50-329 MIDLAND #1

RESIDENTIAL ELECTRICITY ELASTICITIES IN THE LOWER PENINSULA OF MICHIGAN...Vol. 3

w/letter 9-11-78...

THIS DOCUMENT CONTAINS
POOR QUALITY PAGES

- NOTICE

THE ATTACHED FILES ARE OFFICIAL RECORDS OF THE DIVISION OF DOCUMENT CONTROL. THEY HAVE BEEN CHARGED TO YOU FOR A LIMITED TIME PERIOD AND MUST BE RETURNED TO THE RECORDS FACILITY BRANCH 016. PLEASE DO NOT SEND DOCUMENTS CHARGED OUT THROUGH THE MAIL. REMOVAL OF ANY PAGE(S) FROM DOCUMENT FOR REPRODUCTION MUST BE REFERRED TO FILE PERSONNEL.

DEADLINE RETURN DATE

8006190 751

A

RECORDS FACILITY BRANCH

RESIDENTIAL ELECTRICITY ELASTICITIES IN THE LOWER PENINSULA OF MICHIGAN

VOLUME 3

Prepared For:

Consumers Power Company and Detroit Edison Company

Prepared By:

Philip M. Banks
John M. Campbell, Jr.
Richard K. Knowles
E. Kemp Prugh
George S. Tolley, Consultant

Economic Analysts
Division of
Equitable Environmental Health, Inc.
455 Fullerton Avenue
Elmhurst, Illinois 60126

July 1977

A Subsidiary of The Equitable Life Assurance Society of the United States

APPENDIX F

COMPANY LEVEL TIME SERIES

A model similar to that used for the regional time series has been developed for estimating demand elasticities at the company level for Consumers Power Company and Detroit Edison Company. The company-level data are basically the regional data aggregated to the company level. For the consumption data, the aggregation is straightforward. For the electricity price variable, no aggregation is required since it is already company-wide. The income data are aggregated using the same procedure applied to the county income data for the Consumers Power regions. The fuel oil price variable is statewide and therefore presents no problem. The gas price variable is aggregated using the number of customers served by a certain gas company as the weighting factor. The weather variable was not aggregated, but weather stations representative of the company as a whole were used. Lansing was chosen for Consumers Power and the average of the two Detroit airports was selected for Detroit Edison.

A model using these variables was chosen for each of the companies. A logarithmic specification employing real prices was used, similar to the final regional models. In neither case was the weather variable found significant. This implies that annual climatic variables do not change enough over the entire service area to significantly explain differences in annual electricity consumption. Also, the fuel oil price variable was not found to be statistically significant in the Detroit Edison service area. Otherwise the model has the ame form as the individual region models. Table F-1 summarizes the estimated coefficients for the company-level demand equations considered most appropriate

Table F-1
Company Time Series Model

Demand = $\lambda * Electricity^{\epsilon} * Income^{\alpha} * Gas^{\delta^{1}} * Oil^{\delta^{2}} * Demand(-1)^{\rho}$

	Short run				Long run Elast	icity Estimates
	Consume	ers Power	Detroit Edison		Consumers Power	Detroit Edison
	Coefficient	t-statistic	Coefficient	<u>t-statistic</u>		
Electricity	316	4.00	180	2.76	-2.98	-1.15
Income	.068	1.54	.094	1.24	.64	.60
Gas	.187	2.81	.166	1.44	1.76	1.07
0i1	.146	3.09			1.38	
Lagged dependent variable	.899	36.62	.844	21.47		
R ²	.9984		.9977			
F	2174		2054			
Standard Error as percent of Mean Demand	.159		.221			

Table F-2

Detroit Edison Company Companywide Time Series Regressions

EQUATION DEMAND = 1.402*ELECTRICITY -.17988*GAS.16624*INCOME.093845*DEMAND(-1).84407

R-SQUARED = .99769

24 OBSERVATIONS, 4 VARIABLES

CORRECTED R-SQUARED = .99721 STANDARD ERROR = .018229 DEPENDENT MEAN = 8.2634

STANDARD ERROR AS % MEAN DEMAND = .22059

RESIDUAL SUM SQUARE = .0063166

F-RATIO = 2,054

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	T-STATISTIC	PARTIAL-F
ELECTRICITY	17988	.65091E-01	13283	-2.7635	7.6473
GAS	.16624	.11528	.51319E-01	1.4420	2.0794
INCOME	.93845E-01	.75506E-01	.48867E-01	1.2429	1.5448
DEMAND(-1)	.84407	.39309E-01	.87236	21.473	461.09

Table F-3

Consumers Power Company Companywide Time Series Regressions

EQUATION DEMAND = 0.773*ELECTRICITY -0.31621*GAS 0.18712*INCOME 0.068456*FUEL 0IL 0.14649*DEMAND(-1) 0.89892

R-SQUARED = .99835

24 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .99789 STANDARD ERROR - .01335 DEPENDENT MEAN = 8.3851

STANDARD ERROR AS % MEAN DEMAND = .15921

RESIDUAL SUM SQUARE = .0032081

F-RATIO = 2,173.7

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	T-STATISTIC	PARTIAL-F
ELECTRICITY	31621	.79024E-01	16474	-4.0015	16.012
GAS	. 18712	.66475E-01	.71041E-01	2.8149	7.9238
INCOME	.68456E-01	.50921E-01	.41540E-01	1.3444	1.8073
FUEL OIL	.14649	.47473E-01	.74022E-01	3.0857	9.5216
DEMAND(-1)	.89892	.24547E-01	.93460	36.621	1341.1

for each company, and Tables F-2 and F-3 contain the detailed regression results. However, these regression results, as explained in Section V of Volume 1, are considered inferior to the regional results. The company-level elasticity estimates obtained by aggregating the regional results together are considered superior.

In the process of developing a company-wide model, a variety of other regressions were run that involved different equation specifications. Each had various problems and/or disadvantages over the model finally chosen.

The process began with the most naive model possible—a linear one based upon nominal rather than real dollar quantities. Table F-4 gives the results of such a regression, which includes a price for electricity, prices for natural gas, income, heating degree—days, and the percent urbanization as independent variables. The coefficients all have the expected signs except for the percent urbanization. It was expected that this variable would be negative because consumers in cities tend to use less electricity. The regression shown is for the Consumers Power Company service area. The equation statistics are all very impressive, indicating a high degree of explanatory power. However, there is no explicit control for changes that have occurred over time, and the method of interpolation for the percent urban variable makes it very highly correlated with time, thereby muddling its effects.

There are a variety of ways to control for changes over time. One commonly used procedure is to use real prices, meaning prices are divided by a price level measure (the consumer price index in this study). Other possibilities include explicitly including either the consumer price index or time as an independent variable. All three of these approaches were intestigated.

Table F-4

Consumers Power Company Regression Not Controlling for Time

EQUATION

DEMAND = -7914 - 1109*ELECTRICITY + 312.32*GAS + .71468*INCOME + 119.94*URBAN + .16112*HEATING DEGREE DAYS

R-SQUARED = .9964

STANDARD ERROR RESIDUALS = 125.524

F-RATIO = 529.74

VARIABLE	COEFFICIENT	STANDARD ERROR	_T_	ELASTICITY ESTIMATE
ELECTRICITY (500 TEB)	-1109	358.72	-3.092	454
GAS	312.32	86.792	3.600	.084
INCOME	.71468	.061238	11.671	.485
% URBAN	119.94	13.255	9.049	
HEATING DEGREE DAYS	.16112	.00824	1.956	
CONSTANT	-7914	909.49	-8.702	

CALCIU ATER

An example of a regression for the Consumers Power Company service area that includes the consumer price index as an independent variable is reported in Table F-5. Again, only the percent urban variable is of an unexpected sign. When time is included, the significance of the percent urban variable decreases to almost zero. The major problem with including either time or the consumer price index as an independent variable is that it is tantamount to admitting the underlying factors causing changes in consumption cannot be identified. They are "catch-all" variables that do not explain causes, but make the statistics look good.

The use of real prices represents one method of overcoming this problem. Extensive testing of various models was done where real prices were employed. Table F-6 reports the results of one of the better real price regressions using a linear specification. This regression, as do the other preliminary models that have been discussed, uses the 500 kilowatthour typical electric bill as the basis for the price of electricity. Again, the percent urban variable is positive and highly significant. Also, the income variable is implausibly negative. The improper signs are the major objections to this model.

The regressions described in this appendix have all been on a company-wide basis, and predominantly for the Consumers Power Company service area. Similar regressions have been run for the Detroit Edison service area. As explained in Section V, the regional level regressions are considered more reliable. Regional level regressions have been run for all of the above specifications and many more. The results of these regressions should be considered developmental and are not reported here. Appendix E reports more fully on regional regressions that overcome the objections to the regressions

Table F-5

Consumers Power Company Regression Including the CPI as an Independent Variable

EQUATION

DEMAND = -6728 -1716*ELECTRICITY + 212.22*GAS + .3643*INCOME + 120.51*URBAN + 3389.1*CPI

R-SQUARED = .9970

STANDARD ERROR RESIDUALS = 114.741

F-RATIO = 634.72

VARIABLE	COEFFICIENT	STANDARD ERROR		CALCULATED ELASTICITY ESTIMATE
ELECTRICITY (500 TEB)	-1716	407.87	-4.208	702
GAS	212.22	75.201	2.822	.057
INCOME	.3643	.1409	2.585	.247
% URBAN	120.51	11.604	10.385	
CPI	3389.1	1175.2	2.884	
CONSTANT	-6728	711.49	-9.456	

Table F-6

Consumers Power Company Regression Using Real Prices

EQUATION

DEMAND = -24040 - 826.2*ELECTRICITY + 155.09*FUEL OIL - .3534*INCOME + 300.07*MULTIUNIT + 397.76*URBAN

R-SQUARED = .9953

STANDARD EXROR RESIDUALS = 144.043

F-RATIO = 401.37

VARIABLE	COEFFICIENT	STANDARD ERROR	T	CALCULATED ELASTICITY ESTIMATE
ELECTRICITY (500 TEB)	-826.2	549.10	-1.505	356
FUEL OIL	155.09	38.944	3.982	.404
INCOME	3534	.22313	-1.584	241
% MULTIUNIT	300.07	35.754	8.392	
% URBAN	397.76	35.12	11.324	
CONSTANT	-24040	3066.1	-7.840	

reported in this section. The data utilized in the company-wide regressions are included as part of Appendix D. Section VI of the text details why the regional regressions are considered more reliable.

APPENDIX G

REGIONAL CROSS SECTION MODEL

APPENDIX G

REGIONAL CROSS-SECTION MODEL

The regional data utilized in the time-series work were also used in estimating a regional cross-section model. Rather than grouping all observations of a certain region, all 24 regional observations for each year were grouped as a set and an equation estimated for that year. Tables G-1 through G-10 give the results of this procedure for both linear and logarithmic specifications. Only the years 1970 through 1974 are reported. These and earlier years' equations have the overriding problem of Wayne County having a high percentage of the sales for Detroit Edison. Companywide, the Consumers Power Company customers face lower prices and consume more electricity than Detroit Edison customers. But on a regional basis, the Detroit Edison customers outside of Wayne County consume more electricity than the Consumers Power customers. This results in positive electricity price elasticities in a regional model because each region is weighted equally. The cause of the difference in consumption levels lies in the degree of urbanization. Outside of the Detroit SMSA, the Detroit Edison service area is almost completely rural, and urban customers tend to use less elect city. All of Consumers Power Company's divisions except the Northwest Division are partially urban. This tends to lower average consumption as compared to the rural Detroit Edison counties. The large number of Detroit Edison counties that consume more electricity per customer than Consumers Power divisions and pay higher prices result in a positive price elasticity. This lack of uniformity in consumption rates in the counties for Detroit Edison prevents forming a model that properly takes advantage of the two different price levels (one for each company).

3

A weighted least squares procedure was considered as a method of overcoming this problem. However, any rational weighting scheme would have to be based on either kilowatthour consumption or number of customers. Use of either of these is objectionable because both are involved in construction of the dependent variable. The net effect of such a weighting scheme would be some kind of implicit modification of the dependent variable, a practice which is highly recommended against in the literature. Therefore, a weighting scheme was not employed.

The regression results reported in this appendix include many variables which are not statistically significant, notably percent urban, percent multiunit, and heating degree days. The reason these are included is that the variation of these variables across regions was a source of variation which it was hoped would add additional explanatory power in a cross-section analysis. The low significance indicates this power was not captured, and is another reason why these results are not very useful. These results are included only to demonstrate a plausible method of analyses which was investigated and did not prove fruitful.

Table G-1

Regional Cross-Section Model Linear Specification

1970

EQUATION

DEMAND = - 27,392 + 9,787.1*ELECTRICITY + 11,056*GAS + .23156*INCOME - 11.355*URBAN + 59.33*MULTIUNIT

+ .49856*DEGREE DAYS

R-SQUARED = .55077

24 OBSERVATIONS, 6 VARIABLES

CORRECTED R-SQUARED = .39222

STANDARD ERROR = 1,096.7

DEPENDENT MEAN = 6,969

STANDARD ERROR AS % MEAN DEMAND = 15.736

RESIDUAL SUM SQUARE = 20,445,298

F-RATIO = 3.4737

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
ELECTRICITY	9787.1	3883.6	.53556	2.4332	2.5201	6.3508
GAS	11056.	3620.0	.53987	1.8084	3.0543	9.3288
INCOME	.23156	.89693	.74706E-01	.10964	.25817	.66652E-01
URBAN	-11.355	17.005	23224	80825E-01	66778	.44593
MULTIUNIT	59.330	47.876	.30906	. 15995	1.2393	1.5358
DEGREE DAYS	.49856	.77278	.12789	.50015	.64515	.41621

Table G-2

Regional Cross-Section Model Linear Specification

1971

EQUATION

DEMAND = - 40.724 + 16,150*ELECTRICITY + 11,078*GAS + .1887*INCOME - 7.8837*URBAN + 72.173*MULTIUNIT

+ 1.0556*DEGREE DAYS

R-SQUARED = .58468

24 OBSERVATIONS, 6 VARIABLES

CORRECTED R-SQUARED = .4381

STANDARD ERROR = 1,062.3

DEPENDENT MEAN = 7,200.3

STANDARD ERROR AS % MEAN DEMAND = 14.754

RESIDUAL SUM SQUARE = 19,184,720

F-RATIO = 3.9887

VARIABLE	COEFFICIENT	STANDARD ERROR	БЕТА	ELASTICITY	T-STATISTIC	PARTIAL-F
ELECTRICITY	16150.	6105.3	.51880	3.7697	2.6452	6.9969
GAS	11078.	3369-9	.58298	1.6720	3.2873	10.806
INCOME	.18870	.79754	.69557E-01	.88898E-01	.23660	.55980E-01
URBAN	-7.8837	16.809	16087	54380E-01	46902	.21998
MULTIUNIT	72.173	44.961	.37704	.19458	1.6052	2.5767
DEGREE DAYS	1.0556	.65562	.30009	.98498	1.6100	2.5923

Table G-3

Regional Cross-Section Model Linear Specification

1972

EQUATION

DEMAND = - 6,803.8 - 8,925.3*ELECTRICITY + 16,718*GAS + .16563*INCOME - 10.847*URBAN + 96.972*MULTIUNIT

+ 1.3025*DEGREE DAYS

R-SQUARED = .5889

24 OBSERVATIONS, 6 VARIABLES

CORRECTED R-SQUARED = .44381

STANDARD ERROR = 1,101.9

DEPENDENT MEAN = 7,532

STANDARD ERROR AS % MEAN DEMAND = 14.629

RESIDUAL SUM SQUARE = 20,640,688

F-RATIO = 4.0588

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
ELECTRICITY	-8925.3	4392.7	42616	-2.0390	-2.0318	4.1284
GAS	16718.	4943.5	.63315	2.4004	3.3818	11.436
INCOME	.16563	.80923	.61200E-01	.79465E-01	.20467	.41889E-01
URBAN	-10.847	18.025	21319	71623E-01	60178	.36214
MULTIUNIT	96.972	47.126	.49187	.25819	2.0577	4.2341
DEGREE DAYS	1.3025	.68182	.36296	1.2759	1.9104	3.6495
						0

Table G-4

Regional Cross-Section Model Linear Specification

1973

EQUATION

DEMAND = - 13,794 + 3,297*ELECTRICITY + 6,987.2*GAS + .76354*INCOME - 23.774*URBAN + 84.233*MULTIUNIT

+ .6821*DEGREE DAYS

R-SQUARED = .38842

24 OBSERVATIONS, 6 VARIABLES

CORRECTED R-SQUARED = .17257

STANDARD ERROR = 1,321.8 DEPENDENT MEAN = 7,547.7

STANDARD ERROR AS % MEAN DEMAND = 17.513

RESIDUAL SUM SQUARE = 29,702,435

F-RATIO = 1.7995

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
ELECTRICITY	3297.0	3808.3	.22068	.80651	.86574	.74950
GAS	6987.2	4189.4	.40758	1.0058	1.6678	2.7817
INCOME	.76354	.93989	.30390	.37971	.81238	.65996
URBAN	-23.774	22.001	47752	15683	-1.0806	1.1677
MULTIUNIT	84.233	57.987	.44016	.23083	1.4526	2.1101
DEGREE DAYS	.68210	.97494	.16414	.56162	.69963	.48949

Table G-5

Regional Cross-Section Model Linear Specification

1974

EQUATION

DEMAND = - 42,162 + 21,294*ELECTRICITY + 4,730.6*GAS + .18631*INCOME - 16.253*URBAN + 50.217*MULTIUNIT

+ .60043*DEGREE DAYS

R-SQUARED = .34863

24 OBSERVATIONS, 6 VARIABLES

CORRECTED R-SQUARED = .11874

STANDARD ERROR = 1,395.2

DEPENDENT MEAN = 7.507

STANDARD ERROR AS % MEAN DEMAND = 18.585

RESIDUAL SUM SQUARE = 33,092,538

F-RATIO = 1.5165

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
ELECTRICITY	21294.	15077.	.37382	5.3198	1.4123	1.9947
GAS	4730.6	5156.5	.24115	.62575	.91739	.84160
INCOME	.18631	1.0890	.62718E-01	.98927E-01	.17108	.29269E-01
URBAN	-16.253	22.969	32085	10794	70761	.50072
MULTIUNIT	50.217	62.831	.25959	. 14257	.79924	.63878
DEGREE DAYS	.60043	.99059	.15324	.54630	.60613	.36739

Table G-6

1970

EQUATION DEMAND = 13.088*ELECTRICITY2.5149*GAS1.7133*INCOME-0.0017806*URBAN-0.026967*MULTIUNIT0.15831*DEGREE DAYS0.48761

R-SQUARED = .58164

23 OBSERVATIONS, 6 VARIABLES

CORRECTED R-SQUARED = .42476
STANDARD ERROR = .14609
DEPENDENT MEAN = 8.8255
STANDARD ERROR AS % MEAN DEMAND = 1.6553

RESIDUAL SUM SQUARE = .34149 F-RATIO = 3.7075 DEGREES OF FREEDOM = 16

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	T-STATISTIC	PARTIAL-F
ELECTRICITY	2.5149	1.0222	. 58322	2.4603	6.0531
GAS	1.7133	.51240	.58388	3.3437	11.180
INCOME	17806E-02	.32997	12056-E-02	45311E-02	.20531E-04
URBAN	26967E-01	.84800E-01	10049	31801	.10113
MULTIUNIT	.15831	.13669	.27538	1.1582	1.3414
DEGREE DAYS	.48761	.75071	.13045	.64954	.42190

Table G-7

1971

EQUATION DEMAND = 0.107*ELECTRICITY3.9411*GAS1.5757*INCOME-0.0046074*URBAN-0.013811*MULTIUNIT0.20769*DEGREE DAYS0.95459

R-SQUARED = .62578

23 OBSERVATIONS, 6 VARIABLES

CORRECTED R-SQUARED = .48545 STANDARD ERROR = .13473 DEPENDENT MEAN = 3.861

STANDARD ERROR AS % MEAN DEMAND = 1.5205

RESIDUAL SUM SQUARE = .29043 F-RATIO = 4.4593 DEGREES OF FREEDOM = 16

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	T-STATISTIC	PARTIAL-F
ELECTRICITY	3.9411	1.4519	.57106	2.7145	7.3686
GAS	1.5757	.42963	62652	3.6675	13.451
INCOME	46074E-02	.33597	35967E-02	13714E-01	.18806E-03
URBAN	13811E-01	.75835E-01	53170E-01	18212	.33167E-01
MULTIUNIT	.20769	.12966	.36352	1.6019	2.5660
DEGREE DAYS	.95459	.58038	.30459	1.6448	2.7053

Table G-8

1972

EQUATION DEMAND = 0.100*ELECTRICITY-2.2767*GAS2.3483*INCOME-0.03325*URBAN-0.03662*MULTIUNIT0.27482*DEGREE DAYS1.3326

R-SQUARED = .65317

23 OBSERVATIONS, 6 VARIABLES

CORRECTED R-SQUARED = .52311 STANDARD ERROR = .1291 DEPENDENT MEAN = 8.9056

STANDARD ERROR AS % MEAN DEMAND = 1.4496

RESIDUAL SUM SQUARE = .26666 F-RATIO = 5.022

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	T-STATISTIC	PARTIAL-F
ELECTRICITY	-2.2767	.99765	50057	-2.2797	5.1973
GAS	2.3483	.58172	.67811	4.0368	16.296
INCOME	33250E-01	.32979	25476E-01	10082	.10165E-01
URBAN	36620E-01	.72289E-01	14242	50658	.25662
MULTIUNIT	.27482	.12731	.47471	2.1588	4.6602
DEGREE DAYS	1.3326	.61273	.39565	2.1748	4.7297

Table G-9

Regional Cross-Section Model Logarithmic Specification

1973

DEMAND = 0.2898*ELECTRICITY^{0.86695}*GAS^{1.446}*INCOME^{0.20911}*URBAN^{-0.098751}*MULTIUNIT^{0.30356}*DEGREE DAYS^{0.83082}

R-SQUARED = .51412

23 OBSERVATIONS, 6 VARIABLES

CORRECTED R-SQUARED = .33192 STANDARD ERROR = .1487 DEPENDENT MEAN = 8.909

STANDARD ERROR AS % MEAN DEMAND = 1,6691

RESIDUAL SUM SQUARE = .35379 F-RATIO = 2.8217 DEGREES OF FREEDOM = 16

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	T-STATISTIC	PARTIAL-F
ELECTRICITY	.86695	.88288	.25268	.98196	.96424
GAS	1.4460	.51317	.58087	2.8177	7.9396
INCOME	.20911	.36888	.16871	.56687	.32134
URBAN	98751E-01	.83701E-01	39771	-1.1798	1.3920
MULTIUNIT	.30356	.15430	.53133	1.9674	3.8706
DEGREE DAYS	.83082	.72625	.25356	1.1440	1.3087

Table G-10

1974

EQUATION DEMAND = 0.005*ELECTRICITY3.8803*GAS1.6806*INCOME0.14357*URBAN-0.10169*MULTIUNIT0.28655*DEGREE DAYS1.154

R-SQUARED = .48168

23 OBSERVATIONS, 6 VARIABLES

CORRECTED R-SQUARED = .2873 STANDARD ERROR = .15891 DEPENDENT MEAN = 8.9013

STANDARD ERROR AS % MEAN DEMAND = 1.7853

RESIDUAL SUM SQUARE = .40405 F-RATIO = 2.4781 DEGREES OF FREEDOM = 16

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	T-STATISTIC	PARTIAL-F
ELECTRICITY	3.8803	3.5736	.28611	1.0858	1.1790
GAS	1.6806	.69764	.56114	2.4090	5.8031
INCOME	. 14357	.41670	.99669E-01	.34454	.11871
URBAN	10169	.91732E-01	39895	-1.1086	1.2290
MULTIUNIT	.28655	.17605	.47760	1.6276	2.6491
DEGREE DAYS	1.1540	.82521	.33991	1.3984	1.9556

APPENDIX H

COMBINED CROSS-SECTION/TIME SERIES ANALYSIS

COMBINED CROSS-SECTION/TIME SERIES ANALYSIS

An effort at combined cross-section/time series analysis was made utilizing the regional level data base. By pooling the data it was possible to do an analysis which considered observations for 13 regions over 25 years at one time. Most procedures for the combining of time series and cross section data fall into the category of generalized least squares estimators. The particular procedure chosen for use is commonly referred to as "Seemingly Unrelated Regressions". This procedure was chosen because the assumptions required concerning the residuals appears less restrictive and more general than requirements for other procedures.

The procedure is best described in matrix notation. If one has m separate equations (in this case 13 regional equations) with a number of observations for each, the ordinary least squares coefficient estimates for each equation are given by

$$\hat{\beta}_{m} = (\underline{x}_{m} * \underline{x}_{m})^{-1} (\underline{x}_{m} * \underline{y}_{m})$$

The variance-covariance matrix for each of the equations is given by

$$E (\varepsilon_m \varepsilon'_m) = \sigma_{mm} \underline{I}_t$$

where T is the number of observations and $\varepsilon_{\rm m}$ represents the residuals for the mth equation. The "Seemingly Unrelated Regressions" approach then connects the different equations through their residuals by assuming;

$$E\left(\varepsilon_{m} \varepsilon_{p}^{\prime}\right) = \sigma_{mp} \frac{I}{t}$$

Thus, σ_{mp} is the covariance of the disturbances of the *m*th and *p*th equations, and that covariance is assumed to be constant over time. This says this covariance is the <u>only</u> link between equations. In this instance this procedure is especially useful because the effect of any omitted variable affecting all the different regions in the same manner would be captured.

This effect captured by the procedure is incorporated into the coefficient estimates by an re-estimation which incorporates the variance-covariance matrix of the ordinary least squares estimates. The variance-covariance matrix for all the equations is denoted Ω and, in matrix notation again, the new coefficient estimates are given by;

$$\hat{\beta} = (\underline{X}' \Omega^{-1} \underline{X})^{-1} (\underline{X}' \Omega^{-1} \underline{Y})$$

and the variance-covariance matrix of these estimates is given by

$$(X'\Omega^{-1}\underline{X})^{-1}$$

It can be shown that in the case of the regressions actually being unrelated, ie. $\sigma_{mp} = 0$, then this estimator reduces to the ordinary least squares estimator. Further, it can be shown that the variance for the "Seemingly Unrelated Regressions" is smaller or equal to that of the ordinary least squares procedure. This is a relatively straightforward result of the procedure being a maximum likelihood estimator.

