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ABSTRACT

The computer code GAPCON-THERMAL-2 was used to generate thernal performance
predictions for the spectrum of commercial 1ight water reactor fuel designs at
four different steady-state power levels. The input parameters for the code
were obtained from design data that are non-proprietary and are tabulated in
this report. Calculated values of maximum fuel temperature, average fuel
temperature, stored energy, gap conductance, fission gas release and rod
internal pressure are plotted as a function of burnup. Radial fuel pellet

temperatures are also plotted at on: burnup level.
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Introduction

A thermal performance analysis of light water reactor (LWR) fuel designs

was performed using the digital c-mputer code, GAPCON-THERMAL-2 (Refs.

1-2). Code predictions were generated for 13 commercial LWR fue)

designs, at various steady-state linear power levels. The input parameters
for the code were obtained from design data that are non-proprietary and

are tabulated in this report. Calculated values of maximum fuel temperature,
average fuel temperature, stored energy, gap conductance, fission gas

release and rod internal pressure were plotted as a function of burnup.

Radial fuel pellet temperature was also plotted at one burnup level.

This study was prepared for two reasons. First, it serves as an example
of the fuel performance code predictions required by the NRC staff as
part of the safety analysis submitted in support of a license application
for a nuclear power plant. Secondly, the report serves as a reference

document from which the effect of fuel design differences can be determined.

All the runs were made using the same computer code and the only vari-
ations were the input parameters. Therefore, relative differences in the
results were due to changes in the input parameters, and thus the design
differences. Where di‘ferent mode] options were available within the
code, best-estimate rather than conservative models were selected.
Therefore, the results are best-estimate predictions within the limits of
the code. The GAPCON-THERMAL-2 code is believed to be representative of
a number of similar codes used by the nuclear industry for fuel thermal

performance analysis.



Fuel thermal performance analyses are performed as part of each nuclear
power plant safety analysis in order to provide fuel design values such
as stored energy, fuel centerline temperature and rod internal pressure.
Each of these parameters has a design limit which must not he exceeded

during the operation of the plant. A number of these fuel design limits

are discussed below.

Appendix K to Part 50, Title 10, of the Code of Federal Regulations

(10 CFR 50, Appendix K (Ref. 3)) states that the initial stored energy
and fuel temperatures shall be calculated for a hypothetical loss-of-
coolant accident. Historically, the peak stored energy values have been
shown to occur at beginning of ope.-ation or soon after for current fuel
designs. This study has demonstrated that that conclusion is not always

true and may be applicable only under low and moderate burnup conditions.

Additicnal fuel temperature limits are given in both 10 CFR 50.46 and
Section 4.2 of the NRC Standard Review Plan (Ref. 4). The Standard
Review Plan states that it must be shown that "fuel melting does not
occur” during normal operation. The study demonstrates that melting does

not occur for the power levels considered.

Section 4.2 of the Standard Review Plan also requires the rod internal
pressure to “remain below the normal system pressure dv - & :rmal opera-
tion unless otherwise justified." System pressur .« - "own quantity
for each fuel design considered in this study. C 'culatea values of the

od internal pressure were compared with systems pressure for all cases.
For constant power operation, it was concluded that the rod internal
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pressure will eventusliy exceed system pressure at some point in time.

The stuay demonstrates that this occurs only for high burnup conditions.



The Comparative Process

For this study, the GAPCON-THERMAL-2, Revisiun 1 (March 1980) code was
used. Although calculations were performed for each axial segment, only
the results for the hottest axial node of each rod were plotted. This
was done as a function of burnup in the peak axial segment. Depending on
the fuel design and power level selected, the actual in-reactor time
necessary to attain the maximum burnup considered (50,000 MWd/MtU) varied
from 482 to 3298 days. Results were obtained for the foilowing 13 fuel
designs: Babcock and Wilcox 15x15 and 17x17; Combustion Engineering
14x14 and 16x16; Westinghouse 14x14, 15x15, and 17x17; Exxon 15x15 and
8x8; and General Electric 7x7, 8x8, 8x8R and prepressurized 8x8R fuel
designs. For each design, four steady-state constant-peak-power levels
were selected. These were 5 kW/ft, 10 kW/ft, 15 kW/ft peak power, and
also a rod power level equal to that of an average rod in the core. The
last value therefore represents the hot spot of an average rod in the

core.

A list of the input parameters required by the GAPCON-THERMAL-2 code is
shown in Appendix A. Included in the 1ist are information references
used to generate each value. The principal source of this information

was a list of fuel assembly parameters, which is included as Appendix B.

