RR 267

Research Report 267

RELATIONSHIPS BETWEEN CLIMATE AND REGIONAL VARIATIONS IN SNOW-COVER DENSITY IN NORTH AMERICA

Michael A. Bilello

December 1969

CORPS OF ENGINEERS, U.S. ARMY COLD REGIONS RESEARCH AND ENGINEERING LABORATORY HANOVER, NEW HAMPSHIRE

> THIS DECUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE: ITS DISTRIBUTION IS UNLIMITED.

8006120

Encl. 1

RELATIONSHIPS BETWEEN CLIMATE AND REGIONAL VARIATIONS IN SNOW-COVER DENSITY IN NORTH AMERICA

Michael A. Bilello

December 1969

DA TASK 1T061102852A02

CORPS OF ENGINEERS, U.S. ARMY COLD REGIONS RESEARCH AND ENGINEERING LABORATORY HANOVER, NEW HAMPSHIRE

THIS DECUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE: ITS DISTRIBUTION IS UNLIMITED.

PREFACE

This report was prepared by Michael A. Bilello. Research Meteorologist. of the Research Division. U. S. Army Cold Regions Research and Engineering Laboratory. It is published under DA Task 1T061102B52A02, Research in Military Aspects of Terrestrial Sciences - Military Aspects of Cold Regions Research.

The data used in this report were made available through the combined efforts of personnel associated with the Air Weather Service, U.S. Air Force; the Weather Bureau, U.S. Department of Commerce; and the Meteorological Branch, Canadian Department of Transport. The author wishes to thank Dr. Robert Gerdel, formerly of USA CRREL, now retired, and Mr. Frederick Sanger, USA CRREL, for their technical review of the paper. Mr. Roy Bates, USA CRREL, assisted with the computation and tabulation of the data.

CONTENTS

	rage
Introduction	1
Regional variations in density	2
Monthly increase in density	5
Nomograph to estimate average snow-cover density	5
Test and application of the nomograph	7
Discussion	10
Literature cited	10
Appendix A: Observed, weighted snow-cover densities for stations in Table I	13

ILLUSTRATIONS

Figure		
1.	Locations of stations	4
2.	Frequency curves for density Categories 1-4	4
3.	Increase in density from November through March for Categories 1-4	5
4.	Nomograph for estimating average seasonal snow-cover density	7
5.	Estimated versus observed densities for ten test stations	8
6.	Average seasonal snow-cover densities	8

TABLES

Table		
I.	Summary of snow-cover densities and climate for 27 stations in North America and Greenland (1952-63)	3
п.	Observed average snow density, seasonal air temperature and wind speed for stations in Gold and Williams's (1957) report used	
	to test nomograph	9
ш.	Stations for which average snow-cover densities were estimated from nomograph	9

-

RELATIONSHIPS BETWEEN CLIMATE AND REGIONAL VARIATIONS IN SNOW-COVER DENSITY IN NORTH AMERICA

by

Michael A. Bilello

INTRODUCTION

Knowledge of the regional distribution of snow-cover density would help solve numerous winter problems. For example, the density-dependent thermal conductivity of the snow cover greatly influences the rate of penetration of ground frost and the growth of ice on lakes and rivers. Trafficability of men and vehicles depends strongly upon the density of the snow cover. Dense snow may support a wheeled vehicle. Sinkage in snow of low density seriously impedes or prevents movement. Studies in hydrology and in snow removal also require knowledge of the density of the snowpack during the winter.

This study investigates the regional variations of snow-cover density in the North American Arctic, Subarctic and Temperate Zones for the nonmelting period only. This permits direct association of regional variations in density with air temperatures and wind speeds, and the development of a method by which average snow-cover densities can be estimated where the influence of melting on density may be disregarded. The purpose of this correlation is to make use of climatological data to determine snow density in areas where such measurements have not been made.

An investigation of this type requires concurrent measurements of snow-cover density and the meteorological elements. To obtain such measurements, a systematic snow observation program began during the winter season of 1952-53 at various locations in Canada, Greenland and the United States including Alaska. The observations were made at weather stations supported by the United States Air Force, United States Weather Bureau and the Meteorological Branch of the Canadian Department of Transport.

Two to eleven years of snow-cover data have been compiled for nine locations in Canada, ten in Alaska, seven on the United States mainland and one in Greenland. The Greenland station, Sondrestrom, although not on the North American continent, was included because of its proximity to the network.