A different approach which is frequently used is known as an error components model, often attributed to Balestra and Nerlove. In this procedure the regression disturbance is assumed to be comprised of three separate components—one associated with time, another with cross sectional units, and a third varying in both dimensions. Specifically the assumptions are

Eit =
$$u_i + v_t + w_{it}$$
 where
 $u_i \sim N (0, \sigma_u^2)$
 $v_t \sim N (0, \sigma_v^2)$
 $w_{it} \sim N (0, \sigma_w^2)$

and the components satisfy the following components

$$\begin{split} & E\left(u_{i}v_{t}\right) = E\left(u_{t}w_{it}\right) = E\left(v_{t}w_{it}\right) = 0 \\ & E\left(u_{i}u_{j}\right) = 0 \quad i \neq j \\ & E\left(v_{t}v_{s}\right) = 0 \quad t \neq s \\ & E\left(w_{it}w_{is}\right) = E\left(w_{it}w_{jt}\right) = E\left(w_{it}w_{js}\right) = 0 \quad \text{for } i \neq j, \ t \neq s \end{split}$$

Again, this procedure requires that the correlation of the disturbances over time remains unchanged no matter how far apart in time the disturbances are. But the additional requirements concerning the cross sectional error component are not required in a "Seemingly Unrelated Regressions" approach. However, in a case where the requirements of the error components model are met the two procedures should give the same results because both are unbiased, consistent, and efficient.

The "Seemingly Unrelated Regressions" procedures was applied to the regional data for each company. Aggregation into a Lower Peninsula of Michigan data set was not possible because of computer software limitations. The price for electricity used in the analysis that was done is based upon the 500 kWh Typical Electric Bill, rather than the Bill 10 prices. It is felt that this does not change the evaluation of the procedure for this study.

Table H-1 summarizes the results of the procedure for Consumers Power Company and Table H-2 does the same for Detroit Edison. The equation used to estimate was linear in the independent variables electricity price, gas price, income, and heating degree days. The procedure had somewhat different effects for the two companies. For Consumers Power, as evident in Table H-1, the procedure had relatively major effects. But the effects were counterintuitive. The gas price coefficients all became negative with the exception of Pontiac division (which actually faces Detroit Edison rate schedules). This is not at all expected of an alternative fuel. Also, the electricity price coefficients became much more elastic than in the OLS equations. The income coefficients did respond in an appropriate manner — the coefficients became much closer to each other and inelastic as compared to the OLS estimates.

Table H-1

Seeming: 'nrelated Regression Results for Consumers Power Company

		Ordinary Le	ast Squar	es Estin	nates			Seeming	ly Unrela	ted Regr	ession E	stimates	
Region	Price of E	lectricity	Price	of Gas	In	come	Price		tricity	Price		Inco	
	Coeff.	t-stat	Coeff.	t-stat	Coeff.	t-stat	Elas.	Coeff.	t-stat	Coeff.	t-stat	Coeff.	t-stat
Central	-3940	3.17	-451	0.31	1.16	1.95	-2.21	-4819	6.22	-1194	1.14	.465	3.01
Battle Creek	-3844	3.82	-833	0.62	1.13	2.95	-1.93	-4875	7.29	-1391	1.71	.558	3.98
Northeast	-3531	2.91	-485	0.36	.95	2.16	-2.25	-4492	6.50	-1355	1.51	.385	3.27
Pontiac	-3531	6.79	3087	0.23	.70	3.05	-2.08	-3850	11.81	1694	1.74	.287	2.04
Flint	-4365	3.57	154	0.12	1.42	3.24	-2.13	-5433	7.99	-971	1.15	.673	4.80
Grand Rapids	-3362	3.61	-2760	2.24	.52	1.33	-1.78	-3906	7.42	-2462	4.81	.316	1.88
Jackson	-3789	2.94	214	0.15	1.36	3.50	-1.91	-5135	6.84	-1472	1.55	.635	4.65
Kalama zoo	-4775	4.38	495	0.38	.94	2.18	-2.18	-5547	8.87	-866	1.19	. 286	2.18
Lansing	-4888	3.15	292	0.17	1.55	2.94	-2.14	-6278	7.11	-1174	0.99	.739	5.51
Muskegon	-3058	3.21	-3236	3.15	.15	0.34	-1.75	-3803	6.17	-2820	5.00	.004	. 02
Saginaw	-4436	4.71	332	0.27	1.35	4.50	-2.21	-5167	8.28	-1198	1.52	.733	6.34
Northwest	-2250	2.02	-4838	3.98	0	0	-1.44	-2969	4.39	-4220	6.92	138	.54

Table H-2

Seemingly Unrelated Regression Results for Detroit Edison Company

		Ordinary Lea	st Square	s Estima	tes		Seeming	gly Unrela	ted Regr	ession E	stimates	
Region	Price of E	lectricity	Price	of Gas	In	come	Price of Elec	tricity	Price	of Gas	Inc	come
	Coeff.	t-stat	Coeff.	t-stat	Coeff.	t-stat	Elas. Coeff	t-stat	Coeff.	t-stat	Coeff.	t-stat
Lapeer	-4608	10.17	964	0.98	0.09	0.27	-2.16 -4425	22.60	361	0.63	0.08	0.92
Tuscola	-3740	7.08	1926	1.80	0.59	1.57	-1.87 -3720	17.57	840	1.59	0.41	3.73
Huron	-3138	8.91	2183	2.44	0.19	0.76	-1.70 -3108	18.75	1491	3.45	0.10	1.09
Sanilac	-3552	3.98	273	0.19	0.17	0.30	-1.88 -4469	11.94	1245	2.21	-0.38	1.73
St. Clair	-3466	7.16	1043	1.18	0.09	0.39	-2.23 -3863	21.67	1390	5.57	0.16	1.75
Macomb	-2491	8.90	1366	1.88	0.87	4.02	-1.59 -2457	16.81	792	2.01	0.74	8.84
Oakland	-3531	6.79	3087	2.31	0.70	3.05	-2.24 -3487	13.55	1922	2.71	0.52	7.27
Ingham	-4686	9.55	2851	2.20	0.97	2.67	-1.87 -4561	20.99	1779	3.05	0.78	7.85
Livingston	-4239	13.79	971	1.01	0.08	٦.43	-2.20 -3944	22.73	335	0.59	0.18	3.54
Washtenaw	-2954	5.82	2872	2.29	0.68	3.26	-1.64 -2887	14.97	2388	5.48	0.54	5.90
Lenawee	-5075	12.18	2288	2.04	0.52	1.65	-1.79 -4970	19.50	1123	1.67	0.32	1.97
Monroe	-2457	10.02	107	0.42	0.79	5.31	-1.52 -2517	22.23	86	0.93	0.71	11.22
Wayne	-1954	5.78	467	0.48	0.52	4.49	-1.68 -1977	17.16	481	2.00	0.57	12.89

The results for Detroit Edison did not contain so many surprises. The electricity price coefficients were little changed, and the gas price variable had the proper sign. The income coefficients also seemed a little more reasonable than the OLS estimates, though not greatly changed.

The software limitation and lack of identifiable benefits limited use of this comparatively expensive procedure. Because nothing in it changes greatly from the OLS estimates this is not considered a major shortcoming. The standard error of the residuals in the OLS procedure is so small it is unlikely that a combined approach will significantly alter coefficients or decrease the standard error.

APPENDIX I

INDIVIDUAL CROSS SECTION REGRESSIONS

APPENDIX I

INDIVIDUAL CUSTOMER CROSS-SECTION REGRESSIONS

This appendix contains detailed results of cross-sectional regressions using individual customer data with annual kilowatthour consumption as the dependent variable. The first group of 36 tables does not include average price per kilowatthour as an independent variable; the next group of 36 does. The final 9 tables present the regression results of an attempt to use price variables in the manner described in the Taylor article in the literature review.

The first seventy two tables in this appendix provide empirical verification of two expectations relating to the use of average price of electricity the two being the reversal of cause-and-effect and the biasing of the income coefficient. As detailed in the text, average price is not a viable variable because it reverses cause-and-effect. The group of regressions including it as an explanatory variable demonstrate the degree to which it merely reflects the slope of the supply curve. Two data bases are used - one for each company. The Detroit Edison data, based on a 1973 appliance survey, was collected when Detroit had a traditional declining block rate structure. In contrast the Consumers Power data, based on a 1976 appliance survey, was collected when Consumers Power customers were facing a flat rate structure. The differences in the electricity price elasticity are striking. The time series regressions previously indicated that the Consumers Power customers tended to be somewhat more elastic in their responses to price changes than the Detroit Edison customers. However, in these individual customer regressions the price elasticity estimates are negative, and sometimes elastic, for the Detroit Edison data but very inelastic or even positive for the Consumers Power data. This difference is attributable to the difference in rate structure. Another expectation that is verified by these regressions is that deleting the average price variable would increase the importance of the income variable. This expectation applies in the instance of the traditional declining block rate structure. Thus, comparison of the results of including and not including average price in regressions utilizing the Detroit Edison appliance ownership data, with particular emphasis on the income variable, reveals the truth of this expectation. The income elasticity is doubled in most cases, and definitely is more important when the average price variable is not present.

As mentioned earlier, the major portion of this appendix is divided into two subsets — one that includes average price and one that does not. Each of these two categories is further divided into regressions that do not explicitly include appliance ownership variables (Tables I-1 to I-9, I-19 to I-27, I-37 to I-45, and I-55 to I-63) and those that do (Tables I-10 to I-18, I-28 to I-36, I-46 to I-54, and I-64 to I-72). This separates long-term appliance-buying decisions from short-term usage decisions. The equations that include appliance variables also indicate average annual electricity usage by an appliance.

These groupings are also ordered by company. The data for each company survey was partitioned by income and consumption and individual regressions were run for each usage block and each income block as well as for the sample as a whole. The following table will clarify the breakdown of the first 72 tables.

	Regressions Average		Regressions Average	
	CPC	DEC	CPC	DEC
Including Appli	ance Variables			
Total sample	46	64	10	28
Usage block	47-49	65-67	11-13	29-31
Income block	50-54	68-72	14-18	32-36
Excluding Appli	ance Variables			
Total sample	37	55	1	19
Usage block	38-40	56-58	2-4	20-22
Income block	41-45	59-63	5-9	23-27

As discussed in the literature review section, one method, suggested by Taylor, to overcome the problems associated with selecting a proper electricity price variable is to include both an average and a marginal price variable. Specifically, average price is to be calculated based on consumption up to, but not including, that in the last block consumed in. Marginal price is then the price from the rate schedule that corresponds to the block at the actual level of consumption. Thus, if a hypothetical consumer uses 609 kWh per month, and the rate schedule is as follows:

0-100 kWh	5.0¢/kWh
101-250 kWh	4.0¢/kWh
251-500 kWh	3.0¢/kWh
> 500 kWh	2.5¢/kWh

average price is calculated as 3.74¢/kWh = (.05*100 + .04 * 150 + .03 * 250)/500, and marginal price is 2.5¢/kWh. In this manner the pure price effect,* represented by the coefficient of the marginal price variable, is supposed to be separated from the income effect,* represented by the coefficient of the average price variable. Thus Taylor hypothesizes that inclusion of both prices will eliminate the likely upward bias in the elasticity estimate if only one price variable is included. Furthermore, he indicates that the coefficient of the average price variable should be equal in magnitude, but opposite in sign to the coefficient of the income variable.

Detroit Edison	"Average Price"	"Marginal Price"
0-15	\$ 1.50	0
15-100	10.0¢	3.2¢
100-200	4.22¢	2.8¢
over 200	3.51¢	2.6¢

As a test of the methodology, individual customer data from the 1973 Detroit Edison saturation survey were utilized. This resulted in a sample of 711 customers. All equations were estimated in linear fashion with ten independent variables: 1) marginal price, 2) average price, 3) income, 4) presence of an air conditioner, 5) size of the family, 6) age of the head

^{*} Any price change has "ssociated with it a pure price (or substitution) effect and an income effect. For details, see any intermediate price theory text.

of the family, 7) presence of a freezer, 8) number of rooms in the domicile, 9) presence of a dryers, and 10) presence of a stove. Of the above, variables 4, 7, 9, and 10 were binary variables. In addition, the income variable was an ordinal type variable.

Several regressions were run, including one for the overall sample, five for the data partitioned by income levels, and three for the data partitioned by usage level. Table I-73 presents the results for the overall sample; Tables I-74 through I-78 for income partitions of \$0 to \$5,000 per year, \$5,001 to \$10,000 per year, \$10,001 to \$15,000 per year, \$15,001 to \$25,000 per year, and greater than \$25,000 per year, respectively; Tables I-79 through I-81 for monthly usage partition of 0 to 500 kWh per month, 501 to 1,000 kWh per month, and greater than 1,000 kWh per month, respectively.

Examination of these tables reveals rather disappointing results. First, the elasticities obtained in all cases are extremely large, ranging from approximately -8 to -34. Furthermore, the sign associated with the average price variable coefficient is consistently the opposite of a priori expectations. In addition, in several instances the signs associated with several appliance's coefficients are also opposite to what one would logically expect.

The above aspects of these results seem to indicate the inappropriateness of Taylor's methodology to individual customer data, especially within
a single service area. Indeed, Taylor implies in his article that the methodology is best suited for a national study with the state as the observational
unit. For all of the above reasons, not much confidence is put in the results
obtained from this approach, and hence the reporting of results has been
relegated to this appendix.

Table I-1

Consumers Power Individual Customer Cross-Section Model Regression Excluding Average Price and Excluding Appliance Variables Total Sample

EQUATION

KWH = - 28.925 + 356.7*INCOME + 684.67*ROOMS + 511.72*FAMILY

R-SQUARED = .094574

1533 OBSERVATIONS, 3 VARIABLES

CORRECTED R-SQUARED = .092797 STANDARD ERROR

= 6,012.8

DEPENDENT MEAN

= 6,914.7

STANDARD ERROR AS % MEAN KWH = 86.957

RESIDUAL SUM SQUARE = 5.5279E+10

F-RATIO = 53.236

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
INCOME	356.70	93.379	.10029	.19780	3.8199	14.592
ROOMS	684.67	91.823	.18993	.57356	7.4564	55.598
FAMILY	511.72	93.283	.14069	.23283	5.4856	30.092

Table I-2

Consumers Power Individual Customer Cross-Section Model Regression Excluding Average Price and Excluding Appliance Variables Consumption Less Than 500 Kilowatthours/Month

EQUATION KWH = 2,028.3 + 317.13*ROOMS - 121.62*FAMILY

R-SQUARED = .1198

783 OBSERVATIONS, 2 VARIABLES

CORRECTED R-SQUARED = .11754 STANDARD ERROR = 1,552.6 DEPENDENT MEAN = 3,370.9

STANDARD ERROR AS % MEAN KWH = 46.060

RESIDUAL SUM SQUARE = 1.8804E+09

F-RATIO = 53.082

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ROOMS	317.13	32.569	.32774	.49778	9.7370	94.809
FAMILY	-121.62	30.605	13376	994b3E-01	-3.9739	15.792

Table I-3

Consumers Power Individual Customer Cross-Section Model Regression Excluding Average Price and Excluding Appliance Variables Consumption 500-1,000 Kilowatthours/Month

EQUATION KWH = 7,745 + 194.43*FAMILY

R-SQUARED = .03048

581 OBSERVATIONS, 1 VARIABLE

CORRECTED R-SQUARED = .028805 STANDARD ERROR = 1,653.4 DEPENDENT MEAN = 8,401.3 STANDARD ERROR AS % MEAN KWH = 19.680

RESIDUAL SUM SQUARE = 1.5828E+09

F-RATIO = 18.203

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
FAMILY	194.43	45.573	.17459	.78114E-01	4.2665	18.203

Consumers Power Individual Customer Cross-Section Model

Regression Excluding Average Price
and Excluding Appliance Variables
Consumption Over 1,000 Kilowatthours/Month

PROCEDURE SUMMARY

NO INDEPENDENT VARIABLE QUALIFIED FOR ENTRY

PROCEDURE ENDED WHEN

MAXIMUM F TO ENTER = 1.92 for "ROOMS"

FAILED TO MEET "F ACCEPT = 3.90"

Consumers Power Individual Customer Cross-Section Model
Regression Excluding Average Price
and Excluding Appliance Variables
Income Less Than \$4,000

PROCEDURE SUMMARY

NO INDEPENDENT VARIABLE QUALIFIED FOR ENTRY

PROCEDURE ENDED WHEN

MAXIMUM F TO ENTER = .20 FOR "ROOMS"

FAILED TO MEET "F ACCEPT = 3.90"

Table I-6

Consumers Power Individual Customer Cross-Section Model Regression Excluding Average Price and Excluding Appliance Variables Income \$7,000-10,000

EQUATION

KWH = 1.20.4 + 496.65*ROOMS + 761.29*FAMILY

THE PERSON OF TH

R-SQUARED = .043741

451 OBSERVATIONS, 2 VARIABLES

CORRECTED R-SQUARED = .039472 STANDARD ERROR

= 7,426.9

DEPENDENT MEAN = 6,190.1

STANDARD ERROR AS % MEAN KWH = 119.98

RESIDUAL SUM SQUARE = 2.4711E+10

F-RATIO = 10.246

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ROOMS .	496.65	215.33	.10687	.43354	2.3065	5.3200
FAMILY	761.29	205.28	.17184	.35314	3.7086	13.753

Table I-7

Consumers Power Individual Customer Cross-Section Model Regression Excluding Average Price and Excluding Appliance Variables Income \$10,000-15,000

EQUATION

KWH = 1,738.5 + 530.68*ROOMS + 753.31*FAMILY

R-SQUARED = .074387

387 OBSERVATIONS, 2 VARIABLES

CORRECTED R-SQUARED = .069566 STANDARD ERROR = 5,530.5

DEPENDENT MEAN = 7,189.1

STANDARD ERROR AS % MEAN KWH = 76.929

RESIDUAL SUM SQUARE = 1.1745E+10

F-RATIO = 15.43

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ROOMS	530.68	181.84	.14704	.42459	2.9185	8.5174
FAMILY	753.31	190.67	.19905	.33358	3.9508	15.609

Table I-8

Consumers Power Individual Customer Cross-Section Model Regression Excluding Average Price and Excluding Appliance Variables Income \$15,000-25,000

EQUATION

KWH = 974.75 + 889.33*ROOMS + 376.33*FAMILV

R-SQUARED = .11638

387 OBSERVATIONS, 2 VARIABLES

CORRECTED R-SQUARED = .11178

STANDARD ERROR = 4,973.2

DEPENDENT MEAN = 7,772.8

STANDARD ERROR AS % MEAN KWH = 63.982

RESIDUAL SUM SQUARE = 9.4972E+09

F-RATIO = 25.288

DEGREES OF FREEDOM = 384

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ROOMS	889.33	141.63	.30424	.69832	6.2792	39.428
FAMILY	376.33	155.38	.11735	.17627	2.4219	5.8658

Consumers Power Individual Customer Cross-Section Model Regression Excluding Average Price and Excluding Appliance Variables Income Over \$25,000

EQUATION

KWH = -2,414.7 + 1,642.9*ROOMS

R-SQUARED = .14255

138 OBSERVATIONS, 1 VARIABLE

CORRECTED R-SQUARED = .13624

STANDARD ERROR = 7,246.8

DEPENDENT MEAN = 9,133.5

STANDARD ERROR AS % MEAN KWH = 79.343

RESIDUAL SUM SQUARE = 7.1421E+09

F-RATIO = 22.609

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ROOMS	1642.9	345.52	.37755	1.2644	4.7549	22.609

Consumers Power Individual Customer Cross-Section Model Regressions Excluding Average Price and Including Appliance Variables Total Sample

EQUATION

KWH = - 10,388 + 227.3*INCOME + 432.87*ROOMS + 493.24*FAMILY + 728.74*FREEZER + 2,547.5*DRYER + 394.31*STOVE + 2,0249.9*AC + 2,696.1*WATER

R-SQUARED = .28013

1310 OBSERVATIONS, 8 VARIABLES

CORRECTED R-SQUARED = .2757
STANDARD ERROR = 5,624.7
DEPENDENT MEAN = 7,142.3
STANDARD ERROR AS % MEAN KWH = 78.752

RESIDUAL SUM SQUARE = 4.1160E+10 F-RATIO = 63.283

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
INCOME	227.30	97.899	.60195E-01	.12436	2.3218	5.3908
ROOMS	432.87	98.603	.11322	.35629	4.3901	19.273
FAMILY	493.24	96.113	.12801	.21814	5.1319	26.338
FREEZER	728.74	93.729	.19512	.27299	7.7750	60.451
DRYER	2547.5	338.76	.19113	.51161	7.5203	56.554
STOVE	394.31	189.20	.56104E-01	.12790	2.0841	4.3436
AC	2024.9	324.49	.14938	.32008	6.2401	38.939
WATER	2696.1	358.57	.19863	.52301	7.5191	56.537

Table I-11

Consumers Power Individual Customer Cross-Section Model Regressions Excluding Average Price and Including Appliance Variables Consumption Less Than 500 Kilowatthours/Month

EQUATION

KWH = 2,251.9 + 206.61*ROOMS - 89.84*FAMILY + 229.95*FREEZER + 420.45*DRYER - 503.74*WATER

R-SQUARED = .1801

648 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .17371
STANDARD ERROR = 1,464.8
DEPENDENT MEAN = 3,456.3
STANDARD ERROR AS % MEAN KWH = 42.380

RESIDUAL SUM SQUARE = 1.3775E+09 F-RATIO = 28.204 DEGREES OF FREEDOM = 642

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ROOMS	206.61	35.891	.21581	.32176	5.7565	33.138
FAMILY	-89.840	33.058	98205E-01	71480E-01	-2.7177	7.3857
FREEZER	229.95	39.239	.21710	.12988	5.8603	34.343
DRYER	420.45	133.30	.11572	.15431	3.1541	9.9485
WATER	-503.74	132.09	13988	18600	-3.8135	14.543

Table I-12

Consumers Power Individual Customer Cross-Section Model Regressions Excluding Average Price and Including Appliance Variables Consumption 500-1,000 Kilowatthours/Month

EQUATION

KWH = 2,679.8 + 107*ROOMS + 315.16*FAMILY + 132.95*FREEZER + 439.46*DRYER + 197.43*STOVE + 546.98*AC

+ 1,228.6*WATER

R-SQUARED = .24281

509 OBSERVATIONS, 7 VARIABLES

CORRECTED R-SQUARED = .23223

STANDARD ERROR = 1,480 ·

DEPENDENT MEAN = 8,370.3 STANDARD ERROR AS % MEAN KWH = 17.681 RESIDUAL SUM SQUARE = 1.0973E+09

F-RATIO = 22.951

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ROOMS	107.00	44.111	.98636E-01	.79260E-01	2.4257	5.8838
FAMILY	315.16	45.583	.28449	.12642	6.9140	47.803
FREEZER	132.95	38.627	.13638	.51986E-01	3.4418	11.846
DRYER	439.46	136.64	.13011	.79836E-01	3.2161	10.343
STOVE	197.43	82.178	.99359E-01	.59455E-01	2.4025	5.7720
AC	546.98	121.80	.17838	.76132E-01	4.4907	20.167
WATER	1228.4	149.78	.35792	.20676	8.2026	67.282

Consumers Power Individual Customer Cross-Section Model

Regressions Excluding Average Price and

Including Appliance Variables

Consumption Over 1,000 Kilowatthours/Month

PROCEDURE SUMMARY

NO INDEPENDENT VARIABLE QUALIFIED FOR ENTRY

PROCEDURE ENDED WHEN

MAXIMUM F TO ENTER = 3.22 FOR "WATER"

FAILED TO MEET "F ACCEPT = 3.90"

Consumers Power Individual Customer Cross-Section Model Regressions Excluding Average Price and Including Appliance Variables Income Under \$4,000

EQUATION KWH = - 26.957 + 425.96*FREEZER + 1,252.1*DRYER + 1,342.9*WATER

R-SQUARED = .2805

125 OBSERVATIONS, 3 VARIABLES

CORRECTED R-SQUARED = .26266 STANDARD ERROR = 2,225.8 DEPENDENT MEAN = 4,520.6 STANDARD ERROR AS % MEAN KWH = 49.235 RESIDUAL SUM SQUARE = 599,429.760

F-RATIO = 15.724

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTICS	PARTIAL F
FREEZER	425.96	127.86	.27523	.21257	3.3316	11.099
DRYER	1252.1	459.83	.22625	.36562	2.7230	7.4149
WATER	1342.9	410.14	.25821	.42777	3.2743	10.721

Table I-15

Consumers Power Individual Customer Cross-Section Model Regressions Excluding Average Price and Including Appliance Variables Income \$4,000-10,000

EQUATION

KWH = - 10,195 + 554.48*FAMILY + 876.78*FREEZER + 2,233.8*DRYER + 4,599.7*AC + 3,257*WATER

R-SQUARED = .2167

382 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .20629 STANDARD ERROR = 7,201.4 DEPENDENT MEAN = 6,400

STANDARD ERROR AS % MEAN KWH = 112.52

RESIDUAL SUM SQUARE = 1.9499E+10

F-RATIO = 20.805 DEGREES OF FREEDOM = 376

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
FAMILY	554.48	220.28	.11795	.24948	2.5171	6.3360
FREEZER	876.78	216.81	.19250	.35110	4.0441	16.355
DRYER	2233.8	798.32	.13573	.48974	2.7981	7.8293
AC	4599.7	841.55	.25046	.79396	5.4657	29.874
WATER	3257.0	777.00	.19703	.70875	4.1918	17.571

Table I-16

res my market from the first transfer that the last the l

Consumers Power Individual Customer Cross-Section Model Regressions Excluding Average Price and Including Appliance Variables Income \$10,000-15,000

EQUATION

KWH = - 5,230.2 + 630.82*FAMILY + 630.3*FREEZER + 2,246*DRYER + 723.55*STOVE + 2,782.8*WATER

R-SQUARED = .28325

338 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .27245 STANDARD ERROR = 5,059.5

DEPENDENT MEAN = 7,339

STANDARD ERROR AS % MEAN KWH = 68.940

RESIDUAL SUM SQUARE = 8.4988E+09

F-RATIO = 26.24

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
FAMILY	630.82	194.05	.15858	.27083	3.2508	10.568
FREEZER	630.30	164.23	.18782	.22767	3.8379	14.730
DRYER	2246.0	592.30	.18939	.45181	3.7920	14.379
STOVE	723.55	325.17	.11578	.22722	2.2251	4.9513
WATER	2782.8	638.12	.23119	.53512	4.3610	19.018

Table I-17

Consumers Power Individual Customer Cross-Section Model Regressions Excluding Average Price and Including Appliance Variables Income \$15,000-25,000

EQUATION KWH = ~ 7,724 + 688.77*ROOMS + 358.98*FAMILY + 782.85*FREEZER + 2,858.8*DRYER + 2,769.9*WATER

R-SQUARED = .37414

343 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .36485 STANDARD ERROR = 4,296.2

