on the radar, SPOT, and high-altitude photography in the Moodus quadrangle block relative to adjacent quadrangles. This indicates that a higher degree of fracturing may be present in the vicinity of the seismic area. In addition, scale phenomena functions related to the lineament analysis were developed. They show: 1) an exponential decay in lineament frequency per unit area with increasing scale number, and 2) a linear increase in average lineament length with increasing scale number.

\section*{LIST OF FIGURES}
Eigure Pase
1 Geologic map of the study area ..... C15
2 Results of geochemival water analyses ..... C18
3 Comparison of imagery scales used in lineament analyses ..... C20
4 Orientation of lineaments observed on \(1: 250,000\) scale SLAR imagery ..... C22
5 Orientation of lineaments observed on 1:100,000 scale SPOT satellite image ..... C24
6 Orientation of lineaments observed on \(1: 80,000\) scale high-altitude aerial photographs ..... C26
7 Orientation of lineaments observed on 1:18,000 scalelow-altitude aerial photographs (Moodus quadrangle only) ..C27
8 Comparison of lineament orientation data from the Moodus quadrangle ..... C28
9 Areal lineament frequency data by quadrangle ..... C30
10 Observed relationship between average lineament frequency per quadrangle and imagery scale number ..... C31
11 Observed relationship between average lineament length and imagery scale number ..... C32

\section*{ACKNOWLEDCMENTS}

The author wishes to thank the following individuals and organizations for their support, advice, and assistance during this study: the Nuclear Regulatory Commission, Bob Altamura of the Connectiout Geological and Natural History Survey, and Shelton Alexander, Charlie Thornton, Duff Gold, Mike Machesky, and Laura Karkowski of the Pennsylvania State University.

\subsection*{1.0 INTRODUCTION}

This report summarizes a study of an area of anomalous earthquake activity, the Moodus seismic area (Barosh et al, 1982; London, 1987). This region of Connecticut has been the site of numerous, generally low-intensity events in recent years and has a record of seismic actirity dating from New England's colonial era. Scientific efforts to investigate the cause of this activity have ranged from detailed geologic mapping of the area (London, 1987) to drilling deep (1000'+) research boreholes (Connecticut Geological and Natural History Survey (CGNHS) 1987). This study complements those projects and provides data and techniques that can be used for analyses of other seismic zones.

\subsection*{1.1 Purpose of Investigetions}

As part of a larger study on seismically active areas being conducted by the Pennsylvania State University's Department of Geoscionces, this investigation of the Moodus seismic area was to: review the literature discussing the area's neotectonic and geologic features; sample local streams for geochemical indicators of deep fluid movement; and examine various scales of remote sensing imagery and aerial photography for lineaments and fracture traces in an effort to identify fractures in the bedrock. Although this project was limited in scope, it does provide a preliminary assessment of the neotectonic activity of the site as well as an approach that may be useful for the study of other seismic areas.

\subsection*{1.2 Scope of Investigations}

The study area for this project is not defined by any natural or man-made boundaries but it is roughly centered on the town of Moodus, Connecticut. The study area extends from this point across six 7.5 minute quadrangles covering nearly 1940 square kilometers. The study area quadrangles are (from west to east in two rows): (1) Middle Haddam; (2) Moodus; (3) Colchester; (4) Haddam; (5) Deep River; and (6) Hamburg. Although portions of the project examined larger or smaller areas, this group of quadrangles was always the focal point of this study.

\subsection*{1.3 Review of Literature}

Because of the varied nature of this project, a review of selected sources of data is necessary. However, as this report concentrates on lineament and fracture trace analyses, this area will be coverud more extensively than will be the review of neotactonic features and geochemical studies.

The primary sources of information usea to provide a review of background data for this repor: are Weston Geophysical Corp. (1982a; \(1982 \mathrm{~b})\), Barosh et al. ( \(1 \mathrm{z}^{\circ} 2\) ), and London (1987). These reports include data on heny investigations concerned with neotectonic, geochemical, lineame \(\wedge^{t,}\), and other geologic features in the Moodus area. Other studies have attempted to identify neotectonic features that may be related to active subsurface faults or uplift areas. Of these, LaFleur's (1980) study was concerned specifically with identifying surface features which could be attributed to modern tectonic and
seismic activity. Many disturbances of glacial overburien deposits were identified in this study and in the Weston reports, but all were attributed to, or were indistinguishable from, deformation reiated to ice-marginal melting and sediment slumping or the movement of ice masses over preexisting glacial deposits. In addition, LaFleur notes that glacial terraces (as mapped by Flint (1978) and O'Leary (1975; 1977)) along the Connecticut kiver and its tributaries are spatially restricted and not sufficiently continuous laterally to sllow identification of offsets caused by motion on bedrock structures. Where they were observed, LaFleur notes that undeformed glacial deposits overlie deformed bedrock. This conclusion is compatible with our assessment from the available information on glacial deposits in this area.

London (1987) identifies a site to the southwest in the study area (see Plate 1) where stratified sand outwash became unstratified towards its contact with a sheared, granulated, and slickensided bedrock surface of the "Rely Fault". If this site has been characterized accurately, then evidence for post-glacial fault movement probably exists. However, this site may be the result of post-glacial isostatic rebound instead of tectonic stress and fault movement. Unfortunately, the exposure has been found in a field inspection to be regraded and covered, making it unavailable for assessments of other potential causes of the feature. As other studies have indicated, the lack of distinctly positive evidence for fault movement and disturbance of overlying recent deposits related to earthquake and neotectonic activity does not mean that such evidence does not exist. It does mean that exposures capable of providing this evidence are not currently available. This may be the result of few exposures and the relative instability of glacial deposits in this setting.

Although London's detailed study of the Moodus area gathered a great deal of information on the geochemistry of the local bedrock units and strurtures, it did not gather data on stream water chemistry. While this type of data is more likely to be affected by seasonal variables and sampling factors (Drever, 1982), the chemistry of surface waters has proven to aid investigations of subsurface structural conditions in other areas (Hubbard et al., 1985). In addition, a recently published work by Costain et al. (1987) ascribes some seismic activity to deep fluid movement and transient hydrologic surface loading. This indicates the importance of studying hydrologic variables in the future as they may provide clues to subsurface structures and seismic activity.

Hubbard et al. (1985) and Thornton (1953) detail the presence of travertine-marl deposits downstream from major faults in the Ridge and Valley province of Virginia. Other workers also have documented such deposits in other areas of similar litho-structural setting (Thornton, pers. comm. 1987). These deposits apparently result from the influx, along permeable fractures or faults, of carbonate-saturated ground water into the surface streams. The dissolved carbonate then precipitates on stream bottom materials whenever turbulent flow and or aeration occur. Because of these studies and the presence of a carbonate-bearing schist within the Hebron Formation (London, 1987), a search for travertine-marl deposits was initiated in the Moodus area. Due to the relatively minor amounts of carbonate in the subsurface, it was expected that these
depcsits would not be as significant as in areas with abundant carbonate bedrock. Therefore, water samples were taken across the study area in addition to examining the stream eediments for the presence of carbonate deposits. Due to the limited scope of this project, other hydrologic variables were not examined for their possible relationship to faults and fractures, or to recorded seismic events.

Because of the controversial nature of the lineament analysis, it is appropriate to review the technique and how it was applied to the different types of imagery available to this study of the Mcodus area. The purpose of lineament analysis is usually the identification of linear features which may characterize tectonic fractures, faults and joints, and provide clues to the present and past structural setting of an area. This technique is also used for more practical geotechnical purposes. It should be noted that the results of lineament analyses must be investigated by field techniques in order for these features to be positively distinguished from non-fracture related geologic or man-made linear features.

The importance of linear features observed on maps or photographs of the earth's surface was only alluded to in the earliest studies of these features (Hobbs, 1905; 1911; Rich, 1928; Blanchet, 1957; Lattman, 1958; Lattman and Matzie, 1961). These authors discussed the occurrence of joints, faults, and weathering zones associated with linear features, as well as the relationship of these features to regional stresses. Generally, linear traces up to a mile in length ( 1.6 kilometers) are termed fracture traces, while longer structures are called lineaments (Lattman, 1958). (For the purpose of convenience, all features mapped in this study will be referred to as lineaments.) Although these workers did establish some of the general subsurface structural characteristics of these features, other studies investigated more specific aspects, such as their relationship to increased hydrogen, helium, and radon gas movement from the subsurface (Banwell, 1986; Rodgers and Anderson, 1984). Lavin et al. (1982) notes the offset of geophysical anomalies along one major feature. In addition, lineaments have been related to major and minor ore body emplacement in a variety of terranes (Keim, 1962; Krohn, 1976). Other studies have related fracture traces and lineaments to zones of vertical to near-vertical zones of fracture concentration and to increased well yield (Lattman and Parizek, 1963; 1964; Siddiqui, 1969; Siddiqui and Parizek, 1971). Although some authors (Wise, 1982; Taylor, 1980) are critical of the lineament analysis and believe that non-fracture-related geologic structures and human errors in interpretation create unacceptable difficulties, the technique is still generally considered to be useful for regional fracture analysis, structural studies, and water resource assessments. For details on how the technique is applied in water resource studies, see Meiser and Earl (1982) and Parizek (1976).

With regard to lineaments mapped in the Moodus area, Barosh et al. (1982) records the presence of numerous lineaments with a dominant northwesterly trend as well as other orientations. They also identified the Salmon River as a major, probably fault controlled, lineament that connects with the possibly fault controlled Connecticut River valley. The Weston Geophysical Corp. studies (1982a; 1982b) also document
northerly trending lineaments in this area and relate them to curront and relict stress conditions in the crust. Further discussions of lineament relationships will be included in a later section of this report.

\subsection*{2.0 SETTING OF STUDY AREA}

The physiographic and geologic setting of the six study quadrangles discussed in the first part of this report will be described briefly in order to provide a suitable basis for subsequent discussion. Where they are appropriate, references to important physiographic and geologic study area features will be made.

\subsection*{2.1 Physiographic Setting}

The Moodus area lies largely within the Eastern Highlands province of Connecticut. This area has a rolling, irregular topography which is characterized by narrow valleys, eteeply sloping hillsides, and rare, broad uplands. The region has been extensively modified by glacial activity (from the north-northwest) as is evidenced by the numerous lakes, \#wamps, and deranged drainages that are visible on maps of the area (Flint, 1978; D'Leary, 1975; 1977). Variations in topography are probably a result of changes in glacial scour direction and till deposition, as well as the composition and structure of the underlying bedrock. The eastern portion of the six-quadrangle study area extends into Connecticut's Central Lowlends province. This topography of this area is generally more subdued in elevation and land surface features are largely obscured by human development, although it does contain some significant ridges.

In the study area where these two provinces contact, the Connecticut River crosses from the Central Valley into the Eastern Highiands in a narrow channel. This major drainage system has two major tributaries in the study area, the Salmon River and the Moodus River, both of which drain to the west. Other minor streams flow in northwest-southeast and north-south directions (see Plate 1). The orientation of these drainage channels may be related to fault and fracture patterns in the subsurface (Weston Geophysical Corp., 1982b).

\subsection*{2.2 Geologic Setting}

The study area is underlain by an assemblage of largely metamorphic units in a comple: structural pattern (see Figure 1). Structural and stratigraphic relationships between these units have been the subject of a number of studies over the years. Earlier workers, through quadrangle by quadrangle bedrock mapping, have managed to derive a coherent model of the geological evolution of the area.

Lundgren (1963; 1966; 1972; 1979; and et al., 1971) identified the major stratigraphic and structural elements of the Eastern Highlands and had succeeded in connecting them to adjoining areas in New England. Large anticlinal and synclinal structures were identified on the basis of symmetry of mappable units about their fold axes. In sequence, the Monson Gneiss - Middletown (Ammonoosuc) Formation - Collins Hill


Figure 1, Geologic map of the study area

Formation - Hebron Formation, was regarded as a relatively complete stratigraphic package which recorded the emplacement of probable lower Paleozoic units onto an Avalonian age basement complex (Weston Geophysical Corp., 1982b). This has been challenged by other workers, particularly London (1987), who by detailed mapping at the \(1: 12,000\) scale in the Moodus area has been able to show the discontinuous, chaotic nature and lack of symmetry of the mappable units in the area. London supports the overall tectonic picture of the area but discards the previous mapping units and concentrates on identifying the major metamorphic structures of the area. Previously identified major thrust and other fault systems still appear to define the bouridaries between tectonically emplaced Paleozoic rocks and the probable Precambrian basement rocks. Evidence for the presence of a major fault boundary was supported by data derived from drilling logs of the Moodus Deep Hole (CGNHS, 1987). In addition to the complex Paleozoic and earlier deformations, superimposed Mesozoic structural features are present in the area. This overprinting is largely brittle in nsture and therefore can commonly be distinguished from earlier ductile deformations (London, 1987). The most obvious Mesozoic feature in the study area is the major border fault which separates the Eastern Highlands from the Central Lowlands region.

\subsection*{3.0 GEOCHEMICAL STUDIES OF STREAM WATERS}

In an attempt to identify areas of anomalous water chemistry in the Moodus area that might be related to recent and historic seismic activity, local tributary streams were examined during August of 1987. In some carbonate bedrock areas (such as central Virginia or Lancaster, Pennsylvania), saturated, effluent ground waters, possibly produced by the dissolution of fault gouge, have been identified in streams by the presence of travertine-marl deposits and anomalous concentrations of related dissolved species downstream from some fault traces. These deposits are thought to be produced by precipitation of saturated chemical species in turbulent, aerated stream riffles (Thornton, pers. comm., 1987; Hubbard et al., 1985). Because stream sampling was restricted in scope, the significance of these results is also limited.

\subsection*{3.1 Methodology}

By visual inspection, 33 stream points throughout the Moodus seismic area were examined for the presence of carbonate deposition during the course of this study (see Plate 1). Stream bottom sediments were examined during late summer, low flow conditions, when it was thought that the presence of saturated ground waters discharging to the surface streams might be more easily detected. In addition, stream water samples from 8 selected sites were collected in order to provide some background data on stream water chemistry (see Plate 1 and Table A). These samples were analyzed and concentrations of specific anions and cations common to stream waters were determined. The concentration values were then used to calculate the ionic balance of each sample as a check on laboratory accuracy. These and other field data were then used to calculate the degree of saturation of the calcium carbonate in the gtream waters.

