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ABSTRACT
e

I

I !.

FLAC' (East Lagrangian Analysis of gontinua),1 Version 2.20, is a i,

! two-dimensional, large-strain, explicit finite difference code !,o
I written for analysis of problems in geotechnical engineering.

,

FLAC has the ability to perform static mechanical analyses as j
well as transient heat transfer and fluid flow simulations. '

..' Various constitutive me'ils are available to describe linear and i

non-linear respot' , sr the solid. Coupling can be performed be- !

tween the thermal and mechanical, as well as the; fluid and me- 1
s chanical, models. The following report presents'the.documenta- |tion specified in NUREG-0856,. Documentation of Computer Codes for ;

High Level Waste Management. The documentation is presented in !c

three volumes. Volume 1 contains the mathematical basis for.the i
'' various espects of the codei Volume 2 is the code User's Manual, |

and Volume 3 presents FLAC verification, example and benchmark |
problems. !

'

;

i
4

|

|
'

.

;

;

.:

!
i

t

I I

T ,
to
t

f-_

: i
i- !

i1

5 !

.c . ,!

!

,

[.. !'

; 1

\

i
'

[!1 >>-
,



,gz
'es . , .. -- .c- - r.l'',... v.,

t 1

I '' ' 1
'c' ,},>

v ,.
' '6

prg."
' ',. ' { ;)>i, ,

' o-: , s
n, ,

, t .- ' .

.< . ~v~ .L :: , ' , , ,
.

, -
'

g[. . . y.,
.

,i" i>yy'

3 '., ; ( Y' f'' . ..' ..
2,, .

. 1

'.)
- s ' TABLE OF CONTENTS' c')-

t. , ,
, '

'L- ,
. ,

g ..g ' . 5
'

s

,'..y , ,.

.t ''

ir ' k VOLUME 1 - SOFTWARE SUMMARY-
r. , 4
( ' ', '4:

M, y - VOLUME''2 - FLAC VERSION 2,2 USER' S MANUAL a.
, . ,.

,

,
.

bi' !

. .g

. VOLUME 3 '- VERITICATION, EXAMPLE AND'. BENCHMARK: PROBLEMS
t. -n-
I'''J |'.

;j
9

.L-
'

s

' .

p
4

}

.-' j.
>

.g_.
e

. ,( .. 7l

r

i . t -

6

.,
w

.

t

i

p,

it

,

.

' _r
w

f'
A

- ,ai

F. .

-(
<g ,

'.V%
i./ ,

| '' '%,'_i,

? +

., .

i

i . p; >>

y ,V .s

,'

.- '

|L . .o .. ',
,-

| .{
'

-|.

|i 4

\ r, ,.,

'

'

s

II< j
,$ 1

'e_
w

4
| <

\
| [ t ,; g.
: .

O| h

. - - ? $3



f.: | |
1

,

'I1-v!.i i

|
|

1
, ,

VOLUME 1 |
|

h SOFTWARE SUMMARY,

[,
i

TABLE OF 00NTENTSy. ,

f !
L i

( EAG.E
'

1.3 STATEMENT AND DESCRIPTION OF THE PROBLEM . 1.1-1 |. . .
/ *

L Prortram Capabilities, Version 2.20 . . 1.1-1 l.....
i

i
.

1.2 EXPLICIT SOLUTION PROCEDURE. 1.2-1 i...... ....

1.2.1 Introduction. 1.2-1 |. . ............

jj: 1.2.2 Program-Structure . 1.2-3...........

m i

1.2.3 Field Equations . 1.2-7 j............

I
,'

. 1.233.1 Motion and Eouilibrium Ecuatione 1.2-7 ;

i

1.2.3.2 Fourier's Law for Cenductive |
Heat Transfer. 1.2-9 i.. ......

i

!- 1.2.3.3 parev's Law for Anisotrooie j
F Porous Medig . 1.2-10 i.........

!
1.2.4 Boundary Conditions . , 1.2-11 !.........

:

1

1

1.3 GENERAL NUMERICAL PROCEDURE. 1.3-1 l..........

|

1.3.1 Introduction. 1.3-1 j. . . ... .......

i

1.3.2 Basic Mechanical Finite Difference :
; Formulation . 1.3-1. . . ...........

1.3.2.1 Introduction . 1.3-1 |.........

t

1.3.2.2 Di fference Ecuations . 1.3-2 |.....

L i
# 1.3.2.3 Mechanical Damoino . 1.3-7 |......

|'
5

A i

i

k
I

'

i

f

;
'

!
#

., s

. . .



UEf(
'

,

3 0
1-viii.,

.g
I r; #

' o

'
'

p
'

TABLE OF CONTENTS
(continued)

Eh2E

p" ' 3.3.2.4 Mechanical Timesteo Determina-,

tion, converoence ang_Epabilitv. 1.3-11

s' 1.3.2.5 Creep Timesteo Methodoloay . 1,3-14, . .

1.3.3 Basic Thermal Finite Difference Equations '1.3-14
6

'

1.3.3.1 .. Int roduct ion . 1,3-14"
. . . . . . . . .

1.3.3.2 Differenri EcuatioD1 1.3-15. . . . .

I..
"'

1.3.3.3 Stability and Accuraev of the,

Exo11-it Schema. 1.3-18, . . . . . . . .

1.3.3.4 Imolicit Solution Procedure. 1,3-18. .

'1.3.3.5 Stability and Accuraqt . . . . 1.3-21

1.3.3.6 .Thgrgl._1. cress Coupline. 1.3-22. . . .

1.3.4 Basic Fluid Flow Finite Difference
Equations . 1.3-23. . . . . . . . . . . . . . .

'

1.3.4.1 Introduction . 1.3-23. . . . . . . . .

1.3.4.2 Difference Eop,ations . 1.3-25. . . . .

,

1.3.4.2.1 "Staffness Matrix" for
Elements in Fluid
Boundary . 1.3-25. . . . .

1.3.4.2.2 Continuity Eqrstion . 1.3-28

1.3.4.3 Stability and Cenveraence. 1.3-28. . .

1.0.5 Interfaces. 1.3-29. . . . . . . . . . . . . . .

1.3.5.1 Introduction . 1.3-29'
. . . . . . . . .

1.3.5.2 Numerical Implementatiqn . 1.3-30. . .

1.3.5.3 Stabilftv. 1.3-33. . . . . . . . . .

I
(

,

b

-
&



a '

1r ,,
- -

b' ' . n.
- ;

,). 1 1x
-

,

j .' ' ')
,.

TABLE OF CONTENTS
(continued)

1L .

EAGE
n.

dg 1.3.6 Structural Elements / Cable Elements. 1.3-36'

. . .

1.3.6.1 Introduction . 1.3-36 |. . . . . . . . .
'- |

1.3.6.2 Structural Element Formulktion . 1.3-36

1 1.3.6.3 gab.le Elements . 1.3-41. . . . . . . .
, ,

1.3.6.3.1 Axial Behavior. 1.3-42 - ,. . .
i

1.3.6.3.2 Shear Behavior of i

Grout Annulus . 1,3-43 j. . .

1.3.6.3.3 2-D/3-D Equivalence . 1.3-48 j
u.

t
II.

1.3.6.3.4 Failure at Grout / i

Reinforcino Interface 1.3-48 !
o.

>

1.3.6.4 Stability'and convergence. 1.3-49 |. . .

1.3.7 Axisymmetry . 1.5-51. . . . . . . . . . . . . .
?

L 1.3.7.1 Introductisa . . . . . . . . . . 1.3-51 !
t

1.3.7.2 Formrlation of tne Axi symmetric
Difference Ecuations . 1.3-52 (. . . . .

!

1.3.7.2.1 Basic Assumptions . 1.3-52 |.

/

1.3.7.2.2 Strain Increments ]
tfrom Gridpoint

Velocities. 1.3-53 If
'

. . . . .

1.3.7.2.3 Mixed Discretization. 1.3-58 f
't

1.3.".2.4 Averaging of Pressure r

Terms . 1.3-59 [. . , . . . .

t

4 1.3.7.2.5 Determination of i
Gridpoint Forces From j

Stresses. 2.3-60 j. . . . . .
t

!

!

.

'

i

Ii

L >

te.
'

F ;

4 -, .. _. _ _-



o i

'
, . . . ,d
" " 1-x >

;

i
'

'

e

TABLE OF CONTENTS !.

(continued) i

l,F. Mil
u

1.3.7.2.6 Equivalent Applied !
Forces, 1.3-62 ;.. . . . . .

i
'

1.3.7.2.7 Equivalent Gravita-
tional Forces . 1.3-63. . .

,

1.3.7.3 Stability and Converconce. 1.3-64. . .

;
'1.3.7.4 Limitations. 1.3-64. . . . . . . . . .

I
'1.4 COMPONENT HODELS 1.4-1................
|

1.4.1 General . '

1.4-1................
>

1.4.1.1 Methodoloov for Couplino of
Mechanical Models f:r Transient -

Problems . 1.4-1 j. . . . . . . . . . .

i

1.4.1.2 General Methodoloov for
Implementation of Constitutive i

Lawi . 1.4-4. . . . . .. . . . . . . s

1.4.2 Elastic, Isotropic Model. 1.4-7 |. . . . . . . .

1.4.2.1 Purpose. 1.4-7. . . . . . . . . . . .
,

1.4.2.2 Assumotions and Limitations. 1,4-7. .

1.4.2.3 Notation . 1.4-7 !. . . . . . . . . . .

i

1.4.2.4 Derivation . 1.4-8 |. . . . . . . . . .

t

1.4.2.5 Aeolication. 1.4-10 :. . . . . . . . . .

1.4.2.6 Numerical. Method Tveg. 1.4-10. . . . .

i

1.4.2.7 Derivation of yumerical Model. 1.4-10 '
. ,

1.4.2.8 Location . 1.4-11 !. . . . .. . . . . .

1.4.2.9 Numerical Stability and Accuracy 1.4-11 !

1.4.2.10 Alternaticqs. . . . . . . . . . 1.4-11 |

|

,

___.____ _



.- , _ - - . _ .

,g ,

G ' ,b.
,

'

,

O 1-xi
Bo
L

7 e

a , TABLE OF CONTENTS
(continued)'

< F. AGE

1.4.3 Elastic, Transversely-Isotropic Model . 1.4-11 R'
.

d> 1.4.3.1 Purpose.. 1,4-11. . . . _ . . . . . . .

:n,.
1.4.3.2 Assumptions and Limitations. 1.4-12 i; .. .

i

1.4.3.3 Notation . 1.4-12 i. . . . . . . .. . .
. 3

l

1.4.3.4 Derivation . 1.4-14 .i. . . . . . . . . .

J,

1.4.3.5 Aeolication. 1.4-18 ). . . . .. . . . . .
!

9 1.4.3.6 Numerical Method Tvoe, 1.4-18 ]. . . . .
.

i

1.4.3.7 Derivation of Numerical Model. 1,4-18.

1.4.2.8 Locati,qn . . . . . . .'. . . . . 1,4-1.

1.4.3.9' Numerical Stability and Accuracy 1.4-18 U
-!

1.4.3.10' Alternatives. 1.4-19 |. . . . . . . . .

!

1.4.4 Mohr-Coulomb Plasticity Model 1.4-19. . . . . .

1.4.4.1 Purpose. 1,4-19
.

. . . . . . . . . . ..
5

1.4.4.2 Assumotions and Limitations. 1.4-20 ]. .

1.4.4.3 _N_otation . 1.4-21 'i. . . . . . . . . . .

1.4.4.4 Derivation 1.4-22 [
'

. . . . . . . . . . .

1.4.4.4.1 Inclusion of In-Plane j
Stresses Only . 1.4-22 j. . ..

r

1.4.4.4.2 Inclusion of Out-of- '

Plane Stress Compopant 1.4-26 ;

;

1.4.4.5 Application. 1.4-30 i. . . . . . . . . .

i
1.4.4.6 Numerical Method Tvoq. 1.4-31. . . . . ;

;

1.4.4.7 Numerical Method Derivation. 1.4-31. . ,

!

F

*
L

i

I(.
,

.'

h
-- . - . _ . -



''

f 3 ,

1-xii '

-
.

i

TABLE OF CONTENTS j
(continued) ;

;

FAGE
i

1.4.4.8 Location . 1.4-34 '!.. . . . . . . . . .

'

,"

1.4.4.9 Numerical Stability and Accuracy 1,4-34 i
|

1.4.4.10 Alternatives. 1.4-34
|

. . . . . . . . .

1.4.5 Ubiquitous Joint Plasticity Model . 1.4-35. . .

- 1.4.5.1 Purpose. 1.4-35. . . . . . . . . . . .
,

1.4.5.2 Assumptions and Limitations.. 1.4-35 !. .

1.4.5.3 Notation . 1.4-35 -. . . . . . . . . . .

!
1.4.5.4 Derivation . 1.4-36 |. . . . . . . . . .

1.4.5.5 Aeolicali2a. . . . . . . . . . . 1.4-37

1.4.5.6 Numerical Method Tvoe. 1,4-37 j. . . . .

1.4.5.7 Numerical Implementation . 1.4-37 r. . .
;
i

1.4.5.8 Location . 1,4-39 ;. . . . . . . . . . .

1.4.5.9 Numerical Stability and Accuraev 1.4-39 ;
;

1.4.5.10 Alcernatives. 1.4-39-. . . . . . . . .

1.4.6 General Strain Hardening / Softening. 1.4-40.. . ,

;

1.4.6.1 Purpose. 1,4-40 '
. . . . . . . . . .

1.4.6.2 Assumptions and Limitations. 1.4-41. . ,

, i

1.4.6.3 Notatian . . . . . . . . . . . . 1.4-42
*

.

L
t

1.4.6.4 Egrivation . 1,4-43 .. . . . . . . . . .;

!

1.4.6.5 Aeolication. 1.4-48 ',. . . . . . . . .

i-
l-

6

?



f9 l
#

1-xiii i

1

3

TABLE OF CONTENTS
(continued)

PAGE

1.4.6.6 Numerical Method Tvoe. 1.4-48.. . . .
a

1.4.6.7 Derivation of Numerical Model. 1.4-48.

1.4.5.8 Location . 1.4-53. . . . . . . . . . .

1.4.6.9 Rumerical Stability and Accuraev 1,4-53

1.4.6.10 Alternatives . 1.4-53. . . . .. . . .

1.4.7 Null Model. 1.4-54. . . . . . . . . . . . . . .

1.4.7.1 Purpose. 1.4-54. . . . . . . .. . . .

1.4.7.2 Assumotions and Limitations. 1.4-54. .

1.4.7.3 Notation . 1.4-54. . . . . . . . . . .

1.4.7.4 Derivation . 1.4-54. . . . . .. . . .
,

1.4.7.5 Aeolication. 1.4-54. . . . . .. . . .

1.4.7.6 Numerical Method Tvoe. 1.4-54. . . . .

1.4.7.7 Derivation of Numerical Model. 1.4-54.

1.4.7.8 Location . 1.4-55. . . . . . . . . . .

1.4.7.9 Numerical Stability and Accuraev 1.4-55

1.4.7.10 Alternatives. 1.4-55. . . . . . . . .

1.4.8 Viscoelastic Models . 1.4-55. . . . . . . . . .

1.4.8.1 Purpose. 1.4-55. . . . . . .. . . . .

1.4.8.2 Atsumptions and Limitations. 1.4-55. .

1.4.8.3 Notation . 1.4-56. . . . . . . . . . .

|

,

'

|.

|
i

'

,

s

.



._ . . - . _ _ . . _ _ _ - _ _ _ -

L

1-xiv-

.

TABLE OF CONTENTS
'

(continued)'

. ,.

F.AftE
,

1.4.8.4 Derivation . 1,4-58.. . . . . . . . . .

1.4.8.4.1 ' Classical Visco-
'

Elasticity (Kelvin '

Substance)'. 1.4-58. . . . .
t

1.4.8.4.2 -Exponential-Time
,

Creep Law for Nuclear i

Waste Isolation i

Studies . . 1.4-60 t. . . ..
.

1.4.8.4.3 The Two-Component i
Norton Power Law. 1.4-64 i. .

t

1.4.8.5 Aeolication. 1.4-66 |. . . . . . . . . .
!

1.4.8.6 Numerical Method Tvoe. 1.4-66 i. . . . .

i

1.4.8.7 Derivation of Numerical Method . 1.4-66 !

1.4.3.8 Location . 1.4-68. . . . . . . . . . .

1.4.8.9 Numerical Stability. 1.4-68 |. . . . . .

:
!1.4.8.10 Alternatives. 1.4-69. . . . . . . . .

:

i1.5 EXPERIENCE 1.5-1. . . . . . . . . . . . . . . . . . .
,

:

1.6 REFERENCES . 1.6-1 *
. . . . . . . . . . . . . . . . . .

i

f

I
:

1
!
i

,

f>

i

!

|

f i

!

P

| .L

>
. _._ . _ _ - - _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ - - _ _ _ - _ - _ _ _ _ _ _ _ _ _ _ _ _ - _ _ . - _ _ _ _ _ _ _ _ _ _ - -



- - - - . - __y, -_
.

(u., o r.

1-xv'

L

b
i

LIST OF FIGURESr -

i

EMif.
:

Fig.J1.2-1 Basic Explicit Calculation Cycle . 1,2-2 j.

, i

1.2-2 Generalized Flow of FLAC Program i
i Showing Greater Detail of Calcu- !

l. 'lation Cycle . 1,2-5 .|. . . . . . . . . . .
! l

! 1.2-3 Detail of Mechanical Calculations
R in FLAC. 1.2-6 i. . . . . . . . . . . . . .
1 ;

11.2-4- Application of a Time-Varying Force-*

to_a Mass, Resulting in Acceleration,
0, Velocity 6, and Displacement, u. 1.2-6 :

!,

1.3-1 (a) Overlayed Quadrilateral Elements
Used in FLAC; (b) Typical Triangular -

Element with Velocity Vectors; (c) [
Nodal Force Vector . 1.3-1 :. . . . . . . .

1.3-2 Damped, Single Degree-of-Freedont
System . 1.3-7. . . . . . . . . . . . . . ,

,

1.3-3 Effect of Damping for the Problem
of Sudden End Load Application to .

a Column . 1.3-10 :. . . . . . . . . . . . .
,

1.3-4 Stiffnesses Used in Mechanical Time-
step Calculations. 1.3-12. . . . . . . . .

1.3-5 Schematic Illustrating Zone Stiff- |
ness Contribution from Surrounding
Triangular Subelements . 1.3-13 -]. . . . . .

1.3-6 Nomenclature for Determination of
'

Energy Balance for a Typical In-
terior Zone. 1.3-15 :. . . . . . . . . . .

1.3-7 Nomenclature for Determination of ;

Specific Discharge Vectors from i

Gridpoint Pressures. 1.3-26 -
. . . . . . . .

. , ,

1.3-8 An Interface Represented by Sides a
and b, Connected by Shear (k s) , and
Normal (kn) Stiffness. 1.3-30. . . . . . .

I

|

.

, - -.-- - - ,,



_ _-

.

-

.g.

% 1-xvi
|

,

T- y '

;

;g LIST OF FIGURES ],

(continued) {
'

s ;

,
$$'

fFig. 1.3-9
Contact Detection and Interface Force . 1.3-31 !Calculation Flow Diagram'. . . . . .

'
- 1.S-10 Shear and Normal Springs in Series . 1.3-34 ;

1.3-11 Schematic Illustrating Interface i

Normal Stiffness . 1.3-35 ;. . . . . . . . .
;

1.3-12 Beam Element Illustrating Nomenclature 1,3-37 j
i

1.3-13- Rectangular. Beam Cross-Section with !
Second Moment of Area, I, and Cross- !
Se:tional Area, A. 1.3-37. . . . . . . . ., ,

1.3-14 Direction Cosines for a Beam Element 1.3-38 l
!

1.3-15 Conceptual Mechanical Representation
of Fully-Bonded Reinforcement Which
Accounts for Shear Behavior of the d.
Grout Annulus. 1.3-43 .|. . . . . . . . . . .

;

1.3-16 Shear (a) and Axial (b) Behavior of j
Grouted Cable Elements . 1.3-45 '

. . . . . .

1.3-17 Geometry of Quadrilateral Finito j
Difference Zone and Transgressing '

Reinforcement Used in FLAC . 1.3-46 |. . . .

1.3-18 Axisymmetry Treated As a special !
Three-Dimensional Case . 1.3-52. . . . . .

f

1.3-19 (a) . Wedge Element and (b) View of |
Edge a-b . 1.3-54 |. . . . . . . . . . . . .

1.3-20 Triangular Subelement Showing Area '

for Gridpoint Force Calculation at !
Gridpoint a. 1.3-61. . . . . . . . . . . . ;

;

1.3-21 Nomenclature for Gridpoint Force !

Calculation in Axisymmetry, Typical 1
" Edge" Shown . 1.3-62 '

. . . . . . . . . . .

e

k
i

:

!

,

5

i
h

8 , ,

,,



,n. ,,

" '

1-xvii1'

' : .

LIST OF FIGURES
(continued)L'

g .'-

FA91
L

Fig. 1.3-22 Triangular Element Subdivided for'

Gravity Force Calculation. 1,3-63. . . . .

1.4-1 Means of Coupling Transient and Mech-~
anical Models in FLAC. 1.4-1,

. . . . . . .

1.4-2 Method of Fluid / Mechanical Coupling. 1.4-2

1.4-3 Schematic of the Effect of Pore 1

Fluid Stiffness on the Total System
Stiffness for Fluid-Solid Coupling ~. 1.4-3 ;

.. 1.4-4 Effects of Pore Pressure on the ,

'* Stress State . 1.4-4 |. . . . . . .. . . .

1.4-5 Methodology for Constitutive Law '

Implementation . 1.4-5. . . . . . . . . . ,

.

.

1.4-6 Transverse Isotropy Coordinate Axes :
'

Convention (x-z direction is plane
of isotropy) 1.4-14 |. . . . . . . . . . . .

|

I

1.4-7 Planes of Elastic Anisotropy Oriented
at an Angle $ From the x-Axis. 1.4-15 |. . .

: |.,

1.4-8 Elastoplastic Response . 1.4-20 i. . . . . .
:

1.4-9 Mohr-Coulomb Failure Criteria, f,
Showing Tension Cut-Off, Plastic ;

Potential Function, g, and Strain i

1.4-23 |Rate Increments. .. . . . . . . . . .

1.4-10 A Slip Plane Oriented at an Angle 0 ;

to the Global Reference Frame. 1.4-36 i. . .c |
t

1.4-11 Various Forms of Plasticity Illus-
trating Pre- and Post-Failure Res- |

ponse in Rock and Soil: (a) rigid- ,

perfectly plastic; 03) elastic-per-
fectly plastic; and (c) strain
hardening / softening. 1.4-40 ;. . . . . . . .

,

!
;

5

?

;
.

t .



-

a-xviii
|

LIST OF FIGURES
(continued)

PAGE

Fig. 1.4-12 Mohr-Coulomb Yield Surface in p-q
Space, Compression Negative. 1.4-44. . . .

1.4-13 General Form of Stress-Strain Curve
Showing Elastic and Plastic Strain . 1.4-47

1.4-14 Cohesion and Friction Represented
as Non-Linear Functions of Plastic.
Strain . 1.4-47. . . . . . . . . . . . . .

1.4-15 Cohesion and Friction Idealized as
Piecewise Linear Functions of Plas-
tic Strain . 1.4-48. . . . . . . . . . . . .

1.4-16 One-Dimensional Kelvin Model . 1,4-59. . .

i

ans



f? 'G '
>

,
, ;' )

.
,

* 4-

g ,

'! l-xix[ . . , J, ' , <

a tx ,
, ,- ,

,,, a ,

v. ~ ;9 v. ,

; n !. . |_ ''
t, '

1' , 3.. 1

!b@ ' [ LIST OF. TABLES'
,

; a. ;, a U-

, f.h.GE .

,

Table 1.2-1 - Comparison of Explicit and;Im- |-

?. , plicit' Solution' Methods-[Cundall,'
* -

,i1980). 1.2-3. . . . . ._. . . . . . . ..
~. ,

g . . . . . . 1.4 85
'

i
~

l'.'4-1 Elastic'Model-Notation .'.. . ,,

f
. .

,

u ..

.1'.4-2 . Elastic, Transversely-Isotropic . ,

'

Model' Notation . ......:. 1.4-13
3

'

..e

f*- 1.4-3. Mohr-Coulomb Model Notation. . . 1.4-21 i

n,

L' 1.4-4 Notation Used in the Ubiquitous !
!

h ! Joint' Model. 1.4-36
- ,

7
-

..........
<

.i1.4-4 Notation for the Strain-Softening.~
1.4-42 'Model. . . . . . . . . . . . . . . ......

' t
,

1.4-5 Notation;for Viscoelastic Models 1.4-56 i'

h .

I 1. 4- 6 ' Notation for WIPP and Re/ SPEC |

| Formulations . 1.4-63 i... . , . ....

!
s

i {

[f: f

;'.

;e.
; .;

P ;-

"r

f
!x i
!

I
.

'

t. . . .

k;,
f',; Y

.i., ( -
'

- ,

1- 6
'

t

(:

t
!

,
-

r
h,r *

'

f' .

.o :

ik ' i
Y: ;
';

}
t

' ''
p ,,

.

c
e

s

, 5 f
:

x,.... .. _ - . _ . . - . .



l)
JTT ' i

I1: '' 1,1 1,

!
,

d'
.

;

1.1. STATEMENT AND DESCRIPTION OF THE PROBLEM

The analysis of problems in geomechanics may involve a number of
physical phenomena including mechanical, thermal and hydraulic

.
r

"'
,

response of the rock and/or soil. . The response may be character-
ized by non-linear constitutive behavior which exhibits coupling'

effects between che mechanical, thermal.and hydrologic mechan- ,

isms. FLAC, Version 2.20, is a lcrge strain, two-dimensional ex- i
"

plicit finite different program written specifically to analyze
A complex, quasi-static and transient non-linear problems in geo-

!mecaanics. In particular, many of the functions of the program
have.been written to simplify analysis of problems in soil me-

.chanics, _ rock mechanics, underground excavation design and as-
sessment of radioactive' waste disposal in a variety of rock

''

types. The program logic is.not specific to geomechanics, how-
'ever, and may be used for general stress analysis, heat transfer

or hydraulics problems. ;

;

The FLAC program contains'a word-oriented command interpreter, '; error-trapping logic and extensive interactive graphics facili-
ties. Although the code.is' generally distributed in an executa-
ble version for the IBM PC and compatibles, it is easily trans-
portable to mini- and mainframe computer syctems. ,

'FLAC is a proprietary computer program written and owned by
Itasca Consulting Group, Inc. and Peter Cundall. 4: cess to the
source code generally is not available, although it can be exam-
ined through special arrangement with Itasca Consulting Group, ,

Inc. i

:
T

L Program Capabilities, Version 2.20
1

FLAC is a. finite difference program which uses e.n explicit solu-
tion p:ocedure to solve non-linear thermal, mechanical and hydro-
logic problems in plane and axisymmetric geometries. The mechan-
ical analysis is quasi-static, but the heat transfer and fluid
flow can be transient. Thermomechanical and hydromechanical
coupling is possible for all of the available material models.
Othe- features of the program are given below.