DEPENDENT MEAN = 7,846.7 STANDARD ERROR AS % MEAN KWH = 54.752 RESIDUAL SUM QUARE = 6.2202E+09

F-RATIO = 40.291

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ROOMS	688.77	138.70	.22604	.53793	4.9660	24.661
FAMILY	358.98	143.93	.10990	.16632	2.4940	6.2202
FREEZER	782.85	137.50	.25745	.28709	5.6933	32.414
DRYER	2858.8	494.57	.26382	.52578	5.7804	33.413
WATER	2769.9	515.50	.24075	.46724	5.3732	28.871

Table I-18

Consumers Power Individual Customer Cross-Section Model Regressions Excluding Average Price and Including Appliance Variables Income Over \$25,000

EQUATION

KWH = - 8,854.4 + 802.69*FAMILY + 1,068.2*FREEZER + 6,009.8*DRYER + 2,449.4*AC

R-SQUARED = .32822

122 OBSERVATIONS, 4 VARIABLES

CORRECTED R-SQUARED = .30525 STANDARD ERROR = 6,626.3 DEPENDENT MEAN = 9,627.5 STANDARD ERROR AS % MEAN KWH = 68.827

RESIDUAL SUM SQUARE = 5,1372E+09 F-RATIO = 14.291

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
FAMILY	802.69	336.53	.18431	.32667	2.3852	5.6892
FREEZER	1068.2	358.16	.23586	.32832	2.9825	8.8955
DRYER	6009.8	1275.0	.37949	.94147	4.7136	22.218
AC	2449.4	901.13	.20975	.32324	2.7182	7.3886

Detroit Edison Individual Customer Cross-Section Model Regressions Excluding Average Price and Excluding Appliance Variables Total Sample

EQUATION

KWH = - 4,309.2 + 654.71*INCOME + 750.57*ROOMS + 701.03*FAMILY + 271.37*AGE HEAD

R-SQUARED = .28403

711 OBSERVATIONS, 4 VARIABLES

CORRECTED R-SQUARED = .27997
STANDARD ERROR = 4,292.6
DEPENDENT MEAN = 7,044
STANDARD ERROR AS % MEAN KWH = 60.940

RESIDUAL SUM SQUARE = 1.3009E+10

F-RATIO = 70.017 DEGREES OF FREEDOM = 706

STANDARD VARIABLE COEFFICIENT ERROR BETA ELASTICITY T-STATISTIC PARTIAL F INCOME 654.71 94.955 .25848 6.8950 .49832 47.541 ROOMS 750.57 .21753 126.89 .61984 5.9151 34.988 FAMILY 701.03 111.70 .25155 .34280 6.2758 39.385 AGE HEAD 271.37 130.97 .78533E-01 .15079 2.0720 4.2932

Table 1-20

Detroit Edison Individual Customer Cross-Section Model Regressions Excluding Average Price and Excluding Appliance Variables Consumption Less Than 500 Kilowatthours/Month

EQUATION

KWH = 1,387.6 + .02.73*INCOME + 147.82*ROOMS + 280.22*FAMILY

R-SQUARED = .32868

342 OBSERVATIONS, 3 VARIABLES

CORRECTED R-SQUARED = .32273

STANDARD ERROR = 1,122.2 DEPENDENT MEAN

= 3.780

STANDARD ERROR AS % MEAN KWH = 29.688

RESIDUAL SUM SQUARE = 425,658,707

F-RATIO = 55.163

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
INCOME	202.73	31.734	.31138	.23759	6.3884	40.812
ROOMS	147, 82	49.879	.14049	.20457	2.9636	8.7830
FAMILY	230.22	46.373	.30225	.19075	6.0428	36.515

Regressions Excluding Average Price and Excluding Appliance Variables Consumption 500 1,000 Kilowatthours/Month

EQUATION

KWH = 5,943.2 + 217.3*INCOME + 134.36*ROOMS

R-SQUARED = .057275

294 OBSERVATIONS, 2 VARIABLES

CORRECTED R-SQUARED = .050796 STANDARD ERROR = 1,521.5 DEPENDENT MEAN = 8,110.8 STANDARD ERROR AS % MEAN KWH = 18.759

RESIDUAL SUM SQUARE = 673,664,034 F-RATIO = 8.8399 DEGREES OF FREEDOM = 291

STANDARD VARIABLE COEFFICIENT ERROR BETA ELASTICITY T-STATISTIC PARTIAL F INCOME 217.30 61.419 .20206 .16431 . 3.5381 12.518 ROOMS 134.36 68.035 .11278 .10294 1.9748 3.8998

Detroit Edison Individual Customer Cross-Section Model

Regressions Excluding Average Price
and Excluding Appliance Variables
Consumption Over 1,000 Kilowatthours/Month

PROCEDURE SUMMARY

NO INDEPENDENT VARIABLE QUALIFIED FOR ENTRY

PROCEDURE ENDED WHEN

MAXIMUM F TO ENTER = 3.86 FOR "ROOMS"

FAILED TO MEET "F ACCEPT = 3.97"

Detroit Edison Individual Customer Cross-Section Model Regression Excluding Average Price and Excluding Appliance Variables Income Under \$5,000

EQUATION

KWH = 1,541.6 + 1,038.3*FAMILY

R-SQUARED = .26484

122 OBSERVATIONS, 1 VARIABLE

CORRECTED R-SQUARED = .25871

STANDARD ERROR = 2,272.9

DEPENDENT MEAN = 3,745.8

STANDARD ERROR AS % MEAN KWH = 60.678

RESIDUAL SUM SQUARE = 619,915,214

F-RATIO = 43.229

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
FAMILY	1038.3	157.92	.51462	.58845	6.5749	43.229

Table I-24

Detroit Edison Individual Customer Cross-Section Model Regression Excluding Average Price and Excluding Appliance Variables Income \$5,000-10,000

EQUATION

KWH = 1,527.3 + 507.65*ROOMS + 421.73*FAMILY

R-SQUARED = .12357

141 OBSERVATIONS, 2 VARIABLES

CORRECTED R-SQUARED = .11087

STANDARD ERROR = 2,762.8

DEPENDENT MEAN = 5,360.4

STANDARD ERROR AS % MEAN KWH = 51.541

RESIDUAL SUM SQUARE = 1.0534E+09

= 9.7282 F-RATIO

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ROOMS	507.65	210.48	.20595	.49636	2.4119	5.8174
FAMILY	421.73	163.40	.22037	.21873	2.5809	6.6611

Table I-25

Detroit Edison Individual Customer Cross-Section Model Regression Excluding Average Price and Excluding Appliance Variables Income \$10,000-15,000

EQUATION

KWH = -1,289.4 + 1,227.7*ROOMS + 442.39*FAMILY

R-SQUARED = .12942

216 OBSERVATIONS, 2 VARIABLES

CORRECTED R-SQUARED = .12124
STANDARD ERROR = 5,146
DEPENDENT MEAN = 7,684.7
STANDARD ERROR AS % MEAN KWH = 66.964

RESIDUAL SUM SQUARE = 5.6405E+09 F-RATIO = 15.832

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	FARTIAL F
ROOMS	1227.7	301.84	.27875	.93193	4.0674	16.544
FAMILY	442.39	204.60	.14818	.23586	2.1623	4.6753

Table I-26

Detroit Edison Individual Customer Cross-Section Model Regression Excluding Average Price and Excluding Appliance Variables Income \$15,000-25,000

EQUATION KWH = 5,412.5 + 815.6*FAMILY

R-SQUARED = .083549

170 OBSERVATIONS, 1 VARIABLE

CORRECTED R-SQUARED = .078094

STANDARD ERROR = 4,548.2

DLPENDENT MEAN = 8,622.1

STANDARD ERROR AS % MEAN KWH = 52.750

RESIDUAL SUM SQUARE = 3.4753E+09

F-RATIO = 15.316

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
FAMILY	815.60	208.40	.28905	.37225	3.9135	15.316

Table I-27

Detroit Edison Individual Customer Cross-Section Model Regression Excluding Average Price and Excluding Appliance Variables Income Over \$25,000

EQUATION

KWH = -1,577.9 + 965.28*ROOMS + 1,460.9*FAMILY

R-SQUARED = .30627

62 OBSERVATIONS, 2 VARIABLES

CORRECTED R-SQUARED = .28275

STANDARD ERROR = 5,674.4

DEPENDENT MEAN = 10,804

STANDARD ERROR AS % MEAN KWH = 52.522

RESIDUAL SUM SQUARE = 1.8997E+09

F-RATIO = 13.023

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ROOMS	965.28	453.24	.26537	.61389	2.1298	4.5358
FAMILY	1460.9	489.08	.37219	.53216	2.9870	8.9224

Table I-28

Detroit Edison Individual Customer Cross-Section Model Regressions Excluding Average Price and Including Appliance Variables Total Sample

EQUATION

KWH = - 9,814.8 + 309.07*INCOME + 733.56*AC + 685.69*FAMILY + 1,932.7*FREEZER + 468.45*ROOMS

+ 2,423.4*DRYER + 2,279.9*STOVE

R-SQUARED = .4566

711 OBSERVATIONS, 7 VARIABLES

CORRECTED R-SQUARED = .45119

STANDARD ERROR = 3,747.6

DEPENDENT MEAN = 7,044

STANDARD ERROR AS % MEAN KWH = 53.203

RESIDUAL SUM SQUARE = 9.8735E+09

F-RATIO = 84.387

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
INCOME	309.07	82.328	.12202	.23524	3.7541	14.093
AC	733.56	150.89	.14156	.17415	4.8617	23.636
FAMILY	685.69	91.645	.24605	.33529	7.4820	55.980
FREEZER	1932.7	317.85	.17650	.35888	6.0804	36.972
ROOMS	468.45	111.14	.13577	.38686	4.2148	17.765
DRYER	2423.4	342.18	.21069	.43403	7.0822	50.158
STOVE	2279.9	299.96	.22431	.46888	7.5006	57.770

Table I-29

Detroit Edison Individual Customer Cross-Section Model Regressions Excluding Average Price and Including Appliance Variables Consumption Less Than 500 Kilowatthours/Month

EQUATION

KWH = - 551.03 + 170.4*INCOME + 262.39*AC + 328.05*FAMILY + 548.58*FREEZER + 129.78*ROOMS + 522.38*DRYER

+ 349.4*STOVE

R-SQUARED = .40504

342 OBSERVATIONS, 7 VARIABLES

CORRECTED R-SQUARED = .39257

STANDARD ERROR = 1,062.8

DEPENDENT MEAN = 3,780

STANDARD ERROR AS % MEAN KWH = 28.116

RESIDUAL SUM SQUARE = 377,242,154

F-RATIO = 32.484

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
INCOME	170.40	31.117	.26172	.19969	5.4761	29.988
AC	262.39	83.295	.13851	.97833E-01	3.1502	9.9236
FAMILY	328.05	44.899	.35383	.22331	7.3063	53.382
FREEZER	548.58	161.85	.14466	.16719	3.3894	11.488
ROOMS	129.78	47.971	.12335	.17960	2.7054	7.3193
DRYER	522.38	174.93	.12845	.15598	2.9863	8.9178
STOVE	349.40	125.75	.11986	.12217	2.7785	7.7201

Table I-50

Detroit Edison Individual Customer Cross-Section Model Regressions Excluding Average Price and Including Appliance Variables Consumption 500-1,000 Kilowatthours/Month

EQUATION

KWH = 3,290.3 + 142.81*INCOME + 303.61*AC + 178.57*FAMILY + 384.08*FREEZER + 758.13 *DRYER + 755.56*STOVE

R-SQUARED = .2091

294 OBSERVATIONS, 6 VARIABLES

CORRECTED R-SQUARED = .19256

STANDARD ERROR = 1,403.3

DEPENDENT MEAN = 8,110.8

STANDARD ERROR AS % MEAN KWH = 17.302

RESIDUAL SUM SQUARE = 565,172,145

F-RATIO = 12.646

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
INCOME	142.81	58.011	.13279	.10798	2.4617	6.0600
AC	303.61	81.331	.20067	.68754E-01	3.7330	13.935
FAMILY	178.57	50.858	19439	.90685E-01	3.5111	12.328
FREEZER	384.08	167.39	.12108	.66683E-01	2.2945	5.2649
DRYER	758.13	183.48	.22481	.12240	4.1319	17.072
STOVE	755.56	176.66	.24211	.13783	4.2769	18.292

Detroit Edison Individual Customer Cross-Section Model
Regressions Excluding Average Price and
Including Appliance Variables
Consumption Over 1,000 Kilowatthours/Month

PROCEDURE SUMMARY

NO INDEPENDENT VARIABLE QUALIFIED FOR ENTRY

PROCEDURE ENDED WHEN

MAXIMUM F TO ENTER = 3.86 FOR "ROOMS"

FAILED TO MEET "F ACCEPT = 3.97"

Table I-32

Detroit Edison Individual Customer Cross-Section Model Regressions Excluding Average Price and Including Appliance Variables Income Less Than \$5,000

EQUATION

KWH = - 4,131.4 + 891.57*FAMILY + 1,603*FREEZER + 2,725*DRYER + /35.03*STOVE

R-SQUARED = .50166

122 OBSERVATIONS, 4 VARIABLES

CORRECTED R-SQUARED = .48462 STANDARD ERROR = 1,895.2 DEPENDENT MEAN = 3,745.8 STANDARD ERROR AS % MEAN KWH = 50.594 RESIDUAL SUM SQUARE = 420,222,266 F-RATIO = 29.444

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
FAMILY	891.57	137.92	.44191	.50530	6.4643	41.787
FREEZER	1603.0	458.25	.24238	.51213	3.4981	12.237
DRYER	2725.0	535.92	. 34036	.81691	5.0847	25.854
STOVE	735.03	362.49	.13490	.26860	2.0277	4.1117

Detroit Edison Individual Customer Cross-Section Model Regressions Excluding Average Price and Including Appliance Variables Income \$5,000-10,000

EQUATION 5 105 5 1 170 27100 1 102 215001 V

KWH = - 5,405.5 + 470.27*AC + 483.2*FAMILY + 2,199.9*FREEZER + 382.05*ROOMS + 1,491.9*DRYER + 1,471.1*STOVE

R-SQUARED = .4472

141 OBSERVATIONS, 6 VARIABLES

CORRECTED R-SQUARED = .42245

STANDARD ERROR = 2

= 2,226.7

DEPENDENT MEAN

= 5,360.4

STANDARD ERROR AS % MEAN KWH = 41.540

RESIDUAL SUM SQUARE = 664,392,644

F-RATIO = 18.067

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
AC	470.27	220.37	.13907	.13440	2.1340	4.5541
FAMILY	483.20	132.72	.25250	.25061	3.6406	13.254
FREEZER	2199.9	434.32	.33967	.52683	5.0652	25.656
ROOMS	382.05	172.95	.15499	.37355	2.2090	4.8797
DRYER	1491.9	467,89	.21859	34543	3.1886	10.167
STOVE	1471.1	402.41	.24405	.37759	3.6557	13.364

Table I-34

Detroit Edison Individual Customer Cross-Section Model Regressions Excluding Average Price and Including Appliance Variables Income \$10,000-15,000

EQUATION

KWH = - 10,803 + 586.39*FAMILY + 2,891.8*FREEZER + 578.73*ROOMS + 3,799.2*DRYER + 2,931*STOVE

R-SQUARED = .39049

216 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .37598

STANDARD ERROR = 4,336.4

DEPENDENT MEAN = 7,684.7 STANDARD ERROR AS % MEAN KWH = 56.429 RESIDUAL SUM SQUARE = 3.9490E+09

F-RATIO = 26.908

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
FAMILY .	586.39	177.55	.19642	.31264	3.3026	10.907
FREEZER	2891.8	647.56	.24713	.49826	4.4657	19.943
ROOMS	578.73	263.84	.13140	.43930	2.1935	4.8113
DRYER	3799.2	722.38	.30909	.62943	5.2593	27.660
STOVE	2931.ũ	658.99	.25971	.52620	4.4477	19.782

Table I-35

Detroit Edison Individual Customer Cross-Section Model Regressions Excluding Average Price and Including Appliance Variables Income \$15,000-25,000

EQUATION

KWH = - 3,423.1 + 692.28*FAMILY + 1,856.7*FREEZER + 2,024.5*DRYER + 2,785.4*STOVE

R-SQUARED = .28578

170 OBSERVATIONS, 4 VARIABLES

CORRECTED R-SQUARED = .26847 STANDARD ERROR = 4,051.5

DEPENDENT MEAN = 8,622.1

STANDARD ERROR AS % MEAN KWH = 46.989

RESIDUAL SUM SQUARE = 2,7084E+09

F-RATIO = 16.505

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
FAMILY	692.28	188.64	.24534	.31597	3.6698	13.467
FREEZER	1856.7	671.86	.18638	.28881	2.7635	7.6370
DRYER	2024.5	714.22	.19531	.30386	2.8345	8.0345
STOVE	2785.4	645.58	.29480	.48838	4.3146	18.615

Table I-36

Detroit Edison Individual Customer Cross-Section Model Regressions Excluding Average Price and Including Appliance Variables Income Over \$25,000

EQUATION

KWH = -5,834.8 + 1,846.8*AC + 1,420.9*FAMILY + 1,000.8*ROOMS

R-SQUARED = .43304

62 OBSERVATIONS, 3 VARIABLES

CORRECTED R-SQUARED = .40372

STANDARD ERROR = 5,173.8

DEPENDENT MEAN = 10,804

STANDARD ERROR AS % MEAN KWH = 47.888

RESIDUAL SUM SQUARE = 1.5525E+09

F-RATIO = 14.767

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
AC	1846.8	512.81	.35620	.38599	3.6013	12.970
FAMILY	1420.9	446.07	.36200	.51759	3.1854	10.147
ROOMS	1000.8	413.37	.27514	.63649	2.4211	5.8618

Table I-37

ITO TO FEDERAL FOR THE LITE OF THE STATE OF THE PARTY OF

Consumers Power Individual Customer Cross-Section Model Regressions Including Average Price and Excluding Appliance Variables Total Sample

EQUATION

KWH = 29.215 - 2.4467*CENTS KWH + 357.78*INCOME + 676.56*ROOMS + 511.66*FAMILY

R-SQUARED = .095327

1533 OBSERVATIONS, 4 VARIABLES

CORRECTED R-SQUARED = .092959

STANDARD ERROR = 6,012.3

STANDARD ERROR AS % MEAN KWH = 86.949

DEPENDENT MEAN = 6,914.7

RESIDUAL SUM SQUARE = 5.5233E+10

F-RATIO = 40.252

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
CENTS KWH	-2.4467	2.1696	27527E-01	21864E-02	-1.1277	1.2717
INCOMF	357.78	93.375	.10059	.19839	3.8316	14.681
ROOMS	676.56	92.096	.18768	.56677	7.3463	53.968
FAMILY	511.66	93.275	.14068	.23280	5.4855	30.091

Table I-38

Consumers Power Individual Customer Cross-Section Model Regressions Including Average Price and Excluding Appliance Variables Consumption Less Than 500 Kilowatthours/Month

EQUATION

KWH = 2,080.4 - 1.3634*CENTS/KWH + 309.53*ROOMS - 121.43*FAMILY

R-SQUARED = .12645

783 OBSERVATIONS, 3 VARIABLES

CORRECTED R-SQUARED = .12309 STANDARD ERROR = 1,547.8 DEPENDENT MEAN = 3,370.9

STANDARD ERROR AS % MEAN KWH = 45.915

RESIDUAL SUM SQUARE = 1.8661E+09

F-RATIO = 37.589 DEGREES OF FREEDOM = 779

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
CENTS/KWH	-1.3636	.55982	81943E-01	36725E-02	-2.4358	5.9331
ROOMS	309.53	32.516	.31988	.48585	9.4899	90.057
FAMILY	-121.43	30.509	13355	99327E-01	-3.9802	15.842

Table I-39

Consumers Power Individual Customer Cross-Section Model Regressions Including Average Price and Excluding Appliance Variables Consumption 500-1,000 Kilowatthours/Month

EQUATION

KWH = 11,113 - 1,087.5*CENTS/KWH + 219.15*FAMILY

R-SQUARED = .03953

581 OBSERVATIONS, 2 VARIABLES

CORRECTED R-SQUARED = .036207

RESIDUAL SUM SQUARE = 1.5680E+09

STANDARD ERROR = 1,647

F-RATIO = 11.894 DEGREES OF FREEDOM = 578

DEPENDENT MEAN = 8,401.3 STANDARD ERROR AS % MEAN KWH = 19.605

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
CENTS/KWH	-1087.5	466.01	97686E-01	41087	-2.3337	5.4462
FAMILY	219.15	46.618	.19678	.88045E-01	4.7010	22.100

Consumers Power Individual Customer Cross-Section Model Regressions Including Average Price and Excluding Appliance Variables Consumption Greater Than 1,000 Kilowatthours/Month

EQUATION

KWH = 642,779 - 201,894*CENTS/KWH - 7/3.52*INCOME

R-SQUARED = .58658

169 OBSERVATIONS, 2 VARIABLES

CORRECTED R-SQUARED = .5816 STANDARD ERROR = 7,820.4 DEPENDENT MEAN = 18,223

STANDARD ERROR AS % MEAN KWH = 42.916

RESIDUAL SUM SQUARE = 1.0152E+10

F-RATIO = 117.77 DEGREES OF FREEDOM = 166

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
CENTS/KWH	20189E+06	13161.	77017	-34.064	-15.341	235.34
INCOME	-773.52	367.41	10570	20998	-2.1053	4.4325

Consumers Power Individual Customer Cross-Section Model Regressions Including Average Price and Excluding Appliance Variables Income Less Than \$4,000

EQUATION

KWH = 4,754.8 - 55.498*CENTS/KWH

R-SQUARED = .070153

170 ObSERVATIONS, 1 VARIABLE

CORRECTED R-SQUARED = .064618

STANDARD ERROR = 2,565

DEPENDENT MEAN = 4,457.7

STANDARD ERROR AS % MEAN KWH = 57.541

RESIDUAL SUM SQUARE = 1.1053E+09

F-RATIO = 12.675

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
CENTS/KWH	-55.498	15.588	26486	66647E-01	-3.5602	12.675

Table I-42

Consumers Power Individual Customer Cross-Section Model Regressions Including Average Price and Excluding Appliance Variables Income \$4,000-10,000

EQUATION

KWH = 1,420.2 - 1.4427*CENTS KWH + 481.68*ROOMS + 759.74*FAMILY

R-SQUARED = .044342

451 OBSERVATIONS, 3 VARIABLES

CORRECTED R-SQUARED = .037929

STANDARD ERROR = 7,432.8

DEPENDENT MEAN = 6,190.1

STANDARD ERROR AS % MEAN KWH = 120.08

RESIDUAL SUM SQUARE = 2.4695E+10

F-RATIO = 6.9136

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
CENTS KWH	-1.4427	2.7198	24743E-01	23325E-02	53045	.28137
ROOMS	481.68	217.34	.10365	.42048	2.2163	4.9119
FAMILY	759.74	205.47	.17148	.35242	3.6976	13.673

Table I-43

Consumers Power Individual Customer Cross-Section Model Regressions Including Average Price and Excluding Appliance Variables Income \$10,000-15,000

EQUATION

KWH = 3,928.3 - 375.67*CENTS/KWH + 367.08*ROOMS + 827.1*FAMILY

R-SQUARED = .12812

387 OBSERVATIONS, 3 VARIABLES

CORRECTED R-SQUARED = .12129
STANDARD ERROR = 5,374.6
DEPENDENT MEAN = 7,189.1
STANDARD ERROR AS % MEAN KWH = 74.760

RESIDUAL SUM SQUARE = 1.1063E+10

F-RATIO = 18.76 DEGREES OF FREEDOM = 383

MARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
CENTS/KWH	-375.67	77.324	23616	20636	-4.8584	23.504
ROOMS	367.08	179.89	.10171	.29369	2.0406	4.1639
FAMILY	827.10	185.92	.21855	.36625	4.4487	19.791

Table I-44

Consumers Power Individual Customer Cross-Section Model Regressions Including Average Price and Excluding Appliance Variables Income \$15,000-25,000

EQUATION

KWH = 1,287.2 - 63.582*CENTS/KWH + 889.28*ROOMS + 376.58*FAMILY

R-SQIIARED = .14635

387 OF SERVATIONS, 3 VARIABLES

CORRECTED R-SQUARED = .13966
STANDARD ERROR = 4,894.5
DEPENDENT MEAN = 7,772.8
STANDARD ERROR AS % MEAN KWH = 62.969

RESIDUAL SUM SQUARE = 9.1751E+09 F-RATIO = 21.886 DEGREES OF FREEDOM = 383

STANDARD VARIABLE COEFFICIENT **ERROR** BETA ELASTICITY T-STATISTIC PARTIAL F CENTS/KWH -63.582 17.341 -.17310 -.40280E-01 -3.6665 13.443 ROOMS 889.28 139.39 .30422 .69828 6.3798 40.702 FAMILY 376.58 152.92 .11743 .17639 2.4625 6.0641

Table I-45

Consumers Power Individual Customer Cross-Section Model Regressions Including Average Price and Excluding Appliance Variables Income Over \$25,000

EQUATION

 $KWH = -475.49 - 168.15 \times CENTS KWH + 1,473.6 \times ROOMS$

R-SQUARED = .16031

138 OBSERVATIONS, 2 VARIABLES

CORRECTED R-SQUARED = .14787

STANDARD EPROR = 7,197.8

DEPENDENT M N = 9,133.5

STANDARD ERRUR AS % MEAN KWH = 78.807

RESIDUAL SUM SQUARE = 6.9942E+09

F-RATIO = 12.887

VARIABLE VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
CENTS KWH	-168.15	99.497	13885	82003E-01	-1.6900	2.8563
ROOMS	1473.6	357.51	.33864	1.1341	4.1218	16.989

Table I-46

Consumers Power Individual Customer Cross-Section Model Regressions Including Average Price and Including Appliance Variables Total Sample

EQUATION

KWH = -22,123 - 104.97*CENTS/KWH + 358.22*ROOMS + 560.56*FAMILY + 942.39*FRIDGE2 + 842.07*FRIDGE

+ 670.31*WASHER + 679.13*FREEZER + 1,797.2*DRYER + 2,398.3*AC + 3,156.3*WATER + 8,156.1*SPACE

R-SQUARED = .34467

1000 OBSERVATIONS, 11 VALUABLES

CORRECTED R-SQUARED = .33737

STANDARD ERROR = 5,766.3

DEPENDENT MEAN = 7,395.5

STANDARD ERROR AS % MEAN KWH = 77, 971

RESIDUAL SUM SQUARE = 3.285E+10 F-RATIO = 47.239

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTITICTY	T-STATISTIC	PARTIAL-F
CENTS/KWH	-104.97	19.179	14296	61336E-01	-5.4733	29.958
ROOMS	358.22	118.04	.86806E-01	.28786	3.0346	9.2088
FAMILY	560.56	112.18	.13220	.24467	4.9969	24.969
FRIDGE 2	942.39	454.02	.55227E-01	.15559	2.0757	4.3084
FRIDGE	824.07	220.48	.10039	.36270	3.7376	13.970
₩R	670.31	192.14	.11320	.30092	3.4886	12.170
FREEZER	679.13	113.05	.17006	.24812	6.0072	36.087
DRYER	1797.2	432.44	.12644	.35406	4.1559	17.271
AC	2398.3	398.99	.15633	.36126	6.0110	36.132
WATER	3156.3	415.27	.21857	.59835	7.6005	57.768
SPACE	8156.1	1058.3	.20578	1.1392	7.7070	59.398