The snow observations, made weekly and sometimes biweekly in accordance with standard procedures described in USA CRREL Instruction Manual No. 1 (USA SIPRE, 1954), provide density, temperature, and hardness data on the layers of snow in vertical profile. The different layers of snow are delineated by structural or textural variations identifying periods of major snow accumulation or metamorphism.

Previous studies (Wengler, 1914; Rikhter, 1945; Formozov, 1946; a., ⁴ Klein, 1950) show that there are important regional differences in the density of the snow cover the support the Northern Hemisphere. In an earlier study (Bilello, 1957), it was found that the snow cover during the winter months is denser in the Canadian Archipelago than in the interior of . 'aska. Additional data have since become available which permit extension of the analysis to ouser parts of North America.

	Thickness of each layer (cm)	% of total depth	Observed snow density (g/cm ¹)	Weighted snow density (¿/cm³)
Laver 1 (bottom)	6	20	0.205	0.041
Laver 2	15	50	0.290	0.145
Layer 3 (top)	9	30	0.230	0.069
Total	30	100		0.255

REGIONAL VARIATIONS IN DENSITY

In the analysis of the new data a weighted mean of snow-cover density for each observation was used (as was done in the earlier study), thus:

This method of computation was used to allow for the variations in thickness and density of the different layers of snow.

The average seasonal (November - March) snow-cover density for each station (Table I) is the arithmetic mean of all the weekly mean weighted values based on a total of over 2500 observations. The number of years of record for each station is also shown. (Data are presented in Appendix A.) For some low latitude stations November and/or March was excluded because the observed average monthly air temperatures were above freezing and some melting may have occurred. Periods of above-freezing temperatures that may have occurred during the other winter months were assumed to be brief, and effective only in raising the temperature of the snow without causing melt; they were therefore disregarded. The effect of one day of freezing rain or thaw during midwinter would have little influence on the snow cover and would not be reflected in the monthly average density.

The concurrent average seasonal air temperature and wind speed for each station are also given in Table I.

Analysis indicated that the stations could be put in four categories based upon the observed densities, climatic factors and to some extent on geographical location (CRREL network, Fig. 1). These categories were grouped so as to emphasize regional, rather than point, variations in snowcover density. Category 1 included the four stations with lowest observed densities (between 0.199 and 0.233 g/cm³). These stations are located in the interior of Alaska and western United States and have, in general, light winds. The second group comprises nine stations with average densities between 0.241 and 0.268 g/cm³, most of which are near the coast. The seven stations in Category 3 have densities between 0.279 and 0.297 g/cm³. This group does not have a geographic entity; the stations are located both inland and near coasts. Category 4 consists of seven Arctic stations where the highest densities (between 0.320 and 0.363 g/cm³) and the lowest seasonal temperatures were observed. The frequency curves in Figure 2 show the increasing densities of the four categories. Naturally, the local topography and vegetation create differences in the density from point to point within a categorically defined region. Deviations from the average value for each. region can also be expected from month to month and year to year. The standard deviations from the average values (Table I) show the extent of these monthly and yearly variations.

Skewness (departure from symmetry) coefficients, based on the quartile method (Mode, 1948), were computed for each station and are shown in Table I. The quartile values were obtained by plotting the observed snow densities proportionally between 0 and 100% frequency distribution and precisely interpolating between the densities for the 25, 50 and 75% locations. All but two stations

in Categories 1 and 2 show positive skewness, i.e., the peak of the frequency curve is toward lower densities, and all but three of the stations in Categories 3 and 4 show negative skewness, i.e., the peak of the frequency curve is toward higher densities. This difference supports the separation of Category 2 from 3, but since the significance of the computed values has not been determined the results are used only as an indicator.