\subsection*{3.2 Discussion of Results}

The results of the analyses were interesting but they did not show anomalous concentrations of dissolved species. While this is not overly surprising, the degree of undersaturation ( 100 to 1000 times) of the calcium carbonate and other species was more extreme than expected (Machesky, pers. comm., 1987). The results of the sample analyses, as well as the analysis parameters are shown in Figure 2. Note the one value that was apparently affected by laboratory error. In general, the stream watars had very little mineral content and appeared to be well buffered, perhaps by the glacial overburden deposits. Although these data reflect only one isolated sampling of stream waters, the lack of precipitated minerals on stream bed materials in the area, as well as the highly undersaturated nature of the dissolved species in the water samples, indicates that potentially saturated ground waters are not discharging to surface streams in this area.

This may be the esult of several factors that are related to the nature and distribution of geologic materials in this area. If the streams are not receiving any mineralized, deep circulating waters from fractures, faults, or other discharge points, then there may not be any dissolved species in the streams to be precipitated. However, the previously noted glacial deposits which cover this area may prevent saturated chemistries from flowing directly into surface streams. If saturated species are present, they may simply precipitate within some permeable zone of the overburden after being discharged from their bedrock source. An additional possibility is that low-flow and depressed water-table conditions in the summer produced the observed absence of anomalous water chemistries. Heavy precipitation and dilution of the concentration of the availatle species is another, although less likely, possibility. However, it is likely thet if significant amounts of mineralized waters are in this area, then some indication of their presence would have been discovered by this aspect of the study.

To further investigate the possible association of mineralized ground water and seismic activity in the Moodus area, variable depth monitoring borehcles should be installed, sampled, and analyzed for a similar set of parameters on a regular basis. This would allow seasonal factors to be evaluated and the effects of surficial glacial and soil deposits on effluent ground waters to be eliminated. Although such an undertalking was beyond the scope of this project, future researchers might make use of the deep research boreholes that have been drilled in this ares to conduct geochemical studies (see Plate 1).

\subsection*{4.0 LINEAMENT ANALYSIS OF STUDY AREA}

In order to provide an evaluation of the orientation, "frequency", and length of lineaments present in the six-quadrangle study area, several scales of imagery were examined for the presence of linear topographic, tonal (shadow), vegetative, or combination features. As these mapped linear features have been correlated in other studies with zones of fracture concentration, aligned ore bodies, offset geophysical anomalies, faults, and zones of incressed ground-water yield, lineament analysis is a commonly used technique for general, macroscopic scale,


Figure 2, Results of geochemical water analyses
site studies. In this study, the analysis was designed to yield data revealing regional fracture directions and other information on subsurface conditions in the Moodus ares. It should be noted here that determining the age relationship(s) of the mapped lineament features is critical to their use as indicators of the tectonic hiatory of an area. in addition, as mentioned previously, all linear features mapped in this study will be termed lineaments for the purpose of convenience.

\subsection*{4.1 Methodology}

Through the use of techniques adapted from Lattman (1958) and Meiser and Earl (1982), the \(1: 250,000\) scale SLAR side-looking aerial radar imagery, \(1: 100,000\) reale SPOT satellite image, \(1: 80,000\) scale high-altitude and \(1: 18,000\) scale low-altitude aerial photographs were examined for the presence of lineaments (see Figure 3). These products, single images for the SLAR and STOT, and multiple stereo pairs for the aerial photographs, were covered oy clear acetate overlays to provide a permanent base for the analysis. Soft-tipped pens were then used to mark the ends and to number each observed linear feature. By making pairs of elongate marks on the overlays, the entire feature can be identified without obscuring or biasing the observation of subsequent features. The acetate overlays are also marked for identification and to allow eccurate repcsitioning over the study area.

Identifying the lineaments of interest to the study is somewhat subjective and accounts for the general variability in the results. However, through careful anaiysis of individual and stereo pairs of images, linear alignments of topographic, tonal, vegetative, and combination features can be readily identified. Varying the angle of the incident lighting of the imagery and the use of magnifying lenses is also beneficial to the analysis. In the opinion of the author, extremely subtle features should be avoided as should features even possibly related to the works of man. Cultural features such as abandoned farm fields, pipelines, right-of-ways, drainage ditches, and old fence lines are rot of interest to a study of this sort. The orientation and length of each feature mapped on the overlays is then determined. This is done by determining the direction of true north and the scale of the photograph and then measuring the bearing and length of the features on the overlay acetate. (Unless the imagery has been orthographically rectified, the orientation data may be subject to some distortion (see Lillesand and Kiefer, 1979).) A base map may be used to determine the scale and north direction of each photograph.

The preceding discussion describes the general technique used to produce the lineament analyses presented in the following sections. Probably the most important aspect of any analysis is maintaining objectivity about what constitutes a lineament feature. By examining the inagery for short intervals during a Jonger period of time, objectivity can be best maintained. This is critical because of the subjective nature of lineament analysis and the potential, at any scale, for confusing cultural features with geological lineaments. Again, it should be noted that results of imagery-based lineament analyses should be field checked for accuracy and to eliminate cultural features from the data.


Figure 3, Comparison of imagery scales used in lineament analyses

\subsection*{4.2 Side-Looking Aerial Radar Imagery}

The radar imagery used in this portion of the study was produced by the U.S. Geological Survey (USGS) for the CGNHS in May 1984. The look direction for this product is to the east and its small scale allowed the entire state of Connecticut to be viewed on one sheet. Radar is especiaily suited to analyses of this sort because the emitted radar beam can penetrate atmospheric phenumena and some vegetative cover before being reflected to the receiver. This provides an extremely detailed representation of the land surface that is sensitive to morphological feaiures. However, the radar image can bias f'neament analysis because the radar signal will reflect relatively poorly from linear features that are oriented parallel to the look direction and strongly from those features oriented perpendicular to the look direction (Lillesand and Kiefer, 1979),

In all, 48 lineaments were identified within or intersecting the six-quadrangle study area. * These features, ranging in length from 6 to 27 kilometers, may identify first-order tectonic fractures largely in the Eastern Highlands province. Interestingly, the Salmon River "fault" and the Moodus River both appear as lineaments and intersect in the vicinity of the Haddam Neck Station (see Plate 1). Another feature mirks the border fault at the edge of the Central Valley area. Other features may identify stratigraphic or other linear non-fracture, geologic features. However, the results of this study compare well to an analysis prepared by the CGNHS on A radar image at \(1: 125,000\) scale (Altamura, 1985). In the area covered by this study, there was about 70\% spatial coincidence with this earlier work.

The azimuthal half-rose orientation diagram of the radar lineaments is shown in Figure 4. This diagram reveals that lineaments observed in the six-quadrangle study area have a primary orientation maximum to the northwest between 340 and 350 degrees. A secondary orientation maximum is also in the northwest quadrant, between 300 and 320 degrees. Other peaks are present but are not as dominant. This compares generally to lineament analysis results included in the Weston Corp. documents (1982a; 1982b). They also note the potential for look-direction bias in the radar imagery, which may explain the overall lack of east-west trending lineament structures.

\subsection*{4.3 SPOT Satellite Imagery}

This imagery was selected for this study because of its ability to provide extremely detailed images of the ground surface from space. It has only recently become available and has approximately a 10 meter ground resolution in the black and white panchromatic band. The study area was examined from a cloud-free portion of an image at the \(1: 100,000\) scale taken in March of 1986. However, as a result of the spacing of the satellite's scenes, only the three upper quadrangles were covered by the available product. While the SPOT image provides a superior image of the actual land surface (roads, fields, streams, urban areas, and other features are recognizable), the penetrating nature of the radar is lost.

\footnotetext{
* Table B.
}


Figure 4, Orientation of lineaments observed on 1:250,000 scale SLAR radar imagery

Over the three quadrangles covered, a total of 37 lineaments were mapped.* These features ranged from about 4 to 10 kilometers in length, and included some possible lithologic strike lines as well as probable fracture features. As with the radar imagery, most of the lineaments were mapped in the metamorphic rocks of the Eastern Highlands, with only a few being mapped in the heavily urbanized Central Valley,

The rose diagram of SPOT lineament orientations (Figure 5) reveals a different distribution of observed features than the radar imagery, This distribution records two primary peaks: a broad one to the northeast between 020 and 040 degrees and a narrow peak to the northwest between 340 and 350 degrees that coincides closely with the maximum found in the analysis of the radar image. Secondary peaks are less distinct and may not be significant.

The 340 to 350 degree peak, common to both the SLAR and SPOT data sets, may be significant due to its orthogonal relationship to the present stress field (maximum compressive stress, \(\sigma_{1}=080\) ) (Alexander, pers. comm., 1987). These values, derived from borehole stress measurements and esrthquake focal mechanism solutions, indicate that faults and fractures at 90 degreas to \(\sigma_{1}\), or 350 degrees, mey be under a reverse (thrust) stress regime. Therefore, it is likeiy that the ineament orientation peaik between 340 and 350 degrees may be a function of the contemporary stress field present in the Moodus area. However, the sbsence of an east-west orientation peak at this scale in support of the field evidence is notable.

The cause of the difference between this data set and the observed radar lineaments is uncertain. It may be due to the theoretical relationship between first- and second-order shear structures discussed in Canich and Gold (1971) or it may be simply a function of the scale of observation and the imagery look direction. The orientation of the northeasterly primary peak may be due solely to the subdivision of the Salmon River lineament into a number of smaller northeast trending lineaments. However, the Weston Geophysical CCäp. .eport (1982b), also notes some north and northeast trending lineaments to the southeast of the Salmon River.

\subsection*{4.4 High-Altitude Aerial Photography}

Fourteen \(1: 80,000\) scale, 1980 flight, aerial photographs were required to cover the six-quadrangle study area. + In all, 113 linear features were observed on the stereo-pairs of aerial photographs used to analyze this area. These features ranged in length from about 2 to 13 kilometers and revealed aspects of the structural nature of the area. The Salmon River lineament, obsorved on both the SLAR and SPOT imagery, was revealed as a number of discontinuous, shorter features and the Moodus River feature was similarly divided. Other lineaments apparently correlate to the Central Valley border fault and to other lesser structural features. In addition, a number of nearly parallel features were observed near where the Connecticut River crosses into the Eastern Highlands terrane.

\footnotetext{
* Table C.
+ Table D.
}


Figure 5, Orientation of lineaments observed on \(1: 100,000\) scale SPOT satellite image

The orientation of the lineaments mapped on the high-aititude aeria. photographs (Figure 6) compares closely to the SPOT imagery lineament distribution. The rose diagram reveals a narrow northeast primary peak and a broader northwest peak. The northeast maximum is criented between 030 and 040 degrees whereas the northwest maximum lies between 350 and 350 degrees. Northerly orientations between these two peaks are represented by secondary maxima. The reasonably close correlation between the SPOT and aerial photograph data is interesting because it suggests that these two scales of imagery are capable of sampling the same set of foatures, although with differing degrees of sensitivity.

\subsection*{4.5 Low-Altitude derial Photography}

Because of the time and manpower limitations of this study, only the Moodus Quadrangle was subjected to the \(1: 18,000\) scale lineament analysis. However, as 25 stereo serial photographs from a 1965 flight were required to provide adequate stereo coverage of the quadrangle, the analysis was still considerable. In all, 159 linear features, ranging in length from 1 to 2 kilometers, were observed in this area.* In some cases these features could be correlated with major lineaments observed at the other, smalk \(r\) scales. However, some of the features show no distinct relationship te the major lineaments. These short lineaments are thought in be related to joint and fault traces, lithologic variabiuty and strike, and possibly glacial scouring directions (Weston Geuphysical Corp., 1982b). In oiher terranes, foliation directions have also been observed on low-sititude photography.

The oricntation diagram for the iow-alitude lineaments is quite distinct frcm the previously observed distributions (Figure 7). These data show a pair of primary tasima; one between 320 and \(\$ 30\) degrees and one between 080 and 090 degrees. The first peak is about 10 degrees off the dominant northwest maxima ( 340 to 350 degrees) observed on the SLAR and SPOT imagery and close to the high-altitude photogrophy lineament maximum ( 320 to 350 degrees). However, the easterly peak was a new orientation for lineament features in this study, but one that is compatible with the previously mentioned \(\sigma_{1}\) direction of 08 C . In addition to these two peaks, indistinct maxima (possibly noise in the data) to the northwest, north, and northeast directions are also present. Overall, these features may be indicative of the disturbed nature of the subsurface in this ares.

\subsection*{4.6 Discussion of Results}

Besides examination of the overall distribution of the lineament data, the features which are present within the Moodus Quadisingle can be investigated specifically. By preparing orientation rose diagrams for each scale of mapping and plotting them adjacent to each other (Figure 8), the variation in orientation maxima can be compared. Again, the overall trend of lineaments is dominantly to the northwest, but oniy some of the maxima are consistent with the other results. The secondary peaks to the north-northeast and east are distinct, but have not been correlated with known subsurface features. However, the recent data from in situ borehole stress testing at the Moodua Deep Hole (see Plate 1), as well as earthquake focal mechanism solutions for local October

\footnotetext{
* Table E.
}


Figure 6, Orientation of lineaments observed on 1:80,000 scale high-altitude aerial photographs


Figure 7, Orientation of lineaments observed on \(1: 18,000\) scale low-aititude aerial photographs (Moodus quadrangle only)


Figure 8, Comperienn of lineament orientation data from the Moo-izs quadrangle

1987 earthquakes, have indicated a 080 degree direction for the \(g_{1}\) maximum compressive stresses in this area (Alexander, pers. comm., 1987). This orientation correlates well with the results of the low-altitude survey and indicates that these smaller features may be extensional joints formed or opened parallel to the current inaximum stress. The lack of an easterly peak at the other scales indicates that these 080 features may be overprinting an older, northwest oriented stress field. As mentioned, the \(340-350\) degree maximum may also be related to, or reactivated by, the present tectonic stress regime.