Table I-47

Consumers Power Individual Customer Cross-Section Model Regressions Including Average Price and Including Appliance Variables Consumption Less Than 500 Kilowatthours/Month

EQUATION

KWH = -179.5 - 38.992*CENTS/KWH + 112.85*ROOMS + 769.52*MICRO-OVEN + 356.46*FRIDGE + 360.25*WASHER

+ 193.26*FREEZER

R-SQUARED = .3685

474 OBSERVATIONS, 6 VARIABLES

CORRECTED R-SQUARED = .36038

STANDARD ERROR = 1,308.3

DEPENDENT MEAN = 3,485

STANDARD ERROR AS % MEAN KWH = 37.542

RESIDUAL SUM SQUARE = 799,392,222

F-RATIO = 45.417

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
CENTS/KWH	-38.992	4.4740	33142	62865E-01	-8.7152	75.954
ROOMS	112.85	37.742	.11802	.17605	2.9900	8.9399
MICRO OVEN	769.52	371.31	.79723E-01	.22733	2.0724	4.2950
FRIDGE	356.46	69.441	.19631	.30815	5.1333	26.350
WASHER	360.25	48.527	.30252	.29638	7.4239	55.114
FREEZER	193.26	42.676	. 17693	.10646	4.5285	20.507

Table I-48

Consumers Power Individual Customer Cross-Section Model Regressions Including Average Price and Including Appliance Variables Consumption 500-1000 Kilowatthours/Month

EQUATION

KWH = -4,524.7 + 1,633.6*CENTS/KWH + 103.92*ROOMS + 296.43*FAMILY + 305.61*FRIDGE + 212.51*WASHER + 137.2*FREEZER + 236.42*STOVE + 449.97*AC + 1,875.3*WATER

R-SQUARED = .28217

400 OBSERVATIONS, 9 VARIABLES

CORRECTED R-SQUARED = .2656 STANDARD ERROR = 1,467.2 DEPENDENT MEAN = 8,382.5

STANDARD ERROR AS % MEAN KWH = 17.504

RESIDUAL SUM SQUARE = 938,596,226

F-RATIO = 17.033

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
CENTS/KWH	1633.6	664.88	.14242	.61923	2.4570	6.0370
ROOMS	103.92	50.302	.93418E-01	.77141E-01	2.0659	4.2679
FAMILY	296.43	53.316	.25525	.11917	5.5598	30.911
FRIDGE	305.61	98.122	.13655	.12633	3.1146	9.7005
WASHER	212,51	88.735	.11082	.93104E-01	2.3949	5.7354
FREEZER	137.20	43.056	.13997	.53564E-01	3.1866	10.154
STOVE	236.42	94.100	.11320	.72413E-01	2.5124	6.3121
AC	449.97	139.11	.14278	.62269E-01	3.2347	10.463
WATER	1875.3	208.50	.54035	.31656	8.9942	80.896

Table I-49

Consumers Power Individual Customer Cross-Section Model Regressions Including Average Price and Including Appliance Variables Consumption over 1000 Kilowatthours per Month

EQUATION KWH = 757.606 - 238,303*CENTS/KWH - 5,881.3*SPACE

R-SQUARED = .59803

126 OBSERVATIONS, 2 VARIABLES

CORRECTED R-SQUARED = .59149 STANDARD ERROR = 8,700.9 DEPENDENT MEAN = 18,974

STANDARD ERROR AS % MEAN KWH = 45.858

RESIDUAL SUM SQUARE = 9.3119E+09 F-RATIO = 91.946

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
CENTS/KWH	23830E+06	18355.	83037	-38.573	-12.983	168.57
SPACE	-5881.3	2423.4	15521	35671	-2.4269	5.8896

Table I -50

Consumers Power Individual Customer Cross-Section Model Regressions Including Average Price and Including Appliance Variables Income Less Than \$4,000

EQUATION

KWH = - 3,092 - 164.06*CENTS/KWH + 863.15*FRIDGE + 1,684.4*DISHWASHER + 420.5*FREEZER

+ 2,012.7*WATER

R-SQUARED = .55751

89 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .53085

STANDARD ERROR = 1,654.8

DEPENDENT MEAN = 4,208.9

STANDARD ERROR AS % MEAN KWH = 39.316

RESIDUAL SUM SQUARE = 227,275,988

F-RATIO = 20.915

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
CENTS/KWH	-164.06	29.696	40727	17626	-5.5247	30.523
FRIDGE	863.15	200.72	.31515	.58067	4.3003	18.492
DISHWASHER	1684.4	539.95	.23023	.42718	3.1196	9.7319
FREEZER	420.50	115.10	.28388	.20992	3.6534	13.347
WATER	2012.7	375.66	.41676	.69312	5.3577	28.705

Table I-51

Consumers Power Individual Customer Cross-Section Model Regressions Including Average Price and Including Appliance Variables Income \$4,000-10,000

EQUATION

KWH = - 22,403 - 91.249*CENTS KWH + 741.57*FAMILY + 9,037*MICRO OVEN + 1,026.3*FREEZER + 2,165.9*DRYER + 7,229.8*AC + 3,183.5*WATER

R-SQUARED = .26764

266 OBSERVATIONS, 7 VARIABLES

CORRECTED R-SQUARED = .24777
STANDARD ERROR = 8,116.1
DEPENDEN: MEAN = 6,739.7
STANDARD ERROR AS % MEAN KWH = 120.33

RESIDUAL SUM SQUARE = 1.6995E+10 F-RATIO = 13.47

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
CENTS KWH	-91.249	119.19	41500E-01	52418E-01	76557	.58610
FAMILY	741.57	304.17	.13237	.32140	2.4380	5.9437
MICRO OVEN	9037.0	3386.3	.14366	1.3711	2.6687	7.1220
FREEZER	1026.3	288.11	.19678	.39155	3.5621	12.688
DRYER	2165.9	1065.6	.11463	.45788	2.0326	4.1315
AC	7229.8	1252.9	.30824	1.1614	5.7705	33.299
WATER	3183.5	1036.6	.16848	.67302	3.0712	9.4323

Table I-52

Consumers Power Individual Customer Cross-Section Model Regressions Including Average Price and Including Appliance Variables Income \$10,000-15,000

EQUATION

KWH = - 14,061 - 1,170.7*CENTS/KWH + 676.83*FAMILY + 2,798.7*MICRO-OVEN + 836.33*FRIDGE + 583.21*FREEZER

+ 1,616.8*DRYER + 3,115.4*WATER + 9,199.3*SPACE

R-SQUARED = .42303

263 OBSERVATIONS, 8 MARIABLES

CORRECTED R-SQUARED = .40486

STANDARD ERROR = 4,711.2

DEPENDENT MEAN = 7,623.7

STANDARD ERROR AS % MEAN KWH = 61.796

RESIDUAL SUM SQUARE = 5.6376E+09

F-RATIO = 23.279

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
CENTS/KWH	-1170.7	256.65	23714	54728	-4.5614	20.807
FAMILY	676.83	211.48	.16004	.28659	3.2005	10.243
MICRO OVEN	2798.7	1418.9	.95817E-01	.38386	1.9725	3.8909
FRIDGE	836.33	369.85	.11252	.36164	2.2613	5.1133
FREEZER	583.21	177.34	.17007	.20943	3.2887	10.815
DRYER	1616.8	641.99	.13258	.32093	2.5184	6.3423
WATER	3115.4	632.68	.25329	.58578	4.9242	23.248
SPACE	9199.3	1734.0	.25919	1.2434	5.3052	28.145

Table I -53

Consumers Power Individual Customer Cross-Section Model Regressions Including Average Price and Including Appliance Variables Income \$15,000-25,000

EQUATION

KWH = - 22,218 - 96.16*CENTS/KWH + 533.11*ROOMS + 474.75*FAMILY + 1,113.7*FRIDGE + 1,223.1*WASHER

+ 677.34*FREEZER + 1,493.2*DRYER + 3,246.5*WATER + 8,695.1*SPACE

R-SQUARED = .59378

285 OBSERVATIONS, 9 VARIABLES

CORRECTED R-SQUARED = .58049 STANDARD ERROR = 3,602.1

DEPENDENT MEAN = 7,988.8

STANDARD ERROR AS % MEAN KWH = 45.089

RESIDUAL SUM SQUARE = 3.5681E+09 F-RATIO = 44.665

CENTS/KWH -96.160 13.294 28838 64283E-01 -7.2334 ROOMS 533.11 138.04 .16860 .41117 3.8620 FAMILY 474.75 132.67 .14118 .22228 3.5784 FRIDGE 1113.7 272.03 .17172 .47055 4.0940	PARTIAL-F
FAMILY 474.75 132.67 .14118 .22228 3.5784	52.322
	14.915
FRIDGE 1113.7 272.03 .17172 .47055 4.0940	12.805
	16.761
WASHER 1223.1 265.48 .23666 .54148 4.6070	21.224
FREEZER 6/7.34 133.59 .21415 .24573 5.0705	25.710
DRYER 1493.2 497.69 .13404 .27282 3.0002	9.0015
WATER 3246.5 535.86 .27639 .54327 6.0585	36.706
SPACE 8695.1 1115.6 .32679 1.1381 7.7939	60.745

Table I-54

Consumers Power Individual Customer Cross-Section Model Regressions Including Average Price and Including Appliance Variables Income Greater Than \$25,000

EQUATION

KWH = - 25,779 - 106.18*CENTS KWH + 799.39*FAMILY + 3,891.1*FRIDGE2 + 1,337.7*WASHER + 3,757*DRYER + 2,268.8*AC + 13,508*SPACE

R-SQUARED = .48621

97 OBSERVATIONS, 7 VARIABLES

CORRECTED R-SQUARED = .4458
STANDARD ERROR = 5,974.5
DEPENDENT MEAN = 9,755.9
STANDARD ERROR AS % MEAN KWH = 61.240

RESIDUAL SUM SQUARE = 3.1768E+09 F-RATIO = 12.032 DEGREES OF FREEDOM = 89

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
CENTS KWH	-106.18	92.006	96520E-01	48190E-01	-1.1540	1.3318
FAMILY	799.39	372.17	.17208	.31762	2.1480	4.6137
FRIDGE2	3891.1	1281.7	.23674	.55099	3.0360	9.2171
WASHER	1337.7	659.57	.18804	.47636	2.0281	4.1131
DRYER	3757.0	1430.1	.23497	.58757	2.6271	6.9015
AC	2268.8	875.79	. 20058	.30208	2.5905	6.7109
SPACE	13508.	2761.8	.37409	1.4560	4.8909	23.921

Table I-55

Detroit Edison Individual Customer Cross-Section Model Regressions Including Average Price and Excluding Appliance Variables Total Sample

EQUATION

KWH = 15,776 - 5,095.2*CENTS/KWH + 265.52*INCOME + 502.49*ROOMS + 464.88*FAMILY + 304.13*AGE HEAD

R-SQUARED = .44834

711 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .44442

STANDARD ERROR = 3,770.7

DEPENDENT MEAN = 7,044

STANDARD ERROR AS % MEAN KWH = 53.530

RESIDUAL SUM SQUARE = 1.0024E+10

F-RATIO = 114.59

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL 7
CENTS/KWH	-5095.2	351.61	47501	-2.2529	-14.491	209.98
INCOME	265.52	87.626	.10483	.20210	3.0301	9.1817
ROOMS	502.49	112.77	.14563	.41497	4.4559	19.855
FAMILY	464.88	99.466	.16681	.22732	4.6738	21.844
AGE HEAD	304.13	115.06	.88015E-01	.16900	2.6431	6.9860

Table I-56

Detroit Edison Individual Customer Cross-Section Model Regressions Including Average Price and Excluding Appliance Variables Consumption Less Than 500 Kilowatthours/Month

EQUATION

KWH = 10,428 - 2,276.4*CENTS/KWH + 92.47*INCOME + 173.12*FAMILY + 66.339*AGE HEAD

R-SQUARED = .79137

342 OBSERVATIONS, 4 VARIABLES

CORRECTED R-SQUARED = .78889

STANDARD ERROR = 626.53

DEPENDENT MEAN = 3,780

STANDARD ERROR AS % MEAN KWH = 16.575

RESIDUAL SUM SQUARE = 132,286,595

F-RATIO = 319.57

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
CENTS/KWH	-2276.4	81.989	76426	-2.0594	-27.765	770.90
INCOME	92.470	19.260	.14203	.10837	4.8010	23.050
FAMILY	173.12	27.302	.18673	.11785	6.3409	40.207
AGE HEAD	66.339	25.442	.77411E-01	.74512E-01	2.6075	6.7791

Detroit Edison Individual Customer Cross-Section Model Regressions Including Average Price and Excluding Appliance Variables Consumption 500-1000 Kilowatthours/Month

EQUATION

KWH = 12,015 - 2,219.9*CENTS/KWH + 222.74*INCOME + 178.56*ROOMS

R-SQUARED = .18438

294 OBSERVATIONS, 3 VARIABLES

CORRECTED R-SQUARED = .17594

STANDARD ERROR = 1,417.7

DEPENDENT MEAN = 8,110.8

STANDARD ERROR AS % MEAN KWH = 17.479

RESIDUAL SUM SQUARE = 582,835,242

F-RATIO = 21.853

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
CENTS/KWH	-2219.9	330.22	35852	78658	-6.7226	45.193
INCOME	222.74	57.233	.20711	.16842	3.8919	15.147
ROOMS	178.56	63.732	.14988	.13680	2.8017	7.8493

Detroit Edison Individual Customer Cross-Section Model Regressions Including Average Price and Excluding Appliance Variables Consumption Over 1,000 Kilowatthours/Month

EQUATION

KWH = 46,958 - 10,947*CENTS/KWH

R-SQUARED = .11381

75 OBSERVATIONS, 1 VARIABLES

CORRECTED R-SQUARED = .10167

STANDARD ERROR = 7,184.6

DEPENDENT MEAN = 17,747

STANDARD ERROR AS % MEAN KWH = 40.484

RESIDUAL SUM SQUARE = 3,7682E+09

F-RATIO = 9.375

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
CENTS/KWH	-10947	3575.3	33735	-1.6460	-3.0619	9.3750

The transfer of the state of the transfer of t

Detroit Edison Individual Customer Cross-Section Model Regressions Including Average Price and Excluding Appliance Variables Income \$0-5,000

EQUATION

KWH = 13,535 - 3,031.4*CENTS/KWH + 470.19*FAMILY

R-SQUARED = .64033

122 OBSERVATIONS, 2 VARIABLES

CORRECTED R-SQUARED = .63428
STANDARD ERROR = 1,596.4
DEPENDENT MEAN = 3,745.8
STANDARD ERROR AS % MEAN KWH = 42.620

RESIDUAL SUM SQUARE = 303,288,575

F-RATIO = 105.93

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
CENTS/KWH	-3031.4	271.97	67437	-2.8798	-11.146	124.23
FAMILY	470.19	122.07	.23305	.26648	3.8518	14.837

Detroit Edison Individual Customer Cross-Section Model Regressions Including Average Price and Excluding Appliance Variables Income \$5,000-10,000

FOUATION

KWH = 16,575 - 3,885.2*CENTS/KWH + 364.12*FAMILY

R-SQUARED = .54581

141 OBSERVATIONS, 2 VARIABLES

CORRECTED R-SQUARED = .53923

STANDARD ERROR = 1,988.9

DEPENDENT MEAN = 5,360.4

STANDARD ERROR AS % MEAN KWH = 37.103

RESIDUAL SUM SQUARE = 545,877,882

F-RATIO = 82.919

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
CENTS/KWH	-3885.2	328.92	68558	-2.2810	-11.812	139.52
FAMILY	364.12	111.07	.19027	.18885	3.2782	10.747

Table I-61

Detroit Edison Individual Customer Cross-Section Model Regressions Including Average Price and Excluding Appliance Variables Income \$10,000-15,000

EQUATION

KWH = 30,531 - 9,231.1*CENTS/KWH + 893.09*ROOMS

R-SQUARED = .38602

216 OBSERVATIONS, 2 VARIABLES

CORRECTED R-SQUARED = .38025 STANDARD ERROR = 4,321.6

DEPENDENT MEAN = 7,684.7

STANDARD ERROR AS % MEAN KWH = 56.236

RESIDUAL SUM SQUARE = 3.9780E+09

F-RATIO = 65.958

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
CENTS/KWH	-9231.1	943.88	54078	-3.6509	-9.7800	95.648
ROOMS	893.09	243.54	.20278	.67793	3.6672	13.448

Table I-62

Detroit Edison Individual Customer Cross-Section Model Regressions Including Average Price and Excluding Appliance Variables Income \$15,000-25,000

EQUATION

KWH = 30,991 - 8,061.9*CENTS/KWH + 355.34*FAMILY

R-SQUARED = .38043

170 OBSERVATIONS, 2 VARIABLES

CORRECTED R-SQUARED = .37301

STANDARD ERROR = 3,750.8

DEPENDENT MEAN

= 8,622.1

STANDARD ERROR AS % MEAN KWH = 43.502

RESIDUAL SUM SQUARE = 2.3495E+09

F-RATIO = 51.271

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
CENTS/KWH	-8061.9	901.22	56876	-2.7566	-8.9455	80.023
FAMILY	355.34	179.40	.12593	.16219	1.9807	3.9232

Table I -63

Detroit Edison Individual Customer Cross-Section Model Regressions Including Average Price and Excluding Appliance Variables Income Over \$25,000

EQUATION

KWH = 40,061 - 12,541*CENTS/KWH + 1,010.7*ROOMS

R-SQUARED = .41958

62 OBSERVATIONS, 2 VARIABLES

CORRECTED R-SQUARED = .39991

STANDARD ERROR = 5,190.3

DEPENDENT MEAN = 10,804

STANDARD ERROR AS % MEAN KWH = 48.041

RESIDUAL SUM SQUARE = 1.5894E+09

F-RATIO = 21.326

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
CENTS/KWH	-12541	2662.7	49741	-3.3508	-4.7099	22.183
ROOMS	1010.7	384.15	.27787	.64281	2.6311	6.9229

Table I-64

Detroit Edison Individual Customer Cross-Section Model Regressions Including Average Price and Including Appliance Variables Total Sample

EQUATION KWH = -22,278 - 1,243.4*CENTS/KWH + 279.28*INCOME + 481.53*ROOMS + 645.16*FAMILY + 1,127.6*FREEZER + 942.99*DRYER + 1,166.9*STOVE + 936.86*AC + 4,340.9*WATER + 15,695*SPACE

R-SQUARED = .68C91

711 OBSERVATIONS, 10 VARIABLES

CORRECTED R-SQUARED = .67635 STANDARD ERROR = 2,877.9 DEPENDENT MEAN = 7,044

STANDARD ERROR AS % MEAN KWH = 40.587

RESIDUAL SUM SQUARE = 5.7978E+09 F-RATIO = 149.37

COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
-1243.4	330.96	11592	54979	-3.7569	14.114
		.11026	.21257	4.2138	17.756
		. 13956	.39766	5.6027	31.390
		.23150	.31548	8.8788	78.834
	248.66	.10298	.20939	4.5348	20.565
	273.41	.81984E-01	.15889	3.4490	11.896
	237.66	.11481	.23999	4.9101	24.109
	118.90	.18079	.22241	7.8796	62.089
		.28821	.69599	10.814	116.94
15695.	1131.6	.30653	2.2500	13.870	192.37
	-1243.4 279.28 481.53 645.16 1127.6 942.99 1166.9 936.86 4340.9	COEFFICIENT ERROR -1243.4 330.96 279.28 65.276 481.53 85.947 645.16 72.663 1127.6 248.66 942.99 273.41 1166.9 237.66 936.86 118.90 4340.9 401.42	COEFFICIENT ERROR BETA -1243.4 330.96 11592 279.28 65.276 .11026 481.53 85.947 .13956 645.16 72.663 .23150 1127.6 248.66 .10298 942.99 273.41 .81984E-01 1166.9 237.66 .11481 936.86 118.90 .18079 4340.9 401.42 .28821	COEFFICIENT ERROR BETA ELASTICITY -1243.4 330.96 11592 54979 279.28 65.276 .11026 .21257 481.53 85.947 .13956 .39766 645.16 72.663 .23150 .31548 1127.6 248.66 .10298 .20939 942.99 273.41 .81984E-01 .15889 1166.9 237.66 .11481 .23999 936.86 118.90 .18079 .22241 4340.9 401.42 .28821 .69599	COEFFICIENT ERROR BETA ELASTICITY T-STATISTIC -1243.4 330.96 11592 54979 -3.7569 279.28 65.276 .11026 .21257 4.2138 481.53 85.947 .13956 .39766 5.6027 645.16 72.663 .23150 .31548 8.8788 1127.6 248.66 .10298 .20939 4.5348 942.99 273.41 .81984E-01 .15889 3.4490 1166.9 237.66 .11481 .23999 4.9101 936.86 118.90 .18079 .22241 7.8796 4340.9 401.42 .28821 .69599 10.814

Table I-65

Detroit Edison Individual Customer Cross-Section Model Regrassions Including Average Price and Including Appliance Variables Consumption Less Than 500 Kilowatthours/Month

EQUATION

KWH = -12,246 - 2,506*CENTS/KWH + 81.685*INCOME + 135.12*FAMILY + 70.167*AGE HEAD + 281.88*FREEZER - 1,186.9*WATER

R-SQUARED = .81703

342 OBSERVATIONS, 6 VARIABLES

CORRECTED R-SQUARED = .81375 STANDARD ERROR = 588.48

DEPENDENT MEAN = 3,780

STANDARD ERROR AS % MEAN KWH = 15.568

RESIDUAL SUM SQUARE = 116,014,389

F-RATIO = 249.32

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
CENTS/KWH	-2506.0	89.223	84135	-2.2671	-28.087	788.89
INCOME	81.685	18.172	.12546	.95729E-01	4.4952	20.207
FAMILY	135.12	26.286	.14574	.91976E-01	5.1401	26.421
AGE HEAD	70.167	24.125	.81878E-01	.78811E-01	2.9085	8.4594
FREEZER	281.88	89.994	.74334E-01	.85911E-01	3.1322	9.8107
WATER	-1186.9	200.89	16040	32503	-5.9085	34.911

Table I-66

Detroit Edison Individual Customer Cross-Section Model Regressions Including Average Price and Including Appliance Variables Consumption 500-1000 Kilowatthours/Month

EQUATION

KWH = 8,865.8 - 1,827.1*CENTS/KWH + 158.67*INCOME + 202.44*FAMILY + 325.19*FREEZER + 636.37

*DRYER + 576.86*STOVE + 296.2*AC

R-SQUARED = .28881

294 OBSERVATIONS, 7 VARIABLES

CORRECTED R-SQUARED = .2714

STANDARD ERROR = 1,333

DEPENDENT MEAN = 8,110.8

STANDARD ERROR AS % MEAN KWH = 16.435

RESIDUAL SUM SQUARE = 508,210,487

F-RATIO = 16.592

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
CENTS/KWH	-1827.1	322.71	29508	64738	-5.6618	32.056
INCOME	158.67	55.177	. 14753	.11997	2.8756	8.2691
FAMILY	202.44	48.495	.22038	.10281	4.1745	17.427
FREEZER	325.19	159.35	.10252	.56458E-01	2.0407	4.1646
DRYER	636.37	175.62	.18870	.10275	3.6237	13.131
STOVE	576.86	170.75	.18485	.10523	3.3783	11.413
AC	296.20	77.270	.19577	.67076E-01	3.8333	14.694

Table I-67

Detroit Edison Individual Customer Cross-Section Model Regressions Including Average Price and Including Appliance Variables Consumption Greater Than 1000 Kilowatthours/Month

EQUATION

KWH = -30,494 + 1,529.9*INCOME + 1,709.4*ROOMS + 7,563.2*WATER + 13,438*SPACE

R-SQUARED = .50702

75 OBSERVATIONS, 4 VARIABLES

CORRECTED R-SQUARED = .47885 STANDARD ERROR = 5,472.3

DEPENDENT MEAN = 17,747

STANDARD ERROR AS % MEAN KWH = 30.836

RESIDUAL SUM SQUARE = 2.0962E+09

F-RATIO = 17.998

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
INCOME	1529.9	566.62	.27178	.56783	2.7001	7.2905
ROOMS	1709.4	451.60	. 36387	.66784	3.7852	14.328
WATER	7563.2	1567.3	.49861	.66484	4.8256	23.286
SPACE	13438.	2467.7	.48417	.81778	5.4454	29.653

Table I-68

Regressions Including Average Price and Including Appliance Variables Income \$0-5,000

EQUATION

KWH = 215.02 - 1,908.8*CENTS/KWH + 669.2*FAMILY + 1,503.7*DRYER + 2,920.1*WATER + 4,012.8*SPACE

R-SQUARED = .81056

122 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .8024

STANDARD ERROR = 1,173.5

DEPENDENT MEAN = 3,745.8

STANDARD ERROR AS % MEAN KWI = 31.328

RESIDUAL SUM SQUARE = 159,742,153

F-RATIO = 99.267

VARIABLE CENTS/KWH	COEFFICIENT -1908.8	STANDARD ERROR 230.29	BETA 42466	ELASTICITY -1.8134	T-STATISTIC -8.2887	PARTIAL-F 68.703
FAMILY	669.20	92.154	. 33169	.37927	7.2618	52.733
DRYER	1503.7	342.93	. 18783	.45080	4.3849	19.228
WATER	2920.1	468.31	.29034	.83707	6.2354	38.880
SPACE	4012.8	869.52	.19382	1.0888	4.6149	21.297

Table I-69

Detroit Edison Individual Customer Cross-Section Model Regressions Including Average Price and Including Appliance Variables Income \$5,000-10,000