Station	Years of record	Average seasonal snow density (g/cm ³)	Std dev	Skew- ness	Average seasonal temp † (°C)	Average seasonal wind speed † (m/sec)
Category 1						
Eielson AFB (Fairbanks). Alaska	6	0.199	0.053	+. 178	-20.3	1.3
Tatalina, Alaska	9	0.203	0.047	+.010	-15.5	2.1
Hill (Ogden), Utab	8	0.219	0.083	+.282	- 1.7	3.6
Galena, Alaska	10	0.233	0.060	088	-20.7	2.2
Category 2						
Utopia Creek, Alaska	9	0.241	0.069	+.154	-19.1	2.8
Naknek, Alaska	2	0.244	0.035	+.361	- 9.2	4.3
Saglek, Labrador	6.	0.249	0.091	+.588	-10.6	3.8
Griffiss (Rome), N.Y.	9	1.252	0.052	+. 121	- 4.3	3.1
Malmstrom (Great Falls), Montana	8	0.252	0.048	+. 178	- 2.2	5.4
Elmendorf (Anchorage). Alaska	7	0.253	0.081	+.035	- 8.6	2.5
Emest Harmon (Stephenville), Newf.	9	0.255	0.102	+. 100	- 4.9	5.1
Sondrestrom, Greenland	5	0.282	0.038	+.522	-17.6	3.1
Goose Bay, Labrador	2	0.268	0.068	451	-10.9	4.1
Category 3						
Sparrevohn, Alaska	9	0.279	0.045	047	-11.5	2.7
Sault Ste Marie, Mich.*	10	0.290	0.057	+. 10 1	- 8.4	4.4
Frobisher, NWT	4	0.292	0.066	555	-22.8	4.8
Fargo, North Dakota *	2	0.29.4	0.050	+.204	- 9.4	6.6
Loring (Caribou), Me.	11	0.294	0.080	005	- 9.2	5.3
Northeast Cape, Alaska	2	0.296	0.033	237	-10.2	5.9
Wurtsmith (Oscoda), Michigan	8	0.297	0.073	018	- 5.1	4.5
Category 4						
Cape Lisburne, Alaska	2	0.320	0.051	+.141	-18.2	5.5
Barter Island, Alaska	3	0.325	0.059	654	-25.3	5.9
Eureka, NWT *	11	0.326	0.05/	325	-35.3	2.5
Resolute . NWT *	10	0.342	0.044	016	-30.2	5.4
Alert, NWT .	10	0.345	0.061	044	-30.5	2.7
Mould Bay. NWT *	7	0.354	0.050	038	-32.2	4.3
Isachsen NWT *	11	0.363	0.051	054	-33.2	4.4

Table I. Summary of snow-cover densities and climate for 27 stations in North America and Greenland (1952-63).

• U.S. Weather Bureau and Canadian Department of Transport stations. All others are U.S. Air Force. Air Weather Service stations.

† From U.S. Air Force, 1952-63; U.S. Weather Bureau, 1952-63.

Figure 1. Locations of stations.

Figure 2. Frequency curves for density Categories 1-4. Curves comprise line segments connecting mid-points of class intervals $0.10-0.15 \text{ g/cm}^3$, $0.15-0.20 \text{ g/cm}^3$, etc.

MONTHLY INCREASE IN DENSITY

The metamorphic processes which take place within a snow cover with time have been described by a number of investigators (e.g., Bader et al., 1939; de Quervain, 1945; Kingery, 1960). It has been shown (e.g., Shepelevsky, 1938; Work, 1948; Thornthwaite, 1950; and Gold, 1958) that this aging process results in a gradual increase in the snow-cover density as the winter progresses.

This time-densification process was substantiated in this study on average monthly density values. The computed monthly values for the stations within each category were combined and the results are shown in Figure 3' The density for the stations in Categories 1, 2 and 3 (except for 2 between November and January) increases by approximately 0.01 g/cm³ each month. The decrease in density during December for Category 2 is believed due to the fact that the stations in this group are principally located in a region of heavy snowfall and that the new snow of lighter density that accumulates between November and January dominates the snowpack. The stations in Category 4 show little change throughout the winter because their densities are initially near maximum and because they are located at latitudes where the heat derived from solar radiation between December and March is very small and has negligible effect on snow density.

Figure 3. Increase in density from November through March for Categories 1-4.

NOMOGRAPH TO ESTIMATE AVERAGE SNOW-COVER DENSITY

One of the main objectives of this study was to develop a nomograph from which the relationship between climatic parameters and the density of winter snow cover could be determined.

There are a number of fundamental conditions which determine the structure, and physical and mechanical properties, of a snow cover (Yosida, 1955). In addition to the meteorological environment, other processes directly or indirectly attributable to weather could affect the snow cover. For example, Kondrat'eva (1945) reports that the sublimation process in the snow cover can bring about a significant redistribution of snow mass and that a temperature difference of 11 C in a snowpack caused the density in the lower layer to decrease by 0.08 g/cm³ in 5 days. The heat flow from the soil and the soil conditions with respect to water content and depth of freezing

also may influence the metamorphic processes within the snowpack. However, these subtle effects and the resultant changes in snow density are not within the scope of this report. These processes and such factors as humidity, radiation and cloud cover must be considered if one wishes to undertake a micro-scale study of changes in snow-cover density.