1,

'a )

L

1

|

,

\

1%

1
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L' 1,1-2
'

E

I
I -

[ 1., . Geometric Features
,

'

l' '

(a) plane strain (can account for out-of-plane stress)
L' (b) plane stress

(c) axisymmetry
,

( 2. Motion Calculation 4

(a) que.si-static (non-inertial) mechanical
|

'
(b) transient heat transfer (Fourier's' Law) and fluid .

flow (Darcy Flow) !
!

L

'

3.. Solution Mode / Kinematics
:

(a) mechanical -- explicit, large or'small strain, large
'

c ' displacement

(b) heat transfer -- explicit or implicit

(c) fluid flow -- explicit -

;

4. Constitutive Models

(al mechanical
'

(i) linear elastic
!

(ii) .ransversely icotropic elastic
1

(131) Mehr-Coulomb plasticity

(iv) Mohr-Coulomb plasticity with general strain
hardening / softening ,

,

(v) ubiquitous. joint
.

(vi) viscoelastic Jodels (steady-state creep) i

* Kelvin Law
* WIPP Power Law
* Norton One- or Two-Component Power Law ,

(vii) null elements to represent excavation

,

b

_ _ . _ _ _ . . . _ _ _ . _ . . _ _ _ _ _ _ _ _ _ _
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,
,g

~

.

t (b) thermal

i: f(i) ' isotropic conducti"ity
(ii)- transversely isotropic conductivity

-(iii) temperature-dependent conductivity I

(iv) . exponentially-decaying heat sources ]

(c) fluid flow i

5

6 (i) isotropic Darcy. Flow
(ii) transversely isotropic Darcy Flow

:

L 5. Boundary Conditions
,
1

(a) ' mechanical

F (i) displacement (velocity) ,

(ii) force
(iii) pressure
(iv) stress (traction)T

,.

(b) thermal

(i) temperature '|
(ii) flux ',

(iii) adiabatic (insulated)
(iv) volumetric source

(c) fluid flow
(i) pore pressure .

(ii) fit..
,

(iii) volumetric flow rate j

6. Initial Conditions

0 (a) initial stress
.

(b) initial temperature '

L a) nitial pore pressure distribution
(d) initial velocity ,

L

|

|

!

>ii
,

' ' '
_ _ _ - - _ - _ - - - _ - - _ - - -



{ t a-

, ,

-w
.l.1-4

,

.
7. Rock / Soil Structure. Interaction

L

;; . (a) structural elements (beans) to. represent interior
,

support systems, _ surface structures'or point anchor !:.

rock bolts :

(b) cable elements to represent grouted rock bolts or
cable anchors

8. Interfaces

(a) cohesive frictional interfaces to allow slip / -

separation' ;
,

(b) intersecting interfaces allowed

9. . Graphics

(a) interactive screen graphics, allowing over 50 dif-
ferent types of plots which may be overlayed ,

(b) color, intervals, scales, contour types, etc. are
all user-controllable

,

y

(c). hard-copy plots may be delivered to a- variety of d

nent dot matrix and laser printers
:

10. File Handling

(a) interactive or batch mcde operation
(b) save and restart' files
(c) screen text diversion to disk file

i

||9 11. Meth Generation

(a) automatic mesh generation

1(b) mesh may be dictorted, expanded geometrically, etc.

(c) automatic mesh adjustment to fit use.r-defined q
shapes, including circle, line, arc, and general

|table of x,y values

~
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" ~

oa 12. Other Features

(a) automatic error trapping and recovery (error<
,

messages without losing a run)'

(in automated problem solution specifications

(e, 3ssignment.of different properties ~and/or material
model for every element possible

,

'

(d) assignment of gradients to any property, velocities,
forces, stresses, pressures or initial conditions j

<

across the mesh i

(e) access to DOS system functions ('

(f) ability to store and plot histories of any variable f

7
at any location within the grid

''

(g) English word-oriented command interpreter r

(h) plasticity state history stored for all elements
,

(i) gravitational loading i

(j) logic for tracing boundaries of grid, making j
application of boundary conditions simple for curved ;

;
or irregular boundaries

,

'+

" FLAC provides automatic inertia scaling and damping to ensure a
stable solution. The mixed discretization technique of Marti and
Cundall (1982) is used.to ensure numerica1' stability due to in-

_

;

| compressibility in plastic flow and provide accurate solutions to ;

E collapse problems. Tha code itself is written in ANSI ~ standard '

t

L FORTRAN 77. All higher-order graphics functions (i.e., contour-
. ing) used in the program are self-contained. Only the primitive

y graphics. functions (pen up/down, text screen write, graphics de-
' vien open and close) are system-dependent. These routine calls

are located in a single file, making the code easily transporta-
!,

ble to various-computer systems.
-

'
,

. ,

; Bevause FLAC is a commercially-supported code, continual develop- .

'

ment is performed by Itasca staff. Updates are issued approxi-
mately every year. The decomentation given here refers specifi-
cally to Version 2.20 of the code..

,

?

| f

L
;

'

J
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- .l.2 EXPLICIT SOLUTION PROCEDURE i

c 1. :2 .1 : Introduction
,

The finite difference method is perhaps the oldest numerical

6~ -t'echnique used for the solution of initial or boundary value
problems (see, ' for example, Desai and Christian, 1977). The var-

i- iables describing the response of a body may vary in both space :

L and time. To numerically solve such a problem, tha body is dis- 1

: cretized into a mesh consisting of a nunber of gridpoint's (nodes) j

which define the corners of zones (elements) . The governing
equations (e.g. , equations of motion, Fourier's Law or Darcy's

p1 Law) for a-given system can be discretized into spatial and/or
time coordinates and solved at the nodes ~ subject to initial and- i

boundary conditions._ The governing equations for_all nodes in a
body give rise to a system of algebraic equations. Two basic op-
tions are possible for solving'these equations. In an " implicit"0

approach, quantities at'all nodes in the body are interrelated,
resulting in a set of simultaneous equations which must be solved j

for the' equilibrium or steady-state solution. In an " explicit"
approach, quantities at the nodes are decoupled and, therefore,
no system of equations is formed. In the former case, solutions

'

Lare determined at specific times (e.g., at equilibrium for a
. static analysis, or at a specific time in a transient heat trans-
fer analysis), whereas, for the explicit approach, the solution
at a given node is always given in terms of the known conditions -

at the previous time. Since no system of equations is solved, it
is not necessary to store coefficients, or to make use of equa-
tion solvers; however, a number of calculation. cycles are neces-
sary for solving for the equilibrium steady-state condition..

!The general solution procedure employed by FLAC is shown in Fig.
1.2-1. This solution procedure involves solving the basic equa- -

tion of motion - (i.e. , Newton's Second Law) for each gridpoint in

L:
the body. Application of the equation of motion provides velo-

|
cities of the gridpoints which are used to calculate internal
element strains. These strains are used through constitutive re-'

lations for the zone to provide element stresses, or' equivalent

| gridpoint forces. These forces are the basic inpuc necessary for
L the implementation of the equation of motion on the next calcula-'

tion cycle. The procedure in Fig. 1,2-1 is performed once per

j "timestep" or, more appropriately, calculation cycle.

|

1
i

1

,

k

1

i '
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4'> Equilibrium Equotion
J (Equation of Motion) I
+ '

, ,

;
a

new new
']

,

4 .veloCilies and stresses ;

displacements oristces
]

.. , .1

Stress / Strain Relationship a
'(Constitutive Equation)

,

Q Fig. 1.2-1 Basic Explicit Calculation Cycle !
, . .

.

- Alth'ough FLACLsolves'the dynamic motion equation, the mechanical !
solution is limited to equilibrium or steady conditions only |through:the use of damping to extract vibrational energy from the c
system. .The "timestep." referred to above is therefore used only
as a means of arriving at the mechanical' steady' state. . This pro- -

cedure is valid-only if adjacent zones.are physically unable to
communicate during a calculation cycle. This condition is satis- ;fled if the solution time increment (timestep) is small enough

<that information cannot pass between neighboring elements even if
it travels at the highest possible' speed. For mechanical prob-
lems, the physical information transfer between zones occurs at a' th'e speed.of propagation of confined elastic compression waves.

L For heat trancfer, the speed of propagation is governed by the
[' thermal .diffusivity and by the permeability in fluid flow.
,

|
' LThe; explicit procedure has some distinct advantages, as well as ,

' disadvantages, over implicit methods as reviewed in Table 1.2-1. '

- Perhaps the most important ad'rantage frora the standpoint of an- i

alysis'of soil and rock behavior is'the ability to accurately
b ; mo_ del non-linear behavior without significant effort over the
p ' standard elastic case,-

f
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n L Table 1,2-1'

'

' COMPARISON OF~ EXPLICIT AND IMPLICIT SOLUTION METHODS
.(Cundall, 1980]gN

1

/
' 'tXPLICIT IMPLIClf

'
Time-step must be smaller than fine. step can be arettrarily large.
4 *rtlical value for stability, with unconditional'y stable schemes. ,

!
-

$nait amount of comput:tional Large amour.t of computational
ef fort per tise step. effort per time step.

y No significant numerical damping ,'' 8"
n!Nh 'nt o".r neond

introduced, tionally stabie schases.

No iteratiens necessary to follow Iterative procedure necessary to q

nonlinear constitative law. follow nonlinear constitutive law. -

J
J - . . Always necessary to demonstrate'

Provioed that the time step that the above sentioned iterative i

i, criterion is always ist15fied.- prScedure is- !
enonlinear laws are always a) stable

'e .
ii

followes in the correct physical b) follows the physically .

way. correct path (for path *
Sensitive problems),* .jn

Stiffness matrices must be stored.Matrices are never formed. idays must be found to overcome
Memory requirements are always Associated problems such as band.

. st a minimus. No bandwidth.* width. Memory requirements tend
timitations, te be large, ,

*
,

Stace matrices are never formed. Additional computing effort neeoed
' ' ' " '' "

'c to follow lirge displacements and
thout strains. .' additional .0mputing effort.

<

1.2.2 Program Structure
f ;

.. .

E LAs described in'Section 1.3 of this document, the body to be mod- ,
'

eled is: subdivided into a series of gridpoints which form the
H ' corners of' zones- (elements) . - A~ critical timestep is determined
i based on the element geometry, properties and phenomena to be

modeled. The masses of elements are assumed to be " lumped" at
,

,the gridpoints. For numerical convenience and rapid convergence,
i

.the critical' mechanical timestep is set equal to unity by proper ,

adjustment of'the gridpoint inertial masses. The genera! proce- '

. dure illustrated in Fig. 1.2-1 is then used to perform calcula-
tion-" cycles". Since FLAC solves only static (or quasi-static)
. mechanical problems through viscous damping of the equations of' ,

p'
motion, the term "timestep" is somewhat erroneous, as time is

E , problem time, not real time, and velocities are given in terms of
b. . displacement / timestep. Therefore, for mechanical problems, each

'

timestep can be considered a ca.'.culation cycle or iteration. For
| . true. transient proble.ms such as heat transfer or fluid flow, theL"

,

itimestep has real meaning, and represents an absolute increment

.

y- 4,.
''

'
.
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1.2-4
'

,
.

o '

a.

* of time in seconds. During each timestep, one calculation cycle>

*' is. performed for each gridpoint in the entire grid, based on val-
ues btained from the previous timestep.

If true transient analysis is performed (heat transfer or fluid
flow), timesteps are performed until the desired total time has
elapsed; however, histories of the problem sclution can be ob-
tained and stored at any desired point from time = 0 to the total

' time. For linear elastic mechanical analysis, one is concerned. ,
"

only .with the equilibrium state. of the body. In this case, time-
stepping is performed until.the out-of-balance forces at each
gridpoint are sufficiently small. FLAC provides a method for
automatically determining the equilibrium state based on pre-set
criteria provided by the user. For non-linear mechanical analy- '

ses, it is often desirable to examine the deformation and yield
history of the body as it progresses toward equilibrium. In
fact,.many processes such as collapse or steady-state c.reep will

L never' arrive at an. equilibrium state. In these cases, it is im-
perative that one have the ability to view the progression of the i~
failure (deformation) process. The user may perform as many
timesteps as d; sired, stop, examine the results, and continue.

#

An incremental approach is used in all constitutive laws. The
equations of motion are used to determine velocities (strain
rates) of the gridpoints. The strain rates are used to determine
an incremental elastic stress. For non-linear constitutive laws,
these " trial" elastic increments are compared to yield criteria,
and. corrections made, if necessary, to conform to the criteria.

A generalized flow chart of the program is given in Fig. 1.2-2. *

A more detailed flow chart of the mechanical portions of the pro- .

gram is given in Fig. 1.2-3. A commanu interpreter examines each
command line in interactive or batch mode, and calls the proper
code section to execute the command. The finite difference grid '

is set up first, a material model(s) and properties assigned, and
boundary conditions applied. As the major functisns of the code
are executed, error checking and trapping is performed. If an
error is detected, an error flag is set, the code halted, and an

-

i error message printed. Once the problem has been set up, solu-
tion begins by executing timesteps (or, better defined as calcu- '

lation cycles for non-transient problems). The program loops
through all zones in the grid, first performing mechanical calcu-
lations, as shown in Fig. 1.2-3. Options of axisymmetry or plane
analysis can be made, each calling a different routine for stress
determination. A choice of eight (8) constitutive laws, in addi-
tion to a null (excavation) model, is possible for the plane ge-
ometry, and five (5) for the axisymmetric geometry. These may
all be solved in large strain mode, if desired, and are described
in: detail in Section 1.4, Component Models.
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After performing stress calculations for all zones, fluid flow
and/or thermal timesteps are performed, updating the pore pres-.

sure and temperature distributions in the grid. Thermomechanical
coupling is performed by adjusting the mean scress according to

,

the isotropic thermal expansion of the zone. The flow of fluid
through the grid results in adjustments to the pore pressures,
which enter the calculation of total stress increments. The
strains are coupled back to the fluid flow through a reduction in ;

element volume. The total zone stresses e.re used r.o determine
equivalent gridpoint forces. The forces from the interfaces and
structural / cable elements are added to arrive at the total grid-
point forces. These forces are used as input to the law of'

motion from which new gridpoint velocities (and displacements)
are. derived. This same process continues until a user-defined

'

limit is reached.

l.2.3 Field Equat30ns

The solution of solid body, heat transfer or fluid flow problems
in FLAC requires the equations of motion and constitutive rela-
tions, Fourier's Law for conductive heat transfer, and Darcy's
Law for fluia flow in a porous solid, as.well as boundary condi-
tions. The following sections review the basic governing equa-
tions; the volution methodology is described in detail in Section
1.3.

1.2.3.1 Motion and Eccilibrium Ecuationg

The equations of motion relate the motion of a mass m, su2jected
to time-varying forces, F. Figure 1.2-4 is a simpl? .1 ?.ust ration
showing a mass subjected to a force F, resulting it, its velocity,
acceleration, and displacement.

In its simplest form, Newton's Law of Motion is giTen by

|
.

| Bu F
(i.e., F = ma) (1. 2-1)! - - = -

Ot m
|

'
|

|

w

||

l'

1

_ _ _
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In its general-form,
,

;'

- 801*
;

8013 + pgi (1.2-2)p -- =

Oc . Ox3
,

.
,

.

'

where p = mass density,
'

.

t = time,

x3 = coordinate direction,
gi = accelere. tion of gravity (budy force components), and '

,

013 = stress tensor.
'

The. relationship of velocity to strain increment is g2ven by
v.

h - 801 80
|- Aeij = - + . 3 At

1 ,

(1.2-3)
L, 2 . 8x3 dxi .
p

^
, ,

i

L

j,

i

. ,

#s '.

p
-)

!,
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where 4913 = strain increment!,
'

'

,

!

. c#. p -l
,

'k[L .ui = velocity, and-

, ,

. \- x
T 'At =1 time increment'"

-

3 n. - '

- .

g |
> sc e . s

4 y ,1

. Mechanica1' constitutive laws are of the form j

y ;;

'

01j " M (Oij, Ae13, at.) (1. 2-4 ),,

1g - a u ,

where M (L) is'the functionti form of the constitutive' law, and;[h.\;
i'

x is a hiskory parameter (s)' which may- or may not be present,
g depending'on the;particular' law.

.Q'\
"

3

'

,

1.2'.3.2 hFourier's' Law for Conductive Heat Trantkf;;tr,
.

'
'

_

.

- M Fourier's Law for conductive boat transfer can ':e written as :

a 4
.

Y $ r,$ f'

Qi=-ki (1. 2- 5 ) |
'

s

8xi ;,

y .

1
$( , where 01." heat flux in the 1-direction, ,'

x\1' s

ki = thermal conductivity in the i-direction, and -

IBT '
.

~ ; thermal gradient in the 1-coordi.nate direction. ( i- =c
"Y OXi . ;r

os.

4 :s.- ;
*

q.~ t'

The change in temperatureLof a maas, m, is given by
"

x
,

,

*

' - BT Onet
8t Cnp

'g:;,
a

!q,

n. L

'

, i(
|'
p

. .

'-
\

x< ,

' .f. .i 4

. . . - '

s

s (\'
,%' L

,

h.,f ', (s '. 'I ) -
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where't=' time,
,

. Qnet= = sum: heat flow into the mass,

Cp = specific heat, and.
' m = cass.

Combining Y'.;. (1.2-5) and (1. 2- 6) yields the diffusion equation

i

BT 1 02T 32T*-

ky* +k (1.2-7)- - = yBt pC 8x2 Sy2.p .

;

: . . ,.

a 'The above equation forms the basis of conductive heat transfer in
FLAC. The stress change resulting from temperature increase in
.the body.is given by ;

Aci$ = - 813.3K a AT (1.2-8) |
\.

j where 6013 = strest change due to a temperature increase, AT, '

a = linear the24nal expansion coefficient,

K = bulk modulus of solid, and

B j = Kronecker's delta.i

1.2.3.3 Darev's Law for Anis > tropic Porous Media
n%'. ,

p, s

\'
.

< Darcy's Law for an anisotropic porous medium is j>

BP ;
Vi = K j 3Xji (1. 2- 9) |

|.

where V is the specific discharge vector,1,1 ,

N" ' '
F is the fluid pressura, and'

,

:p K13 is the permeability tensor.
-

|I

k

Y h-

'h . A ' ! i

A. l )m w['
< s
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i f. '-b< :Theicontinuity equation is given~by.
. : ,

''
.

T. ( ' ,

#' ' :! BP Kw
.(1.2-10)

,

'

|
-- - - - Onet ,

,

dt ~Vn.m o ,

f

[ where Onet.is.the sum of flows into a node,>

,

n is the porosity,
o

V is'the, volume of the arca represented by the node, and |,

1
4 Kw is'the bulk modulus of the fluid.

- 1,

, .
.

s

Equations ~ (1.2-9) L and- (1.2-10) are analogous co Eqs. (1.2-5) - and ~ t

(1.2-6) R for Fourier's ' Law. The coupling of fluid flov to the me-'
,, " '

.chanical portion.of the code occurs through pore pressure (effec- !
+ "tive stress). and volume change due to mechanical strain. This is j

described in detail in Section 1.4, component Models.:

''
'

l'.2.4 Boundary Conditions
,

'

5
,

The solution of problems in solid body mechanics and heat trans- i
fer of fluid flow requires that initial and boundary conditions !

-be:specified. For the mechanical models, the boundary conditions'
include fixed velocity (i .e. , displacement) , pressure, force, or j

traction. . Heat Transfer incluces. fixed temperature, zero heat I
,

flux (adiabatic), flux or volume source; fluid flow includes .

. fixed pressure, flux or volume source or sink. Initial condi- 1
'

|: Ltions for the models include initial stress, initial temperature,
! and initial pore pressure distribution ,

1 ?
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1' '3 GENERAL NUMERICAL PROCEDURE''

'

- 1.3.1 fIntroduction

- This.section presents the finite difference implementation of the
basic state. equations presented in the previous section. FLAC
uses a form of' dynamic relaxation similar to that proposed by

4 0rter et al. (1966), with adaptations for arbitrary grid shapes
and large stra!ns. 11.e finite differencing scheme used is <:7-
rived from Wilki.ms (1963). The full dynamic equations of motion
are solved for mechanical analysis, but used only for solution of
quasi-static problems by limiting applied velocities to s.nall
values and by use of internal viscous damping.>

i

1.3.2 Basic Mechanical Finite Differenic.e Formulation

1.3.2.1 Introduction

The user develops a finite difference mesh composed of quadrilet-
cial elements. Internally, the code subdivides the element into
two sets of overlapping constant-strain triangular elements (Fig.
1. 3-l') . No higher-order elements are used in the code.

!*

Uf)
~

e
a l ''

*
(b)

"(s* / "O)'' as
b \

S ) 3(i
- y' ,

ca4

#(a)
uf) -

.

d - !*

|> \

|e.
4

Is

1 .

|| 0 b C

!

| ' Fig. 1.3-1 (a) Overlayed Quadrilateral Elements used in FLAC; j

l' (b) Typical Triangular Element with Velocity Vectors;
(c) Nodal Force Vector, , ,

4
.,

< ; ,

'l

l '. ..
|'

|b~,h7

Le dan r -

. . . . _ _



:w 8m

2 1:6y

1. 3-2 '
s.m

;: s

:

R|:
''? LThe four - (4) triangular subelements are termed a', b,.c and d.
'

~The deviatoric stress components.of each triangle are maintained
independently,' requiring twelve (12) stress components to.be,

'

stored for each element. The forces exerted: en each node are
taken to be'the mean of those exerted.by the two overlayed quad--

rilaterals shown in'the' figure. The response;of the composite
. element is symmetric in contrast to the response of a single. pair
of triangles.-

'

E 1

l '. 3 . 2 , 2 Difference Ecuations |
,

? The difference equations:for a triangle are' derived from the' gen- ;
9' eralized form of Gauss' divergence theorem (e.g., Malvern, 1969): ,

. ,

Of
ni f dc = --- dA (1.3-1) .[

*s *A *i
,

*
, i

where is the integ 21 around the boundary of a closed surface', j
'

*s
'

.

i
ni is the unit normal to the surface, s, ';

.

-f is 6 scalar, vector or tensor,.

xi-are positive vectors,
i

ds'is an incremental are length, and
,

,

a
a

is the integral over the surface area, A.
*A -

'

t

Defining the average value of the gradient of f over the area A '

as

Of 1 Of
<. >=- dA (1.3-2)

dx1 A ,g 8xi ;

h j

.g

{.

'

,'

.

\ t h ' ,' . . . .

-

'
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,
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,

i
e

'

(1.3-1), |one; obtains, byjsubstitution into Eq.
;

,

. ,

2Bf 1
.> = - ni f ds. (1.3-3)

< Oxi A3 !

!

For the triangular subalements, the finite difference form of Eq.
v .(1.3-3) becomes' j;

1 ,

Bf 1 .

< Oxi- > = - E < f> . nl As
(1.3-4) :

As ..

.'i
i. ,

where As is theilength of:a side of the triangle, and the summa -
tion occuro over the thrae sides of the triangle. The value of
'<f> isitaken to be the cverage over the side. .This formula, sug-
gested by Wilkins . (1963) , enables strain' increments, deli, to be
written in. terms of nodal velocities for a zone by substituting ;

the velocity vector for f
'

g

Odi s -- I (u. (a) .(b)) nj As1
i + ui

Bxt 2A s
.

-

(1.3-5)'

and ;

Obj
At

- 3011
jAsij = 2 . Dxj 3x1

+

,'
.

'

where At is'the timestep and (a) and (b) are two consecutive
nodes on the triangle boundary.

It is noted here that the use of triangular elements slicinates
the problem of hourglass deformations which may occur with con- 4

istant strain finita difference quadrilaterals. The term " hour-
glassing" comes from the shape of the deformation pattern of ele- '

;
:.-

ments within a mesh. For polygons with more than three nodes,
combinations of nodal displacements exist which produce no strain'

'
and resulc in no opposing forces. The resulting effect is unop-
posed deformations of alternating direction.,

'

;

.

'

/,

-
,
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A common problem which occurs in modeling of materials undergcing
active collapse is the incompressibility condition of plastic
flow. The use of plane strain or axisymmetric geometries intro-
duces a kinematic restraint in the out-of-plane direction, often;

| giving rise to overprediction of collapse load. This condition is
i sometimes referred to as " mesh-locking" or " excessively stiff"

elements and is discussed in detail by Nagtegaal et al. (1974).
The problem arises as a condition of locci mesh incompressibility
which must be satisfied during flow, resulting in over-constrained
alementr. To overcome this problem, the isotropic stress and
strain components are taken to be constant over the whole quadri-'

lateral element, while the deviatoric components are treated sepa- t

rately for each triangular subelement. This procedure, referred
to as mixed-discretization, is described by Marti and Cundall
(1982). The term mixed discretization arises from the different
discretizations for the isotropic and deviatoric parts of the
stress and stain tensors.

The volunetric strain is averaged over each pair of triangles ac-
cording to the mixed discretization scheme. The strain incre-
ments in triangles a and b of Fig. 1,3-1 are adjusted in the fol-
lowing way:

a a b b
Aem" (dell + de22 + dell + de22) /2 (1. 3- 6) |

a a a
Aed = dell - 4e22

(1. 3-7) ,

b b b
Aed " dell - de22

a a
dell = (Aem + ded)/2

| b b
*

Ae11 = (Aem + Aed)/2
| (1. 3- 8 )
1 a a
| Ae22 " (dem - ded)/2
|

b b
Ae22 = (Aem - Aed) /2

|

. Similar adjustments are made for triangles e and d. The compon-
| ent Ael2 s unchanged.

|

_ _ _ - _ __ _ _ - _ _ . _ _ _ - - _ _ - _ - _ _ _ - - - _ _ _ _ _ _ _ _ _ - - _ _
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i"J' [ In large.strais mode, finite rotations'of elements produce-changes in'the stress components' referred.to.a1 fixed. frame of
reference.- The stresses.are adjusted, as follows, prior to in '

)|voking the constitutive law.o

'

sm
W j) At- (1. 3- 9 ) -Gij := Olj.+ (Wik Okj - Oik k ,

- 001 0bj -1
and

:whoreLmij = 2-;.'Bxj 0xi .
'

- ,1

;
,

',. ':= means replaced |oy. |*

. s.

- !
.

.The constitutive laweis.of the form, .

r

Lr

S) .(1.3-10) -j013-:= M (cij, Aeij,'

io
,

v where M,.( ) is the constitutive law, (

'Aeij are the current strain increments, and l,

Si are state. variables which vary with constitutive
,

models. ,

f,

The non-elastic.constitutivo laws. require the adjustment of 014. -

based on corrective stresses determined from a yield function 5nd
, ;flow rule. The various constitutive laws are~ described in detail'

.

in Section 1. 4, Component Models.
P

'

Mixed:discretization is then invoked on the stresses to equalize |

L isotropic stress between the two triangles in a pair: [
,

R (a) A(a) (b) A (b)
<

\' (a) (b) G + Co 1o (1.3-11)' c =c
A (a) + A(b) do o := ,

-

!
t

-

where a(a) is the isotropic stress in triangle (a) ando

A (a) is the area of triangle A(a) ,

'

,

t

.-'$

; i ) r

..
f,h$1-
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c)
'

<

1.3-6

:

LThis equalization only hts an effect for constitutive laws that |
involve shear-induced dilation. !

i

' For the explicit scheme used in FLAC, Eq. (1. 3-10 ) is evaluated
once per zone per timestep. As described in Section 1.2 of this j
document, no iterations are necessary to force all elements to '.

conform to the constitutive law, as the timestep is made small
.cnough that.information cannot physically propagate from one zone ,

to the next within one timestep. The calculation of the critical
timestep is given later.

