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ABSTRACT

FLAC (East Lagrangian Analysis of Continua), Version 2.20, is a
two~dimensional, large-strain, explicit finite difference code
written for analysis of problems in ?ootochnical angineering.
FLAC has the ability to perform static mechanical analyses as
well as transient heat transfer and fluid flow simulations.
Various constitutive m~ :ls are available to describe linear and
non-linear respo! «& the solid., Coupling can be performed be-
tween the thermal and inechanical, as well as the fluid and me-~
chanical, models. The following report presents the documenta~-
tion specified in NUREG-0856, Documentation of Computer Codes for
High Level Waste Management. The documentation is presented in
three volumes. Volume 1 contains the mathematical basis for the
various espects of the code; Volume 2 is the code User’s Manual,
and Volume 3 presents FLAC verification, example and benchmark
problems.
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1.1 STATEMENT AND DESCRIPTION OF THE PROBLEM

The analysis of problems in geomechanics may involve a number of
physical phenomena including mechanical, thermal and hydraulic
response of the rock and/or soil. The response may be character-
ized by non-linear constitutive behavior which exhibits coupling
effects between .he mechanical, thermal and hydrclogic mechan-
isms. FLAC, Versiocn 2.20, is a large strain, two-dimensional ex-
plicit finite different program written specifically to analyze
complex, guasi-static and transient non-linear proclems in geo-
mecuanics., In particular, many of the functions of the program
have been written to simpl)ify analysis of problems in soil me-
chanics, rock mechanics, '.:-ierground excavation design and as-
sessment of radioacrive waste disposal in a variety of rock
types. The program logic is not specific to gec.rechani. 3, how-
ever, ani may be used for general strese analysis, heat transfer
or hydraulics problems.

The FLAC proyram contains a word-oriented command interpreter,
error-trapping logic and extensive interactive graphics faclli-
ties. Although the ccde is generally distributed in an executa-
ble version for the IBM PC and compatibles, it is easily trans-
portable to mini- and mainfreme Computer systems.

FLAC is a proprietary computer program written and owned Dy
Itasca Consulting Group, Inc. and Peter Cundall. /2>cess to the
source code generally is not available, although it can be exam-
ined through special arrangement with Itasca Consulting Group,
Inc .

Program Capabilities, Version 2.20

FLAC is a finite difference program which uses &n explicit solu-
tion prucedure to solve non-linear thermal, mwechanical and hydro-
logic problems in plane and axisymmetric geometries. The mechan-
ical analysis is quasi-static, but the heat transfer and fluid
fiow can be transient. Thermomechanical and hydromechanical
coupling is possible for all of the available'material models.
Othe~ features of t!.e program are given below,



1. Geometric Features

(a) plane strain (can account for out-of-plane stress)
(b) plane stress
(¢) axisymmet:iy
2. Motiovon Calculation
(a) quesi-static (non-inertial) mechanical
(b) transient heat transter (Fourier’s Law) and fluid
flow (Darcy Flow)
3. Solution Mode/Kinematics

(a) mechanical - explicit, large or small strain, large
displacement

(b) heat transfer — explicit or implicit

(c) fluid flow — explicit

4. Constitutive Models
(2" mechanical
(1) linear elastic
(i1) .ransversely ‘.otropic elastic
(1ii) Mchr=Coulomb plasticity

(iv) Mohr-Coulomb plasticity with general strain
hardening/softening

(v) ubiguitous joint

(vi) wviscoelastic .odels (steady-state creep)
¢ Kelvin Law
¢ WIPP Power Law
¢ Norton One- or Two-Component Power Law

(vii) null elements to represent eascavation
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(b) thermal

(1) isotropic conductivity

(ii) transversely isotropic conductivity
(1ii) temperature-dependent conductivity
(iv) exponentially-decaying heat sources

(¢) fluid flow
(1) 4isotropic Darcy Flow
(ii) transversely isotropic Darcy Flow
5. Boundary Conditions
(a) mechanical
(1) displacement (velocity)
(ii) force

(1ii) pressure
(iv) stress (traction)

(b) thermal
(1) temperature
(11) flux

(iii) adiabatic (insulated)
(iv) wvolumetric source

(¢) fluid flow

(1) pore pressure
(33)  Thia
(1ii) volumetric flow rate

6. Initial Conditions

(a) initial stress

(b} initial temperature

!) .nitial pore pressure distribution
(d) initial velocity
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7. Rock/Soil Structure Interaction
(a) structural elements (bears) to represent interior
support systems, surface structures or point anchor
roc!: bolts
(k) cable elements to represent grouted rock bolts or
cable anchors
8. Interfacew

(a) cohesive frictional interfaces to allow slip/
separation

(b) intersecting interfaces allowed

9. Graphics

(2) interactive screen graphics, allowing over 30 dif-
ferent types of plots which may be overlayed

(b) color, intervals, scales, contour types, etc, are
all user-controllable

(c) hard-copy plots may be delivered to a variety of
~en dot matrix and laser printers
10, File Handling
(a) interactive or batch mcde operation
(b) save and restart files
(C) screen text diversion to disk file
11, Me: ! Generation
(a) automatic mesh generation
(b) mesi may be distorted, expanded geometrically, etc.
(¢) automatic mesh adjustment to fit user--defined

slhapes, including circle, line, arc¢, and general
table of x,y values



12, Other Features

(a) automatic vrror trapping and recovery (error
messages without losing a run)

(b; automated problem solution specifications

(¢, assignment of different properties and/or material
model for every element possible

(d) assignment of gradients to any property, velocities,
forces, stresses, pressures or initial conditions
across the mesh

(e) access to NO5S system functions

(f) ability to store and plot histories of any variable
at any location within the grid

(g) English word-oriented command interpreter
(h) plasticity state history stored ‘or all elements
(i) gravitational loading

(3) logic for tracing boundaries of grid, making
application of boundary conditions simple for curved
or irregular boundaries

FLAC provides automatic inertia scaling and damping to ensure a
stable solution. The mixed discretization technique of Marti and
Cundall (1982) is used to ensure numerical stability due to in-
compressibility in plastic flow and provide accurate solutions to
collapse problems. The code itself is written in ANSI standard
FORTRAN77. All higher-order graphics functions (i.e., contour-
ing) used in the program are self-contained. Only the primitive
graphics functions (pen up/down, text screen write, graphics de-
vics open and close) are system-dependent. These routine calls
are located in a single file, making the code easily transporta-
ble to various computer systems.

Be.ause FLAC is a commercially-supported code, continual develop-
ment is performed by Itasca staff. Updates are issued approxi-
mately every year. The documentation given here refers specifi-
cally to Version 2.20 of the code.
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1.2 EXPLICIT SOLUTION PROCEDURE

1.2.1 Introduction

The finite difference method is perhaps the oldest nuuerical
technique used for the sclution of initial or boundary value
problems (see, for example, Desai and Christian, 1977). Tre var-
iables describing the response of a body may vary in both space
and time. To numerically solve such a problem, th2 body is dis-
cretized into a mesh consisting of a nunber ¢f gridpoints (nodes)
which define the corners of zones (elements). The governing
equations (e.g., equations of motion, Fourier’s Law or Darcy’s
Law) for a given system can be discretiied into spatial and/or
time coordinates and solved at the nodes subject to initial and
boundary conditions. The governing equationg for all nodes in a
body give rise to a system of algebraic equations. Two basic op-
tions are possible for solving these equations. In an "implicit"
approach, quantities at all nodes in the body are interrelated,
resulting in a set of simultaneous equations which must he solved
for the equilibrium or steady-state solution. In an "explicit"
approach, quantities at the nodes are decoupled and, therefore,
no system of equations is formed. In the former case, solutions
are determined at specific times (e.g., at equilibrium for a
static analysis, or at a specific time in a transient heat trans-
fer analysis), whereas, for the explicit approach, the solution
at a given node is always given in terms of the known conditions
at the previous time. Since no system of equations is solved, it
is not necessary to store coefficients, or to make use of eyua-
tion solvers; however, a number of calculation cycles are neces-
sary for solving for the equilibrium steady-state condition..

The general solution procedure employed by FLAC is shown in Fig.
1.2-1. This solution procedure involves solving the basic equa-
tion of motion (..e., Newton’s Second Law) fcr each gridpoint in
the body. Application of the equation of motion provides velo-
cities of the gridpoints which are used to calculate internal
element strains. These strains are used through constitutive re-
lations for the zone to provide element stresses, Or equivalent
gridpoint forces. These forces are the basic inpuc necessary for
the implementation of the equation of motion on the next calcula-
tion cycle. The procedure in Fig. 1.2-1 is performed once per
"timestep" or, more appropriately, calculation cycle.
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quilibrium Equation

£
/ [Tﬁquouon of Motion) \

new new
velocities and stresses
dispincements or urces

\ Stress / Strain Relotionship /

(Constitutive Egquation)

Fig. 1.2-1 Basic Explicit Calculation Cycle

Although FLAC solves the dynamic motion equatien, the mechanical
solution is limited to equilibrium or steady conditions only
through the use of damping to extract vibrational energy from the
system, The "timestep" referred to above is therefore used only
as a means of arriving at the mechanical steady state. This pro-
cedure is valid only if adjacent zones are physically unable to
communicate during a calculation cyzle. This condition is satis-
fied if the solution time increment (timestep) is small enough
that information cannot pass between neighboring elements even if
it travels at the highest possible speed. For mechanical prob-
lems, the physical information transfer between zones onc.rs at
the speed of propagation of confined elastic compression waves.
For heat trancfer, the speed of propagation is governed by the
thermal diffusivity and by the permeability in fluid Zlow.

The explicit procedure has some distinct advantages, as well as
disadvantages, over implicit methods as reviewed in Table 1.2-1.
Perhaps the most important adwvantage frowm the standpoint of an-
alysis of soil and rock behavior is the ability to accurately
model non-linear behavior without significant effort over the
standard elastic case.
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Table 1.2-1

1980)

COMPARISON OF EXPLICIT AND IMPLICIT SOLUTION METHODS
(Cundall,

ExpLiIci

IMPLICHT

Tine~step nust be smaller than
A “ri3ical value for stabiiity,

Time-step can be arbitrarmily large,
with uyncongitiona!'y stable schemes,

Smail amount of compyt:itional
effort per time-step.

Large amourt of computationa)
effort per time-step.

No significant numerical damping
introduced,

Numerical damping dependent on
time-step Dreseny with uncondi-
tionally stable schemes,

No iterations necessary to follow
nORIinear constit tive \aw,

[terative procedure necessary to
follow nonlinear constitutive law.

Proviged that the time-step
criterion ‘s always satisfied,
nonlinear laws are always
fo)lowed \n the correct physical
way.

Always necessary to demonstrate
that the above mentioned terative
procedure s
a) stadle
b) follows the physically
correct path (for path-
sensitive prob’ems ),

Mitrices are never formed.
Memory requirements are always
4t 2 mintmum, N0 banawidth
limitations.

Stiffness matrices must be stored.

Ways must be found to overcome
associated problems such as band-
width, Mesory requirements tend
to be large.

Since matrices are never formed,
large displacements and strains
are AC. WaOdated without
40aitional computing effort,

Additiona) computing effort needed
to follow large displacements and
strains,

|
|

1.2.2 TFrogram Structure

As described in Secticn 1.3 of this document, che body to be mod-
eled is subdivided into a series of gridpoints which form the
corners of zones (elements). A critical timestep is determined
based on the element geometry, properties and phenomena to be
modeled. The masses of elements are assumed to be "lumped" at
the gridpoints. For numerical convenience and rapid convergence,
the critical mechanical timestep is set equal to unity by proper
adjustment of the gridpoint inertial masses. The genera’' proce-
dure illustrated in Fig. 1.2-1 is then used to perform calcula-
tion "cycles". Since FLAC solves only static (or quasi-static)
mechanical problems throuvgh viscous damping of the equations of
motion, the term "timestep" is somewhat erroneous, as time is
problem time, not real time, and velocities are given in terms cf
displacement/ timestep. Therefore, for mechanical prollems, each
timestep can be considered a cu.culation cycle or iceratioca. For
true transient problems such as heat transfer or fluid flow, the
timestep has real meaning, and represents an absolute increment



of time in seconds. During each timestep, one calculation cycle
is performed for each gridpoint in the entire grid, basec on val~
ues btained from the previous timestep.

<f true transient analysis is performed (heat transfer or fluid
flow), timesteps are performed until the desired total time has
elapsed; however, histories of the problem sclution can be ob-
tained and stored at any desired point from timc = 0 to the total
time. For linear elastic mechanical analysis, one is corzerned
cnly with the equilibrium state of the body. In this case, time-
stepping is performed until the out-of-balance forces at e:ch
gridpoint are sufficiently small. FLAC provides a method for
automatically determining the equilibrium state based on pre-set
criteria provided by the user. For non-linear mechanical analy-
ses, it is often desirable to examine the deformation and yield
history of the body as it progresses toward equilibrium. In
fact, many processes such as collapse or steady-state creep will
never arrive at an equilibrium state. 1In these cases, it is im-
perative that one have the ability to view the progression of the
failure (deformation) process. The user may perform as many
timesteps as d.sired, stop, examine the results, and continue.

An incremental approach is used in all constitutive laws. The
equations of motion are used to determine velocities (strain
rates) of the gridpoints. The strain rates are used to determine
an incremental elastic stress. For non-linear constitutive laws,
these "trial" elastic increments are compared to yield criteria,
and corrections made, if necessary, to conform to the criteria.

A generalized flow chart of che program is given in Fig., 1.2-2.

A mose detailed flow cthart of the mechanical portions of the pro-
gram is given in Fig. 1.2-3, 2 commanu interpreter examines each
command line in interactive or batch mode, and calls the proper
code section to execute the command. The finite difference grid
is set up first, a material model (s) and properties assigned, and
boundary conditions applied. As the major functi-ns of the code
are executed, error checking and trapping is performed. If an
error is detected, an error flag is set, the code halted, and an
error mescage printed. Once the problem has been set up, solu-
tion begins by executing timesteps (or, better defired as calcu-
lation cycles for non-transient problems). The program loops
through all zones in the grid, first performing wmechanical calcu-
lations, as shown in Fig. 1.2-~3., Options of axisymmetry or plane
analysis can be made, each calling a different routine for stress
determinacion. A choice of eight (8) constitutive laws, in addi=-
tion to a null (excavation) model, is possible for the plane ge-
ometry, &a.d five (35) for the axisymmetr.ic geonetry. These may
all be solved in large strain mode, if desired, and are described
in detail in Section 1.4, Component Models.
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After performing stress calculations for all zones, fluid flow
and/or thermal timesteps are performed, updating the pore pres-
sure and temperature distributions in the grid. Thermomechanical
coupling is performed by adjusting the mear scress according to
the isotropic thermal expansion ¢f the zone. The flow of fluid
through the grid results in adjustments to the pore pressures
vhich enter the calculation of total stress increnents. The
strains are coupled back to the fluid flow through a reducstion in
element volume. The total zone stresses =2re used vo determine
equiva.ient gridpoint forces. The forces from the interfaces and
structural/cable elements are add~d to arrive at the total grid-
point forces. These forces are used as input to the law of
motion from which new gridpoint velocities (and displacements)
are derived. This same process continues until a user-defined
limit is reached.

1.2.3 Field Equatinns

The solution of solid body, heat transfer or fluid flow problems
in FLAT requires the equations of mocion and constitutive rela-
tions, Fourier’s Law for conductive heat transfer, and Darcy’s
Law for fiuia flow in a porous solid, as well as boundary condi-
tions. The following sections review the basic governl.ng equa-
tions; the .olution methodology is described in detail in Section
P P

1.2.3.1 Motion and gquilibrium Eguations

The equations of motion relate the motion of a mass m, 3.._ected
to tine=-varying forces, F. Figure 1.2-1 is a simpl: 'l‘'ustration
showing a mass subjected to a force F, resulting ir - velocity,
agcceleration, and dispiacement.

In its simplest form, Newton’s Law of Mction is given by

du

F ,
— - (i.e., F = ma) (1.2=1)
Jat m
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u,u,u

> (1)

Fig. 1.2-4 Application of a "ime-Varying Force to a, Mass,
Resulting in Acceleration, U, Velocity, u, and
Displacement, u

In i'.s general form,

X 4

where p = mass density,
t = time,
X4 = coordinate direction,
g1 = acceleration of gravity (budy force components), and

Oi4 = stress teasor.

The relationship of velocity te¢ strain increment is g.ven by

1 rouy aﬁj
dejqy = 1 [axj + 5;:] At (1.2=3)
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where &v44 = strain increment,

uy = velocity, and

At = time increment.
Mechanical constitutive laws are of the form
Oiy = M (054, Aejq, it (1.2-4)

where M ( ) is the functionzl form of the censtitutive law, and
X i8¢ a history parameter(s) which mav or may not be present,
depending on the particular law.

1.2.3.2 Eeourder’s Law for Conductive Heat Tranyfar

sourier’s Law for conductive heat transfer can 'e written as

9"
QL == ky 5—81 (1.2=5)

where Qi '+ heat flux in the i-direction,

ki = thermal conductivity in the i-direction, anc

9T
5—— = thermal gradient in the Ji-coordinate direztion.
Xi

The change in temperature of a mass, m, is ¢iven by

Qn.
BE LS (1.2-6)

a t Cpl'\
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where t = time,
Qnet = sum heat flow into the mass,

Cp = gpecific heat, ard

n = mass.

Combininy, * ... (1.2-5) and (1.2-6) yields the diffusion equation
oT 1 92T 92T
— . — [ Ky ™7 + ky (1.2=7)
ot pC, Oxé Ayl

The above equation forms the basis of conductive heat transfer in
FLAC. The stress change resulting from temperature increase in

the body is given by

A0j4 = = 8j4 3K a AT

(1.2=8)

where Aoij = gtress change due to a temperature increase, AT,

& = linear the:nal expansion coefficient,

K = bulk modulus of solid, and

844 = Kronecker’s delta.

1.2.3.3 Daxcy’s Law for Anis cropic Forous Media

Darcy’s Law for an anisotrropic porous medium is

Vi .Kijé_x?

where V, is the specific discharge vectcr,
F 18 the fluid pressur-», and

Ki4 is the permeability tensor.

(1.2=9)
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The continuity equation is given by

i Kw Q (1.2=10)
ot ny “net y

where Qpet 45 the sum of flows into a node,
n is the porosity,
V is the volume of the arca represented by the node, and

Ky is the bulk modulus of the fluid.

Equations (1.2-9) and (1.2-10) are analogous co Egs. (1.2-5) and
(1.2-6) for Four.er’s Law. The coupling of fluid flow t0o the me~
cnanical portion of the code occurs through pore pressure (effec-
tive stress) and volume change due to mechanical strain. This is
described in detail in Section 1.4, Component Models.

1.2.4 Bouncary Conditions

The solution of problems in solid body mechanice and heat trans-
fer of fluid flow requirns that initial and boundary conditions
be specified. For the mechanical models, the boundary conditions
inciude fixed velocity (i.e., displacement), pressure, force, or
traction. Heat Transfer incluces fixed temperature, zero heat
flux (adiabatic), flux or volume source; fluid flow includes
fixed pressure, flux or volume source or sink. 1Initial condi-
tions for the models in:lude .initial stress, initial temperature,
ancd initial pore pressure distribution
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1.3 GENERAL NUMERICAL PROEDURE

1.3.1 Introduction

This section presents the finite aifference implenmentaticn of the
besic state equations presented in the previous section. FLAC
uses a form of dynamic relaxation similar to that proposed by
OtiLer et al., (1966), with adaptaticns for arbitrary grid shaves
and larce strains. 1..e finite differencing scheme used is (¢ -
rived from Wilkans (19€3). The full dynamic egquations c¢f motion
are solved for mechanical analysis, but used only for scolution of
quasi-static problems by limiting applied velocities to s.nall
values and by use of internal viscous damping.