Dmitrieva (1950) presents a method of calculating the mean density of the snow cover from the following data: the time of snow cover appearance; the number of days with wind speeds over 6 m/sec between the time of appearance of the snow cover and the date of calculation; the sums of positive mean diurnal air temperatures for this period; and snow cover depth or amount of precipitation for cases of heavy snowfall. Dmitrieva states that an accuracy of ± 0.03 g/cm³ was found in 91% of the calculations for regions where winter temperatures fluctuate little, and least accuracy where frequent thawing occurred. Weinberg and Gorlenko (1940) also note that the effect of wind on densification of the snow cover is important. Wind fragments the snow crystals, causes the finer grains to re-sort, and by packing increases the density.

As Williams and Cold (1958) point out, many difficulties complicate the problem of relating snow cover characteristics to climate. For example, in any one area meteorological factors vary from year to year, and the elements measured at a site may not be representative. However, they also found that wind speed and air temperature appear to be the dominant factors in the formation of the cover. Consequently, they developed a weather index using these elements to estimate average monthly densities. Although there was considerable spread in density for any particular index a correlation did exist between the variables. However, when monthly averages were calculated for sheltered stations and plotted against the weather index for the month, little correlation was found.

In Research Report 39 (Bilello, 1957) nomographs were developed for estimating average monthly densities. Since that study included only stations north of 62°N latitude reasonable results were obtained in the month-to-month analysis. A similar approach was tried for the 27 stations in this study, but the results were less favorable. Apparently, the climatic regime under consideration is too extensive for predicting densities from month to month. Therefore, multiple regression analysis was made in which seasonal snow-cover density was related to the average air temperature and wind speed (Table I) observed during the same period. The resultant equation derived through the use of a computer is:

$$p = 0.152 - 0.0031 T + 0.019 W$$

where

- ρ = average seasonal snow-cover density (g/cm³)
- T = average seasonal air temperature (°C), and
- W = average seasonal wind speed (m/sec).

The correlation coefficient and the standard error of estimate are 0.84 and 0.025 g/cm³, respectively.

By coincidence, the numerical constant (0.152) appearing in the equation is almost identical to that given by Dmitrieva (1950) for the average density of fresh snow (0.15 g/cm^3) . This value, obtained from two independent studies, implies that when the Arctic, Subarctic and Temperate Zones are considered the average density of freshly fallen snow is higher than the generally accepted water equivalent value of 10%. Figure 4 is the nomograph developed from the above equation.

Figure 4. Nomograph for estimating average seasonal snow-cover density. The term seasonal refers to November through March inclusive, unless the average air temperature for the month is above freezing. Example: Assume the average seasonal air temperature and wind speed for a location are -12C and 4.0 m/sec. Extend a straight line through these two points and read 0.255 g/cm³ on the snow density scale.

TEST AND APPLICATION OF THE NOMOGRAPH

To test the nomograph, the densities for ten locations not included in the study were stimated. These stations (Table II; Canadian network, Fig. 1) were used because they cover a wide climatic range and their average observed densities were reported by Gold and Williams (1957). Their report, dated 1957, stated that the snow survey was initiated in 1946. Consequently, average air temperatures and wind speeds for the winter seasons between 1946 and 1957 (Table II) were used as the independent variables (Department of Transport, 1946-57).

Figure 5 shows the observed and estimated densities for these stations. There is good agreement between the values (correlation coefficient =0.91) and the standard error of estimate obtained from a least squares computation was 0.016 g/cm^3 .

Figure 5. Estimated versus observed densities for ten test stations (from Gold and Williams, 1957).

Figure 6. Average seasonal snow-cover densities. Categories 1-4 are separated at densities of 0.24; 0.27 and 0.31 g/cm³.

The results of density computation from this nomograph gave sufficient confidence to warrant its application to a number of stations throughout North America. The necessary climatological data for 10 years of record (between 1952 and 1965) for 61 stations (Table III) were compiled and average seasonal density values were estimated from the nomograph. These values, plus those observed in this and the Gold and Williams (1957) study, were used to draw an average seasonal snow-cover density map for North America (Fig. 6). Using the density ranges of the four categories described previously the continent was divided into zones. The zones were separated at density values of 0.24, 0.27 and 0.31 g/cm³.