Once the stresses in each trianguist zone are calculated, the
Lcquivalent forces applied to each nodal point are determined ,

(Fig . 1. 3-1 (c) ) :

1 (1)
Fi = - 013 (nj(1) S (1) (2) S (2))+ Lj (1. 3-12 )

If the body is at equilibrium, or.in steady-state flow (e.g.,
creep), the' net force IFi on the node will be r.ero; otherwise, e

the node will be accelerated. If a zone is missing (i.e., exca- ,vated or at'a boundary), the force summation for an adjacent node
simply ignores this tera. The forces, and all stresses and coor-

|dinates, are known at times t, t + At, etc. (whole timesteps).

The gridpoint velocities at the next half timestep are determined
by integrating the acceleration using central differences:

. (t + At / 2 ) .(t - At/2) [IF (t) - a |IF (t) | sign (u.i)] At
ui = ui + i i

--

m

(1. 3-13 )
+ gi At

|
,

.

,In Eq. (1.3-13), a is a damping parameter, and m is the lumped
muss of the node. The above scheme allows quasi-static problems
to be solved by damping the vibrational energy of the nodea.

.Several damping schemes have been used in dynamic relaxation
L problems and are discussed in detail below.

l

For large strain problems, the velocity calculated in Eq. (1.3-
13) is used to determine the new coordinate of the gridpoint

\ \

-
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1c3-7
,

(t + 4t) (t) . (t + At/2)
xi = xi + ui At (1. 3-14 ) ,

1.3.2.3 Mechanical Dampino
,

The equations of motion must be damped to provide static or
quasi-static (non-inertial) solutions. The objective in FLAC
is to achieve the steady state (either equilibrium c steady
flow) in a ilumerically stable way with minimal computational ef-
fort. The dampinc used in standard dynamic relaxation methods is
velocity-proportional--i.e. , the magnitude of the damping force.
is proportional to the velocity of the nodes. This is commonly
viewed as a dashpot fixed to the ground at each nodal point, as -

'shown in the simple degree-of-freedom system given in Fig..l.3-2.

'

X

Ky

M
s' c

h "C h-

_

Fig. 1,3-2 Damped, Single Degree-of-Freedom System
t

The equation of motion for free vibration of the single degree-
of-freedom system is given by .

*

m x + c x + kx = 0 ( .1. 3- 15 )

where m is the mass, c is the viscous damping constant, k is the
spring stiffness, and x is the coordinate.

It is clear in this illustration that the damping force produced

is proportional to the velocity, x, of the mass.

1

|

|

1.

I

I

|
1o.
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>The following'is adapted'from Cundall (1987).>

io

The use of velocity-proportional damping in standard dynamic re-
p laxation. involves three main difficulties:,

; (a) The damping introduces body forces, which are er- <
"

roneous in " flowing" regions, and may influence the
mode of failure in some cases.

,

i

-(b)-The' optimum proportionality constant depends on the
,

.

eigenvalues of the matrix,-which are unknown unless
i a complete modal analysis is done. In a linear;

problem, this analysis needs almost as much com-
puter effort as the dynamic relaxation calculation

,

itself. In a non-linear problem, eigenvalues may,

be-undefined. f,

(c) In its standard form, velocity-proportional damping
is applied equally to all nodes--i.e., a single
damping constant is chosen for the whole grid. In
many cases a variety of behavior may be observed in
different parts of the grid; for example, one re-
gion may be.failing while another is stable. For >

these problems, different amounts of damping are
appropriate'for different regions. ?

..In'an effort to overcome one or more of these difficulties, al- ;
ternative forms of damping may be proposed.. In soil and rock,
natural damping is mainly hysteretic; if the slope of the unload-
ing curve is higher than that of the loading curve, energy may be
lost. The type.of damping can be reproduced numerically, but
there are at least two difficulties. Firstly, the precise nature
of the hysteresis' curve is often unknown for complex loading-

| unloading paths. This is particularly true for soils, which are
'

typically tested with sinusoidal stress histories. Cundall
(1976) reports that very.different results are obtained when the
same energy loss is accounted for by different types of hystere-

| sis loop. Secondly, ratcheting can occur--i.e . , each cycle in
the oscillation of a body causes irreversible strain to he ac-
cumulated. This type of damping has been avoided, since it in- I

,

creases path-dependence and makes the results more difficult to
interpret.

Adaptive damping has been described briefly by Cundall (1982).
Viscous damping forces are still used, but the viscosity constant
is continuously adjusted in such a way that the power absorbed by
damping is a constant proportion of the rate of change of kinetic
. energy in the system. The adjustment to the viscosity constant

,

r

9

'

-.4. _ _ __ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ . _ _ _ _ . _ _ _ _ _ _ _ _ . _ _ _ _ _



_ _ _ _

# @@ I
#d> [[jf d'#IMAGE EVALUATION 4

4x q TEST TARGET (MT@
pppp

+ s
1

i

1.0 |f m tu
y || BE

|,| [w En
1.8

-

1.25 j' i.4 g ;
;. .=

4 150mm ->

4 6" >

|

|

s?||/*% if 4
%

-#!g>A ,c,,,,m
-

s<3j+;;p,#77777 g.

op (
"

,
by,__,.

.
. - . . . _

dj dI



A

4),,j/sf*k>/
#@ f E O
T IMAGE EVALUATION 7///p M/ i

%'{>,/ '%f[,+4
4) TEST TARGET (MT-3) #,4

1.0 gusm
1u m p=

|t m
|| 5M kN

l.8 i
E==

1.25 1.4 1.6
== _=

4 150mm -+

4 6" > l
i.
l

h ||f

4k %> /!O
+gy A e//77777 p - s <p4.

%p c 9>
t. ax; .

. . .



- - - - - -

-.
- - -

&
O $l* g O

+9h]h h 777/pyg[d>4
IMAGE EVALUATION

k///7
,

% .[ h/ TEST TARGET (MT-3) 4& #
'

4

pjjp Nkjjp

t

I.0 d m t114
'

5 9 El
E|2g=2o 4

I1.1 L
3

1.25 1.4 1.6

4 150mm >

* 6" > |

|

|-

|// |{s

f><777 $i ;; /$+? #
= -

.

v;
w%eQ..L '_' '| ' ,Ji



~ - - - - - - - - - - - - - - - - - -.

4) gh(>@
#* 3 0 ,

d,,/ */4IMAGE EVALUATIONg Test =GEr (urm
pppp f g<.

+ s

1.0 |fla E14
' || liins

i,i s in M S
"'

l.8
n- ;

,
1.25 1.4 1.6

| -.

|

4 150mm >
1 |

+ 6" >
!

4k%/ /A
+qy 5,,,,,//// ggg9, ,.

5,,,
L . .

. o
// y



-
-

:

;. .
. ..

z. . .

L 1;3-10i;
I

_ Joe Tnts setasemasense
3. Pw1ClWrede4 2J0) Man. weet esse
! ''po'8 )-

7ninese sett
me, eso tsees

e.see.

e.eese <-

c.4e.o

.-

ie a s e s # h
Due esse meses' (10.eI g,

-(a)
Jostrvta metasesesensus

FLAC(Wreden 2J01 y sesenessmem > 34. Ii3

f,404' )

snsneen een
step ese - SAgee

tesse

asem

Leges

!
!| 02
t

i
io a a s s s s I

I
sae naa mmese po ot 3 1

|
I

(b) j
,

Fig. 1.3-3 Effect of Damping for the Problem of Sudden End
Load Application to a Column j
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is made by a numerical servomtchanism that seeks to keep the fol- |

lowing ratio equal to a given ratio:

R = E P/E b (1. 3-16)k

'

where P is the damping power for a node, Ek is the rate of change
of nodal kinetic energy, (and) E represents the summation over
all nodes. This form of damping overcomes difficulty (b) above,
and partially overcomes (a), since as a system approaches steady
state (equilibrium or steady flow) the rate of change of kinetic
energy approaches zero and consequently the damping power tends
to zero. Finally, a new form of damping is used in FLAC in which
the damping force on a node is proportional to the magnitude of
the out-of-balance force. A sign is applied to the damping form
that ensures that energy is dissipated. The damping force is
given by:

Fd=- |F| cign(u) (1.3-17)

where F is the nodal out-of-ba3ance force (cf, Eq. (1. 3-12) ) .
This type of damping is equivalent to a local form of adaptive
damping described above. In principle, the difficulties reported'

above are addressed: body forces vanish for steady-state condi .
tions; the magnitude of damping constant is dimensionless and is
independent of properties or boundary conditions; and the amount

j of damping varies from point to point (Cundall, 1987, pp. 134- -

| 135).
|
L Figure 1.3-3 illustrates the typical results of the damping in

FLAC for a problem that involves a suddenly-applied compression
on the end of a column which is locked on the opposite end. Fig- |

'

ure 1.3-3 (a) shows the maximum unbalanced force (EFi) in themodel as a function of timestep; Fig.1.3-3 (b) shows the y-dis- ,

!placement at the center of the column, just beneath the applied
load. Examination of the unbalanced force history shows the pro-
gression toward equilibrium (zero unbalanced force) . Small os-
cillations of the system occur as the solution progresses. The
damping effects are less evident in the plot of displacement his-
tory, which displays a typical slightly overdamped response.
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>

1.3.2.4 Mechanical Timesten Determination, Converoence and .

Stability

As described previoualy, the explicit solution procedure, in gen-
eral, does not guarantee a convergent solution. The basic pre-
mise of the method is that each zone in the grid can essentially
be uncoupled from all other zones if the timestep for calculation
is small enough to prevent information transfer between neighbor-
ing zones during any given timestep. The choice of timestep,
therefore, governs the resulting stability of the simulation.
FLAC automatically determines a stable mechanical timestep for
all models. For the elastic and plasticity models, no user-

'

intervention is typically necessary, as the use of timestepping
is only a device to obtain the equilibrium solution. For the |

steady-state creep constitutive models, however, use of the ini-
tial elastic timestep would result in stable, but exceedingly j

large, solution times. The user must define empirically a time-
step adjustment for these models which will produce stable system
response while minimizing run time. This is described in detail
later.

The timestep, At, enters into the motion law for calculation of
new gridpoint velocities (see Eq. (1.3-13)). Since the code
still solves the complete dynamic equations of motion, the iner-
tial mass will affect the transient solution obtained, but not
the equilibrium or steady state. Because the concern is only
with achieving the steady state as rapidly as possible, the iner-
tial masses may be scaled to provide a timestep which optimizes
the rate of convergence. This is similar to the use of an over-
relaxation factor for more efficient solution of systems of equa-
tions by iterative methods. For a single mass-spring rystem, the
critical timestep is

Ate = 2 (m/k)1/2 (1. 3- 18 )

where m is the mass, and k is the spring stiffness.

Optimum convergence is obtained when Atc is roughly the same for
all nodes. In the above equation, the stiffness, k, refers to
all stiffnesses connected to a node, including zone stiffness,
interface stiffness connections (Section 1.3.5), and structural
connections (Section 1. 3. 6)

k ode = kz + ki + ks (1. 3-19 )n



. _ _

103-12

where knode is the total stiffness connected to a node,

| ki is the interface stiffness,.
1

ks is the structural stiffness, and

| kg is the zone stiffness.
L

Figure 1.3-4 illustrates the various possible mechanical stiff-
nesses which can be connected to a node. The zone stiffness, kz, ,

for a triangular zone is given by

8
kg (K + (4/3)G) L (1.3-20)= -

3

,

where K + (4/3)G = confined modulus of zone material, and

L = the maximum edge length squared divided by the
area of the zone.

..

Kw

Kmm

|

.m

Km '

|

Fig. 1.3-4 Stiffnesses Used in Mechanical Timestep Calculations

.. _ _ _ _ _ _ - _ _ _ _ _ _ _ _ - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ - _ _ - - - _ . ______
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Recall that a rectangular element is divided into triangles.for !

the finite difference calculations'. The zone stiffness contribu-
tion given above is averaged for all triangular zones surrounding
O gridpoint as shown in Fig. 1.3-5.

s'
#

i' A o'~

G~/1e1f?"~R . - , - -

ly ew%A49, ygpQ
>;% d ] ,

WW] j%35]],Iytigjg(
h

Zone stiffness
contribution region

Fig. 1.3-5 Schematic Illustrating Zone Stiffness Contribution
from Surrounding Triangular Sublements

To obtain the timestep, the gridpoint mass, m, is treated as a
relaxation factor, and adjusted to equal the sum of the stiff-
nesses connected to the node:

node = knode = I weighted stiffness connected to the nodem
(1. 3-21 )

Thus,_the mass is scaled such that the critical timestep for a
node given in Eq. (1. 3-18 ) becomes

Ate := 1.0 (1. 3-22 )

Optimum convergence is obtained if the timestep is the same for
all nodes. The use of At of 1.0 simplifies the motion calcula-
tion in the code (e . g . , the incremental nodal displacement for
any given timestep is simply equal to the velocity of the node,
since velocity is given in terms of displacement per timestep).

||

!



1.3-14.

,

1.3.2.5 Creep Timesteo Methodo)ouv

The basic critical timestep at a node is the same for the creep
as the elastic model, as the elastic timestep must be the minimum
zone timestep. However, a physically meaningful value of time is
necessary for creep strain calculations, even though the problem
is quasi-static. The user is required to define a timestep value
in the present version of the code, and has the option of allow-
ing the program to automatically increase this value as a func-
tien of the value of,the maximum out-of-balance force. In the

'

main body of the code, a timestep (which is inertia scaled to
equal 1. 0) is used. However, once in the creep constitutive law
(subroutines CL7-CL9) , the mechanical timestep of 1.0 is multi-
plied by the user-defined timestep, dt. This value (dt) is then
used to calculate increments of creep strain which are, in turn, ,

used to adjust the deviatoric stress components. It is possible, I
therefore, to obtain instability in this model through a poor
choice of the creep timestep, dt. This is discussed in greater
detail in Section l'.4, Constitutive Models.

1.3.3 Basic Thermal Finite Difference Equations

1.3.3.1 Introduction

The basic field equations for heat transfer used in FLAC were in-
troduced in Section 1.2. Here, the implementation is described, fTwo options for the solution procedure for heat transfer problems
are allowed in FLAC: explicit and implicit methods. The expli-
cit method used in the mechanical portion of FLAC holds distinctI

| advantages in solution of problems in which non-linearity occur.
'

However, if the response is linear, the explicit method for two-
dimensional problems may be slow. For thermal and groundwater
flow problems, the explicit solution requires that one determine
a critical timestep, At, and solve the problem at At, 24t, . . ,,
nAt, where not is the total time frame for the analysis. In
other words, the user is forced to determine a solution at times
when the results may not be required. Because the timestep is
controlled by geometry and thermal properties, examination of
problems of small zone dimensions or high thermal diffusivity may
result in exceedingly small timesteps, or excessive run times may
result if long time anelyses are to be performed. For these
reasons, implicit temperature and fluid flow logic has been de-
veloped in which large timesteps are possible. Both schemes are
described here.

- __ - - _ _ - -. . _ - _ - _ . _ _ _ - - . . _ __
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!1.3.3.2 Difference Ecuations

The diffusion equation given previously.In Eq. (1.2-7) can be re-
written as:

.

BT 32T 32T
| pCp 8t 3x2

. k (1 3-23)'

-
- = kx +". ' y

Sy2 .

|

'For a typical finite difference grid, consisting of zones which
:are Ax wide by Ay in height (Fig . 1. 3- 6) , an energy balance may
be performed.

0 ,j+ 31U+1

i- 1.1 u i+ 1.1 o o o o o
~ ~

~ "
<

y_,

Q w i,j iO _ i,j -- - i.j - - - -
i

'6y-. .--

_

I
-n n o o n ,

O ,j_ ,i

6x - ,

Fig. 1.3-6 Nomenclature for Determination of Energy Balance for
a Typical Interior Zone

Conservation of energy requires the sum of heat flowing into ele-
ment i,j to be zero for steady conditions.

:t
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,? ZQij = Qi-1,'j + Q1'+1,3 + 01,j-1 + Qi,3+1 = 0-
'

. .
.

.

~

T (t)i.1, 3 - T (t )
* *

T (t)i+1, j - T (t)
'

i,j i, j
- = kx Ay + '

Ax-
+

Ax', . . . .

(1.3-24)

T (t)i,3-1 - T (t) T (t) (t)
" * ~ '

1,j i,j+1 - Ti,j o
k .Ax + +"

y ,

Ay Ay ' '
. . . .

1
!

=0 |
<

i

WL where Q = heat flow,- 1
t

T (t) = temperature at a node at time, t, and
3

k = thermal conductivity in'x- or'y-direction. '

>

For ' transient conduction, Eq.. (1.3-24) is equal to.the-net energy ' |storage in the mass of'the_ zone i,j over a timestep Ats: j4

j

1;

T (t + At) - T (t) T (t)i_1, j-T (t )1,3 + T (t)i+1, 3-T (t )i,3 i,3 i, j ;Ax Ay =k Ay +pCp x ,

At An Ax
,

!
. .

(1. 3-25)
H !. .

i

T (t)i,3 1-T (t)i,3 + T (t)i, 3+1-T (t)
L I

j. i,j
' k Ax iy
L Ay Ay 1
,

. .

or, re-arranging, ,

1

I

l

|

_ , _ . _ _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ . - -.-
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i1-n

!

!
< T (t + At) .

. kx At' ' '

T (t)i 1,3 - 2T (t)i,3 + T (t) - +
t

i+1,3 ';i,3 =

pCp ( Ax) 2- ..

(1. 3-2 6) .]
. .

,

k At
T (t) .i, j.1 - 2T (t)i,3 + T (t)

iy
i,j+1 ,

(Ay) 2 ;
pCp . .

:

If kx = ky = k, then k/pCp = w, the thermal _diffusivity. Expres-
sion (1.3-26) is the. standard explicit finite difference form of
the. diffusion equation,'since all terms on the right-hand side i

are known.
'

!

Convective, flux, radiation or adiabatic boundaries are easily [
handled through proper' alteration of the heat flow terms in the ?

~

energy-balance equation [Eq. (1.3-24)). For example, for a con-3
-vective boundary at i+1,j (where the conduction terms are negli- :

gible), the associated'Qi.1,3 term in Eq. (1.3-24) becomes |
1

Qi+ 1, 3 = h Ay (T. - T , 3 ) '(1.3-27)' ;
i+

where h = convective heat transfer coefficient, and

T. = temperature of the fluid to which the solid surface !

convects. -

,

,

The radiative and adiabatic boundaries may be handled in a simi-
.lar fashion.

,

T

n.

|

i
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1.3.3.3 Stability and Accuracy of the Exolicit Scheme
,

The critical timestep for stability, assuming Ax = Ay = the
smallest dimension in the grid (see, for example, Karlekar and
Desmond, 1982), determined from Eqs. (1.3-25 and 1.3-27) is:

,

*
,6t 5 (1.3-28)

hAx -"

4x 1+
2k ..

,

where x = thermal diffusivity, I

h = convection coefficient, and
;

k = thermal conductivity, i

The accuracy of the explicit' solution scheme is determined by the
'

,

introduction of errors from several sources. A strict definition
of error in the explicit formulation is not obtained simply be-
cause error arises from the finite difference approximations

,

'

used, as well as the grid discretization and timestep. The ex-
.plicit solution introduces a mixed order of error in the diffu-
sion equation. This is because a forward difference formulation

lis used in time, the order of which is O(h ), and a central dif-
fergnce is used in spatial coordinates, the order of which is
O (he) .

1.3.3.4 Implicit Solution Procedure

An implicit solution procedur9 can be used to solve the diffusion
equation. A central difference in time corresponding to the
half-timestep can be used, whereas the explicit formulation uses
a forward difference in time. The spatial derivatives may also
be represented by averaging central differences at t and t + At.
An an example of this procedure, the diffusion equation in one

! dimension (x) can be written as

._ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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(t + At ) -2ft+4t) + T (t + At )T (t + At) T (t)
* '

i i- 1 Ti+1 i i1pCp
.-

k At 2 (Ax)2 t
. . -

*

T(t)T (t)i-1 - 2T(
g

i_1i 7
+ (1. 3-2 9)

(Ax)2 .

This method, known as the Crank-Nicholson method, has the advan-
tage that it provides stable solutions for all values of 4t. The
gridpoint temperatures now not only depend simply on the tempera-
tures at the previous timestep, but also on all gridpoint temper-
atures at the current step. This can be seen by the re-arrange-
ment of Eq. (1.3-29) ' to give

- T +1+1/2 (ATi+1)-2 (Ti+1/2 (AT ) ) +Ti+1+1/2 (AT1+1)
-

PCp i 1 ,

ATA=kAt - (Ax) 2 .

(1.3-30) ,

!

since Tk (t + At) =Tk (t) + AT , where ATi are the unknown tem-k
perature increments. Because of this dependence, a system of
equations must be solved. This requires greater memory, as the ,

temperature coefficients must be stored for each gridpoint. The
implicit method requires that a set of equations be solved at
each timestep for the ATi.

In matrix notation, the explicit method can be written as

AT = c T (1.3-31)

where C is a coefficient matrix, T is a vector of temperature,
and AI is a vector of the temperature change. Notice that AT is
a function of T only. Similarly, the implicit scheme can be
written as

AI = C (T + 1/2 (AT) ) (1.3-32)
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>:

I',, s

f where AI is a function of I and:AI. This equation can be rewrit-
ten as

,

(I - (1/2)C) AI = C 1 (1.3-33)

where we need to solve for AT at each timestep.

'The matrix
A= (I - (1/2) C) (1. 3-3 4 )-

i

'is diagonally dominant and-sparse, because only neighboring
points contribute non-zero values to C.

Thus, this set of equations is efficiently solved by an' iterative- ;
scheme. For ease of implementation as a' simple extension of the i

explicit method, the Jacobi method is used. For the NxN systemU Ax=b,' this can be generally written for the n'3 iteration as

- (n+1) ' bi N - aij (n) i = 1,2,...,N
'

-

Exi = -

x3 na 1,2,..., (1.3-35)
all 31 . aii .

j/i

where aij are the array elements of A, and

bi are the elements of the right-hand side vector
-- that is,

>

. .

(n + 1) 1 N (n) (n)
bi- Exi =

aij x3 + x1 (1. 3-3 6)
ali 31

. . t

$'
_ _ - - - _ _ - _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - . _ _ _ _ _ - _
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'For Eq. (1.3-33), this becomes
c :

-,-

AT (n' .+ 1)
1 N N

(S j 1- C j) f ATj(n)
.

I ci$ I
1,- (1/2) Cli . 31 T3

joi
i i=1- 2

. .

+ AT (n) (1.3-37).

i
,

where C j are elements of the C array,i

This implicit. scheme equation can be compared to the explicite ,

scheme, which can be written ase .

N
CjT3 (1.3-38)EAT ii = j=1

.

;

The amount of calculation required for each timestep is approxi- :
mately n+1 times _that' required for one timestep in the explicit
scheme, where'n is the number of iterations per timestep. This
extra calculation can'be more than offset by the much larger
timestep permitted by the implicit method, which makes the impli-
cit scheme advantageous when the temperature change is linear in
. time. ,

1.3.3.5 Stability and Accuracy s

As described previously, the implicit solution scheme holds the
iadvantage that it is unconditionally stable for all timesteps,

However, the differencing scheme presented in Eq. (1.3-29) as- t

sumes that the temperature change is a linear function of time in
'

a single timestep. Depending on the problem to be modeled, this,

assumption may lead to inaccurate results if temperature gradi--
ents are very high, or are changing very rapidly-- e.g. , at early
times in a simulation. The code uses a Jacobi iteration method
to solve the system of equations at every timestep. From a
strictly numerical perspective, convergence of the iteration is
achieved if

a
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N

|ali| > I laijl i=1,2,...,N (1.3-39)
j/i=1
j

. here aig are the coefficients of the solution matrix A describedw
previously.;

The above condition simply means that it is possible to obtain a I

numerical solution to the system of equations, but that solution
has no bearing on the accuracy with which the derived solution
compares to the true solution.

There is no explicit method for determination of convergence to
the true solution as a function of timestep since the-convergence
depends on many factors, including the properties, grid dimen-
sions and grading, and boundary conditions. In most cases, the
critical timestep [from Eq. (1. 3-2 6 ) ] '

At 5 (1. 3-4 0 )
- hAx -

4K 1+
2k ..

provides a lower bound estimate for the implir.it timestep. A
trial and error procedure is required to set the timestep above
this value. Typically, a thermal problem is set up and initial-
ized using the explicit procedure.

1.3.3.6 Thermal Stress Couplinc
..

The heat transfer may be coupled to thermal stress calculations
| at any time during a transient simulation. The coupling occurs

in one direction only--i.e., the temperature may result in stress
changes, but mechanical changes in the body resulting from force
application do not result in temperature change. This restric-
tion is not felt to be of great significance here since the ener-
gy changes for quasi-static mechanical problems is usually negli-
gible. The stress change in a triangular zone is given by (from
Eq. (1.2-8)]

Acij = - AS j 3K a At (1.3-41)i

_ _ _ _ _ _ _ _ _ _ - _ _ - - _ _ _ - _ .
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TheLabove' assumes a constant temperature.in each. triangular zone
which is interpolated from.the surrounding gridpoints. This
stress is added;to the zone stress state prior to application of
- the constitutive law.

l'.3.4 Basic Fluid Flow Finite Difference Equations

1.3.4.1 Introduction

FLAC_models the full coupling between a deformable, porous solid
and a viscous fluid that. flows within the pore space of the
solid.- The fluid obeys the anisotropic form of Darcy's law, and
is assumed to be compressible, with a bulk modulus of Kw. Non- .<

(steady flow is modeled, with steady flow treated as an asymptotic
.

' case. At present, the code only handles fully-saturated flow,
with phreatic surfaces represented crudely with a zero-pressure
cut-off for pressures.that try to become negative.

The interaction:between solid and fluid involves two mechanisms.
First,1 changes:in pore pressure cause changes in effective
stress, which' affect the response of the solid constitutive model
(for example, a reduction in. effective stress may induce plastic ,

'

flow). Second, changes in the volume of a zone-causes changes in
the pore pressure within the zone, since the fluid has a non-zero
bulk modulus. Both of these effects involve a solid response
time that is short compared to the time associated with fluid
flow.