1.3.¢ Basic Mechanical Finite Differen e Formulation

1.3.2.1 lntroduction ‘
|

The user develops a finite difference mesh composed of quadrilet-
¢ al elements. Internally, the ccde subdivides the element into
two sets of overlapping constant-strain trisngular elements (Fig.
1.3-1). No higher-order elements are used in the code.

U :i)

g b d

Fig. 1.3-1 (4! Overlayed Quadrilateral Elements used in FLAC;
(b) Typical Triangular Element with Velocity Vectors;
(c) Nodali Force Vector
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The four (4) triangular subelements are termed a, b, ¢ and d.

The deviatoric stress componcnts of each triangle are maintained
independently, requiring twelve (.12) stress components to be
stored for each element. The forces exer-ed on each nnhde are
taken to be the mean of those exerted by the two overlayed gquad-
rilaterals shown in the figure. The resporse of the composite
element is symmetric in contrast to the response >f a single pair
of triangles.

1.3.2.2 DRifference Fguations

The difference equations for a triaugle are derived from the gen=-
eralized form of Gauss’ divergence theorem (e.g., Malvern, 1969):

9f
J ng f de = J Y dA (1.3+1)
s A 9%

where J. is tha integ.1l around the boundary of a closed surface,
s

ni s the unit normal to the surfac:, s,
f is a scaiar, vector or tensor,
Xj are positive vectors,

ds is an incremental arc length, and

[ is the integral over the surface area, A.
A

Defining the average value of the gradient of f over the area A
as

of 1 of
<.--->--j s A (1.3-2)
A
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one obtains, by substitution iato Eq. (1.3-1),

af 1
Xy A s

For the triangular sutzlements, the finite difference form of Eq.
(1.3-3) becomes

af 1
< = >= =% <f> ny As (1.3-4)
aXi A 8

where As is the length of a side of the triangle, and the summa-
tion occury over the thr.ue sides of the triaangle, The value of
<f> is taken to be the cverage over the side. This formula, sug-
gested by Wilkins (1963), enables strain increments, Aejy, to be
written in terms ol nodal velocities for a zonre by substgtuting
the velocity vector for £

ouy 1 SR Y
— — + As
aXi ZA 8 Ui Ui ) nj

1.3-
and ( ik

Aaij-g[ﬂ*a‘-ﬁ-]\t

where At is the timestep and (a) and (b) are two consecutive
nodes on the triangle boundary.

It is noted here that the use of triangular elements sliminates
the problem of hourglass deformations which may occur with con-
stant strain finit2 difference quadrilaterals. The term "hour-
glassing" comes from the shape of the deformation pattern of ele-
ments within a mesh. For polygons with more than three nodes,
combinations of nodal displacements exist which prnduce no strain
and resulc¢ in no cpposing forces. The resulting effect is unop-
posed deformations of alternating direction.



A common problem which occurs in moueling of materials undergeing
active collapse is the incompressibility condition of plastic
fiow, The use of plane strain or axisymmetric gecmetries intro-
duces a kinematic restraint in the out-of-plane direction, often
giving rise to overprediction of collapse load. This condition is
sometimes referred to as "mesh-locking" or "excessively stiff"
elements and is discussed in detail by Nagtegaal et al. (1974).
The problem arises as a condition of lozzl mesh incompressibility
which must be satisfied during flow, resulting in over-constrained
slements., To overcome this problem, the isotropic stress and
strain components are taken to be constant over the whole quadri-
lateral element, while the deviatoric components are treated sepa-
rately for each triangular subelement. This procedure, referred
to as mixed-discretization, is described by Marti and Cundall
(1982) . The term mixed discretization arises from the different
discrstizations for the isotropic and deviatoric parts of the
stress and stain tensors.

The voaluretric strain is averaged over each pair of triangles as-
cording to the mixed discretization scheme. The strain incre-

ments in triangles a and b of Fig. 1.3-1 are adjusted in the fol-
lowing way:

a a ; b
Aem = (Aey) + Aepn + Ae?l + dep) /2 (1.3-6)

a a a
Aegq = dey; - Ler2

(1.3=7)
b b b
deq = 4eyy - Aer:
a a
Aey; = (Aey + Aeqy) /?
b b j
Aey1y1 = (Aey + Aey) /2
(1.3-8)

a a
dep2 = (Aey = Aey) /2

b
Aezr = (Aep

b
Aey) /2

Similar a-djustments are mad2 for triangles ¢ and d. The compon=-
ent Aej2 s unchanged.
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In larye strai. mode, finite rotations of elements produce
changes in the stress components referred to a fixed frame of
reference. The stresses are acjusted, as follows, prior teo in-
voking the constitutive law,

Oj4 t= O34 + (Wyx Oy = Ojx Wy) At (1.3+9)
1 pouy 9uy
whnromij--z-[m-sx—i']oand

i1= means replaced py.
The constitutive law is of the form
Oj4 i= M (014, Aejy, §j) (1,3-10)

where M ( ) is the constitutive law,
bLej4 are the current strain increments, and

S§; are state variables which vary with constitutive
models.

The non-elastic constitutive laws require the adjustmert of Oj
based on corrective stresses determined from a yield function gnd
flow rule. The various constitutive laws are described in detail
in Section 1.4, Compunent Models.

Mixed discretization is then invoked on the stresses to equalize
isotropic stress between tlhe two triangies in a pair:

\a) _(a) (b) _(b)
(a) (b) [Go A +606, A

6, =0
" “ A(a) 4+ a(b)

(1.3=11)

=u3

(a) , , : :
where Op is the isotropic stress in triangle (a) and

A(d8) is the area of triangle A(d),
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This equalization only has an effect for constitutive laws that
involve shear-induced dilation,

For the explicit scheme used in YLAC, Eq. (1.3-10) is evaluated
once per wone per timestep. As described in Section 1.2 of this
document, no iterations are necessary to force all elements to
conform to the constitutive law, as the timestep is made small
enough that information cannot physically propagate from one zone
£Cc the next within one timestep. The calculation of the critical
timestep is given later,

Once the stresses in each triangular zone are calculated, the
equivalent forces applied to each nodal point are determined
(Fig. 1.3~1(¢))s

1 (1) (1) . (33 (2) _(2)
Fy = 5 Oi4 (nj S + Ly S ) (1,3=-12)

If the body is at equilibrium, or in steady-state flow (e.g.,
creep), the net force IF; on the node will be rero; otherwise,
the node will be accelerated. 1If a zone is missing (i.e., exca-
vated or at a boundary), the force summation for an adjacent node
simply ignores this ter.. The forces, and all stresses and coor-
dinates, are known a:t times t, t + At, etc. (whole timesteps) .

The gridpoint velocities at the next half timestep are determined
by integrating the acceleration using central differences:

Lt + At/2) L (t - At/2) (t) (t) . At
uyq - 04 + (ZFy " - a |ZF{ | sign(iy)) —
m

(1.3-13)
+ gi A

In Eq. (1.3-13), a is a damping parameter, and m is the lumped
m.38 of the node. The above scheme allows Quasi-static problems
to be solved by damping the vibrational energy of the nodes.
Several camping schemes have been used in dynamic relaxation
problems and are discussed in detail below.

For large strain problems, the velocity calculated in EQ. (1.3-
13) is used to determine the new coordinate of the gridpoint
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(t + At t Lt + At/2
Xi ‘e x: ; + u{ ' At (1,3-14)

1.3.2.3 Mechanical Damping

The equations of motion must be damped to provice static or
quasi-static (non-inertial) solutions. The objective in FLAC

18 to achieve the steady state (either equilibrium c. steady
flow) in a aumerically stable way with minimal computational ef-
fort. The dampinc used in standard dynamic relaxation methods is
velocity-proportivnal—i,e., the magnitnde of the damping force
is proportional to the velocity of the nodes. This is commonly
viewed as a dashpot fixed to the ground at each nodal point, as
shown in the simple drngree-of-freedom system given in Fig. 1.3-2.

' 537

N\ \\%\

Fig. 1.3-2 Damped, Singie Degree-of-Freedom System

The eguation of motion for free vibration of the single degree-
of-freedom system is given by

mX +4¢cx + kx =20 (1.3-15)

where m is the mass, ¢ is the viscous damping constant, k is the
spring stiffness, and x is the coordinate.

It is clear in this illustration that the damping force produced

is proportional to the velocity, X, of the mass.
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The following is adapted from Cundall (1987).

The use of velocity-proportional damping in standard dynamic re-
laxation involves three main difficulties:

(a) The damping introduces body forces, which are er-
roneocus in "flowing" regions, and may influence the
mode of failure in some cases.

(b) The optimum proportiocnality constant depends on the
eigenvalues of the matrix, which are unknown unless
a complete modal analysis is done. In a linear
problem, this analysis needs almost as much com=-
puter effort as the dynamic relaxation calculation
itself. In a non-linear problem, eigenvalues may
be undefined.

(¢) In its standard form, velocity-proportional damping
is applied equally to all nodes—i.e., a single
damping constant is chosen for the whole grid. 1In
many cases @& variety of behavior may be observed in
different parts of the grid; for example, one re-
gion may be failing while another is stable. For
these problems, different amounts of damping are
appropriate for different regions.

ln an effort to overcome one or more oi these difficulties, ai-
ternative roims of damping may be proposed. 1In soil and rock,
natural damping is mainly hysteretic: if the slope of the unload-
ing curve is higher than that of the loading curve, energy may be
lost. The type of damping can be reproduced numerically, but
there are at least two difficulties. Firstly, the precise nature
of the nysteresis curve is often unknown for complex loading-
unloading paths. This is particularly true for soils, which are
typically tested with sinusoidal stress histories. Cundall
(1976) reports that very different results are obtained when the
same energy loss 1s accounted for by different types of hystere-
sis loop. Secondly, ratcheting can occur—i.e., each cycle in
the oscillation of a body causes irreversible strain to ke ac-
cumulated. This type of damping has been avoided, since it in-
Creases path-dependence and makes the results more cdifficult to
interpret,

Adaptive damping has been described briefly by Cundall (1982).
Viscous damping fcrces are still used, but the viscosity constant
is continuously adjusted in such a way that the power absorbed by
damping is a constant proportion of the rate of change of kinetic
energy in the system. Th2 adjustment to the viscosity constant
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is made by a numerical servomcchanism that seeks to keep the fol-
lowing ratio equal to a given ratio:

R = I P/L Ey (1.3-16)

where P is the damping power for a node, Ex is the rate of change
of nodal kinetic energy, [(and) I represents the summation over
all nodes. This form of damping overcomes difficulty (b) above,
and partially overcomes (a), since as a system approaches steady
state (equilibrium or steady flow) the rate of change of kinetic
energy approaches zero and consequently the damping power tends
to zero. Finally, a new form of damping is used in FLAC in which
the damping force on a node is proportional to the magnitude of
the out-of-balance force. A sign is applied to the damping form
that ensures that energy is dissipated. The damping force is
given by:

Fq » - IF| sign(u) (1.3-17)

where F is the nodal out-of-balance force [cf, Eq. (1.3-12)).
This type of damping is equivalent to a local form of adaptive
damping described above. In principle, the difficulties reported
above are addressed: body forces vanish for steady-state condi~
tions; the magnitude of damping constant is dimensionless and is
independent c¢f properties or boundary corditions; and the amount
og damping varies from point to point (Cundall, 1987, pp. 134-
15)0

Figure 1.3-3 illustrates the typical results of the damping in
FLAC for a problem that involves a suddenly-applied compression
on the end of a column which is locked on the opposite end. Fig-
ure 1.3-3(a) shows the maximum unbalanced force (ZF{) in the
model as a function of timestep; Fig. 1.3-23(b) shows the y-dis-
placement at the center of the column, just beneath the applied
load. Examination of the unbalanced force history shows the pro-
gression toward equilibrium (zero unbalanced force). Small os~
cillations of the system occur as the solution progresses. The
damping effects are less evident in the plot of displacement his-
tory, which displays a typical slightly overdamped response.
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1.3.2.4 WM

As described previously, the explicit solution procedure, in gen-
eral, does not guarantee a convergent solution. The basic pre~
mise of the method is that each zone in the grid can essentially
be uncoupled from all other zones if the timestep for calculation
is small enough to prevent information transfer between neighbor-
ing zones during any given timestep. The choice of timestep,
therefore, governs the resulting stability of the simulation.
FLAC automatically determines a stable mechanical timestep for
all models. For the elastic and plasticity models, no user-
intervention is typically necessary, as the use of timestepping
is only a device to obtain the equilibrium solution. For the
steady-state creep constitutive models, however, use of the ini-
tial elastic timestep would result in stable, but exceedingly
large, solution times. The user must define empirically a time-
step adjustment for these models which will produce stable system
response while minimizing run time. This is described in detail
later.

The timestep, At, enters into the motion law for calculation of
new gridpoint velocities [see Eq. (1.3-13)). 8Since the code
still solves the complete dynamic equations of motion, the iner~
tial mass will affect the transient solution obtained, but not
the equilibrium or steady state. Because the concern is only
w.th achieving the steady state as rapidly as possible, the iner-
tial masses may be scaled to provide a timestep which optimizes
the rate of convergence. This is similar to the use of an over-
relaxation factor for more efficient solution of systems of equa-
tions by iterative methods. For a single mass-spring system, the
critical timestep is

At. = 2/m/k)1/2 (1.3-18)
where m is the mass, and k is the spring stiffness.

Optimum convergence is obtained when At. is roughly the same for
all nodes. In the above equation, the stiffness, Kk, refers to
all stiffnesses connected to a node, including zone stiffness,
interface stiffness connections (Section 1.3.5), and structural
connections (Section 1.3.6)
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where kpode is the total stiffness connected to a node,
ki is the interface stiffness,
kg is the structural stiffness, and
kz is the zone stiffness.
Figure 1.3-4 illustrates the various possible mechanical stiff-

nesses which can be connected tc a node. The zone stiffness, Kz
for a triangular zone is given by

8
kg = 3 [K + (4/3)G) L (1.3-20)

where K + (4/3)G = confined modulus of zone material, and

L = the maximum edge length squared divided by the
area of the zone.

Fig. 1.3-4 5Stiffnesses Used in Mechanical Timestep Calculations
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Recall that a rectangular element is divided into triangles for
the firite difference calculations. The zone stiffness contribu-
tion given above is averaged for all triangular zones surrounding
a gridpoint as shown in Fig. 1.3-5.

Fig. 1.3-5 Schematic Illustrating Zone Stiffness Contribution
from Surrounding Triangular Sublements

To obtain the timestep, the gridpoint mass, m, is treated as a
relaxation factor, and adjusted to equal the sum of the stiff-
nesses connected to the node:

Mnode = Knode * I weighted stiffness connected to the nod?l e

Thus, the mass is scaled such that the critical timestep for a
node given in Eg. (1.3-18) becomes

Atc t= 1,0 (1.3“’22)

Optimum convergence 1s obtained if the timestep is the same for
all nodes. The use of At of 1.0 simplifies the motion calcula-
tion in the code (e.g., the incremental nodal displacement for
any given timestep is simply equal to the velocity of the node,
since velocity is given in terms of displacement per timestep).
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1.3.2.5 (Creep Timestep Methodology

The basic critical timestep at a node is the same for the creep
as the elastic model, as the elastic timestep must be the minimum
zone timestep. However, a physically meaningful value of time is
necessary for creep strain calculations, even though the problem
is quasi-static, The user is required to define a timestep value
in the present version of the code, and has the option of allow-
ing the program to automatically increase this value as a func-
ticn of the valuve of the maximum out-of-balance force. 1In the
main body of the code, a timestep (which is inertia scaled to
equal 1.0) is used. However, once in the creep constitutive law
(subroutines CL7-CL9), the mechanical timestep of 1.0 is multi-
plied by the user-defined timestep, dt. This value (dt) is then
used to calculate increments ¢f creep strain which are, in turn,
used to adjust the deviatoric stress components. It is possible,
therefore, to obtain instability in this model through a poor
choice of the creep timestep, ¢t. This is discussed in greater
detail in Section 1.4, Constitutive Models.

1.3.3 Basic Thermal Finite Difference Equationrs
1.3.3.1 Introduction

The basic field equations for heat trancfer used in FLAC were in-
troduced in Section 1.2, Here, the implementation is described. X
Two options for the sc¢.u.Lion procedure for heat transfer problems
are allowed in FLAC: explicit and implicit methods. The expli-
cit method used in the mechanical portion of FLAC holds distinct
advantages in solution of problems in which non-linearity occur.
However, if the response is linear, the explicit method for two-
dimensional problems may be slow. For thermal and groundwater
flow problems, the expiicit solution requires that one determine
a critical timestep, At, and solve the problem at At, 2At, . . .,
nAt, where nAt is the total time frame for the analysis. 1In
other words, the user is forced to determine a solution at times
when the results may not be required. Because the timestep is
controlled by geometry and thermal properties, examination of
problems of small zone dimensions or high thermal diffusivity may
result in exceedingly small timesteps, or excessive run times may
result if long time anslyses are to be performed. For these
reasons, implicit temperature and fluid flow logic has been de-
veloped in which large timesteps are possible. Both schemes are
described here.
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1.3.3.2 Difference Eguations

The diffusion equation given previously In EqQ. (1.2=7) can be re-
written as:

c o” = K giz + k 231 (1.3-23)
Pede Sa3 dy2 '

For a typical finite difference grid, consisting of zones which
are Ax wide by Ay in height (Fig. 1.3-6), an energy balarce may
be performed.

Lpd Qije1
-l 1 ped L i
iy~ 1 -“—~_..~ i B

I Qi1 == i) o Qi1

e
Qi1

6x-—nJ

Fig. 1.3-6 Nomenclature for Determination of Energy Balance for
a Typical Interior Zone

Conservation of energy regquires the sum of heat flowing into ele-
ment i,9 to be zero for steady conditions.



1,3-16

Q49 = Qie1,9 * Qi41,3 * Qf,4=1 *+ Q4,441 = 0

(t) (t) P (%) ()
N [ Ti-1,9 - 4.3 } Tied, 3 = 74,3 ]
& o M
11,5=24)
(t) (t) F .o %) (t)
S Tioj"l o Ticj Tivj“l = Tioj
y Ay b Ay
= 0

where () = heat flow,
1(t) = temperature at a node at time, t, and
k = thermal conductivity in x- or y-direction.

For transient conduction, Eq. (1.3-24) is equal to the net energy
storage in the mass of the zone i,3j over a timestep At:

(t + At) _(t) (t) (t) (t) (t)
PR I L R 1 WG [0 T ik PR LD T T
P o At X Ax Ax
(1 03-25)
(t) (t) (t) (t)
G Ti,9=1°T4,4 + T4, 441-T4,4
y Ay Ay

or, re=-arranging,
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(t + At) Ky At [ (t) (t) (t) ]
'ri - ) -1 - 27 + Ty 1,9 -
e PCp (A )2 i=1,3 i,3 i%l, )
(1.3-26)
Ry OC
y (t) (t) (t)
Ti, 4«1 = 274§ + Ty ]
PCp (Ay)z i, i,3 ¢ 3*1

If ky = ky = k, then k/pCp = X, the thermal diffusivity. Expres-
sior (1.3%~26) is the stnngard explicit finite difference form of
the diffusion equatiocn, since all terms on the right-hand side
are known,

Convective, flux, radiation or adiabatic boundaries are easily
handled through proper alteration of the heat flow terms in the
energy balance equation [Eg. (1.3-24)). For example, for a con-
vective boundary at i+l,3j (where the conduction terms are negli-
gible), the associated Qi.j,6+ term in Eg. (1.3-24) becomes

Qi+1,9 = h Ay (Tee = T4, 4) (1.3-27)
where h = convective heat transfer coefficient, and
Tee * temperature of the fluid to which the solid surface

convects.