Additional analysis results, produced by subdividing the data for the sinall-scale imagery on a quadrangle basis (Figure 9), indicate a possible reason for the seismic activity that is endemic to the Noocus ares. At all three scales examized in this study, the Mcodus quadrangle was observed to have a higher number of lineaments intersecting or within it. This measure of lineament "frequency" indicates that the Moodus area may be more fractured than adjacent areas, possibly' contributing to, or as a result of, higher numbers of seisinic events. While this frequency value is probably real, it may possibly be the result of operator bias. In either case, it appears to characterize spatial, neotectonic features that may be related to the contemporar:' strass field and seismic activity in the area.

While lineament analyses are limited in the degree of detail they can provide about an area, they do offer a means of identifying pntentislly major structural features and indications of the orientation of the contemporary siate of stress. This is usuelly accomplazhed by examining one, possably two, scales of imagery. Howcver, this study may have aiso produced some less specific, but more interesting resulte by exarcining and reesamining the same area bit four different scales. Across the six quadrangle study area, data on the general freçunney and longth of lineaments per unit sludy area werg sathared. When those data were examined, some interesting reiationships ragarding lineaments and scala of obversation wese revecied.

Figure 10 shows the observed relationehip betwaen the average number of lineaments intersecting a quadrangle bluck and the ecale of the imagery used in the analysis. The plot shows the exponertial decay of observed lineament frequency with increasing scale number. This indicates that as the size of the lineament feature increases, then fewer features of that size will be observed in a given area. Intuitively, this makes sense because joints, which are observable only at a large scale, are much more numerous than multi-kilometer lineaments, which are observable oniy at a small scale. Canich (1976) and Canich and Gold (1977) used this as the theoretical basis for a model of the relationship between first-, second-, and third-order shear structures.

An additional relationship for the multi-scale data is illustrated in Figure 11. When the average lineament length observed at each scale is plotted against the scale of the imagery, a distinct, positively sloped, linear trend results. This relationship indicates that there may be an appropriate scale for the observation of particular size features. This may be the result of the imagery resolution or the perception of the observer. In any case, the linear relationship argues for a length


Figure 9, Aread lineament irequency data by quadrangle


relaticnship that is consistent over different scales of geologic phenomena. It should be noted that appropriate observation scales for various geologic phenomena have been investigated (Gold, 1980).

The potential benefit of these relationships may only be revealed after further study on why and how they exist. If these ralationships describe the characteristics of lineaments, then they may be used to predict the number or average length of features likely to be observed in a given area for a given scale of imagery. Likewise, they may be able to indicate the appropriate scale imagery to use for examination of particular scale features. Another interesting possibility is the variation of these relationships with changes in age, tectonic, and lithologic setting. As this study focused on an seismically active, highly deformed area, the data obtained in this area may not be representative of other younger and more stable areas. In actuality, there may be comparably bystematic, but difierent, scale relationships that depend on the strain effects of the past anc present stress fields.

\subsection*{5.0 CONCLUSIONS AND RECOMMENDATIONS}

Although it is obvious that a great deal of additional work will be necessary to fully understand the Moodus seismic area, this study is able to offer specific conclusions and recommendations which may benefit further studies of this area. These conclusions and recommendations may also benefit research in other seismically active zones, as well as geoicgic investigations of other regionc.

\subsection*{5.1 Conclusions}

The principal eonclasions that can be drawn from this study of the Moutus seiemic area are:
1. No distinctly positive evidence of neotectonic disturbances of the land surfese or of glacial deposits was recorded. Both field and Siterature studies were unabie to identify evidence of recent land surisce disturbances that could be attributed to lectonic act visy.
2. The limited genchemical studies of stresm bottom materisis ard water samples in the Moodus area procuced no evidence of saturated ground wate:3 being diccharged to surface streams. In other seismic arcaa, the incation of faults and fracturas have been identified by the presence of anomalous carbonate deposition on stream bottoms and the presence of associated carbonate-rich water chemistries.
3. Lineament analysis of the study area was conducted through the use of \(1: 250,000\) scale radar imagery, \(1: 100,000\) scale SPOT satellite imagery, and \(1: 80,000\) scale high-altitude aerial photographs. The Moodus quadrangle was also examined with \(1: 18,000\) scale low-altitude aerial photographs. The results of these studies revealed varying distributions of lineament orientation, frequency, and length.
4. Lineament orientations are concentrated in the northwest quadrant, although other distribution peaks occur to the northeast and east. The easterly ( 080 to 090 degrees of azimuth) peaik correlates well with the result of recent in situ stress and earthquake focal mechanism solutions which indicate an 080 degree orientation of the maximum compressive stress, probably of. This regime would favor the formation or opening of fractures oriented parallel to the maximum
stress and high shear (reverse) stresses on fauits or fractures at 90 degrees to this orientation. This may account for the orientation of numerous lineaments oriented between 340 and 350 degrees. These lineaments may also be reactivated features, originally formed by a previous principal stress regime oriented to the northwest.
5. The SPOT imagery ( \(1: 100,000\) scale) and high-altitude aerial photographs ( \(1: 80,000\) scale) appear to sample a common set of lineamient features, although with differing degrees of sensitivity. The aerial photography's higher sensitivity may be the result of their ability to be viewed stereoscopically.
6. An increase in lineament frequency was observed over the Moodus quadrangle on the radar, SPOT, and high-altitude aerial photographs. This indicates the seismin area may be more fractured than surrounding regions in the present stress field, possible as a result of higher seismic activity.
7. Average lineament frequency per quadrangle block and average lineament length vary with imagery scale. The former exhibited an exponential decay in average lineament frequency with increasing scale number, and the latter exhibited a linear increase in average lineament length with increasing scale number.

\subsection*{5.2 Recommendations}

In order to refine the analysis conducted during this project, several specific recommendations for additional work can be made:
1. The "Rely Fault" exposure siculd be reexcavated and examined for ito possible neotectonic significance.
2. Regular geochemical sampling of atrean and weil waters should be conducted to evaluate the hydrogecichenical factors at work in the Moodus ares. Thermal datio assceiated with this sampling may aiso prove of interest.
3. Compilation of all lineament data oa a suitatle base map is also suggested. This information can then be checked inr supporting field evidence (such as increased wall y'elds, subcurface git migration, aligned ore bodies, or earthquake fosi) that will indicate is this mppped linea: features are related to suosurface frociures and prosibiy to seismic activity.
4. The observed lineament data illustrating the relationship between average lineament frequency per unit firea and lineament length versus imagery scale should be further invesigated.
5. As stream systems appear to be toctonically sensitive, drainage networks could be profiled and monitoied for seotectonic changes.
6. Joint studies should be conciucted on all available outcrops for evidence of current and previsus stress field orientations.

\section*{BIBLIOCRAPHI}

Abriel, W.L., 1978. A ground-based study of the Everett-Bedford Lineament of Pennsylvania, Unpublished N.S. Pajer, The Pernsylvania State University, University Parik, Pennsylvania, 90 p .

Alexander, S.S., 1987, Personal communication, Professor of Geophymics, The Pennsylvania State University, Department of Geosciences, University Park, PA.

Altamura, R.J., 1985. Preliminary radar (SLAR) lineament map of Connectivut, Open-file map, scale 1:125,000, Connecticut Geological and Natural History Survey project.

Banwell, G.M., 1986, Helium-4 and Radon-222 concentrations in groundwater and soil gas as indicators of the extent and depth of fracture concentration in rock, Unpubilshed M.S. Thesis, The Pennsylvania State University, University Park, Pennsylvania, 136p.

Barosh, P.J., D. London, and J. de Boer, 1982. The structural geology of the Mooras Seismic Area south-central Connecticut, in Ouidebook for Fieldtrips in Connecticut and South Central Massachusetts, New England Intercollegiate Geologioal Conference, R. Joesten and S.S. Quarrier, eds., Connecticut Ceological and Natural History Survey, Guidebook No. 5, pp. 419-451.

Barosh, P.J. and M.H. Pease, 1381, (eeologic structure in the ares of the 1981 Moodus eart.pquakes, south-oentral Cornertiout, Eartrquake Notes, vol. 52 , no. 3, pp. 8-8.

Blanchet, P.K., 1957. Developnent of frecture analysis as an exploraition methed, Bulletin of the American Association of Petroleun Geologists, vol. 41, no. 8, pp. 1748-1759.

Canici, M. R., 1975, h scudy of thy Tymane - Mt. Union lineament by remove sensing techniques ard field nethods, limpubiabued M.S. Paper. Thu Fannsylvania S'ate Iniversity, University Parn, PA, 59p.

Canich, M. R. and D.P. Gold, 1977. A study of the Tyrone-Mt. Union Lineament by renote sensing techniques and field aethods, CFSER Teuhnical Report 12-77, The Pennsylvania State University, University Park, Pennsylvania, 59p.

Cline, G.D., 1968. Geologic factors influencing well yields in a folded sandstone-siltstone-shale terrane within the East Mahantango Creek Watershed, Pennsylvania, Unpublished M.S. Thesis, The Peinsylvania State University, University Park, Pennsylvania, 180p.

Connecticut Geological and Natural History Survey, 1987. Moodus Deep Bedrock Drill Hole: News Note \#4, May 11, 1987, 4p.

Costain, J.K., G.A. Bollirger, and J.A. Speer, 1987. Hyaroseismicity \(=\) A hypothesis for the role of water in the generation of intraplate seismicity, Geology, vol, 15, pp, 618-621.

Drever, J.1., 1982. The Geochemistry of Natural Waters, Prentice-Hall, Inc. Englewood Cliffs, \(\mathrm{NJ}, 388 \mathrm{p}\).

Eaton, G.P, and J.L. Rosenfeld, 1972. Preliminary bedrock geologic map of the Middle Haddam Guadrangle, Middlesex Connty, Connectiout, U.S. Geologioal Survey, Open-File Report 72-99.

Ebel, J.E., V. Vudler, and M. Celata, 1982. The 1981 microesrthquake swarm near Moodus, Connecticut, Geophysical Research Letters, vol. 9, no. 4, pp. 397-400.

Fany, S.M., 1978, Relationship between cross-strike lineamunts and the distribution of oil and gas fields in northwestern Pennsylvania, Unpublished M.S. Thesis, The Pennsylvanis State University, University Park, Pennsylvania, 95p.

Flint, R.F., 1978. The surficial geology of the Haddam Quadrangle, Connectiout Geological and Natural History Survey, Quadrangle Report No. \(36,27 \mathrm{p}\).

Gold, D.P., 1880. Structural geolony, Chaptor is in: Reno ie serelrg in Geology, B. Siegal and A.R. Aillsppie eds., John Wilay, pp 218.4 47

Golu, D.P., 3.s. Alexander wid R.K. Harizok, 1974. Application of renote sinsing wu natural resource and srviroimeritsl probleins in Fentsyivania, Eartil and Mineral Sciences, vol. 43, no. 7, pp. 49-53.

Hobbs, W.Y., 1911. Repeating patteras in the reilef ard in the st.c.kecure of the land, Eulletin of the Genlogical swiety of Anerica, vol. 2 ?, pp. 123-176.

Heohs Vi,h., 29u5. Exampies of joint coritrolled drainage fivon wisconsin and New York, Jowrnal of Geolozy, vol. 13, pp. 363-374.

Hubbard, D.A., W.F. Giannini, and M.M. Lorah, 1985. Travertine-marl deposits of the Valley and Ridge Province of Virginia -A preliminary report, Virginia Minerals, vol. 31, no. 1, pp. 1-12.

Keim, J.W., 1962. A study of photogeologic fracture traces over the Bisbee Quadrangle, Cochise County, Arizona, Unpublished M.S. Thesis, The Pennsylvania State University, University Park, Pennsylvania, 42p.

King, P.B., 197\%. The Evolution of North America, Revised Edition, Princeton University Press, 197p.

Kowalik, W.S., 1975, Use of LANDSAT-1 imagery in the analysis of lineaments in Pennsylvania, Unpublished M.S. Thesis, The Pennsylvania State University, University Park, Pennsylvania, 93p.

Krohn, M.D., 2976. Relation of lineaments to sulfide deposits and fracture zones along Bald Eagle Mountain: Centre, Blair, and Huntingdon Counties, Pennsylvania, Lnpublished M.S. Thesis. The Pennsylvania State University, University Paris, Pennsylvania, 80p.

Krothe, N.C. and M.P. Bergeron, :QR1. The relationship between fracture traces and joints in a Tertiary isin, southwest Montana, Oround Water, vol. 19, no. 2, pp. 138-143.

LaFleur, R.G., 1980. Investigation of possible earthquake related deformation of glacial overburden deposits in the Moodus-Haddam a-ea, Connectiout, Report, Ressalear Polytechnic Institute, 14p.

Lattman, L.H., 2958. Technique of mapping geologic fracture traces and lineaments on aerial photographs, Photogranuetric Engineering, vol. 19, no. 4, pp. 568-576.

Lattman, L.H. and R.R. Parizek, 1964, Relationship between fracture traces and the occurrence of ground water in carbonate rocks, Journal of Hydrolegy, vol. 2, pp. 73-91.

Lattman, L.H, and R.R. Parizek, 1963, Relationship between frscture traces and the ocourrence of ground whier in carbonate rocks, Annund Meeting of the Geologic Society of America, Paper.

Lattman, L.H. and R.H. Matzke, 1961. Geologic significance of fracture traces, Photogrametric Enginoering, vol. 27, pp. 435-438.

Lattinan L.H: oru R. F. Nickessein, 1958. Thotugeriogio frsature-truce mapping in the dppalachian Pletesu, American Associtition of Petroleum jeslogists Builetin, vel. 42, pp. 223R-2245.

Lettman, 2.H. and w.W. olive, 1955. Solution-widened joints in Trans-Pecos, Texas, Bulletin of the Anerican Assosiation of pretroloum Geolosists, vol. 39, pp. 2084-2087.

Lavin, P.M., D.L. Chafin and W.F. Davis. 1982. Mas jor linesaments and the Lake Erie-Maryland crustal block, Tectonica, vol. 2, no. 5, pp. 431-440.

Lillesand, T.M. and R.W. Kiefer, 1979, Remote Sensing and Image Interpretation, John Wiley and Sons, New Yoris, 6.2p.

London, D., 1987. (in press) Bedrook geology of the Moodus Seismic Area, south-central Connecticut, Connectiout Geological and Natural History Survey, Report of Investigations No. 11, 47p.