.|
It: is possible to model several extremes of stress and flow be-
havior, and all the cases in between. On the one hand, if the
solid matrix is very stiff compared to the fluid compressibility,
the fluid flow is unaffected by the solid matrix; the diffusion
equation is solvec by marching in time. At large tames, the
solution converges to that of the Poisson equation. On the other
hand, if the permeability is zero, but the fluid bulk modulus is
comparable to that of the solid, mechanical deformation causes
pore pressures to change. For example, if a footing on a poro-
elastic half-space'is suddenly loaded, a pore-pressure distribu-
tion will exist when equilibrium is reached. In this case, the
fluid will serve to make the solid appear stiffer. If the perme-
ability is then set to some finite value, dissipation occurs, al-
lowing the solid matrix to relax--i .e. , some time-dependent move-
ment (consolidation) of the footing occurs.
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Because the groundwater flow'is modeled as a transient problem,
any analysis involving flow occurs in real physical time. -In j

6 .this respect, the fluid flow-and heat transfer logic are s'imilar i
t in that flow (fluid or heat) is treated as transient, whereas the

mechanical coupling is treated as a quasi-static process.

There are several' ways Hof solving the fully-coupled equaticas. A j
review of methods is given in Hart (1981). Common to all methods

'

is the. solution of Darcy's law within an element. To avoid
"checkerboarding" in the pressure distribution, it is assumed
:that pressures are located at gridpoints for the purposes of the
flow calculation. These are regarded as the " master" pressurea.
Zone-pressures (" slaves") are derived from the master pressures.
A matrix can be derived for each zone to relate the unbalanced
flows'at the four surrounding gridpoints to the pressures at the
same four gridpoints since fluid flow is linear according to
Darcy's Law.. This matrix must be updated if significant geom-
etric changes occur, or if the permeability depends on mean
stress.. Section 1.3.4.2 contains a derivation of the matrix.

When unbalanced. flows exist.at gridpoints, the continuity equa-
tion is invoked to' compute the changes in pore pressure at the
gridpoints. The~ equation also contains source terms from exter-
nally-applied flows and from mechanical volume changes. Section
1.3.4.3 presents these equations. The word " node" is used inter-
changeably with the' word "gridpoint" in what follows.

By default, the flow and continuity equations,-and the mechanical
calculations, are all done at each timestep in FLAC. Hence, the
non-steady response of the fluid is masked to some extent by the
response of the mechanical system, if the latter is not near to
equilibrium. The option exists to switch off either the mechani-
cal or the flow calculation. If the flow calculation is switched
off, then the mechanical effect of the fluid is still accounted
for. The only fluid solution scheme implemented currently is an
explicit one.

i

:

|

|

!
,

1

!
|

L |
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J: 1.3;4.2L Difference Ecuations

1.3.4.2.1' " Stiffness Matrix" for Elements in Fluid Boundary
~

Darcy's low for an anisotropic porous medium is

BP
Vi=K13 (1.3-42)'

- 8x3
i

where Vi is the specific discharge vector,

P is the pressure, and

K j is the permeability tensor.i

'Each quadrilateral element is divided into two pairs of triangles
in two.different ways (see Fig. 1. 3-1 (a) ) . The specific dis-
charge vector can'be derived for the generic triangle of Fig.
1.3-7.

By Gauss' theorem,
.

OP 1
Pni ds (1.3-43)< =-

OXi A
s

Hence, Eq. (1.3-42) becomes

Kji
Via I Pni s (1.3-44)

A

where I is the summation over the three sides of the triangle. j

i

4

;

o. ;

I
I

- _ - _ _ _ . _ _ _ _ _ _
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Fig. 1.3-7 Nomenclature for Determination of Specific Discharge-
Vectors from Gridpoint Pressures

,

For the x-component of V ,i
t

1
-

K11 E Pnis + K12 I Pn2s (1. 3-4 5 )Vi=A
-

.

,

The contribution of side (ab) of the triangle to the summation is
P

'

V(ab)
1 (b) (a)) (b) (a))

- -

-K11 (P (b) +p (a) ) (X2 ~X2 +K12 (P (D) +P (a) ) (x1 .x1= --
i 2A . . ,

(1. 3-4 6)
,

Similarly, the y-component of Vi from side (ab) is:
.

V (ab)
1 (b) (a)) (b) (a))

" *

-K21 (p (b) +p (a) ) (X2 ~X2 +K22 (p (b) +p (a) ) (x1 _xy2 " --

, _

(1. 3-4 7 )

The other two sides, be and ca, provide similar contributions to ,

V. This specific discharge vector is then converted to scalar1
volumetric flow-rates at the nodes by making dot products with
the normals to the three sides of the triangle. The general ex-
pression for nodal flow rates is

|
1

'
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Vi ni s,

"

Q= (1. 3-4 8 )
2

where the factor of 2 accounts for the fact that we take the
'

average of the contribution from the two triangle pairs that make ,'
up the quadrilateral element. >

In particular, the flow-rate into node (a) in terms of coordi- !'

nates is then

(b) (c))
'

(b) (c))
"

+V2 (X1 - x1-Vi(x2 - x2
. .

Q(a) (1. 3-4 9)=

Similar expressions apply to nodes (b) and (c). Nodal' flow rates ,

are added from the other three triangles shown in Fig. 1. 3-1 (a) .
A stiffness matrix, M, for the whole quadrilateral element can be ,

defined in-terms of the relation between the pressures at the
four nodes and the four nedal flow rates by combining Eqs. (1. 3-
44) and (1. 3-4 8) . The matrix representation is:

(M) (P) (1.3-50)(Q) =

The effect of gravity is incorporated as follows. If the grid-
point pressures around a zone conform to the hydrostatic gradient *

BP/Bxi = gipw, where gi is the vector of gravitational accelera- ,

tion, then the nodal flow rates (Q) should be zero. Hence, Eq.
(1.3-50) is modified as follows

[M] (P - (xi - x1(1)) gi pw) (1. 3-51 )
T
Y| (Q) =

=0

(1)
where xi is the x-coordinate of one of the corners.
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I; 1.3.4.2.2 Continuity Equation
I
L The flow imbalance between quadrilateral elements, EQ, at a node

| causes a change in pore pressure as follows:

SP Kw
I.Q (1.3-52)8t nV

where nV is the pore volume-associated with the node (n is the
porosity and V is the total volume). The term IQ is the net flow
at the node and includes contributions from the four surrounding
zones and any sources that are specified by the user (e.g., in-
flow from a well). In finite difference form, Eq. (1.3-52) be-
comes

Kw I Q At
p (t + At ) = p (t) (1.3-53)- --

nV

The term nV is computed as the sum of the contributions from all
triangular subzones connected to the node. Each subzone triangle
contributes a third of its volume-porosity product. The result-
.ing sum is divided by two, to account for the double overlay
scheme in FLAC.

Tensile pore pressures at nodes are prevented by setting P a 0 if
the calculated pore pressure is negative. Zone pore pressures
are then derived by taking the arithmetic average of the pres-
sures of the four surrounding gridpoints.

1.3.4.3 Stability and Converoence

i
There are two aspects of numerical stability associated with the

I pore-fluid scheme: first, an explicit solution of the fluid flow
,

equations requires that the timestep is less than a critical |
value; and, second, the bulk modulus of the fluid increases the I
mechanical stiffness. The effect of increased mechanical stiff- i

ness is incorporated into the density-scaling scheme already des- |
cribed--that is, the apparent mechanical bulk modulus of a zone !
is increased as follows: K := K + Kw/n, where := means replaced j
by , K is the solid bulk modulus, and n is the porosity of the
zone.

i

,
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The explicit fluid timestep can be derived by imagining. that one
node at the: center of four zones is given a pressure of Po. The

, resulting nodal ~ flow is then given by the summation of Eq. (1. 3-
50) for each zone, which can be written as 0 = Po I Mkk, where
I'Mkk is the sum over the four zones of the diagonal terms cor--
. responding to the selected node. The excess nodal flow gives
rise to an increment in pressure AP, according to Eq. . (1. 3-53) : -

Kw 0 At
AP = - (1. 3-5 4 )

nV

The new pressure at the node, P (t + At) is then

Kw I Mkk dt *
P (t + At) =P0 + AP = Po 1- (1. 3-55 )

nV .

This relation is stabla and monotonic if

nV
At < (1. 3-5 6)

Kw I Mkk

The value of At used in FLAC is that given by this equation, mul-
tiplied by a safety factor (0.8).

1.3.5 Interfaces

1.3.5.1 Introduction

FLAC provides logic for frictional and cohesive interfaces to ex-
ist between portions of the continuum grid. Unlike interface
elements or "slidelines" in many implicit-based codes (e.g.,
Fossum (1984), Morgan (1901) ) , FLAC allows slip, separation and
recontact between bodies across frictional and cohesive inter-
faces which may have a tensile strength. Because FLAC is a large
stra1n code, large deformations may occur along interfaces. In-
terfaces are defined through specification of nodes which may po-
tentially interact. The code checks for contact between the
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b gridpoints on'one side of the interface with zone edges on the ,

j other side of the interface, and sets up reaction forces to the
? -nodes. based on the stiffness of the interface in shear and normal

|- directions. .A Mohr-Coulomb slip condition is used to define the
elastic limit in shear.

1.3.5.2 Numerical Imolementation

'

L
.An interface''is represented as a normal and shear stiffness be-
tween' two planes which may contact one another (Fig. 1.3-8).

:

I-
|

| L L- _,

|| ||||k side a
kkk.-

.
'Bl |

"

n ;

|||||| ///// /// sid e b ;

' .

|
|

Fig. 1.3-8 An Interface Represented by Sides a and b, Connected ;

by Shear (k ) and Normal (kn) Stiffnesss

FLAC uses a contact logic for either side of the interface which
is similar in nature to that employed in the distinct element
method (e.g., Itasca (1989)). Figure 3-9 presents a' simple flow |

| chart of the contact detection logic.
1

i
I

i
1

|
1

l

|
|

|

|
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- - . - - --

1.3-31

-> t

Dolne inerlems, Grel$ sines, )
.; Sees A and Bee 8

h,.
,

; Devotes Ust For Eesh Ireertens
[ Whishineuses The IJ Coensiness
' Ofinterless Grel Peines

............ ...........
,'

FOREACH TWE 8TEP'

lf
For Seeh Pont On intertese, 1

Fird Cemeest Pemt On Negtuonne -I
trooness, And Doestmine it Coneest |

Emines,The una Nonnels Of
The Centent, Ard les Langth

If
Dessamme Remove incremontal
Normal and Sheer Deplesenant

-

'

of the Cornest

lI . 5
'

Doestmine incremental Sheer And

And Nonnel Fosse For Cereunt ' !
-

If

YES '

For
"

No Aspegnent Tom

Contact Foscas
,

,

!

8epersoon YES Ovescome YE8 Interfene Have i

Fn.Fe=0.0 Tensio Obength ' W7

lI -

Normal _
8eparaten, m

Lass Than 0.07
" F"*F*** 8 '

E1f

YES
Check For Wehr Coulomb Set Fe To Femen m

Sie Constion For Sho Condter: -

Fe Sci + ten sFn

W - _

- ,

1I

Reeche Fn,Fe To Global Anse, |
Add To Ore Porn Forces |

Of Adiacent Nades

If
In.it wed== pani

1

1
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The code keeps a list of the gridpoints (1,j) which lie on each
side of any particular interface. Each point is taken, in turn,
and checked for contact with its closest neighboring point on the
opposite side of the interface. Referring to Fig. 1.3-8, grid-
point.P is checked for four contact conditions: (1) no contact;
(2) contact on segment between B and Bri (3) contact on segment
between B and B ; and (4) contact, centered at B. Based on these1
' conditions, the normal, n, to the contact, P, and the " length",
L, of the contact along the interface belonging to node P are
calculated. The length associated with P is equal to half the
distance to the nearest gridpoint to the left plus half the dis-
tance to the nearest gridpoint to the right, irrespective of
whether the neighboring gridpoint is on the same side of the in-
terface or on the opposite side.

the velocity, 0 , of each gridpoint is de-During each timestep, 1
termined. Since the units of velocity are displacement per time-
step, and the timestep has been density-scaled to unity to speed
convergence, then the incremental displacement for any given
timestep is

Aui = 01 (1. 3-5 7 )

The total normal and shear forces are determined by

Fn(t +At ) = Fn(t) - knAu(t+ (1/2) At) Ln
(1.3-58)

Fs(t +At ) = Fs(t ) Au(t+ (1/2) At)-k Ls s

Several options are available for specifying the conditions of
the interface which may require adjustment of the contact forces.

1. Glued Interfaces -- If interf aces are declared
glued, no slip is allowed, and no adjustment is

| made to F or F (i.e., the grid acts as a con-n s
! tinuum).

|

_ _ _ . _ ._.- _ _ - - _____- - _ .-_-__ - __________- --_ _---__________ _-__. . - - - _ _ _ _ _ _ _ _ . _ _ -
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h. Tension Strength -- If tension exists, the Mohr.
'

'

a' Coulomb condition is examined for extensional shear,.
followed by a check ~for the case of tension strength
set to some value. If the tension strength is ex-
ceeded,. separation occurs and Fn = Fs = 0. The de-
fault case is zero tensile strength.

;

"3. Mohr-Coulomb Shear Strength -- The normal force is
input to the Mohr-Coulomb condition and examined
for compressional shear.

,

;

Fsmax = CL + tan $ Fn (1. 3 -5 9)

' where C = joint cohesion,

L = effective contact length
(see Fig. 1.3-8), and

-

,

$ = friction angle of joint surfaces.

If the criterion is satisfied, i.e., if |Fs ! 2
Fsmax, then Fs = Fsmax, with the sign of shear pre-
served.

The corrected forces are then rotated back to the global x-y ref- :
ierence frame (from the normal and shear directions) and lumped

onto the adjacent gridpoints in such a ratio as to preserve mo-
ment equilibrium. These are then summed with all the other
forces when unbalanced force sums are calculated for each time-

;step.

1.3.5.3 Stability

The influence of the interfaces must be accounted for in deter-
mination of critical timestep, or instability in the solution may
result. If the timestep is too large, the gridpoints on either
side of the interface may overlap excessively prior to calcula-
tion of the opposing reaction forces. The result may be unstable
displacements along the interface. The factors controlling the
timestep contribution from the interfaces are the normal and
shear stiffnesses, and the gridpoint mass of the interface grid-
points.

I

. .
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As described in Section 1.3.4.2, the interface stiffness enters< ,

the determination of the critical mechanical timestep for those-

nodes.which' lie along the interface. The interface stiffness-

. contribution, k ~, is given by
. . 1

4 ,

'
ki=4*k . (1. 3- 6 0 )

' .;.

where k is the norm of the shear and normal stiffnesses:

,

k= (ks2 + kn )h2 (1. 3- 61 )
,

i
F The multiplier 4 relates to the highest oscillation frequency of
D a set of springs in series (see Fig. 1.3-10). In this mode of

-

oscillation, alternate nodes move in opposite directions. The
center of each spring is therefore at-rest, by symmetry. A node *

then " sees" two half-springs in parallel, which accounts'for the
.

factor of 4.

0 i +0 0i i i

+ +- | + | +

YbC Yb ; Yb = Nb
-l

|k
I I

i i ik i

\/
zero velocity

points ,

,

Fig. 1.3-10 Shear and Normal Springs in Series

Experience has shown that FLAC provides stable interface response
with the present form of timestep calculation for a majority of
problems. -There is a practical limit on interface stiffnesses

,

for efficient modeling. If a high (or " infinite") stiffness is
'

required, the stiffness should be limited to ten times the equi-
valent neighboring zone stiffness.

~

1

|

|

|
..__ -_-_ -.
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Fig. 1.3:11 Schematic Illustrating Interface Normal Stiffness
1

For zone compression in the normal direction (see Fig. 1.3-11),
.

On 4 <

-=K+-G
3en

e(1. 3- 62 )
i

U -

n 1
-

4
K+-G-=-

Ay 3un . .

. where e is the strain in the norinal direction. ;

n
e

Hence, kn for the interface should be
- -

10 4 '

k 5- K+-G (1. 3- 63 )n by 3 3. .

'

This value of kn gives a good approximation to a " rigid" inter-
face without compromising efficiency.

f

.

.
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! 1.3.6 Structural Elements / Cable Elements
r

1.3.6.1 Introduction

An important aspect of geotechnical analysis and design is the
, use of structural support in stabilizing the rock or soil mass.'

FLAC provides logic for modeling of the interaction of major sup- ;

port types, with the rock or soil mass allowing calculation of
1

support loads and moments. '

Two major forms of support are used: structural elements and -

cables (or bolts) . The cables may be anchored at a specific
point in the rock (point-anchored) or may be grouted along their >

length. Additionally, the cable may be pre-tensioned or left un-
tensioned. In the latter case, forces in the bolt develop as the

.

rock undergoes deformation. The structural elements are two- '

dimensional beams with three degrees-of-freedom (dof) at each end
node. These can be used for modeling interior support for tun-
nels (e.g., shotcrete, concrete arches, etc.) and structures such
as sheet piles or surface frame structures. The elements use the
same basic lumped mass formulation as in the continuous portion
of the FLAC code, and are therefore subject to the dynamic equa-
tions of motion. The equilibrium solution is obtained through
damping of the motion equation. Structures may undergo large
deformations similar to the rest of tne code. Two restrictions *

are made regarding the structural elements: (1) the self-weight
of the structure is not included when applying gravity (although
external forces may be applied to simulate self-weight); and (2)
the structures behave linearly elastically with no failure limit.

1.3.6.2 Structural Element Formulation

The structural elements in FLAC are standard two-dimensional beam *

elements with rectangular cross-section with 3 degrees-of-freedom
(two displacements and one moment) at each end node (Fig. 1,3-
12). A typical beam element is defined by its material and geom-
etric properties. The beam is assumed to behave as a linear-
elastic material with no failure limit. The beam can be consid-
ered to have a cross-section (Fig. 1.3-13) with area A, and sec-
ond moment of area, I, and is defined by its endpoints, a and b,
with length L.

i

. _ _ _ _ _ _ . _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ . - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Fig. 1,3-12 Beam Element Illustrating Nomenclature !
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.c
Fig. 1,3-13 Rectangular Beam Cross-Section with Second Moment

-

of Area, I, and Cross-Sectional Area, A i

i
2The orientation of the beam in two-dimensional space is defined

by its direction cosines, ni, ti, where (Fig. 1.3-14) ;

i

!

(Ax2 + Ay )1/2
>Xb - Xa Ax 2 tt1= = - = cose , z=

z z ,

.

Yb - Ya by (Ax2 + Ay )1/22
t2= = - = sine , z=

z z !

f|
(1.3-64)

n1 = - t2 - - cose

n2 = t1 = sin 0 ,

l

-

____ _ _ _ _ - _ _
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Fig.'1.3-14 Direction Cosines for a Beam Element
,

e i
! i
: The x- and y-forces at each node are given by !

t

?
'

!

!

F(a) = Fa(a) ti + Fa(n)i ni ;

(1.3-65) j
t

F (b) = F (a) ti + F (n)
!

i b b ni j

|
!

!
where F(a) forck in the i-direction at node (a), ji

=

.

i,

:

i

Fa(a) force at a in axial direction, |
=

.

I
'

Fa(n)
e

= force at a in normal direction, f
'

i
.b
'

F (b) = force in the i-direction at node (b),i<-

i
?

F (a)
!

b force at b in axial direction, |
=

!

o !

.

,

4 n
-

-

- ..
. . . _ .-
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l

T(n) = force at b in normal direction,
,b

J
i l

ti,ni = direction cosines, !

the superscript (n) refers to normal direction, and

I
the superscript (a) refers to axial direction.

i
!

The component axial and shear forces ano moments at each node are |

given by the stiffness matrix for a flexural element (see, for :

example, Chajes, 1983): |

i
,

. . . . ,

(a) t

Fa(a) jua
.

i

(n (n)
Fa ) (1. 3- 6 6) 1=R ua

Ma 6a I
i

F (a)
(a) >

b ub r

!
'

F(n)
(n)

b ub I
>

!03Mb
..

i
!
^

where u (a) = axial displacement at a, {a
!

|
(n) != normal (shear) displacemen*, at a,ua

!

!
*

(a)
ub = axial displacement at b, ;

I

I

!

:

- - , ,
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r

[.
,

(n)
,- ub = normal' (shear) . displacement.at b,,

,
_

Ga =. rotation at a,

Sb = rotation at b, and

- -

A SYM.

o9
0 Y 41 !x. E (1.3.s7) :

L -A O O A |
1

0-$ i 0 $ |

0 - $ 21 0 y 41
!

I
-

+

'!
i

|

Various moment release conditions (i.e., pinned joints) may be I
cpplied'at each end node. These conditions aret

!
(1) Ma = 0; i

I(2) Mb = 0; and j
i

(3) Ma " Mb=0,
1

1 I

If Ma " Or I
'

j- .

;

1
-

(n) (n) *
*

Ba = 7 (3/L) ub -ua -Ob (1.3-68) {_ ,

|. .

:
!

!

i

f

|

|

i
r

. . . - . _ _ , _ - . . . _ . _ - , - _ _ .- . . _ . . _ _
i
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g

If Me = 0,
..

,

* "

1 (n) (n)' -

"0 (1.3-69)Ob=- (3/L) ub -ua 4
2 . .

..

1

If Na " Mb=0,
Sa = Od=0 (1.3-70)

:

!
Numerical Implementation j

The structural elements use the same explicit logic for numerical
}' implementation as described in Section 1.3.3.2. Displacements of ;

(u ,ub) result in incremental forces and moments in !'

the rock mass a
the structure which are added to the unbalanced force sum at the !

respective node points. The structural elements may operate in |
large strain mode, if desired. The coordinates are updated by: ,

!

xi := xi + A01 (1. 3-71)!

!
(Note: Aui = A0; since At = 1.0 via mass scaling.)

1.3.6.3 Cable Elements
t
- .t

Cable and bolt reinforcements in rock have two somewhat different
. !

:

functions. In hard rock subjected to low magnitude in-situ
l stress fields, failure may be localized to wedges of rock di- ,

rectly adjacent'to the openings. The effect of the rockbolt re- ;

inforcement.here is to provide a local stiffness at the joint j

surfaces to resist their deformation. The' bending, as well as -
'

the axial stiffness of the reinforcement, may be important in re- !

sisting shear deformations. In FLAC, this type of bolt action i

may be modeled using beam elements which have a flexural rigid-
ity. The beams, however, do not allow the modeling of a shearing ;

resistance along their length, as providsd by grout. In many in- !

stances, it is necessary to consider more than just the local ef-
feet of the reinforcement--its presence in resisting deformation i

must be accounted for along its entire length. Such situations i

arise'in modeling inelastic deformations associated with failed }

rock and/or reinforcement systems (e.g. , cable bolts) in which i

the bonding agent (grout) may fail in shear over some length of f
the reinforcement. The numerical formulation for rock reinforce- ,

Iment which accounts for inelastic deformation of the intact rock
and shear behavior of the, grout annulus is described here. :

!
.

.

!

'
_ _ . _ _ _ _ _ _ _ _ _
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The cable length is divided into a number of elements of length
L, with nodal points located at each end. The mass of each ele-

e ment is lumped at the nodal points, as in the continuum portion
of FLAC.

1.3.6.3.1 Axial Behavior

The axial behavior of conventional reinforcement systems may be
assumed to be governed entirely by the reinforcing element it-
self. The reinforcing element is usually steel and may be either
a bar or cable. Because the reinforcing element is slender, it
offers little bending resistance (particularly in the case of
cable), and is treated as a cne-dimensional member subject to
uniaxial tension (compression not allowed) . A one-dimensional
constitutive'model is adequate for describing the ar.ial behavior
of the reinforcing element. In the present formulation, the ax-
ial stiffness is described in terms of the reinforcement cross-

,

sectional area, A, and Young's modulus, E. :

The incremental axial force is calculated (using the same nomen-
clature as beam elements) by

[
.

Af = b- Au" (1.3-72)L :
i
i

,

where Au(a) (1)
(1)) (2)

(2)) >= (ub -u ti + (ub - ud t2s ;a

i

the superscript refers to the x(l) or y(2) directions, f

the superscripts (b) . (a) refer to the nodes of the element, I
referring to its axial direction, tc

N

At'present, a yield strength can be assigned to the cable. If a !cable force is greater than the yield value, the forces remain at
!

L a constant level.
[
tIn evaluating the axial forces developed in the reinforcement,
;displacements are computed at nodal points along the axis of the '

reinforcement as shown in Fig. 1,3-15. Out-of-balance forces at t'

each nodal point are computed from axial forces in the reinforce- t

ment as well as shear forces contributed through the'grost annu-
lus. Axial displacements are computed based on accelerations '

from integration of the :.aw of motion using the computed out-of- :

balance axial force and ,a mass lumped at each nodal point. i

;

+

. - - - .. .~,
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REINFORCING
ELEMENT (STEEL)

|'<
4@W/ GROUT ANNULUS !

$E| ?? \

/ ,e.

,s ' ,/'*J
s' |

'

E XCAVATION
I*

AKEL 57FFNE55
i

0F STEEL
!m

- {
i

SLIDER

REINFORCC WE NT /-- (COMESNE STREhGTH [-m
N00AL point OF GROUT) ,

SHEAR STFFNCSS
OF CROUT ,

t

|

!

Fig. 1.3-15 Conceptual Mechanical Representation of Fully-Bonded
Reinforcement Which Accounts for Shear Behavior of L

the Grout Annulus ;

1.3.6.3.2 Shear Behavior of Grout Annulus 1

The shear behavior of the grout annulus is represented as a
ispring slider system located at the nodal points shown in Fig.

1.3-15. The shear behavior of the grout annulus during relative
displacement between the reinforcing / grout interface and the
grout / rock interfaco is described numerically by the grout shear
stif fness (Fig.1.3-16) . Numerical estimates for the shear
stress (:an be derived from an equation describing the shear
stress at the grout / rock interface (St. John and Van Dillen,
1983): ,

G ub - urg (1.3-73)*TG= (D/2+t) in (1+ 2t /D) .

.

+

-

- - - - - - - - . - - - - - - - -
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h

where ub = axial displacement of the bolt,
,n ur = axial displacement of the grout / rock interface,

Gg = grout shear' modulus,

c D = bolt diameter, and
1

t = annulus thickness. |,

i
y

Consequently,'the required grout shear stiffness K ond per unitbproblem thickness is simply given by
;

23 Gg :

K ond " in (1+2t/D) (l*3-74) ib
;

I
tIn computing the displacement of the grout / rock. interface, the
ifollowing interpolation scheme is used. Consider reinforcement !

passing through a constant strain-finite difference quadrilateral !
making up part of the intact rock as chown in Fig. 3-17 (a) . The

{p incremental x-component of displacement (Au p) at the nodal pointx
is given by

!
i

Au p = W 4u i + W 4u 2 + W 4u 3 + W 4u 4 (1.3-75) !x 1 x 2 x 3 x 4 xr

'
r
i

where Au 1, Au 2, au 3, Ax4 are the incremental gridpoint x- fx x x
component displacements, and |

W, W, W, W4 are weighting factors.1 2 3
,

!

The determination of weighting factors is based on satisfying mo- |ment equilibrium and involves computation of contributions from
!

'

subelements.

I

!