A number of input parameters are based on simplified formulations rather
than real data. As one example, rather than using a realistic,
time-varying axial power profile, an axially symmetric, truncated cosine
curve was developed with an appropriate peaking factor. The simplified
profile was held constant as function of time and roc power. The method

-4~



and equations are presented below with the results plotted in Figures 1

and 2 for PWR and BWR plants respectively.

Y = a cos (k(x+b))

Y = local normalized power

a = axial peaking factor

k = a constant (shape factor)

X core elevation

b = -(core height)/2

This equation was used in conjuction with the relation

IYdx/[dx = 1

in order to determine the value of k for the normalized cosine curve.

The implications of using this simplified axial power profile, as well as

other code input assumptions, are discussed in Section III of this report.

The resulting code predictions were organized into graphs which are

presented in the remaining appendices. These are:
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Legend for Multi-Fuel Design Graphs

Fuel Centerline Temperature vs Burnup

Fuel Temperature vs Radius at 10000 Mwd/MtuU
Fuel Average Temperature vs Burnup

Stored Energy vs Burnup

Gap Conductance vs Burnup

Fission Gas Release vs Burnup

Rod Internal Pressure vs Burnup
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I11.

Limitations of the Study

A recult of using an analy’. .  computer code is that certain qualifi-

cations of the predictions must be made. The general lTimitations

recognized in this study are the result of two factors. First, the code

itself is subject to some intrinsic inaccuracies because of the inexact-

ness of the analytical methods used. Second, a number of input simplifi-
cations have been made as mentioned previously. In safety analyses,
these simplifications may be intentionally biased with respec: to more
realistic, and possibly more complex, assumptions. The biased assump-
tions are also called conservatisms. Throughout this study, the use of
traditional or licensing-oriented conservatisms has been avoided. Within
the limitations of the basic GAPCON-THERMAL-2 code, the results should be
considered best-estimate. Several of the remaining limitations are

discussed below.

1. Operating Histories

The power level of a nuclear fuel rod fluctuates as a function of
time and generally decreases toward end of life. In this study, a
constant power history was used. A criticism of this approach is
that a constant power history, rather than a time-varying power
history, may exaggerate power-dependent effects at end-of-life. The
effect of decreasing power on the code predictions was examined.

It was found that instantaneous power is of primary importance
while constant or decreasing power history is a second-order effect

in the code predictions. The emphasis in this study has, therefore,



been placed on power level rather than power history. In addition,
it is difficult to determine time-varying, but realistic, power
histories which, when used in the code, will preserve a common

comparative basis.

Fission Gas Release

Incorporated into the GAPCON-THERMAL-2 code is a fission gas release
mode! developed by Beyer and Hann (Ref. 1). For reasons described

in Reference 5, an NRC correction function for this and other models
was developed to correct gas release predictions at burnup values
greater than 20,000 Mwd/MtU. The correction function is used to
account for fission gas release data taken at high burnups. At the
time they were derived, neither the Beyer-Hann model, nor those used
in fuel vendor codes, had access to high burnup fission g-s release
data. Further discussion of the correction factor and its derivation

is also found in Reference 5.

Figures 3-9 give comparative plots of the Beyer-Hann model with and
without . NRC correction for a representative fuel design (B&W
15x15). It can be seen that gap conductance, fission gas release
and rod internal pressure are affected to a large extent by the
addition of the correction function. The Beyer-Hann model with the
NRC correction gave values of fission gas release nearly 7 times as
large and rod internal pressure values more than twice as large as
the corresponding values obtained from the uncorrected Beyer-Hann
model. Yet fuel temperatures and stored energy showed differences

of less than 10¥. This indicates that thermal conditions of the
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fuel are not a direct function of fission gas release, particularly
at high power and high burnup conditions where the fuel-to-cladding
gap is very small. Under these conditions, fuel temperatures are
largely determined by the thermal resistance of the fuel itself

rather than the fuel-to-cladding gap.

Recently, work has been progressing on a new fission gas release
model, known as the ANS-5.4 mode]l (Ref. 6-7). This model was
developed under the auspcies of the American Nuclear Society because
a standard method for determining radioactive fission gas release
did not exist. Calculations with this mode]l were made using the
representative fue® design (B&W 15x15) mentioned above. The results
of the ANS-5.4 model compared with the Beyer-Hann model with NRC

correction are shown in Figures 10-16.