The radiative and adiabatic boundaries may be handled in a simi-
lar fashion.
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1.3.3.3 g$tabllity and Accuracy of the Explicit Scheme

The critical timestep for stability, assuming Ax = Ay = the
smallest dimension in the grid (see, for example, Karlekar and
Desmond, 1982), determined from Egs. (1.3-25 and 1.3-27) is:

Ax) 2
At € — (1.3-28)

[ %)
2k

where X = thermal diffusivity,
h = convection coefficient, and

k = thermal conductivity.

The accuracy of the explicit solution scheme is determined by the
introduction of errors from several sources. A strict definition
of error in the explicit formulation is not obtained simply be-
cause error arises from the finite difference approximations
used, as well as the grid discretization and timestep. The ex-
plicit solution introduces a mixed order of error in the diffu-
sion equation. This is because a forward difference formulation

is used in time, the order of which is O(h!), and a central dif-
ference is used in spatial coordinates, the order of which is
O(he).

1.3.3.4 Implicit Solution Procedure

An implicit solution procedure can be used to solve the diffusion
equation. A central difference in time corresponding to the
half-timestep can be used, whereas the explicit formulation uses
a forward difference in time. The spatial derivatives may also
be represented by averaging central differences at t and t + At.
An an example of this procedure, the diffusion equation in one
dimension (x) can be written as
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.« 4% _i%) (t + At) t + At) (t + At)
PCp [ T4 ! ] 4 [ Tisl . 241 + Ti-1
2

k At

(Ax) 2

(t) (Qf :;‘ (t)
Ti-1 = 274§ Ti-1
. (1,3=-29)

(Ax) @

This method, known as the Crank-Nicholson method, has the advan-

tage that it provides stable solutions for all values of At. The
gridpoint temperatures now not only depend simply on the tempera-
tures at the previous timestep, but also on all gridpoint temper-
atures at the current step. This can be seen by the re-arrange-

ment of Eq. (1.3-29) to give

PCp A [ Ti+1%1/2 (AT {41)=2(T§+1/2(AT§) ) +T141+1/2(AT{41)
kAt i (Ax) @

(1.3=-30)

since Ty (t + At) = Ty (t) + ATy, where AT; are the unknown tem-
perature increments. Because of this dependence, a system of
equations must be solved. This requires greater memory, as the
temperature coefficients must be stored for each gridpoint. The
implicit method requires that a set of equations be solved at
each timestep for the AT;.

In matrix notation, the explicit method can be written 2s
AT = C T {1.3=31)

where C is a coefficient matrix, I is a vector of temperature,
and AT is a vector of the temperature change. Notice that AT is
a function of T only. Similarly, the jimplicit scheme can be
written as

AT = € [T + 1/2(AD)) (1,3=32)
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where 4T is a function of T and AT. This equation can be rewrit-
ten as

(I - (1/2)C] AT =C T {1.3-33)
where we need to solve for AT at each timestep.

The matrix
A= [I - (1/2)€) (1.3=-34)

is diagonally dominant and sparse, because only neighboring
points contribute non-zero values to C.

Thus, this set of equations is efficiently solved by an iterative
scheme. For ease of implementation as a simple extension of the
explicit method, the Jagobi method is used. For the NxN system
Ax=L, this can be generally written for the n'" iteration as

(n+1) Bi N rajy (n) i=1,2,..N
Xi 0 pew— - z [—AXj ] n .= 1121000' (103-35)
8ii jml L a44
i
where aj4 are the array elements of A, and
bj are the elements of the right-hand side vector
- that is:
e q N (n) (n)
Xy Wog— DL + X4 (1.3-36)

aji =1



For E3. (1.3-33), this becomes

(n + 1) 1 N N 1 (n)
AT “ L Ciq4Ta= X (Byqy =~ =C¢C AT
i T 1TV B e e R ek - T Wi L o
Y (1,3-37)

where Ci4 are elements of the C array.

This implicit scheme equation can be compared to the explicit
scheme, which can be written as

N
ATy = I Cij Tj (1.3-38)
J=1

The amount of calculation required for each timestep is approxi-
mately n+l times that required for one timestep in the explicit
scheme, where n is the number of iterations per timestep. This
extra calculation can be more than offset by the much larger
timestep permitted by the implicit method, which makes the impli-
cit scheme advantageous when rthe temperature change is linear in
time.

1.3.3.5 gStability and Accuracy

As described previously, the implicit solution scheme holds the
advantage that it is unconditionally stable for all timesteps.
However, the differencing scheme presented in Eq. (1.3-29) as-
sumes that the temperature change is a linear function of time in
a single timestep. Depending on the problem to be modeled, this
assumption may lead to inaccurate results if temperature gradi-
ents are very high, or are changing very rapidly-— e.g., at early
times in a simulation. 7The code uses a Jacobi iteration method
to solve the system of equations at every timestep. From a
strictly numerical perspective, convergence of the iteration is
achieved if
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N

laggl > I lagyl §eli B, i viel (1.3-39)
¥=i
I¥L

where aj4 are the coefficients of the sclution matrix A described
previously.

The above condition simply means that it is possible to obtain a
numerical solution to the system of equations, but that solution
has no bearing on the acc.racy with which the derived solution
compares to the true solution.

There is no explicit method IZor determination of convergence to
the true solution as a function of timestep since the convergence
depends on many factors, including the properties, grid dimen-
sions and grading, and boundary conditions. In most cases, the
critical timestep [(from Eq. (1.3-285))

Ax) 2
At S Sl (1.3-40)

(v
ax 1 + cweem
2k

provides a lower bound estimate for the implizit timestep. A
trial aand error procedure is raquired to set the timestep above
this value. Typically, a thermal problem is set up and initial-
ized using the explicit procedure.

1.3.3.6 Thermal Stress Coupling

The heat transfer may be coupled to thermal stress calculations
at any time during a transient simulation. The coupling occurs
in one direction only—i.e., the temperature may result in stress
changes, but mechanical changes in the body resulting from force
application do not result in temperature change. This restric-
tion is not felt tc be of great significance here since the ener-
gy changes for quasi-static mechanical problems is usually negli-
gible. The stress change in a triangular zone is given by [(from
Eq. (1.2-8))

Acij = - Aaij 3K a At (1.3=-41)
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The above assumes a constant temperature in each triangular zone
which is interpolated from the surrounding gridpoints. This
stress is added to the zone stress state prior to application of
the constitutive law.

1.3.4 Basic Fluid Flow Finite Difference Equations

1.3.4.1 Introduction

FLAC models the full coupling between a cdeformable, porous solid
and a viscous fluid that flows within the pore space of the
solid. The fluid obeys the anisotropic form of Darcy’s law, and
is assumed to be compressible, with a bulk modulus of K. Non-
steady flow is modeled, with steady flow treated as an asymptotic
case. At present, the code only handles fully-saturated flow,
with phreatic surfaces represented crudely with a zero-pressure
cut-off for pressures that try to become negative.

The interaction between solid and fluid inveolves two mechanisms.
First, changes in pore pressure cause changes in effective
stress, which affect the response of the solid constitutive model
(for example, a reduction in effective stress may induce plastic
flow). Second, changes in the volume of a zone causes changes in
the pore pressure within the zone, since the fluid has a non-zero
bulk modulus. Both of these effects involve a solid response
;imo that is short compared to the time associated with fluid

ow,

It is possible to model several extremes of stress and flow be~-
havior, and all the cases in between. On the one hand, if the
solid matrix is very stiff compared to the fluid compressibility,
the fluid flow is unaffected by the solid matrix; tr=z diffusion
equation is solvea by marching in time. At large t.mes, the
solution converges to that of the Poisson equation, On the other
hand, if the permeability is zero, but the fluid bulk modulus is
comparable to that of the solid, mechanical deformation causes
pore pressures to change. For example, if a footing on a poro-
elastic half-space is suddenly lcaded, a pore-pressure distribu-
tion will exist when equilibrium is reached. 1In this case, the
fluid will serve to make the solid appear stiffer. 1I{ the perme-
ability is then set to some finite value, dissipation occurs, al-
lowing the solid matrix to relax—i.e., some time~dependent move-
ment (consolidation) of the footing occurs.,



Because the groundwater flow is modeled as a transient problem,
any analysis involving flow occurs in real physical time. In
this respect, the fluid flow and heat transfer logic are similar
in that flow (fluid or heat) is treated as transient, whereas the
mechanical coupling is treated as a quasi-static process.

There are several ways of solving the fully-coupled equaticas. A
review of methods is given in Hart (1981). Common to all methods
is the solution of Darcy’s law within an element. Tc¢ avoid
"checkerboarding" in the pressure distribution, it is assumed
that pressures are lccated at gridpoints for the purposes of the
flow calculation. These are regarded as the "master" pressuren,
Zone pressures ("slaves") are derived from the master pressuces,
A matrix can ke derived for each zone to relate the unbalanced
flows at the four surrounding gridpoints to the pressures at the
same four gridpoints since fluid flow is linear according to
Darcy’s lLaw. This matrix must be updated if significant geom=-
etric changes occur, or if the permeability depends on mean
stress, Section 1.3.4.2 contains a derivation of the matrix.

When unbalanced flows exist at gridpoints, the continuity equa=-
tion is invoked to compute the changes in pore pressure at the
gridpoints. The equation also contains source terms from exter-
nally-applied flows and from mechanical volume changes. Section
1.3,4.3 preserts these equations. The word "node" is used inter-
changeably with the word "gridpoint" in what follows.

By default, the flow and continuity equations, and the mechanical
calculations, are all done at each timestep in FLAC. Hence, the
non-steady response of the fluid is masked to some extent by the
response of the mechanical system, if the latter is not near to
equilibrium., The option exists to switch off either the mechani~-
cal or the flow calculation. 1If the flow calculation is switched
off, then the mechanical effect ot the fluid is still accounted
for. The only fluid solution scheme impliemented currently is an
explicit one.
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1.3.4.2.1 "Stiffness Matrix" for Elements in Fluid Boundary

Darcy’s lew for an anisotropic perous medium is

ap
Vy = Kij 5;; (1.3-42)

where Vi is the specific discharge vector,
P is the pressure, and

Kiq is the permeability tensor.

Each quadrilateral element is divided into two pairs of triangles
in two different ways (see Fig. 1.3-1(a)). The specific dis-
charge vector can be derived for the generic triangle of Fig.
1.3=7,

By Gauss’ theorem,

P 1
— —J Pni ds (1.3-43)
A
g
Hence, Eq. (1.3+42) becomes
Ky

Vy & -;l z Pny s (1.3-44)

where Z is the summation over the three sides of the triangle.
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Fig. 1.3-7 Nomenclature for Determination of Specific Discharge
Vectors from Gridpoint Pressures

For the x-component of Vi,
1
Vy = X [ Ki1 Z Pnys + Ky2 I Pn3s ] (1,3-45)

The contribution of side (ab) of the triangle to the summation is

(ab)

(b)
Vi =

-y [-xn(p(b)»«pm) (%2 -xé”) + Ko (P(P)4p(8)) (%9 " =xj

(1.3=46)

Similarly, the y-component of Vi from side (ab) is:

ab) 1 (b) (a)
vé " e [ “Kp1 (P(B)4p(8)) (ko  =xp ') + Kpp(P(P)apla)) (7 =x;

(1.3-47)

The other two sides, bc and ca, provide similar contributions to
Vi. This specific discharge vector is then converted to scalar
volumetric flow-rates at the nodes by making dot products with
the normals to the three sides of the triangle. The general ex~-
pression for nodal flow rates is

(b) (l))

(b) (a))

)

)
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Vi njy s
Q = (1.3-48)

where the factor of 2 accounts for the fact that we take the
average of the contribution from the two triangle pairs that make
up the quadrilateral element,

In particular, the flow-rate into node (a) in terms of coordi=-
nates is then

(b) (¢) (b) (¢)
[ “ Vaikg = %3 ) * Vaimy =~ m ? ]

0la) = - (1,3-49)

Similar expressions apply to nodes (b) and (¢). Nodal flow rates
are added from the other three triangles shown in Fig. 1l.3-1(a).
A stiffneses matrix, M, for the whole quadrilateral element can be
defined in terms of the relation between the pressures at the
four nodes and the four ncdal flow rates by combining Egs. (1.3~-
44) and (1.3-48). The matrix representation is:

{Q} = [M] (P} (1.3-50)

The effect of gravity is incorporated as follows. 1If the gride-
soint pressures around a zone conform to the hydrostatic gradient
P/0xy = gipw, where gi is the vector of gravitational accelera-
tion, then the nodal flow rates (Q) should be zero. Hence, Eq.

(1.3-50) is modified as follows

(1)
(Q) = [M] (P = (x{ = x5 ) 94 Pw! (1.3=51)
-0

(1)
where xj is the x-coordinate of one of the corners.



1.3.4.2.2 Continuity Equation

The flow imbalance between guadrilateral elements, IQ, at a node
causes a change in pore pressure as follows:

P Kw
Fye - IQ ( )

where nV is the pore volume associated with the node (n is the
porosity and V is the total volume). The term IQ is the net flow
at the node and includes contributions from the four surrounding
zones and any sources that are specified by the user (e.g., in-
flow from a well). 1In finite difference form, Eg. (1.3-52) be-
comes

Ky £ Q At

The term nV is computed as the sum of the contributions from all
triangular subzones connected to the node. Each subzone triangle
contributes a third of its volume-porosity product. The result-
ing sum is divided by two, to account for the double overlay
scheme in FLAC.

Tensile pore pressures at nodes are prevented by setting P « 0 if
the calculated pore pressure is negative. 2Zone pore pressures
are then derived by taking the arithmetic average of the pres-
sures of the four surrounding gridpeints.

1.3.4.3 Stability and Convergence

There are two aspects of numerical stability associated with the
pore~fluid scheme: first, an explicit solution of the fluid flow
equations regquires that the timestep is less than a critical
value; and, second, the bulk modulus of the fluid increases the
mechanical stiffness. The effect of increased mechanical stiff-
ness is incorporated into the density-scaling scheme already des-
cribed—that is, the apparent mechanical bulk modulus of a zone
is increased as follows: K := K + K,/n, where := means replaced
by, K is the solid bulk modulus, and n is the porosity of the
zone.
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The explicit fluid timestep can be derived by imagining that orne
node at the center of four zones is given a pressure of Pp. The
resulting nodal flow is then given by the summation of Eg. (1.3-
50) for each zone, which can be written as Q = Pp I Myy, where
I Mxx is the sum over the four zones of the diagonal terms cor-
responding to the selected node. The excess nodal flow gives
rise to an increment in pressure AP, accoréding to Eg. (1.3-53):

Ky Q At
” = - (103-54)
nv
The new pressure at the node, P(t *+ At) ig then
(t + At) Kw & Mgk At
P = Pgp + AP = Pp [ i - ] (1,3-88)
nV
This relation is stablu and nonotonic if
nv
At < (1.3=56)
Kw £ Mgk

The value of At used in FLAC is that given by this equation, mul-~
tiplied by a safety factor (0.8).

1.3.5 1Interfaces

1.3.5.1 Introduction

FLAC provides logic for frictional and cohesive interfaces to ex-
ist between portions of the continuum grid. Unlike interface
elements or "slidelines" in many implicit-based codes [e.g.,
Fossum (1984), Morgan (1901)), FLAC allows slip, separation and
recontact between bodies across frictional and cohesive inter-
faces which may have a tensile strength., Because FLAC is a large
strain code, large deformations may occur along interfaces. In-
terfaces are defined through specification of nodes which may po-
tentially interact. The code checks for contact between the
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gridpoints on one side of the interface with zone edges on the
other side of the interface, and sets uvp reaction forces to the
nodes based on the stiffness of he interface in shear and normal
directions. A Mohr-Coulomb slip condition is used to define the

elastic limit in shear.
1.3.5.2 Numerical Implementation

An interface is represented as a normal and shear stiffness be-
tween two planes which may contact one another (Fig. 1.3-8).

//////,4,/////_/4 side
Br

Fig. 1.3-8 An Interface Represented by Sides a and b, Connected
by Shear (kg) and Normal (kp) Stiffness

FLAC uses a contact logic for either side of the interface which
is similar in nature to that employed in the distinct element

method [e.g., Itasca (1989)). Figure 3-9 presents a simple flow
chart of the contact detection logic.
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The code keeps a list of the gridpoints (i,3j) which lie on each
side of any particular interface. Each point is taken, in turn,
and checked for contact with its ¢losest neighboring point on the
opposite side of the interface. Referring to Fig. 1.3-8, grid-
point P is checked for four contact conditions: (1) no contact;
(2) contact on segment between B and By; (3) contact on segment
between B and B;; and (4) contact, centered at B. Based on these
conditions, the normal, n, to che contact, P, and the "length",
L, of the contact along the interface belorging to node P are
calculated. The length associated with P is equal to half the
distance to the nearest gridpoint to the left plus half the dis-
tance to the nearest gridpoint tc the right, irrespective of
whether the neighboring gridpoint is on the same side of the in-
terface or on the opposite side.

During each timestep, the velocity, uj, of each gridpoint is de-
termined. Since the units of velocity are displacement per time-
step, and the Cimestep has been density-scaled to unity to speed
convergence, then the incremental displacement for any given
timestep is

Auj = uy (1.3-57)

The total normal and shear forces are determined by

(t+At) (t (t+(1/2)4t)
Fn = Fp . n Aup
(1.3-58)
(t+At) (t) (t+(1/2)At
Fs - FS o kS Aus :

Several options are available for specifying the conditions of
the interface which may require adjustment of the contact forces.

1. Glued Interfaces -— 1f interfaces are declared
glued, no slip is allowed, and no adjustment is
made to F, or Fg (i.e., the grid acts as a con-
tinuum) .
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2. Tension Strength — If tension exists, the Mohr-
Coulomb condition is examined for extensional shear,
followed by a check for the case of tension strength
set to some value. If the tension strength is ex-
ceeded, separation occurs and Fp = Fg = 0. The de-
fault case is zero tensile strength.

3, Mohr-Coulomd Shear Strength = The normal force is
input to the Mohr-Coulomb condition and examined
for compressional shear.

F.m.x = CL + t‘n‘ rn (1.3=59)

where C = joint cohesiorn,

L = effective contact length
(see Fig. 1.3-8), and

o = friction angle of joint surfaces.

If the criterion is satisfied, i.e., if [Fg| 2
Fgmaxs then Fg = Fgnay, with the sign of shear pre-
served.

The corrected forces are then rotated back to the global x~y ref-
erence frame (from the normal and shear directions) and lumped
onto the adjacent gridpoints in such a ratio as to preserve mo-
ment equilibrium. These are then summed with all the other
forces when unbalanced force sums are calculated for each tine-
step .