EQUATION

KWH = -4,7128 - 2,792.2*CENTS/KWH + 297.22*ROOMS + 388.55*FAMILY + 1,426*FREEZER + 886.77*STOVE

+ 317.48*AC + 12,597*SPACE

R-SQUARED = .77441

141 OBSERVATIONS, 7 VARIABLES

CORRECTED R-SQUARED = .76253

STANDARD ERROR = 1,427.8 DEPENDENT MEAN = 5,360.4

STANDARD ERROR AS % MEAN KWH = 26.636

RESIDUAL SUM SQUARE = 271,136,978

F-RATIO = 65.222

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL- F
CENTS/KWH	-2792.2	260.03	49272	-1.6394	-10.738	115.30
ROOMS	297.22	110.85	.12058	.29061	2.6814	7.1897
FAMILY	388.55	85.786	.20304	.20152	4.5292	20.514
FREEZER	1426.0	282.84	.22017	.34149	5.0552	25.555
STOVE	886.77	259.84	.14711	.22761	3.4127	11.647
AC	317.48	142.67	.93887E-01	.90731E-01	2.2252	4.9517
SPACE	12597.	1471.1	.36206	2.3666	8.5626	73.318

Table I-70

Detroit Edison Individual Customer Cross-Section Model Regressions Including Average Price and Including Appliance Variables Income \$10,000-15,000

EQUATION

KWH = -23,001 - 2,847.4*CENTS/KWH + 519*ROOMS + 373.08*FAMILY + 1.056.5*FREEZER + 1,730*DRYER

+ 741.97*AC + 5,598*WATER + 23,332*SPACE

R-SQUARED = .73663

216 OBSERVATIONS, 8 VARIABLES

CORRECTED R-SQUARED = .72645

STANDARD ERROR = 2,871.1

DEPENDENT MEAN = 7,684.7

STANDARD ERROR AS % MEAN KWH = 37.361

RESIDUAL SUM SQUARE = 1.7064E+09

F-RATIO = 72.371

VARIABLE	COEFFICIENTS	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
CENTS/KWH	-2847.4	775.07	16681	-1.1261	-3.6738	13.497
ROOMS	519.00	175.55	.11784	.39396	2.9564	8.7403
FAMILY	373.08	119.64	.12497	. 19891	3.1183	9.7239
FREEZER	1056.5	441.53	.90287E-01	. 18204	2.3929	5.7259
DRYER	1730.0	498.59	.14075	.28661	3.4697	12.039
AC	741.97	225.58	.12181	.15690	3.2891	10.818
WATER	5598.5	700.97	.36314	.83646	7.9869	63.790
SPACE	23332.	2137.8	.40803	3.0643	10.914	119.12

Table I-71

Detroit Edison Individual Customer Cross-Section Model Regressions Including Average Price and Including Appliance Variables Income \$15,000-25,000

EQUATION

KWH = -21,238 - 1,839.7*CENTS/KWH + 736.18*FAMILY + 1,578.1*FREEZER + 1,449.8*STOVE + 815.58*AC + 4,074.2*WATER + 21,621*SPACE

R-SQUARED = .71978

170 OBSERVATIONS, 7 VARIABLES

CORRECTED R-SQUARED = .70767
STANDARD ERROR = 2,561.1
DEPENDENT MEAN = 8,622.1
STANDARD ERROR AS % MEAN KWH = 29.704

RESIDUAL SUM SQUARE = 1.0626E+09 F-RATIO = 59.445 DEGREES OF FREEDOM = 162

CENTS/KWH -1839.7 829.881297962905 -2.2169	4.9145
FAMILY 736.18 127.15 .26090 .33601 5.7898	33.522
FREEZER 1578.1 439.80 .15841 .24547 3.5881	12.875
STOVE 1449.8 432.02 .15344 .25420 3.3559	11.262
AC 815.58 189.85 .18744 .18306 4.2959	18.455
WATER 4074.2 721.55 .29506 .53646 5.6465	31.883
STOVE 21621. 1952.4 .49360 2.5371 11.074	122.64

Table I-72

Detroit Edison Individual Customer Cross-Section Model Regressions Including Average Price and Including Appliance Variables Income Greater Than \$25,000

EQUATION

KWH = 12,244 - 6,972.6*CENTS/KWH + 870.26*ROOMS + 904.33*FAMILY + 1,169.7*AC + 5,007.2*WATER

R-SQUARED = .56465

to the Park I was a second

62 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .52578

STANDARD ERROR = 4,613.9

DEPENDENT MEAN = 10,804

STANDARD ERROR AS % MEAN KWH = 42.706

RESIDUAL SUM SQUARE = 1.1922E+09

F-RATIO = 14.526

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
CENTS KWH	-6972.6	2745.2	27655	-1.8630	-2.5399	6.4512
ROOMS	870.26	373.58	.23925	.55346	2.3295	5.4265
FAMILY	904.33	431.44	.23040	.32942	2.0961	4.3935
AC	1619.7	476.16	.31241	.33853	3.4016	11.571
WATER	5007.2	2072.1	.22275	.50832	2.4165	5.8393

Table I -73

Cross Sectional Regressions for Detroit Edison Customers Using Both a Marginal and an Average Price for Electricity Total Sample

R-SGIREEL = VSIZE

JEL RESPRESENTANCE - LO MORTANIZA

CORRECTION TO THE WAR DESTROYS TO STRUCT SUM SQUARE : 5.72075009 STANDARD EXAMINE : 7.032 FRANCE : 5.72075009 FREEDOM = 75.131 DEGREES OF FREEDOM = 700 STANDARD ERROR OF TEAN KML = 50.223

CEEFFICIENTS IN LE

51675

Vot. shi ii	Great Lines	CAMPARE CARDR	PS OCH LOVER	COMPTENDS SETSU	DETA
HAR FOR THE STORY ENDING THE STORY ENDIN	1.5.91 1.5.91 25.11 2.11 2.11 2.15 2.15 2.15 2.15 2.	2728.5 910.70 95.512 10.72 110.72 107.51 827.15 201.78	-29057. 1984. -54.134 184.13 203.10 156.93 714.09 119.90 1203.4	-17636. 0013.0 281.76 765 -15 557.75 278.0 1911.0 542.56 2883.0 2388.0	78861 .51237 .449231-01 .928357-01 .14219 .175976-01 .12079 .957545-01 .16914 .17662
MARIANA	El adriativi	T-STATISTS	G PARTIAL T		
MAR FRICE AVB PRICE INCOME AC FAITLY MAE READ PRICES ROOMS DWAST	-0. Tann 1.465 10413403 .11413 .19108 .612070 03 -1654 .2931	-8.0276 3.8037 5.3305 5.3199 4.0291 54827 4.2695 3.0397	64.432 33.683 1.7702 11.022 16.234 .30055 98.255		

77 3357

0.15524

Table I-73 (Cont.)

290				

	NVA F 1981	TORONE		FORTLY	ASCL HEAD
AND THE AND	+ 10 100 + 1201 - 1201 - 1407 - 3716 - 11020 - 2777 - 17019 - 11020 - 11020 - 11020 - 11020 - 11020	1:0000 .2747 .4039 4133 .1476 .3376 .1584 .1584 .1583	1-6v20 -0774 -0745 -1020 -226 -1246 -276	1.0000 4462 .2000 .6317 .0070 0215 .3148	1.0000 +0245 0845 0226 155
	armed Land	rs an	706 KL	01	

g ar -	
Applies of the second	17 14600t
	Service Control

We have to the same

State.	1 - 1 - 1 3064 865	FREEDOX	MEAH SQUAL
RE BULL D. RESERVED FLOAR	**************************************	400	.940900 000 .12540.000 .255911100

to say a to the temporal and the Lorent

Table I-7.4

Both a Marginal and an Average Price for Electricity Income \$0 to 5,000 Per Year

Econolisis			AGI KENT KOKYAT A COL	100 -1000 - 1/100,2*712 101707840	171 SAMAN ELLR
The species	200				
			ers min sun	BUUNRE FIR	30:2/3:061
TO Approve T		14.591			7.004
Maria and a	TVAN TOTAL		DECITED OF S	HEELEN 1	
ALL DESIGNATION OF THE PARTY OF					
Wall and the control					
	A Property				
			עם דום ניף	NTIBERGE	
			total and	18. 221	2216
				100000000000000000000000000000000000000	
1.2			148111	340713	
		100	Teatre of the		77400
			3 175 3 1 1	35 21, 100	1527011-01
					4 2000 1 0
					3.2 (1.35)
				The state of the	TOTAL SERVICE
				25.00	
\$10 M	330,500	Section 1	SASA SA	4.51.73	1770-1-01
VV2 100 TO	5.8" 1.75	38 F98 AT THE . D.S.	MATTER PL		
I MIT ILL AUT TO TO	The same of		50.64E		
STATE OF THE PARTY.		5.5010	4.42 0.50		
	- TANGER - L	** 50740	:07775		
THE RESERVE	ACA306-01	7555E	.52082		
14.5. SEPTO	- 507496-01	443123	1650		
WING ZER	35713	3.0593	9 3866		
Line (fact)					
	17472 (1	1.0440600	99 40 34 67		
DE VEL	17992061 -19944	4.6910 4.6910	22.00 22.00 955730-01		

Table I-74 (Cont.)

va637	LONG.	11.				
	4.6 75.15	10. F.10		FARELY	NOT READ	PREEZER
MAR CLISS	0 17 130 17					
Aut. A. T.		1.0000				
ALC: NO		11100	1.0000			
			1519	1.0000		
900 17		1.034	.0 .5	.0401	1,0000	
Prestate in		1,35.1	10000	2699	0797	1,0000
ADDES -			4.1.13	.4013	.0235	1,30,02
1KYL		5.5	1.5072	10600	25072	
27.07			1070	.0582	.0823	27.45
KLY THE ST		100 47 40 47 57	27.12	N. 51 10	119	1771
WOLLD TO SELECT						
Property and the						
			Y. AN			

F-RATED BE COLUMN BY BE SET TOPET AT 185 FEVEL

Table I-75

Cross Sectional Regressions for Detroit Edison Customers Using Both a Marginal and an Average Price for Electricity Income \$5,001 to 10,000 Per Year

ALTERNACION .					
inna -	4 1 5 5		EVENTAR 1 Kuntur 2 Mai 2	TALL PLANT F CANADA SA PLA CALESTON	78 - 7.15 2 50 37 -
R+Situation 1					
to to					
			rear way to	r comps - x	4 500 700
S			-Dalid	= 33 [7][F][6] + 13	1.172
Same.		1 W. 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1255		
		711251	5 \$. 000 C	MEINTER	
WASSED OF			1.000	15713	of the A
Availation and			eta en el	PE Paris	
ASSESSED			1977	THE PROPERTY OF	THE STREET
			757.1		12.50
AU.			72. * T		77.7
5.1.1					1101251 0
				4.77	14795
Charles .	Spare Tree	T STANTECTS	PARTIA		
NAT 1	12.0.5	4.7613 W	50-00		
AUG- TO ST	101003	6.9354	24.349		
AC	1.700074.401	46.11	.21202		
FALL OF	400000000	1.167	2.1042		
AGL THEFT	TO STATE OF THE	.41810	11748		
A STORY OF THE STORY		9 6 6 7 7	E LENSY		
		185870	13445/0-0		
Nº 15			The same of the sa		
Krista. Walio 1		The second second second	CT 14 % To T		
Ne dia Walio ka			57125		

Table I-75 (Cont.)

	47 -	100	1 W W 12	12 4 3	

	4.7.7.5.5	62 m 252	Hab	FACILY	AST TEAT	The Easter
not a trans-						
Alan FALL	17432	2.000.				
		104*				
Figure 1		2415	10 2 2 3 3	1.0000		
Attended		440		1.305	* 1 A A	
Frank			4 8 4 4	1,0020	.0701	1.000
2007		241	1 × 1 × 1		10:00	118.7
Dr. C.	100.0	2042	- Land 1	01230	.0971	.2317
STOP		10015		- 1 1 1 1 1	.2950	.09:3
KLII		1. T. P. T.	-42700	2542	0075	1,4040
	-30.7	ANTE DES				
-30:34						
THE RELUGIONS						
5144						

164			

		THE SECTION OF	M. W. Marie
	ORIGINALS.	, PEET 37	1000 C
REURCOSON	.0353-040		.9201501-6
RECLUENCE TO	3645 1109		1790
No. of the last	.120395114	140	CARTHERDAY -

W-KANIA A MINING SIGHT IDAM F AT LOS LEVEL

Cross Sectional Regressions for Detroit Edison Customers Using Both a Marginal and an Average Price for Electricity Income \$10,000 to 15,000 Per Year

La Grand					
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C PROTECTION	
		2.5(**)	Grand Ira 9 1 1	- Line of a line of	EVINE .
	A TO STATE OF STATE		MARTIN CAROLA	TAR TOWN	
TAMBLE ALL					
46 300		7252525	The state of the state	Calcant - 2	15702469
			SOLITOR STORY		1.677
127 27.114			SECRETE OF FI	CLDCO = 2	
F A 7			10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		
patre les					
Articles 1 2 1 to man					
			25/15/15/15		
	The same fire			U PER	
			The strategy of the	777 164 75	
4.47			+6897. 8	9.71.3%	
				20,0 %	13168
					THE PARTY OF THE
			78.5 5		17/12/2
				111.	
ter a second			22.5	The Late 2	30 7 a 4
		to go	10000		7.8.75 19.8
		* PRESTREET	CAMPICO M		
MA P		Ja orano	1.0100		
A.U.S. IV		1.7594	1,070		
		The second second line is a	4.750		
			4500		
T S Park		7.7774	NOT THE RESIDENCE		
		- 402005-31	VI 10 11 E-24		
#XXXXX		32 31 55	10.909		
		197650	1. 7.1401		
THE YEAR		1000	10.0		
			A 10 10 10 10 10 10 10 10 10 10 10 10 10		

Table I-76 (Cont.)

		TY VILE	10	romin	Table and Table 1 (1)	FREEZER
ma interior						
		1950	1-00000			
		74 may 12 mg	1, 7, 37, 68	1104:5		
AGE WILL	14250	N AND TO THE	.000.	4.309	T PROTEIN	
FREETS			0.000	PK 11 44	No. 2	2 Kren
Rooms		0.3019	T desi	12.13	447	A North A
OPY			N 25 4 A		- 007	95 × 65 × 5
STOL		-11765	4316	The second second		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
84			1 9 8 CF		ORT C	
			4-2-4			
4						
2000						
No. 7						

master of the second

10 au 1 de		aguar R
		312:71
	Control of the control	.75 ato 201

Table I -77

Cross Sectional Regressions for Detroit Edison Customers Using Both a Marginal and an Average Price for Electricity Income \$15,001 to 25,000 Per Year

10 100 000 000 000 000 000 000 000 000	A STATE OF THE PARTY AND A STATE OF		10	1.11110000000	
Problem (Section)	21 7 1 14				
and Carthag		100			
GLANWA SI		122.1	COREW STA EARLS ECHRES EF F	-	20002109 17120 20
rear Itte					
VICTIALE	D27. 1 : 20	CRRUT	40.000 pb	STEELS IN	ECTY
A		72 15 17	400 122.42		- 20.732 - 27.732
					* 3 - 70 -
			12/2/2	201	- Partie
			673.73		19127
THE RESERVE AS A SECOND OF THE PERSON NAMED IN COLUMN 1			7.73		
AND PRINTE		70,935	.175F		
PE					
e en la			412500 -11		
			Of the second		
PPARTE		- 1. 2015			
Runes			1,1500		
IN POLICE P			3.72		
Sitte					

Table I-77

Va						
		No. Street		a distance	er wear	CEZIR
172						
		0				
			1,0000			
TARTE .	10-14-14-6	4077	10204	1.0000		
THE RESERVE			05.4%	7595	1.000	
East, TTT			0.772	1,177.1	1505	1.0000
		1120-0	1000	3319	- PEST -	1377
1.87			431.72	1.2.73	5102	17.55
-37 (37)	1 - 1 - 1 - 1 - 1 - 1 - 1		0.750	4315	5.55	33237
live -				- APT 1	4440	10075
With the Land						
E 120		THE RESERVE				
		A STATE OF S	2000			

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	en entire part	PREDOL	REAL
Later and Section 2020	1159445 0		113225-100
NF: 470 2 - 7	200000000000000000000000000000000000000		1.18 7 30 4 34
TO GIC			824763194
		United to the second	NAME OF TAXABLE PARTY.

Table I-78

Cross Sectional Regressions for Detroit Edison Customers Using Both a Marginal and an Average Price for Electricity Income Greater Than \$25,000 Per Year

Karana ang Pangalan ang Pangala					orto
6x 112 11 11		A0-10-0			
CONTROL OF THE STATE OF THE STA			7.177	M SEVANO = 1 E TO TORLETT = CO	3751050 9 3770
Carlo L					
			3. 95.001	CONTRACTOR OF THE STREET	
			LONE		XXXXXX
AVE				10.0000	4 4-50
1 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					,023e9
					403 100 0 100 0 - 102 000 0
S. C. Fally			rene ()		
HA:	At Lade	1.00	27.7		
AVG		222	1.77%		
1 () - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		7 3341 21 1377	11,727 8,9913 -4036		
FREEZE ROL: D.WEL		1 G490	137001 7 1700		
1.44 G	1.40%.272.437 		1.45305		

Vi. 12.	TORKELE ID.	Tay, and				
	SWA FELLE	17:00 -1:40T	no	TARILY	AGE MEAR	FREEZ .C
MARCHANI AND TEL BANG MARCHANI FATELING KOUPE	1.00 0 1766 • 16 Visa 725 120 121 121	1,000 -,000 -,000 -,000 -,000 -,000 -,000	* 1000 0171 -0192 -0262 -0133	1 - 27/12 - 27/12 - 21/12 - 1/24	1.0000 -1193 -1052	. 2000
377. 21	1.35	11117 11563 1464	999.8 -1995 -1695 -1695	1137	.0000 -165A -,0128	
A PA						

MARKET ON THE ARE

SCHOOL	50,7 70	(m, m) m + 4 , 4 4	Sont,
REGREATER			171111111
COYAL	107718416 171 877 2110		.24:18E+08

DERAYED OF THE PERSON OF THE PROPERTY OF THE P

Table I-79

1521197

Both a Marginal and an Average Price for Electricity Usage Less Than 500 kWh Per Month

- 37.1... - 280 (Switz L.7 - 387... - 387... - 107... - 107...

> (*0:000) SUN SOUNT - 192-187:127 Part I m 76.137 professor on or carst + 17: THE P. L. COMP. DUCKS RETA 14 - 6.1 No. 16 14 - 7.1 17:1994 1 713 .TERRITAL -45.73.75.-Q* 1 7 7 1 1 .91720E-G1 .3017SE-01 26.452 447,05 .46571E-01 .99942E-01 ART DELL'S

Table I-79 (Cont.)

	1 1/4 - A. Ot. 1					
	A 24 1974 LE V		Talani.		FAMILY	THE PERC
			-1941			
			3683	44.4727	20000	
The State of the State of		1334R	1490	11.17.17.2	4700	4 000
		144000	20200	100.00	0865	27.79
		* 2.5%	10.19399	17777	3194	
			0.05/6	10000	0540	CATO
5 12 1		A 74	5775	1045		2457
		-484	1 1 1 1 7	11124	4.585	-, 1513
	2/17	Charles Harry	14 1 10 4 3	3.4		
			Text of a	77 T. A.	Ac da	

	SUPPLIES OF THE STATE OF	FICAN STOMES
tie skale o	1-y-7:11:40 10	1441577108
MARKET LANGE.	在第一次的第一个数据的。	.Eggfificht
Titler	161.467F109 11 161	.185946.00

CONTRACTOR FROM FACTOR FOR THE STATE OF THE

Cross Sectional Regressions for Detroit Edison Customers Using Both a Marginal and an Average Price for Electricity Usage 501 to 1,000 kWh Per Month

	# 11 4407 - 00 14877 - 39 14877 - 39 14877	1124	7 -4-0 /-1804 	MOE HEAR	144 DENTHOOMS
K-\$50.000	. 0.474				
14 11 - 7		1148 ES			
		/1001F	MISTOUR GUM 1 SAMIN TURRER SE EN		7.7024
	alle.				
		real and other	25.00% 2.0	with the same	
v a balka	wall and it.	21000	LOWER	UPPER	PETA
			31838.	234.7.	-167614
			2722	0.000	702.75
		6 . 65	27.153	2.4. 71	.13.24
				- A/5 - 7	20275
Water Con-		58.763	20.110	- 5.77 153	.1731w
			10.4.4.50		And the An
17.00			at rela-		1112611
NION HIST					144/0-12-01
DAM					- 21813
8.0			1000		.24377
yak liv 2			TREVIAL E		
Man Period		-1.0011	1.007.2		
AUT - ATTU-	447.36	The state of the	1.005		
Imalat	Table and the	1.152	5.0337		
41.	1301276-01	7.70.07	13.629	•	
44.6	1.1. A. P. F 31	ALL THE PROPERTY.	7		
AST TO ALL	Sept 5.5 (19)	1,7,0500	.936222-61		
PREFIC			5.4650		
Millian .	1270634 - Sc	3.54962	. 449550		
B. YES		3.5-53	18.90		
		4.14%	17,511		

Table I-80 (Cont.)

				4 4 2	4.4	3	
			1				

	7 75,76	w manage	16-10-12		1.1121.9	ODC HEAD
	1.00%					
	,976					
	444CY*	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7,40,467			
	-11:12	1106	171	0.0000		
	7		0534	0885	0.000	
Acres Carro	1,734		21.2	A. C.C.		1.0000
PORT OF THE REAL PROPERTY.		****	7-,007	P. BUAN	04.37	1337
7.13 A.	U. J.	1.0555	10011	CCL.	33173	0000
		1000	10300	1010		1.43274
	0459	F 45 23 E	7 . See . See	- 7.7	****	.1502
1.	100000	14 per 14 per 14 per		FILE CONTRACTOR		Cris
	3005 AM N		67.			
	Selection of					
	1.00	1. 100 4 1 1 1 1 1				

A THE REPORT OF THE PART AND C

Juli-10		75 D CDF /5	90 W.T.
DESMERTING NOTES	.152835.409 1561715439 1714391469	10 400 142 142	.1507.03467 .190.100.467 .245892407
F-SAT LON	14.19X 6.10X	1 3 AL 4 18	

Table 31

Cross Sectional Regressions for Detroit Edison Customers Using
Both a Marginal and an Average Price for Electricity
Usage Greater Than 1,000 kWh Per Month

APPENDIX J

APPLIANCE SATURATION REGRESSIONS

APPLIANCE SATURATION REGRESSIONS

Detailed output from regressions using either appliance saturation levels or appliance ownership variables as dependent variables are reported. The first set of seventy two tables are concerned with regional time-series regressions for electric space heating, electric water heating, and air conditioning. The second grouping of twelve tables report regression results utilizing individual customer data for Detroit Edison where dummy variables indicating appliance ownership are used as dependent variables.

The time-series regressions use the percentage of customers owning the particular appliance as the dependent variable. When these regressions were run they were meant to be the first part of an analysis aimed at separating appliance ownership and electricity use decisions. However, the results that were obtained, especially for water heating, were of such a nature as to cast serious doubt on the accuracy of the procedure. The best regression results obtained leave a lot to be explained as to why the saturation level is what it is. Relying on these specifications to appropriately separate the appliance buying decision from other electricity usage does not seem justifiable. To simplify interregional comparison, the identical set of independent variables was used for all regressions reported, regardless of the statistical significance of the coefficients. Income and the price of electricity (based on marginal price at average consumption) were included because they are the focus of this study. Degree days were included because the three appliances for which regressions were run are expected to be weather sensitive -- less so with water heating than with the other two. Price variables for natural gas and fuel oil were also included as representing competitive fuels. Fuel

oil is especially appropriate for space heating, but not so much so for the other two. Its inclusion in the other appliance equations does not present a serious problem in interpretation. These equations could be made to have somewhat better statistical properties by deleting some variables, but the changes would not be major. Including too many variables can only increase the R² and decrease the standard error. Large favorable changes in both of these statistics would be required to justify continuing investigation along these lines. Deleting variables will not bring about such changes.

The equations utilizing individual customer data, reported in Tables J-73 through J-84, are further divided into two types of specifications -linear and logarithmic. The independent variables used for a given appliance are the same so the linear and logarithmic specification can be directly compared, except for FREEZERS. One of the variables used for that equation. TEENS, can take a value of zero, for which the logarithm is -∞. All these observations were excluded so the logarithmic case has only 298 observations and therefore is not readily comparable. The choice of independent variables for each appliance was based upon our opinion as to which variables might be important. Other regressions deleting some of the less significant variables have been run, but no great improvements in the equation statistics were noted. The most telling statistic in this case is the standard error as a percent of mean of the dependent variable. In all cases this number is large. The usefulness of these equations with such large problems is very small. Therefore the equations reported include all variables so that it is clear what has been considered. The definitions of two of the variables

are not obvious. CENTS/KWH is average price calculated by dividing total dollars billed for the year by total consumption for the year. TYPE HOUSE relates to home, condiminium, or mobile homes, etc. The other variables are all self-explanatory. The tables in this appendix are indexed below.

Individual Customer Appliance Ownership Equations Table Index

Appliance	Linear Specification	Logarithmic Specification
Electric space heating	73	79
Electric water heating	74	80
Air Conditioning	75	81
Electric stove	76	82
Freezer	77	83
Electric dryer	78	84

In addition to the regression analysis concerning appliance saturation levels, a simple comparison was done between 1970 census data and the 1970 Consumers Power appliance survey. This comparison, given in Table J-85, indicates the census data and Consumers Power data are compatible. Division 4 data represents Pontiac and measurement difference accounts for the disparity.