Station	Density (g/cm ³)	Temp (°C)	Wind speed (m/sec)
Edmonton, Alberta	0.224	-10.8	3.7 3.2*
Maniwaki. Quebec Forestville, Quebec	0.235	- 9.4*	4.4* 2.5
Aklavik, NWT Moosone e. Ontario	0.242	-13.4	3.5 4.0
Ottawa, Ontario	0.275	- 7.7	4.7 5.7
Churchill, Manitoba Churchill, Manitoba	0.325	-21.6 - 9.6	6.8 8.2

Table II. Observed average snow density, seasonal air temperature and wind speed for stations in Gold and Williams's (1957) report used to test nomograph.

· Values obtained from nearby stations.

Table III. Stations for which average snow-cover densities were estimated from nonograph.

Aishihik, Yukon Arctic Bay, NWT Baker Lake, NWT Barrow, Alaska Bethel, Alaska Bismarck, North Dakota Brochet, Manitoba Buffalo, New York Cache Lake, Quebec Cambridge Bay, NWT Chesterfield, NWT Clyde, NWT Coppermine, NWT Coral Harbour, NWT Duluth, Minnesota Ennadai Lake, NWT Fort Chimo, Quebec Fort Nelson, British Columbia Fort Reliance, NWT Fort Simpson, NWT Fort Wayne, Indiana Fort William, Ontario Glasgow. Montana Grand Prairie, Alberta Green Bay, Wisconsin Hall Beach, NWT Harrington Harbour, Quebec Havre, Montana Hav River, NWT Hoiman Island, NWT

Indian House Lake. Quebec Kotzebue, Alaska Mayo Landing, Yukon McMurray, Alberta Medicine Hat, Alberta Nitchequon, Quebec Nome, Alaska Norman Wells, NWT North Bay, Ontario Northway Junction, Alaska Nottingham Island, NWT Pagwa, Ontario Port Harrison, Quebec Portland, Maine Prince George, British Columbia Rapid City, South Dakota Regina, Saskatchewan Sheridan, Wyoming Sioux City, Iowa Smithers, British Columbia Snag. Yukon Spence Bay, NWT Spokane, Washington Summerside. Prince Edward Island Teslin, Yukon The Pas. Manitoba Thule. Greenland Trout Lake. Ontario Watson Lake, Yukon Williston, North Dakota Yellowknife, NWT

Gold and Williams (1957) divided Canada into five main snowfall regions. In addition to the physical characteristics of the snow cover these regions were determined by the amount of snow-fall, temperature, time of first snowfall, and the length of time the snow stays on the ground.

Except for eastern Canada, their arctic region coincides closely with Category 4 where the highest densities are recorded. Except for some eastern portions and the area around the Great Lakes, Category 3 corresponds roughly with their Northern Forest region. The region they classify as the freeze-thaw area, which includes mostly the Atlantic Provinces, southern Ontario and southern Quebec, approximately coincides with the Category 1, 2 and 3 areas used in this study. As they point out, rain, heavy snowfalls, ice lenses within the snow cover, sleet and above-freezing temperatures are common in this area during the winter. Similarly, the other two regions (1: Prairie zone, and 2: Western Mountain and Coastal zone) covered portions of Canada where areas assigned to Categories 1, 2 and 3 are used in this study.

DISCUSSION

The system developed in this study provides an estimate of the average snow density for a general area over a number of years. It does not attempt to predict the density of a snow cover from point to point nor from week to week, nor year to year. Estimated values for 61 locations and observed values for 37 other locations were used to divide North America into geographical areas which fall into one of four predefined ranges of density. Except for those areas with snow densities above 0.31 g/cm^3 it is shown that the density of the snowpack increases slightly from month to month during winter.

The snow cover and its characteristics are extremely variable in mountainous regions (Alciatore, 1916; TSomaia, 1956; and McKay, 1964). Snowpacks range from permanent snowfields at higher elevations to an occasional brief snow cover in the lower and warmer plains and valleys. Large changes in density that occur in a short distance are exemplified by the mountain station, Old Glory, British Columbia (Fig. 6). The value for this station places it in Category 4 whereas a station nearby is in Category 1, indicating that the area bridges four categories. The scale of the map and insufficient data preclude the delineation of the intermediate categories. Consequently, caution should be used when interpreting Figure 6 in mountainous areas. In some portions of such regions, where the winter air temperatures and wind speeds over a wide area are reasonably uniform, the results presented in this study are applicable. For example, the stations in Category 1 in western United States and Canada and the interior of Alaska are mostly sheltered stations in valleys or on the lee sides of mountains where light winds and low densities are consistently observed.