1.3.5.3 gStability

The influence of the interfaces must be accounted for in deter-
mination of critical timestep, or instability in the solution may
result. If the timestep is too large, the gridpoints on either
side of the interface may overlap excessively prioy to calcula-
tion of the opposing reaction forces. The result may be unstable
displacements along the interface., The factors controlling the
timestep contribution from the interfaces are the normal and
shear stiffnesses, and the gridpoint mass of the interface grid-
points.



As described in Section 1.3.4.2, the interface stiffness enters
the determination of the critical mechanical timestep for those
nodes which lie along the interface. The interface stiffness
contribution, ki, is given by

ki = 4 0 k (1.3-60)

where k is the norm of the shear and normal stiffnesses:

1/2
k = (kg2 + kp?) (1.3-61)

The multiplier 4 relates to the highest oscillation frequency of
a set of springs in series (see Fig. 1.3-10). 1In this mode of
oscillation, alternate nodes move in opposite directions. The
center of each spring is therefore at rest, by symmetry. A node
then "sees" two half-sprirgs in parallel, which accounts for the
factor of 4.

| - | +u | -u |
- - | - | -
M —— —e— A~ —
| | | {
i | k lk I
zero velocity
points

Fig. 1.3-10 Shear and Normal Springs in Series

Experience has shown that FLAC provides stable interface response
with the present form of timestep calculation for a majority of
problems. There is a practical limit on interface stiffnesses
for efficient modeling. 1If a high (or "infinite") stiffness is
required, the stiffness should be limited to ten times the equi-~
valent neighboring zone stiffness.
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Fig. 1.3-11 Schematic Illustrating Interface Normal Stiffness

For 20ne compression in the normal direction (see Fig. 1.3-11),

Cn
- K+ =@
en
(1.3-62)
= 1[x+ G]
un Ay
where e, is the strain in the noraal direction.
Hence, kp for the interface should be
10 4
k S-[K+—G] (1.3-63)
A Ay 3

This value of k, gives a good approximation to a "rigid" inter-
face without compromising efficiency.



1.3.6 Structural Elements/Cable Elements

1.3.6.1 Introduction

An important aspect of geotechnical analysis and design is the
use of stiuctural support in stabilizing the rock or soil mass.
FLAC provides logic for modeling o¢f the interaction of major sup-
port types, with the rock or soil mass allowing calculation of
support loads and moments.

Two major forms of support are used: structural elements and
cables (or bolts). The cables may be anchored at a specific
point in the rock (point-anchored) or may be grouted along their
length. Additionally, the cable may be pre-tensioneu or left un-
tensioned. 1In the latter case, forces in the bolt develop as the
rock undergoes deformation. The structural elements are two-
dimensional beams with three degrees-of-freedom (dof) at each end
node. These can be used for modeling interior support for tun-
nels (e.g., shotcrete, concrete arches, etc.) and structures such
as sheet piles or surface frame structures. The elements use the
same basic lumped mass formulation as in the continuous portion
of the FLAC code, and are therefore subject to the dynamic equa-
tions of motion. The equilibrium solution is obtained througi
damping of the motion equation. Structures may undergo large
deformations similar to the rest of tne code. Two restrictions
are made regarding the structural elements: (1) the self-weight
of the structure is not included when applying gravity (although
external forces may be applied to simulate self-weight); and (2)
the structures behave linearly elastically with no failure limit.

1.3.6.2 Structural Element Formulation

The structural elements in FLAC are standard two-dimensional beam
elements with rectangular cross-section with 3 degrees-of-freedom
(two displacements and one moment) at each end node (Fig. 1,3~
12) . A typical beam element is defined by its material and geom-
etric properties. The beam is assumed to behave as a linear-
rlastic material with no failure limit. The heam can be consid-
ered to have a cross-section (Fig. 1.3-13) with area A, and sec-
ond moment of area, I, and is defined by its endpoints, a and b,
with length L.
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Fig. 1.3-12 Beam Element Illustrating Nomenclature

i
d l.--ﬁbd'
J A= bd

e

Fig. 1.3-13 Rectangular Beam Cross-Section with Second Moment
of Area, 1, and Cross-Sectional Area, A

The orientation of the beam in two-dimensional space is defined
by its direction cosines, nj, tj, where (Fig. 1.3-14)

Xp = Xa  Ax 1/2
ek B cosh, z = (Ax? + Ay?)
¥b < Ya A 1/2
B e —% = sind, z = (Ax2 + Ay?)
(1,3-64)

ny = - ty = - cosé

npg =ty = 8in®

L S T



Fig. 1.3-14

The x- and y-forces at each node are given by

a)
where t;

a)
Fa

force

force

force

force in the i-direction at node

force

Direction Cosines for a Beam Element

(a) (a) (n)
ri - F. ti * !‘. '\i

b a) n
Fi ) - Fé £ty ¢ Fé ; ng

‘n the i~direction at node (a),

at a in axial direction,

at a in normal direction,

at b in axial direction,

(B),

(1.3-6%)
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ré“’ = force at b in normal direction,

ti.ny = direction cosines,

the superscript (n) refers to normal direction, and
the superscript (a) refers to axial direction.

The component axial and shear forces ana moments at each node are
given by the stiffness matrix for a flexural element (see, for
example, Chajes, 1983):

r - - -
(a) (a)
Fa Va
(n) (n)
Fa *- R | u, (1.3-66)
Ma 0y
(a) a)
fp ur‘:
(n) (n)
Fp Ub
- Mb - eb

(a
where ug ! - axial displacement at a,
(n)
ug = normal (shear) displacemen® at a,

a
ué ' - axial displacement at b,



‘0,.‘0

n
u; ! = normal (shear) displacement at b,

6, = rotation at a,

Op = rotation at b, and

A SYM,

0 &

Sl

0 4|

ke E v (1,3-67)
L | -A0 0 A
0% -4 0 %
0-4 2 o & 4

Various moment release conditions (i.e., pinned joints) may be
applied at each end node. These conditions are:

(1) M. = 0;
(2) My = 0; and
(3) M. b Mb s 0,

if N. - 0,

1 (n) (n)
0y = 3 (3/L) [ub - ua ] - 0y (1.3-68)
.
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1 Mp = 0,

b n) (n
Oy = ; (3/L) [ ué - VUa ' ] - 0, (1.3-69)

b § 4 = = 0,
“‘ k .. - ‘b -« 0 (1.3=70)

Numerical Implementation

The structural elements use the same explicit logic for numerical
implementation &s described in Section 1.3.3.2. Displacements of
the rock mass (ug,up) result in incremental forces and moments in
the structure vh!ch are added to the unbalanced force sum at the
respective node points. The structural elements may operate in
large strain mode, if desired. The coordinates are updated by!

Xy tw x4 + Ay (1.3=71)
(Note: Auy = Al, since At = 1.0 via mass scaling.)

1.3.6.3 (Cable Elements

Cable and bolt reinforcements in rock have tw? somewhat different
functions. 1In hard rock subjected to low magnitude in-situ
stress fields, failure may be localized to wedges of rock di-
rectly adjacent to the openings. The effect of the rockbolt re-
inforcement here is to provide a local stiffness at the joint
surfaces to resist their deformation. The bending, as well as
the axial stiffness of the reinforcement, may be important in re-
gisting shear deformations. 1In FLAC, this type of bolt action
may be modelad using beam elements which have a flexural rigid-
ity. The beams, however, do not allow the modeling of a gshearing
resistance along their length, as providsed by grout. In many in-
stances, it is necessary to consider more than just the local ef-
fect of the reinforcement—its presence in resisting deformation
must be accounted for along its entire length., Such situations
arise in modeling inelastic deformations associated with failed
rock and/or reinforcement systems (e.g., cable bolts) in which
the bonding agent (grout) may fail in shear over some length of
the reinforcement. The numerical formulation for rock reinforce-
ment which accounts for inelastic deformation of the intact rock
and shear behavior of the grout annulus is described here.
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The cable length is divided into a number of elements of length
L, with nodal points located at each end, The mass of sach ele-
n:n;tio iumped at the nodal points, as in the continuum portion
© C.

1.3.6,.3.1 Axial Behavior

The axial behavior of conventional reinforcement systems may be
assumed to be governed entirely by the reinforcing element ite
self. The reinforcing element is usually steel ang may be either
& bar or cable. Because the reinforcing element is slender, it
offers little bending resistance (particularly in the case of
cable), and is treated as a cne-dimensional member subject to
uniaxial tension (compression not allowed), A one-dimensional
constitutive model is adequate for describing the axial behavior
of the reinforcing element. In the present foumulation, the ax-
ial stiffness is described in terms of the reinforcement cross-
sectional area, A, and Young’s modulus, E.

The incremental axial force is calculated (using the same nomen-
clature as beam elements) by

al EA (a
Aé . - "y Aé ) (1.3=72)

(a) (1) (1) (2) (2)
where &u = (up = uy ) ty + (up = wp ) t2,

the superscript refers to the x(1) or y(2) directions,

the superscripts (b), (a) refer to the nodes of the element,
referring to its axial direction,

At present, a yield strength can be assigned to the cable. If a
cab.e force is greater then the yield value, the forces remain at
4 constant level.

in evaluating the axial forces developed in the reinforcement,
displacements are computed at nodal points along the axis of the
reinforcement as shown in Fig. 1.3-15, Out-of-balance forces at
each nodal point are computed from axial forces in the reinforce-
ment as well as shear forces contributed through the gr¢Jt annu-
lus. Axial displacements are computed based on accelerations
from integration of the .aw of motion uysing the computed out~-of-
balance axial force and a mass lumped at each nodal poin:,
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REINFORCING
ELEMENT (STEEL)

</ GROUT ANNULUS

EXCAVATION

AXIAL STIFFNESS
OF STEEL

SLIDER
REIWORCEMENT .~ = (COMESNVE STRENGTH
NODAL POIT . OF GROUT)

SHEAR STFFNESS
OF GROUT

Fig. 1.3-15 Conceptual Mechanical Representation of Fully-Bonded
Reinforcement Which Accounts for Shear Behavior of
the Grout Annulus

1.3.6.3.2 Shear Behavior of Grout Annulus

The shear behavior of the grout annulus is represented as a
spring slider system located at the ncdal points shown in Fig.
1.3-15. The shear behavior of the grout annulus during relative
displacement between the reinforcing/grout interface and the
grout/rock interface is described numerically by the grout shear
stiffness (Fig. 1.3-16). Numerical estimates for the shear
stress (an be derived from an eguation describing the shear
c;:;al at the grout/rock interface (St. John and Van Dillen,

i )¢

G Up = Vp
tg ® . . (1.3-73)
(D/2+%) in(1+2t/D)
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where up = axial displacement of the bolt,
Up = axial displacement of the grout. rock interface,
Gg = grout shear modulus,
D = bolt diameter, and
t = annulus thickness.
Consequently, the required grout shear stiffness Kpond Per unit
problem thickness is simply given by

2% Gy
in (1+2t/D)

Kbond * (1.3-74)

In computing the displacement of the grout/rock interface, the
following interpolation scheme is used. Consider reinforcement
passing through a constant strain-finite difference guadrilateral
making up part of the intact rock as chown in Fig., 3-17(a). The
incremental x-component of displacement (Auxp) at the nodal point
is given by

Augp = Widuyy + Waduyo + W3Augs + Wgluyyg (1.,3=78)

where Auyj, Auyp, Auy3, Axg are the incremental gridpoint x-
component displacements, and

Wi, W2, W3, Wy are weighting factors.
The determination of weighting factors is based on satisfying mo~

ment equilibrium and involves computation of contributions from
subelements.
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Ghuhmuuu‘:ﬂcouo
Surrounding Materiol

(a)

M b -

(b)

Fig., 1.3-16 Shear (2) and Axial (b) Behavior of Grouted Cable
Elements
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(8) typical reinforcing element passing through a guadrilateral
zone

(b) areas from a given subelement used in determining weightiny

factors for computation of displacement of grout/rock
interface

Fig. 1.3~17 Geometry of Quadrilateral Finite Difference 2one and
Transgressing Reinforcement Used in FLAC
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A similar expression is used for y-corponent displacements. The
weighting factors W, ui. W3, Wy are computed from the position
of the nodal point within any triangular subelement as follows:

Wy = Ay/Ar (1.3-76)

where Ap is the total area of the finite-difference subelement,
and

Ay is the area of the weighting tziangle in Fig. 3-17(b).

The final weighting is found by summing the contributions of all
triangular subelements and dividing by two, to account for super-
imposed zoning used in FLAC,

At each timestep, the old gridpoint displacements are used in Eq.
(1,3-73) to determine the axial displacement of the grout/rock
interface, uy. Using this displacement and the old cable force,
the axial displacement of the bolts due to shearing is determined
from Eqs. (1.3-71) and (1,3-72). These new displacements are
t?‘g g;oportionod back to the quadrilateral gridpoints using Eq.
(1.3* )o

In the present formulation, the maximum amount of shear force per
unit length in the grout annulus is limited to a value Spongd.
The peak ghear strength used may be estimated from the results of
pull-out tests or, should such results not be available, the peak
strength may be estimated as (St. John and Van Dillen, 1983):

Sbond = R (D *2t) tx QB (1.3‘77)

where t; is approximately one-half of the uniaxial strength of
the weaker of the rock and grout, and
Qp is the quality of the bond between the grout and rock
(Qg = 1 for perfect bonding).

The maximum shear force, Fpaxs Per unit problem thickness 1s,
therefore, given by

Fmax * Sbond (1,3-78)
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1.3.6.4 Stability and Convergence

The stability of the structural element solution cCepencs on the
structural timestep determined automatically by the FLAC code.

As done previously for the finite difference zones, structural
inertial masses are set equal to the effective stiffness con-
nected to the node in the coordinate directicons., The stiffness
(i.e., inertial masses) in the x, y and rotational directions are
required for timestep calculation, as well as the application of
the equation of motion to the structural masses. The stiffness
is found by the unit displacement method by alternstely fixing

a k)
Au; ) and Au; and calculating the values of the stiffnesses

ky and ky.

At end (a) of the beam, for example, let

Auy - 0,
a (n)
‘AF;' - Aé ; Ly ¢ AF ni (1.3-80)
a) EA _(a) n 12E1
|A§ | = -: Au and ’Aé ,l . SR (1.3-81)
L'

(a)
where |Au | = Auy ty , and

i, (D)
iau | = Aug ng

a)
Substituting Eq. (1.3-82) into Eg. (1.3-81) to 2btain |A§ | and

A;n) : . .
| | in terms of Auy, the following is obtained:

EA 2 12E1 2
|AF, | = "z ty Auy ¢ ny Aug (1,3=-83)




Similarly,

&yl ga 2 1281 2
S o e 03-.‘
Ky TA—J)L.T T t2 ¢ n2 (1 )

and, for rotation,

The above values ky, ky and ky are local stiffness values for the
besm elements whicg .:X connected to gridpoints of the finite dif~-
ference zone. The cable bolt stiffness, ko, is taken to be

Kpona * L
where L is the effective length of the cable element,

The weighted inertial mass is set egual to the sum of stiffnesses
for eacn node (recall that At. = 1.0). For the case of a struc-
tural node connected to a grigpoint. the inertial mass becomes

mig = mg + 4.0 (ki + kg)
y (1.3-88)

where i = 1,2 = %,y, and Mg = gridpeint mass.

The multiplier of 4.0 is derived as described previously.
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If a structural node is not connected to the grid, then

N (3=-86)
mt.kg

where ké is trhe sum of the stiffness contributions from each con-
nected beam.

These masses are now used in the motion egquation for the beams and
cables. Additionally, these stiffnesses effect the calculation of
timestep.

Experience with FLAC has shown the structural element formulation
to be stable and converge to the guasi-steady state adequately with
the present formulation for nearly all cases. Numerical instabil~-
ity has been observed in the case of an end-loaded column with
lower pin joint oubgoctod to a velocity locad on the free end. This
is equivalent to Euler buckling under dynami¢ loading. It is al-
ways possible to modify the code to allow manual reduction of the
timestep until stability is obtained; howaver, the limitations of
the structural elements for rapid locading needs to be recognized.

1.3.7 Axisymmetry
1.3.7.1 laoszeoduction

Many common problems in solid body mechanics involve geometries
which are symmetric about some axis of rotation. An axisymmetric
geometry allows for accurate modeling of the out-of-plane stress
component, thereby providing the ability to examine some typical
three~-dimensional geometries which often occur in geotechnical an-
alysis. Some of these geometries include pillars or laboratory
samples, advancing shafts or boreholes, bins, and perhaps some open
pit geometries.
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1.3.7.2 Eormulation of the Axisymmetric Difference Eguations

1.3.7.2.1 Basic Assumptions

The axisymmetric problem in FLAC is treated as a three-dimensional
problem in which roller boundaries are used in the x-2 plane, radi-
ating from x = 0 (Fig. 1.3-18). As the angle O approaches 0, the
solution approaches the cese of axisymmetry. Because 0O cancels
from all equations, this condition is always met, ancd the equations
can be expressed in terms of rectangular, rather than polar, co-
ordinates. Stresses can therefore be expressed in terms of 0;),
U122/ 022 and 033, where 033 is the ocut-of-plane component.

It is assumed that x = 0 is the axis of symmetry anc any gridpeoints
that have x = 0 (within a tolerance) are fixed in x. For large

~

strains, any gridpoints which move to x = 0 are also fixed.

.

symmetry Treated As a Special Three-Dimensionral
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1.3.7.2.2 Strain Increments from Gridpoint Velocities

The Gauss divergence formula in three dimensions is given by

af 1
Ixy V faces '

where faces = the five faces of a triangular zone,
AA = area of a face,

'

volume of a zone, and

f = a scalar, vector Or tensor.

A typical triangular wedge element is shown in Fig. 1.3-19, and is
defined by its five faces. Edge face (by, by, ap, aj) is shown in
this figure. Note that edges (aj-ap, by=~bp, ¢3-C2) have a radius
of curvature but are assumed to be otraith. The top surface of
the wedge (face a,b,c) is in the x-z plane. The outward normals of
the edge faces are given by

ny = Sa/8
(1.3-88)
ng = - 81/8

ny =0

where ni,ny are the x and y normals to the face, s, in the x-y
plane,

b a

83 = (x3 = x1), and
b a

82 = (x2 = x2).

For the triangular faces, n} « 0, n = 0, and n3 = 1 for the
a3,by,cy side, and ny = - sin®, n3 = cos® for the ap,bp,cy side.
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For any given edge fa
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Substituting expressions for A, f and x, and solving:

': fa *? fy ]

3."'b
1 1

i
<f>» = ; [ fa ¢ Ip * (1.3-91)

The volume, V, of the wedge element in Fig, 1.,3-19(a) may be found
from the Gauss divergence formula for the gradient of xi along Xxy:

po. : z AA 3-9
- “Xi> N (10 - 2)
9x; Veaces el

and, since the left-hand side is the sum of the gradient: in each
of the three directions, the volume is

1
Ve - [ X (X1 Ny + X2 n2 + X3 n3) AA ] (1.3-93)
$ faces
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By substitution from Eq. (1.3-89) and the normals,

P
P
[ (x: * xb)
1
Ve = I x> (xg - x2) cstunseenten 0 +

3 | 3 sides ( -

| -

P g - ]

- X

[ - 8in® X; Ap + cos® X3 A

L

where Ajp is the area of the triangular face,
X, = (%12 + x1® + x1©)/3 , and
X3 = 0 x;.