Table J-1

CENTRAL

EQUATION

SPACE HEAT = 2.7887 - .22205*ELECTRICITY - 7.2328*GAS + .34493*FUEL OIL + .0022542*INCOME - .00015507*DEGREE DAYS

R-SQUARED = .81264

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .76334

STANDARD ERROR = .71109

DEPENDENT MEAN = 1.192

STANDARD ERROR AS % MEAN SPACE HEAT = 59.655

RESIDUAL SUM SQUARE = 9.6073

F-RATIO = 16.482

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	22205	1.9396	50674E-01	40003	11448	.13106E-01
GAS	-7.2328	2.5590	549415	-7.5809	-2.8264	7.9887
FUEL OIL	.34493	.21645	.41631	3.3662	1.5936	2.5395
INCOME	.22542E-02	.12333E-02	.61990	4.1675	1.8277	3.3406
DEGREE DAYS	15507E-03	.53006E-03	30588E-01	89232	. 29255	.85584E-01

Table J-2

BATTLE CREEK

EQUATION

SPACE HEAT = - 3.4121 + .90274*ELECTRICITY - 3.5039*GAS + .14679*FUEL OIL + .0023149*INCOME - .00016856*DEGREE DAYS

R-SQUARED = .92575

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .90621

STANDARD ERROR = .35551

DEPENDENT MEAN = 1.02

STANDARD TRROR AS % MEAN SPACE HEAT = 34.853

RESIDUAL SUM SQUARE = 2.4013

F-RATIO = 47.377

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	.90274	.87935	.25941	1.9006	1.0266	1.0539
GAS	-3.5039	1.3505	36244	-4.2919	-2.5946	6.7319
FUEL OIL	.14679	.11461	.22309	1.6741	1.2808	1.6404
INCOME	.23149E-02	.40634E-03	1.0307	6.1705	5.6968	32.454
DEGREE DAYS	16856E-03	.26348E-03	45368E-01	-1.1081	63975	.40928

Table J-3

NORTHEAST

EQUATION

SPACE HEAT = -1.27 + 1.0038*ELECTRICITY - 5.3626*GAS + .20114*FUEL OIL + .0024278*INCOME - .00026656*DEGREE DAYS

R-SQUARED = .86605

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .8308

STANDARD ERROR = .54414

DEPENDENT MEAN = 1.036

STANDARD ERROR AS % MEAN SPACE HEAT = 52.523

RESIDUAL SUM SQUARE = 5.6257

F-RATIO = 24.568

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	1.0038	1.5120	.25313	2.0807	.66387	.44073
GAS	-5.3626	2.0120	48676	-6.4670	-2.6653	7.1036
FUEL OIL	.20114	.18136	.26825	2.2585	1.1091	1.2301
INCOME	.24278E-02	.77621E-03	.94909	6.1197	3.1277	9.7826
DEGREE DAYS	26656E-03	.35788E-03	89176E-01	-1.7660	74482	.55476

Table J-4

FLINT

EQUATION

SPACE HEAT = .87802 - .68548*ELECTRICITY - 1.9117*GAS + .1679*FUEL OIL + .00076445*INCOME - .0001128*DEGREE DAYS

R-SQUARED = .90943

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .8856

STANDARD ERROR = .20842

DEPENDENT MEAN = .584

STANDARD ERROR AS % MEAN SPACE HEAT = 35.689

RESIDUAL SUM SQUARE = .82538 F-RATIO = 38.159

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	68548	.51725	37107	-2.5206	-1.3252	1.7562
GAS	-1.9117	.72230	37251	-4.0899	-2.6467	7.0052
FUEL OIL	.16790	.61763E-01	.48069	3.3444	2.7185	7.3900
INCOME	.76445E-03	.25576E-03	.63708	4.1248	2.9890	8.9340
DEGREE DAYS	11280E-03	.14915E-03	60452E-01	-1.3622	75625	.57191

Table J-5

GRAND RAPIDS

EQUATION

SPACE HEAT = - .43425 - .38432*ELECTRICITY - .50209*GAS + .14912*FUEL OIL + .0006379*INCOME - .00017586*DEGREE DAYS

R-SQUARED = .84323

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .80198

STANDARD ERROR = .14797 DEPENDENT MEAN = .484

STANDARD ERROR AS % MEAN SPACE HEAT = 30.572

RESIDUAL SUM SQUARE = .41599 F-RATIO = 20.44

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	38432	.41977	38555	-1.7052	91554	.83821
GAS	50209	.60663	27859	-1.3425	82768	.68505
FUEL OIL	.14912	.48111E-01	.79121	3.5841	3.0996	9.6075
INCOME	.63790E-03	.21404E-03	.90533	3.8232	2.9803	8.8821
DEGREE DAYS	17586E-03	.91765E-04	22231	-2.4625	-1.9164	3.6725

Table J-6

Appliance Saturation Time Series Electric Space Heating

JACKSON

EQUATION

SPACE HEAT = - 3.5144 + .58429*ELECTRICITY - 2.9109*GAS + .15593*FUEL OIL + .0016332*INCOME + .000072207*DEGREE DAYS

R-SQUARED = .91644

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .89445

STANDARD ERROR = .3066

DEPENDENT MEAN = .832

STANDARD ERROR AS % MEAN SPACE HEAT = 36.851

RESIDUAL SUM SQUARE = 1.7861

F-RATIO = 41.676

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	.58429	.75318	.20653	1.5081	.77577	.60181
GAS	-2.9109	1.1335	37038	-4.3712	-2.5682	6.5957
FUEL OIL	.15593	.95757E-01	.29150	2.1801	1.6284	2.6516
INCOME	.16332E-02	.31926E-03	1.0248	5.3142	5.1156	26.169
DEGREE DAYS	.72207E-04	.20728E-03	.25159E-01	.59286	.34836	.12135

Table J-7

KALAMAZ00

EQUATION SPACE HEAT = - 2.778 + .084904*ELECTRICITY - 1.1037*GAS + .15429*FUEL OIL + .0011717*INCOME - .000073116*DEGREE DAYS

R-SQUARED = .87893

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .84707

STANDARD ERROR = .21445 = .636

DEPENDENT MEAN

STANDARD ERROR AS % MEAN SPACE HEAT = 33.719

RESIDUAL SUM SQUARE = .87382

F-RATIO = 27.587

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	.84904E-01	.55758	.51646E-01			
GAS	-1.1037	.83224	24167	-2.1682	-1.3262	1.7589
FUEL OIL	.15429	.66322E-01	.49637	2.8221	2.3264	5.4121
INCOME	.11717E-02	.29397E-03	1.1129	5.1454	3.9857	15.886
DEGREE DAYS	73116E-04	.17746E-03	37654E-01	71797	41203	.16977

Table J-8

LANSING

EQUATION

SPACE HEAT = .65065 - .6923*ELECTRICITY - 6.2096*GAS + .32013*FUEL OIL + .0019427*INCOME + .0001788*DEGREE DAYS

R-SQUARED = .89162

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .8631 STANDARD ERROR = .63332

DEPENDENT MEAN = 1.584

STANDARD ERROR AS % MEAN SPACE HEAT = 39.982

RESIDUAL SUM SQUARE = 7.6208

F-RATIO = 31.261

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	69230	1.7144	13492	93855	40382	.16307
GAS	-6.2096	2.4213	43561	-4.8978	-2.5645	6.5768
FUEL OIL	.32013	.21012	.32997	2.3510	1.5236	2.3214
INCOME	.19427E-02	.73485E-02	.66693	3.2904	2.6437	6.9893
DEGREE DAYS	.17888E-03	.46973E-03	.38754E-01	.78411	.38081	.14502

Table J-9

MUSKEGON

EQUATION

SPACE HEAT = - .26284 + .39926*ELECTRICITY - 2.8645*GAS + .053004*FUEL 0IL + .0012879*INCOME + .000015684*DEGREE DAYS

R-SQUARED = .91511

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .89277

STANDARD ERROR = .29103

DEPENDENT MEAN = .836

STANDARD ERROR AS % MEAN SPACE HEAT = 34.812

RESIDUAL SUM SQUARE = 1.6093

F-RATIO = 40.965

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	.39926	.87256	.14985	1.0256	.45757	.20937
GAS	-2.8645	1.0537	59464	-4.4340	-2.7186	7.3906
FUEL OIL	.53004E-01	.94489E-01	.10522	.73754	.56096	.31468
INCOME	.12879E-02	.47736E-03	.59609	3.8582	2.6979	7.2788 .
DEGREE DAYS	.15684E-04	.18065E-03	.74178E-02	.12715	.86817E-01	.75372E-02

Table J-10

Appliance Saturation Time Series Electric Space Heating

SAGINAW

EQUATION SPACE HEAT = - 3.1303 + .039452*ELECTRICITY - 1.5131*GAS + .18653*FUEL OIL + .0011586*INCOME + 4.7488E-06*DEGREE DAYS

R-SQUARED = .92477

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .90497

STANDARD ERROR = .19295

DEPENDENT MEAN = .548

STANDARD ERROR AS % MEAN SPACE HEAT = 35.210

RESIDUAL SUM SQUARE = .70739

F-RATIO = 46.709

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	.39452E-01	.45305	.21026E-91	.15460	.87081E-01	.75830E-02
GAS	-1.5131	.70184	29028	-3.4497	-2.1559	4.6481
FUEL OIL	.18653	.58056E-01	.52577	3.9597	3.2130	10.323
INCOME	.11586E-02	.17918E-03	1.0936	5.9859	6.4663	41.813
DEGREE DAYS	.47488E-05	.13266E-03	.23670E-02	.61797E-01	.35798E-01	.12815E-02

Table J-11

NORTHWEST

EQUATION

SPACE HEAT = - 9.3768 + 4.5949*ELECTRICITY - 12.706*GAS + .25181*FUEL OIL + .CO50193*INCOME + .00059271*DEGREE DAYS

R-SQUARED = .94578

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .93151

STANDARD ERROR = .8013

DEPENDENT MEAN = 2.64

STANDARD ERROR AS % MEAN SPACE HEAT = 30.352

RESIDUAL SUM SQUARE = 12.2

F-RATIO = 66.284

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	4.5949	2.5351	.50059	3.7376	1.812	3.2851
GAS	-12.706	3.3955	76562	-6.2281	-3.7419	14.001
FUEL OIL	.25181	.26500	.14509	1.1096	.95024	9.0295
INCOME	.50193E-02	.15558E-02	.78238	4.1152	3.2261	10.408
DEGREE DAYS	.59271E-03	.50122E-03	.66066E-01	1.8176	1.1825	1.3984

Table J-12

Appliance Saturation Time Series Electric Space Heating

HURON

EQUATION

SPACE HEAT = 2.8167 - .94142*ELECTRICITY - 2.636*GAS + .34688*FUEL OIL + .0012604*INCOME - .00037463*DEGREE DAYS

R-SQUARED = .91734

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .89559

STANDARD ERROR = .40742

DEPENDENT MEAN

= 1.032

STANDARD ERROR AS % MEAN SPACE HEAT = 39.479

RESIDUAL SUM SQUARE = 3.1539

F-RATIO = 42.171

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	94142	.69498	50326	-2.4855	-1.3546	1.8349
GAS	-2.6360	1.6636	25104	-3.1913	-1.5846	2.5108
FUEL OIL	.34688	.16407	.48536	3.9100	2.1142	4.4698
INCOME	.12604E-02	.49327E-03	.67120	2.5289	2.5553	6.5294
DEGREE DAYS	37463E-03	.26411E-03	13149	-2.4916	-1.4184	2.0120

Table J-13

Appliance Saturation Time Series Electric Space Heating

LAPEER

EQUATION

SPACE HEAT = 19.009 - 4.2576*ELECTRICITY - 7.1624*GAS + 1.0784*FUEL OIL - .00082055*INCOME - .0010637*DEGREE DAYS

R-SQUARED = .88147

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .85027

STANDARD ERROR = .71551

DEPENDENT MEAN = 1.456

STANDARD ERROR AS % MEAN SPACE HEAT = 49.142

RESIDUAL SUM SQUARE = 9.7271

F-RATIO = 28.258

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-4.2576	1.2143	-1.5519	-7.9671	-3.5061	12.292
GAS	-7.1624	2.4314	46510	-6.1459	-2.9458	8.6778
FUEL OIL	1.0784	.23990	1.0289	8.6160	4.4953	20.208
INCOME	82055E-03	.10588E-02	22887	-1.4062	77498	.60060
DEGREE DAYS	10637E-02	.48113E-03	18999	-5.1526	-2.2109	4.8881

Appliance Saturation Time Series Electric Space Heating

SANILAC

EQUATION SPACE HEAT = - 1.1017 + .018002*ELECTRICITY - 5.424*GAS + .57207*FUEL OIL + .0025233*INCOME - .00023968*DEGREE DAYS

R-SQUARED = .88559

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .85548 STANDARD ERROR = .60607

ANDARD ERRUR = .00007

DEPENDENT MEAN = 1.64

STANDARD ERROR AS % MEAN SPACE HEAT = 36.955

RESIDUAL SUM SQUARE = 6.979

F-RATIO = 29.414

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	.18002E-01	1.5269	.76111E-02	.29908E-01	11790E-01	.13901E-03
GAS	-5.4240	2.6209	68458	-4.7906	-2.0695	4.2830
FUEL OIL	.57207	.22863	.63306	4.0578	2.5021	6.2606
INCOME	.25233E-02	.11343E-02	.80849	3.3975	2.2246	4.9488
DEGREE DAYS	23968E-03	.44887E-03	50595E-01	-1.0227	53396	.28511

Table J-15

ST. CLAIR

SPACE HEAT = .29787 - .41493*ELECTRICITY - 3.9246*GAS + .59666*FUEL OIL + .0013496*INCOME - .00044955*DEGREE DAYS

R-SQUARED = .80488

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .75354

STANDARD ERROR = .5564

DEPENDENT MEAN = 1.088

STANDARD ERROR AS % MEAN SPACE HEAT = 51.140

RESIDUAL SUM SQUARE = 5.8821 F-RATIO = 15.675

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	41493	1.3216	24954	-1.0391	31396	.98574E-01
GAS	-3.9246	2.5011	70462	-5.2250	-1.5692	2.4623
FUEL OIL	.59666	.20754	.93923	6.3794	2.8749	8.2652
INCOME	.13496E-02	.79629E-03	.70375	3.2630	1.6948	2.8725
DEGREE DAYS	44955E-03	.44074E-03	11497	-2.6521	-1.0200	1.0404

Table J-16

TUSCOLA

EQUATION

SPACE HEAT = 1.0413 - .10173*ELECTRICITY - 4.6803*GAS + .3625*FUEL OIL + .0020988*INCOME - .00036599*DEGREE DAYS

R-SQUARED = .93601

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .91917

STANDARD ERROR = .39145

DEPENDENT MEAN = 1.208

STANDARD ERROR AS % MEAN SPACE HEAT = 32.404

RESIDUAL SUM SQUARE = 2.9114

F-RATIO = 55.586

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	10173	.76640	49801E-01	22945	13274	.17620E-01
GAS	-4.6803	1.4458	40816	-4.8406	-3.2371	10.479
FUEL OIL	.36250	.15888	.46449	3.4908	2.2816	5.2058
INCOME	.20988E-02	.58154E-03	.92664	3.7967	3.6090	13.025
DEGREE DAYS	36599E-03	.25653E-03	11764	-2.0795	-1.4267	2.0354

Table J-17

OAKLAND

EQUATION

SPACE HEAT = 5.8342 - 1.0999*ELECTRICITY - 2.2036*GAS + .24477*FUEL OIL - .00021523*INCOME - .00023412*DEGREE DAYS

R-SQUARED = .84294

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .80161

STANDARD ERROR = .21592

DEPENDENT MEAN = .5

STANDARD ERROR AS % MEAN SPACE HEAT = 43.184

RESIDUAL SUM SQUARE = .8858

F-RATIO = 20.395

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-1.0999	.32024	-1.4809	-5.9585	-3.4346	11.796
GAS	-2.2036	.75028	52453	-5.4797	-2.9370	8.6263
FUEL OIL	.24477	.74860E-01	.82803	5.6614	3.2698	10.691
INCOME	21523E-03	.20431E-03	34630	-1.7908	-1.0535	1.1098
DEGREE DAYS	23412E-03	.15174E-03	15770	-3.1008	-1.5429	2.3806

Table J-19

MACOMB

EQUATION SPACE HEAT = .97858 - .80984*ELECTRICITY - 1.5199*GAS + .2595*FUEL OIL + .00061305*INCOME - .00017297*DEGREE DAYS

R-SQUARED = .90815

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .88398 STANDARD ERROR = .23081

DEPENDENT MEAN = .82

STANDARD ERROR AS % MEAN SPACE HEAT = 28.147

RESIDUAL SUM SQUARE = 1.0122

F-RATIO = 37.573

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	80984	.38725	80555	-2.6908	-2.0912	4.3733
GAS	-1.5199	.82938	26933	-2.3158	-1.8326	3.3585
FUEL OIL	.25950	.85414E-01	.67563	3.6813	3.0381	9.2303
INCOME	.61305E-03	.31717E-03	.47457	2.4859	1.9329	3.7360
DEGREE DAYS	17297E-03	.17318E-03	73166E-01	-1.3539	99879	.99758

Appliance Saturation Time Series Electric Space Heating

WASHTENAW

EQUATION

SPACE HEAT = 1.1067 + .55678*ELECTRICITY - 4.9268*GAS + .035457*FUEL OIL + .00077638*INCOME + .00027454*DEGREE DAYS

R-SQUARED = .94724

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .93335

STANDARD ERROR = .26021

DEPENDENT MEAN = .948

STANDARD ERROR AS % MEAN SPACE HEAT = 27.448

RESIDUAL SUM SQUARE = 1.2864

F-RATIO = 68.222

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	.55678	.65420	.37233	1.6002	.85108	.72434
GAS	-4.9268	1.2454	90185	-6.7254	-3.9560	15.650
FUEL OIL	.35457E-01	.11618	.62062E-01	.43509	.30518	.93137E-01
INCOME	.77638E-03	.38092E-03	.46922	2.6474	2.0382	4.1541
DEGREE DAYS	.27454E-03	.23490E-03	.85393E-01	1.8754	1.1688	1.3660

Table J-20

LENAWEE

EQUATION

SPACE HEAT = - 1.7483 - 1.0431*ELECTRICITY - 3.5971*GAS + .5745*FUEL OIL + .001674*INCOME - .00013836*DEGREE DAYS

R-SQUARED = .84543

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .80475

STANDARD ERROR = .60787

DEPENDENT MEAN = .98

STANDARD ERROR AS % MEAN SPACE HEAT = 62.028

RESIDUAL SUM SQUARE = 7.0206 F-RATIO = 20.784DEGREES OF FREEDOM = 19

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-1.0431	1.0729	51109	-2.9001	97228	.94532
GAS	-3.5971	2.1829	31397	-4.5858	-1.6478	2.7154
FUEL OIL	.57450	.22851	.73676	6.8193	2.5141	6.3205
INCOME	.16740E-02	.85448E-03	.69417	4.4149	1.9591	3.8379
DEGREE DAYS	13836E-03	.42121E-03	33070E-01	96442	32847	.10789.

Table J-21

LIVINGSTON

TO THE

EQUATION

SPACE HEAT = 9.5904 - 2.2325*ELECTRICITY - 3.6228*GAS + .44112*FUEL OIL - .00043304*INCOME - .00028161*DEGREE DAYS

R-SQUARED = .92165

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .90103 STANDARD ERROR

= .31709

DEPENDENT MEAN = .948

STANDARD ERROR AS % MEAN SPACE HEAT = 33.449

RESIDUAL SUM SQUARE = 1.9104

F-RATIO = 44.699 DEGREES OF FREEDOM = 19

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-2.2325	.42693	-1.4929	-6.4163	-5.2293	27.345
GAS	-3.6228	1.1249	43158	-4.7748	-3.2206	10.372
FUEL OIL	.44112	.10111	.77211	5.4129	4.3627	19.033
INCOME	43304E-03	.30771E-03	25568	-1.3236	-1.4073	1.9805
DEGREE DAYS	28161E-03	.22961E-03	93531E-01	-2.0149	-1.2264	1.5041

Appliance Saturation Time Series Electric Space Heating

INGHAM

EQUATION

SPACE HEAT = - .27093 - .75514*ELECTRICITY - 2.5004*GAS + .27699*FUEL QIL + .0010566*INCOME - 5.0135E-06*DEGREE DAYS

R-SQUARED = .93788

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .92153

STANDARD ERROR = .28235

DEPENDENT MEAN = .948

STANDARD ERROR AS % MEAN SPACE HEAT = 29.783

RESIDUAL SUM SQUARE = 1.5147

F-RATIO = 57.37

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
ELECTRICITY	75514	.49591	50498	-2.1703	-1.5227	2.3187
GAS	-2.5004	1.0240	29787	-3.2953	-2.4418	5.9622
FUEL OIL	.27699	.10361	.48482	3.3989	2.6733	7.1465
INCOME	.10565E-02	.39831E-03	.60348	3.3889	2.6524	7.0352
DEGREE DAYS	50135E-05	.21175E-03	16275E-02	36425E-01	23677E-01	.56059E-03

Appliance Saturation Time Series Electric Space Heating

MONROE

EQUATION

SPACE HEAT = - 8.9436 - 1.6482*ELECTRICITY + 4.7982*GAS + .19411*FUEL OIL + .0024279*INCOME - .000081021*DEGREE DAYS

R-SQUARED = .9012

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .8752

STANDARD ERROR = .48598

DEPENDENT MEAN = .98

STANDARD ERROR AS % MEAN SPACE HEAT = 49.590

RESIDUAL SUM SQUARE = 4.4873

F-RATIO = 34.663

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-1.6482	.94529	78202	-4.5556	-1.7436	3.0401
GAS	4.7982	1.6459	.89523	6.2039	2.9152	8.4983
FUEL OIL	.19411	.22332	.23139	2.2906	.86919	.75550
INCOME	.24279E-02	.66948E-03	1.0979	6.7248	3.6266	13.152
DEGREE DAYS	81021E-04	.36780E-03	18061E-01	53745	22029	.48526E-01

Appliance Saturation Time Series Electric Space Heating

WAYNE

EQUATION

SPACE HEAT = - .13138 + .20413*ELECTRICITY - 1.658*GAS + .025027*FUEL OIL + .00022685*INCOME + .000098844*DEGREE DAYS

R-SQUARED = .79614

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .74249

STANDARD ERROR = .1126

DEPENDENT MEAN = .244

STANDARD ERROR AS % MEAN SPACE HEAT = 46.146

RESIDUAL SUM SQUARE = .24088

F-RATIO = 14.84

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	. 20413	.27970	.60048	2.2661	.72982	.53264
GAS	-1.6580	.65219	97360	-7.5073	-2.5422	6.4627
FUEL OIL	.25027E-01	.56589E-01	.18496	1.1862	.44226	.19559
INCOME	.22685E-03	.13151E-03	.62921	3.0180	1.7249	2.9753
DEGREE DAYS	.98844E-04	.10700E-03	.12137	2.5755	.923/9	.85338

Appliance Saturation Time Series Electric Water Heating

CENTPAL

EQUATION

WATER HEAT = 74.008 + 12.191*ELECTRICITY + .0074316*INCOME - 28.434*GAS - 2.7907*FUEL 0IL - .0016043*DEGREE DAYS

R-SQUARED = .93162

20 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .90719

STANDARD ERROR = 2.1026

DEPENDENT MEAN = 39.095

STANDARD ERROR AS % MEAN WATER HEAT = 5.3782

RESIDUAL SUM SQUARE = 61.893

F-RATIO = 38.145

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
ELECTRICITY	12.191	6.6328	.49730	.63681	1.8380	3.3781
INCOME	.74316E-02	.39960E-02	.39479	.43964	1.8598	3.4587
GAS	-28.434	11.285	48235	89111	-2.5197	6.3489
FUEL OIL	-2.7907	.66019	65923	79572	-4.2272	17.869
DEGREE DAYS	16043E-02	.19438E-02	58577E-01	28264	82536	.68122

Table J-26

BATTLE CREEK

EQUATION

WATER HEAT = 56.543 + 6.3039*ELECTRICITY + .0017648*INCOME - 18.185*GAS - .61107*FUEL OIL - .0015034*DEGREE DAYS

R-SQUARED = .8345

20 OBSERVATIONS, 5 VARIABLES

CCRRECTED R-SQUARED = .7754

STANDARD ERROR = 1.0984

DEPENDENT MEAN = 35.26

STANDARD ERROR AS % MEAN WATER HEAT = 3.1153

RESIDUAL SUM SQUARE = 16.892

F-RATIO = 14.119

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
ELECTRICITY	6.3039	3.5055	.76578	.36511	1.7983	3.2338
INCOME	.17648E-02	.15291E-02	.38236	.14237	1.1541	1.3321
GAS	-18.185	5.9206	- 91861	63189	-3.0715	9.4341
FUEL OIL	61107	.37815	42985	-:19319	-1.6160	2.6113
DEGREE DAYS	15034E-02	.10130E-02	18534	28601	-1.4841	2.2025

Appliance Saturation Time Series Electric Water Heating

NORTHEAST

EQUATION

WATER HEAT = 73.68 + 13.748*ELECTRICITY + .0050592*INCOME - 35.338*GAS - 2.6222*FUEL OIL - .001012*DEGREE DAYS

R-SQUARED = .90394

20 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .86964

STANDARD ERROR = 2.3955

DEPENDENT MEAN = 36.06

STANDARD ERROR AS % MEAN WATER HEAT = 6.6430

RESIDUAL SUM SQUARE = 80.337

F-RATIO = 26.35

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
ELECTRICITY	13.748	8.2105	.58344	.77862	1.6745	2.8039
INCOME	.50592E-02	.38322E-02	.37101	.38523	1.3202	1.7428
GAS	-35.338	12.896	62360	-1.2007	-2.7402	7.5089
FUEL OIL	-2.6222	.90668	64437	81059	-2.8920	8.3639
DEGREE DAYS	10120E-02	.21148E-02	- 55955E-01	19586	47855	.22901

Appliance Saturation Time Series Electric Water Heater

FLINT

EQUATION

WATER HEAT = 63.508 + 15.709*ELECTRICITY - .0036497*INCOME - 20.249*GAS - 2.7065*FUEL OIL + .00031409*DEGREE DAYS

R-SQUARED = .70992

20 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .60632

STANDARD ERROR = 1.8569 DEPENDENT MEAN = 30.85

STANDARD ERROR AS % MEAN WATER HEAT = 6.0191

RESIDUAL SUM SQUARE = 48.272

F-RATIO = 6.8525

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
ELECTRICITY	15.709	5.4771	1.4944	1.0399	2.8680	8.2256
INCOME	36497E-02	.24799E-02	59519	38862	-1.4717	2.1660
GAS	-20.249	9.6267	80107	80418	-2.1034	4.4243
FUEL OIL	-2.7065	.56772	-1.4910	97794	-4.7673	22.727
DEGREE DAYS	.31409E-03	.16740E-02	.32643E-01	.72264E-01	.18762	.35203E-01

Table J-29

GRAND RAPIDS

EQUATION

WATER HEAT = 1.3267 + 13.026*ELECTRICITY + .0041249*INCOME + 1.5954*GAS - 1.6254*FUEL OIL - .00060269*DEGREE DAYS

R-SQUARED = .65491

20 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .53167

STANDARD ERROR = 1.0636

DEPENDENT MEAN = 20.075

STANDARD ERROR AS % MEAN WATER HEAT = 5 2983

RESIDUAL SUM SQUARE = 15.839

F-RATIO = 5.3139

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
ELECTRICITY	13.026	3.4258	2.3597	1.3251	3.8023	14.457
INCOME	.41249E-02	.18255E-02	1.2109	.61991	2.2597	5.1061
GAS	1.5954	4.6255	.17439	.98861E-01	.34492	.11897
FUEL OIL	-1.6254	.35660	-1.7050	90255	-4.5580	20.775
DEGREE DAYS	60269E-03	.89481E-03	12412	20742	67353	.45365

JACKSON

EQUATION
WATER HEAT = 79.962 + 3.4312*ELECTRICITY + .00029896*INCOME - 13.214*GAS - 2.3304*FUEL OIL - .00013775*DEGREE DAYS