LITERATURE CITED

- Alciatore, H.F. (1916) Snow densities in the Sierra Nevada. U.S. Monthly Weather Review, vol. 44, p. 523-527.
- Bader, H.: Haefeli, R.: Bucher, E.: Neher, J.: Eckel. O. and Thams. Chr. (1939) Snow and its metamorphism. Beiträge zur Geologie der Schweiz, Geotechnische Sene, Hydrologie, Lieferung 3, Bern. U.S. Army Snow. Ico and Permafrost Research Establishment (USA SIPRE) Translation 14, 1954, 513 p.
- Bilello, M.A. (1957) A survey of Arctic snow-cover properties as related to climatic conditions. USA SIPRE Research Report 39, 9 p.
- de Quervain, M. (1945) Snow as a crystalline aggregate. Experientia. vol. 1. USA SIPRE Translation 21, 1954, 7 p.

Department of Transport, Canada (1946-1957 and 1952-1963) Monthly record, Meteorological observations in Canada. Meteorological Branch, Department of Transport.

- Dmitrieva, N.G. (1950) Calculation of snow-cover density using meteorological data. Meteorologiia i Gidrologiia, vol. 2. USA SIPRE, Translation 24, 1954, 4 p.
- Formozov, A.N. (1946) Snow cover as an integral factor of the environment and its importance. Moscow Society of Naturalists, Moscow, USSR. Boreal Institute. University of Alberta, Canada, Occasional Paper no. 1, 176 p.
- Gold. L.W. (1958) Changes in a shallow snow cover subject to a temperate climate. Journal of Glaciology, vol. 3, no. 23, p. 218-222.

_____ and Williams, G.P. (1957) Some results of the snow survey of Canada. Division of Building Research, National Research Council, Canada, Re- arch Paper no. 38, 15 p.

- Kingery, W.D. (1960) On the metamorphism of snow. Massachusetts invatute of Technology. Ice Research Laboratory Report no. 61-1, 9 p.
- Klein, G.J. (1950) Canadian survey of physical characteristics of snow-covers. National Research Council of Canada. Technical Memorandum No. 15. Reprinted from Glaciers and Climate, Geografiska Annaler 1949, H. 1-2, p. 106-124.
- Kondrat'eva. A.S. (1945) Thermal conductivity of the snow cover and physical processes caused by the temperature gradient. Akademiia Nauk SSSR, Moscow-Leningrad. USA SIPRE, Translation 22, 1954, 13 p.
- McKay, G.A. (1964) Relationships between snow survey and climatological measurements. In Surface Waters, General Assembly of Berkeley, IUGG, Publication no. 637.p. 214-227.
- Mode, E.B. (1948) The Elements of Statistics. New York: Prentice Hall, Inc., 378 p.
- Rikhter, G.D. (1945) Snow cover, its formation and properties. Izdatel'stvo Akademiia Nauk SSSR, Moscow, USA SIPRE Translation 6, 1954, 66 p.
- Shepelevsky, A.A. (1938) The distribution and gradual change of density in snow cover. Transactions of the Arctic Institute for Scientific Research, 110, Translated by Headquarters, U.S. Army Air Forces, Weather Division, Passiena, California, 24 p.
- Thornthwaite, C.W. (1950) Estimating soil tractionability by climatic analysis. Office of the Quartermaster General, U.S. Army Environmental Protection Report No. 167, 66 p. incl. maps.
- TSomaia, V. Sh. (1956) Methods of calculating snow density in a mountainous area. Trudy Thibisskogo N.-I. Gidrometeorologicheskogo Instituta, vol. 1, p. 69-77.
- U.S. Air Force (1952-63) Mean monthly wind speeds and mean monthly temperatures for selected stations. Air Weather Service, Data Control Div.
- U.S. Army Snow, Ice and Permafrost Research Establishment (USA SIPRE) (1954) Instructions for making and recording snow observations. Instruction Manual 1, 10 p. (revised 1962 by USA CRREL).
- U.S. Weather Bureau (1952-63) Climatological data. National Summaries and Alaska Summaries, U.S. Department of Commerce.
- Weinberg, B.P. and Gorlenko, S.M. (1940) Snow cover and its dynamics. In Ice, Moscow, p. 410-440.
- Wengler, F. (1914) The specific density of snow. Inaugural Dissertation, Fiedrich-Wilhelms University, Berlin, 86 p.
- Williams, G.P. and Gold, L.W. (1958) Snow density and climate. Division of Building Research, National Research Council, Canada, Research Paper no. 60, 4 p.
- Work, R.A. (1948) Snow layer density changes. Transactions, American Geophysical Union, vol. 29, no. 4, p. 525-546.
- Yosida, A. and colleagues (1955) Physical studies on deposited snow, I-Thermal properties. Institute of Low Temperature Science. Hokkaido University, Sapporo, Japan, vol. 7, p. 19-74.