It can be seen from these graphs that the ANS-5.4 model predicts
fission gas release values that are generally much the same zs those
predicted by the NRC corrected Beyer-Hann model at low power levels.
The exception are those values generated at 15 kwW/ft where large
release fractions are predicted by both models. At nearly all
burnups, the ANS model preaicts release factions larger than the
corresponding values generated by the Beyer-Hann model. Smaller
differences are found in examining the rod internal pressure pre-
dictions, where the ANS values are higher than those predicted by
the NRC corrected teyer-Hann model. Little variaticn between the
two runs is evident when examining fuel temperatures and stored

energy, again demonstrating the seconi-order effect which fission
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gas release has on fuel thermal conditions at high burnup when the

fuel-to-cladding gap is small.

Cladding Creep

The GAPCON-THERMAL-2 code does not possess a self-contained cladding
creep model. The code requires values of creep-down as input if the
effect is to be considered. For most of the cases in this study,

cladding creep was not considered.

In order to evaluate the effect of cladding creep on fuel rod
performance, computer runs were made by iteratively using
GAPCON-THERMAL-2 and a second code, BUCKLE (Ref. 8), which cal-
culates values of cladding creepdown. The previous test case, a B&W
15x15 rod, was run with and without cladding creepdown values gen-
erated by the BUCKLE code. The standard Beyer-Hann gas release
model with the NRC correction was used in both cases. The results of

this comparison are shown in Figures 17-23.

The graphs of fuel centerline,”radial, and average temperature and
stored energy demonstrate the expected effect of cladding creep,

which is to decrease temperature for low and mid-1ife burnups due to
more rapid gap closure. The gap conductance values predicted by the
code show significant differences when cladding creepdown is con-
sidered, particularly at high burnups. However, these differences

are not reflected in the thermal response cof the fuel because fuel-to-
cladding gap conductance has little effect above 2500 Btu/hr-ft2-°F.
We conclude that the lack of cladding creepdown model in the

GAPCON-THERMAL-2 code does not invalidate the code predictions.
-25-
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Fuel Restructuring

Fuel restructuring is an effect that was not considered in this
study although it can occur in nuclear fuels. The main reason for
this ommission is that fuel restructuring occurs only at very high
temperatures. Very high fuel temperatures, in turn, usually occur
only in unstable fuels (i.e., fuels that exhibit a large amount of
densification). The GAPCON-THERMAL-2 code has an option that allows
restructuring above a given temperature and this value was attained
in only a few of the runs (at 15 kWw/ft). This confirms the validity
of the omission of a fuel restructuring model because the study
deals with a very stable fuel type (as specified by the 1% densifica-
tion parameter). This fuel type is typical of current commercial

fuel and is expected to be resistant to restructur ‘ng.



Iv.

Summary

During the process of analyzing the various fuel designs, a number of

conclusions were reached concerning the computer code used and the result-
ing predictions. The extensive use of the GAPCON-THERMAL-2 code required
by the study, coupled with the use of the ANS-5.4 model, made it possible

to determine some of the overall capabilities and deficiences of the

code.

The code itself is somewhat limited by the absence of a self-contained
cladding creep model. The addition of a cladding creep model to the
GAPCON-THERMAL-2 code did not radically change the overall code pre-
dictions. However, runs with the ANS-5.4 model showed larger-than-
expected deviation from the NRC model for fission gas release at 15
kw/ft, even though both fission gas release models used a similar data
base. This difference is not limited to high burnup conditions. We

conclude that the use of more advanced codes may bLe warranted for
mocdern fuel thermal performance analyses, particularly for high power

and burnup conditions.

An examination of the present code predictions at very high power and burn-
up conditions reveal several fuel thermal performance problems that
warrent furthe~ regulatory interest. The major findings are: 1) rod
pressure may exceed system pressure before 50,000 MWd/MtU, and 2) peak
centerline temperature and peak stored energy values do not always occur

at beginning of life for constant or nearly constant power conditions.
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APPENDIX A

The following is an alphabetical 1isting of the input parameters re-
quired by the GAPCON-THERMAL-2 computer code. Each named variable is
defined and an appropriate input value is provided. These values constitute

the input parameters used in the fuel desian study.