R-SQUARED = .95427

20 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .93794 STANDARD ERROR = 1.1056 DEPENDENT MEAN = 44.71

STANDARD ERROR AS % MEAN WATER HEAT = 2.4750

RESIDUAL SUM SQUARE = 17.143

F-RATIO = 58.433

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
ELECTRICITY	3.4312	3.6270	.21748	.15673	.94602	.89496
INCOME	.29896E-03	.14022E-02	.38637E-01	.19072E-01	.21320	.45454E-01
GAS	-13.214	5.8801	34829	36211	-2.2472	5.0500
FUEL OIL	-2.3304	.36888	85535	58102	-6.3175	39.910
DEGREE DAYS	13775E-03	.92698E-03	94258E-02	21129E-01	14860	.22083E-01

Table J-31

KALAMAZ00

EQUATION

WATER HEAT = 104.12 + 4.7985*ELECTRICITY - .0079664*INCOME - 27.752*GAS - 1.2764*FUEL OIL - .00052118*DEGREE DAYS

R-SQUARED = .74182

20 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .64961 STANDARD ERROR = 1.3683

DEPENDENT MEAN = 39.115

STANDARD ERROR AS % MEAN WATER HEAT = 3.4982

RESIDUAL SUM SQUARE = 26.212

F-RATIO = 8.0452

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
ELECTRICITY	4.7985	4.4523	.58446	.25053	1.0778	1.1616
INCOME	79664E-02	.22387E-02	-1.7123	59580	-3.5585	12.663
GAS	-27.752	7.9167	-1.4056	86929	-3.5056	12.289
FUEL OIL	-1.2764	.44977	90023	36374	-2.8378	8.0533
DEGREE DAYS	52118E-03	.14936E-02	56141E-01	83687E-01	34895	.12176

Table J-32

LANSING-

EQUATION

WATER HEAT = 81.888 - .81674*ELECTRICITY - .004367*INCOME - 18.891*GAS - .99443*FUEL OIL + .0010491*DEGREE DAYS

R-SQUARED = .83009

20 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .76941

STANDARD ERROR = 1.2027

DEPENDENT MEAN = 40.92

STANDARD ERROR AS % MEAN WATER HEAT = 2.9392

RESIDUAL SUM SQUARE = 20.252

F-RATIO = 13.679

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
ELECTRICITY	81674	3.8598	91811E-01	40761E-01	21160	.44774E-01
INCOME	43670E-02	.15113E-02	94602	30313	-2.8895	8.3495
GAS	-18.891	6.4166	88306	56562	-2.9441	8.6675
FUEL OIL	99443	.42121	64732	27090	-2.3609	5.5739
DEGREE DAYS	.10491E-02	.10219E-02	.14944	.17924	1.0266	1.0538

Appliance Saturation Time Series Electric Water Heating

MUSKEGON

EQUATION

WATER HEAT = 39.566 + 9.6543*ELECTRICITY + .00036006*INCOME - 11.701*GAS - 1.5212*FUEL OIL - .00015454*DEGREE DAYS

R-SQUARED = .79541

20 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .72234

STANDARD ERROR = 1.0133

DEPENDENT MEAN = 27.64

STANDARD ERROR AS % MEAN WATER HEAT = 3.6662

RESIDUAL SUM SQUARE = 14.376

F-RATIO = 10.886

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
ELECTRICITY	9.6543	3.5197	1.4134	.71332	2.7429	7.5236
INCOME	.36006E-03	.18598E-02	.73961E-01	.33960E-01	,19360	.37482E-01
GAS	-11.701	3.7255	-1.0337	52663	-3.1409	9.8654
FUEL OIL	-1.5212	.34311	-1.2897	61350	-4.4335	19.656
DEGREE DAYS	15454E-03	.83132E-03	25722E-01	38628E-01	18589	.34557E-01

Table J-34

SAGINAW

EQUATION

WATER HEAT = 37.42 + 2.5211*ELECTRICITY - .0028407*INCOME - 13.532*GAS + .10707*FUEL OIL + .00079339*DEGREE DAYS

R-SQUARED = .56319

20 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .40719

STANDARD ERROR = 1.2272

DEPENDENT MEAN = 24.385

STANDARD ERROR AS % MEAN WATER HEAT = 5.0324

RESIDUAL SUM SQUARE = 21.083

F-RATIO = 3.6101

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL-F
ELECTRICITY	2.5211	3.7274	.44535	.21113	.67635	.45745
INCOME	28407E-02	.13197E-02	-1.0175	34683	-2.1525	4.6336
GAS	-13.532	6.4716	99408	67992	-2.0910	4.3725
FUEL OIL	.10707	.38729	.10952	.48944E-01	.27645	.76424E-01
DEGREE DAYS	.79339E-03	.10272E-02	.14311	.23213	.77239	.59659

Appliance Saturation Time Series Electric Water Heating

NORTHWEST

EQUATION

WATER HEAT = 140.47 + .024564*ELECTRICITY - .008193*INCOME - 29.507*GAS - 3.2666*FUEL OIL + .00061544*DEGREE DAYS

R-SQUARED = .93236

20 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .90821 STANDARD ERROR = 1.9341

DEPENDENT MEAN = 53.635

STANDARD ERROR AS % MEAN WATER HEAT = 3.6060

RESIDUAL SUM SQUARE = 52.369

F-RATIO = 38.598 DEGREES OF FREEDOM = 14

STANDARD VARIABLE COEFFICIENT ERROR BETA ELASTICITY T-STATISTIC PARTIAL-F ELECTRICITY .24564E-01 7.1856 .10834E-02 .93531E-03 .34185E-02 .11686E-04 INCOME -.81930E-02 .41345E-02 -.57158 -.34992 -1.9816 3.9268 GAS -29.507 8.4065 -.78527 -.68436 -3.510112.321 FUEL OIL -3.2666 .67194 -.83430 -.67892 -4.8614 23.634 DEGREE DAYS .61544E-03 .14547E-02 .31080E-01 .93191E-01 .42306 .17898

Table J-36

HURON

EQUATION

WATER HEAT = 51.806 - 10.47*ELECTRICITY + 26.538*GAS - 1.6694*FUEL OIL - .00053996*INCOME + .0016105*DEGREE DAYS

R-SQUARED = .79749

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .74419

STANDARD ERROR = 4.2378

DEPENDENT MEAN

= 46.952

STANDARD ERROR AS % MEAN WATER HEAT = 9.0258

RESIDUAL SUM SQUAR	E =	341.22
F-RATIO	=	14.964
DEGREES OF FREEDOM	=	19

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-10.470	7.2288	84223	60756	-1.4483	2.0977
GAS	26.538	17.304	.38031	.70616	1.5337	2.3521
FUEL OIL	-1.6694	1.7066	35151	41361	97822	.95691
INCOME	53996E-03	.51308E-02	43269E-01	23812E-01	10524	.11075E-01
DEGREE DAYS	.16105E-02	.27472E-02	.85065E-01	.23543	.58625	.34369

Table J-37

LAPEER

EQUATION

WATER HEAT = - 5.0939 - 4.3324*ELECTRICITY + 19.795*GAS - 2.6876*FUEL OIL + .0079006*INCOME + .0059491*DEGREE DAYS

R-SQUARED = .87247

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .83891

STANDARD ERROR = 4.1026

DEPENDENT MEAN = 38.24

STANDARD ERROR AS % MEAN WATER HEAT = 10.729

RESIDUAL SUM SQUARE = 319.8

F-RATIO = 25.997

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-4.3324	6.9629	28568	30869	62222	.38716
GAS	19.795	13.941	.23253	.64674	1.4199	2.0161
FUEL OIL	-2.6876	1.3755	46386	81756	-1.9538	3.8175
INCOME	.79006E-02	.60710E-02	.39864	.51552	1.3014	1.6936
DEGREE DAYS	.59491E-02	.27587E-02	.19221	1.0972	2.1565	4.6503

Table J-38

SANILAC

EQUATION

WATER HEAT = 72.369 - 11.748*ELECTRICITY + 19.864*GAS - 3.0061*FUEL OIL - .0013046*INCOME + .0021641*DEGREE DAYS

R-SQUARED = .77052

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .71013

STANDARD ERROR = 5.4581

DEPENDENT MEAN = 46.428

STANDARD ERROR AS % MEAN WATER HEAT = 11.756

RESIDUAL SUM SQUARE = 566.03

F-RATIO = 12.759

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-11.748	13.751	78107	68941	85434	.72990
GAS	19.864	23.603	.39426	.61972	.84157	.70825
FUEL OIL	-3.0061	2.0590	52313	75318	-1.4600	2.1315
INCOME	13046E-02	.10215E-01	65737E-01	62049E-01	12772	.16311E-01
DEGREE DAYS	.21641E-02	.40425E-02	.71841E-01	.32618	.53535	.28660

Appliance Saturation Time Series Electric Water Heating

ST. CLAIR

EQUATION
WATER HEAT = 99.031 - 18.821*ELECTRICITY + 17.273*GAS - .51695*FUEL OIL - .0092548*INCOME - .0013962 *DEGREE DAYS

R-SQUARED = .67936

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .59499

STANDARD ERROR = 4.116

DEPENDENT MEAN = 33.452

STANDARD ERROR AS % MEAN WATER HEAT = 12.304

RESIDUAL SUM SQUARE = 321.89

F-RATIO = 8.0515

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-18.821	9.7765	-1.9614	-1.5329	-1.9251	3.7060
GAS	17.273	18.502	.53739	.74794	.93357	.87156
FUEL OIL	51695	1.5353	14101	17977	33671	.11337
INCOME	92548E-02	.58906E-02	83628	72776	-1.5711	2.4684
DEGREE DAYS	13962E-02	.32604E-02	61874E-01	26788	42811	.18337

Table J-40

TUSCOLA

EQUATION

WATER HEAT = 44.009 - 10.174*ELECTRICITY + 25.073*GAS - 2.4479*FUEL OIL - .00049733*INCOME + .003217*DEGREE DAYS

R-SQUARED = .82867

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .78358

STANDARD ERROR = 4.7404

DEPENDENT MEAN = 40.132

STANDARD ERROR AS % MEAN WATER HEAT = 11.812

RESIDUAL SUM SQUARE = 426.97

F-RATIO = 18.379

VARTABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-10.174	9.2812	67296	~.69071	-1.0962	1.2016
GAS	25.073	17.509	.29545	.78055	1.4320	2.0506
FUEL OIL	-2.4479	1.9241	42382	70957	-1.2723	1.6187
INCOME	49733E-03	.70425E-02	29669E-01	27080E-01	70618E-01	.49869E-02
DEGREE DAYS	.32170E-02	.31067E-02	.13972	.55020	1.0355	1.0723

Table J-41

OAKLAND

EQUATION

WATER HEAT = -23.114 + 2.6271*ELECTRICITY + 30.382*GAS - 2.3477*FUEL OIL + .0040195*INCOME + .0016139*DEGREE DAYS

R-SQUARED = .60179

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .49699

STANDARD ERROR = 3.0351

DEPENDENT MEAN = 22.036

STANDARD ERROR AS % MEAN WATER HEAT = 13.773

RESIDUAL SUM SQUARE = 175.02

F-RATIO = 5.7426

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	2.6271	4.5014	.40069	.32293	.58361	.34060
GAS	30.382	10.546	.81922	1.7142	2.8808	8.2989
FUEL OIL	-2.3477	1.0523	89964	-1.2321	-2.2311	4.9777
INCOME	.40195E-02	.28719E-02	.73261	.75883	1.3996	1.9589
DEGREE DAYS	.16139E-02	.21329E-02	.12315	.48501	.75667	.57255

Table J-42

MACOMB

EQUATION

WATER HEAT = 34.451 - 2.7034*ELECTRICITY + 8.1786*GAS - .62846*FUEL OIL - .0034756*INCOME - .0006987*DEGREE DAYS

R-SQUARED = .55816

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .44188

STANDARD ERROR = 1.21

DEPENDENT MEAN =

= 13.952

STANDARD ERROR AS % MEAN WATER HEAT = 8.6728

RESIDUAL SUM SQUARE = 27.819

F-RATIO = 4.8004

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-2.7034	2.0302	-1.1250	52792	-1.3316	1.7731
GAS	8.1786	4.3481	.60631	.73237	1.8809	3.5379
FUEL OIL	62846	.44779	68454	52399	-1.4035	1.9697
INCOME	34756E-02	.16628E-02	-1.1256	82831	-2.0902	4.3691
DEGREE DAYS	69870E-03	.90793E-03	12364	32143	76955	.59220

Table J-43

WASHTENAW

EQUATION

WATER HEAT = 63.334 - 6.4504*ELECTRICITY + 3.8157*GAS - .54561*FUEL OIL - .003847*INCOME - .001153*DEGREE DAYS

R-SQUARED = .48793

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .35317

STANDARD ERROR = 2.8582

DEPENDENT MEAN = 24.448

STANDARD ERROR AS % MEAN WATER HEAT = 11.691

RESIDUAL SUM SQUARE = 155.22

F-RATIO = 3.6208

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-6.4504	7.1860	-1.2234	71886	89763	.80574
GAS	3.8157	13.680	.19809	.20197	.27893	.77799E-01
FUEL OIL	54561	1.2762	27085	25961	42753	.18278
INCOME	38470E-02	.41842E-02	65941	50865	91940	.84530
DEGREE DAYS	11530E-02	. 25802E-02	10172	30542	44688	.19970

Table J-44

LENAWEE

EQUATION

WATER HEAT = 74.851 - 12.029*ELECTRICITY + 6.5246*GAS + .067702*FUEL OIL - .0049692*INCOME - .0019758*UEGREE DAYS

R-SQUARED = .90151

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .8756 STANDARD ERROR = 1.7659

DEPENDENT MEAN '= 24.676

STANDARD ERROR AS % MEAN WATER HEAT = 7.1565

RESIDUAL SUM SQUARE = 59.252

F-RATIO = 34.784

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-12.029	3.1168	-1.6194	-1.3282	-3.8594	14.895
GAS	6.5246	6.3416	.15648	.33035	1.0289	1.0586
FUEL OIL	.67702E-01	.66385	.23856E-01	.31916E-01	.10198	.10401E-01
INCOME	49692E-02	.24824E-02	.56619	52049	-2.0018	4.0072
DEGREE DAYS	19758E-02	.12237E-02	12976	54696	-1.6146	2.6070

Appliance Saturation Time Series Electric Water Heating

LIVINGSTON

EQUATION

WATER HEAT = 21.92 - 2.9806*ELECTRICITY + 20.351*GAS - 1.1952*FUEL OIL + .00084154*INCOME - .00048839*DEGREE DAYS

R-SQUARED = .58949

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .48146 STANDARD ERROR = 2.5591

DEPENDENT MEAN = 24.448

STANDARD ERROR AS % MEAN WATER HEAT = 10.468

RESIDUAL SUM SQUARE = 124.43

F-RATIO = 5.4568

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-2.9806	3.4455	56530	33217	86506	.74833
GAS	20.351	9.0786	.68761	1.0400	2.2417	5.0251
FUEL OIL	-1.1952	.81604	59332	56869	-1.4646	2.1451
INCOME	.84154E-03	.24834E-02	.14092	.99739E-01	.33887	.11483
DEGREE DAYS	48839E-03	.18531E-02	46006E-01	13550	26355	.69459E-01

Table J-46

INGHAM

EQUATION

WATER HEAT = 61.448 - 8.834*ELECTRICITY + 16.33*GAS - .53743*FUEL OIL - .005012*INCOME - .0017191*DEGREE DAYS

R-SQUARED = .62869

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .53097

STANDARD ERROR = 2.4339

DEPENDENT MEAN = 24.448

STANDARD ERROR AS % MEAN WATER HEAT = 9.9554

RESIDUAL SUM SQUARE = 112.55

F-RATIO = 6.4339

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-8.8340	4.2749	-1.6755	98450	-2.0665	4.2704
GAS	16.330	8.8272	.55175	.83453	1.8500	3.4225
FUEL OIL	53743	.89317	26679	25572	60171	.36206
INCOME	50120E-02	.34336E-02	81197	62341	-1.4597	2.1308
DEGREE DAYS	17191E-02	.18253E-02	15828	48432	94181	.88701

Table J-47

MONROE

EQUATION

WATER HEAT = 63.006 - 4.2057*ELECTRICITY - 19.623*GAS + .88051*FUEL OIL - .0025789*INCOME - .00080854*DEGREE DAYS

R-SQUARED = .91952

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .89835

STANDARD ERROR = 1.5963

DEPENDENT MEAN = 24.676

STANDARD ERROR AS % MEAN WATER HEAT = 6.4691

RESIDUAL SUM SQUARE = 48.417

F-RATIO = 43.419

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-4.2057	3.1051	54828	46167	-1.3545	1.8346
GAS	-19.623	5.4065	-1.0060	-1.0076	-3.6296	13.174
FUEL OIL	.88051	.73356	.28840	.41266	1.2003	1.4408
INCOME	25789E-02	.21991E-02	32042	28369	-1.1727	1.3753
DEGREE DAYS	80854E-03	.12081E-02	49523E-01	21301	66925	.44790

Appliance Saturation Time Series Electric Water Heating

WAYNE

EQUATION

WATER HEAT = 10.367 - 1.9386*ELECTRICITY + 1.3236*GAS - .07428*FUEL 0IL - .0004027*INCOME - .000072367*DEGREE DAYS

R-SQUARED = .93908

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .92305

STANDARD ERROR = .28583

DEPENDENT MEAN = 3.952

STANDARD ERROR AS % MEAN WATER HEAT = 7.2326

RESIDUAL SUM SQUARE = 1.5523

F-RATIO = 58.58

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-1.9386	.71003	-1.2280	-1.3288	-2.7304	7.4550
GAS	1.3236	1.6556	.16736	.37002	.79944	.63910
FUEL OIL	~.74283E-01	.14365	11822	21737	51710	.26739
INCOME	40270E-03	.33386E-03	24052	33078	-1.2062	1.4549
DEGREE DAYS	72367E-04	.27162E-03	19135E-01	11642	26643	.70983E-01

Table J-49

Appliance Saturation Time Series Air Conditioning

CENTRAL

EQUATION

AC = 13.007 - 6.1128*ELECTRICITY - 8.2712*GAS + .44376*FUEL OIL + .0037566*INCOME + .00023343*DEGREE DAYS

R-SQUARED = .93704

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .92048

STANDARD ERROR = 1.0827

DEPENDENT MEAN = 4.588

STANDARD ERROR AS % MEAN AC = 23.598

RESIDUAL SUM SQUARE = 22.271

F-RATIO = 56.56

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-5.1128	2.9532	53111	-2.8611	-2.0699	4.2846
GAS	-8.2712	3.8962	25868	-2.2524	-2.1229	4.5067
FUEL OIL	.44376	.32955	.20392	1.1252	1.3466	1.8132
INCOME	.37566E-02	.18778E-02	.39330	1.8044	2.0005	4.0021
DEGREE DAYS	.23343E-03	.80705E-03	.17531E-01	.34899	.28924	.83659E-01

Appliance Saturation Time Series Air Conditioning

BATTLE CREEK

EQUATION

AC = 2.8529 - 4.0503*ELECTRICITY - 13.377*GAS + .72292*FUEL OIL + .010008*INCOME - .00087778*DEGREE DAYS

R-SQUARED = .95578

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .94414

STANDARD ERROR = 1.6554

DEPENDENT MEAN = 7.176

STANDARD ERROR AS % MEAN AC = 23.068

RESIDUAL SUM SQUARE = 52.064

F-RATIO = 82.128

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-4.0503	4.0946	19291	-1.2121	98920	.97852
GAS	-13.377	6.2883	22934	-2.3291	-2.1274	4.5256
FUEL OIL	.72292	.53366	.18210	1.1719	1.3547	1.8351
INCOME	.10008E-01	.18921E-02	.73857	3.7919	5.2894	27.978
DEGREE DAYS	87778E-03	.12269E-02	39156E-01	82021	71546	.51188

Appliance Saturation Time Series Air Conditioning

NORTHEAST

EQUATION

AC = 6.2584 - 4.4874*ELECTRICITY - 10.155*GAS + .65726*FUEL OIL + .0058151*INCOME - .000262*DEGREE DAYS

R-SQUARED = .93138

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .91333

STANDARD ERROR = 1.3839

DEPENDENT MEAN = 4.968

STANDARD ERROR AS % MEAN AC = 27.856

RESIDUAL SUM SQUARE = 36.386

F-RATIO = 51.581

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-4.4874	3.8455	31845	-1.9397	-1.1669	1.3618
GAS	-10.155	5.1170	25940	-2.5538	-1.9845	3.9384
FUEL OIL	.65726	.46123	.24668	1.5390	1.4250	2.0307
INCOME	.58151E-02	.19741E-02	.63975	3.0567	2.9457	8.6773
DEGREE DAYS	26200E-03	.91017E-03	24667E-01	36197	28786	.82863E-01

Appliance Saturation Time Series Air Conditioning

FLINT

EQUATION

AC = 4.0191 - 3.9195*ELECTRICITY - 21.004*GAS + .79117*FUEL OIL + .010033*INCOME - .00031761*DEGREE DAYS

R-SQUARED = .93801

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .9217 STANDARD ERROR = 2.1699 DEPENDENT MEAN = 7.94

STANDARD ERROR AS % MEA". AC = 27.328

RESIDUAL SUM SQUARE = 89.457

F-RATIO = 57.499

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-3.9195	5.3850	16861	-1.0601	72785	.52977
GAS	-21.004	7.5197	32525	-3.3051	-2.7932	7.8021
FUEL OIL	.79117	.64299	.18001	1.1591	1.2304	1.5140
INCOME	.10033E-01	.26626E-02	.66450	3.9819	3.7683	14.200
DEGREE DAYS	31761E-03	.15528E-02	13527E-01	28212	-,20454	.41837E-01

Appliance Saturation Time Series Air Conditioning

GRAND RAPIDS

EQUATION

AC = 16.029 + 8.5211*ELECTRICITY - 35.945*GAS - .10693*FUEL OIL + .0070035*INCOME + .00017288*DEGREE DAYS

R-SQUARED = .98625

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .98263

STANDARD ERROR = .98687 DEPENDENT MEAN = 8.056

STANDARD ERROR AS % MEAN AC = 12.250

RESIDUAL SUM SQUARE = 18.504 F-RATIO = 272.57

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	8.5211	2.7997	.37958	2.2714	3.0436	9.2635
GAS	-35.945	4.0459	88562	-5.7740	-8.8842	78.930
FUEL OIL	10693	.32087	25192E-01	15440	33324	.11105
INCOME	.70035E-02	.14275E-02	.44136	2.5218	4.9060	24.069
DEGREE DAYS	.17288E-03	.61203E-03	.97041E-02	.14544	.28246	.79786E-01

Appliance Saturation Time Series Air Conditioning

JACKSON

EQUATION

AC = - 16.174 + .59427*ELECTRICITY - 12.928*GAS + .51687*FUEL OIL + .011013*INCOME + .00033282*DEGREE DAYS

R-SQUARED = .95405

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .94195

STANDARD ERROR = 1.7277

DEPENDENT MEAN = 7.052

STANDARD ERROR AS % MEAN AC = 24.500

RESIDUAL SUM SQUARE = 56.716

F-RATIO = 78.894

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	.59427	4.2443	.27644E-01	.18097	.14002	.19605E-01
GAS	-12.928	6.3871	21646	-2.2904	-2.0240	4.0968
FUEL OIL	.51687	.53960	.12716	.85262	.95788	.91754
INCOME	.11013E-01	.17991E-02	. 90942	4.2280	6.1218	37.476
DEGREE DAYS	.33282E-03	.11680E-02	.15260E-01	.32239	.28494	.81191E-01

Aprliance Saturation Time Series Air Conditioning

KALAMAZ00

EQUATION

AC = - 11.681 - 2.43*ELECTRICITY - 18.179*GAS + .77064*FUEL OIL + .012534*INCOME + .00064535*DEGREE DAYS

R-SQUARED = .92925

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .91063

STANDARD ERROR = 2.529

DEPENDENT MEAN = 8.392

STANDARD ERROR AS % MEAN AC = 30.135

RESIDUAL SUM SQUARE = 121.52

F-RATIO = 49.912

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-2.4300	6.5753	95817E-01	62180	36956	.13657
GAS	-18.179	9.8142	25803	-2.7065	-1.8523	3.4312
FUEL OIL	.77064	.78210	.16071	1.0682	.98535	.97092
INCOME	.12534E-01	.34667E-02	.77174	4.1716	3.6157	13.073
DEGREE DAYS	.64535E-03	.20926E-02	.21544E-01	.48026	.30839	.95104E-01

Appliance Saturation Time Series Air Conditioning

LANSING

EQUATION

AC = - 5.7071 - .93071*ELECTRICITY - 17.494*GAS + .81648*FUEL OIL + .0093405*INCOME + .00023866*DEGREE DAYS

R-SQUARED = .92309

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .90285 STANDARD ERROR = 2.1222

DEPENDENT MEAN = 6.652

STANDARD ERROR AS % MEAN AC = 31.904

RESIDUAL SUM SQUARE = 85.575

F-RATIO = 45.608

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	93071	5.7449	45597E-01	30046	16201	.26246E-01
GAS	-17.494	8.1139	30850	-3.2856	-2.1560	4.6484
FUEL OIL	.81648	.70409	.21156	1.4278	1.1596	1.3447
INCOME	.93405E-02	.24625E-02	.80607	3.7671	3.7931	14.388
DEGREE DAYS	.23866E-03	.15741E-02	.12998E-01	.24911	.15162	.22988E-01

Appliance Saturation Time Series Air Conditioning

MUSKEGON

EQUATION

AC = 12.832 + 6.9738*ELECTRICITY - 20.932*GAS - .24254*FUEL OIL + .0018199*INCOME + .000086122*DEGREE DAYS

R-SQUARED = .97255

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .96532

STANDARD ERROR = .53723

DEPENDENT MEAN = 3.04

STANDARD ERROR AS % MEAN AC = 17.672

RESIDUAL SUM SQUARE = 5.4837

F-RATIO = 134.63

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	6.9738	1.6107	.80634	4.9263	4.3296	18.746
GAS	-20.932	1.9450	-1.3387	-8.9107	-10.762	115.82
FUEL OIL	24254	.17442	14832	92810	-1.3905	1.9336
INCOME	.18199E-02	.88118E-03	.25950	1.4993	2.0653	4.2655
DEGREE DAYS	.86122E-04	.33348E-03	.12548E-01	.19200	.25825	.66696E-01