!
:

L
1

r

i
!
;

!
e

I
<

=~
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Fig. 1.3-16 Shear (a) and Axial (b) Behavior of Grouted Cable i

Elements f

!
1

1

1

1

|

!

,

- -
- - _ _ . - _ _ . _ _ _ _ _ - - _ _ _



. _ _ _ - . - _ - . _ .

1.3-46

<

:: Os |

-

W" ,

"-
1 ,<
e,# \
r

,

,- % w 1-
,

free senmous I

if HDN
% a >

i

,

!

(a) typical reinforcing element passing through a quadrilateral '
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(b) areas from a given subelement used in determining weighting ifactors for computation of displacement of grout / rock *

interface
.

I

Fig. 1.3-17 Geometry of Quadrilateral Finite Difference Zone and
Transgressing Reinforcement Used in FLAC

i
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A similar expression As used for y-corponent displacements. The
4- weighting factors W , W , W , W4 are computed from the position1 2 3of the nodal point within any triangular subelement as follows:

i

1 (1. 3-7 6) IW1 = A /AT
!

is the total area of the finite-difference aubelement, :i where AT
and

".

At is the area of the weighting triangle in Fig. 3-17 (b) .
,

The' final weighting is found by summing the contributions of all {) triangular subelements and dividing by two, to account for super-
imposed zoning used in FLAC.

At each timestep, the old gridpoint displacements are used in Eq. >

(1. 3-7 3) to determine the axial displacement of the grout / rock .;

interface, u . Using this displacement and the old cable force, i
rthe axial displacement of the bolts due to shearing is determined i

from Eqs. (1.3-71) and (1.3-72). These new displacements are '

then proportioned back to the quadrilateral gridpoints using Eq. ;

(1. 3-73) .
.

In the present formulation, the maximum amount of shear force per !
unit length in the grout annulus is limited to a value S ond' tb
The peak shear strength used may be estimated from the results of j
pull-out tests or, should such results not be available, the peak .

strength may be estimated as (St. John and Van Dillen, 1983): [
r

i

S ond = x (D +2t) tg Q3 (1. 3-7 7 ) -!b
!,
I

where T I is approximately one-half of the uniaxial strength of !

the weaker of the rock and grout, and
'

.

QB is the quality of the bond between the grout and rock !
(QB = 1 for perfect bonding). (

:

The maximum shear force, Fmax, per unit problem thickness is, |
therefore, given by ,

Fmax " S ond (1. 3-7 B ) |b

.

t

,
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'

Forces generated at the grout / rock interface (Fx$,wekhting fac-F ) are dis-
tributed back to gridpoints according to the sam

1 tors used previously-i.e. ,

I'

Tx1 " W1 * Fxp

Fx2 = W2 * Fxp (1. 3-7 9)

Fx3 " W3 * Fxp

Fx4 = W4.* Fxp

where Fx1, Fx2, Fx3 and Fx4 are forces applied to the gridpoints.

1.3.6.3.3 2-D/3-D Equivalence

Reducing 3-D problems with regularly-spaced reinforcement to 2-D
problems involves averaging the reinforcement effect in 3-D over
the distance between the bolts. Donovan et al. (1984) suggest
that linear scaling of material properties is a simple and con-
venient way of distributing the discrete effect of reinforcement
over the distance.between bolts in a regularly-spaced pattern.

In the present formulation, a scaling factor (f), defined as the
ratio of unit problem width (W) to reinforcing spacing (S) per-
pendicular to the plane of analysis-i.e., f =.W/S should be used
to scale input material properties E, G and Ty. For example,
if the reinforcing spacing, S, is2 met $r,sandtheunitproblem
width is 1 meter, the material properties E, Gg and T I should all
be reduced by a factor of 2.

1.3.6.3.4 Failure at Grout / Reinforcing Interface

Failure of reinforcing systems does not always occur at the
grout / rock interface. Failure may occur at the reinforcing / grout
interface, as is often true for cable reinforcing. In such
cases, the shear stress should be evaluated at this interface.
This suggests that the expressions (D+2t) be replaced by (D) in
Eqs. (1.3-72) and (1.3-75).

|

~
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1.3.6.4 Stability and converoenee

The stability of the structural element solution depends on the
structural timestep determined automatically by.the FLAC code. |

As done previously for the finite difference zones, structural !

inertial masses are set equal to the effective stiffness con- |
,

nected to the node in the coordinate directions. The stiffness j'

(i.e., inertial masses) in the x, y and rotational directions are |
required for timestep calculation, as well as the application of j

the equation of motion to the structural masses. The stiffness j

is found by the unit displacement method by alternately fixing 1
!

02Auy(a) and Auy ) and calculating the values of the stiffnesses !!

kx and k .y

!

t At'end (a) of the beam, for example, let

i

Auy = 0, j-

l
.

I|AFx| = A ti + 6 ni (1.3-80)
- ,

'
.

(n 12EI !

|&fa) | = EA-- Au(a) and |M ) | = (1. 3- 81 ) !
L L3 I

!

I

i

| Au(a) | = Auxt1, and :where
(1. 3- 8 2 ) |

14u(n) | = Au ;
i

x n1
!

Substituting Eq. (1.3-82) into Eq. (1. 3- 81 ) to obtain |A | and

|Af ' | in terms of Au , the following is obtained:x
;

f
EA 2 12EI 2

| AFx | = -- ti aux + ni Au (1. 3- 8 3)x
L L3 i

:
i

e

f

f

.
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;c

or
|AFx| EA 2 12EI 2

''

kx = ti+ n1| Aux!=L L3|,

|

Similarly, I
|AFy| EA 2 12EI 2 ii

ky=,lauy| = L- t2 + n2 (1 3-84)
L3

|

and, for rotation, j

| = 4EI
|AM-

k, . I _0 ,_

4 L r

I

The above values k k and kr are local stiffness values for thebeam elements whicN,ar$ connected to gridpoints of the finite dif- '].ference zone. The cable bolt stiffness, ke, is taken to be j

!

k ond * Lb
:
.

I
where L is the effective length of the cable element.

|
i

The' weighted inertial mass is set equal'to the sum of stiffnesses i
for each' node (recall that Ate = 1.0) . For the case of a struc- i
tural node connected to a gridpoint, the inertial mass becomes

,.

'!
t

mi = mg + 4. 0 (ki + ke) |
(1.3-85) i

mr = 4.0 (kr) !
i
5

'

where i = 1,2 = x,y, and mg = gridpoint mass.
;

!

The multiplier of 4.0 is derived as described previously. ;

i
!

i

!

| !'

L
!
.

I i

L t
i f

. . . . .
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If a structural node is not connected to the grid, then
,

mi = ki,

(3-8 6)
A mr = kr

where ki is the sum of the stiffness contributions from each con-
| nected beam.
| i

These masses are now used in the motion equation for the beams and
cables. Additionally, these stiffnesses effect the calculation of ;

timestep. ;
,

' Experience with FLAC has shown the structural element formulation -

to be stable and converge to the quasi-steady state adequately with
the present formulation for nearly all cases. Numerical instabil- ,

ity has been observed in the case of an end-loaded column with j

lower pin joint subjected to a velocity load on the free end. This ;

is equivalent to Euler buckling under dynamic loading. It is al- !
*ways possible to modify the code to allow manual reduction of the

timestep until stability is obtained; however, the limitations of '

the structural elements for rapid loading needs to be recognized. [
i

!

1.3.7 Axisymmetry |
i

1.3.7.1 Introduction [
!

Many common problems in solid body mechanics involve geometries i

which are symmetric about rome axis of rotation. An axisymmetric |
geometry allows for accurate modeling of the out-of-plane stress
component, thereby providing the ability to examine some typical ,

three-dimensional geometries which often occur in geotechnical an- i
'

alysis. Some of these geometries include pillars or laboratory
samples, advancing shafts or boreholes, bins, and perhaps some open i

pit geometries. |
|
!

!
t

!
:

i
i

t

.

_ _ , _



._ ._ _ _ . _.. . _ . _ . _ __ _ _ _ _ _ _ . _ _ _ _ .. . . _ . _ __ _

1.3-52

1.3.7.2 Formulation of the Axisymmetric Difference Ecuations

1.3.7.2.1 Basic Assumptions

The axisymmetric problem in FLAC is treated as a three-dimensional
problem in which roller boundaries are used in the x-z plane, radi-
ating from x = 0 (Fig. 1.3-18). As the angle 0 approaches 0, the
solution approaches the esse of axisymmetry. Because 0 cancels
from all equations, this condition is always met, and the equations i

can be expressed in terms of rectangular, rather than polar, co-
ordinates. Stresses can therefore be expressed in terms of oli, j

,

c12< 022 and 033, where 033 is the out-of-plane component.
{

It is assumed that x = 0 is the axis of symmetry and any gridpoints |that have x = 0 (within a tolerance) are fixed in x. For large |
strains, any gridpoints which move to x = 0 are also fixed. '

i'

,

,

Y ;

/; :e
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l

! / ,

| |'' i
. / i

| | '
'
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Fig. 1,3-18 Axisymmetry Treated As a Special Three-Dimensional
,

Case t
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,

'1.3.7.2.2 Strain Increments from Gridpoint Velocities
'

The Gauss divergence formula in.three dimensions is given by
,

Bf 1
>=- I- <f> ni AA (1.3-87)

< Oxi V faces
4 ;,

L where faces = the five faces of a triangular zone,o

AA = area of a face,

[' V = volume of a zone, and
;

' f = a scalar, vector or tensor.

I
t- A typical triangular wedge' element is shown in Fig. 1.3-19, and is.

(b , b , a2, ai).is shown inI defined by its five faces. Edge face i 2
this figure. Note that edges (ai-a2, b -b , ci-c2) have a radius.i 2
of. curvature but are assumed to be straight. The top surface of
the wedge (face a,b,c) is in the x-z plane. The outward normals of
the edge faces are given by.:

,.

n1 = S /s2;

I (1.3-88)
n2 " - S /s1

r n3 = 0

where ni,n2 are the x and y normals to the face, s, in the x-y4

plane,
.i

b a
Si= (x1 - x1), and

b a
S2 = (x2 - x2) -e

D For the triangular faces, n = 0, n2 = 0, and n3 = 1 for the
ai,b ,c1 side, and n1 = - s ne, n3 = cose for the a2,b ,c2 side.F

i 2

Y <

L_
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i > ,,

For any given edge face, <f> is determined by
,

, ,,

1 1
<f> = - f dA = - f dx1 ds (1. 3- 8 9)A, A ,,

a b
x1 + x1

where, from Fig. 1. 3-19 (b) , A= |s| 0 .

2
:

bi
edge ,

,

k xyeb' 9~, '/2 '

\ xis !'
o m

_,,, *,ci- g --

gi 3 1,

,,,' \

01
= =

C2 's
\ S

a2

(a) (b)

Fig. 1.3-19 (a) Wedge Element and (b) View of Edge a-b

Through a transformation to local coordinates, Eq. (1.3-89) becomes

10
<f> = - fx1 |s l d4 (1.3-90)A *O

where f = fa $ + (1 - 5) f, and'

b

a b
X1 = x1 % + (1 - %) x1-

'

!
1
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l -|

|

. Substituting expressions for A, f and x, and solving: !

i

;

a b r

!1 x1 fa + X1 fb'-

<f>
= 3 fa + fb+ (1*3-91)

|xa + xb ..

I'

1 1
!

!

The ' volume, V, of the wedge element in Fig.1,3-19 (a) may be found f
from the Gauss divergence formula for the gradient of xi along xt: |

!

h8xt 1
I .:xi> ni AA (1.3-92) !.

8xi V aces |f
i

!

and, since the left-hand side is the sum of the gradienta in each '!'

Cf the three directions, the volume is !

i

t

1- -
'

V=- I (x1 n1 + x2 n2 + X3 D3) AA (1.3-93) :
3 5 faces |

-

!
t

:

.

!

.. ,

!

!

!

-
|

'

.

<

t

!

>

- . . - , _ _
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By substit.ution from Eq. (1. 3- 8 9) and the normals,
i

'

:
-

-

'

a b '

b (X1 + X1)V=1 I <x1> (x2 - X2) 0+
3 3 sides 2

- .

~

:
i-

|.

!-

b a
'

b a (X1 + X1) !

- <x2> (X1 - X1) 0 + (1.3-94) |

2
,

|
- .

|
'

!
-

!
- . .

.

- sine x1 AA + cose x3 AA !

l :
- ,

!

!.

,

where Ad is the area of the triangular face, |

.

b + xi ) /3 , and
. X1 = (xia + xi c

|
1

i x3 = 0 xi. )1
:

!

Since, as 0 -> 0, sine -> 0, and cose -> 1, the last two terms can- !
| cel. Substituting for <x1> and <x2> from Eq. (1. 3- 8 9) Eq. (1.3-94) i

reduces to I

V=0x1 AA (1.3-95)
o

i

l

l
1

,

3

,



, . . .

.. -_ _ - __ _ _ _ _ __ _ __ _ _ _ _ ______ __

,
1c3-57

|

The volume term can be calculated for the four triangular'subele-
ments in FLAC (a, b, c, d) , where AA for a,b,c,d are the same as in
the 2-D version.

Knowing <f> and V, expressions for the difference formulas for the
,'

gradients of <f> can be derived:

Bf 1:

= - E <f> ni AA
0x1 v

(1.3-96)
1 ( x2" (fc - f ) + X2b (r, - fe) + X2e (fb - fa) 3= b

2AA

and

Of 1 a b[ xi (fc - f ) + X1 (g, . fc) + X1c (fb - fa)=- b
Bx2 2AA

(1. 3- 97 )

The above expressions can be used to determine the gridpoint
velocity, gradients and, hence, the strain components from the
standard expression,

" 001 Obj *
At

1

Aeij = 2 . 8x3 + 8xi .
(1. 3- 9 8 )----

The out-of-plane strain component, e33, can be found from

Bd3 0 '0$ + 0 +03
*

,

= e33 (1 3-99)
Dx3 Or x -xa + xb 4 xe .

1 1 1

since x3 = 0x1, and

03 = 06 .1

i

- - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _
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1.3.7.2.3 Mixed Discretization

The mixed discretization procedure, described previously, is again
used in the axisymmetry to ensure accurate solutions for plasti-
city. Recall that each quadrilateral is divided into two sets of
triangular elements: A and Bi and C and D. A similar procedure is
used for both sets. A and B are used here as an example of the
mixed discretization procedure.

Prior to calling the constitutive laws, the strains (calculated in
the subroutine STRESAX) are averaged using the mixed discretization
procedure. For a quadrilsteral, the normal strain increments are
averaged by

i

!

A A .B B.

.AB 'kk V + *kk V
iekk = (1.3-100) 1

VA+VB !
|
:

where e.ABkk = averaged strain increments, !

!
!.A .B iekke 'kk = strain increments from triangles A and B, and i

AV,VB = volume of triangles A and B (see Fig. 1.3-1).

The strain increments from A and B are given by
,

Bu. (A) Bu. (A) Bu. (A)
:
'.A t g 3

ekk = + + (1.3-101)
8x1 8x2 OX3

Strain increments are determined separately; then, the average '

normal strain increment is determined. From the average, the indi-
vidual increments are determined.

,

3

e

i

!

t

1

_ _ _ , - _ --
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i

\

''
'For example, the strain, increments for triangle A ares ;

;

>

.A 1 .AB . A (dev) l
;^

ell = 3 ekk + 'll !

.

.

(A) ,
.

.A (dev) But 1 (A),

where e11 - - ey and (1.3-102)= ,

Ox1 3
,.>

i |
i

'

f

Bu. (A) Bu. (A) S u. ( A) |
i

t 2 304)
= + + ieV

0x1 0x2 8x3 .j

i

There is no correction necessary for shear strains, as they are !
'

decoupled from normal strains and are given by
|

"00 001 2".A 1

e12 " 2 . Dx2 + 8x1 f
t

i

1.3.7.2.4 Averaging of Pressure Terms |
;

After calling the constitutive law, and prior to determination of i
7

. equivalent gridpcint forces, the pressures in triangular zones are !

averaged using the mixed discretization procedure. Again, for the j

A-B triangle pair:

,

A VA + cob VB |a co
(1.3-103) I00 =

VA+VB j
i
!
t

u

e

!

!

!

!

.-- - -- . . . - . - . . . _ . - _ -
I
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F <

;

A=1 A(0 1A + O22A + 033 ) , andwhere co 1

5 . _1 B
'

00 3 (oggB + O228 + 033 ),
''

'

)
i

The stresses, adjusted for the pressure term, are

'A A (dev) AB
etc., for normal stresses (1.3-104)l 011 = cil + 00 ,

A (dev) A A
where oli = cil - 00 , etc.

02 is unaffected by correction.1

'

1.3.7.2.5 Determinat' ion of Gridpoint Forces From Stresses

In the 2-D version of the code, x- and y-component stresses within
each zone are assumed to act over a line segment which connects the'

centroids of the zone surrounding any specific gridpoint. The
stresses are transformed to equivalent x- and y-oriented forces us-
ing the length of these line segments and are applied to the grid-
point. In the axisymmetric case, the stresses are applied over an
area of the triangle subelement rather than a line segment.

The area over which ol'1 acts for gridpoint calculation.for point a
is shown in Fig. 1.3-20. The area of the region, Ar, is
(A e + Aef) , which is given by:d

'c e e f
'

x1 + x1 d e (X1 + X1) e f

Ar = 0 (x2 - X2) +0 (x2 - x2) (1.3-105)
2 2

|

- -_- -_ _ _ _ _ - _ - - _ - - _ - - - - - - _ _ _ _ - _ - - - - - - - -
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where the coordinates at d, e and f are assumed to be the' averaged '

coordinates of the corner points. In terms of the corner coordi-
nates, Eq. (1.3-105) reduces to

;

Ar = 6 [ - 2AA+3 (2x1 + x1 + x1) (x2 - X2) ) (1.3-106)
a b c b c

-

:

a -

1
e fg A )

a .

'
/ \ A, x

*

b \

s c

Fig. 1.3-20 Triangular Subelement Showing Area for Gridpoint Force
Calculation at Gridpoint a

i

1
In the axisymmetry model, the gridpoint masses are determined in '

the same way as in the 2-D case--that is, no regard is given to the
out-of-plane direction. Therefore, the masses are scaled by a fac-
tor of the order of the thickness of the wedge element, 0x1, The 0

. term in the above equation may therefore be replaced by (1/x to
scale forces to account for the mass in the third direction.1)

-

;
i

The force contribution from the z-direction can be found by examin- ;

ing the area upon which the force acts. The projection of the area
of the triangular subregion representing gridpoint a (area a,f,e,d ;of Fig. 1,3-20) perpendicular to x is given by:

|

AA ,

A=-n ,1.3-107) ;x
3

;

^

__ _ _ _ . _ _ . . _ _ _ _
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AA
- where - is 1/3 the area of the triangular element, and

3

nx = - sin 9. (1.3-108)

The out-of-plane force component will be '.j"

!.

i

A I

sin 6
6

(1.3-109)
'

F3=-022
3 ,

1

;

or, normalizing by the scaling factor 1/ (x 0), i
.

|
t

1 AA !

3"3 Ozz a
(1.3-110)F f

x .

1 i

f
i
i

This completes the major changes in the differencing logic neces- ,

sary for axisymmetry. The changes necessary in the constitutive i
'models to account for axisymmetry are described in Section 1.4,

Constitutive Models.

Other sections in the code concerning force application must also !

be modified for axisymmetry. These include applied external forces I
and gravitational forces. '

.i

1.3.7.2.6 Equivalent Applied Forces
:

Similar logic is used for the conversion of stress to gridpoint i

force, as previously described. Figure 1.3-21 shows an edge of the ;
'

triangular zone. |
r

#
,
'

bx*e xe }
L !

x"l !
D

X !
1

Fig. 1,3-21 Nomenclature for Gridpoint Force Calculation in
Axisymmetry, Typical " Edge" Shown

[

!
.

1

|

I
._ ___ -
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'? For example, the.x-force for gridpoint a is found from

a b a
''

x + X1 'X1 + X1 a"
Fx(a) = Fx - x1 (1. 3-111) .

_

. .

or

a b
3x1 + x1

= Tx
4xA

1

a
where use has again been made of the scaling factor 1/(x1) .

1.3.7.2.7 Equivalent Gravitational Fotees

The gravitational force component must consider the volume of an
element for calculation of equivalent gridpoint forces. Figure'
'1.3-22.shows an element, as before.

A , s .A O
6

e
i

'

2"#Ob A
6

c

Fig. 1.3-22 Triangular Element Subdivided for Cravity Force
Calculation

__ _ - -.-
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The volume of the triangular subelements At and A2 are found from
!

V=0xIAi (1.3-112)
,

where x is the average coordinate of the triangle.

The applied gravitational force is

Fg = pgV (1.3-113)

1.3.7.3 Stability and Convercence

The stability and convergence of the axisymmetric model is subject
to the same constraints as described in previous sections.

,

1.3.7.4 Limitations

It is not reasonable to run all constitutive models in axisymmetric
mode due to symmetry considerations. The models not included in
the axisymmetric logic are transversely isotopic, ubiquitous joint,
and strain softening.

:

:

|
. . . . . . . . . . . .. .. .. . . . . . .



'

i ;,
'

L 1.4-1

1

I. f
,

|} 1.4 COMPONENT MODELS
,

= 1.4.1- General' j

,

1.4.1.1 Methodo3 rov for Coupline of Mechanical Models for
Transient P rob _lems.

This section of the document describes the component mechanical I
t

[ constitutive models available in FLAC. All of the laws are non- |

. transient in nature (i.e., quasi-st atic) , but may be solved in
combination with either the thermal or groundwater transient
logic. The type of coupling between these models is illustrated
in Fig. 1.4-1. The mechanical and thermal models, although both
available within the FLAC program, act essentially as uncoupled
codes. The thermal model provides temperatures and thermal
stresses to the mechanical model. Only the WIPP creep law given
here has temperature-dependent mechanical properties. The me-
chanical model does not provide any " feedback" response to the
thermal model. As discussed in Section 1.3, this is not consid-
ered to be a restrictive assumption for geotechnical purposes.

1

*

MECHANICAL MECHANICAL

" " w.chonic.i
'

Por. Pro ur . Volum. Stroin.
,

C *-- T.mp.rotur .
Th.cm.s str , m.cm. ser ch.ne. in"'

P.r. Pr .ure.y

THERMAL FLUID FLOW

&

i

Fig. 1.4-1 Means of Coupling Transient and Mechanical Models in
FLAC
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A typicali thermomechanical problem is conducted in the following
fashion. First, the thermal problem is run to a given time t, at
which the mechanical state of the body is required. The thermal

'~

portion of the code is decoupled, or notLsolved, and mechanical
timesteps are conducted until the body reaches equilibrium or a
steady state. The thermal stresses are merely treated as addi-
tional out-of-balance forces at the gridpoints. The thermal
stresses may result in stress failure for models which allow '

thermal behavior. This procedure is valid as long as:

(1) for non-linear mechanical models, the temperature
should not rise and fall prior to conducting me- )
chanical steps since this process may be load-path !

dependent;

(2) for creep models, the coupling between thermal and
,

mechanical models.needs to be performed with great
caution. The creep timestep must be set manually,
.but must be performed compatibly with the thermal
timestep. Since the creep-timestep is set manual-
ly, stability in the solution is not insured if not
chosen correctly.

The. fluid flow model can be operated with mechanical behavior de-
coupled or in a coupled fashion. The coupling methodology is
shown in Fig. 1.4-2.

t
.

Mcw
PORC PRES $URE

T3:#:WE t

RWJ Rmt
CALCULATION

(oARcrs uw) vgeuwa
VOLUWCTRtc

MMM

PORC PRESSURES

trrecTwc sincss cowsT m ur

|, gncss (WrewAwicAL)

w c mencAL
|. wwu
|

cAccutaTions

1:

| Fig. 1.4-2 Method of Fluid / Mechanical Coupling

1
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During the timestepping procedure, Darcy's Law is invoked, and
fluid flow timesteps are conducted. The number of fluid time-
steps prior to mechanical steps is controlled by the user. The

)sequence shown in Fig. 1.4-2 is conducted once per timestep
(i.e., one fluid timestep per one mechanical timestep), as the
default. The fluid flow calculations result in an updated pore
pressure distribution. These pore pressures are added to the to-

'

tal mechanical normal stress components determined from the nodal
force balance. The effective stress for a zone is given by

O'kk . oTkk - P. The effective stresses are then used in the
constitutive law for determination of stress increments. Vol-
umetric strain increments are applied to the fluid / solid mixture

'

to determine pore pressure increments. The coupling here is per-',

formed via the bulk modulus of the mixture, Km :" K + Kw/n. The
mean stress increment due to fluid pressure change from the vol-
ume strain is given by ,

Kw
(1. 4- 1 )Aco = Aey --

n

Figure 1.4-3 illustrates the conceptual representation of the
fluid stiffness effects on the overall stiffness of the, system.

Art

if

,

Kw 'K

M ) (90LS)

mN

r.;. . =., =:=. ^ ~a

Fig. 1.4-3 Schematic of the Effect of Pore Fluid Stiffness on
the Total System Stiffness for Fluid-Solid Coupling
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.

These new pore pressures are then used to drive fluid flow via
Eq. (1.3-55). The pore pressure-effects can result in non-linear
material behavior for the plasticity constitutive laws. For en-
ample, yield may occur in a Mohr-Coulomb material as fluid pres-
sure'is increased, as the effect of pore pressure is to translate '-
the'Mohr's circle toward the origin along the normal stress axis
-(see Fig. 1.4-4).

,

h7

Failure Criterion
(p, - N tuW + cta

9

,

/ C

,0 s' ,0s a' as 0,s -

ip
>

Fig. 1.4-4 Effects of Pore Pressure on the Stress State

The fluid / mechanical coupling may also result in the transient
consolidation of the solid--for example, fluid flow as a result
of poro-elastic / plastic aquifer compaction beneath a footing. j

1.4.1.2 General Methodoloov for Imolementation of Constitutive
Laws

All constitutive laws in FLAC use the same general numerical pro-
cedure. Rather than repeat this discussion in the following sec-
tions, it is given once here, and simply referred to in each sec-

.

tion concerning derivation of the numerical model. Figure 1.4-5 '

shows the baaic calculation procedure employed by FLAC for a
.

. given zone for a single timestep. At the beginning of a time- i

| step, the following quantities are available to FLAC (calculated
from the previous timestep): (1) total stresses in each zone;

L (2) gridpoint velocities; (3) pore pressures at each gridpoint
L (if applicable); (4) temperatures at each gridpoint (if appli-
L cable); and (5) total plastic strain (if using the strain-harden-

ing/ softening model).

|'.

. __ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _



-_

. !

10 4-5-

-

wi vaa 4 C.EAttl.N.C.VCLS.W.TH
ST art C

ma ,w m,
i .n_

= Cma-
,

t

,

;won n.= m.1,,o an ,

; -_ -- - .
i an Cma :

!
,,

If

nA.
04 Caa. m aanC1 -.

-
*

L , as
|' wo =o.