Since, as 0 -> 0, sin® -> 0, and cos® -> 1, the last two terms can-
cel. Substituting for <x3> and <x3> from Eq. (1.3-89) Eg. (1.3-94)
reduces to

V=8 X1 Ap (1.3-95)



The volume term can be calculated ¢ ) triangular subele~

men=e in FLAC (a,b,¢,d), where Ap f d are the same as
the 2-D version,

Knowing <f> and V, expressions for fference formulas for
gradients of <f> can be derived:

and

of 1
g e w18 (£, = f)) ¢+ xyF
X2 2AA "

The above expressions can be used to determine the gridpoint
velocity, gradients and, hence, the strain components from th
standard expression,

9+
:—;'] At
oxy

The out-of-plane strain component, e33, can be found from

J
¥

since x3 = Ox,, and

uy = Bu;.

-
i

the
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1.3.7.2.3 Mixed Discretization

The mixed cdiscretization procedure, described previously, is again
used in the axisymmetry to ensure accurate solutions for plasti-
city. Recall that each guadrilateral is divided into two sets of
“riangular elements: A and B; and C and D, A similar procedure is
used for both sets. A and B are used here as an example of the
mixed discretization procedure.

Prior teo cclling the constitutive laws, the strains (calculated in
the subroutine STRESAX) are averaged using the mixed discretization
procedure. For a quadrilateral, the normal strain increments are
averaged by

€ " VA * ‘B Vl

AB kk kk

exk * (1.,3=100)
VA + yB

.AB
where exx = averaged strain increments,

A B
exk+ €xx = strain increments from triangles A and B, and

VA, VB = volume of triangles A and B (see Fig. 1.3-1).

The strain increments from A and B are given by

. A . (A; . A

A au{ ; dup aué :

®kk * . ¢ (1.3-101)
Ixy Ix2 ax3

Strain increments are determined separately:; then, the average
normal strain increment is determined. From the average, the indi-
vidual increments are determined.



ey
¥

1.3-89

For example, the strain increments for triangle A are:

A 1 .AB « 2 (dev)
ot Wi 3 ®xkx * €11

. A
A (dev) 9vy 1.
wvhere e - -8 nd 1.3-
11 sty ™ % & ( 102)
. (A . (A) L (A
TV A ) 9uy 3U§ ;
.V - + *

Ixy %2 %3

There is no correction necessary for shear strains, as they are
decoupled from normal strains and are g¢iven by

€12 * =" & g

; 2, a4
et

1.3.7.2.4 Averaging of Pressure Terms

After calling the constitutive law, and prior to determination of
equivalent gridpcint forces, the pressures in triangular zones are
averaged using the mixed discretization procedure. Again, for the
A-B triangle pair:

A yA B yB

b SV egyFY

Oy = (1.3=103)
vA 4+ VB




where oph = = (0917 + 022® + 033}4), and

1
0P © 3 (0127 ¢ 0228 + 033 .

The stresses, adjusted for the pressure term, Mve

'A A (dev) ~AB :
011 = 013 + Op ., etc., for normal stresses

A (dev) A A
where 01, « U1 = Oy , etc.

012 is unaffected by correction.

1.3.7.2.5 Determination of Gridpoint Forces From Stresses

In the 2+-D version of the code, x- and y-component stresses within
each zone are assumed to act over a line segment which connects the
centroids of the zone surrounding any specific gridpeint. The
stresses are transformed to equivalent x- and y-oriented forces us-
ing the length of these line segments and are applied to the grid-
point. 1In the axisymmetric case, the stresses are applied over an

area of the triangle subelement rather than a line segment.

- e

is shown in Fig. 1.3-20., The area of the region, Ap, 1

-

The area over which 049 acts for gridpoint calculation for point a
$

(Ade * Aef), which is given by:

Ay = 0
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where the coordinates at d, e and f are assumed to be the averaged
coordinates of the corner points. In terms of the corner coordi~
nates, Eq. (1.3-1085) reduces to

0 3 b ¢ b ¢
Ay = 3% [ = 2hp + 3 (2x3 + %3 + x3) (x2 = x2) ] (1.3-106)

Fig. 1.3-20 Triangular Subelement Showing Area for Gridpoint Force
Calculation at Gridpoint a

In the axisymmetry model, the gridpoint masses are determined in
the same way as in the 2-D case—that is, no regard is given to the
out-of-plane direction. Therefore, the masses are scaled by a fac-
tor ¢f the order of the thickness of trh2 wedge element, Oxy. The 0
term in the above equation may therefore be replaced by (l}xl) to
scale forces to account for the mass in the third direction.

The force contribution from the z-direction can be found by examin-
ing the area upon which the force acts. The projection of the area
of the triangular subregion representing gridpoint a (area a,f,e, d
of Fig. 1.3-20) perpendicular to x is given by:

AA

A= - nx -—3— '1.3-107)



where ﬁ%’il 1/3 the area of the triangular element, and

ng = = 8ird, (1.3-108)
The ocut-of-plane force component will be

Aj
!‘3 - - Ozz sinb "; (1.3-109)

B
or, normalizing by the scaling factor 1/(x)0),

1 Ap
Fa = 3 Oz2 ;: (1.3-110)
1

This completes the major changes in the differencing logic neces-
sary for axisymmetry. The changes necessary in the constitutive
models to account for axisymmetry are described in Section 1.4,
Constitutive Mcdels.

Other sections in the code concerning force application must also
be modified for axisymmetry. These include applied external forces
and gravitational forces.

1.3.7.2.6 Equivalernt Applied Forces

Similar logic is used for the conversion of stress to gridpoint
force, as previously described. Figure 1.3-21 shows an edge of the
triangular 2one.

Xe

x%e x°e

a
X b

Fig. 1.3-21 Nomenclature for Gridpoint Force Calculation in
Axisymmetry, Typical "Edge" Shown



b ""

For example, the x-force for gridpoint a is found from

1 B b 5
(a) x * X [ X * X3 LY ]

2 i

(1.3=-111)
or

EY b
3xy ¢+ x3
yed 4x8

|

a
where use has again been made of the scaling factor 1/(xy).

1.3.7.2.7 Equivalent Gravitational Fo.ces

The gravitational force component must consider the volume of an
element for calculation of equivalent gridpeoint forces. Figure
1.3-22 shows an element, as before.

o
et

. A’ -A.‘A.

<

Fig. 1.3-22 Triangular Element Subdivided for Cravity Force
Calculation




The volume of the triangular subelements Ay and Ay are found from

‘\"e;zAk

where X is the average coordinate of the triangle.

The applied gravitational force is

Fg = pgv

»

bl Vel ‘ id conv ne

The stability and convergence of the axisymmetric model is subject
to the same constraints as described in previous sections.

1.3.7.4

It is not reasonable to run all constitutive models

e -

mode due to symmetry considerations. The models not

the axisymmetric logic are transversely isotopic, ubigqui
and strain softening,.
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1.4 COMPONENT MODELS
1.4.1 General

1.4.1 W:WMLM
Iransient Froblems

This section of the document describes the component mechanical
constitutive models available in FLAC. All of the laws are non-
transient in nature (i.e., gquasi-static), but may be solved in
combination with either the thermal or groundwater transient
logic. The type of coupling between these models is illustrated
in Fig. 1.4-1. The mechanical and thermal models, although both
available within the FLAC program, act essentially as uncoupled
codes. The thermal model provides temperatures and thermal
stresses to the mechanical model. Only the WIPP creep law given
here has temperature-dependent mechanical properties. The me-
chanical model does not provide any "feedback" respcnse to the
thermal model. As discussed in Section 1.3, this is not consid-
ered to be a restrictive assumption for geotechnical purposes.

MECHANICAL MECHANICAL
> e Mechanical
W peratures ore ures, Vol Strain,
S — ;.h:‘nnﬂ !'n-'uo Effective Stress Ch:n'mo In i
Pore Pressures
THERMAL F.UID FLOW

Fig. 1.4-1 Means of Coupling Transient and Mechanical Models in
FLAC
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A typical thermomechanical problem is conducted in the following
fashion., First, the thermal problem is run to a given time t, at
which the mechanical state of the body is required. The thermal
pertion of the code is decoupled, or not solved, and mechanical
timesteps are conducted until the body reaches equilibrium or a
steady state. The thermal stresses are merely treated as addi-
tional out-of-balance forces at the gridpoints. The thermal
stresses may result in stress failure for models which allow
thermal behavior. This procedure is valid as long as:

(1) for aon-linear mechanical models, the temperature
should not rise and fall prior to conducting me=-
chanical steps since this process may be load-path
dependent;

(2) for creep models, the coupling between thermal and
mechanical models needs to be performed with great
caution. The creep timestep must be set manually,
but must be performed compatibly with the thermal
timestep. Since the creep timestep is set manual~-
ly, stability in the solution is not insured if not
chosen correctly.

The fluid flow model can be operated with mechanical behavior de-
coupled or in a coupled fashion. The coupling methodology is
shown in Fig. 1.4-2.

LW FLOW
CALCULATION
(DARCY'S LAW) VECHANICAL
STRAIN
NEw INCREMENT

OFECTIVE STReSS|  CONSTMTUTVE

u"gaié//,af"“' (mmz:un

Fig. 1.4-2 Method cf Fluid/Mechanical Coupling
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During the timestepping procedure, Darcy’s Law is invoked, and
fluid flow timesteps are conducted. The number of fluid time-
steps prior to mechanical steps is controlled by the user. The
sequence shown in Fig., 1.4-2 is conducted once per timestep
(i.e., one fluid timestep per one mechanical timestep), as the
default. The fluid flow calculations result in an updated pore
pressure distribution. These pore pressures are added to the to-
tal mechanical normal stress components determined from the nodal
force balance. The effective stress for a zone is given by

O'kk = O'xx = P. The effective stresses are then used in the
constitutive law for determination of stress increments. Vol-
umetric strain increments are applied to the fluid/solid mixture
to determine pore pressure increments. The coupling here is per-
formed via the bulk mcdulus of the mixture, Ky := K + Ky/n. The
mean stress increment due to fluid pressure cﬂange from the vol-
ume strain is given by

Kw
Aﬁo L Aev ""; (1-4'1)

Figure 1.4-3 illustrates the conceptual representation of the
fluid stiffness effects on the overall stiffness of the system.

aP ac0’
K
- .
(PORE L) (SQLD)
Vi

Fig. 1.4-3 Schema
the To

t ct
I S
»

moO

he Effect of Pore Fluid Stiffness on
m Stiffness for Fluid-=Solid Coupling



These new pore pressures are then used to drive fluid flouw via
Eq. (1,3-55). The pore pressure effects can result in non-linear
material behavior for the plasticity constitutive laws. For ex-
ample, yield may occur in a Mohr-Coulomb material as fluid pres-
sure is increased, as the effect of pore pressure is to translate
the Mohr’s circle toward the origin along the normal stress axis
(see Fig. 1.4-4).

/" Failure Criterion
T . "n ~ pltang + ¢

it - -—

Fig. 1.4-4 Effects of Pore Pressure on the Stress State

The fluid/mechanical ccupling may also result in the transient
conscolidation of the solid—for example, fluid flow as a result
of poro-elastic/plastic aquifer compaction beneath a footing.

1.4.1.2 General Methodoloqy for Implementation of Constitutive
Laws

Rll constitutive laws in FLAC use the same general numerical pro-
cedure. Rather than repeat this discussion in the following sec-
tions, it is given once here, and simply referred to in each sec-
tion concesning derivation of the numerical model. Figure 1.4-5%5
shows the ba.ic calculation procedure employed by FLAC for a
given zone for a single timestep. At the beginning c¢f a time=-
step, the following quantities are available to FLAC (calculated
from the previous timestep): (1) total stresses in each zone;

(2) gridpoint velccities; (3) pore pressures at each gridpoint
(if applicable); (4) temperatures at each gridpoint (if appli-
cable); and (5) totai plastic strain (if using the strain-harden-
ing/softening model).
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FTART CALCULATION CYOLE WiTH
GROPONT VIR OOITIER FROM PREVOUS TRE BTEF
(RUBPOUTINGE C YO

'

UPDATE VERMAL ETRERS #OR
THERMOMECHAMICAL MOORL
(BUBROUTINE G YOL B
wr
BASTO
pr e ot ———t e ———— ¢
Y
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MABTIOTY
GALGULATE TONE 8 TRAK ING REMENTS
(AUBROUTINE B TRESS FOR MLANE Y
STREBSAX POR AXY TRANS VERBE
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CONBTITUTIVE LAW JONT MOOR
M ERA TURER POR RIS, DETEAMINE “TRIAL BLAKTIO BTHEBE WO REMENTS
TEMPERATURE DEPIMOENT LAW COMAEC T AGCORDING TO LAW
UPDATE PORE PRERSUAE PROM TONE YOLUMETRIC STRAN Y
QENERA BTRAMN
HARO BNNGBOFTENING
Y eEt
LOOP OVER DETEAMINE GROPCAT FORGES PRCM TONE 8 TREGSES T
A ZONES (SUBROUTINE 6 TRERS OR 6 TRESBAX | KL VIN MODRL
VISCORLASTEITY
o
WIPP CREEP MOOR.
ADD GRDPCNT FORCES FROM NTEAFAC B8
AND BTALC TURAGARE B EMENTS S
(BUBROUTING ©YOLE) ONE OR TWO GOMEONENT
POWER LAW

PEAFOMM GROUNDWA TER L OW TIME STERS IF APSL CARE
UPDATE PORE PRESS URES
(BUBROUTINE OWALN

!

PEAFORM THERMAL UALCCULATIONS # APPLICABLE.
UPDATE TEMPERATURES
IBUBROUTINE TEMALN)

Y

UPDATE GADPONT MARRED IN LAAGE & “AN MODE
(BUBROUTING CHECK)

Fig. 1.4-5 Methodoleogy for Constitutive Law Implementation
(one timestep loop shown)
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The main timestepping routine, CYCLE, loops over the total number
of timesteps specified by the user for all zones in the grid.
Mechanical timesteps are first conducted. If a thermomechanical
analysis is being performed, the thermal stresses are updated
through a call to subroutine TSTRES. The strain increments are
calculated from the gridpoint velocities (from the previous time-
step) by calling subroutine STRESS or STRESAX—the former for
plane problems, the latter for axisymmetric problems. Here, the
existing pore pressures (from the previous timestep) are used, if
applicable, to convert stresses to effective stresses. The con-
stitutive law, with the exception »f the creep model, first de~-
termines trial elastic stress increments from the strain incre-
ments determined in STRESS. For elastic or transversely-elastic
models, no correction is necessary, and the code continues. How-
ever, if a non-elastic model is used, the effective stresses are
used as input to a failure criteria or creep law. If yield is
occurring, correction to the stresses are made, via a non-associ=-
ated flow rule, so that they are not in violation of the yield
function, For the creep models, the incremental strains are used
to determine new si.ress increments,

The new stresses are returned to subroutine STRESS, where the
Zone stresses are averaged by the mixed discretization method.
The stresses are then converted to eguivalent gridpocint forces
and returned to tle main timestepping routine, CYCLE. Here, the
gridpoint force contribution from the interfaces and structural
elements are added in to determine the out-of-balance force sums
at each gridpoint. The gridpoint pore pressures are also updated
via the nechanical volumetric strain increments for each zone.
This is done prior to fluid flow timesteps.

Next, thermal and fluid flow timesteps are conducted, if appli-
cable. Routines TEMRUN and GWRUN are called for thermal and
fluid flow steps, respectively. Finally, prior to application c¢f
the equation of rotion, the gridpoint lumped masses are updated
if large strain mode is invocked.

Tne equations of motion (subroutine MOTION) are implemented to
complete the calculation cycle. Using the out-of-balance forces
and gridpoint masses, this routine determines the velocities of
the gridpoints and the updated coordinates in large-strain mode.
This ends the calculation cycle. Non-linear constitutive laws
require no iteration to a system of equations. The stresses are
determined corresponding to the failure criteria or stress-strain
law, 21lso, the explicit procedure allows no additional computa«
tion 1f differing constitutive laws or properties are used for
each zone. There is also very little additional computation
necessary for non-linear constitutive laws. The timestepping
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procedure descriped here is conducted until the out-of-balance
force apprcaches a small value. This occurs when the problem ap-
proaches equilibrium or a steady flow condition. A typical prob-
lem may require 500 to 2000 timesteps to arrive at this condi-
tion, depending on constitutive model, number of zones, and gra-
dients of stress.

1.4.2 Elastic, Isotropic Model
1.4.2.1 PRurpose

The elastic model describes the simplest form of material behav-
ior. The purpcse is to provide for thermoelastic and elastic
calculations where linear elastic assumptions are reasonable.

1.4.2.2 Assumptions and Limitaticas

The elastic model is valid for hemogeneous, isotropic, continuous
materials which exhibit linear stress-strain behavior with no
hysteresis on unloading. The model may be applicable under
certain loading regimes and where hysteretic behavior is unimper-
tant, or of limited extent. Also, no material rupture is pro-
vided. FLAC assumes that the heat transfer is decoupled from the
elastic-mechanical analysis. This, in turn, assumes that there
is no mechanical coupling to the energy equation, and that the
inertia term in the motion equation can be ignored. These assum-
ptions mean that mechanical strain does not liberate heat, and
that stress changes caused by acceleration during heating are
small. These effects are negligible for non-dynamic problems.

The primary limitation of this model is that rock often exhibits
non-linear material behavior, particularly in an environment of
low confining stress (see, for example, Brady and Brown, 1985).
Also, deriving elastic properties for this model often involves
empirical reduction factors applied to laboratory measurements.

1.4.2.3 Notation

Table 1.4-1 gives the notation used in FLAC for the elastic
model. The elastic constitutive law is found in subroutine CL2;
the thermal strese calculation is performed in subroutine TSTRES.
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Table 1.4-1
ELASTIC MODEL NOTATION

Variable Notation

Algebraic Computer Comment Where Found

K zx (kk) bulk modulus Z2x( ) is a mater-
ial properties

G zx (kg) shear modulus array contained in
the main common
block FLACOM.,

011 sll XX-stress component passed through
common block

022 822 yy-stress component /STATE/

012 sl2 Xy-stress component

dej; dell xx-strain increment

Aez? de22 yy-strain increment

Aej) del2 xy-strain increment

k" stark maximum confined

modulus

1.4.2.4 Dexivation

Hooke’s Law in incremental form is given by the following equa-

tions.

Plane Strain:

A011 = @y Ae;;

AC22 = G2 Ael)

AC12 = 2G Adejy2

+ a2 Aez?

+ @1 Aer?

(1.4-2)



A0z = 40;2
K + (4/3)G,

where Q)

az = K = (2/3)G,

K = bulk modulus, and
G = shear modulus.
1 duj 3ﬁj }
Ae . - [-—-— *  — At 1.4+3
I Ox4  OXy§ : )

where Aejy = the incremental strain tensor,
Uy = the displacement rate, and

At = time step.

In plane stress, these egquations become

AG11 = Py Aeyy + P2 dep?

AG22 = P2 Aeyy + Py Adep2

1.4-4
AC12 = 2G Ae)) ( :

Aoy = A0y

2
where P, = a7 - (ap/a@y), and
2
Br = ay -~ (ap/0y)
For axisymmetric geometry, the third stress component is given by

AC33 = ap Aey) + G Aepp + &) Ae33 (1.,4=5)
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The incremental thermal stress components are given by
40i4 = - 834 3K @ AT (1.4-6)

where A0j4 = stress increment,
K = bulk modulus,
@ = linear isotropic thermal expansion coefficient,
AT = temperature change in a zone, and

8i4 = Kronecker’s delta.