Lundgren, L., Jr., 1963. The bedrack geology of the Deep River Quadrangle, Connecticut Geological and Natural History Survey, Quadrangle Report No, 13, 42p.

Lundgren, L., Jr., 1966. The bedrock geology of the Hamburg Quadrangle, Connecticut Geological and Natural History Survey, Quadrangle Report No. 19, 41p.

Lundgren, L., Jr., 1973, The bedrock zeology of the Haddan puadrangle, Connecticut Geological and Natural History Surver, Qaadrangle Report No. \(37,44 \mathrm{p}\).

Lundgren, L., Jr., L. Ashaead, and G. Snycler, 1971. The bedrock geology of the Moodus anc Colchester Quadrangles, Connecticut Geological and Natural History Survey, Quadrangle Report No, 27, 24p.

Lundgren, L., Jr., 1972. Honey Hill Fault in eastern Connectiout: Regional relations, Geologinal Society of America Bulletin, vol, 83, no. 9, pp. 2773-2794.

Machesky, M., 1987, Personal communication, Associate Professor of Geoshemistry, The Pennsylvania State University, University Parik, PA.

Meiser, E, and T. Eurl, 1982, Uses of Fracture Traces in Water Well Location: A Hardbook, Office of Watel Research and Technology, U.S. Department of the Interzor, 55p.

Meisler, H., 1963. Hydrogeology of the errmanate rooks of the Lebanon Valley, Pennsylvania Geosogical Survey, 4th ser., Waler Resources Report 18, Havzisburg, Pennsylvania, 81p.

Meisler, H. and A.E. Becher, 29F6. Hydrology of the casbonate rocks of the Lancarte: -15 misute Quadrexgle, Pennsylvania, Pennsyivania Eureat of Popobraphic and Ceulosic Eurvey, Progress Report 171 Harrisburg, Penndy/vania, 3up.

Norman, J.W, end J.F. Huntinston, 19:4. Possible upplieations of photo geology to the study of rook mechanios, Quarteily Journal of Engineering Geology, vo1. 7. pp. 107-120.

Nutter, L.J., 1973. Hydrogeclogy of carbonate rocks, Frederick and Hagerstown Valleys, Maryland, Maryland Geologica. Survey, Report of Investigations, No. 19, 70p.

O'Leary, D.W., 1975. Surfioial geology of the Moodus Quadrangle, Connecticut, U.S. Geological Survey, Map GQ-1205.

O'Leary, D.W., 1977. Surficial Geology of the Deep River Quadrangle, Connectiout, U.S. Geological Survey, Map Cop-1370.

O'Leary, D, W., J.D. Friedman, and H A. Pohn, 1976, Lineament, Linear, lineation, some proposed new standards for old terms, Geological Society of America Bulletin, vol. 87, no. 10, pp, 1463-1469.

Parizek, R.R., 1976. On the nature and significance of fracture traces and Liriarients in carbonate and other terranes, in: Karst. Hydrology and Water Resources, Proceedings of the U.S. - Yugoslavian Symposium, Dubrovnik, Water Resources Publications, Fort Collins, Colorado, pp. 41-100.

Parizek, R.R., W.B. White and D. Langmuir, 1971. Hydrogeology and geochemistry of folded and faulted rocks of the central Appalachian type and related land use problems, Circular 82, Mineral Conservation Series, Earth and Mineral Sciences Experiment Station, The Pennsylvaria State University, University Park, Pennsylvania, 182 p .

Parizek, R.R. and B. Voight, 1970, On renote sensing in karst terranes, Question 37, Conmission Internationale des Grand Barrages, Montresl.

Parizek, R R., and L..J. Drew, 1966, Random drilling for water in oarbonate rocks, Proceedings of the Symposium and Short Courses on Computers and Operations Research in the Mineral Industries, The Pennsylvania State University, University Park, Pennsylvania, pp. 1-22.

Rader, E.K. and T.M. Gathright, II, 1984. Stratigraphy and structure in the Thermal Spiings ares of the sestem Anticlines, Virginia Division of Mineral Ressurces, Sixteenth Anrual Virgiria Geologic Field Sonference Ouddenosk, October 13~24, 1984, 55p.

Rich, J.L., 1928. Jointing in limestoner as sten from the air, Bulletin of the Americsin hssociatio: of fettoieum Geolosists, voi. 12, no. \&, pp. 861-862.

For'gers, J., 1885. Bedrook geologinal map of Connecticut, Natura. Rusuurnes at las, Connectiant Meologionl ard Natural History Survey

Fodgers, M.R. and T. H, Andersnn, 1984. Tyrone-Mt, Union cross strike lineament of Pernsydvenia A rajor Faloozoio basement fracture and uplift honcia: The Anerivan Association of Petroleum Geologists Bulletin, vol. 68, no. 1, pp. 92-105.

Sharpe, W.F. and R.R. Parizek, 1979. Groundwater sources lacsted by fracture trace technique, Water and Sewage Woriss, vol. 126, no. 5, pp. \(38-40\).

Shuman, C.A., 1987. Fracture studies and in situ permeability testing with borehole packers, Unpublished M.S. Thesis, The Pennsylvania State University, University Park, Pennsylvania, 185 p .

Siddiqui, S.H., 1969. Hydrogeologio factors influencing well yields and aquifer hydraulic properties of folded and faulted carbonate rocks in central Pennsylvatic, Unpublished Ph.D. Dissertation. The Penhaylvania Etate University, University Park, Pennsylvania, 502p.

Siddiqui, S.H. and R.R. Parizek, 1971. Hydrogeologic factors influencing well yields and hydraulic properties of fClded and faulted carbonate rocks in centrsl Pennsylvania, water Resources Research, vol. 7, no. 5. pp. 1295-1312.

Taylor, L.F., 1980. Fracture traces and water wells, Pennsylvania Geology, vol. 11, no. 3, pp. 2-4.

Thornton, C., 1953. The geolugy of the Mount Jackson quadrangle, Virginia, Unpublished Ph.D. Thesis, Yale University, 211p.

Thumtion, C., 1987. Personal oommunacation, Professor of Geochemistry, The Pennsylvania State University, University Paric, PA.

Thorson, R.M., W.S. Claytan, and L. Seeber, 1986. Geologic evidence for a large prohistoric earthquake in eastern Connecticut, Geology, vol. 14. pp. 463-467.

Weston Geophysical Corporation, 1982. Geologioal and seismological studies, Haddam Neck Nuclear Station, Parts I (a) and II (b), Report for Northeast Utilities Service Company, 104 p , and 66 p .

Wheeler, R.K., 1980. Cross strike structural discontinuities: Possible exploration tosl for natural gas in the Appalachian Overthrust Belt, American Associstion of Yetroleum Geologists Bulletin, vol. 64, tic. 12. pp. 2166-2178.

Wintsch, R.P., 1984, A tectonic model for the lete Paleozoic of southesstern New Ensiand, (abs.) Geologioal Societs of Anerica, Abstracts with Frograms, vil. 16, p. 71.

Wise, D.U., 1987, Fadar geology and paceudo-geology on an Appalachian Pieumont cross-section, Fhotogranmetric Engineering, July, pp. 752-761.

Wise, D.U., 1982, Linesmanship and the practice of linear geo-art, The Geological Saciety of America Bulletin, vol. 93, pp. 886-888.

Zoback, M.L. and M.D. Zoback, 1980. State of stress in the conterminous United States, Journal of Geophysical Research, vol. 85, no. 11, pp. 6113-6156.

\section*{TABLE A}

\section*{RESULTS OF GEOCHEMICAL WATER NNALISES}

PARAMETER IITY - Black 1 - SMP: sample number - DATE sampling crite - LAB PH laboratory pH - ALJWLI alkalinity in mg CaCO3/1 (milligrans per liter) - ACIDTY acidity in ms CaCO3/1 - SP CND specific oonductance in mioromohs - HCO3 bicarbonate in mg/l - NO3 nitrate as N in ms/l - SOt sulfate in mg/l - Cl chloride in mg/l - Block 2 - SMP* as above - TEMP sample temperature degrees Celsius - MLD PH field pH - Ca calcium in mg/1 - Mg magnesium in mg/1 - Na sodiun in mg/l - K potassium in mg/l SiO2 silios in m.E/l -
CATION cation product and ANION anion product both in milliequiv/! -
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SWP P DaTE & & & & & & 1 \\
\hline \(018 / 30 / 87\) & 7.3913 .45 & 2.73 & 50.116 .40 & 0.21 & 9.5 & 4.01 \\
\hline \(028 / 31 / 87\) & 7.3012 .69 & 2.51 & \(48.0 \quad 15.47\) & 0.31 & 4.78 & 7.53 \\
\hline \(038 / 31 / 87\) & 7.2233 .70 & 1.80 & 62.841 .09 & 0.21 & 8.16 & 12.73 \\
\hline 04 8/31/87 & \(7.15 \quad 9.29\) & 1.85 & 36.111 .38 & 0.17 & 6.44 & 3,41 \\
\hline R/31/87 & \(7.46 \quad 15.07\) & 2.60 & 100.118 .37 & 0.30 & 9.74 & 24.02 \\
\hline 06 8/31/87 & 7.6318 .85 & 1.67 & 91.222 .98 & 0.45 & 13.34 & 14.23 \\
\hline \(078 / 31 / 87\) & \(7.19 \quad 10.26\) & 1.58 & 70.712 .51 & 0.29 & 6.87 & 15.70 \\
\hline 08 8/31/87 & \(7.23 \quad 9.94\) & 2.20 & 72.512 .11 & 0.30 & . 45 & 78 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SMPE & 1 P & ELD PH & Ca & , & & . 02 C & Joy & , & \\
\hline 01 & 17.5 & 6.82 & 6.22 & 1.83 & 3.01 & 2.02 & 0.7 & 0.60 & C. 38 \\
\hline 02 & 18.5 & 6.91 & 4.75 & 1.33 & 4.80 & 1,48 & 0.3 & 0.59 & 0.57 \\
\hline 03 & 18.5 & 7.24 & 4.68 & 1.35 & 7.57 & 1.34 & 0.4 & 0.71 & 1.21 \\
\hline 04 & 17.5 & 7.28 & 3.12 & 1.17 & 3.61 & 1.07 & 0.7 & 0.44 & 0.42 \\
\hline Or, & 21.0 & 7.20 & 7.76 & 2.26 & 12.00 & 2.20 & 0.4 & 1.15 & 1.19 \\
\hline 05 & 22.0 & 7.10 & 9.00 & 2.22 & 8.21 & 2.59 & 0.3 & 1.06 & 1.06 \\
\hline 07 & 19.0 & 7.29 & 5.12 & 1.38 & 9.15 & 1.29 & 0.3 & 0.80 & 0.80 \\
\hline 08 & 19.0 & 1. 29 & 5.15 & 1.43 & 9.32 & 1.39 & 0.3 & 0.82 & 0.7 \\
\hline
\end{tabular}

\section*{TABLE B}

\section*{DATA ON SIDE-LOOKIVG RADAR IMAGERY LINLMMENTS}

PARAMETER KEY - LINE\& dineament number - ORIENT lineament orientation (azimuth) - LNGTH lineament length (kilometers) - QUADS quadrangles intersected -
\begin{tabular}{|c|c|c|c|}
\hline LINE: & ORIENT & LNGTH & QUADS \\
\hline 1 & 065 & 24.7 & 2 \\
\hline 2 & 358 & 14.2 & 3 \\
\hline 3 & 018 & 12.0 & 3 \\
\hline 4 & \(3: 4\) & :4.9 & 2 \\
\hline 5 & 016 & 16.1 & 2 \\
\hline 6 & 018 & 15.8 & 1 \\
\hline 7 & 023 & 19.9 & 1 \\
\hline 8 & 318 & 17.4 & 2 \\
\hline 9 & 311 & 13.9 & 2 \\
\hline 10 & 293 & 11.7 & 1.2 \\
\hline 11 & 308 & 9.5 & 1.2 \\
\hline 12 & 280 & 9.2 & 3 \\
\hline 13 & 345 & 14.9 & 3 \\
\hline 14 & 059 & 6.3 & 3 \\
\hline 15 & 347 & 3.5 & 3,6 \\
\hline 16 & 348 & 12.0 & 2,5 \\
\hline 17 & 344 & 17.7 & 3,6 \\
\hline 18 & 056 & :C. 1 & 2,5 \\
\hline 19 & 060 & 14.9 & 2,4 \\
\hline 20 & 284 & 12.7 & 1 \\
\hline 21 & 053 & 15.2 & 1 \\
\hline 22 & 339 & 27.5 & 4 \\
\hline 23 & 356 & 16.8 & 1 \\
\hline 24 & 305 & 12.0 & 6 \\
\hline 25 & 343 & 14.6 & 6 \\
\hline 26 & 312 & 19.9 & , \\
\hline 27 & 041 & 9.2 & 1,4 \\
\hline 28 & 343 & 12.3 & 4 \\
\hline 29 & 341 & 11.7 & 4 \\
\hline 30 & 038 & 25.3 & 1,2,4 \\
\hline 31 & 357 & 13.3 & \\
\hline 32 & 003 & 12.7 & 5 \\
\hline 33 & 055 & 13.0 & 5,6 \\
\hline 34 & 042 & 15.5 & 6 \\
\hline 35 & 019 & 12.0 & 5,6 \\
\hline 36 & 317 & 14.9 & 5 \\
\hline 37 & 289 & 9.5 & 4,5 \\
\hline 38 & 341 & 17.1 & 4 \\
\hline 39 & 041 & 16.8 & 4 \\
\hline 40 & 310 & 15.2 & 4 \\
\hline 41 & 038 & 13.3 & 4 \\
\hline 42 & 022 & 13.6 & 4 \\
\hline 43 & 306 & 17.4 & 2,3 \\
\hline 44 & 302 & 11.7 & -, 2 \\
\hline 45 & 305 & 18.7 & 2,5,6 \\
\hline
\end{tabular}
\begin{tabular}{cccc} 
& TABLE & B (continued) \\
LNE: & ORIETT & LNGTH & QUADS \\
46 & 312 & 11.7 & 4.5 \\
47 & 043 & 12.7 & 1 \\
48 & 339 & 9.5 & 6
\end{tabular}