II k^8*C"Y

m.C.uan m..n .e m m. =A,.am.r ..oa.nA.
i ,

. .a. ,

&A.fictry ?

f M.
.am.
JoNT t,00E [CCD.TrfVfTWE LAW

.-ostin n.waancememnComn
1tAAP9RATUR.vun. on

m _

M8980Sff LAW " C08vl0Cf ACComens.Touw
WPDAn PORS Pne ume Phoed 80NS .0LWhatT9tC SThApe CLS

. = .,n
tvL . - . __cu--

M3DE

1toarin=a una c.n o.Ca me m m==. ,,
Aa m .mm er== on ern ) .. 3vocosusverry

<

n.
VAPP CASAP 4800E ,

o.a cwm ,no ma, Ace
A,.C.mmuuna ns - 2,%

*. awn =Cma e= entwoeo. r
PontR LAW

e

lf
PtRPORRd GROUNDWAltR new t.se 979,. IP AP,4 Casts,

:wun o=Pam une
( flDLfr1NS.W81 UNI

1f
1

|. PtmPoped THEf tAL CALCSAflON.F AP,UCMLt.
'

1
aun ,mmm.

| ( ft00 TINE T988tLNI

1
I

If
aux. .o.n . . ua. .n.

(.LS810VTINE CMECK)

i. Fig. 1.4-5 Methodology for Constitutive Law Implementation
(one timestep loop shown)

.

|

|

|

|

|
|

|



_

~

|

|

1.4-6

i

The main timestepping routine, CYCLE, loops over the total number
of timesteps specified by the user for all zones in the grid.
Mechanical timesteps are first conducted. If a thermomechanical
analysis is being performed, the thermal stresses are updated
through a call to subroutine TSTRES. The strain increments are
calculated from the gridpoint velocities (from the previous time-
step) by calling subroutine STRESS or STRESAX--the former for
plane problems, the latter for axisymmetric problems. Here, the
existing pore pressures (from the previous timestep) are used, if
applicable, to convert stresses to effective stresses. The con-
stitutive law, with the exception of the creep model, first de-
termines trial elas:ic stress increments from the strain incre-
ments determined in STRESS. For elastic or transversely-elastic
models, no correction is necessary, and the code continues. How-
ever, if a non-elastic model is used, the effective stresses are
used as input to a failure criteria or creep law. If yield is
occurring, correction to the stresses are made, via a non-associ-
ated flow rule, so that they are not in violation of the yield
function. For the creep models, the incremental strains are used
to determine new stress increments.

The new stresses are returned to subroutine STRESS, where the
zone stresses are averaged by the mixed discretization method.
The stresses are then converted to equivalent gridpoint forces
and returned to the main timestepping routine, CYCLE. Here, the
gridpoint force contribution from the interfaces and structural
elements are added in to determine the out-of-balance force sums
at each gridpoint. The gridpoint pore pressures are also updated
via the mechanical volumetric strain increments for each zone.
This is done prior to fluid flow timesteps.

Next, thermal and fluid flow timesteps are conducted, if appli-
cable. Routines TEMRUN and GWRUN are called for thermal and
fluid flow steps, respectively. Finally, prior to application of
the equation of rotion, the gridpoint lumped masses are updated
if large strain node is invoked.

Tne equations of motion (subroutine MOTION) are implemented to
complete the calculation cycle. Using the out-of-balance forces
and gridpoint masses, this routine determines the velocities of
the gridpoints and the updated coordinates in large-strain mode.
This ends the ca:.colation cycle. Non-linear constitutive laws
require no iteration to a system of equations. The stresses are

|

determined corresponding to the failure criteria or stress-strain
law. Also, the explicit procedure allows no additional computa-
tion if differing constitutive laws or properties are used for
each zone. There is also very little additional computationi

necessary for non-linear constitutive laws. The timestepping

.

_ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ . . _ _ - - - - - _ - _ - - - -+_
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i

i

procedure described here is conducted until the out-of-balance ;

force-approaches a small value. This occurs when the problem ap- ,

proaches equilibrium or a steady flow condition. A typical prob-
lem may require 500 to 2000 timesteps to arrive at this condi- |

tion, depending on~ constitutive model, number of zones, and gra - )
idients of stress. s

:

1.4.2 Elastic, Isotropic Model

1.4.2.l' Purpose ,

.

The elastic model describes the simplest form of material behav- ,

ior. The purpose is to provide for thermoelastic and elastic '

?calculations where linear elastic assumptions are reasonable,
,

<

1.4.2.2 Assumptions and Limitaticos i

The elastic model is valid for hemogeneous, isotropic, continuous
materials which exhibit linear stress-strain behavior with no '

hysteresis on unloading. The model may be applicable under
certain loading regimes and where hysteretic behavior is unimpor-
tant, or of limited extent. Also, no material rupture is pro-
vided.. FLAC assumes that the heat transfer is decoupled from the -

elastic-mechanical analysis. This, in turn, assumes that there -

'

is no mechanical coupling to the energy equation, and that the
inertia' term in the motion equation can be ignored. These assum-
ptions mean that mechanical strain does not liberate heat, and
that stress changes caused by acceleration during heating are ,

small. These effects are negligible for non-dynamic problems. 3

The primary limitation of this model is that rock often exhibits
non-linear material behavior, particularly in an environment of
low confining stress (see, for example, Brady and Brown, 1985).
Also, deriving elastic properties for this model often involves
empirical reduction factors applied to laboratory measurements.

1.4.2.3 Notation

Table 1.4-1 gives the notation used in FLAC for the elastic
model. The elastic constitutive law is found in subroutine CL21
the thermal stress calculation is performed in subroutine TSTRES.

1
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Table 1.4-1

ELASTIC MODEL NOTATION

4 o

q- Variable Notation I

Algebraic -Computer Comment Where Found |

,

K 2x (kk) bulk'm6dulus zx( ) is a mater-
'ial properties -

'

G zx (kg) shear modulus array contained in 1

the main common j

block FLACOM. j
'

-C11- s11 xx-stress component passed through
. common block '

022 's22 yy-stress component / STATE /. |
!

02 s12 xy-stress component1 >

'

'Ae11 dell xx-strain increment
,

;

Ae22, de22 yy-strain increment ?

!

Ae12 de12 xy-strain increment- *

k* stark maximum confined ,

modulus

i

!

l'.4.2.4 gerivation r

Hooke's Law in incremental form is given by the following equa-
tions.

t

Plane Strain: Ao11 = al Ae11 + a2 de22
-

6c22 " 22 Ae11 + al Ae22 '
.

(1.4-2)
A0 2 = 2G Ae121

-

i,

. _ _ _ _ _ _
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i

n
'

" ' -

'
- 4o21 = 40 21

'i
' n ~. l where al .= K -+' (4 / 3) G, i

' '

'

p ,
..

<t

'a2==.K - (2/3)G, .

>'

!

:K = bulk modulus, and
-

.
:

.

.G.= shear modulus.
:

. . ,

001 00$ !1 At (1. 4-3)F Aeij
. . .

2 .-Bx3 + 0x1
,

t- .

a
i

where'Ae13 = the incrementa1' strain tensor, |
i

'0 -= the displacement rate, and1
t

'At = time step. j
t

In. plane stress, these equations become j

6011 " @l-Ae11 + 2 de22 t
!

l

6022 " @2 dell + @l Ae22 .

' ' ,(1.4-4) '

40 2 = 2G-Ae121 ,

,

4o21 - Ao12 .1
?,

,

2
(u2 al), and/where 1 = ni -

/

2
2 " 22 - (02/G1) >

.

'lhor axisymmetric geometry, the third stress component is given by'

'' , 6033 = a2 dell + G2 de22 + G1 de33 (1.4-5) f

,
,

A >

'
E

5

i

. - - -, -
, _
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h

[ -The incremental thermal stress components are'given by
i+
t

[
'

Aoij = - B j 3K a AT (1. 4 - 6) 'i
e
i

[ where Ac13 = stress increment,
.

1

p
i K = bulk modulus,-
t

n'= linear isotropic thermal expansion coefficient, |

,

n
g

| AT = temperature change in a zone, and
L r

L .613 = Kronecker's delta.
- :

E 1.4.2.5 Aeolication
f

i

This model is applicable to any problem within the assumptions
and limitations given in Section *. 4.2.2. This is particularly
true in hard rock masses which exhibit little yield for the given

'

stress conditions. -,

!

L 1.4.2.6 Numerical Method Tvoe
'

r

No new or unique numerical models are used,

w

1.4.2.7 ~ Derivation cf Numerical Model

FLAC uses the general logic illustrated in Fig. 1,4-5 for solu-
L tion of the elastic problem. Because the solution is elastic, no '

L constitutive corrections to the stresses are required. By de-
L. fault, the code assumes plane strain; however, plane stress con-

ditions can be used at the discretion of the user Fig. 1.4-5 -

illustrates the calculation cycle for one zone per timestep. TheE

code loops over all. zones, using the velocities and total
-stresses calculated at the previous timestep to determine incre-
mental strains for the present timestep. At the completion of
the calculation loop for each zone, the new stresses are con-
verted to equivalent gridpoint forces. The out-of-balance forces
tend to converge to zero at equilibrium or steady flow condi-

<

tions. The number of timesteps required to reach this state var-
les from problem to problem, and must be determined by the user.
A typical elastic problem may require around 500 timesteps to
converge to equilibrium.
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I

1.4.2.8 Location

The major subroutine used in the elastic model (in addition to
.those given in Section 1.4.1.2) is CL2, which contains the non-
stitutive law logic. This subroutine is called by STRESS.

,

l'.4.2.9 Numerical Stability and Accuracy

The numerical stability of the elastic model is determined by the .

timestep used for calculation. As described previously, the cri-|
I

tical mechanical timestep is defined for each gridpoint using the
L sum of the stiffnesses attached to the given gridpoint. The pro-

gram uses a safety factor of 2.0 for the mechanical timestep, to

ensure stability. The thermal and fluid flow timesteps are simi-
.larly formulated to ensure stability. The damping scheme used
can provide slightly overdamped solutions which generally ap-
preach the true solution from below. This is not always the
case, as some problems involving creep or plastic flow have shown
slightly underdamped solutions. Experience with the program
shows that the timestep and damping schemes provide stable solu-
tions for all mechanical models,-with the possible exception of ,

ithe creep models if the timestep variation is not chosen care-
fully.

t

It is impossible to develop a rigorous assessment of accuracy for
any problem, as it depends on many factors, including mesh dis-
cretization and application of boundary conditions. It is gener-

ally accepted that creation of a finer mesh discretization, as
well as location of infinite boundaries at great distance from
the excavations (greater than 10 radii), will provide acceptably
accurate solutions.

1.4.2.10 Alternatives

Other alternatives provided include a variety of constitutive
models for representation of anisotropic clastic or non-linear
behavior.

1.4.3 Elastic, Transversely-Isotropic Model

1.4.3.1 Purpose

The purpose of this model is to provide for the ability to model
layered elastic media which exhibit elastic behavior, but moduli
which are different in the direction perpendicular and parallel
to the direction of anisotropy.
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F- 1.4.3.2 Assumptions and Limitations

This model has primarily the same limitations as the isotropic
i; , elastic model,.with'the exception that transverse isotropy is al-~

'lowcdLin.the elastic properties. This means that layered media,
which may have distinctly different moduli in two directions may-
be modeled.

l

% There are limitations to which the elastic properties may be var-
| led. .Wardle (1980) gives these restrictions based on the re-
[ striction that strain energy must be positive:

,

i

E >'Ot.E2 > 0; F2 > 0; 1 > vi > -1; 1 - v1 - 2v12 V21 > 0l
,

!
>

'

where El = modulus of elasticity in plane of isotropy,. t

E2 = modulus of elasticity in plane perpendicular
s, to isotropy,
,,

v1 = Poisson's ratio, effect of normal strain in 1 '

direction on complementary strain in 1. direction,r
a

'

'v12 = Poisson's ratio, effect of 1 direction strain on 2 '

' direction,
;

v21 = Poisson's ratio, effect of 2 direction strain on 1
L -direction, and

F = E / (1 + V2)-2 2

1.4.3.3 Notation '

Table 1.4-2 gives the notation used in the elastic, transversely-
isotropic model.

|

.

;

1

l'
|

|-

1.

.-.
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Table 1.4-2
,

"

ELASTIC, TRANSVERSELY-ISOTROPIC MODEL NOTATION"

;

,

e Variable Notation |

Algebraic Computer Comment Where Found

$. zx (kang) angle.of anisotropy. zx( ) is a pro-
. anti-clockwise from- perties array in
x axis the main program ;r

common block
',

'

G11 zx (kg) cross. shear modulus FLACOM. !

E- zx (kxmod) modulus parallel to
l

anisotropy ,

zx (kymod) ' modulus perpendicu-E2
,

ilar to anisotropy
,

v12 zx (knuyx) Poisson's ratio
relating to yx

v31 . zx (knuzx) Poisson's ratio
relating to zx

Stress and strain
increments are as
noted in Table 1.4-1.3

i

|-
|

|
.

t

|

,

- _
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i 1.4.3.'4 Derivation

b For'a transversely-isotropic body, FLAC assumes that the plane of
isotropy lies within the x-z plane (Fig. 1. 4-6) ,a

t

j'
'

7

'

./x.
i- /
L

/t

-

i

;'

,

Fig. 1.4-6- Transverse Isotropy Coordinate Axes Convention
(x-z direction is plane of isotropy)

For a general orthotropic elastic body, the stress-strain equa-
tions are given by Lekhnitskii (1981):

'

,

Ae11 = S A d11 o11 + S d12 G22 + S 13 O33

Ae22 " S21dG11 + 5 4 622 022 + S23 033

Ae33 * S 6 031 011 + S A32 022 + S33 o33 (1.4-7)
Ae23 = (1/2) S A44 c23

Ae13 = (1/2) S d 155 G 3

de12 = (1/2) S d 166 G 2

|-
!

I

...r

i

1,

. _ . . _
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>a
/E ) sin 2$ cos2$ + sin 4 /E ,where: 'S11 = cos4 /E '+ (1/G12 - 2v12 1 $ 2$ l

cos4 /E s/E ) sin 2$ cos2$4S22 = sin 4 /E1+ (1/G12 - 2v12 $ 2$ 1

S12 = (1/El + 1/E2 + 2v12/E1 - 1/G12) sin 2 ce32$-V12/E ,4 i

/E ) cos2 ),/E ) sin 24 + (y13 1 $S13 " - I (V23 2

/E )cos2 ),/E )cos2$ + (V13 1 $S23 = - [ (v23 2

S33 = 1/E ,3

S44-= (cos2$/G23) + (sin 2 /G13)<$

S55 - (sin 2$/G23) / (cos24/G13)<

S66 = 4 (1/El,+,1/E2 + 2v12/E1 - 1/G12) sin $cos2$ + 1/G12<2

$ = angle of anisotropy anti clockwise from the x-axis
(Fig . 1. 4-7 ) ,

El = modulus of elasticity parallel to x' axis,
E2 = modulus of elasticity parallel to y' axis,-

v12 = Poisson's ratio relating normal. Strain in y'
direction to normal strain in x' direction,

v31 = Poisson's ratio relating normal strain in x'
direction to normal strain in z direction, and

G j = cross-shear modulus.i

!
l

y'

/ ' 6|s,

//,/)/.
,

i

Fig. 1.4-7 Planes of Elastic Anisotropy Oriented at an Angle $
From the x-Axis

!
I

f

i

,

__ m _
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A' state'of planeistress.with respect to the x-y plane is-obtained
by| setting'4033=Ao13=Ao23 = 0 in Eqs. (1. 4-7 ) . This gives:

. ,

Acti = S A 611 o1 1 +' S 12 022 ;
.

Ae22 " S A 612 o11 + S22 022 ' (1. 4- 8 )-

Ae12 = 1/2 S 4 16602
!

'The inverse ~ form of these equations are: '

u

~2
40 1 = (S A A12 e22) / (S22 e11 '- S 11 22 - S12)S1,

2'

AE11 + S4022 " (~S12 11 e22)/(S6
'

11 22 - S12') (1 4-9)S

4012 = 2Ae12/S66
,

For a state'of plane strain in the x-y plane is obtained from
Eqs. (1.4-7) by setting

Ae33 = Ae13 = 4e23 = 0 (1. 4-10 )
,

This.results in: 1

A013 " 0023 = 0,

'Ac33 "'- (S 6 6 223 0 2)/S33, and13 011 + S
'

2Ae11 = (S11 - S 13/S33) Ac11 + (S12 - S13 23/S33)dO22<S
(1. 4-11 )

S 2Ae22 = (S12 - S13 23/S33)Ac11 + (S22 - 3 23/S33)dO22<

L Ae12 = 1/2 S A66 c12-
|

. \
-

;

i
|

1'.

p

| .

f

l'
' ,

. . . _ . . _ - _ - _ - _ _ -
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.

The inverse form of tnese equations is:

6A.Acti - C11 e11'+ C12 822 t

a.
6

22 822 (1,4-12)0AAc22 = C22 e11 + C

4Ac12 = 2 C66 e12

where: C11 = (S22 - 3 23/S33)so2,2

.

13 23/S33)/so2, *

SC12 "' - (S12 - S

2 s33) /so2,/C22 " (Sil - S13 ;

C6 6 ' '' 1/ S66, and

1 .

S 211 232-S2+ (2SSo2 . syys22 -'S12 22 13 )/S3312 13 23 - S SS S
,

' For the case of transverse isotropy with the plane of isotropy in
the x-z plane,

b

El=E3 (1.4-13)
v12 " V32

'

. Thermal stress changes are determined from
r

4033 = S13 3K a AT (1.4-14) ,

El E2 ,

where K = - .

E2 2 (1 - v31) +E1 (1 - 4 v21)

|

|

|

|
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l.4.3.5 'Apolication<

.

h The elastic, transversely-isotropic model is applicable to any
material which exhibits elastic behavior with directionally-
dependent response, but with isotropy in one plane. Tnis model1-

may be, applicable to layered or jointed hard rock in which the
joint. surfaces introduce a decrease in the modulus perpendicular
to the bedding direction. The_ restriction here is that the slip .'

between beds may be non-linear, but continuous. Large-scale sim- -

ulations such as the thermoelastic response of the far-field of a
nuclear waste repcsitory in beddeo rock may be applicable to this'
model.

>

'

l.4.3.6 Numerical Method Tvoe
i

No new or unique numerica_ methods are used in this model.

1.4.3.7 Derivation of Numerical Model

The numerical application of the stress-strain law is conducted
identically to the elastic formulation cescribed previously. The ,

total stresses are determined directly from the incremental
,strain components which have been calculated from gridpoint velo- )

cities. These stresses, in turn, are used to determine equiva- '

lent gridpoint force components.

1.4.3.8 Location
.

The elastic, trtnsversely-isotropic model is found in subroutine
CL4 and is called from STRESS. Thermal stress change calculation
is also found in this subroutine, but called frem subroutine
TSTRES.

1.4.3.9 Numerical Stability and Accuracy

The previous discussion for the elastic model (Section 1. 4.2. 9)
applies here. Again, the mechanical timestep controls the
numerical stability. The maximat modulus term which follows is# used in determination of the cenfined modulus for sound wave
speed for timestep calculation (as described in Section 1.3.1) :
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t
6

(1. 0 - v31) '-
,

Ei(max) =E1'

. (1. 0 - 2v13) (1 + v13) .

'

(1.4-15)
(1. 0 - v21) --

E2 (Omax) =E2 . (1. 0 2v12) (1 + Y12) -

The' stability of the solution is also a function of the material
properties. As described in Section 1.4.3.2, limits on the
material properties are required to enforce strain energy dis-
sipation.

'
H1.4.3.10 Alternatives

The elastic, transversely-isotropic model is restricted in the
ratio and magnitudeLof deformations which can be produced in the
plane of isotropy, and the plane perpendicular to it. This re-
striction is a result of the elastic assumptions as well as the !
maximum differential moduli required for stability. The ubiqui-
tous joint (anisotropic plasticity) model described in Section
1.4.5 provides an alternative description where interbed slip in
closely bedded. materials requires a non-linear representation of ,

transverse isotropic behavior. .

.

1.4.4 Mohr-Coulomb Plasticity Model

1.4.4'.1 Purpose

The jointed nature of rock masses often results in non-linear
material behavior. This behavior (if not time-dependent) is of-
ten. represented using plasticity theory. One of the most oopular
representations of plastic material behavior for rock, as well as
soil, is the Mohr-Coulomb model.

A large number of investigators have applied this model under a
variety of rock and soil conditions. For further discussion on
various plasticity failure criteria and application in rock and
soil mechanics, see Desai and Christian (1977),

i

;

- * _ - - --__-___-_-_________mm
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1.4.4.2 Assumptions and Limitations

The assumptions of the Mohr-Coulomb model are:

(1) the material is isotropic; and

(2) there is perfect (ideal) plasticity after the elas-
tic limit is reached.

This model assumes that the material response is elastoplastic.
That is, elastic behavior is followed by perfectly-plastic re-
sponse thereafter, as illustrated in Fig. 1.4-8. Laboratory !

testing of most rocks and soils shows that yield occurs after
load is applied, followed by more-or-less linear response to some
peak load at which shear failure of the sample occurs. Load then
drops to some residual value where the capacity is approximately
constant with continued loading. Depending on the brittleness of ;

the response, and the loading stiffness, this residual strength
may be at or near zero. There is some debate as to the existence
of " softening" constitutive response as opposed to softening be-
ing strictly a geometric effect resulting from failure of the
rock.

;

h

6 /peak f

E

T
1

'

= l

e

Fig. 1.4-8 Elastoplastic Response

!
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' 1.4.4.3 Notation .!

Notation for the Mohr-Coulomb model is given in Table 1.4-3. I

i
|

Table 1.4-3

!'

MOHR-COULOMB MODEL NOTATION

.!
-t.

,i

'V_ariable' Notation
Algebraic Computer Comment Where Found.

ci. siL maximum principal passed through |
stress named common block ',

/ state /. i

c2 sii intermediate-
principal stress

c3' siii minimum principal ;

, stress ,

K zx (kk) bulk modulus zx( ) material *

properties array
G 2x (kg) shear modulus located in

/FLACOM/
$ zx (kphi) friction angle ,

hI zx (kpsi) dilation angle

C zx (kcoh) cohesion
__

To zx (kten) tension cutoff
strength

fsurf f failure criterion

,

r . - , - _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ . _ _ . _ _ _
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'

' 1.4.4i4~' Derivation.

m. .1.4.4.4.1 Inclusion of|In-Plane Stresses Only
'

4

'' The! plasticity formulation in'FLAC assumes an-elastic, perfectly,

plastic solid in. plane strain o. plane stress which conforms to a'
3

p . Mohr-Coulomb yieldLeondition and non-associated flow rule.- '

i
. The'Mohr-Coulomb yield surface.is given by:

|

'

;,

|
'

(N )1/2 (1. 4-16)f = c1 - N 04 2 + 2C
'

4,

- ,

! and'the plastic potential function is given by.
s ,

e

9 = c1 - Nyc2 + 2C- (N )1/2 (1.4-17) {y,

o<

where' Ng = (l' + sin () / (1 - sin () - (% = $ or y] ,
'

g ;
L ,

; C = cohesion (positive sign),,

[ $ = friction. angle,
y

y = dilation angle,
y

c1 = major principal stress #

. , ,

11 - 022)2)1/2= 1/2 ((cil + ci2) ((c122 + 1/4) (0 }
-

k
and=cpog,

i

c2 = minor principal stress

= 1/2 ((cli + O22) + [(0 22 + 1/4) (011 - 022)2 )1 3

=cp+og.

The. yield condition and plastic potential are as shown in Fig.
"

1.4-9. When the material yields, the stresses must be adjusted:
.

e to account for plastic strains. The total strain increments are
' assumed to be the-superposition of elastic and plastic strain in-
crements:

, -

1
'f , - . _ _-. -
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e p 1

Ae1=6el+Ae1
'

(1.4-18) ;

e p
Ae2 = Ae2 + Ae2

i

N
f -.

5, vs ;
9

'

'

's *, ,

t'T ,,

i. .

' _ . ***a=p*=a**.e v a 8tr ,
-

, ...-
g- x =ne y.p

mesa e

( M+ @

Fig. 1.4-9 Mohr-Coulomb Failure Criteria, f, Showing Tension
Cut-Off, Plastic Potential Function, g, and Strain
Rate Increments

The plastic strain rates are given by the non-associated flow
rule:

4.: .P Bg
e1 = A =A

801
(1. 4-19)

.P -8g
e2 = A =-ANy

.

'

002

where A is the scalar multiplier which accounts for the fact that
incremental strains are being related to finite stress compon-
ents. For stable, so-called perfectly-plastic, materials, the
plastic potential function, g, is said to exist, and is identical
to the yield surface, f, at yield. Derivation of the multiplier

.A follows.,

,

i
_ . _ _ _ . _ _ ._
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Multiplying the plastic strain rate (Eq. (1. 4-19) ) by At gives
the plastic strain increments:

P'

dei = 1 at !

(1.4-20)
P i

Ae2 = - ANy At ;

Recall that, in FLAC, At = 1.0, but it is left here for clarity.

I The incremental principal elastic stresses are given by:
,,

e e ;

} Act = al Ae1 + a2 de2 (1.4-21)
,.

.

e e
402 = a2 Ae1 + ai de2 ( 2 . 4-21 ) -

,
;

where al and a2 are the elastic constants given in Eq. (1.4-2).
.

Substituting Eq. (1. 4-18 ) for the elastic strain increments and
Eq. - (' .=-20) for the plastic strain increment into Eq. (1.4-21),
the incremental principal stresses are expressed as *

Aoi = c1 (del - AAt) + a2 (de2 + ANy At)

402"G1 (Ae2 + ANy At) + a2 (del - AAt)
1

u From a numerical standpoint, an estimate of the stresses must be
L made at the beginning of the constitutive law. These estimated

initial, or " trial", stresses may then be corrected before leav-
ing the constitutive law if yield is indicated. It is convenient |

to estimate initial stresses based on elastic theory and the to-
. tal strain (since we do not, as yet, know what portion of the to-
tal strain is plastic).

o

e
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I I- |
Denoting the initial principal stresses by al and 02, the ;

'

c
correction vector Aoi can be written.in two ways:

'

,.

(

c I I .

Aoi = oi - c1 = Aoi - Aoi (1.4-23) *''

>

Hence,

I I ;f

oi =oi - (Aoi - Aoi) '
.

.

,

*

The initial principal stress increments are given by

I

Aoi = al Ae1 + a2 Ae2
(1.4-24)

!
I -

602 " G2 del + G1 de2
.

' Substituting Eqs. (1.4-22) and (1.4-24) into Eq. (1.4-23) yields *

the corrected principal stresses in terms of the trial initial
istress, the material constants, and the multiplier, A:

I

01 = c1 - AAt (ni - a2 y)N

(1.4-25)
I

c2 " 02 - AAt (n2 - 0 Ny)1

The A value can be found since 01 and 02 must lie on the yield
surface (if a non-admissible stress state is detected). This is
done by substituting Eq. (1.4-25) into the equation for the yield

'
surface (Eq. (1. 4-16) ) and equating to zero:

,

I
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' I I
s-

(N )l/2s 01 - N4 02 + 2C 4"' AAt =
.31 (N4 + . Ny) - 02 (1 + N4 Ny)

[ (1. 4-2 6)
fe . . , - _.

|
,|

N-

[ where Y = al (N4+N) - al (1 + N4 Ny) , andy >

,

I (1. 4-27 ) i
r I I

[ f = c1 - N4 02 + 2C (N ) l/2 'I'

4e

I'

The corrected principal stress components are obtained by simplyr

! substituting-Eq. (1.4-27) into Eq. (1. 4-25) : '

.