ATMOS

Initial fill gas pressure

A1l PWR fuel designs: 30 ATM
A1l BWR fuel desians: 1 ATM
Additional run of GE Bx3R: 3 ATM

Exact value is not specified in FSARs and reoresentative fiqures
are aiven here,

CRUDTH

Initial cladding crud thickness
Default value of 0.0 inches is assumed for new fuel at beginning of

life.
DBO
Outside diameter of secondary cladding
Default value of 0.0 inches is assumed because no secondary cladding
ic present for the designs considered.
nClI
Cladding inside diameter
Value i: design dependent, see Appendix B.
DCO
Cladding outside aiameter
Cladding inside diameter plus twice cladding thickness - See Appendix B.
DE
Equivalent diameter of coolant passage
Value is design dependent - See Appendix B.
DFS
Fuel pellet diameter
Value is design dependent - See Anpendix B
DSINZ

Diameter of restructured fuel zone
Default value of 0.0 inches is assumed for new fuel at beginning of
life.
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DTEMP

Coolant axial temperature rise

A1l PWRs: Value is design dependent - see Appendix B

A11 BWRs: Value in Appendix B (design dependent), is multiplied
by an arbitrary factor of eight in order to drive the coolant tem-
perature rapidly to the saturation temperature where it remains
constant. The multiplication factor results in an initial rapid
increase over the lower 1/8 of the rod, after which GAPCON assumes
coolant temperature remains equal to the saturation temperature.
(This contrasts to PWRs where the coolant is always subcooled and
the temperature increases over the entire rod.)

Dv0IDZ
Fuel initial central void diameter
Default value of 0.0 inches is assumed for new fuel at beginning
of life.
EXTP
Coolant pressure
Value is design dependent and is taken as the nominal design system
pressure - See Appendix B.
FRACAR
Argon fraction of initial fill gas
Argon is a fill gas not ordinarily used in commercial designs, there-
fore a default value of 0.0 is assumed.
FRACH
Hydrogen fraction of initial fill gas

Hydrogen is a minor fill gas contaminant. A default value of 0.0
is assumed for new fuel at beginning of life.

FRACHE

Helium fraction of initial fill gas.
The initia) fill gas is assumed to be pure helium.

FRACN
Nitrogen fraction of initial fill gas

Nitrogen is a minor fi1l gas contaminant. A default value of 0.0 is
assumed for new fuel at beginning of life.
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FRACXE
Xenon fraction of initial fill gas

Xenon is a fission product. A default value of 0.0 is assumed for
new fuel at beginning of life.

FRDEN

Initial fuel fractional density
Value is design dependent, see Aopendix B

FRDEN2

Final fuel fractional density. Assumed to be FRDEN + 1%,

Typically 1 percent average densification occurs in stable fuel.
FRPUD?

PUO2 weight fraction

?efau1t value of 0.0 is utilized to assume new fuel at beginning of

ife.

FRSIN

Restructured fuel fractional density

FRSIN = FRDEN to preclude restructuring, which normally does not occur

in commercial reactor fuel.
FR35

Core average enrichment U23%/(U235 + U238)
Value is design dependent - see Appendix B

FR40

Pu 240 weight fraction
Default value of 0.0 is assumed for new fuel at beginning of life.

FR41

Pu 241 weight fraction
Default value of 0.0 is assumed for new fuel at beginning of life.

HBC
Heat transfer coefficient between primary and secondary cladding

Default value of 0.0 Btu/hr-ft-ft-dea.F utilized as there is no
secondary cladding.
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1CDF

Value of 1 is utilized in order to calculate claddina elastic deformation
ICDF=0 No cladding elastic deformation calculated
ICDF>0 Cladding elastic deformation calculated.

ICOR

A1l PWRs: 1
A1l BWRs: 4
ICOR=0 No cladding oxidation calculated
ICOR<3 PWR cladding oxidation calculated
ICOR-3 BWR cladding oxidation calculated

ICREP

Value of 0 is utilized even though plastic deformation occurs because
GAPCON-2 has no self contained plastic deformation model.

ICREP=0 No cladding plastic deformation utilized

ICREP>0 Cladding plastic deformation input by user.

IDENSF

Value of 1 is utilized in order to calculate densification
IDENSF=0 No fuel densification calculated
IDENSF>0 Fuel densification calculated.