TABLE C
DATA ON SPOT SATELLITE IMAGERY LINEAMENTS
PARANETER KEY - LINE: lineament number - ORIENT lineament orientation (azimuth) - LNGTH lineament length (kilometers) - QUADS quadrangles intersected -
\begin{tabular}{cccc} 
LINE: & ORIENT & LNGTH & QUADS \\
1 & \(0 \varepsilon 6\) & 5.5 & 1 \\
2 & 354 & 8.3 & 2 \\
3 & 344 & 9.6 & 2 \\
4 & 014 & 8.6 & 2 \\
5 & 025 & 6.3 & 2,3 \\
5 & 341 & 7.1 & 3 \\
6 & 015 & 5.8 & 3 \\
7 & 023 & 8.3 & 3 \\
8 & 310 & 7.3 & 3 \\
9 & 348 & 10.6 & 2 \\
10 & 051 & 5.5 & 2,3 \\
11 & 305 & 4.5 & 1,2 \\
12 & 014 & 5.3 & 1 \\
13 & 293 & 6.0 & 1 \\
14 & 350 & 5.5 & 1 \\
15 & 298 & 4.8 & 1 \\
16 & 306 & 6.8 & 1.2 \\
17 & 029 & 6.5 & 1,2 \\
18 & 021 & 4.0 & 2 \\
19 & 281 & 3.5 & 2 \\
20 & 347 & 5.0 & 2 \\
21 & 283 & 6.0 & 3 \\
22 & 055 & 6.3 & 3 \\
23 & 027 & 7.8 & 3,6 \\
24 & 346 & 6.5 & 3 \\
25 & 006 & 5.3 & 2,5 \\
26 & 058 & 9.3 & 1.2 \\
27 & 352 & 5.5 & 2 \\
28 & 040 & 5.3 & 2 \\
29 & 087 & 7.3 & 1,2 \\
30 & 014 & 5.0 & 2,4 \\
31 & 008 & 5.3 & 1 \\
32 & 292 & 6.3 & 1 \\
33 & 310 & 4.0 & 2,4 \\
34 & 332 & 5.5 & 3,6 \\
35 & 331 & 5.3 & 1 \\
36 & 010 & 6.5 & 1 \\
37 & & & 1
\end{tabular}

TABLE D
DATA ON HIOH-ALTITUDE AERIAL PHOTOCRAPHY LINEMIENTS
PARAMETER KEY - LINE lineament number - ORTENT lineament orientation (azimuth) - LNGTH lineament length (kilometers) - QUADS quadrangles intersected -
\begin{tabular}{|c|c|c|c|}
\hline LINE: & ORIENT & LNGT: & QUADS \\
\hline & 341 & 3.4 & 1 \\
\hline 2 & 074 & 3.8 & 1 \\
\hline 3 & 359 & 2.4 & 1 \\
\hline 4 & 000 & 5.1 & 1 \\
\hline 5 & 024 & 3.8 & 1 \\
\hline 6 & 331 & 7.6 & 1,2 \\
\hline 7 & 053 & 5.1 & 1 \\
\hline 8 & 355 & 4.3 & 1 \\
\hline 9 & 016 & 13.4 & 1 \\
\hline 10 & 349 & 8.2 & 1,4 \\
\hline 11 & 010 & 4.5 & 1 \\
\hline 12 & 013 & 4.0 & 1 \\
\hline 13 & 344 & 5.6 & 1,2,5 \\
\hline 14 & 358 & 4.7 & 1 \\
\hline 15 & 289 & 3.8 & 1 \\
\hline 16 & 281 & 3.0 & 1 \\
\hline 17 & 294 & 3.4 & 1 \\
\hline 18 & 314 & 4.6 & 1.4 \\
\hline 19 & 359 & 6.8 & 1.4 \\
\hline 20 & 276 & 2.6 & 1,2 \\
\hline 21 & 334 & 6.6 & 2 \\
\hline 22 & 020 & 7.7 & 1,2 \\
\hline 23 & 335 & 5.7 & 2 \\
\hline 24 & 355 & 3.1 & 2 \\
\hline 25 & 346 & 6.2 & 2 \\
\hline 26 & 002 & 4.5 & 2 \\
\hline 27 & 331 & 5.2 & 2 \\
\hline 28 & 338 & 4.6 & 2 \\
\hline 29 & 002 & 4.1 & 2 \\
\hline 30 & 282 & 4.6 & 2 \\
\hline 31 & 021 & 2.7 & 2 \\
\hline 32 & 004 & 3.7 & 2 \\
\hline 33 & 308 & 5.5 & 2,3 \\
\hline 34 & 346 & 4.3 & 2 \\
\hline 35 & 043 & 3.3 & 2 \\
\hline 36 & 025 & 4.3 & 2 \\
\hline 37 & 310 & 3.2 & 2 \\
\hline 38 & 086 & 7.1 & 1,2 \\
\hline 39 & 299 & 4.2 & 2 \\
\hline 40 & 333 & 6.8 & 2,3 \\
\hline 41 & 350 & 9.9 & 2,5 \\
\hline 42 & 358 & 4.0 & 2 \\
\hline 43 & 290 & 2.0 & 2 \\
\hline 44 & 043 & 3.2 & 2 \\
\hline 45 & 011 & 5.0 & 2,5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline LINE: & ORTENT & LNGTH & QUADS \\
\hline 46 & 289 & 8.0 & 2,3,6 \\
\hline 47 & 054 & 4.7 & 2,5 \\
\hline 48 & 029 & 7.0 & 2,3 \\
\hline 49 & 008 & 3.4 & 3 \\
\hline 50 & 343 & 5.7 & 3 \\
\hline 51 & 316 & 4.7 & 3 \\
\hline 52 & 319 & 4.4 & 3 \\
\hline 53 & 338 & 2.9 & 3 \\
\hline 54 & 282 & 7.2 & 3 \\
\hline 55 & 346 & 6.0 & 3 \\
\hline 56 & 358 & 3.3 & 3 \\
\hline 57 & 359 & 8.1 & 3,6 \\
\hline 58 & 025 & 7.9 & 3,6 \\
\hline 59 & 060 & 5.6 & 3 \\
\hline 60 & 340 & 3.2 & 3 \\
\hline 61 & 020 & 7.6 & 3,6 \\
\hline 62 & 299 & 3.9 & 3,6 \\
\hline 63 & 044 & 6.3 & 4 \\
\hline 64 & 000 & 5.1 & 4 \\
\hline 65 & 001 & 4.9 & 4 \\
\hline 66 & 004 & 4.7 & 4 \\
\hline 67 & 004 & 5.1 & 4 \\
\hline 68 & 057 & 4.5 & 4 \\
\hline 69 & 084 & 7.4 & 4 \\
\hline 70 & 045 & 7.9 & 4 \\
\hline 71 & 051 & 4.4 & 4 \\
\hline 72 & 331 & 3.4 & 4 \\
\hline 73 & 018 & 5.5 & 4 \\
\hline 74 & 021 & 5.4 & 4 \\
\hline 75 & 022 & 5.6 & 4 \\
\hline 76 & 341 & 6.2 & 4 \\
\hline 77 & 089 & 1.9 & 4 \\
\hline 78 & 324 & 3.8 & 4 \\
\hline 79 & 338 & 5.2 & 4 \\
\hline 80 & 029 & 3.5 & 4 \\
\hline 81 & 295 & 3.8 & 4,5 \\
\hline 82 & 022 & 3.7 & 4 \\
\hline 83 & 036 & 4.8 & 4 \\
\hline 84 & 330 & 2.7 & 4 \\
\hline 85 & 321 & 2.7 & 4 \\
\hline 86 & 273 & 4.5 & 4,5 \\
\hline 87 & 324 & 4.3 & 5 \\
\hline 88 & 309 & 5.0 & 5 \\
\hline 89 & 279 & 4.2 & 5,6 \\
\hline 90 & 016 & 5.5 & 5 \\
\hline 91 & 042 & 3.4 & 5 \\
\hline 92 & 342 & 3.1 & 5 \\
\hline 93 & 330 & 8.4 & 5 \\
\hline 94 & 347 & 4.5 & 5 \\
\hline 95 & 005 & 8.3 & 5 \\
\hline 96 & 324 & 2.9 & 5 \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{rccc} 
& TABLE & D (continued) & \\
LINE: & ORIENT & LNGTH & QUADS \\
97 & 286 & 4.1 & 5 \\
98 & 350 & 6.4 & 6 \\
99 & 045 & 7.2 & 6 \\
100 & 295 & 5.4 & 6 \\
101 & 271 & 3.8 & 6 \\
102 & 013 & 7.3 & 6 \\
103 & 069 & 3.2 & 6 \\
104 & 076 & 7.9 & 5,6 \\
105 & 022 & 6.3 & 6 \\
106 & 043 & 7.4 & 6 \\
107 & 080 & 5.9 & 6 \\
108 & 336 & 5.2 & 6 \\
109 & 285 & 4.2 & 6 \\
110 & 020 & 5.5 & 5.6 \\
111 & 045 & 4.9 & 6 \\
112 & 033 & 2.9 & 6 \\
113 & 087 & 6.7 & 6
\end{tabular}

TABLE E
DATA ON LOW-ALTITUDE AERIAL PHOTOGRAPHY LINEAMENTS
PARAMETER KEY - LINE\# lineanent number - ORIENT lineament orientation (azimuth) - LVGTH lineament length (kilometers) - QUADS quadrangles intersected - (Moodus Quadrangle Only)
\begin{tabular}{|c|c|c|c|}
\hline LINE* & ORIENT & \(\triangle\) SGTH & QUADS \\
\hline 1 & 023 & 1.5 & 2 \\
\hline 2 & 087 & 1.7 & 2 \\
\hline 3 & 336 & 1.8 & 2 \\
\hline 4 & 048 & 1.5 & 2 \\
\hline 5 & 333 & 1.1 & 2 \\
\hline 6 & 355 & 1.2 & 2 \\
\hline 7 & 011 & 1.2 & 2 \\
\hline 8 & 080 & 1.5 & 2 \\
\hline 9 & 053 & 1.1 & 2 \\
\hline 10 & 031 & 1.2 & 2 \\
\hline 11 & 304 & 1.3 & 2 \\
\hline 12 & 287 & 1.7 & 2 \\
\hline 13 & 003 & 1.4 & 2 \\
\hline 14 & 039 & 1.2 & 2 \\
\hline 15 & 089 & 1.6 & 2 \\
\hline 16 & 302 & 3.3 & 2 \\
\hline 17 & 283 & 1.2 & 2 \\
\hline 18 & 345 & 1.6 & 2 \\
\hline 19 & 351 & 1.1 & 2 \\
\hline 20 & 046 & 1.9 & 2 \\
\hline 21 & 011 & 1.8 & 2 \\
\hline 22 & 082 & 1.4 & 2 \\
\hline 23 & 010 & 1.6 & 2 \\
\hline 24 & 088 & 1.4 & 2 \\
\hline 25 & 335 & 1.1 & 2 \\
\hline 26 & 028 & 1.3 & 2 \\
\hline 27 & 292 & 1.2 & 2 \\
\hline 28 & 052 & 1.4 & 2 \\
\hline 29 & 277 & 1.8 & \\
\hline 30 & 012 & 1.1 & 2 \\
\hline 31 & 340 & 1.2 & 2 \\
\hline 32 & 014 & 1.8 & 2 \\
\hline 33 & 294 & 1.1 & 2 \\
\hline 34 & 330 & 1.0 & 2 \\
\hline 35 & 310 & 1.2 & 2 \\
\hline 36 & 325 & 1.3 & 2 \\
\hline 37 & 036 & 1.5 & 2 \\
\hline 38 & 343 & 1.0 & 2 \\
\hline 39 & 331 & 2.2 & 2 \\
\hline 40 & 350 & 1.4 & 2 \\
\hline 41 & 004 & 1.5 & 2 \\
\hline 42 & 087 & 1.7 & 2 \\
\hline 43 & 033 & 1.4 & 2 \\
\hline 44 & 356 & 1.6 & 2 \\
\hline 45 & 065 & 1.6 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline LINE* & ORIENT & LNGTH & QUADS \\
\hline 46 & 016 & 1.5 & 2 \\
\hline 47 & 076 & 1.7 & 2 \\
\hline 48 & 284 & 1.7 & 2 \\
\hline 49 & 009 & 1.1 & 2 \\
\hline 50 & 089 & 2.1 & 2 \\
\hline 51 & 287 & 2.0 & 2 \\
\hline 52 & 333 & 1.7 & 2 \\
\hline 53 & 083 & 2.2 & 2 \\
\hline 54 & 005 & 1.9 & 2 \\
\hline 55 & 009 & 2.6 & 2 \\
\hline 56 & 075 & 1.2 & 2 \\
\hline 57 & 315 & 1.2 & 2 \\
\hline 58 & 290 & 2.1 & 2 \\
\hline 59 & 005 & 1.8 & 2 \\
\hline 60 & 350 & 1.3 & 2 \\
\hline 61 & 006 & 2.5 & 2 \\
\hline 62 & 022 & 1.5 & 2 \\
\hline 63 & 296 & 1.4 & 2 \\
\hline 64 & 316 & 1.6 & 2 \\
\hline 65 & 085 & 1,6 & 2 \\
\hline 66 & 025 & 1.6 & 2 \\
\hline 67 & 346 & 1.9 & 2 \\
\hline 68 & 339 & 1.9 & 2 \\
\hline 69 & 051 & 2.9 & 2 \\
\hline 70 & 321 & 1.0 & 2 \\
\hline 71 & 004 & 1.3 & 2 \\
\hline 72 & 317 & 1.4 & 2 \\
\hline 73 & 309 & 1.3 & 2 \\
\hline 74 & 283 & 1.7 & 2 \\
\hline 75 & 348 & 1.6 & 2 \\
\hline 76 & 270 & 1.7 & 2 \\
\hline 77 & 328 & 1.1 & 2 \\
\hline 78 & 330 & 2.1 & 2 \\
\hline 79 & 036 & 1.5 & 2 \\
\hline 80 & 089 & 1.6 & 2 \\
\hline 81 & 007 & 1.9 & 2 \\
\hline 82 & 083 & 1.6 & 2 \\
\hline 83 & 341 & 1.4 & 2 \\
\hline 84 & 320 & 1.6 & 2 \\
\hline 85 & 082 & 2.3 & 2 \\
\hline 86 & 344 & 1.5 & 2 \\
\hline 87 & 016 & 1.1 & 2 \\
\hline 88 & 309 & 2.4 & 2 \\
\hline 89 & 024 & 1.3 & 2 \\
\hline 90 & 031 & 1.6 & 2 \\
\hline 91 & 049 & 1.0 & 2 \\
\hline 92 & 050 & 1.4 & 2 \\
\hline 93 & 337 & 1.6 & 2 \\
\hline 94 & 089 & 1.7 & 2 \\
\hline 95 & 342 & 1.1 & 2 \\
\hline 96 & 061 & 1.8 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline LJNE \({ }^{\text {a }}\) & ORIENT & LNGTH & QUADS \\
\hline 97 & 323 & 1.5 & 2 \\
\hline 98 & 027 & 2.4 & 2 \\
\hline 99 & 274 & 1.5 & 2 \\
\hline 100 & 330 & 2.1 & 2 \\
\hline 101 & 048 & 2.8 & 2 \\
\hline 102 & 326 & 1.5 & 2 \\
\hline 103 & 298 & 1.9 & 2 \\
\hline 104 & 011 & 1.9 & 2 \\
\hline 105 & 065 & 0.9 & 2 \\
\hline 106 & 350 & 1.5 & 2 \\
\hline 107 & 325 & 1.9 & 2 \\
\hline 108 & 357 & 1.1 & 2 \\
\hline 109 & 334 & 1.5 & 2 \\
\hline 110 & 335 & 1.2 & 2 \\
\hline 111 & 021 & 1.4 & 2 \\
\hline 112 & 3.47 & 1.5 & 2 \\
\hline 113 & 294 & 1.0 & 2 \\
\hline 114 & 339 & 1.6 & 2 \\
\hline 115 & 045 & 0.7 & 2 \\
\hline 116 & 345 & 2.2 & 2 \\
\hline 117 & 341 & 1.2 & 2 \\
\hline 118 & 021 & 3.4 & 2 \\
\hline 119 & 035 & 1.4 & 2 \\
\hline 120 & 339 & 1.5 & 2 \\
\hline 121 & 081 & 2.3 & 2 \\
\hline 122 & 339 & 1.6 & 2 \\
\hline 123 & 317 & 1.9 & 2 \\
\hline 12.4 & 076 & 2.0 & 2 \\
\hline 125 & 334 & 0.7 & 2 \\
\hline 126 & 295 & 1.3 & 2 \\
\hline 127 & 019 & 1.4 & 2 \\
\hline 128 & 273 & 1.8 & 2 \\
\hline 129 & 013 & 1.2 & 2 \\
\hline 130 & 084 & 1.1 & 2 \\
\hline 131 & 326 & 2.0 & 2 \\
\hline 132 & 332 & 2.1 & 2 \\
\hline 133 & 349 & 1.3 & 2 \\
\hline 134 & 326 & 1.5 & 2 \\
\hline 135 & 330 & 1.9 & 2 \\
\hline 136 & 310 & 3.4 & 2 \\
\hline 137 & 276 & 1.5 & 2 \\
\hline 138 & 042 & 2.4 & 2 \\
\hline 139 & 277 & 1.9 & 2 \\
\hline 140 & 306 & 2.5 & 2 \\
\hline 141 & 359 & 1.6 & 2 \\
\hline 142 & 088 & 2.5 & 2 \\
\hline 143 & 359 & 2.5 & 2 \\
\hline 144 & 045 & 2.0 & 2 \\
\hline 145 & 358 & 1.9 & 2 \\
\hline 146 & 304 & 1.9 & 2 \\
\hline 147 & 054 & 2.3 & 2 \\
\hline
\end{tabular}
\begin{tabular}{cccc} 
& TABLE & E (continued) & \\
LINE\# & & & \\
148 & ORIENT & LNGTH & QUADS \\
149 & 069 & 1.1 & 2 \\
150 & 069 & 1.5 & 2 \\
151 & 083 & 2.1 & 2 \\
152 & 037 & 1.5 & 2 \\
153 & 339 & 1.6 & 2 \\
154 & 301 & 1.6 & 2 \\
155 & 351 & 1.4 & 2 \\
156 & 031 & 2.3 & 2 \\
157 & 350 & 1.3 & 2 \\
158 & 351 & 1.7 & 2 \\
159 & 323 & 1.1 & 2 \\
& 287 & 1.1 & 2
\end{tabular}