APPENDIX A: OBSERVED, WEIGHTED SNOW-COVER DENSITIES (G/CM³) FOR STATIONS IN TABLE I.

Extracted, computed and compiled by Roy E. Bates, USA CRREL.

	Mar	.262		ž							
	Feb	1977 1927		ą			101.	88	500	clr	
	Jan	691-0 1951		naľ	53-1953		4-1955 .150 .260	225 186 225 225 225 225 225 225 225 225 225 22	8561-1	6961-2 6961-2	002*
(Dec	80 100 100 100 100 100 100 100 100	Nor 238 253 253	Dec 10	121		195		170	c11. c81.	
ka (cont	Nov	. 120 	Pab 200 200 200 200 200	Utah Nov							
N. Also			Jen 1-1962 1961 229 229 229	, Ogden,							
Leline A	Mar	202 202 202 202	196 196 196 196 196 196	2061. 2069.							
2	Yeb	.173 .172 .191. 1815	1996 1996 1999	Feb 513	.120	011	510		900	8	
	Jan	9-1960 166 195 219 219 169 169		Jen	-1952		4501. 002. 081.		9561-	2961- 291.	clz.
	Dec	191 161 161 165 165 165 165 165 165 165 16		Be	1991		1953- 199 160	top Alasia	1955-	.300	
	Nov	641 641 851 851		Nov							
	hir	181. 202 802. 802.		831 188 191 191		Har	228 241 241 252	.171 .229 .176 .229 .276		232 229 162- 162-	
	Peb	231 213 198	234 260 260	161 1512 1512 1511 1521 1521		Feb	-258 -258 -238 -238	249 251 161 162 163 163 163 163 163		230 230 235 235 235	
	Jen	1949 1951 1951 1951 1951 1951 1951 1951	222 272 247 246 246 248	9-1960 138 138 138 138 138		Jan	84-1955 179 161 161 161 246 245	250 250 250 250 250 250 250 250 250 250	ert.	98-1959 120 120 101 101 101	961.
	Dec	199 1136 1136 1136	197 232 232 232 232 232 232 232 232 232 23	19 178 1108 110 110 110 1128		Dec	61 021. 021. 819.	61 191. 182. 183. 081.		61 121 122 122 122 122 122	
rbanks, Aleske	Nov	061. 081.	191. 908. 1511.	941. 133 041.	AFU, Alaska	Nov		216 272 272 204	59T.	135 1135 1135 1135 1136 1131	.136
AFB. PL	Mar	-240 -240	219 .181 .208 .208 .208 .216		Tatalin	Mar	402 671 881.	-236 -245 -245 -245 -245 -230	305	249 247 255 242 260	
Elelsor	Feb	260 260 260 260	207 2163 191 181 181			Pub	173 281. 781.	142 242 242 242 242		.214 .269 .279	
	Jan	-1953 240 210 260 260 260 260 260 260 260 260 260 26	221-1955 111- 111- 121- 122- 122- 126- 126- 126-	8 261		Jan	9-1954 213 341. 216	225 236 225 225 225 225 225 225 225		7-1958 .219 .252 .250	
	Dec	1952 260 270 250 240	1954 150 150 150 160 160 160	1951 181 184 184 189 189 189 201		Dec	195 .215 .135 .248	195 195 195 195 195 195 195 195 195 195	.239	102 102 101 102 102 102	.220
	Nov	220		001160 1160 1180 1180 1180		Nov	011 011 2002	.216 .125 .232		204 204 165 137	.130