IGAS

Value of 0 is utilized to obtain a best estimate of fission gas
release

IGAS=0 Best estimate fission agas release

IGAS>0 Conservative fission gas release

IPEAK

Value of 1 is utilized in order to input rod average power
IPEAK=0 Power input is rod peak power
IPEAK>0 Power input is rod average

IRELOC

Value of 1 is utilized to obtain a best estimate of fuel relocation
IRELOC<Q Conservative fuel relocation

IRELOC=0 No relocation calculated

IRELOC>0 Best estimate fuel relocation

IRELSE
Value of 0 is utilized here for steady state analysis

IRELSE=0 Fission gas is released durino time-step
IRELSE™0 Fission gas is released after time-step



IRL

Value of 0 is utilized to obtain output at 11 radial fuel nodes,
IRL=0 Flux depression printed for 11 fuel nodes
IRL<0 Flux depression printed for IRL fuel nodes

ISTOR

Value of 1 is utilized to obtain stored energy values
ISTOR=0 Stored energy values not printed
ISTOR=1 Stored energy values printed

IT

Value of 1 is utilized in order to run an exposure-dependent, rather than
time-dependent history.

IT=0 Time-step input in days

IT°0 Time-step input in MWD/MTU

KB

Thermal conductivity of secondary cladding
Default value of 0.0 Btu/hr-ft-deq.F assumed as there is no secondary
cladding.

KOOL

Value of 0 is utilized in order to calculate claddir.g temperature drop
KOOL=0 Cladding temperature drop calculated
KOOL>0 Cladding temperature = coolant temperature

LFUEL

Fuel column length
Value is design dependent - see Appendix B

LVo1DZ

Initial central void length
?efault value of 0.C inches is assumed for new fuel at beginning of
ife.

MINI

Value of 0 is utilized to obtain output for peak node.
MINI<O Short output for all axial segments

MINI=0 Long output for hottest axial segment only
MINI>0 Long output for all axial segments

NCLAD

Value of 0 is utilized as all fuel designs in Appendix B have
Zircaloy cladding.

NCLAD<0 304 SS cladding used

NCLAD=0 Zircaloy cladding used
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NFLX

Value of O is utilized in order to calculate flux depression
NFLX<0 No flux depression calculated

NFLX=0 Flux depression calculated by GAPCON

NFLX>0 Flux depression input by user

NFUEL

Value of 0 is utilized since only UO2 is present at heginning of
life.

NFUEL <0 U02-Pu02 therinal conductivity used

NFUEL=0 UOQ, thermal conductivity used

NFUEL >0 FUEI thermal conductivity input by user

NOH

Value of 0 is utilized to allow H, anc H,0 reaction with the cladding
although this effect is not expec%ed tu Be significant.

NOH=0 H2 and H20 allowed to react with cladding

NOH>0 H2 and H20 not allowed to react with cladding.

NPOW

Numbe~ of axial fuel segments

Value of 11 is utilized. GAPCON-2 permits a maximum of 20 seaments.
An odd value was chosen because an axially symmetric ~rofile results
in one of the values being the peak. 11 is also a sufficiently large
number to resolve seament differences.

NPRFIL

Number of axial power profiles input by user

Value of 1 is utilized. This results in a single stylized axial
power profile which is an approximation of the actual time deperdent
profile.

NTIME
Number of time steps input by user
Value of 13 is utilized in order to cover 0 to 50000 MW3/MTU in 5000
MWD/MTU increments plus steps at 1000 and 2000 MWD/MTL

PRCZH

Fuel pellets with dish: 2.0
Fuel peliets without dish: 0

2 percen® is based on a 1 percent dish volume at each end of the

fuel pellet. Actual values are vendor proprietary. A representative
value is used.
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PROFIL (1,1)

A1l PWRs: .621, .801, .953, 1.072, 1.153, 1.195, 1.195, 1.153, 1.072,
953, .801, .621

A1l BWRs: .445, .703, .927, 1.105, 1.229, 1.292, 1.292, 1.229, 1.105,
927, 103, .455

Normalized axial power profile
Values are segment end-points rather than seqment averages. Data

based on typical peaking factors of 1.2(PWR) and 1.3(BWR) which
were utilized to generate a truncated cosine distribution.

PSEUDO(1)

RADS

kOUC

ROUF

A1l PWRs: 4.17, Rod Ave. Power, 8.33, 12.5 *
A1l BWRs: 3.85, Rod Ave. Power, 7.69, 11.54 **
Rod Power History

* These average PWR powers corresnond to the neak oowers of 5, 10,
& 15 kW/ft,

e Ia7ze average BWR powers correspond to the peak powers of 5, 10, & 15
=

Core Average = max power (planar)/peaking factor.

Radius of fuel pellet dish
This information is normally company proprietary However, the following
method is used to generate tynical values.