1.4.2.5 Application

This model is applicable to any problem within the assumptions
and limitations given in Section -.4.2.2. This is particularly
true in hard rock masses which exhibit little yield for the given
stress conditions.

i.4.2.6 Numerical Method Type

NO new or unique numerical models are used.

1.4.2.7 PDerivation cf Numerical Model

FLAC uses the general logic illustrated in Fig., 1.4-5 for solu~
tion of the elastic problem., Because the solution is elastic, no
constitutive corrections to the stresses are regquired. By de~
fault, the code assumes plane strain; however, plane stress con-
ditions can be used at the discretion of the user Fig. 1.4-5
illustrates the calculation cycle for one zone per timestep. The
code loops over all zones, using the velocities and total
stresses calculated at the previous timestep to determine incre-
mental strains for the present timestep. At the completicon of
the calculation loop for each zone, the new stresses are con-
verted to equivalent gridpoint forces. The out-of-balance forces
tend to converge to zero at equilibrium or steady flow condi-
tions. The number of timesteps required to reach this state var-
ies from problem to problem, and must be determined by the user.
A typical elastic problem may require around 500 timesteps to
converge to equilibrium,
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1.4.2.8 Location

The major subroutine used in the elastic model (in addition to
those given in Section 1.4.1.2) is CL2, which contains the non-
stitutive law logic. This subroutine is called by STRESS.

1.4.2.9 Numericai Stability and ACCuracy

The numerical stability of the elastic model is determined by the
timestep used for calculation. As described previcusly, the cri-
tical mechanical timestep is defined for each gridpoint using the
sum of the stiffnesses attached to the given gridpoint., The pro-
gram uses a safety factor of 2.0 for the mechanical timestep, to
ensure stability. The thermal and fluid flow timesteps are simi-
larly formulated to ensure stability. The damping scheme used
can provide slightly overdamped solutions which generally ap-
proach the true solution from below. This is not always the
case, as some problems involving creep Or plastic flow have shown
slightly underdamped solutions. Experience with the program
shows that the timestep and damping schemes provide stable solu-
tions for all mechanical models, with the possible exception of
gholcroop models if the timestep variation is not chosen care-
ully.

It is impossible to develop a rigorous assessment of accuracy for
any problem, as it depends on many factors, including mesh dis-
cretization and application of boundary conditions. It is gener-
ally accepted that creation of a finer mesh discretization, as
well as location of infinite boundaries at great distance from
the excavations (greater than 10 radii), will provide acceptably
accurate scolutions.

1.4.2.10 Alterpatives

Other alternatives provided include a variety of constitutive
models for representation of anisotropic elastic or non=linear
behavior.

1.4.3 Elastic, Transversely-Isotropic Model

1.4.3.1 Purpose

The purpose of this model 1is toO provide for the ability to model
layered elastic media which exhibit elastic behavior, but modulil
which are different in the direction perpendicular and parallel
to the direction of anisotropy.
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1.4.3.2 pgsumptions and Limitations

This model has primarily the same limitations as the icotropic
elastic model, with the exception that transverse isotropy is al-
lowcd in the elastic properties. This means that layered media
which may have distinctly different moduli in twoe directions may
be modeled.

There are limitations to which the elastic properties may be var-

ied. Wardle (1980) gives these restrictions based on the re-
striction that strain energy must be positive:

Ey > 0:B2 >0/ F2 >0 1>v3 >=1;1=vy = 2vys vy > 0

where E; = modulus of elasticity in plane of isotropy,

E2 = modulus of elasticity in plane perpendicular
to isotropy,

V] = Poisson’s ratio, effect of normal strain in 1
direction on complementary strain in 1 direction,

Vi2 = Poisson’s ratio, effect of 1 direction strain on 2
direction,

V21 = Poisson’s ratio, effect of 2 directicon strain on 1
direction, and

Fg2 = E2/(1 + v)).

1.4.3.3 Notation

Table 1.4-2 gives the notation used in the elastic, transversely-
isotropic model.



Table 1.4-2

ELASTIC, TRANSVERSELY-ISOTROPIC MODEL NOTATION

Variable Notation

Algebraic Computer Comment Where Found

(V] zx (kang) angle of anisotropy z2x( ) is a pro-
anti-clockwise from perties array in
X axis the main program

common block

Gi11 zx (kg) cross shear modulus  FLACOM.

Ey zX (kxmod) modulus parallel to
anisotropy

E2 2x (kymod) modulus perpendicu-
lar to anisotropy

V12 zx (knuyx) Poisson’s ratio
relating to yx

V31 zx (knuzx) Poisson’s ratio

relating to 2zx

Stress and strain
increments are as
noted in Table 1.4-1.
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1.4.3.4 Dpexivation

For a transversely-isotropic body, FLAC assumes that the plane of
isotropy lies within the x-z plane (Fig. 1.4-6).

Fig. 1.4-6 Transverse Isotropy Coordinate Axes Convention
(x~2 direction is plane of isotropy)

For a general orthotropic elastic body, the stress-strain equa~
tions are given by Lekhnitskii (1981):

Aey; = S11401; + S124022 + 5134033

Aeg2 = S2140)1 + 5224022 + $234033

Ae3z3 = S31407) + S324022 + 5334033

(1.4=7)
Aep3 = (1/2)85444023
dej13 = (1/2)85554013
Ae1z = (1/2)8ggd012
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where: Sy; = cosd9/Ey + (1/Gyp = 2v12/Ey) sin¢ cos?¢ + sinfe/Ep,
$22 = 8in49/E; + (1/Gy2 = 2vy2/E;)sin?e cos?¢ + cosf/Ep,
S12 = (1/Ey + 1/Ep + 2v13/By = 1/Gy2)sin2¢cos?¢ - vy2/E),
S13 = - [(v23/E2)8in9 + (v13/E1)cos?e),
S23 = = [(v23/E3)cos29 + (v13/Ej)cos?e),
S33 = 1/Ej3,
Sqq = (c0829/Gp3) + (8in20/G13),
Sss = (sin29/G23) / (c0820/G13),
Se6 = 4(1/Ey » 1/Ep + 2vy2/Ey = 1/Gy2)sin2¢cos?9 + 1/Gy2,

® = angle of anisotropy anti-clockwise from the x-axis
(rigo 104-7)'

E; = modulus of elasticity parallel to x' axis,
E; = modulus of elasticity parallel to y' axis,

vi2 = Poisson’s ratio relating normal strain in y’
direction to normal strain in x’ direction,

v3] = Poisson’s ratio relating normal strain in x'
direction to normal strain in 2z direction, and

Giy = cross-shear modulus.

<,

Fig. 1.4-7 Planes of Elastic Anisotropy Oriented at an Angle ¢
From the x-Axis
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A state of plane stress with respect to the x-y plane is obtained
by setting A033=A0)3=A023 = 0 in Egs. (1.4-7). This gives:

Aey) = 51:40;; + 53124022
Aezz = $12401) + 5224022 (1.4-8)
Aejp = 1/2 Sged072

The inverse form of these equations are:
2
4011 = (S224e1; - Sy124e22)/(811822 = $12)
2
A022 = (~S124e311 + S118e22)/(811822 = S12) (1.4-9)
A012 = 24e12/8¢6

For a state of plane strain in the x-y plane is obtained from
Egs. (1.4-7) by setting

Ae33 = Aey3 = Aez3 « O (1.4-10)

This results in:

Aoy 3 = Aog3 = 0,

A033 = - (513407 + S234022)/S33, and

Ae1y = (531 - $213/533)4017 + (512 - $13523/533)4022, kit
(812 = 513523/8533)401) + (S22 = $223/833) 4972,

z B
- 0N
N n
H i

1/2 SggA012.
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The inverse form of these equations is:
Ac1y = C1i14ey) + Cy2de22
AG22 = Cp24eyy + Cp24e22 (1.4-12)
Aoyz = 2 Cgeldey
where: Ci; = (S22 - 5223/833)502,
Ci = =(812 = 313523/533)/802.
Ca2 = (813 = $132/833) /802,
Cee ~ 1/Sgg, and
So2 = §11572 - S122 + (2512813823 - 8115232 - 522813%) /833

For the case of transverse isotropy with the plane of isotropy in
the x-z plane,

E1 = E3
(1.4-13)
Vig = Vi
Thermal stress changes are determined from
AC;4 = 513 3K a AT (1.4-14)

E1 E2
E2 2(1 = vy1) + E1 (1 = 4 v21)

where K =



1,4.3.5 Application

The elastic, transversely-isotropic model is applicable to any
material which exhibite elastic behavior with directionally-
dependent response, but with isotropy in one plane. This model
may be applicable to layered or jointed hard rock in which the
Joint surfaces introduce a decrease in the modulus perpendicular
to the bedding direction. The restriction here is that the slip
between beds may be non-linear, but continuous. Large-scale sim-
ulations such as the thermocelastic response of the far-field of a
nuclear waste repcsitory in beddeu rock may be applicable to this
model.

1.4.3.6 Numerical Method Type

NOo new or unique numerica. methods are used in this model.

1.4.3.7 DRerivation of Numerical Model

The numerical application of tle stress-strain law is conducted
identically to the elastic formulation cescribed previouely. The
total stresses are determined directly from the incremental
strain components which have been calculated from gridpoint velo-
cities. These stresses, in turn, are used to determine equiva-
lent gridpoint force components.

1.4.3.8 Location

The elastic, tr-nsversely-isotropic model is found in subroutine
CL4 and is called from STRESS. Thermal stress change calculation
is also found in this subroutine, but called frcm subroutine
TSTRES.

1.4.3.9 Numerical Stability and Accuracy

The previous discussion for the elastic model (Section :1.4.2.9)
applies here. Again, the mechanical timestep controls the
numerical stability. The maximar -.0odulus term which follows is
used in determination of the confined modulus for sound wave
speed for timestep calculation (as described in Section 1.3.1):
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(1.0 = v33) ]
(1.0 = 2v13) (1 + W13)

Ey (max) = E; [

(1.4-195)

(1.0 = v21) ]

Ep (Omax) = E [ (1.0 = 2vy2) (1 + V12

The stability of the solution is also a function of the material
properties. As described in Section 1.4.3.2, limits on the
material properties are required to enforce strain energy dis-
sipation.

1.4.3.10 Adternatives

The elastic, transversely-isotropic model is restricted in the
ratio and magnitude of deformations which can be produced in the
plane of isotropy, and the plane perpendicular to it. This re-
striction is a result of the elastic assumptions as well as the
maximum differential moduli required for stability. The ubigui-
tous joint (anisotropic plasticity) model described in Section
1.4.5 provides an alternative description where interbed slip in
closely bedded materials requires a non-linear representation of
transverse isotropic behavior.

1.4.4 Mohr-Coulomb Plasticity Model
1.4.4.1 PRurpose

The jointed nature of rock masses often results in non-linear
material behavior. This behavior (if not time-dependent) is of-
ten represented using plasticity theory. One of the most popular
representations of plastic material behavior for rock, as well as
soil, is the Mohr-Coulomb model.

A large number of investigators have applied this model under a
variety of rock and soil conditions. For further discussion on
various plasticity failure criteria and application in rock and
soil mechanics, see Desai and Christian (1977).



1.4.4.2 Assumptions and lLimitations

The assumptions of the Mohr-Coulomb model are:

(1) the material is isotropic; and

(2) there is perfect (ideal) plasticity after the elas-
tic limit is reached.

This model assumes that the material resporse is elastoplastic,
That is, elastic behavior is followed by perfectly-plastic re-
sponse thereafter, as illustrated in Fig. 1.4-8, Laboratory
testing of most rocks and soils shows that yield occurs after
load is applied, followed by more-or-less linear response to some
peak load at which shear failure of the sample occurs. Load then
drops to some residual value where the capacity is approximately
constant with continued loading. Depending on the brittleness of
the response, and the loading stiffness, this residual strength
may be at or near zero. There is some debate as to the existence
of "softening" constitutive response as opposed to softening be-
ing strictly a geometric effect resulting from failure of the
rock.

“pook

e

Fig. 1.4-8 Elastoplastic Response



1.4.4.3 Notation
Notation for the Mohr-Coulomb model is given in Table 1.4~3.

MOHR-COULOMB MODEL NOTATION

1.4-21

Table 1.4-3

Yariable Notation
Algebraic Computer Comment Where Found
o si maximum principal passed through
stress named common block
/state/
o2 sii intermediate
principal stress
03 siii minimum principal
stress
K zx (kk) bulk modulus zx( ) material
properties array
G zx (kg) ghear modulus located in
. /FLACOM/
¢ zx (kphi) friction angle
' zx (kpsi) dilation angle
C zx (kcoh) cohesion
To zx (kten) tension cutoff

strength

failure criterion




1.4.4.4 Derivation

1.4.4.4.1 1Inclusion of In-Plane Stresses Only

The plasticity formulation in FLAC assumes an elastic, perfectly
plastic solid in plane strain or plane stress which conforms to a
Mohr-Coulomb yield condition and non-associated flow rule.
The Mohr-Coulomb yield surface is given by:

f =0y - NgOp + 2C (Ng)1/2 (1.4-16)

and the plastic potential function is given by

g = 01 = NyOz + 2C (Ny) 3/2 (1,4=17)

where Ng (1 + 8in§)/ (1 - sink) (§ = ¢ or v,

C = cohesion (positive sign),

¢ = friction angle,

VY = dilation angle,

01 = major principal stress

= 1/2 ((01] + 0z2) = [(012% + 1/4) (011 = ©22)¢) )

-cp"quand

02 = minor principal stress
= 1/2 ((011 + 022) + [(0122 + 1/4) (07; - ©22)2])

-OP*Oq.

The yield cnndition and plastic potential are as shown in Fig.
1.4-9, When the material yields, the stresses must be adjusted
to account for plastic strains. The total strain increments are
assumed to be the superposition of elastic and plastic strain in-
crements:
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P

Aey = Ae; + Aeh

dep = Aog + Aog

(1.4-18)

Fig. 1.4-9 Mohr-Coulomb Failure Criteria, f, Showing Tension

Cut-Off,

Plastic Potential Function,

Rate Increments

g, and Strain

The plastic strain rates are given by the non-associated flow

rule:

P

L A 39

301

(1.4-19)

where A is the scalar multiplier which accounts for the fact that
incremental strains are being related to finite stress compon=-

ents., For stable,

so~-called perfectly~-plastic,

plastic potential function, g,
to the yield surface, f,
A follows.

at yield.

is said to exist,

materials, the
and is identical

Derivation of the multiplier
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Multiplying the plastic strain rate (Eg. (1.4-19)) by At gives
the plastic strain increments:

P
Ae; = A At
(1.4-20)
P
A.z n .- A-Nv At

Recall that, in FLAC, At = 1.0, but it is left here for clarity.

The incremental principal elastic stresses are given by:
& e
A0y = Oy Ae; + Q2 Aer (1.4-21)

e
AGy = 0p Ae; + oy Aes (1.4-21)
where ; and & are the elastic constants given in Eg. (1.4-2).

Substituting Eq. (1.4-18) for the elastic strain increments and
Eq. (".4=-20) for the plastic strain increment into Eq. (1.4-21),
the incremental principal stresses are expressed as

A0y = a; (Ael - AAt) + ap (Aep + KNV At)
Aoy = a1 (Aep + ANy At) + ap (Aej; - AAt)

From a numerical standpoint, an estimate of the stresses must be
made at the beginning of the constitutive law. These estimated
initial, or "trial", stresses may then be corrected before leav-
ing the constitutive law if yield is indicated. It is convenient
to estimate initial stresses based on elastic theory and the to-
tal strain (since we do not, as yet, know what portion of the to-
tal strain is plastic).
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I I
Denoting the initial principal stresses by O) and 02, the

c
correction vector A0; can be written in two ways:

c I I
A0y = 0§ - 0 = AC; - A0y (1.4-23)
Hence,
b b
0y =0; - (Ao; - A0y)

The initial principal stress increments are given by

I
AC] = ) Aey + Qp Ae2
(1.4-24)

I
AC; = Qp Ae] + ) Adep

Substituting Eqs. (1.4-22) and (1.4-24) into Eq. (1.4-23) yields
the corrected principal stresses in terms of the trial initial
stress, the material constants, and the multiplier, A:

I
0, = 01 - AAt (@q - axNy)

(1.4=25)
I
02 = Oz = AAt (ap = GyNy)

The A value can be found since 0; and 07 must lie on the yield
surface (if a non-admissible stress state is cdetected). This is
done by substituting Eg. (1.4-25) into the equation for the yield
surface [(Eq. (1.4-16)) and equating to zero:



I I
01 = Ny 02 + 2C (NQ)I/2

AAt =
@) (Ng + Ny = ap (1 + No Ny)
(1.4-26)
2 f
Y
where Y = @) (Ng + Ny = a3 (1 + Ny Ny, and
(1.4-27)

I 1 27
f =0 - Ny 02 #+ 2C(N¢)*’2.

The corrected principal stress components are obtained by simply
substituting Eq. (1.4-27) into Eq. (1.4-25):

I f
01 = 01 = (@3 = G2Ny) ;
(1.4-28)

1
02 = 02 = (62 = a1Ny) =

1.4.4.4.2 1Inclusion of Out-of-Plane Stress Component

FLAC allows for two methods for consideration of the out-of-plane
stress component in the Mohr-Coulomb to constitutive law. First,
the user may simply define the out-of-plane stress, 033, and,
second, axisymmetry may be assumed. The following derivaticn of
the Mohr-Coulomb law follows closely that given previously. and
is modified from Cundall and Shillabeer (1977):



1.4-27

The failure surface, {, and plastic potential function, g, in
torms of principal stress iu 3-D are given by

f =0 - Ny O3 + 2¢C (N@)l/2
(1.4-29)
g =01 - Ny O3 + 2c (Ny?1/2
where N‘, erlro definec as before.
The strain increments are composed of elastic and plastic parts:
Aej = Ae1® + AeqF
dez = Aez® + Aepf (1.4=30)

Aey = Ae3® + AesF

The plastic strain increments are found from the non-associcted
flow rule:

P )
8 o\ g (1.4-31)
adi

A3 before, multiplying each component of Eg. (1.4~31) by the
timestep, At, yields the plastic strain increments

P
Ae1 = A At
P
Aer = 0 (1.4-32)

P
Ae3=“waAt

where in FLAC, At is set to 1.0.
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The stress increments can be described in terms of elastic con-
stants and elastic strain increment:

e e e
Aoy = ay Aey + QG Aez + @y Aej
AG, = Gy Aes + &p Ae; + ap Aes (1.4-33)

e e e
AC3 = a3 Ae3 + @ Ae; + ap Aep
where ) and @y are the elastic constants given in Eq. (1.4-2).

The above equations for elastic stress increments can be formu-
lated in terms of the total strains (Eq. 1.4-30) and plastic
strains (Eq. 1.4-32), such that Eq. (1.4-33) becomes

Aoy = @y (Aey - A) + a2 Aep + @y (Ae3 + ANy

Aoy = @y Aep + Gp (Aey - A) + @z (Ae3 + ANy
(1.4-34)

Aoz = @1 (Ae3 + ANy + ap (Aey = A) + O Aep

The initial (or trial) stress increment, had yielding not oc-
curred, is given as

Aol = @y Aey + ap Aez + ap Aes
Aoyl = oy Aey; + ap Aey + ap Aes (1.4-35)
Acsl = oy Aes + ap Aey + ap Aep

where Ae; are gtotal strains.
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b
Denoting the initial, trial principal stresses by Oj, the

¢
correction vector, Of, can be written in two ways:
¢ 1 i
A0y = 03 -~ O = A0y - A0y (1,4=36)

Hence, 0 = 0§ - (Aﬂi - A0y) .