I f [
01=01- (31 - 02 y)N --

g

,

(1.4-28) .

r '

,.

b ,'
I f t

. og = 02- (G2 - G N )1y -

7

1.4.4.4.2- Inclusion of Out-of-Plane Stress Component .

FLAC allows for two methods for consideration of the out-of-plane i
stress component in'the Mohr-Coulomb to constitutive law. First,- I

the user may simply define the out-of-plane stress, 033, and,
second, axisymmetry may be assumed. The following derivation of
-the Mohr-Coulomb law follows closely that given previously, and .1

is modified from Cundall and Shillabeer (1977):

.

'

|
,

1

|-

.
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!

'The. failure surface,'f, and plastic potential function,.g, in
~

;

Ltorms of principal stress la 3-D are given by.
bR ,

h f = 01 - N4 03 + 2e ,(N4)1/2
!

(1. 4-2 9)

g = c1 - Ny c3 + 2c (Ny) l/2
,

where Ng,1Ny are defined as before.
t,

The strain increments _are composed of elastic and plastic parts: -

-
.

Ae1 = Aeie + Ae1P

Ae2 " de2' + de2P
'

(1. 4-3 0) -

'!
Ae3 " A838 + de3E

The plastic strain increments are found from the non-associcted
flow rule:

5f=1-E (1.4-31) |

801

As before, multiplying each component of Eq. (1. 4 - 31) by the
timestep, At, yields the plastic strain increments

P
Ae1 = A At

..

P

| Ae2 = 0 (1. 4 - 32 )
1. ,

P i

Ae3 = - A Ny At
where in FLAC, At is set to 1.0.o

|
1

*
1
I.

sr - - - . - _ , .
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(-
0 The stress increments can be described in terms of elastic con-

stants and elastic-strain increment:
h

'

> e e e
Aoi = at Ae1 + a2 de2 + G2 Ae3!

i'
e e e

402 " G1 Ae2 + G2 del + G2 Ae3 (1.4-33)
:

e e e
403 = al Ae3 + G2 del + G2 de2

;,

p- where al and a2 are the elastic constants given in Eq. (1.4-2).

,-

The above equations for elastic stress increments can be formu- '

lated in terms of the total strains (Eq. 1.4-30) and_ plastic
strains (Eq. 1. 4-32 ) , such that Eq. (1.4-33) becomes

,

Act = ni (Ae1 - A) + a2 de2 + 22 (Ae3 + ANy)

Ao2 " 21 Ae2 + G2 (Ae1 - A) + n2 (483 + AN ) |y
(1.4-34)

Ao3 = ai (de3 + ANy) + a2 (Ae1 - A) + a2 482 '

The initial (or trial) stress increment, had yielding not oc-

L curred, is given as -

'

0

Aci l = al Ae1 + a2 de2 + G2 de3
1

I-

| Ao21"G1 de2 + G2 del + G2 de3 (1.4-35)
|

Ac31"G1 de3 + G2 del + G2 de2
, ,

|

where del are total strains.
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De. noting the' initial, trial principal stresses by ci, the
ecorrection vector, oi, can be written in two ways: ,

e I I

401 = ci - ei = Aoi - Act (1. 4-3 6)
!

I I
Hence, c1 = c1 - (Act - 601). |

,

,

The corrected stress becomes
|

01 = cil - A (al - Ny a2) {
i

!

02 = 02I - A 02 (1- Ny) (1. 4-37 ) f
!.

'

03 = 03I - A (G2 - Ny al)

The multiplier, A, may be found by substituting these stresses in ;

the equation for the yield surface, f:

,

f=0o 01 - N$ 03 + 2C (N ) l /2 (1.4-38) I4 ,

|
;

Substituting and solving for A yields

oil-N4 03I + 2C(N )l/24x. .

ni (1 + N4 Ny) - a2 (N4 + Ny) !
:
.

t :

T i
s

'

where y = ai (1 + N4 Ny) - a2 (N4 + Ny) ,
i

,

5

-- _ . - - ..,
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h A.4-30
!

The corrected stresses may be found by substitution of A into
Eqs. (1.4-37).

i For'two-dimensional applications, two cases are possible plane
'

~ train or plane stress. In plane strain, Ae33 = 0s
(i . e . , Ae 33' + Ae 3 3P = 0). However, 033 may be 01, 02 or 03;

f I

L If c33 = ci, then Ae1 = 4eie + Acid = 0,
!

-aet* = Ae1P = 3. , and (1.4-40)
'

A.,P = - x u ,.
i r'

In plane stress, 033 = 0, and the elastic strain component in the i
out-of-plane direction is given by ;

,

02
Ae338 = - -- ( Ae11e + Ae22') (1 4-41)

01
-

.

'
2'-

where 1 = at - 02 G , and/ 1
:

2 '

$2 " G2 - 02 01/
'

-

.

The equations for stress correction (0 , a2) are derived as in '

the general two-dimensional case, as g::,ven by Eq. (1.4-28).. ,

:

1.4.4.5 Aeolication '

;

The Mohr-Coulomb method is applicable in rock or soil masses ''

where isotropic yield occurs. In general, the model is appli- ,

cable where the rock is heavily jointed: that is, where the
:

ratio of joint spacing to opening radius, S/a, is about 0.25 or
less.

,

P

!

:

,

7
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1.4.4.6 Numerical Method Tvoe

No. new or unique numerical methods are used in this logic.

1.4.4,7 Numerical Method Derivation

Initial elastic trial stresses are determined first from incre-
!. mental stress derived from gridpoint velocitiest

f

0111 = cil + al Ae11 + a2 (0822 + 4e33)
!

022I " 022 + G2 (Ae11 + Ae33) + at Ae22
(1.4-42)

02I " 012 + 2G Ae121

If out-of-plane stress components are to be included (at the
user's discretion),

033I " 033 + G1 6833 + G2 (deli + Ae22)
(1.4-43)

where 011 , 022 s 033 s 012I = initial (trial) stresses, and1 I I

0 2 = existing stresses.0 1, 022< 033s 11

Note that the user may wish to include the out-of-plane stress
component into the formulation. The principal stresses are given
by (compression is negative) :

01 I=oI-aIp q

(1.4-44)
03I"O I+O Ip q

,

_~
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!

01 1 + 03II= andwhere op ,

i
; .1/2l=3 1 I

.

q (011 I - 022 )2 + 4 (012 )2S
_ ,

i The stresses are checked against the tension cutoff, To, for the
'

two conditions given below. It is essential tnat if the tensile
strength is overcome, then the tensile stress immediately drops
to zero for that zone, simulating failures

(1) failure in general tsnsion

If oi l > To,
;

then c11I = 022I"02I"03I = To = 0.1 3 ;

I
6

i
(2) failure in uniaxial tension !

;

If 03I > Too |
;

then 03I = To = 0. f
i
!

The failure surface is given by:

i

f = ci l - N$ 031 + 2C (N )1/2 (1.4-45) |4
!

IF f > 0, then the material is elastic, and the stresses are be- !

; low the yield surface. No stress correction is necessary. How- :

ever, if f 5 0, then the material is plastic, and the stresses j"

are above the yield surface. Corrections to stresses are made: i
:

a
!

'

\

&

,

| ;

|

r

_ _ _ _ _ _ _ - - . _ _ _ _ _ _
- - -. - -
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l-f :
)(al - a2 Ny)01 = ci

7 ;

!
,

I

I-fog = 02 (a2 - 02 y) (1.4-46) jN
Y ;

!

.

'

! I-f| o3 " 03 (G2 - Gl y)N
;

7 !

!
i

where y is given by Eq. (1. 4-3 9) . ';

;

ci, 02, 03 are then resolved back to global axes (x,y, z) .
P

Thermal st::ess increments are the same as given previously for ,

the elastio case: ;

,

6013 = - B j 3K a AT (1.4-47) [i

i

where n = linear expansion coefficient. ;
.,

The thermal str*ssses are treated in the same manner as elastic
stress increments. They are added to 013 prior to calling the [
constitutive law routine, i

i

:The large strain logic may be significant when the failure models
are used. If active plastic flow (i.e. , collapse) occurs, large
deformations may result. The large strain logic updates grid-

"

point coordinates and masses as well as corrects stresses for ro-
tation of the zone. A check is made every ten timesteps for

'

geometry of the zones. If the area of a triangular subelement is t

reduced by 20% of the original area, a " bad geometry" message is !
'generated, the run is stopped, and control is transferred to the

user via interactive mode. The run may be continued if the ele- ;

ment is deleted. !

!

.

. . . - - -
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1.4.4.8 Location

The Mohr-Coulomb plasticity is found in subroutine CL3, and isr

I called from subroutine STRESS. The thermal stress increment is
p also calculated in CL3, but called from subroutine TSTRES.

i

1.4.4.9 Numerical Stabildtv and Accuraev

The Mohr-Coulomb model is subject to the same stability con-
straints as described previously. The critical timestep is de-
termined identically as in the elastic case.

' A common problem in plasticity models is that of " mesh locking"
as described in Section 3.1. FLAC uses the technique of mixed I

discretization to overcome this problem. Problems 1 and 2 in |
Volume 3, Example Problems, illustrate the ability of FLAC to -

adequately predict the standard plasticity solutions for a hole ;

in a circu3ar plate and the bearing capacity for a frictionless |
material. Simulations of direct shear and uniaxial compression i
.i'or a materia 1' exhibiting dilation show that volumetric strains t

are calculated properly.
|>

Again, it is impossible to rigorously provice analytic expres- !
sions.for accuracy for general problems. Example Problem 1 in |
Volume 3 shows the effects of mesh density, boundary location and
boundary condition on problem solution accuracy. j|

!
;

1.4.4.10 Alternatives 1
i

For situations where a quick indication of failure potential is |
needed, the elastic model can be used to calculate elastic stress |
concentrations. FLAC allows the user to plot " safety factors" of ;

l'- the Mohr-Coulomb and Hoek-Brown yield criteria as the ratio of ;

elastic stresses to allowable yield stresses. No additional cor- !
rective calculations are made if the ratio is 1.0 or less. If i
extensive yield is indicated, the user should conduct a full !plasticity analysis as the " empirical safety factor approach" may j
yield results which contain significant errors. !

-|

1

i

i

!

!

!

i

|-

~

1
__ -_. _ - . - . .
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1.4.5 Ubiquitous Joint Plasticity Model ;

p
1.4.5.1 Puropse ;

c

Often, the response of the rock mass indicates anisotropic yield |
'as a result of a set of distinct, continuous joints. The ubiqui- ;

tous joint model provides the ability to model the yielding ef- i
facts of the joints via a continuum Mohr-Coulomb model rather !

than explicitly modeling the joints themselves. In effect, this !

model'is an anisotropic Mohr-Coulomb model.
,

l

1.4.5.2 Assumotions and Limitationa !
:

This model has the following assumptions and limitations: |

(1) one joint set is modeled inclined at a constr.nt dip !

angle from the horizontal; |

(2) the spacing of the joints is not modeled explicitly,
nor are the stiffnesses of the joints modeled (only |
the shear behavior of the joints is modeled. The ,

joints may be censidered to be infinitely closely !

spaced.); ;

:

(3) The intact material is assumed to be Mohr-Coulombi j

(4) the joint shear behavior is assumed to conform to !
the Mohr-Coulomb slip condition; and |

!

(5) the joint aperture change (or void strain) is as- i

sumed not to be affected by the shear stress change |
across the joints.

The ubiquitous joint model describes the behavior of a closely [
jointed material with one predominant joint set. The joint spac- r

ing is not modeled explicitly, but is assumed to be infinitely ,

small and there is no stiffness ascribed to the joints. There- !
fore, there is no " load sharing" between the intact rock and

'joints as occurs where intact blocks are separated by fractures.
The limitations of this type of model have been described by j

Blanford and Key (1987).

!

1.4.5.3 Notation !
!

Table 1.4-4 presents the notation of variables used in this model. ,

!
;

)

i
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Table 1.4-4

NOTATION USED IN THE UBIQUITOUS JOINT MODEL

Variable Notation

c Algebraic Computer Comment Where Found '

W 2x (kj) angle of joints zx( ) is a
anti-clockwise from material
the horizontal properties

array found in

C3 zx (kjcoh) cohesion of joints the main common
block FLACOM.

$3 zx (kj f) friction Engle of
joints

zx (!tjten[ tensile strengthT3 of joints

ALL PARAMETERS DEFINED IN TABLE 1.4-3 FOR INTACT MATERIAL
ALSO APPLY TO THE UBIQUITOUS JOINT MODEL.

1.4.5.4 Derivation

Figure 1.4-10 illustrates the weak plane existing in a Mohr-
Coulomb solid and the global (x-y) and local (x'-y') coordinate
frame.

Y

Y'

x. slip plane

8 x
<- -

-

Fig. 1,4-10 A Slip Plane Oriented at an Angle 0 to the Global
Reference Frame

,

.

-- -
. . .....d
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The coulomb failure criteria for joints is given by (compression
positive)a

,

t >en tan 93 + C3 (1. 4-4 8)
,

I.1
'

where t = shear stress along the joint,

L on = normal stress on the joint plane,
,

$3.= joint friction angle, and

C3 a. joint cohesion.

The excess shearing stress along the joint is given by:
|

,

c ;'

,

60 2' = sign ( |t |, c12' ) - 312' (1 4-49) . |
'

1
.

;"

where c12' = shear stress along plane, and

40 2' = shear stress correction along plane.1

This correction is added to the global stress state. Indicators .!
are kept which provide a history of the joints for each zone. ;

i

1.4.5.5 Aeolication
.

This model is best applied where a continuous, thinly-spaced joint !

j{set exists and controls yield behavior of the rock mass. Examples
of applications include bedded ceposits overlying excavations of
wide expanse (e.g., a longwall coal mine), rock masses with sets ;

of continuous, dominant joint planes, etc.) . j
i

f
1.4.5.6 Numerical Method Type f

No new or unique numerical methods are required in this model. (
:
i

1.4.5.7 Numerical Imolementation |

!
Consider the geometry of the slip plane shown in Fig. 1.4-10. The !

global stresses must be resolved parallel and perpendicular to the ;

potential slip surface. ;
;

[

[

f
:

!
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L

0 + 20 2 sine cose + O22 sin 20c11' = c11 cos2 1

" 011 sin 2e - 20 2 sino cose + o22 cos20022' 1

(1.4-50)

012' = - (oil - o22) sine cose + c12 (cos20-sin 20)
.

where 0 = joint angle counterclockwise from the x global axis, :

!022' = normal stress on the joint, and
t ;

c12' = shearing stress. f>

a
.:

The initial stress increments above (013) are found from the plas- i'

.ticity model presented in Cection'1.4.4.4. If the matrix material ;

''is currently elastic, then c13 will simply be the elastic stress
increments. If, however, the matrix is yielding, then 013 will be :
the stress increments corrected for plasticity. The stresses ;

along the joint are examined for yield: }
I

c12'< |022' tan $| + C (1. 4 -51 )

i

where $ = joint friction angle, and I

C = joint cohesion (positive sign),

t

If Eq. (1.4-51) is true, then no corrections to the stresses are !
necessary because slip is not taking place. If Eq. (1.4-51) is i

*

false, then slip is occurring, which requires stress corrections.
The " excess" shearing stress along the joint is given by |

!
Ao12' = sign (t , c12') - 0 2' (1.4-52) !

1

i

where 40 2' is the shearing correction, and1

lo22' tan $| + C.i=

!

>

d

t

|
__
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The corrections to the global stresses can be computed as follows
by using the revense stress transformation:

Ac t i = - 2A0 2 ' cos0 sin 01

4022 = 2A0 2' cose sine (1. 4 - 53 )1

4o12 * A0 2' (cos20 - sin 20)1

assuming that 4022' = A011' =0 (i.e., no joint dilation) .

I These stress corrections are added into the stresses to be used in
for cetermination of gridpoint forces.

Thermot stress components ar'4 treated, as before: an elastic trial
increments which are added into the existing utress state prior to
calling the constitutive model.

1.4.5.8 Location

The ubiquitous joint model is found in subroutine CL5, and called
from subroutine STRESS. The thermal stresses are calculated in
CL5 and called from subroutine TSTRES.

1.4.5.9 Numerical stability and Accuracy

The discussion in Section 1.4.4.9 regarding the Mohr-Coulomb model
applies to the ubiquitous joint model. This model is experimental
in nature and, therefore, no analytic solutions are available to
check accuracy. It has been used in comparison to field displace-
ments for a shaft construction in a thinly-bedded quartzite, and
yielded reasonable results (Board and Beus, 1989).

1.4.5.10 Alternatives

Two alternatives exist for modeling of the effects of jointing in
FLAC. First, if the effects can be considered elastic, the
transversely-isotropic elastic model may provide an alternative
approach. Second, discrete interfaces may be modeled using the
interface logic available within the code.

. . . . . . . . . . . . . .. _ _________ _ ________________ ____ _ ____________ _
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1.4.6 General Strain Hardening / Softening1

( l.4.6.1 Purcose

The standard Mohr-Coulomb model described in Section 1.4.4 pro-
.vides for a peak strength in shear for rock or soil, and assumes !that the material exhibits perfectly-plastic response in the post- i

peak range. Laboratory compression tests of rock and soil may in- idicate two other forms of post-peak response. These include !

strain-hardening and strain-softening behavior (Fig. 1.4-11). )
,

!

The purpose of the strain hardening / softening model is to provide ;

the ability to examine various forms of post peak response on the i

macroscopic yield behavior of the material being modeled.

i t

i

/ ia g
.

>

?

e e i

(a) (b) :

hordening I
*

i

7 softening

/
_

,

e

(C) !

,

Fig. 1.4-11 Various Forms of Plasticity Illustrating Pre- '

and Post-Failure Response in Rock and Soil:
(a) rigid-perfectly plastici (b) elastic-perfectly
plastic; and (c) strain hardening / softening

i

>

-- - ,, .- ,
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1.4.6.2 Assumotions and Limitations

The following assumptions and limitations are inherent to this
model.

1. The failure surface is described by the standard
Mohr-Coulomb criteria and non-associated flow rule.e

2. Post-failure response can be described oy the Mohr-
Coulomb relation. Essentially, the model repre-
sents post-peak response through adjustment of the
cohesion, friction and dilation angles as functions
of plastic strain, thereby adjusting the location
of the failurt surface in stress space.

3. The raodel operates in large or small strain mode.

4. Although the model aseumes yield is isotropic for
each zone, depending on the plastic strain, the
strength propercies will change from 1ccation to
location. As a result, yield may bo geometrically
highly anisctropic.

The greatest limitation of this model is that not all researchers
accept softening behavior as being true constitutive behavior.
Softening in the laboratory has been attributed to factors such
as sample geometry and test apparatus stiffness effects. Addi-
ticnally, softening behavior often involves formation of shearing
fractures in the material. Localization of plastic strain in a
shear band or shear fracture implies that these features have a
width. For a given model geometry, this width should be indepen-
dent of model element dimension. However, in doubling the size
of an element, the displacement required for loss of cohesion is
also doubled, even though a large portion of plastic strain is
contained within the shear band. Maintaining a constant dis-
placement for loss of cchesion in the shear band would require
that the plastic strain for cohesion loss be reduced by a proper
amount. Estimation of this amount may be very difficult, as the
portion of localized strain is not a material constant and will
depend on material and stress field inhomogeneity. These limita-
tions are discussed by Whyatt and Board (1988). It is noted that
Cundall (1988) and Hobbs and Ord (1989) have successfully pro-
duced hardening and softening behavior in FLAC using the standard
Mohr-Coulomb model with large strain and random property varia-
tions through the body.
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i

,

1.4.6.3 Notation; ,

Notation for the strain-softening model is given in Table 1.4-5.
1

Table 1.4-4 <

1NOTATION FOR THE STRAIN-SOFTENING MODEL '

Variable Notation

Algebraic Computer Comment Where Found
y..
<.fi

aeP ep (i) total plastic strain- subroutine CL6 i
sc

$ zx (kphi) frJetion angle, ax( ) material
now ':reated as a array found in
function of ep(i) the main common

common block-

i

FIACOM. '
"

C zx (kcoh) cohesion, now
treated as a
function of epti)

- ..

y zx (kpsi) dilation angle, now
treated as a
function of ep(i)

THE STRAIN-SOFTENING MODEL USES THE SAME BASIC NOTATION AS THE
STANDARD MOHR-COULOMB MODEL, TABLE 1.4-4.- THE ONLY DIFFERENCES
AAE-NOTED ABOVE.

1

|

j

|
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!

1.4.6.4 Derivation *

' This constitutive model allows the user to represent arbitrary |
non-linear material hardening and softening behavior based on the j

variation of the cohesion, friction, and dilatancy with plastic :

strain. 'The model is based on Mohr-Coulomb elasto-plasticity
with non-associated flow rule, as described earlier. The differ-

)ence, however, lies in the ability of the cohesion, friction and
idilation to harden or soften after the onset of plastic yield.

Here, the user defines the cohesion, friction and dilation as f

piecewise linear functions of the plastic strain. The code de- i

termines the total plastic strain at each time increment and '

fcauses the cohesion, friction and dilation to conform to the
user-defined functions, j

The following derivation is made in terms of global coordinate 3

'stresses, ci$, and strains, eli, instead of principal stressas,
C1, and strains, ei, as describoo earlier. This is because the ,

current strain level is required to determine the magnitude of ;

.the st:nas drop when calc 9CacJng yield.L. -

.

" .

,

Determination ot' Plastic Stxhin :ncrements i

Consider the Mohr+ Coulomb yield surface in twe dimensions, whero !
stress space is defined by the mean e.nd deviatoric stress com- i

'

.conents p and q. The principal stressco are given by

t
'

c
,

c1 = op - eq i
(1. 4-54 )

og = op+og
|
;

I

where op = - (011 + c22) , and
(1. 4-55) ,

.1/2 iy .

(0 1 - 022)2 + 40 22 jq=- 1 1 ,

i
i
,

i

1

4

i

_
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4

The Mohr-Coulomb yield surface is given by (Fig.1.4-12) 2

f = 01 - '(02 14 ) + 2C (!J )1/2 (1.4-56)4 4

or

f= (op - o ) - (op + o )!14 + 2C (lig)1/2 ;g q
|
I

1 + sin $
where Ng = 1 - sin $ ,

-|

$ = angle of internal friction, and ;

C = cohesion. !
,

!

!

U' !
P i

h 1

\ '

N o :
N
\ i

I
aq

,

t

i

i

!

[
Fig. 1.4-12 Mohr-Coulomb Yield Surface in p g Space, Compression (

llegative
}
I
e

|

,

J

!

t

t

;

i

t

!
I

--e
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T '; ' The plastic' potential function is given byr. ;'

;

g= (op - og) (op + eq)Ny t 2C (Ny) l / 2-

(1. 4 -57 )
i

1 - siny'"

.:andwhere Ny'= 1 + siny ,

c
|
,

y = dilation angle,

,

The plastic' strain increments are given by the non-associated r

Iflow rule in terms of the plastic potential function and the
scalar multiplier At |

:

9 i
AeP .-A

11 0011 J.

c.
4

'

'
'

/d e.eP =-A (1,4-59) '!,( , t
'

22 00%2*

r

!

'' .
.
.

1-

#9 iAeP ..A -

12 0012 i
s

!-

- Using the chain rule, the t.bove derivatives may be expanded:
I, . .

t

l,Bg 00
00p + BoBg Og q

-.= .

0011 ]30118011 Bop q
i
!

00 Og 00q 'kOg Bg * p (1, 4 -5 9) >

+ -- * 0 02 2 l39i 0022 Op 0022
i
i
f

Bg 00 |00p + 00Bg Dg q
e ,- e -

0012 |30128o12 00p
,

g

!

i

!

:
+

)
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y,s,

,

'
.

4 Taking' the| derivatives: of Eq.- (1. 4-57) gives the following:
.

4

Og.
(1 - N )= y,

Bop

Sgc <

00 (1 - Ny)=-

9,

(1. 4 - 60 ),

00 1 00 1 00p p p
i=0

8011 2 0022 2 8012
= - =-

i

.;
, ,

;
'

- - Bo (011-022) 00 (011~0 2) 00q 012q q 2
. ; .- =

Boli 40 0022 40g ; 0012 Og
,

'g
i;.y $
.

[&-
[ - hibstitution of Eqs. (1. 4-59 and l'. 4-60) into Eq. (1. 4 -58 ) yields 'i
v

>
4

.

.+ It (all - 022) *

deP. . . ),
o. Id' .2 (1 . N ) (1 + Ny)

' - -y
dog .;, , , .

p. ,

+
,

1 M11 " 022) -

'he . =-A - (1 - N ) +
,

y (1 + ky) (1.4-61) i

1

4g ,

.

012 *-

6eP =-A (1 + Ny)12 og ..

,

c

An iterative-method is used to determine the value of A which'
'

, places the ~ stress state on the yield surface (see Section
1.4.6-7). The plastic strain components can then be determined.

-The cohesion, friction and dilation are defined as piecewise
~: linear segments of a generally non-linear function of the total
. plastic strain. . For er. ample, assume the rock mass has a stress-
strain curve which softens upon yield and attains some residual
strength (Fig. 1. 4-13) :

,i

'

.~ .-
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Fig. 1.4-13 General Form of Stress-Strain Curve Showing Elastic
' and Plastic Strain

The stress-strain curve is linear to the point of yieldt there-<

fore, the strain will be elastic only (e ) . After yield, the tc-e-

tal strain will be co.nposed of elastic and plastic parts. This
c model requires the user to define the cohesion, friction and di-

lation variancs as a 7 unction of the plastic portion of the total
F strain. These functions arb it reality, mest likely non-linaar ',

(Fig. 1. 4-14 ) : j
"

,
.

However, they may be approxitt.ated for use in FLAC as a sut af ;
linear segment.9 (Fig. 1. 4-2 5) : ;

r

i

!

C !,

i

i
'

!

!

P P ,

8 e ;
! i

Fig. 1,4-14 Cohesion and Friction Represented as Non-Linear !

Functions of Plastic Strain |

.

, [
''

i
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i

C e

e" e"

Fig. 1.4-15 Cohesion and Friction Idealized as Piecewise Linear
Functions of Plastic Strain

1.4.6.5 Apolication

This model is considered experimental in nature and is particu-
lurly applicable to cases in which collapse or shear fracture oc-
curs in initially-homogeneous materials.

1.4,6.6 Nggerical Meched Tvqg.