RADS=.80* (DFS/2)

Arithmetic mean cladding I.D. surface rouahness
A nominal value of 0.00002 inches is utilized

Arithmetic mean fuel surface roughness
A nominal value of 0.000039 inches is utilized

Sorbed gas content of the fuel
Value of 0.0 cc/gram is utilized
Typical sorbed values ére not high enough to effect fuel performance
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SIGHF

Cladding-to-coolant heat transfer correlation value of 0.0 is

utilized because the value of the heat transfer coefficient is

unknown .

SIGHF=0.0 Film coefficient calculatad by GAPCON using Dittus-
Boelter and Thom correlations ?

SIGHF>N.0 SIGHF is heat transfer coefficient (Btu/hr-ft°- F)

TIME (1)
A1l PWRs = 0.0, 833.22, 1666.67, 4166.67, 8333.33, 12500.0, 16666.67,
20833.33, 25000.9, 29166.67, 33333.33, 37500.0, 41666.67
MWD/MTU
A11 BWRs = C.0, 769.23, 1538.46, 3846.15, 7692.31, 11538.46, 15384.67,

19717.77, 23076.93, 26923.08, 30769.23, 34615.39, 38461.54
MWD/MTU

These are average MWD/MTU values which correspond to peak values of
0, 1000, 2000, 5000, 10000 MWD/MTU, etc.

TINLET (1)

Coolant inlet temperature
Value is design dependent, see Appendix B

™
Fuel melting temperature
Default value of 2790 DEG. C is utilized.
TPLAS
Fuel plastic temperature
Default value of 1200 DEG.C is utilized.
v
tealant Velocity
'alue is design dependent - See Appendix B
VPLEN?
Rod gas plenum volume
Values are proprietary. The value was approximated by 75 percent
of the gross plenum volume. The remaining 25 percent is assumed
to be the volume of the sprina. Values for plenum length and dia-
meter are design dependent and obtained in Appendix B.
Xcn

€O and CO7 fraction of sorbed gas
Default value of 0.0 is utilized. Code predictions are not sensitive

to small sorbed gas values.
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XH
H and H, fraction of sorbed gas
Default 3&
to small sorbed gas values,

XN

Ng fraction of sorbed gas
D

fault value of 0.0 is utilized.

to small sorbed gas values.
ZCLAD

Zircaloy Cladding Option

A1l PWRs: 1
A1l BWRs: O
ZCLAD=0 IR-2
ZCLAD>0 IR-4

Design dependent, see Appendix B
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APPENDIX B

The following list of fuel assembly parameters is based on a compilation
by John T. Maki, an engineering co-op student on assignment to the NRC
Core Performance Branch during the summer of 1978. The list presents

a number of major design parameters for each of the current light-water-
reactor fuels designs. The input data used in this study and shown in
Appendix A are a subset of the information given here. The data are

taken from publicly-available documents and are non-proprietary.
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RAJOR FUEL ASSEMBLY PARATETERS

VENDOR e Ny c-€ c-€ VEST. VEST. VEST. Exxom Exxon -3 - -

FUEL ROD ARRAY 1Sx1§ 17317 1ax14 168X186  14x14 15x186 17 18X1§ exs ™7 s axem

PLANT 3 RILE  BELLE- ST, ANO PRAIRIE ZIOM TRO'an  D.C. OYSTER BROUNS  ZIMMER wWATOE

ISLAMD @ FONTE 1 LUCIE 1 UNIT 2 ISLAND 1 UNIT 1 COOK 1 CREEX FERRY 1 UNIT &t uNIT 3

REACTOR TVPE PuR PR PuR PuR PuR PuR Pk PR L PuR o B

PLANT CORMERC 1AL i2-m o 3 12-76 -7 12-7Mm &7 §-7% -7 12-69 8-74 1vEs 7-7%

OPERATION DATE

ASSERBLIES PER CORE 177 oS 217 177 121 183 183 193 Se8 %4 Sk 568

FUEL ROD LOCATIONS azs 289 196 256 196 22s 289 225 €4 4“5 64 64

PER ASSEMBLY

FUEL RODS 2ec 264 176 236 179 204 264 204 -8 - 83 62

PER ASSEMBLY

MAX. BURMABLE POISOM 1€ 24 12 L 16 ae e 2e 4 s 3 3

RODS PER ASSEMBLY

EMPTY LOCATIONS 17 2s 1] 6 17 21 a2s 21 4 NOME 1 <

PER ASSEMBLY

ROD PITCH 14 4 12.7 14.7 12.9 14.1 14.3 12.6 14.3 16.3 18.7 16.3 16.3
M (INCH) «.568) (.501) (.588) (.5063) (.586) (.561) (.496 (.663) (.68 (.78 (.548) (.68