The corrected stress becomes
O = 011 - A (@ - Ny @2)
82 = 02 = A @y (1= Ny (1.4=37)
o3 = 037 = A (ap - Ny @)

The multiplier, A, may be found by substituting these stresses in
the equation for the yield surface, f:

£e0« 0 -~ NO O3 + 2C(Ng)2/2 (1.4-38)
Substituting and sclving for A yields

i 011 - Ng 031 + 2C(Ng) 3/2

@ (1 + No Ny) = @z (Ng + Ny
«3
Y

where Y = @3 (1 + Ng Ny) = ap (Ng + Ny) .



1.4-30

The corrected stresses may be found by substitution of A into
Egs. (1.4-37).

For two-dimensional applications, two cases are possible: plane
strain or plane stress. In plane strain, dezs = 0
(i.0., Ae33® + Ae33F = 0). However, 033 may be 0y, 07 or 03.
1f 033 = 0y, then Aey = Ae® + Aeyv = 0,
~8e1® = Ae P =\, and (1.4-40)
A.)"”s"v.

In plane stress, 03? = 0, and the elastic strain component in the
out-of-plane direction is given by

B2
Ae33® = - s; (Aey1® + Ae22%) (1.4=41)

2
where By « @y - az/a;, and
2
B2 = 0y - az/ay .

The equations for stress correction (03, @) are derived as in
the general two-dimensional case, as qivcn by Eq. (1.4-28).

1.4.4.5 hpelication

The Mohr-Coulomb method is applicable in reock or soil masses

where isotropic yield occurs. In general, the model is appli-
cable where the rock is heavily jointed: that is, where the
fatio of joint spacing to opening radius, S/a, is about 0.25 or
ess.
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1.4.4.6 Numerical Method ITvRe
No new or unique numerical methods are used in this logic,

1.4.4.7 Numerical Method Derivation

Initial elastic trial streasses are determined first from incre-
mental stress derived from gridpoint velocities:

0117 = 017 + @y Aeyy + ap(depp + Ae3y)

0221 = 022 + ap(Aey; + Ae33z) + @y ey
(1.4-42)

0127 = 012 + 26 Aey

If ocut-of-plane stress components are to be included (at the
user’s discretion),

033 = 033 + @ Ade33 + @z (Aeyy + Aep2)
(1.4-43)

where 0111, 0221, 033, 01,7 = initial (trial) stresses, and
011/ 022, 033, U2 = existing stresses.
Note trat the user may wish to include the out-of-plane stress
component into the formulation. The principal stresses are given
by (compression is negative):
"11 = opI . oqI

(1.4-44)
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where opl = , and

) 1/2
ogl = : [ (@117 = @221)2 + 4 (09212 ]

The stresses are checked against the tension cutoff, 7T,, for the
two conditions given below. It is essential tnat if tgo tensile
strength is overcome, then the tensile stress immediately drops
to zero for that zone, simulating failure:

(1) failure in general tension

1t 01! > T,

then 011% = 0751 = 0151 = 0331 = T, = 0,
(2) failure in uniaxial tension

1f 03! > To,

then 031 = T, = 0,

The failure surface is given by:
£ =0yl - No 037 + 2C(Ng)2/2 (1,4=45)

IF £ > 0, then the material is elastic, and the stresses are be-
low the yield surface. NoO stress correction is necessary. How-
ever, if £ £ 0, then the material is plastic, and the stresses
are above the yield surface. Corrections to stresses are made:



L b e T b R R S S A i

1.4-23
4
oy = 037 - > (@y = ap Ny
4
gy = 03¢ - -1 (@ = apNy) (1.4+46)

4
Q3 = 031 - ; (@ = @ Ny

where Y is given by Eg. (1.4-39),
0y, U2, O3 are then resolved back to globas axes (X,y,%).

Thermal st 'esf increments are the same as given previously for
the elasti: case:

A0y = ~ 834 3K @ AT (1,4=47)
where @ = linear expansion coefficient.

The thermal str2sses are treated in the same manner as elastic
stress increments. They are added to Oy prior to calling the
constitutive law routine.

The large strain logic may be significant when the failure models
are used, If active plastic flow (i.e., collapse) occurs, large
deformations may result. The large strain logic updates grid-
point coordinates and masses as well as corrects stresses for ro-
tation of the z20ne. A check is made every ten timesteps for
geometry of the zones. If the area of a triangular subelement is
reduced by 20% of the original area, a "bad geometry" message is
generated, the run is stopped, and control is transferred to the
user via interactive mcde. The run may be continued if the ele-
ment is deleted.
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1.4.4.8 Jocation

The Mohr-Coulomb plasticity is found in subroutine CL3, and is
called from subroutine STRESS. The thermal stress increment is
also calculated in CL3, but called from subroutine TSTRES.

1.4.4.9 Numerical Stability and Accuracy

The Mohr-Coulomb model is subject to the same stability con-
straints as described previously. The critical timestep is de-
termined identically as in the elastic case.

A common problem in plasticity models is that of “mesh locking"
48 described in fection 3.1, FLAC uses the technique of mixed
discretization to overcome this problem, Probiems 1 and 2 in
Volume 3, Exanple Problems, illustrate the ability of FLAC to
adequately predict the standard plasticity solutions for a hole
in a circular plate and the bearing capacity for a fricrionless
material. Simusations of direct shear and uniaxial compression
{or a material exhibiting dilation show that volumetric strains
are calculared properly.

Again, it is impossible to rigorously provice analytic expres-
sions for accuracy for general problems, Example sroblem 1 in
Volume 3 shows the effects of mesh density, boundary location and
boundary condition on proklem solution accuracy.

1.4.4.10 Alternatives

For situations where a gquick indication of failure potential is
needed, the elastic model can be used to calculate elastic stress
concentrations. FLAC allows the user to plot "safety factors" of
the Mohr-Coulomb and Hoek-Brown yield criteria as the ratic of
elastic stresses to allowable yield stresses. No additional cor-
rective calculations are made if the ratio is 1.0 or less. 1f
extensive yield is indicated, the user should conduct a full
plasticity analysis as the "empirical safety factor approach" may
yield results which contain significant errors.
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1.4.%5 Ubiquitous Joint Plasticity Model

1.4.5.1 Rurposs

Often, the response of the rock mass indicates anisotropic yield
a8 & result of a2 set of distinct, continuous 2ointa. The ubigui-
tous joint model provides the ability to model the yielding ef-
fects of the gotntl via a continuum Mohr-Coulomd model rather
than explicit { modeling the joints themselves, In effect, this
model is an anisotropic Mohr-Coulomb model.

1.4.5.2 Assunmetiops and LAMItAtions
This model has the following assumptions and limitations:

(1) one joint set is moceled inclined at a coanstant dip
angle from the herizontaly

(2) the spacing of the joints is not modeled explicitly,
nor are the stiffnesses of the joints modeled (Only
the shear behavior of the joints is modeled., The
joints may be ccnsicered to be infiritely closely
spaced.)

(3) The intact material is assumed to be Mohr-Coulomb;

(4) the joint shear behavior is assumed to conform to
the Mohr-Coulomb slip condition; and

($) the joint aperture change (or void strain) is as-
sumed not to be affected by the shear stress change
across the joints.

The ubiguitous joint model describes the behavior of a closely
jointed material with one predominant joint set. The joint spac-
ing is not modeled explicitly, but is assumed to be infinitely
small and there is no stiffness ascribed to the joints. There-
fore, there is no "load sharing" between the intact rock and
joints as occurs where intact blocks are separated by fractures.
The limitations of this type of model have been described by
Blanford and Key (1987).

1.4.5.3 Notation

Table 1.4-4 presents the notation of variables used in this model.
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The Coulomd failure criteria for joints is given by (compression
positive)!

Tt > Op tandy + Cy (1.4-48)

where t = shear stress along the joint,
On = normal stress on the joint plane,
Qj = joint friction angle, and

Cj « 4doint cohesion.,
The¢ excess shearing stress along the jJoint 4«8 given hy:

A6y 2’ = sign (itl, @32') = 32’ (1.4=49)

P

where 012’ = shear stress along plane, and

Ao’ = shear stress correction along plane.

This correction is added to the global stress state, Indicators
are kept which provide a history of the joints for each zone.

1.4.5.5 Application

This model is best applied where a continuous, thinly-spaced joint
set exists and controls yield behavior of the rock mass. Examples
of applications include bedded ceposits overlying excavations of
wide expanse (e.g., a longwall coal mine), rock masses with sets
of continuous, dominant joint planes, etc.).

1.4.5.6 Numerical Method Ivpe

No new or unigue numerizal methods are required in this model.

1.4.5.7 Numerical Implementation

Consider the geometry of the slip plane shown in Fig. 1.4-10, The
global stresses must be resolved parallel and perpendicular to the
potential slip surface:
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G171’ = 011 cos?@ + 2077 sin® cos® + 07 sin?l

G2z’ = 01y 8in20 - 2077 sin® cos® + 0y cos?l
(1.4-50)

012’ = = (617 = 022) sin® cos® + 037 (cos@-5in?0)
where § = joint ancole counterclockwise from the x global axis,
022’ = normal stress on the joint, and
012’ = shearing stress.

The initial stress increments acove (0;i4) are found from the plas-
ticity model presented in “ection 1.4.1.4. if the matrix material
is currently elastic, then 04 will simply be the elastic stress
increments. 1If, however, the matrix is yielding, then Oj4 will be
the stress increments corrected for plasticity. The streSses
along the joint are cxamined for yield:

012'< logy’ tang! + ¢ (1.4-51)

where ¢ = joint friction angle, and

C = joint cohesion (positive sign).
If Eq. (1.4-51) is true, then no corrections to the stresses are
necessary because slip is not taking place. If Eg. (1.4-51) is

false, then slip is occurring, which requires stress corrections.
The "excess" shearing stress along the joint is given by

A012' = sign (¢, 012') - 012 (1,4-52)

.

where A0j2’ is the shearing correction, and

T = |022' tano | + C.
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1.4.6 General Strain Hardening/Softening

1.4.6.1 Purpcse

The standard Mohr-Coulomb model described in Section 1.4.4 pro-
vides for a peak strength in shear for rock or soil, and assumes
that the material exhibits perfectly-plastic response in the post-
peak range. Laboratory compression tests of rock and soil may in-
dicate two other forms of post-peak response. These include
strain-hardening and strain-softening behavior (Fig. 1.4-11).

The purpose of the strain hardening/softening model is to provide
the ability to examine various forms of post-peak response on the
macroscopic yield behavior of the material being modeled.

p——
¢ g | brad
e e
(@) (b)
hordening
v softening

e
(¢)

Fig. 1.4-11 Various Forms of Plasticity Illustrating Pre-
and Post-Failure Response in Rock and Soil:
(a) rigid-perfectly plastic; (b) elastic-perfectly
plastic; and (¢) strain hardening/softening
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1.4.6.3 Notation
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Notation for the strain-softening model is given in Table 1.4-5,

Table 1.4-4

NOTATION FOR THE STRAIN-SOFTENING MODEL

Yariable Notation
Algebraic Computer Comment Where Found
AeF ep (i) total plastic strain subroutine CL6
(] ax (kphi) fciction angle, ax( ) aateiia)
now Lreated as a erxay found in
function of ep (i) the main commen
cemmen bleck
FLACON,
# zx (kcoh) cchesion, now
treated as a
functior of ep(i)
1" Zx (kpsi) dilation angle, now

treated as a
function of ep(i)

THE STRAIN-SOFTENING MODEL USES THE SAME BASIC NOTATION AS THE
THE ONLY DIFFERENCES

STANDARD MOHR-COULOMB MODEL, TABLE 1.4-4,

ARE NOTED ABOVE.




1.4.6.4 Dexivation

This constitutive model allows the user to represent arbitrary
non-linear material hardening and softening behavior basecd on the
variation of the cohesion, friction, and dilatancy with plastic
strain. The model is based on Mohr-Coulomb elasto-plasticity
with nen-associated flow rule, as described earlier. The differ-
ence, however, lies in the ability of the cohesion, friction and
dilation to harden or soften after the onset of plastic yield,
Here, the user defines the cohesion, friction and dilation as
piecewise linear functions of the plastic strain, The code de~
termines the total plastic strain at each time increment and
causes the cohesion, friction and dilation to conform to the
user~defined tunctions.

The following derivation is made in terms of global coordinate
gtresses, O 4, and straing, ej4, instead of principal stressas,
Oy, and strains, e, as describog eariier. This is belause the
current strain lavel is reqguired to determire (e maguitude of
the stte3e drop when calcalac ng yield,

Deturmination ot klastic Strwain Increments

Consider the Mohr-Coulomd vield surface i1 twe dimens.ons, where
stress space ig defined by the mean and deviatoric stress com-
conents p and §. Trhe principal stiesscy Are given by

" op . oq (1.4-54)
02.°p‘°q

1
where Op = E (@11 + ©22), and

(1.4-55)
1/2

1 -
qQ = 5 [ (@11 = 022)2 + 40122 ]



The Mohr-Coulomb yield surface is given by (Fig. 1.4-12):

£ =0y = (07 Ng) + 2C(Ng)1/2 (1.4-56)
or
£ = (0p =~ Og) = (Op + Gg)Ng + 2C(Ng) /2
1+ sing
20 Mg © S b
g ool werr v

® = angle of internal friction, and

C = cohesion.

Fig. 1.4-12 Mohr-Coulomb Yield Surface in p-q Space, Compression
Negative
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The plastic potential function is given by:

g (Bp = Og) = (Op + Og)ly v 2C(Ny 172
(1,4=57)
i = siny

muu‘,-m , and

v = dilation argle,

The plastic strain increments are given by the non-associated
flow rule in terms of the plastic potential function and the
scalar multiplier A:

MP --\i—g——

1 T

T A e (1.4=58)

T 12

Using the chain rule, the above derivatives may be expanded:

9 _ 93 1 90 : og b 004
3011 an 001, an 0011

og 22 %, dg 004

— @ ——— ¢ mmem—— ’1.“59
§0;;  dp 90z dq @03 :

39 _ % %% 3 9
9012 90p 0902 900y 0902




10‘-‘6

Taking the derivatives of Eg. (1.4-57) gives the following:

'22" (1 = Ny
dop v
99
— =« (1 =N
aoq ( v
(1-‘-60)
o S O o PR TR 1
0031 2 903 2 90032
90g  (011-022) 004 (071~022) dog 032
007, $0q . 9022 4og i 9012 y oq

Fubstitution of Eqe. (1.4-59 and 1.4-60) inte Eq. (1.4-58) yields

: (@13 = 022)
AeP = - ) [5 (1= Ny = (1 + Ky -—--—----J

14 4og
1 ("1 * O2%)
A.§2 = - ) [ 5 (1 = NV) + (1 +‘nv) 40q ] (1.4~61)

01
SR [ e M _‘.;]
A’IZ (1 + v) Oq

An iterative method is used to determine the value of A which
places the stress state on the yield surface (see Section
1,4.6-7), The plastic strain components can then be determined.
The cohesion, friction and dilation are defined as piecewise
linear segments of a generally non-linear function of the total
plastic strain. For example, assume the rock mass has a stress-
strain curve which softens upon yield and attains some residual
strength (Fig. 1.4-13):

{

.



Fig. 1.4-13 General Form of Stress-Strain Curve Showing Elastic
and Plastic Strain

The streus=strain carve is linrar to the poinrt of yield, there~
fore, the strain will be elastic only (e®). After yield, the tco-
tal strain will be composed of elastic and plastic parte. This

modes requires the uses Lo define the cohesion, fricrion and di- 1
iation variancy as & Junction of the plastic portion of the total
strain. These furcecisng ard, ir reality, mest likely ron-linaar

(Fig. 1.4=14):

Howaver, they Tay be approximated for use in FLAC az a sut of
linear segments (Fig. ..4-1%8):

P
e .’

fig., 1.4-14 Cohesion and Friction Represented as Non-L.near
Functions of Plastic Strain
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The incoming strain increment
28 initial elastic strain

ne

-~ »
.~ -
increments:
- i L LI

where Ae;+ are strains

<
-

Initially, it is assumed tha
ment

Ae;;P = Ae::P = Ae;::’ =

Trial elastic stresses are calculated

@1, are the elastic

The mean and deviatoric




The failure

(1.4-66)

where Ng,Ny are as defined previously.

1f £ is positive, then the elastic stresses are with
surface, and no adjustment to the stresses are requi
negative, the stresses must be adjusted.

" >
. ~

reaq.

ain i
al, and are given by:

"

ncrements are based on

= N

he pl ( tr
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STl otern
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1
’:2 - ; (1 + Nv)' and
C’ . - 2-0 (1 + Nv) .

Note that the gradients are based on values of stress at the
start of the timestep.

The new elastic stresses are given by
b e e
011 = O3] + @; Aey; + @2 Ae2p
I e e
022 = 022 + G2 dey) + @y Ael? (1,4-68)

b e e
012 = 012 + 2G Aey; + @) Aez2

The iteration scheme used to determine C;4 and Aclj is performed
as follows.

1. & teolerance of t = 0 09 x max ['OPI lo [, iCl] ‘8 es~
tablishe?d for convarqence . the y.eld 4xztace

2. The elastic stress iucrements are calculated via Eq.
(1.4-2), and used to comprte the yield function, f. 1If
the absolute value of f is less than the tolerance, con-
vergence is achieved, and the stresses lie on the yield
surface. If the tolerance is not met, the plastic
strains are determined from:

0
BeysP = = A (1.4-69)
ac13



1 . ‘-sz

The value of A is varied by

AN*l = AN 4 AAD (1.4=70)
n
vhere AAD = =« okl , and
£n - gn-1

n denotes the iteration number.

At the start of the iteration process, A is set to

b 4
A = - (1.4-71)
max(@y, «op)

New elastic strains are determined from
dej4® = ldejq - AoijP (1.4=72)

These elastic increments are used to determine new
elastic stresses, 0;+" and, hence, control returns to
step 2. If convergeiice is rnot achieved in ten itera-
tions, the final mean elastic stress values are chosen
ag the cpr;1cted siresses he iterati/n also halts if
(128 - £A=1] < 10°8 max [lo.l, loqi, 1CI). 1In this
case, the stress tensor ic gnchan ed: O34 = cijﬂ" :

At the completion of the iteration process, the plastic strain
increments, AejsP, and the corrected stresses, O+, are avail-
able. Recall tgat FLAC divides each guadrilateral element into
four overlapping triangular subelement zones. Subroutine STRESS
(which calls the constitutive laws) invokes the constitutive laws
one triangle at a time (as described in Section 3.1). Because
these triangles overlap in a gquadrilateral, the plastic strain
for the quadrilateral during this timestep is averaged from the
four subelement triangles:



P i P

5
..vq - : ifl ey (1.4-73)

The accumulated strain ie the sum of all values from previous
timesteps:

P ¢ timesteps »p
€rot = p3 €avg (1.4-74)
nel

Prior to exiting the routine, the values of C, ¢ and y are up-

P
dated, depending on the value of e¢or.

Thermal stress is added to the total stress state as an elastic
increment prior to entering the constitutive law. This is the
same as that given in Section 1.4.2.

1.4.5.8 Lecation

This routine is located in subroutine CL6, and called from sub-
routine STRESS. The thermal sctress calculation is also located
in CL6, and is called from subroutine TSTRES.