PLATE 1, Location map of study area features


\section*{APPENDIX D}

PUBLISHED ABSTRACTS OF TECHNICAL PAPERS

Eos val. 67, No 16, April 22.1986
 :...:
21013.145



 sentiol 1en
Seactre froe 38 sicroantingusker in four warm miveyibed uppet ifvet th the censtai kie Geende olit



 epectift shacked ovet sach evers.



 s, dectease while of tacreases. o and f, heve been abserved to vary in it sishlar fashion witk incteasing sactense activity. These abservetiont buckett the
 tafluenct ine fresumen sependence of of

\section*{Seismicity}

Room 319 Thurs PM
Presider, L. T. Long
Georgia Institute of Technology D. V. Stockar

Pennsylvania State Univ




 the birth of seiseoiasy is a seienct she proviree sate



 of thariestan a tiliat seciety repartios on the effect ascounto froe ovet isoe lacstione liacivdint kavaen
 vSos, whest tesert was mblishea in 1849 Aflut initiaily sutietilisy ine presenct of taret opiconier



 is ke in ane the velecity of weth weves io te of


 of a st tault te actount for the lest ovent. as apasitent wivt trand of epicentert of hiataricei warth quakes wes setes by sollinger (187z) A sultidisedBilasery fflatt to uneersiane the case of seiseielty

 owties plutent sacasilip renetivation of tot aetolie-


\(9296 \mathrm{~m} \quad 135 \mathrm{~h}\)


 4. fion 350 vestibere. Na orsal)


\section*{\(470-n\) \\ }





 perpeadieluat to the wiasht NV stifuetatai irain of

 D3
 fisket fiket. one the reuncest after of st het
 Aprif 198- twest is wirhis the saminant sent at ine twils. The bisterirt stiskicily one resecte Snetheentaily recerget aventt Alet setiat,



 fieit seromesnetis one stevily snawliet sene prominent teent senting lieekenit provise lurthet


\(302 \mathrm{~A}-\mathrm{K}\)
1450 m

 nt 02138)


 \(t\) sopprapnic mebi, APromanetic sab. St rean and tapequanic aliquents, qravity snamilits, pheldeptap
 Endicate a lavit that strises mis5y, atiend enuanly

(W2A-0) 152)m

 Sclanes. Gesyzia inatitust of Technelaery
Ationts. SA 10331 ?

Thres ander teatures sefing the shatal strustary







 louguer anose if and thi latectaction of the trecasse



 The wiecitt sodel is wesed on an ficerveraction of estrection seit trou carthavestil ane explasiane. The




 traenic iosdiak. The festurth responeibig for thest icretaes in soutneastem lennesset ott ibl attat samy keunisias the the truncation of the Precemption titt the Mrai
arfa-x 15\%



Sis vears of sate fron a stiereterf solseis entwork in tist sre usec to consitein tre gruste



 tre wom renve at that observec oneath ine neighborts

 loc⿱tect on tre eapes of tre ilistions. These ines are conlinuous iy active at sonerate semisumes. Lartmoneses vithin the blasibre oceur mort sporesical) than those siont ith sargins, sebarstel bo lone perio.
of auiescence. iesolse large reter of raiative piate


\title{
ABSTRACTS OF PAPERS PEESENTED AT THE NORTHEASTERN SECTION (22nd Annusl Veeting) of THE GEOLUGICAL SOCIETY OF AMERICA, Pittsburgh, Pennsylvenia, March \(4=7,1987\)
}

Vo2. 19, No. 1, 1987

GLOMORLRIC INDIEATORS OF NSOTLCTONLC ACTIVITY IN THI WLITASTLR ARSA, PEnMSYLVANLA

No 115507
 sciences. The Pennsydvania flate Untv., University Park, Ph 1680 : Thete ate no teports of any permanent surface sandfestation of the selszac activity, recoreed in recent and histeric tiaes, from the eptcentet area near hancaster, Pennsybania. The lack of any taulturetatec features bueh as scarps, streas oflsest, and seg ponds in the lancaster ared, sukgests that there vert no tectonit thaphacenenta at the surface, or the: if there vert any, they vere stail ung rapidiy oblitereted by egrienlikfe. practices, hovever, the lirst order streast in bogern crazage networs have been shown eiseunere to be sensitive to sadil detera. and vertical displacesents of the ground ourface in response to neotectonis events.

A systesatic study of the first order drainage pattern and guliy eensity using AsGs tow altituce aerial photographs (scait \(1: 20,000\) ) thour in 1966, was intitatec for Lancaster Cougty, Guldy density varied \(0 \rightarrow 60\) pet each phoce-celi of approxisately 9 kz . A censlty of sote than 30 /photo-celi vas consicerte anozaious. Three high density ceit artas art iennsifiec, vi2., (1) a dispersed southern arto atounc wakefield and vuarryville, (2) an areuate central anosaly to the south and vest of bancaster, and (2) an northern, duabeli-shaped pattern centered on thisaothsom. NiNL trending Friassic diabase dikes are exposed in the anasaious ateas, and the Ni.s crending epicenters of recent earthoukkes tie 3.5 to \(\$\) ke beneath the central ares. A number of Paicozese thrust laults also are exposed in the central area.

Gullys exhibit tyo doeinant orisntations ; a shatp spike on \(N S^{\circ} \mathrm{E}\), and - broac peak on \(N 20^{\circ} \%\). hithough thert is w N-S elongation to aany of the anowalies, they collectivedy detine a Nok trend, subparalled to the Suscuenanman River. We subsest that these anowalies represent the antersection of neotectonis befortation tones vith a subtie rive: sertace.
\[
\text { p. } 20
\]
```

LNNGSTER, PENSTZVANLA SLISMIC 2ONZ1 EYHENCI TOR A
pNESLNTLY ACTIVI 2ONE OT KLANGESS
sTockas, Fivie V, ane NiEGIDER, Shelion S., Dept, of Geosciences,
The Pennsydvanas state University, Universisy Park, Ph 16802
4fstorical seismitity and relocated anstrumentaliy recotaed events
beline a north-south trencing sone of seismac activity. it is app;oxi-
bateiy 50 k= in length and 10 km in vidth, encompassing the central
region of Lancasier County anc the ci;y of Lameaster. Recent actavsty,
such 2s the Aprid 23, 1984 (EbLg 6,2, N9. V:) satinonock at a bepth o!
4. S-5.0 ks and asscitated foresnosks and aftersnosks near Martisville,
avout to ka soutn o! the sity of Lancanse:, is attributed to this
seisact zone.
Scructuzal crost-custing reiationshapg indicate that the youngest
rocks prtsen: art the nerth-south striking TrLassic-jurassic edabase
dikes, and the youngest faulss present are the north-south treading
cross faults which offses ald other structurad features and dithologies.
the recent and historical seasel: actvaty appeazs to be concentrated
Along the sost dominant of the e crose fawht zones, the Frustvilie Teult
20ne.
Rezote sensing lineaments and potential) {ield (gravity and aero-
aagne:ic) anomalies support the strusturai and selsmic evidenct fot a
not:m-south deforatsocal zone. takevise, the cratnage pactern of the