SYSTER PRESSURE 15.2 15.6 15.5 15.§ 16.5 15.6 1.5 15.5 7.14 7.14 7.14 7.14
PR (PSIN) (2200) (2254) (2250) (225e) (2258 (22s%e) (2250) (22se) (103%) (1038) (103%) (103

EQUTVALENT COOLANT 13.3 11.8 13.5 2. 13.¢ 13.6 11.8 13.4 13.9 17.0 14.3 1.2

P.S'm‘?%m (.S28) (.464) (.5$33) (.472) (.511) .534) (.464) (.528) (.545%) (.669) (.665) (.87

COOLANT VELOCITY 5.04 4.84 4.33 5.09 4.51 4.66 4.7 ..72 1.89 an 2.13 2.0

ALONG FUEL RODS (16.52) ((16.2) (14.2) (18.4) (14.8) (s. (15.7) (15,5 6.2) .6 7.0 (6.6)
n/SEC (FY/SEC)

COOLANT INLET 292 Joe 284 eve cse 274 289 278 273 a7s arns an

ﬁ?!l?;l’li (667.9) (§73.7) (544) (663.5) (636.5) (524.7) (5882.8) (53 (523.8) (S27.%) (S3@.7) (8523.3)

COOLANT AXIAL CORE 29.8 I 31.1 39.6 3.9 37.1 .2 36.5 14 12 8.9 14.2

TENPERATURE RISE (83.6) (59.3) (56.90) (80.5) (66.4) (66.8) (66.9) (85.7) as) 2 (16.1) (28.5)

< F)
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APPENDIX C

The following legend presents an identification of the symbols used in Figures
15 through 18 of Appendices D-1. Each symbol represents 3 different LWR fuel
design as described previously. The legend is presented here to avoid a re-

dundant presentation of this information on each of the graphs that follow.



LEGEND
o =B&W 15X15 (THREE MILE !'SLAND-UNIT 2)
o =B&W 17X17 (BELLEFONTE-UNIT 1)
s =C-E 14X14 (ST. LUCIE-UNIT 1)
+=C-E 16X16 (ANO-UNIT 2)
x=WEST. 14X14 (PRAIRIE ISLAND-UNIT 1)
o = WEST. 15X15 (ZION-UNIT 1)
v =WEST. 17x17 (TROJAN
» =EXXON 15X15 (D.C. COOK-UNIT 1)
» = EXXON BX8 (OYSTER CREEK)
+=GE. 7X7 (BROWNS FERRY-UNIT 1)
*=GE. 8X8 (ZIMMER-UNIT 1)
» =GE. BXBR (HATCH-UNIT 2)
*=GE. 8XBR PREP. (HATCH-UNIT 2)

c-2



APPENDIX D

FUEL CENTERLINE TEMPERATURE

The following graphs are of fuel centerline temperature vs. burnup, and the
data are given for the peak axial node at specified peak burnups. In general,
the peak centerline temperature oc:urs at beginning of life or soon thereafter
for PWR's, while the peak centerline temperature occurs at midlife or late in
life for BWR's. There are a few exception with the BWR's, for example at low

power, where peak temperatures are also attained at beginning of life.

In all the cases considered, the fuel did not reach temperatures above 5080°F

(the melting point of UOZ)'

The multi-design plots reveal some additional results of interest. For power
levels between 5 anc 10 kW/ft, there is little difference between the values
for each of the 13 designs, but at 15 kW/ft, the BWRs demonstrate higher
centerline temperatures compared with the PWRs. The difference can be related
to the values for gap conductivity at 15 kW/ft; these values are much lower

for the unpressurized BWRs and result in higher fuel temperatures.
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APPENDIX E

RADIAL TEMPERATURE

The following graphs present fuel rod temperature as a function of radius, and
the data are given for the peak axial node at a rod peak burnup of

10,000 Mwd/litU.

The graphs demonstrate the traditional paraboiic temperature profile that is
associated with cylindrical fuel, while the sharp increases in temperature at
the foot of the graphs are due to the drop across the gap from the fuel surface
to the inside cladding surface. The flat segments of the graphs represent the

nearly uniform temperatures across the cladding.

A1l the graphs are drawn on the same scale, and the large and small diameter
fuel rods can be easily differentiated. Differences in cladding thickness are

also apparent as the BWR's have thicker claddings than PWRs.