Appliance Saturation Time Series Air Conditioning

SAGINAW

EQUATION

AC = - 14.236 - 7.9414*ELECTRICITY - 11.845*GAS + 1.5786*FUEL OIL + .010975*INCOME + .00078427*DEGREE DAYS

R-SQUARED = .95884

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .94801

STANDARD ERROR = 1.8536

DEPENDENT MEAN = 8.94

STANDARD ERROR AS % MEAN AC = 20.733

RESIDUAL SUM SQUARE = 65.279

F-RATIO = 88.522

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-7.9414	4.3521	32588	-1.9076	-1.8247	3.3296
GAS	-11.845	6.7421	17496	-1.6553	-1.7569	3.0866
FUEL OIL	1.5786	.55771	.34260	2.0541	2.8305	8.0118
INCOME	.10975E-01	.17212E-02	.79760	3.4756	6.3762	40.656
DEGREE DAYS	.78427E-93	.12744E-02	.30099E-01	.62559	.61542	.37875

Table J-59

Appliance Saturation Time Series Air Conditioning

NORTHWEST

EQUATION

AC = 6.9169 + 6.6584*ELECTRICITY - 14.143*GAS - .3586*FUEL OIL + .0013137*INCOME + 1.0479E-06*DEGREE DAYS

R-SQUARED = .94172

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .92638 STANDARD ERROR = .48458

DEPENDENT MEAN = 1.572

STANDARD ERROR AS % MEAN AC = 30.826

TO THE TEN TO BE A TOTAL OF THE PARTY OF THE

RESIDUAL SUM SQUARE = 4.4615

F-RATIO = 61.401

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	6.6584	1.5331	1.2437	9.0958	4.3432	18.863
GAS	-14.143	2.0534	-1.4611	-11.643	-6.8875	47.437
FUEL OIL	35860	.16025	35424	-2.6537	-2.2377	5.0075
INCOME	.13037E-02	.94086E-03	. 34838	1.7950	1.3856	1.9199
DEGREE DAYS	.10479E-05	.30311E-03	.20025E-03	.53967E-02	.34572E-02	.11952E-04

Appliance Saturation Time Series Air Conditioning

HURON

EQUATION

AC = - 26.721 + .35436*ELECTRICITY + 29.098*GAS - 1.757*FUEL OIL - .00034303*INCOME + .0033555*DEGREE DAYS

R-SQUARED = .21303

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .0059319

= 5.9944 STANDARD ERROR

DEPENDENT MEAN

= 12.48

STANDARD ERROR AS % MEAN AC = 48.032

RESIDUAL SUM SQUARE = 682.73

= 1.0286 F-RATIO

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	.35436	10.225	.39727E-01	.77363E-01	.34655E-01	.12010E-02
GAS	29.098	24.476	.58112	2.9130	1.1888	1.4133
FUEL OIL	-1.7570	2.4140	51558	-1.6378	72787	.52979
INCOME	34303E-03	.72575E-02	38308E-01	56913E-01	47265E-01	.22340E-02
DEGREE DAYS	.33555E-02	.38859E-02	.24699	1.8454	.86351	.74565

Appliance Saturation Time Series Air Conditioning

LAPEER

EQUATION

AC = - 74.338 + 6.4976*ELECTRICITY + 28.154*GAS - 2.5674*FUEL OIL + .00693*INCOME + .0065953*DEGREE DAYS

R-SQUARED = .29168

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .10528 STANDARD ERROR = 5.687

DEPENDENT MEAN = 12.48

STANDARD ERROR AS % MEAN AC = 45.569

RESIDUAL SUM SQUARE = 614.49

F-RATIO = 1.5648

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	6.4976	9.6518	.72843	1.4185	.67319	.45319
GAS	28.154	19.325	.56227	2.8185	1.4568	2.1224
FUEL OIL	-2.5674	1.9067	75336	-2.3931	-1.3465	1.8130
INCOME	.69300E-02	.84155E-02	.59448	1.3855	.82348	.67811
DEGREE DAYS	.65953E-02	.38241E-02	.36229	3.7271	1.7247	2.9745

Table J-62

Appliance Saturation Time Series Air Conditioning

SANILAC

EQUATION

AC = 43.962 - 8.9645*ELECTRICITY + 15.555*GAS - 1.3616*FUEL OIL - .010453*INCOME + .0013335*DEGREE DAYS

R-SQUARED = .16103

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = -.059747

STANDARD ERROR = 6.1893

DEPENDENT MEAN = 12.48

STANDARD ERROR AS % MEAN AC = 49.594

RESIDUAL SUM SQUARE = 727.84

F-RATIO = .72938

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-8.9645	15.593	-1.0050	-1.9571	57492	.33053
GAS	15.555	26.765	.52059	1.8054	.58117	.33775
FUEL OIL	-1.3616	2.3348	39953	-1.2691	58315	.34006
INCOME	10453E-01	.11583E-01	88807	-1.8494	90237	.81426
DEGREE DAYS	.13335E-02	.45840E-02	.74641E-01	.74770	.29090	.84623E-01

Appliance Saturation Time Series Air Conditioning

ST. CLAIR

EQUATION

AC = 111.76 - 21.313*ELECTRICITY + 15.181*GAS + .092747*FUEL OIL - .019628*INCOME - .001971*DEGREE DAYS

R-SQUARED = .32074

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .14198 STANDARD ERROR = 5.5691 DEPENDENT MEAN = 12.48

STANDARD ERROR AS % MEAN AC = 44.624

RESIDUAL SUM SQUARE = 589.29 F-RATIO = 1.7943 DEGREES OF FREEDOM = 19

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-21.313	13.228	-2.3894	-4.6531	-1.6113	2.5961
GAS	15.181	25.034	.50808	1.7620	.60642	.36774
FUEL OIL	.92747E-01	2.0773	.27215E-01	.86451E-01	.44648E-01	.19934E-02
INCOME	19628E-01	.79702E-02	-1.9079	-4.1371	-2.4626	6.0646
DEGREE DAYS	19710E-02	.44114E-02	93964E-01	-1.0137	44680	.19963

Appliance Saturation Time Series Air Conditioning

TUSCOLA

EQUATION

AC = - 30.986 + 1.1678*ELECTRICITY + 30.09*GAS - 1.8783*FUEL 0IL + .00037374*INCOME + .0034564*DEGREE DAYS

R-SQUARED = .21301

25 OBSERVATIONS, 5 VARIABLE

CORRECTED R-SQUARED = .0059072 STANDARD ERROR = 5.9945

DEPENDENT MEAN = 12.48

STANDARD ERROR AS % MEAN AC = 48.033

RESIDUAL SUM SQUARE = 682.75

F-RATIO = 1.0285

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	1.1678	11.736	.13092	.25495	.99502E-01	.99006E-02
GAS	30.090	22.141	.60095	3.0123	1.3590	1.8470
FUEL OIL	-1.8783	2.4330	55116	-1.7508	77199	.59597
INCOME	.37374E-03	.89056E-02	.377790E-01	.65443E-01	.41967E-01	.17613E-02
DEGREE DAYS	.34564E-02	.39285E-02	.25442	1.9009	.87982	.77408

Table J-65

Appliance Saturation Time Series Air Conditioning

OAKLAND

EQUATION

AC = 73.81 - 20.093*ELECTRICITY - 17.645*GAS + 1.9219*FUEL OIL + .0021836*INCOME - .0013202*DEGP"E DAYS

R-SQUARED = .93675

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .92011

STANDARD ERROR = 3.9649

DEPENDENT MEAN = 20.012

STANDARD ERROR AS % MEAN AC = 19.813

RESIDUAL SUM SQUARE = 298.69

F-RATIO = 56.283

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-20.093	5.8805	93494	-2.7197	-3.4169	11.675
GAS	-17.645	13.777	14515	-1.0963	-1.2807	1.6403
FUEL OIL	1.9219	1.3746	.22468	1.1107	1.3981	1.9548
INCOME	.21836E-02	.37517E-02	.12141	.45393	.58203	.33875
DEGREE DAYS	13202E-02	.27864E-02	30730E-01	43686	47379	.22448

Table J-66

Appliance Saturation Time Series Air Conditioning

MACOMB

EQUATION

AC = 48.449 - 13.852*ELECTRICITY - 16.082* AS + 1.5379*FUEL OIL + .0049742*INCOME - .0015059*DEGREE DAYS

R-SQUARED = .96143

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .95128

STANDARD ERROR = 2.4977

DEPENDENT MEAN = 15.38

STANDARD ERROR AS % MEAN AC = 16.240

RESIDUAL SUM SQUARE = 118.53

F-RATIO = 94.724

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-13.852	4.1907	82508	-2.4539	-3.3054	10.926
GAS	-16.082	8.9752	17065	-1.3064	-1.7918	3.2107
FUEL OIL	1.5379	.92431	.23977	1.1632	1.6639	2.7684
INCOME	.49742E-02	.34322E-02	.23058	1.0754	1.4493	2.1004
DEGREE DAYS	15059E-02	.18741E-02	38143E-01	62844	80351	.64563

Appliance Saturation Time Series Air Conditioning

WASHTENAW

EQUATION

AC = 71.946 + 3.8069*ELECTRICITY - 48.766*GAS - 1.8884*FUEL OIL - .0013455*INCOME + .0037885*DEGREE DAYS

R-SQUARED = .89149

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .86294 STANDARD ERROR = 3.4448

DEPENDENT MEAN = 17.428

STANDARD ERROR AS % MEAN AC = 19.766

RESIDUAL SUM SQUARE = 225.47

F-RATIO = 31.22

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	3.8069	8.6608	.27576	.59514	.43955	.19320
GAS	-48.766	16.488	96696	-3.6211	-2.9577	8.7482
FUEL OIL	-1.8884	1.5381	35805	-1.2605	-1.2277	1.5073
INCOME	13455E-02	.50430E-02	88087E-01	24956	26681	.71186E-01
DEGREE DAYS	.37885E-02	.31098E-02	.12765	1.4077	1.2183	1.4842

Table J-68

Appliance Saturation Time Series Air Conditioning

LENAWEE

EQUATION

AC = 101.41 - 20.988*ELECTRICITY - 7.8676*GAS + 1.6982*FUEL 0IL - .0067731*INCOME - .0028123*DEGREE DAYS

R-SQUARED = .85424

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .81589 STANDARD ERROR = 3.9926

DEPENDENT MEAN = 17.428

STANDARD ERROR AS % MEAN AC = 22.909

RESIDUAL SUM SQUARE = 302.87 F-RATIO = 22.271

VARIABLE	COEFFICIENT	STANDARD ERROR	ВЕТА	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-20.988	7.0467	-1.5204	-3.2812	-2.9785	8.8714
GAS	-7.8676	14.337	10153	56401	54874	.30112
FUEL OIL	1.6982	1.5009	.32198	1.1335	1.1314	1.2801
INCOME	67731E-02	.56123E-02	41525	-1.0045	-1.2068	1.4564
DEGREE DAYS	28123E-02	.27666E-02	99381E-01	-1.1023	-1.0165	1.0333
DEGREE DATS	201232-02	.270002-02	99301E-01	-1.1023	-1.0165	1.0333

Appliance Saturation Time Series Air Conditioning

LIVINGSTON

EQUATION

AC = 117.41 - 21.351*ELECTRICITY - 7.2747*GAS + 1.0476*FUEL 0IL - .0082601*INCOME - .0030918*DEGREE DAYS

R-SQUARED = .87718

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .84486

STANDARD ERROR = 3.665

DEPENDENT MEAN = 17.428

STANDARD ERROR AS % MEAN AC = 21.029

RESIDUAL SUM SQUARE = 255.21

F-RATIO = 27.14

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-21.351	4.9344	-1.5467	-3.3380	-4.3271	18.723
GAS	-7.2747	13.002	93877E-01	52151	55953	31307
FUEL OIL	1.0476	1.1687	.19864	.69927	.89645	.80352
INCOME	82601E-02	.35565E-02	52830	-1.3733	-2.3225	5.3941
DEGREE DAYS	30918E-02	.26539E-02	11124	-1.2033	-1.1650	1.3572

Table J-70

Appliance Saturation Time Series Air Conditioning

INGHAM

EQUATION

AC = 65.516 - 14.799*ELECTRICITY - 3.881*GAS + .76916*FUEL OIL - .00088558*INCOME - .0013318*DEGREE DAYS

R-SQUARED = .84205

25 OBSERVATIONS, 5 Variables

CORRECTED R-SQUARED = .80048
STANDARD ERROR = 4.1562
DEPENDENT MEAN = 17.428
STANDARD ERROR AS % MEAN AC = 23.848

RESIDUAL SUM SQUARE = 328.21

F-RATIO = 20.258

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-14.799	7.3000	-1.0720	-2.3136	-2.0272	4.1097
GAS	-3.8810	15.074	50083E-01	27822	25747	.66290E-01
FUEL OIL	.76916	1.5252	.14584	.51340	.50430	.25432
INCOME	88558E-03	.58633E-02	~.54796E-01	15452	15104	.22812F-01
DEGREE DAYS	13318E-02	.31170E-02	46831E-01	52631	42726	.18255

Appliance Saturation Time Series Air Conditioning

MONROE

EQUATION

AC = - 2.756 - 2.8697*ELECTRICITY - 18.754*GAS + 1.4967*FUEL OIL + .0069007*INCOME + .002412*DEGREE DAYS

R-SQUARED = .8543

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .81596

STANDARD ERROR = 3.9918

DEPENDENT MEAN = 17.428

STANDARD ERROR AS % MEAN AC = 22.904

RESIDUAL SUM SQUARE = 302.75

F-RATIO = 22.281

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-2.8697	7.7645	20130	44602	36959	.13660
GAS	-18.754	13.519	51731	-1.3635	-1.3872	1.9242
FUEL OIL	1.4967	1.8343	.26377	.99313	.81592	.66573
INCOME	.69007E-02	.54990E-02	.46134	1.0748	1.2549	1.5748
DEGREE DAYS	.24120E-02	.30210E-02	.79494E-01	.89971	.79841	.63745

Appliance Saturation Time Series Air Conditioning

WAYNE

EQUATION

AC = 20.204 - 9.5*ELECTRICITY - 1.9672*GAS - .056349*FUEL OIL + .0044694*INCOME + .0013932*DEGREE DAYS

R-SQUARED = .95049

25 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .93746

STANDARD ERROR = 2.3627

DEPENDENT MEAN = 15.012

STANDARD ERROR AS % MEAN AC = 15.739

RESIDUAL SUM SQUARE = 106.07

F-RAT!0 = 72.948

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
ELECTRICITY	-9.5000	5.8691	65633	-1.7141	-1.6186	2.6200
GAS	-1.9672	13.686	27129E-01	14477	14374	.20661E-01
FUEL OIL	56349E-01	1.1875	97808E-02	43409E-01	47454E-01	.22518E-02
INCOME	.44694E-02	.27597E-02	.29115	. 96645	1.6195	2.6229
DEGREE DAYS	.13932E-02	.22452E-02	.40178E-01	.59005	.62053	.38506

Table J-73

EQUATION

SPACE SAT = 1.1688 - .049175*CENTS/KWH - .005469*INCOME + .0031941*AGE HEAD + .00052043*ROOMS + .0054121*TYPE HOUSE

R-SOUARED = .042596

712 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .035816

STANDARD ERROR = .09695

DEPENDENT MEAN = 1.0098

STANDARD ERROR AS % MEAN SPACE SAT = 9.6006

RESIDUAL SUM SQUARE = 6 6359

F-RATIO = 6.2822

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
CENTS/KWH	491758-01	.91016E-02	23491	15164	-5.4029	29.191
INCOME	546912-02	.22444E-02	11069	29057E-01	-2.4368	5.9378
AGE HEAD	.31941E-02	.27539E-02	.47328E-01	.12381E-01	1.1598	1.3452
ROOMS	.52043E-03	.28474E-03	.77483E-02	.30003E-02	.18278	.33408E-01
TYPE HOUSE	.54121E-02	.35661E-02	.62276E-01	.79337E-02	1.5176	2.3032

Table J-74

EQUATION

WATER SAT = 2.7981 - .43938*CENTS/KWH - .028482*INCOME - .026374*FAMILY - .0097349*ROOMS

R-SQUARED = .28077

711 OBSERVATIONS, 4 VARIABLES

CORRECTED R-SQUARED = .2767 STANDARD ERROR = .28565

DEPENDENT MEAN = 1.1294

STANDARD ERROR AS % MEAN WATER SAT = 25.292

RESIDUAL SUM SQUARE = 57.607

F-RATIO = 68.902

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
CENTS/KWH	43938	.26632E-01	61696	-1.2117	-16.498	272.19
INCOME	28482E-01	.63351E-02	16936	13521	-4.4959	20.213
FAMILY	26374E-01	.69927E-02	14254	80436E-01	-3.7717	14.225
ROOMS	97349E-02	.83655E-02	42495E-01	50142E-01	-1.1637	1.3542

Table J-75

EQUATION

AC SAT = 1.8251 - .19315*CENTS/KWH + .045684*INCOME - .11013*RATE + .051047*TYPE HOUSE

R-SQUARED = .094472

136

717 OBSERVATIONS, 4 VARIABLES

CORRECTED R-SQUARED = .089385

STANDARD ERROR = .46967

DEPENDENT MEAN = 1.41

STANDARD ERROR AS % MEAN AC SAT = 33.309

RESIDUAL SUM SQUARE = 157.06 F-RATIO = 18.57

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
CENTS/KWH	19315	.46592E-01	18539	42637	-4.1455	17.185
INCOME	.45684E-01	.99442E-02	.18621	.17374	4.5940	21.105
RATE	11013	.29055E-01	14670	95425E-01	-3.7905	14.368
TYPE HOUSE	.51047E-01	.16260E-01	.11827	.53673E-01	3.1394	9.8555

Table J-76

EQUATION

STOVE = 1.6617 - .23877*CENTS/KWH + .042592*INCOME - .026705*FAMILY + .062865*AGE HEAD + .12054*RATE

R-SQUARED = .15345

716 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .14749

STANDARD ERROR = .45951

DEPENDENT MEAN = 1.4483

STANDARD ERROR AS % MEAN STOVE = 31.727

RESIDUAL SUM SQUARE = 149.91

F-RATIO = 25.739

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
CENTS /KWH	23877	.45686E-01	22665	51326	-5.2263	27.314
INCOME	.42592E-01	.10458E-01	.17160	.15759	4.0726	16.586
FAMILY	26705E-01	.11329E-01	97417E-01	63454E-01	-2.3572	5.5565
AGE HEAD	.62865E-01	.13755E-01	.18474	.17011	4.5704	20.888
RATE	.12054	.28597E-01	.15889	.10171	4.2151	17.767

Table J-77

EQUATION

FREEZER = 1.5241 - .21738*CENTS/KWH + .054102*TEENS + .042709*AGE HEAD + .050733*RATE + .031407*ROOMS

R-SQUARED = .13335

712 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .12721

STANDARD ERROR = .43199

DEPENDENT MEAN = 1.309

STANDARD ERROR AS % MEAN FREEZER = 33.002

RESIDUAL SUM SQUARE = 131.75

F-RATIO = 21.727

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
CENTS/KWH	21738	.40841E-01	22173	51714	-5.3227	28.331
TEENS	.54102E-01	.13540E-01	.15667	.38138E-01	3.9957	15.965
AGE HEAD	.42709E-01	.12014E-01	.13513	.12772	3.5550	12.638
RATE	.50733E-01	.26896E-01	.71720E-01	.47249E-01	1.8862	3.5578
ROOMS	.31407E-01	.12189E-01	.99843E-01	.13968	2.5766	6.6388

Table J-78

EQUATION

DRYER = 1.4243 - .17803*CENTS/KWH + .01093*INCOME - .019731*FAMILY + .0029947*AGE HEAD + .16018*RATE

+ .039104*ROOMS - .019864*TYPE HOUSE

R-SQUARED = .17421

711 OBSERVATIONS, 7 VARIABLES

CORRECTED R-SQUARED = .16598

STANDARD ERROR = .40166

DEPENDENT MEAN = 1.2616

STANDARD ERROR AS % MEAN DRYER = 31.837

RESIDUAL SUM SQUARE = 113.42

F-RATIO = 21.186

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	ELASTICITY	T-STATISTIC	PARTIAL F
CENTS/KWH	17803	.41307E-01	19091	43953	-4.3100	18.576
INCOME	.10193E-01	.938205-02	.46287E-01	.43318E-01	1.0865	1.1804
FAMILY	19731E-01	.10685E-01	81435E-01	53869E-01	-1.8465	3.4097
AGE HEAD	.29947E-02	.12389E-01	.99686E-02	.92914E-02	.24172	.58427E-01
RATE	.16018	.25157E-01	.23822	.15482	6.3672	40.542
ROOMS	.39104E-01	.12423E-01	.13036	.18031	3.1477	9.9080
TYPE HOUSE	19864E-01	.14900E-01	51342E-01	23319E-01	-1.3332	1.7774

Table J-79

EQUATION AC SAT = 1.978*CENTS/KWH-.48671*INCOME.10039*RATE-.18342*TYPE HOUSE.065978

R-SQUARED = .088553

717 OBSERVATIONS, 4 VARIABLES

CORRECTED R-SQUARED = .083432

STANDARD ERROR = .32661

DEPENDENT MEAN = .28422

STANDARD ERROR AS % MEAN AC SAT = 114.92

RESIDUAL SUM SQUARE = 75.954

F-RATIO = 17.294

DEGREES OF FREEDOM = 712

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	T-STATISTIC	PARTIAL F
CENTS/KWH	48671	.10856	21076	-4.4833	20.100
INCOME	.10039	.25381E-01	.16008	3.9552	15.644
RATE	18342	.41736E-01	18004	-4.3947	19.313
TYPE HOUSE	.65978E-01	.26002E-01	.96020E-01	2.5374	6.4386

Detroit Edison Individual Customer Appliance Model Logarithmic Specification

EQUATION WATER SAT = 4.803*CENTS/KWH^{-1.0897}*INCOME -.060057*FAMILY -.07216*ROOMS -.046921

R-SQUARED = .3568

711 OBSERVATIONS, 4 VARIABLES

CORRECTED R-SQUARED - .35315 STANDARD ERROR = .18724

DEPENDENT MEAN = .08969

STANDARD ERROR AS % MEAN WATER SAT = 208.77

RESIDUAL SUM SQUARE = 24.752

F-RATIO = 97.907

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	T-STATISTIC	PARTIAL F
CENTS/KWH	-1.0897	.55553E-01	68945	-19.615	384.74
INCOME	60057E-01	.15563E-01	13958	-3.8589	14.891
FAMILY .	72160E-01	.15266E-01	17746	-4.7269	22.343
ROOMS	46921E-01	.29686E-01	54666E-01	-1.5806	2.4982

Table J-81

SPACE SAT = 1.186*CENTS/KWH-.12288*INCOME-.017124*AGE HEAD.0025645*ROOMS-.0023088*TYPE HOUSE.007916

R-SQUARED = .053167

712 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .046461 RESIDUAL SUM SQUARE = 3.1531
STANDARD ERROR = .066829 F-RATIO = 7.9287
DEPENDENT MEAN = .0068146 DEGREES OF FREEDOM = 706
STANDARD ERROR AS % MEAN SPACE SAT = 980.66

STANDARD VARIABLE COEFFICIENT ERROR BETA T-STATISTIC PARTIAL F CENTS/KWH -.12288 .19912E-01 -.26451 -6.1709 38.080 INCOME -.17124E-01 .55431E-02 -.13538 -3.0893 9.5437 AGE HEAD .25645E-02 .62067E-02 .16235E-01 .41318 .17072 ROOMS -.23088E-02 .10769E-01 -.91633E-02 -.21439 .45964E-01 TYPE HOUSE .79160E-02 .57517E-02 .57283E-01 1.3763 1.8942

Table J-82

EQUATION STOVE = 2.178*CENTS/KWH -.60799 *INCOME .070826 *FAMILY -.069404 *AGE HEAD .12697 *RATE .14308

R-SQUARED = .15137

716 OBSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .14539 STANDARD ERROR = .3189 DEPENDENT MEAN = .31075

STANDARD ERROR AS % MEAN STOVE = 102.62

RESIDUAL SUM SQUARE = 72.204 F-RATIO • = 25.328 DEGREES OF FREEDOM = 710

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	T-STATISTIC	PARTIAL F
CENTS/KWH	60799	.10673	26035	-5.6964	32.449
INCOME	.70826E-01	.26905E-01	.11170	2.6325	6.9299
FAMILY	69404E-01	.25773E-01	11530	-2.6929	7.2518
AGE HEAD .	.12697	.30709E-01	.15932	4.1347	17.096
RATE	.14308	.41167E-01	.13898	3.4757	12.081

Table J-83

EQUATION FREEZER = 1.852*CENTS/KWH^{-.73133}*TEENS^{0.77774}*AGE HEAD.²⁰³⁷³*RATE.⁰⁵³⁵⁴⁸*ROOMS.⁰⁸⁹¹⁷⁴

R-SQUARED = .10422

298 ORSERVATIONS, 5 VARIABLES

CORRECTED R-SQUARED = .088884 STANDARD ERROR = .32547

DEPENDENT MEAN = .28145

STANDARD ERROR AS % MEAN FREEZER = 115.64

RESIDUAL SUM SQUARE = 30.931

F-RATIO = 6.7948

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	T-STATISTIC	PARTIAL F
CENTS/KWH	73133	.25387	17523	-2.8808	8.2989
TEENS	.77774E-01	.35709E-01	.12311	2.1780	4.7436
AGE HEAD	.20373	.63224E-01	.18044	3.2223	10.383
RATE	.53548E-01	.60155E-01	.53464E-01	.89017	.79240
ROOMS	.89174E-01	.94141E-01	.54344E-01	.94724	.89727

Table J-84

EQUATION
DRYER = 1.436*CENTS/KWH^{-.39137}*INCOME. 025569*FAMILY^{-.044056}*AGE HEAD. 0011362*RATE. 21107*ROOMS. 14319
*TYPE HOUSE^{-.033283}

R-SQUARED = .17454

711 OBSERVATIONS, 7 VARIABLES

CORRECTED R-SQUARED = .16632 STANDARD ERROR = .27835

DEPENDENT MEAN = .18133

STANDARD ERROR AS % MEAN DRYER = 153.51

RESIDUAL SUM SQUARE = 54.469

F-RATIO = 21.235

VARIABLE	COEFFICIENT	STANDARD ERROR	BETA	T-STATISTIC	PARTIAL F
CENTS/KWH	39137	.96342E-01	18911	-4.0623	16.502
INCOME	.25569E-01	.23868E-01	.45382E-01	1.0713	1.1477
FAMILY	44056E-01	.24491E-01	82742E-01	-1.7989	3.2359
AGE HEAD	.11362E-02	.27661E-01	.16158E-02	.41076E-01	.16872E-02
RATE	.21107	.36253E-01	.23088	5.8220	33.896
ROOMS	.14319	.47116E-01	.12740	3.0392	9.2366
TYPE HOUSE	33283E-01	.24295E-01	54099E-01	-1.3700	1.8768