```


```

Withan the Miocene to recent susquehanha River terraces of bancaster
county. The saxiaus upllft appears to be nest safe Harbor, id

ABSTRICT OF PAPER PRESENTED AT THE SOUTHLASTERN SECTION (36 th Annual Meeting) Q: THE GEOLOGICAL SOCIETY OF AMERICA, Norfold, Virginia, March 25-27, 1987. Vo1. 19, No. 2, p. 133.

TUFA/MAR DEPOSITS AS INDICATORS OF NEOTEC:ONIC ACTITTTY THORNTON, Charles P., Department of Gaosciences, The No 132294 Pennsylvania State University, University Park, PA . $6002 ; G 0 L \mathrm{~L}$, David P., Deparment of Geosciences, The Pennsylvania State University, University Park, PA 16802 ; HERMAN, Janet S., Department of Environmental Sciences, University of Virginia, Charlottesvizie, VA 22903
Folocene deposits of calcium carbonase (tufa and/or mati) occur along many streams in the Shensndoah Valley of Virginia and in the southern Cumberland Valley of Pennsylvania, in many (and perhaps in ali) cases Just downstream from points where these streams cross faults or where they cross inneaments that intersect faults at depth. Many of the deposiss are forming at the present time, but others are inactive and are being eroded by the streams. Along holman Creek between Forestvilie and Quicksburg, Virginia, deposition of tuf was followed by alluviation, and the deposits are overlain marginally by up to 3 m of sands and silts, yet, the travertine is still younger than the establishmen: of the present vally of Holman Creek. Localization of the deposits downstream from fault or lineament traces seems to indicate the sourcs of the CaCO n-saturated waters to be the faul: zones, along which trushing of the timestones resulted in their higher-than-normal solubinizy. however, i: seems unliliely that this crushing dates from the time of ortgin of these faults some $250 \mathrm{~m} . \mathrm{y}$. ago: the supply of crushed limestone produced at that time should long since have been exhausted. The more probable alternasive is that recent movement along these faults has produced a new suboly of crushed limestone for the cirzu2s:ing ground wn:1-
 movement aiong the fault. In one case, the Saumsville fault in the Shensticoah Valley, this hypothesis is supported by the systematic rightlateral ofiset of CaCO_{3}-depositing streams crossing the fault, evidetice that movezent has occuized along this fault stace the time of establishment of the present drainage pattern.

Also reprinted in Oklahoma Geology Notes, Oklahoma Geol. Surv., Vo1. 47, No. ', 1987, p. 194-195.

Program and Minutes, 59^{\prime} 'h Annual Meeting SEISMOLOGICAL RESEARCH LETTERS v. 58 , No. 4,1987

ABSTRACTS (Alphabetical Order)

EARTHQUAKES, INJECTION WELLS AND THE PERRY NUCLEAR POWER PLANT, CLEVELAND, OHIO
AHMLAD, Moid U.. Professor of Hydrogeology. Ohio University, Athens. OH 45701
On January 31, 1986, an earthquake of magnitude 4.8 occurred about 11.3 km south of the Calbio injection weils. Acceierometers on sitt at the Perry Nuciear Power Fiant (PNPP) recorded acceierations as high as 0.10 to 0.23 g . A large number of instruments tripped due to high amplitude vibrations. There seems to be a possible correlation between abnormally high annulus pressures and the time of earthquakes. This same correlation extends to the two 1083 earthquakes recorded in the area. Micronetworks have recorded 6 earthquakes around the injection well with focal depths ranging from 0.6 to 2.2 m . A hydrological model of an anisotopic reservoir 6.44 km wide and 17.7 km long indicates a pressure build up between 53 bars at the epicenter and 118 bars at the injection well. The simulation matched average yearly pressure data and displayed a good cortelation. The assumption of an anisotropic reservoir is consistent with arailable geophysical and geological data The indicated pressure buidup is similar in magnitude to that resulting in the Denver earthquake of 1982. This critical value is interpreted as the pressure buildup above which induced earthquakes mey oceur in this area.

TRAVERTINE AS AN INDICATOR OF NEOTECTONIC DEFORMATION IN THE LANCASTER, PA SEISMIC ZONE AND OTHER AREAS
ALEXANDER, S.S., STOCKAR, D., and THORNTON, C.P., Department of Geosciences, Pennsylvania State University, University Park. PA 16802
The vicinity of Lancaster, Pennsyivania has been a region of persistent recent seismic activity. Earthquakes there, with a maximum magnitude of 4.2 (April 23, 1984), appear to be coticentrated within a NS-trending seismic zone which is approximately 20 km wide and 30 km long. This zone, the Lancaster Scismic Zone, contains a reverse fault, the Fruitville Fauit, which strikes NNE through central Lancaster County, aiong which most of the recent earthquake activity is concentrated.
Recent ground-based studies in the area have revealed that the southern trace of the Fruitville Fault Zone is associated with presently active travertine deposition. preferential north-south drainage of the major streams in the area and the ocrurrence of springs. Travertine deposits have been found at four separate locations in small streams crossing the Lancaster Seismic Zone. Present deposition occurs downstream from the inferred active fault trace which euts carbonate bedrock. It is postulated that the seismically active fault(s) may be mylonitizing the earbonate country rock at depth and acting as a conduit for the calcium-carbonate-rich groundwater to reach the surface where it super-saturates in nearby streams and precipitates as travertine. This association of travertine with geologically recent fault movements was first suggested by Thornton (1953) based on fieid studies in Virginia, and thert appears to be numerous other such oceurreness giobally. It is potentially very important in studies of paleoseismicity in relatively aseismie areas such as the eastern United States.

YIELD ESTIMATES OF SOVIET EXPLOSIONS FROM PROPAGATIOIN-CORRECTED Lg

SPECTRA
ALEXANDER. S.S., and TANG. L.. Department of Geosciences. Pennsyivania State University, University Park, FA 15802
Application of an empirical approach to correct observed Ls spectra for propagation effects gives astimates of sourse excitation spectra for Soviet explosions. Path attenuation is accounted for by using Q estimates derived from average sp os'al slopes for a suite of events of different magnitude it a given source area or by a source-path-receiver decomposition when sufficient observing stations art available. Yield estimates are then obtained by comparing attenuation-corrected source spectra with theoretical source spectra for explosions of different yieid. Tectonic reiease effects do not appear to bias these estimates, if frequencies above about .5 Hz are used. Under the partially confirmed assumption of transportability of empifical relationships developed in North Ameriea, direct estimates from $m_{i k}$, provide an alternative means of estimating Soviet yields that agree well with those oblained by this speet-al approach and with Nuttil's code-Q estimates using Ls

CHARACTERIZATION OF SEISMICALLY. INDUCED LIQUEFACTION SITES ASSOCIATED WITH THE 1886 CHARLESTON, S.C. EARTHQUAKE.
AMICK, D.C. and MLAURATH. G., Ebaseo Services Incorporated, 2211 West Meadowview Rd. Greensboro, NC 27407
Recent studies of paleoliquefaction features in the epicentral area of the 1886 Charieston, SC earthquake suggest that this area has been the site of several large prehistorie Holocene earthquakes (Gohn ei al., 1084: Obermeier ei al., 1985: Taimani and Cox, 1985; Weems et al., 1086 and Obermeier et al., 1986). The time between successive large events is estimased to be 1200 to 1800 years. In light of this relatively long recurrence interval, the U.S. Nuciear Regulatory Commission is presentiy funding a systematic search for similar prehistoric paieoliquefaction features in other areas of the Eastern United States. The objective of this study is to determine whether or not stismically induced paieoliquefaction features are present eisewhere in young sediments of the Atlantic Coastal Plain or within late Quaternary or Holocene river deposits. If they are present, the study will attempt to determine the size and frequency of the causative earthquakes.
Initial investigations center on cataloging the characteristics of earthquake induced liquefaction features in the Charieston, SC area and idencifying the eriteria by which similar teatures outside the mezoseismal area of the 1886 event could be identified. To date a total of 103 liquefaction sites in the Charieston ares have been identified. Or these, 63 sites were idensified based on the authors' evaluation of both published and unpublished historical accounts of the 1886 earithquake, 28 have been identiffed as a result of ongoing field studies by the U.S. Geological Survey, 4 were identified during past fieid studies carried out by investigators of the University of South Carolina and 8 were identified by the authors dur. ing reconnaissance field studies conducted as part of these investigations. Each of these 103 sites have been located on topographic maps, county soil maps, available remote sensing imugery, and available grologic maps. In addition, the authors condueted confirmatory field investigations at 32 of the sites. This information has been used to characterize each site's depositional environment. agt of host and liquifed materials, hydrogeologic setting.

Seismological Research Letters. Volume 59, No. 1. January - March. 1988

14:15
INVERSION OF OEODETIC DATA FOR SPAIIAL DISTRIDUTION OF FAULI SLIP OF THE 146 NANKAIDO LARIHOUAKE

YABUK1. Ti, and MATSU'URA, M. Geuphysical Institute, Faculty of Science. The University of Tokyo, Tokyo 1iJ, japan
We have deveioped a generai method for obraining tomographic images of seismic soutces from surface dispiacerneat data, using Akaike's Bayestan Information Criterion (ABIC), In the present study we appiy this methou to zero-frequency data. Given a slip distribution on a fault surface, we can caicuiar: surface dispiacements due to an earthquake by integrating soiutions to point sources ever the sourse region. We represent the sup disminution by a weighted sum of a finite number of known basis functions. By repiacing ine order of integration asd summation, the surface displacement can be expressed as a weighted sum of the dispiacements due to the slip distributinas preseribed by the basis functions. Then the inverse probiem is slated as the probiem of determining the weights in superposition of the basis functions from observed surlace dispiacements The probiem is bighiy nonunique in generai. We incorporate prior
infortnation about the smoothness of spatiai variation of faut slip into observed data, and construct a Bayesian model with hyper-parameters which controt the degree of the smoothness. Using ADIC, we can select the best model among the family 0. parametric modes contrulied by the byper-parameters We demonstrate the appicability of this method to actual observed data through the analysis of geovetic data associated with the ivib Nankaido earthquake, which is une of the greatest earthquake that oecurred at the boundary between the Eurasian plate and the Philippine Ssa piate.

14:30

The prebu-swis, coseismic, anc postieismis enanget in the surtice

 piate voundaty between the Asian and rh,tippint sea plates. At estinasee. These evtimations ate sblatined frok the firstrothei leveting data during the period of $1890-1980$ on the basis of an apoen eeduction and net-ad fuatment andiyses

The preseismis (1900-1946) wurlace decturnation if characteriand ay irenctivard tilting in the castere pars of shikaxy and the fil peninsuld. Whash can be interpcetes in terms of a steady xbd suaduation of the Philippine sea plats The coseismic $11986 / 196$, surcace sovenent in these regions indiestes enaractecisatiot of th. efsiern part of shikoky differt toos theso cegians in thy surfase deformstion pattern: shight uphitt suriny the prese:smis petioul that asformation patcerm sitiont uphet jur of the earthquase. aven at regiond difference it aiso recouniova voiserting the puxtavion jeforastion, Moreover, suen a type of reqrowai silfereney has hurn
 Also eportad ith somer renional diflerenses Cansequentig, it van oe said that there ira some senconal.

14:45

HalNES, A.J., Seismoloyical Doservatory, Ceophysics Division, DSIR,
The 193! twakes Bay earthquakt is the second largest that has uccurred in New Sealand during the 150 years of European settiment, Because of its proximaty to the city of Napier, if was also the most destructive. Harket upilift and subsidence were ouserved uver an area of the order of $10^{1} \mathrm{~km}^{2}$ surtounding vanier though point values of verticel displace nent are not known sufficientiy accurately to justify fuli forma. nent are finversion for source properties incluating the areal dastribution of inversion for sourte properties incluating the areal distribution of established for thie rein propurties to be veduced. The sixitise fault established for the wain propurties to be veriuced. The naxitsan
dispiacement was close to 10 n , cinsisting of sialar ancuunts of dispiacement was close to
reverse dip-sitp and dextral strike-slip movervent on a steeply-dipping crustal fault striking in the sane direction as the Pacisic-plate ithosphere subdacted berwath the North isiand. It is also deduced that the fault extends down to near the cop surface of the subducted It thosphere 30 km beneath Napier The dislocation models consistent with the vertical deformation predict horizontal displacements tha: agree to within ertors with coarse geovetic observations. In contrast to mutch the geudetic ooservarions more exactiy, movement has heen postuated on the interiace between the Pacific and overiyins dustra. Ian plates, as well as on the crustal fault. Such additional novement is inconsistost with the pattern of vertical displacement.

15:00

The batate issimption of this paper is that if, reqion has bere

geeioquatiy short perial of cime. is can be craced in the stfsets on the taulle gistributed fithin ine reition. Though the tarsuias on the disiocstion sin olseid on the wlastieity thwory, they san sove With the perkanent derareation of salid and swer to be fuccesafuriy tppliesble to the case. This it oncause the non-alastic tieid sen oe novelied sy the niastie sinquiarity. Net the atress state within
ine reqion sut only diselactaents on the poundary, derived sise from the reqion but anir displacenents on the soundary, derived sise from ditpiacemenct on the seqmen. A within the region, we esiled in
question, th the cormulasion of the pronten the boundary of the

Teqion it set free far twe recsons, it to obtain resuits independent of the surcoundings. 21 te ow possibiy treed tioe restraint of dasticity in a certain senst. The deforseation ith the keribental plate duduc. df tran the oftsest on the stcike-silip taulss is considerad. Thus the probiah is to calcuiace the diaplacement sione the fres boundary of a resion inciuding many disiocations in is in twe-t aensiondi eiasticity sheory, Teehniques of contormal mappine or integrat aquactions the to D.I. Sherman are vitilies

The theocy is appliwd to the oftsecs secumaiated during the
 japan. The ckeuit is cospared wish those from other sources, suoh as peiae-末aqnetir survev.

15:15

bute goundary defortation in california inferred froh GEODETIC DATA

JACKSON: D.D., Department of Earth and space
Science, vCLA, Los Angeles, CA 9002 t , and Mirata.
N., deophysival Institute. University of Tokye

Tokye 112, :apan