The remaining graphs show a remarkable similarity in fuel centeriine temperature
even though a 50% differential in pellet diameter exists between the largest

and the smallest diameter fuel rods. This result is expected for the 5, 10

and 15 kW/ft plots as a constant linear power ic¢ utilized for each design,
regardless of diameter. An analysis of the radial temperature distribution in
the rod shows this quantity can be related to the linear power and thermal
conductivity of the fuel and is independent of the diameter if the flux

depression is small.
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APPENDIX F

FUEL AVERAGE TEMPERATURE

The following graphs are of fuel volume-averaged temperature vs. burnup,

and the data are given for the peak axial node at specified peak burnups.

In general, the peak volume-averaged temperature occurs at beginning of life
or soon thereafter for PWR's, while the peak volume-averaged temperature
occurs at midlife or late in life for BWR's. There are a few exceptions
with the BWR's, for example ¢t low power, where peak volume-averaged

temperatures are also attained at beginning of life.

The multi-design plots reveal some additional results of interest. For
power levels between 5 and 10 kW/ft, there is little difference between the
values for each of the 13 designs, but at 15 kW/ft, the BWR's demonstrate
higher volume-averaged te seratures compared with the PWRs. The difference
can be related to the values for gap conductivity at 15 kW/ft; these values
are much lower for the unpressurized BWRs and res.’* in higher fuel

temperatures.
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APPENDIX G

STORED ENERGY

The following graphs show the stored energy of the peak axial node as a function
of local burnup at that location. The results are similar to those shown for
fuel volume-averaged temperature. In general, the peak stored energy occurs

at beginning of life for PWR's, but may occur later at high power levels. The
genera) case for BWR's is that the peak stored energy occurs late-in-life.

Values are presented in units of stored energy per unit mass of the fuel.
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APPENDIX H

GAP CONDUCTANCE

The following graphs show the variation of gap conductance with burnup, and
the data are given for the peak axial node at specified rod peak burnups. The
graphs of PWR gap conductance show a wide variation in values (due to gap
closure) with the differences increasing as a function of increased linear
power rating. Also, the gap conductivity for a PWR tends to demonstrate a
pronounced peak at mid-life burnup when gap closure occurs. The value of gap

conductance decreases thereafter due to fill gas dilution with fission gases.

In general, gap conductivity is greater for a PWR than a BWR, which can be
attributed to prepressurization. This is also shown for the prepressurized GE
8x8R design which has gap conductivity values larger than those for the unpres-
surized GE Bx8R design. The BWR designs also show less variation in gap
conductance due to thicker cladding, which is more resistant to the cladding

creepdown and gap closure.
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APPENDIX 1

FISSION GAS RELEASE

The following graphs show the effects of burnup on fission gas release,
and the data are rod average fission gas release at specified rod peak
burnups. Examination of the graphs shows that high fission gas release

is directly related to high burnups and power ratings.

In general, the curves for the first three power levels coincide, showing

little effect of rod power, while there is a noticable increase in the
amount of fission gas released at 15 kW/ft. The effect at lower power
levels is due to the minimum values predicted at the NRC-corrected
Beyer-Hann fission gas release model. Burnup considerations are pre-
dominant for the 10 kW/ft and lower power levels, while it is not until
15 kW/ft that temperature considerations also play an important role.

At 15 kW/ft fission gas release is greater for the BWRs than for the
PWRs. This is attributed to the lower gap conductivity of unpressurized

BWR fuel design which results in higher fuel temperatures.
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APPENDIX J

ROD INTERNAL PRESSURE

The following graphs show the effects of burnup on rod internal pressure, and
the fita are rod average internal pressure at specified rod peak burnups. In
all the cases studied, the rod internal pressure eventually exceeded the
system pressure at some burnup level. These values normally exceed current
discharge burnup. At 5 and 10 kWw/ft and for the rod power associated with
core average power, system pressure was not exceeded until 50,00C Mwd ‘MtU. At

15 kW/ft, system pressure was exceeded somewhat earlier.

Although the time in life at which the rod internal pressure exceeds system
pressure is dependent on the power history of the rod, the code predicts that
all fuel designs will eventually reach this condition at any power level.

The power histories selected in this study are bounding. That is, the rod
pressure criteria would be violated more quickly for these constant power

histories than for those which only occasionally reach peak values.

There is a substantial pressure difference between PWR and BWR designs at
beginning of life due to the difference in initial prepressurization values.
The BWR GE 7x7 fuel design has the lowest rod internal pressure value which
is attributed to the large plenum volume.
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