'

.
Nevt:n's nethod is used for iteratively determining the stress

- Socation of the yield surface,
r

1.4.6.7 peri-{ajton of Numerical Mode (

This routine performs the following tasks'.-a

(1) sets up tables cf C, t and y values as functions of,

accumulated plastic ctrains

(2) using trial initial elastic stresses, Newton's
method is used to iteratively find the stress state
on yield surface, based on the non-associated flow
rules

(3) determines plastic strain increments and keeps
track of accumulated plastic strain; and

(4) adjusts properties, as necessary, based on accumu-
lated plastic strain.

_ _ _ _ _ _ _ - _ _ _ _ _ - _____
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The incoming strain increments to the constitutive law are taken
as initial elastic strain increments:

I e
Aeij = Aeij = Aei3 (1. 4- 62 )

where Ae13 are strains determined from gridpoint velocities.

Initially, it is assumed that there is no plastic strain incre-
ment

Ae11P = Ae22P = Ae12P=0 (1. 4 - 63 )

Trial elastic stresses are calculated using P.ooke's Law:

I O

c13 a 011 + al Aelle + c2 6022"

R I O

022 * O22 * G2 delle + c1 Ae22e (1. 4 - 64 )

1 0
0 2 = c12 + 2G Aeile& al Ae22'1

0
where 013 are old stresses, and

al,a2 are the elastic constants given in Eq. (1.4-2).

The mean and deviatoric stresses are given by:

1
op = - (011 + O22)

(1. 4- 65 )

___ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ - _ _ _ _ _
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1 1/2
q = { ! (011 - 022)2 + 40 2 )2

L S 1

,

The failure surface, f, and plastic potential, g, are given by:,

(op+o) Ng + 2C (Ng)l/2f= (Op - O ) -q q

(1.4-66)
q= (op-S) (Op+S) Ny + 2C (Ny) 1/2-q q

where N ,Ny are as defined previously.4

If f is positive, then the elastic stresses are within the yield
surface, and no adjustment to the stresses are required. If f is
negative, the stresses must be adjusted.

The plastic strain increments are based on the gradients of the
plastic potential, and are given by:

Aof3= .A 9
= - A (C1-C2 3)

0013

Ac 2 = ~ A = - A (C1 +C2 S) (1. 4- 67 )
0022

O 021p g
Ae12 = - A = - A (C3 )

3012 20q

011 - 022
S=

40q

1
where C1 = p (1 - Ny) ,

-__- _
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,

i

n '~ .1 ' and j
i

C2 = - (1 + Ny) ,

C3 = - 2. 0 (1 + N ).y

Note that the gradients are' based on values of stress at the
start of the timestep.

'

\,

;.. The new elastic' stresses are given by j
f- .i
L i

P

I e e Io

L 011 " 011 + G1 Ae11 + a2 de22 |
| !

! :

I e e '

022 " 022 + G2 Ae11 + al Ae22 (1. 4 - 68 ) |
?.

i,

i. i

> I e e
0 2." 012 + 2G Ae11 + al Ae22 .t1

t- ;<

F t

'

The iteration scheme used'to determine cij and AeijP is performed !t

au follows.. '

:

A tolerance of T = 0~001 x max [la lo l, |Ci) is es- '!tablishedforconvergencetothey$e|ldauriace,l'. , g
44

~ j
' m. ., ::

i? p 24 The elastic stress increments.are calculated via Eq. }
'

>

" (1.4-2), and used to compute the yleid function, f. If (

the absolute value of f is less than the tolerance, con-
vergence is achieved, and the stresses lie on the yield ;

surface. If the tolerance is not met, the plastic |
4

t strains are determined from: :

?
6

9
AeijP -A (1. 4 - 6 9)

301j ;

i
$

'

,

i

e

?

>

'

!_ . _ _ . . _ . . _ .
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[
'

The value of A is varied by

J

An+1 . An + AAn (1,4 70) y

i
i fn AA

where AAn = - andfn - fn-1 ,

n denotes the iteration number.

At the start of the iteration process, A is set to

Ai = - (1. 4-71)
max (oti, ac2}

New elastic strains are determined from

P (1.4-72)Aeije . 6,13 - 6,13

These elastic increments are used to determine new
0elastic stresses, 013 and, hence, control returns to

step 2. If convergence is r.ot achieved in ten itera-
'tions, the final mean elastic stress values 3re chosen'

The itgra it|n also halts ifaqthecorrdeteds*8 max [lcressos
lo i, C }. In this(ifn - fn- < 10-

case,thestresstensoricOnc,hanhed: cij = cij "1n

At the completion of the iteration process, the plastic strain
Pincrements, Ae13 , and the corrected stresses, cia, are avail-

able. Recall that FLAC divides each quadrilateraI element into
four overlapping triangular subelement zones. Subroutine STRESS

,

, (which calls the constitutive laws) invokes the constitutive laws
| 'one triangle at a time (as described in Section 3.1). Because

these triangles overlap in a quadrilateral, the plastic strain
for the quadrilateral during this timestep is averaged from the
four subelement triangles:

(
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,

k0 I
'h. P 1 4 P

E ei (1.4-73) |
.~

e avg = 4 i=1 j

;

The accumulated strain is the sum of all values from previous |
timesteps: ;

,

'
p # timesteps p
etot " I # avg (l*4-74) !

n=1 ;

|
;

Prior to exiting the routine, the values of C, $ and y are up- |
P

dated, depending on the value of etot* ;

!
Thermal stress is added to the total stress state as an elastic i

j|
increment prior to entering the constitutive law. This is the
same as that given in Section 1.4.2.

|

1.4.5.8 Location

This routine is located in subroutine CL6, and called from sub- |
routine STRESS. The thermal stress calculation is also located i
in CL6, and is called from subroutine TSTRES. [

'i
i

1.4.6.9 Numerical stability and Accuraev :

)

The numerical stability is governed by the overall critical time- !

step for a gridpoint (as described before) as well as the conver- *

gence of the iteratione to locate the stress state on the yield ;

criterion. The convergence characteristics of Newton's method .

are. discussed.by Gerald (1980). It can be mathematically shown 't

that this method is quadratically convergent for monotonic func- [
tions, which is the case here. Typically, less than 5 iterations '

are necessary for convergence.

!

1.4.6.10 Alternativag !
:
'No alternative methods are available in the present FLAC code.
i

?

'

. . . . .- .
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!

I 1.4.7 Null Model !

1.4.7.1 Pureose
i

The purpose of the null model is to represent excavations or re- !
moved material. !

;

I

1.4.7.2 Assumotions and Limitations
'

This model assumes that the components of the stress tet.sor, c13,
are identically 0.0 within excavated areas. !

!
,

1.4.7.3 Notation

!Not applicable.

1.4.7.4 Derivation

The stresses within nulled zones or regions are set to 0.0 within |
nulled zones: :

i
i

sij = 0.0 (1.4-75)

1.4.7.5 Aeolication

This model is used to represent excavations within a rock or soil i

mass (e.g. , a tunnel) or can be used to remove material it the
ground surface (e . g . , to form a slope). This model, similar to
the other models. may be assigned to any zone or region at any
tLme.

1.4.7.6 Numerical Method Tvoe

Not applicable.

1.4.7.7 Derivation of Numerical Model

Not applicable.
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i

!

1.4.7.8 Location {
i
'Reference to the null model is found in many routines, particu-

larly in subroutine CYCLE, where the constitutive model is passed :
if the null model is encountered for a zone. !

!
.

1.4.7.9 Numerical Stability and Accuracy I

!
Not applicable. ;

;

1.4.7.10 Alternatives |

No alternatives exist within FLAC for representing the excavation

| of elements.
,

i

1.4.8 Viscoelastic Models ;

'1.4.8.1 Puroose

IAn important class of rocks such as salt, potash, etc. exhibit
rate-dependent material behavior. FLAC provides three standard
viscoelastic laws which may be used to model this behavior.

,

! 1.4.8.2 Assumotions and Limitations
'

I :

| The following assumptions and limitations apply to the visco-
elastic models:

(1) deformation is isotropic; and

(2) although the models may be run in large-strain !
|

mode, no material rupture is possible.
I

The constitutive laws for rate-dependent materials are developed
i

| primarily from simple uniaxial compression experiments in the <

i laboratory conducted using constant stress or strain rate tests. ;

i A great amount of controversy presently exists over how well ;

these laws truly represent the actual deformation mechanisms. In |

general, the WIPP and Norton Power constitutive laws are simple 1

| curve fits to laboratory data based on fundamental deformation I
'

mechanisms. A mathematical formulation is developed which pre- 1

dicts this fit. The solution procedure is quasi-static, in that |
inertial terms are ignored in the solution procedure, j

1 j

1
i

:
'

___
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1.4.8.3 Notati2E
,

Table 1.4-5 gives the relevant material property notation for the
viscoelastic models.

Table 1.4-5

NOTATION FOR VISCOELASTIC MODELS

Variable Notation |

Algebraic Computer Comment where Found

G 2x (kg) ' shear modulus z (x) is a ;

material !

K 2x (kk) bulk modulus property array.

n zx (kvis) dynamic viscosity, !
Kelvin

'(d)
eli delld deviatoric xx strain CL7,~CL8, CL9 |

!

(d)
e22 de22d deviatoric yy strain f

'i
,

(d)
e33 de33d deviatoric zz strain !

|
.

(d) :

cil dS11d deviatoric xx stress !

4

(d) :
022 dS22d deviatoric yy stress

.

!'

!

(d) ;

033 dS33d deviatorie zz stress j

.

.

L

I
'

t

*
.
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:
Table 1.4-5 :

NOTATION FOR VISCOELASTIC MODELS"

(continued)
<

.

Variable Notation .

>

Algebraic pomputer Comment Where Found !
,

A zx (kawip) A parameter, WIPP Law CL9

Q zx (kqwip) Q parameter, WIPP Law ,

B zx (kbwip) B parameter, WIPP law

dss zx (kedwip) critical steady-state
creep rate, WIPP Law

r

R zx (krwip) Universal Gas
,

Constant, WIPP Law
__

$p zx (kepwip) primary creep
strain, WIPP Law

n zx (knwip) n parameter, WIPP Law '

D zx (kdwip) , D parameter, WIPP Law

n1 zx (kni) ni exponent, Norton CL8
Law

n2 zx (kn2) n2 exponent, Norton
Law

Al zx (kac1) Al parameter, Norton '

Law

A2 zx (kac2) A2 parameter, Norton
Law

_ _ _ .
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Table 1.4-5

NOTATION FOR VISCOELASTIC MODELS
(continued),

Variable' Notation

Algebraic Computer. Comment Where Found
,

)

0 ref- zx (krsi) . ci reference stress, CL91
Norton Law

'

r8f02 zx (krs2) 02 reference stress, ;

Norton Law
r

!

1.4.8.4 Derivation

Three creep models have been implemented in FLAC. These are:

(1) a classical.visco-elastic modeli '

r

(2) an exponential-time creep model; and

(3) a two-component Norton power law.

The second model is commonly used in thermomechanical analyses ;
associated with studies for the underground isolation of nuclear i
waste in salt, and the third can be used for mining applications.
A description of these models and their implementation is pro-
vidad in this section.

1.4.8.4.1 Classical Visco-Elasticity (Kelvin Substance) ;

The classical description of Newtonian viscosity is that the rate t

| of strain is proportional to stress. Stress-strain relationships '

can be developed for viscous flow in exactly the same way as
;'

the equations in three dimensions can be found, for example, in
those developed for the theory of elasticity. The derivation of

| -Jaeger (1969).

|
1.

|;
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t

Visco-elastic materials exhibit both viscous and elastic behav- .

'

ior. One such material is the Kelvin material, which can be
represented in one dimension by a spring and dashpot in parallel,
as.shown in; Fig. 1.4-16.

,

k

A +. ;-

A
/ .

n

Fig. 1.4-16 One-Dimensional Kelvin Model

The stress-strain law.for this material can be written as ,

(e) (v) r

cij = ci3 + c13 (1. 4-7 6)

*

(e) (d) + KS j ekk i !
where 013 = 2 Geij i

i

(v) .(d)
Gij = 29 eij 613 ,

:

G = shear modulus,

K = bulk modulus,
t

y = dynamic viscosity,

(d) 1
b jsei3 = deviatoric strain = e13 p ekk i

.(d) 1. .

bjiei3 = deviatoric strain rate = eij p ekk i ,
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:

!

.eij =Lij strain' component,- <

'- (e) '

013 = elastic part of stress, and :

(v)
!

013 = viscous part of stress.o
,

;
.

The material properties required for this model are the shear and
bulk moduli (for the elastic behavior) and the viscosity.

' 1.4.8.4.2 Exponential-Time Creep Law for Nuclear Waste Isolation
,

Studies *

An empirical law has been developed (Senseny, 1985) to describe
the time .and temperature-dependent creep of natural rock salt.
In addition to the elastic component, the material is assumed to
undergo creep, based on the equation

.

- = - ( (5 - $ ss)dt

--that is, the strain rate is the superposition of a steady-state
Otrain rate and a time-decaying strain rate:

5 = $ss + ea ( exp (-(t) (1.4-77)
4

where d = creep rate,

$ss = steady-state creep rate,

( = a rate parameter,

ea = an integration constant, and

t = time.

|

.

.
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1

j+ ij.

i< . . ..

i Based on. experiments,iSenseny' observed two regimes.. For1 steady . j- '

' , .
1*Oc ~ is a constant' [6' ' state ' creep rates above a' critical value E ggs. ea i

' ,

' ", # 'da,4and ( =;Biss, where:B'is a constant. l, .

.;

.,

*
. ,

For steady.-state creep rates below Cass .'-

m- .;

(. .
,

;Egg ,e
.

j(1. 4-7 8 )e '' = Ea and (=BC 3s'
a

;.* .

o . E s's - !

-}

?

,
..Thus, Eq. (1.4-77) . can be written as ,.

1
,.

$s2$s jd ss + EaBbss ' exp (-B$ st) _ 3 33
a

E = * *
, , , , ,,

E 33'+ E aBE gg , exp (-BE g gt) Egg $ Egg

;
.

Also, the steady-state strain rate is assumed to be given by j

i

$ ss " A0" eXP (-Q/RT) (1. 4-7 9)-
:

.?

where c = applied stress, ;
3

'A,.n,'Q = parameters of the model, !;
..

t

R = universal gas constant, and i
i

T~= temperature (in Kelvin). t

't
<

'This: formulation of the creep law is known as the RE/ SPEC base- i

line exponential-time creep law for the high-level nuclear waste !

. program. !
;

'
I,

!'

| 1
,

|. 4

t.

i|
<

_ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Another formulation of thic law, known as the WIPP reference
, exponential-time creep law, can be written as<

5 = 5s + 5 (1.4-80)p

where
-> . ,

(A - BEp) $s $s 2 $ss
.

Ep= * *, , , , ,

(A - B (Ess/E s) -- Ep) Es Egg <E
.

i'

-n-.

E s = D (c) exp (-Q/RT) f

where Ep = primary creep strain,
r

Es = secondary creep ~ strain,

5 = rate used to calculate the strain-rate components
using

.

d "

i)
$ 13. = (3/2)1/2 5 (1.4-81)

_

o. .

n, A, B, D, O = parameters of the model, '

R = universal gas constant,

c = deviatoric stress, calculated as

.1/2. d d
j- (3/2)1/2

_ c13 013 _ (1.4-82)

|

d
|, where 013 = ij-component of deviatoric stress; and

T = temperature (in Kelvin).

|
L
1-

.__ ____. . . _ _ _
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1

The WIPP and RE/ SPEC formulations are different expressions of
the same law, using slightly different notations. The WIPP
formulation has been implemented in FLAC because it is better-
suited for implementation in explicit computer codes since the
effect of temperature and stress histories is automatically built
into the formulation. The RE/ SPEC formulation is only valid for -|
constant stresses and temperatures, although it can be modified
to account for stress and temperature histories. The relation-
ship between the notations used in the two laws is given in Table
1.4-6.

Table 1.4-6

NOTATION FOR WIPP AND RE/ SPEC FORMULATIONS
,

WIPP RE/ SPEC Typical
Notation Notation Units Value

4.56A Be --

a

127B B --

D A Pa-n s-1 5.79x10-36

4.9n n --

0 0 cal /mol 1200

R R cal /mol K 1.987

* *

5.39x10-8$ss $ss --
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1,4.8.4.3. The Two-Component ^Norton Power Law
,

' The Norton power law (Norton, 1929) is commonly used' to model .the
isothermal creep behavior of salt. The standard form of this law
'is:

_ n..

; e cr=Ao (1. 4- 8 3 )

.where o = (3)1/2 (ad ed )1/2 1-

,

2 ij ij

od ..deviatoric part of 013, and

dj=
$cr- (Of 3/5)i !-

,

!
c.

Usually, the amount'of data available does not justify adding ;
any'more' parameters to the creep law. There;are cases, however, 1,

'

where it is justifiable to use a law based on multiple creep. |mechanisms. FLAC, therefore, includes an option to use a two- !
component law'of the form ~ q

5er " 5 1+$ 2 (1. 4- 8 4 )
'

where .

- . _n 1 _

Aa a 2 ciref (l,

C 1", _

ref
,

0 o < oi
'

,;

i.

;

- _n2 _

A0 0 5 02#8f
'

2,

E2 " i_

#8f0 0 > 02 I
. ,

t

4

!'

1

L .

| 1

|-

|
|

.
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1

l-

With these two terms, several options, described below, are'pos-
:Isible.

1. .The Default Ootion

agref = O2ref = 0

i _o is always positive, so this is the one-component-law
with'

_n1.

Ecr " A1 0

2.- Both Comoonents Active

agref --o
t

c2ref = "large"

_r1 _n2.

et"A1 0 +A20c

3. Different Law for Different Stress Reaimes

(a) ciref " 02ref = oref > 0 1

i

_n2-
-

A2 0 0 < G ef jr

5cr " _D1 -

A1 0 0 > Oref |
'.

,

i

i

!

!

'

i

. ?c

<; , :s
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T r

ib) agref < 02#8f

_n2-

_

refA2o o < oi
01 _n2.

ccr " A10 +A20 01#8f < 0 < 02#8f
_n1 _

refAto o > 02
.

0 ref > ogref(c) 2

This option is not used because it implies that creep
occurs for 3 < oiref and for 3 > 3 ref, but not for2

oiref < 3 < 02 'f#
-

1.4.8.5 -Apolication

These models are applicable to materials which exhibit rate-
dependent behavior within the assumptions and limitations given
in Section 1.4.8.2. These models are applicable in analysis of
mining or waste. disposal operations in salt or other evaporite
deposits. Because transient laws are not included, all analyses
are steady-state in nature.

1.4.8.6 Numerical Method Tvoe

No new or unique numerical methods are used.

1.4.8.7 Derivation of Numerical Method j
i

The new stresses at the end of the timestep are calculated from |
the initial stresses and strain increments as follows. I

:

l

!

.

4
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'First, the mean and deviatoric parts of the stress and strain are
calculated from<

curr 1
cv 11 22 + 033)"-

3

(1.4-85)
'curr curr curr

013 (cij -613+ oy )=

1
4ev = - ( AE 11 + 4e 22 + Ae 33 )

3
(1. 4- 8 6)

Acij = deij - S j AeVi

,

The deviatoric strain increments Aeli is defined as the sum of
. elastic and creep strain. The elastic strain increments.is

' (e) ' (cr)
Acij = Acij - Acij (1.4-87)

i

1

' (e)
The creep strain increment, Acii , is a function of the current
stress, but the stress is calculated from the elastic stain in- ;

crement. Therefore, an iterative method is used to calculate the ;

stresses as follows.
-'

'curr
1. Assume o = oij

i
i

i

where o' = average stress during timestep.
ij .

!

. _ _ _ _ . ___ -- --__-_- ______ _____ ______ _
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Calculate cif' = f(c{ c' ) .Ls 2.
p

*

4' . (cr) ' .(cr)3. Calculate beij = eij At.

' (e) (cr)'

4.- Calculate Acij = AEij - Ac ij .

' (new) ~ (e)' '

5. Calculate 013 = cij + 2G 6Eij .

p

' 'I1 ' (new)6. Calculate c' = - (cij + cij) .
.

7.- Repeat Steps 2 through 6 four (4) times to ensure "

convergence.

' (new)8. Calculate cij = cij + S j (av + K AcV).i
i

s
1.4.8.3 Location

!

The classical Kelvin viscoelastic model is found in subroutine
CL7,.the Norton Power Law in subroutine CL8, and the WIPP Base-
line' Law ~1n CL9. These models are called from the-STRESS sub-
routine. The thermoelastic stress increments for each law.are

,

i

determined in each subroutine, but called from TSTRES.

1 4.8.9 Numerical Stability.

The stability of the solution is dependent on the choice of At.
If At is too large, the creep rate calculation may b suffici-eently inaccurate that the average deviatoric stress ciq is in- '

correct. The effect of a large timestep may be sufficient to
cause numerical instability, as well as inaccuracy. FLAC pre-
sently requires the user to define the critical timestep, and al-
lows a schedule where the timestep may be changed as a function
of the maximum out-of-balance force. However, a timestep which

,
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;

' \ ;:

ist too large will generally result 11n numerical' instability which :

' is obytous from the code results. It has been found that, in
general,'if the' code provides stable response, the accuracy of |'

|1the problem solution is good, provided the mesh discretization is.
,

sufficient. .'

-t

4
,

1.4L8.10' ' Alt erna'tives

No specifin models presently exist within FLAC to| replace.the s'

' viscoelastic models.

,

t

\
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I
L 1.5 . EXPERIENCE
i

.The.FLAC code is a commercially-available program and, as such,
L is routinely. applied to a wide variety of problems in soil, rock

and solid' body mechanics, as well as to heat transfer and fluid
flow problems. 'At the time of writing, there are roughly 300
ussrs of the FLAC code in the mining, civil construction, oil and
nuclear industries, as well as in government-sponsored research .

in approximately 20 countries worldwide. This group of users in- J

cludes those who.are quite sophisticated in their ability as well
as those who have little training in numerical modeling. The
FLAC code can provide excellent results provided it is used prop-
erly. Although the code traps common errors, the user necessar-

-ily must define the problem and translate it into the problem
geometry, boundary conditions, and solution procedure. Addition-
ally, the user must analyze'the results with h'is or her knowledge
and experience. The ability to obtain meaningful solutions from
any numerical model varies widely from user to user, and is based
primarily on knowledge and experience.

In general, " poor" results from the FLAC code may be traced to
the following causes:

| (1) erroneous or unrealistic input data with which it
can pre-analyze input for correctness;

(2) poor specification of the finite difference mesh,
in particular, insufficiently detailed discretiza-<

tion around complex geometries and boundaries which
are placed too close to the excavations;

(3) improperly specified boundary and initial condi-
tions;-and

(4) insufficient number of timesteps to bring the prob-
lem to equilibrium or a steady condition.

The primary point to keep in mind when using FLAC is that, due to
the explicit solution procedure, it should be treated like a
physical model. A run should be set up such that it mirrors the
physical stages which occur in reality. For example, modeling of
the excavation of a near surface tunnel subjected to internal
water pressure might involve the following steps.

- --- . - - - _ - - - - - _ _ - - _ _
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1. Set initial. grid and bour dary conditions, apply'

gravity, timestep problem until the body consoli-
k dates under gravity, inducing vertical and lateral

stresses, judge equilibrium by sampling histories
of displacements and stresses at critical locations
in the grid. When the change in these parameters

4 is-less than about 1% of the total, the system is
[- more-or-less at equilibrium. (Models the physical
L reality of development of initial gravity stresses
C, in the body).-
.

2 '. Excavate the tunnel by nulling proper zones or re-
,'gions within the grid, timestep again until equi-r-

t ' librium or steady condition occurs. (Models the'

physical reality of excavating a tunnel and the re-
sulting equilibrium.)

3. Apply fluid pressure to the interior of the excava-
tion and timestep to equilibrium or until a steady
condition occurs.. (Models the physical reality of

.the diversion of water to the tunnel and applica-,

tion of fluid pressure to the excavation peri-
phery.)

For each step of the analysis, a perturbation to the unbal- 1

anced forces occurs which damps with time as equilibrium is
attained. The following suggestions'and advice regarding
the' code have been developed from user experience.

* FLAC uses constant-strain zones. If the strain gra- -

dient is high, you need many zones to represent the
'non-uniform strain distribution. Try running the
same problem with more zones, to check. Constant-
. strain zones are used because, for plastic flow, it
is better to use many low-order elements than a few
high-order elements. '

Try to keep zoning as uniform as possible. Avoid*

long, thin zones or very distorted zones. A maximum
aspect ratio of about 10:1 should be used.

t

.
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D

For a new problem,.always do a trial run with a few*

zones'to get a quick feel for the response and pos-
sible difficulties. When yqu understand the trial
results, increase the number of zones to obtain bet-
ter accuracy.

FLAC will take a longer time to converge if:*

(a) there are big contrasts in stiffnesses; or

(b) there'are big contrasts in zone sizes,
r

A very stiff loading plate often can be replaced by a-*

series of fixed gridpoints which are given constant velo- ,

city.
,

In order to determine a' collapse load, it often is better*

to do'it under " strain-controlled" conditions rather than
" stress-controlled" conditions (i.e., apply a constant
velocity and measure the reaction forces rather than ap-
plying forces and measuring displacements). A system
that collapses becomes difficult to control as the ap-
plied load approaches the collapse load. (This is true
of a real system as well as a model system.)

Use symmetry conditions, whenever possible, to save com-*
puter memory and run time. For example, if a system is

'

symmetrical about a vertical axis, you can represent the
.

symmetry line as a vertical boundary with the gridpoints
fixed in the x-direction (but free in the y-direction).

Make frequent use of save files. For example, save in-*
termediate states when doing parameter studies. If the
run stops for any reason, you will have the intermediate
states.

I
1

|
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, . Treat a FLAC.model just like a physical model. Try to I*
| reproduce in a.FLAC run the stages that actually would

'
'

"
occur in nature. Keep in mind that there is no unique
equilibrium state for an inelastic system. There may be
rany possible states that satisfy equilibrium; the one

b you get depends on the history. '

:

'o FLAC shows how a system behaves. Make frequent, simple
tests to check that you are doing what you think you are
doing. For example, if a loading condition and geometry 1

L is symmetrical, check that the response is. symmetrical *

L or, after making a loading change or other change, exe-
t~ cute a few steps initially (e.g., 5) to verify that the

initial response is of the correct sign and in the cor- |
rect location. You might also do back-of-the-envelope
estimates of the expected order of magnitude of stress or
displacements and compare them to FLAC output.

'.

p If you apply a violent shock to a systum, you will get a-*

violent' response. If you do non-physically reasonable |

things to the system, you must expect strange results.

Critically examine the output before proceeding with the*
;

L simulations. If, for example, everything is ok except
for large velocities in one corner zone, do not go on un-
til you understand the reason. In this case, you might
have left a " fixed" grid point free.

FLAC does not give a " Factor of Safety" directly. If you*

need a factor of safety, it.can be defired for any param-
eter that you consider important by takit.g the ratio of
the actual,value to the value which causes failure. For
example,

water level to cause collapse
Fy =

actual water level

tan (actual friction angle)
F4 tan (friction angle to cause failure)

1

l
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L*- 'Use-history. plots of' displacement or stress at critical j
locations to determine when a model-is in-equilibrium.
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