1.4.6.9 Numexical Stability and Accuzacy

The numerical stability is governed by the overall critical time-
step for a gridpeint (as described before) as well as the conver-
gence of the iterationg to locate the stress state on the yield
criterion. The convergence characteristics of Newton’s method
are discussed by Gerald (1980). It can be mathematically shown
that this method is quadratically convergent for morotonic func-
tions, which is the case here. Typically, less than 5 iterations
are necessasary for convergence.

1.4.6.10 Alternatives

No alternative methods are available in the present FLAC code.



1.4.7 Null Model

1.4.7.3 EMERSSES

The purpose ¢of the null model (s to represent excavations or re-
moved material.

1.4.7.2 Assumptions and limitations

This model assumes that the components of the stress teunsor, 0i4,
are identically 0.0 within excavated areas.

1.4.7.3 Netation
Not applicable.

1.4.7.4 DRexivation

The stresses within nulled z2ones or regions are set to 0.0 within
nulled zones:

Ji4 = 0.0 (1.4-75)

1.4.7.5 application

This model is vsed to represenc excavations within a rock or soil
mizs (e.C., 4 tunnel) Oor can »e used to remove material 3¢ the

grounc surface (e.g., to form a glope). This model, similar to
the other moiels. may be assigned to any zone or region at any
t 1"’.. .

1.4.7.6 Numerical Method Tvpe
Not applicable.

1.4.7.7 QDRerivation of Numerical Model
Not applicable.
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1.4.7.8 Location

Reference to the null model is found in many routines, particu-
larly in subroutine CYCLE, where the constitutive model is passed
if the null model is encountered for a zo0ne.

1.4.7.9 Numerical Stability and Accuracy
Not applicable.

1.4.7.10 Alternatives

No alternatives exist within FLAT for representing the excavation
of elements.

1.4.8 Viscoelastic Models
1.4.8.1 Purpose

An important class of rocks such as salt, potash, etc. exhibit
rate-dependent material behavior. FLAC provides three standard
viscoelastic laws which may be used to model this behavior,

1.4.8.2 Assumptions and Limitations

The following assumptions and limitations apply to the visco-
elastic models:

(1) deformation is iscotropic; and

(2) although the models may be run in large-strain
mode, no material rupture is possible.

The constitutive laws for rate-dependent materials are developed
primarily from simple uniaxial compression experiments in the
laboratory conducted using constant stress or strain rate tests,
A great amount of controversy presently exists over how well
these laws truly represent the actual deformation mechanisms, 1In
general, the WIPP and Norton Power constitutive lawe are simple
curve fits to laboratory data based on fundamental deformation
mechanisms. A mathematical formulation is developed which pre-
dicts this fit. The solution procedure is quasi-static, in that
inertial terms are ignored in the solution procedure.
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1.‘..03 W

Table 1.4-5 gives the relevant material property notation for the
viscoelastic models.

Table 1.4-5
NOTATION FOR VISCOELASTIC MODELS

Variable Notation
Algebraic Computer Comment Where Found
G zx (kg) shear modulus z2(x) is a
material
K Zzx (kk) bulk modulus property array.
n zx (kvis) dynamic viscosity,
Kelvin

(d) .
e1] delld deviatoric xx strain cL7, CL8, CL®

(d)
e22 de22d deviatoric yy strain

(d) . : .
e33 de33d deviateric zz strain

(d) :
J11 dslld deviatoric xx stress

(d)
022 dsz22d deviatoric yy stress

(d)

033 ds33d deviatoric zz stress
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Table 1.4-5
NOTATION FOR VISCOELASTIC MUDELS
(continued)
Varisble Notation
Algebraic Computer Comment Where Found
A zx (kawip) A parameter, WIPP Law CL9
zx (kqwip) Q parameter, WIPP lLaw
B zx (kbwip) B parameter, WIPP law
X
€ss zx (kedwip) critical steady-state
creep rate, WIPP Law
R zx (krwip) Universal Gas
Constant, WIPP Law
€p zx (kepwip) primary creep
strain, WIPP Law
n zx (knwip) n parameter, WIPP Law
D zx (kdwip) D parameter, WIPP Law
ni zx (knl) ni exponent, Norton CcL8
Law
n2 zx (kn2) n2 exponent, Norten
Law
A, zx (kacl) A, parameter, Norton
Law
A2 zx (kac2) A, parameter, Norton

Law
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Table 1.4-5
NOTATION FOR VISCOELASTIC MODELS
(continued)
Variable Notation
Algebraic Computer Comment Where Found
o ref zx (krsl) 0, reference stress, cL®
Norton Law
gpref zx (krs2) 0, reference stress,

Norton lLaw

1.4.8.4 Dexivation

Three creep models have been implemented in FLAC. These are:
(1) a classical visco-elastic model;
(2) an exponential-time creep model; and
(3) a two-component Norton power law.

The second model is commonly used in thermomechanical analyses
associated with studies for the underground isolation of nuclear
waste in salt, and the third can be used for mining applications.
A description of these models and their implementation is pro-
vided in this section.

1.4,8.4.1 Classical Visco-Elasticity (Kelvin Substance)

The classical description of Newtonian viscosity is that the rate
of strain is proportional to stress. Stress-strain relationships
can be developed for viscous flow in exactly the same way as
those developed for the theory of elasticity. The derivation of
the equations in three dimensions can be found, for example, in
Jaeger (1969).
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Visco-elastic materials exhibit both viscous and elastic behav-
ior. One such material is the Kelvin material, which can be
represented in one dimension by a spring and dashpot in parallel,
as shown in Fig. 1.4-16.

k

—AMAA—

A
Fig. 1.4-16 One-Dimensional Kelvin Model

The stress-strain law for this material can be written as

(e) (v)
Oi4 = Oi4 *+ 044 (1.4-76)
(e d)
where cij) = 2 Geij + Kﬁij exk
(v) . (d)
Cj4 = 2n eyy Biy .,

G = shear modulus,
K = bulk modulus,

N = dynamic viscosity,

(d) : , | 1
ejj = deviatoric strain = ejj - 7 €kk 8i4/

. (d) , | _ . Bl
ejy = deviatoric strain rate = ejj - 7 ek 8iq



ej4 = iJ strain component,

e

cfj) = glastic part of stress, and
(v)

Oj4y = viscous part of stress.

The material properties required for this model are the shear and
bulk moduli (for the elastic behavior) and the viscosity.

1.4,8.4.2 Exponential-Time Creep Law for Nuclear Waste Isolation
Studies

An empirical law has been developed (Senseny, 1965) to describe

the time- and temperature-dependent creep of natural rock salt.

In addition to the elastic component, the material is assumed to
undergo creep, based on the eguation

.

dc . .
e § (8 - egg)

—that is, the strain rate is the superposition of a steady-state
strain rate and a time-decaying strain rate:

E = Egg + €5 § exp(={t) (1.4=77)

where € = creep rate,
€gs = steady-state creep rate,
{ = a rate parameter,
€s = an integration constant, and

t = time.
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Based on experiments, Senseny observed two regimes. For steady-
*

state creep rates above a critical value Egg, €3 18 a constant

€a, and { = Bégy, where B is a constant,

*
For steady-state creep rates below €;g/

*
ey " s—— €a and c = B €gs (1.4-78)

Thus, Eq. (1.4-77) can be written as

*
233 " C‘u.s ‘xp(“aesst> €gsg 2 €gs

» *
e" + 638633 pr('Btsst) Egs s Egg

Alsc, the steady-state strain rate is assumed to be given by

€gg = AOD exp (=Q/RT) (1.4=79)

where ¢ = applied stress,
A, n, Q = parameters of the model,
. = universal gas constant, and
T = temperature (in Kelvin).
This formulation of the creep law is known as the RE/SPEC base-

line exponential-time creep law for the high-level nuclear waste
program,



known

Another formulation of thie law,

exponential-time creep law,

i-¢5+¢p
where

r .
(A = up) 8.

‘p'

.
(A - B (l,./t.) —EP) 8,

-~

. ad n
€s = D(O) e«p(=Q/RT)

where €p = primary creep strain,

€g = secondary creep strain,

as the WIPP reference

can be written as

(1.4-80)

€ = rate used to calculate the strain-rate comporents

using
€14 = (3/2)1/2

n, A, B, D, Q = parameters of

R = universal gas constant,

od

i .

: (3 (1.4-81)
o

the model,

O = deviatoric stress, calculated as

d
(3/2)1/2 [ Oi4 O

1/2

d
19 ] (1.4-82)

d
where Oiy = ij-component of deviatoric stress; and

T = temperature (in Kelvin).
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The WIPP and RE/SPEC formulations are different expressions of
the same law, using slightly different notations. The WIPP
formulation has been implemented in FLAC because it is better-
suited for implementation in explicit computer codes since the
effect of temperature and stress histories is automatically built
into the formulation. The RE/SPEC formulation is only valid for
constant stresses and temperatures, although it can be modified
to account for stress and temperature histories., The relation-
shipsbctwoon the notations used in the two laws is given in Table
10‘- .

Table 1.4-6
NOTATION FCR WIPP AND RE/SPEC FORMULATIONS

WIPP RE/SPEC Typical
Notation Notation Units Value

A BE 5 — 4.56

B B w— 127

D A pa~n s~1  5,79x10-36

n n — 4.9

Q Q cal/mol 1200

R R cal/mel K 1.987

* »

éSS éss o 5.39x10-8




1.4,8.4.3 The Two-Component Norton Power Law

The Norton power law (Norton, 1929) is commonly used to model the
isothermal creep behavior of salt, The standard form of this law
is:

X e A
Eer = A O (1.4-83)
- (3)1/2 1/2
where 0 = od od
r b P Pl
d?j = deviatoric part of 0s4, and
; (3)1/2 B
iq ® ~—————— od /o
i3 R er | 14 )

Usually, the amount of data available does not justify adding
any more parameters to the creep law. There are cases, however,
where it is justifiable to use a law based on multiple creep
mechanisms. FLAC, therefore, includes an option to use a two-
component law of the form

€or = €1 + €2 (1.4-84)
where
| A0 o 2 ojref
£ =
y 0 o < gjref
=112 -
: [ Ap0 o s opref
€y = oy
e 0 c > ozref



With these two terms, several options, described below, are pos-
sible.

1. 1Ihe Default Optich

qlrot = azrct - 0

O is always positive, so this is the one-component law
with

. =1
€ey = A1 O
2. Both Components ACtive
Olr‘f = 0
oref = "large"

ecz m Al + Az (¢

Q

3. Different law for Different Stress Reqimes

(a) alref = azref = gref » ¢
-2 -
Ay © O < Oref
o Y =1 -
A1 © O > Oref



b) o ref ¢ opref

1.4-66

[ -nz -—
A © o < gjref

. o k| <12 -
€er = | A1 0 + A0 o,7ef < g < gyref

Ay © o > opref

-~

(e) ozrof > erof

This option is not used because it implies that creep

occurs for O < 0;F®f and for G > 0,Fef, but not for

oltﬁf < a < Qz!‘lf‘

1.4.8.5 Application

These models are applicable to materials which exhibit rate-
dependent behavior within the assumptions and limitations given
in Section 1.4.8.,2. These models are applicable in analysis of
mining or waste disposal operations in salt or other evaporite
deposits. Because transient laws are not included, all analyses
are steady-state in nature.

1.4.8.6 Numerical Method Type

NO new or unique numerical methods are used.

1.4.8.7 Derivation of Numerical Method

The new stresses at the end of the timestep are calculated from
the initial stresses and strain increments as follows.
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First, the mean and deviatoric parts of the stress and strain are
calculated from

curr 1
Yt S0 Rl 933)

(1.4-85)
'eurr curr curr
044 = (039 = 834+ Oy
- |
AeV = g (AEq11 + Ae22 + AE33)
(1.4-86)

Aeiq = Aejq = Oi4 A£Y

The deviatoric strain increments A€ 4 is defined as the sum of
elastic and creep strain. The elastic strain increments is

' (e) ’ ' (er)
A€ § 4 = Agj4 - AE44 (1.4-87)

|
The creep strain increment, Azi(.), is a function of the current
stress, but the stress is calculated from the elastic stain in-
crement. Therefore, an iterative method is used to calculate the
stresses as follows.

! curr
1. Assume O:j = 0i4

where o{j = average stress during timestep.
i




2. Calculate € o {0 o ).
3 et Vi’

3. Calculate Azi?r) = éégr) At.

' \ '’
4. Calculate Acig.' = Agjq - Ae{?r).
'n ’
5. Calculate ci; . iy + 2G Az;;).
- 1 ! (new) y
6. Calculate ¢’ - (O + 0 ‘
13'2‘1:1 ij)

7. Repeat Steps 2 through 6 four (4) times to ensure
convergence,

’ ’
8. Calculate 054 = oignew) + 834 (6V + K &eV),

1.4.8.3 Location

The classical Kelvin viscoelastic model is found in subroutine
CL7, Che Norton Power Law in subroutine CL8, and the WIPP Base-
line Law in CL9., These models are called from the STRESS sub~-
routine. The thermoelastic stress increments for each law are
determined in each subroutine, but called from TSTRES.

1.4.8.9 Numerical Stability

The stability of the solution is dependent on the choice of At.
If At is too large, the creep rate calculation may be suffici-
ently inaccurate that the average deviatoric stress Ci4 is in-
correct. The effect of a large timestep may be sufficient to
cause numerical instability, as well as inaccuracy. FLAC pre-
sently requires the user to define the critical timestep, and al~
lows a schedule where the timestep may be changed as a function
of the maximum out~of-balance force. However, a timestep which
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is too large will generally result in numerical instability which
is obvious from the code results. It has been found that, in
general, if the code provides stable response, the accuracy of
the problem solution is good, provided the mesh discretization is
sufficient,

1.4.8.10 Alternatives

No specifin models presently exist within FLAC to replace the
riscoelastic models.



1.5 EXPERIENCE

The FLAC code is a commercially-available program and, as such,
is routinely applied to a wide variety of problems in soil, rock
and solid body mechanics, as well as to heat transfer and fluid
flow problems. At the time of writing, there are roughly 300
users of the FLAC code in the mining, civil construction, oil and
nuclear industries, as well as in government-sponsored research
in approximately 20 countries worldwide. This group of users in-
cludes those who are quite sophisticated in their ability as well
as those who have little training in numerical modeling. The
FLAC code can provide excellent results provided it is used prop-
erly. Although the code traps common errors, the user necessar-
ily must define the problem and translate it into the problem
geometry, boundary conditions, and solution procedure. Addition-
ally, the user must analyze the results with his or her knowledge
and experience. The ability to obtain meaningful sclutions from
any numerical model varies widely from user to user, and is based
primarily on knowledge and experience.

In general, "poor" results from the FLAC code may be traced to
the following causes:

(1) erroneous or unrealistic input data with which it
can pre-analyze input for correctness;

(2) poor specification of the finite difference mesh,
in particular, insufficiently detailed discretiza-
tion around complex geometries and boundaries which
are placed too close to the excavations;

(3) improperly specifiecd boundary and initial condi=-
tions; and

(4) insufficient number of timesteps to bring the prob-
lem to equilibrium or a steady condition.

The primary point to keep in mind when using FLAC is that, due to
the explicit solution procedure, it should be treated like a
physical model. A run should be set up such that it mirrors the
physical stages which occur in reality. For example, modeling of
the excavation of a near surface tunnel subjected to internal
water pressure might involve the following steps.



Set initial grid and boundary conditions, apply
gravity, timestep problem until the body consoli-
dates under gravity, inducing vertical and lateral
stiesses, judge equilibrium by sampling histories
of displacements and stresses at critical locations
in the grid. When the change in these parameters
is less than about 1% of the total, the system is
more-or~.ess at equilibrium. (Models the physical
reality of develcpment of initial gravity stresses
in the body).

Excavate the tunnel by nulling proper zcnes or re-
gions within the grid, timestep again until equi-
librium or steady condition occurs. (Models the
physical reality of excavating a tunnel and the re-
sulting equilibrium.)

Apply fluid pressure to the interior of the excava-
tion and ctimestep to equilibrium or until a steady
condition occurs. (Models the physical reality of
the diversion of wate:- to the tunnel and applica-
tion of fluid pressure to the excavation peri-
phery.)

For each step of the analysis, a perturbation to the unbal-
anced forces occurs which damps with time as equilibrium is
attained. The following suggestions and advice regarding
the code have heen developed from user experience.

FLAC uses constant-strain zones. 1If the strain gra-
dient is high, you need many zones to represent the
non-uniform strain distribution. Try running the
same problem with more zones, to check. Constant=-
strain zones are used because, for plastic flow, it
is better to use many low-order elements than a few
high-order elements,

Try to keep zoning as uniform as possible. Avoid
long, thin zunes or very distorted zones. A maximum
aspect ratio of about 10:1 should be used.



1.5-3

For a new problem, always do a trial run with a few
zones to get a quick feel for the response and pos-
sible difficulties. When yru understand the trial
results, increase the number of zones to obtain bet-
ter accuracy.

FLAC will take a longer time to converge if:
(a) there are big contrasts in stiffnesses; or

(b) there are big contrasts in zone sizes.

A very stiff loading plate often can be replaced by a

series of fixed gridpoints which are given constant velo-
city.

In order to determine a collapse load, it often is better
to do it under "strain-controlled" conditions rather than
"grress-controlled” conditions (i.e., apply a constant
velocity and measure the reaction forces rather than ap-
plying forces and measuring displacements). A system
that collapses becomes difficult to control as the ap-
plied load approaches the collapse load. (This is true
of a real system as well as a model system.)

Use symmetry conditions, whenever possible, to save com-
puter memory and run time., For example, if a system is
symmetrical about a vertical axis, you can represent the
symmetry line as a vertical boundary with the gridpoints
fixed in the x-direction (but free in the y-direction).

Make frequent use of save files. For example, save in-
termediate states when doing parameter studies. If the

run stops for any reason, you will have the intermediate
states.



Treat a FLAC model just like a physical model. Try to
reproduce in a FLAC run the stages that actually would
occur in nature. Keep in mind that there is no unigque
equilibrium state for an inelastic system. There ray be
rany possible states that satisfy equilibrium; the cne
you get depencs on the history.

FLAC shows how a system behaves. Make frequent, simple
tests to check that you are doing what you think you are
doing. For example, if a loading condition and geometry
is symmetrical, check that the response is symmetrical
or, after making a loading change or other change, exe-
cute a few steps initially (e.g., 5) to verify that the
initial response is of the correct sign and in the cor-
rect location. You might also do back-of-the-envelope
estimates of the expected order of magnitude of stress or
displacements and compare them to FLAC output.

If you apply a violent shock to a syst:m, you will get a
violent response. If you do non-physically reasonable
things to the system, you must expect strange results.

Critically examine the output before proceeding with the
simulations. 1If, for example, everything is ok except
for large velocities in one corner zone, do not go on un-
til you understand the reason. In this case, you might
have left a "fixed" grid point free.

FLAC does not give a "Factor of Safety" directly. If you
need a factor of safety, it can be defi:ed for any param-
eter that you consider important by takii.g the ratio of
the actual value to the value which causes failure. For
example,

water level to cause collapse
actual water level

Fu

tan (actual friction angle)
tan (friction angle to cause failure)

FQO
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load to cause failure
design load

Fy =

Note that the larger value is always divided by the

smaller value (assuming that the system does not fail un-
der the actual corditions).

Use history plots of displacement or stress at critical
locations to determine when a model is in equilibrium,
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