We model tectonic deformation in California in terms of wlastic bjocks whien dan tratisiate, rotate, and defors elastically because of stresses inposed at their edfed we then determine the rates of rotation, trans.ation and boundary displacement from gabloqicaliy detertineu tault displacement rates as vell as tault creep trilateration trianquiation. VLBI, and GPS data Estimating the above quantities becomes a linear inverse problen when the tault geometry is known
 piate tectenic theory and rates except in the transvorse Ranges, where the rates except in the Transvorse Ranges, onere the geodecic rates are much lower. are concentrated along even in interseismic periods, are francuerse hanges कajor tault ianes, except in the franserse the dieplacement appears roughly unitorn. The bhere the dieplacement appears roughiy uhiforn. sodel can ba used to estimate the rate of stress
accumulation on failes, and to assese the tectonic aiqnificance of faults vien incompiete qeologic data

15:30

AEAA-SURFACE EVIDENCE OF NEUTECTONIC D8FOAMATION :N SEISMICALhY ACTIVE AREAS IV THE NURTMEASTERV UNITEU STATES.
ALEXAADEA, S.S., STCJKAR, 2.2. ANS SHUMAK, S.A.., Department or Geoscipnces, Pqnn state Universiby, Univertiby Park, P4 16802
 North ineriea apparentiy sever reach the surfa-t thert is evidphee of surfane or near-surfact neolecsonid defareation in twe first tad selsiticaliy active areas tnst ve nave fovestigatest ine oincaater, Pa
 and koodus, ST seismie tanpi, remote sensing imasery together xith graind-based geniodiva! ans cemote sensing lasasery together vith graind-based geniodiwsi
geophysical observationg gere used so look for indizations of gepphysical qoservationa sere used forsosk ion in the laneaster geissic seologicaily-recent near-sirfact deformation.
zone lineamens densisy ang arientation patierna, stepan terrace
 elevation ancosilies, and the oscurronce of loetilizd fraiertine
epposits all sppear to be sausaily associdtad sith bin elongsied
 distimesive limeamert gensity ing oriantation pattonns ire presant onion are infereed to be reiaked to the recencly-hesernined (thrust) tectonic stress conditions is the area of recent stisais selivity, Feacures oriented perpendiduiar to the samisum horitontal strens appear on al seales of inagery onile those joints ll oriented garaliel 10 this direction art seen aniy on nign eesoiution aerial anotograpns Ģound-based observations of neotectonic defornation associated with recent seisaibity in the Moodus ares are greatily hanperag by searsupface effects of reepht giaciation. These approaenes ay provide a seans of locating and enaricteritios zones of geologicaily-ceetht seianie activily unere epieencers of pre-instrumpht far:nquakes are soorly known.

15:45
FAULT PARAMETERS AND SGIP DISTRIDUTION OF THE I9IS. AVEZZANE ITALY EARTHQUAKE DENIVED FROM GEODETIC ODSENVATIONS IVARDSS. lasisis of Telanica siectrit of Caifersia, Sasie C'sz. IALENSISE. O

 faula cas be rerognited in the fishl ise i915 cartiequake is the aniy wasie evest to have

 delais of the i9is ruptary ive moir iec ine lauiteg unhg boith abiform and vanabie sig pishat

 feacistes

Abstract

There are ime sumpie models then anay expinio this correis tos: (1) the Dupa snothay represesus the lecer thantie com powition taki is aot affected by upper plate motions of (2) if reprewents recycled and/ar preami-day subcoblinenta man usiande io the Dupe anomaly regona sugest the preseser of : recycied ceempisesi. Monawer, the bigesi Dupa shownely is in the indise-Soulb Atiastic. the icmen inantie veisety min- for at leasi the inet $\sim i S 0 \mathrm{M}$ a. Fiesse, the Dupai anomaly as socisitd anth ibe large-scaie. low sesmac veiotity regions in the lown aancie is mosi probsbiy subcobunental mantie it origis If this is inve, thes the correidion constrains mastie convection mondels

T51A-11 1i45n
Aliasue ra. Pacific Young Seamounts Peroolope sed 5 rSd. atad Pb latopic Conatrants
R. BATIZA IDepi Geoiogical Sciences. Northweriers Uai venaty, Evasston [1] 6020 I
P.R. SaSTIme (DTM Carnegie lasutution of Wamisg ton. 5241 Brosd Branch. NW. Washungton. D.C. 20015

Young exmounts near the siow spreading ($35-40 \mathrm{~mm} / \mathrm{yt}$) SAR between 25^{\prime} and $27^{\circ} \$$ iatitude are smilar in shaper and nut divributions to thase near the fast spresding 180-120 tam (y IPR between 9^{\prime} and $21^{\circ} \mathrm{S}$ latitude Lavas from both sesmount groups are MORBs that are symemauraly mere primuver. and dispiay sugrificant varations in " $5 r / 11 \mathrm{st}$, ${ }^{13} \mathrm{Nd} / /^{1+1} \mathrm{Nd}$ and to a certan exteat. ${ }^{281} \mathrm{~Pb} /{ }^{264 \mathrm{~Pb}}$, than iava from their respective adjecent nidg axes. However. MAR Mamespt lavp bave generails hugber ${ }^{11} \mathrm{St} /{ }^{4} \mathrm{St} 10$. T0260 $0.70303)$ and $\Delta 8 / 4(.6$ ie 46$)$ and lower ${ }^{15} \mathrm{Vd} / 1+\mathrm{Nd} 10.31292$ -0.51309 vives than EPR veamount lan ${ }^{* 1} \mathrm{Sr} /{ }^{* *} \mathrm{Sr}$ lo 70222 - 0 T0298), $\Delta 8 / 4(.15$ to 9$)$ and ${ }^{16} \mathrm{Nd} / /^{16+} \mathrm{Nd}(0.51289$ $0 \$ 1327$ valums. respectively
We propose thas iaver from beth semmount groups art pro duced by the same general procest - small derree partial metil ing of a aepieted uppet mantit source of MCRBs containing ierge magnitude. smali-scaie heterosennties bavas erupted at adjacent nige ases are produced by large degree meiting that average the themica and vetopir sharacteristics of the same mantie sourse The main differetice lies in the compo sition of the sthali-scair heteroernetien is the upper mantio ueget the southers MAR and northern EPR

Earthquakes, Geophysics, and Geology Near Moodus, Connecticut 1 (T51B)
Room 305 Fri AM
Presiding, C. T. Stratton
Woodward-Clvde Consultants
S. Alexander

Pennsvlvania State Univ

T518-01 0845
oeological setting of the moctus. Et. Area
 ceophysical corporation, post oftice bor 550.
vestooto. Wh 01501: $617-366-9191)$
nooduy is loce:ed in eastern connecticut. A region underiain by ocoaples sequense of sedimentary
 dymanotiersal oragenesses of these eugeospmelinal rocks by Appelachion/caledonain orogenie events. heve reaulied in the somptessional. transiational. and aceretionary structural and stratiaraphis sucesssion now ovident in this asphibolite graie
 deformation during the Late paieovic (Peraian) and the Resotole tras has produesd the dowinant brictio tabric of the region as exprassed by dikes. joinss and high angit. gouge-tilited and sinertiliad tauls. Three sejor cectonostratelgtaphic zones eharacterlas the reglion leandiataly sur round: ng the Noodus ares: the brorson Mill anticlinortiun sequance: the Mertlasek syncinorilem sequancs, and the Avaionlas plattrors basesant sequanca the somet aft fault boundet. Geologie sapping in the moodus ares hat ldentitied nortimest-itending frecturt satian. fvaiustion of the selasiesty indleales o possibis north-nortiomest iliment of epleonters in the vicinity of a suatio nor i"mesttranding radat lineasent and gravity ancasily, the extent and simificance of these not tionest trends is unciati, the everost undersianding of suras tieldr in southarn ken england is incuap is
nowever, a wisw directed stress field is

Inferted. Sources of suress dett inditate sat in-sisu stresses art compon in wew thyiand; theee stresses art sost chamoniy detected during
exeavelion actipities. The sesefved phancest escavetion activities. The obsetved phencwera squesse events) are coest indicative of transiant raliat of residual stresses.

T518-02 0900K IN ITED

$405 \cdot-323 \cdot-3255)$
Surfact geologit mapping provides a new sata aase
 Britit deforsation in manitested by inear zones wity
inlorise sylonite and sliekensides. fractures without

 peelagy, the $12^{\circ} 29$ 'V ongitude anerges ar an an imporiant structural boundary in the Moedus area and
 Cractures late two distinct groubs: east of inys
ongliude, prittle seformation is servesive along ongliude, prittle oeformation is seryseive aliong
subnorliontal foliation surfaces. and asyacially in
 fracturt swies 720 , 29 , the prevalent fracture sissten
 present put subordinate. Interierence seteeen $k 30^{\circ}$ y ine kysot tractyre systems is net sonsigicuows at the inffact neap 12
two tracture sets ocgurs in tre shear iones of inese of
 this longituce The ${ }^{120} 29$ 'y lengitude alis
 swohertiontal: west of the axis. ivering ind foliation striky NS Fith verticalion sat stem trom pelentations of int eregional attitudes of setasorghic layering and foliation, swien result fros evetile
deforsation. in some casts. Suetile foles anc taults were reactivatad during pritile deforsation projection of surface geology to septh is hingered by discontinusties introduced by sumerous ouct fle favlis.

1518-03 0915
Lithoiogy and Structure identified in a 1.5 km Borehoie Near Moodus. Connecticai
PC Naumef! (Woodward-Civee Consullants,
Tarme, NJ 07670 201-785-0100)
Soonsort C T Statton)
A $1.5 \mathrm{ke}(4300(\mathrm{t})$ boretheie was drilied in the spring of 1987 near koodus. CT. The borthole was drilied to investigate the orientation and magnitude of the refiunal stress lieid oear that stalt. The borenoie is iocaled roughiy midway beiween two rezionai gtoiogic leatures the Willimantic dome to the not to and wrlace exposures of the Honev Hill lault to the south The borehoie penetratec a lithoiogic secuence simuiar to those exposed at these iwo iocalities. Veliecuttings smpiec at $20-$ oot intervais and cores recovered trom every manor rock init, as weil as thin section araivais of seleciec sampleh provich
basic borenoie estoiogy. Formations encounterect are: basic porenoie stology, Formations encountered are:
and caicsilicate greiss.
1900 to 2090 - Canterbury Uneiss - pink and
white granitic gneisses.
2090 to 2220 - 17$)^{2}$ Heoron Gneiss. inceriayered biotite
Schist and granite greiss.
2240 to 2630 - Tatio Hill Fm. Tuscovite-bionte 2630 to 4800 . Watertore Croup Gneisses.
Aucocratic amphibeie-Dearing gneisses
Although thin myionite zones oceur throughout ine bore*ole myionitic and calaciastic fabrics associaled with the Hunty Hill lault zone are best seveigued in the fathic Hill 7 m . Chip tampies coliected across the Tainic Hill-Waterford Croug conlact fothe traditional map pesition of the fautit do not appear seformes.

Pretiminary observations, based on borehoie teieviewer and formation merricannet iogs.show that the strixe of serenole rock toliation is variabie. but dips are generaily inaliow to moderate. Muror rocumbent foids art evident in the Tatnic Schist at dep ith of arouns 2460 ft , and the foliation sterpens considerabiy it the hinge areas of the foids.

1518-04 0930n INV|TED

Fractupe att ituces (and denstiy) vere neasured in core drilled through the honey M1ll fault tane
(Haddas, (t), using ent northdipoing follation for
 comopes with or itt ie tractures exposed of the 1500 \%, While late valeozote setornation in the K.H. favit zone was tharacterized py it trrust iny-reverse taviting, Wesozolc detorastion occurred by wevest of normi taults. The dats sugests that itrath resulting tron the present day (ok compression abyot
relesied by reversa) of motion tlong fractures of the relessed by reversa) of motion tlong fractures of the latier group. |ndividual norne| foults nave relatively sam 11 surface areas. Resctivat fon could. hovever, make use of a conjugate systen of
intersection iractures, thereby signticantly
increas ing the area of cumblative itratn reliease land
 nones at deoth levels $698-800$ and 1076 to 169 it
or'tn $\{$-k slickensides and precciated nerme avits
$7518-05 \quad 0945 \%$

Is an attespt to daentify neerectonde featuret in the seiselcaily setive srea neat Mebsus, Cenncta ut,

 vors to demtify geoshenisai, speciet which wignt ghov

 i 80,000 , and low-ailituse phetograpny itid.008) for the presente of liseasencs or ether lestares posstal ctiated to becrees tratioras and tectanis strases.

So unatesiguaus evidence of neotactonst peoleate featurel bas provibusif been teported. Out liasies geeof supetsa atelet concillans in 38 bollos sarpies and
 produces sact os lincasent erieniations. (tesevencies.

 perpendicuiat, tespectiveir, to the ditectios of the maxisuk cospressive strest (d) ts seternises tran In sita sirest tse eartheuace tacal aechanisas whiek suggests A Lausal sasoclation with A infust stress resise. Lineasent frequency was abserved to inotase Is the Keosus evastandit reiative to ac actst stuey
 on the vielnity of the selsmic atea. fom the nuith-
 in averagy lineament lengin with inercasing spalia. sesie numper.

T518-06 1015 M JWITE:D
In-sity Stross messerements is the Larth's Grust Neat Meodus. Gonesctieut

Treineqta International, Isc., wastmons
15. Whssyenser of statton)

Istimation of the securteser and eveverity at vispatary

 the quertiainty in sstimating swisnic cise for ins purpose two boies vere dritiod lot budrofracturs sests in the moedus area. The First, to a depth of f. 000 ts. wes trilled vithis the "Benarally aeseptsi" selsais

 drilited approxiastaly of aliss to the south

$1518-07 \quad 1030 \mathrm{H}$

In July 1987.13 nyerofracture expermens wert asnoucied rn the Moubus resaarch bocehoin ove: the depen range between 100 and 1300 m . Over the entire depth range of the testas the mavirhum
 siress that N. Straing inrus lauis ore delentiair active this in ini, aras Ai al ieptrs the leasi princeal siress was rertical and acorosimaiah tqual bo the werghi of lie overtursen. This is
 less sectens a: 8.17 m. 1184 m , and 127 m m Durny these lesis any the verical wrets in, was measurec as anulin pressure. in

$$
\begin{aligned}
& 120555139531 \text { I IANIRA } \\
& \text { USNRCOADM PUBLICATIONS } \\
& \text { DIV FOIA B P OR N NEG } \\
& \text { OPS PS } \\
& \text { P-22 } \\
& \text { WASHINGTON }
\end{aligned}
$$

[^0]: * Air-photo analysis by Haiyan Hu, with data manuplation by Hue-Chung Chou. Supervised by D. P. Gold and T. Gardner.

[^1]: *The central $5^{\prime \prime} \times 7^{\prime \prime}$ rectangle used on each aerial photograph to minimize the amount of radial distortion.

[^2]: \} FRUITV:LLE FAULT ZONE - : (HODIFED AFTER TISE, 1967)

[^3]: *This analysis was carried out by T. Gardner.

[^4]: Figure 20. Terrace profiles of Bryn Mawr (or equivalent) and lower
 surfaces for three major rivers in the northern Appalachian Piedmont. Note inferred deformation on the Susquehanna in the vicinity of Safe Harbor. (from Campbel1, 1929).

[^5]: The findings

    ```
    of the above investigation indicate
    ```

[^6]: EIGURE 9 Strike of aejor goint exs in the inner piedmont of Pennaylvanis. Dota represent the atrike of 38 aejor goint setc. Numbers indicete population of dots falling within e 15 degree sector. Obtuse bisector goint is indicated by eloser apeced dot pettern. (efter Wise Grench, 1967)

[^7]: The earthquakes of largest instrumentally recorded

[^8]: EIGURE_22 Fault plan solution based on the firat sotion date from the April 23, 1984 earthquake and ita efterahocka. The analler circlea reprenent 20 first motions for the sainshoek, sa recorced by the N.E. U.S. Seianic Network.

[^9]: EIGURE 2R Map of the absolute and Relative locationd for the Aprid 23, 1984 meinahock and the Aprid 19, 1984 foreahoek, waing three different veloutivesola. Error bara are included (aee Table 6). ne two large elraies indicete the meximun intenasty reas of the two events ('M' is for the meinahock of F ' is for the foreahoek) as obtained by Schernberger and Howeld (2985), see Figure 25.

[^10]: EIGURE_32 The sum and the product of the eepetre for the "Best Six" etations which recorded the Aprid 23, 1984 ovent.

[^11]: EIgURE 3 A plot of $t:-$ incidonee of the direct p rayo (4acall eixeles) and the pp raye (omall squares) received at the 13 seacions ued in tho sepstral analyais, ond superimposed or to the upper hemiapho: fault plane solution for the April 23, 1984 ainahock.