	Mar	887 652 116		128 128 153 156		Nar				llar	653	.931	
	Yeb	217 200 209 235	.330 .330	151 151 134		Yeb				Feb	953.	.385	
	Jan	1951	0)61-0 091. 091.	2011-1 2011-1 2011-1 2011-1 2011-1 2011-1		Jen	4-1955 213 260			Jan	2.8.0	115 115	Ret-Sector
(6.	Duc	202 202 112 202 202 202 202 202 202 202	175 210 210	961		Dec	240 .222 .222	212		Dec	201 212. 272.	645.	CT EAT
Alaska (cont	Nov	042. 072. 702.		000 000 000 000 000 000 000 000 000 00	P3, Alasta	liov			rador, Canada	liov	01=-	.190 255 241	138 138 138 138 138
Is Creek AFS	ltar		2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	604. 2005.	i'atnek A	lter	.23) (22)	cyE.	Saglek, Lab	lar	352		96. 206. 198.
Utop	Feb	201. 105. 202.	204 215 215 223 253	est.		do?	219	-265 -265		Feb	.332	.396	
	Dec Jan	100-11056 160-11056 160-1103 100-1103 100-1103 100-11056 100-11056 100-11056 100-11056 100-11056 100-11056 100-11056 100-11056 100-11056 100-11056 100-11056 100-11056 100-11056 100-1105 100-100000000	626. 645 6761-0561 6761-0561 6761-0561 6761-0561 6761-0561 6761-0561	024. 024. 024.		Dec Jan	512. 452. 032. 032. 1561-6561	. 160		Dac Jan	4561-8561		201-201-201-201-201-201-201-201-201-201-
	Nov	889 88	86.58 98.58 98.58 98.58 98.58	65 28 28 28		liow	77. 202.	622" 652		Hav			
	Mar	108°		122 122	.344 .268	412.		.215 .161	.200 .200	.309		llar	217 212 252 385 156
	Feb	280 299 279 282		113. 052. 203.	152. 122.	.261		.308 240	239			Feb	. 150 . 150 . 135
	Jan	-1955 .115 .180 .258	1961-5 1961-5 1961-5 1961-5	8-1959 131. 131. 131. 331.	1961-0 1961-0 1961-0	272	ì	21963 .210 .160	.168	.299		Jan	
	Dec	1261 171 161 161 161	1950 2860 2860 2860 2860	195 135 131 131 131 135	1961 -2.04	21/2	ŝ	1961	.260 .261			Dec	91 961 981 982
port, Alaska	llov			165 151 111 103	.160	.208.		879. 812.	Lat.		ok AFT. Alanka	Nov	
Galena Air	Mar	.260 214 214 214 214 215	-119 119 215 215 202	234 234 216 216 216	135.	201		.300	- 305	.306	Hearts Cre	Har	-325 -275 -230 -230 -230 -250 -250 -250 -250 -250 -250 -250 -25
	Pob	201. 122. 122.	.200 .201 .2215	641. 521. 101.	142.	-300		862	.328			Feb	
	c Jan	1953-1954 6 2.269 6 2.298 2.298 2.298 2.298 2.298	1955-1956 251 25 231 25 249 26 29 20 20	1921-1958	1959-1960 20 20 20 20 20 20	11 .259	11	5901-1961 105. 105	69 .261 09 .180	00		ec Jan	1953-1954
•	Nov De	58	91.156 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.2	121 128 145 150 153	. 165 .2 341 .2	.265 .2 .274 .2	. 200	2. 042. 1. 052.	.138 .1	s. (53.	.310	Bov B	

14

APPENDIX A

			Seg	lek, Lebr	ador, Ca	anada (con	nt'd)						Mels	stros	AFB, Gree	t Falls,	Montan	(cont	<u>'a)</u>		
Nov	Dec	Jen	Feb	Маг		Nov	Dec	Jan	Feb	Her	1 Feb	Mar		Dec	Jan	Feb		Feb	Her		Jen
		1957-1958						1958-1959			195	8			1958-1959			1	960		1962
.410	.155	.176	.189	.200		.150	. 307	.193	.160		.244	1.00		.151	.205	- 350		.212	ale o		.230
377	152	.169	.186	.199		154	.250	.191	.158		.265	.200		.161	.225	. 304			.249		.240
178	158	172	107	202		210	344	100	150		.230			.155	.280	.249					
161	17	179	202	200		227	31.9	107	16		.240	.240			.283	.236					
.104	.162	.116	. EUG	.204		.=31	.]46	.197	.104												
														Kim	andorf AFI	, Anchor	mege, Al	aska			
				Griffiss	AFB, Ro	me, N. Y	1				Nov	Dec	Jan	Feb	Mar		Nov	Dec	Jan	Feb	Har
Dec		Feb		Jan	Feb		Dec	Jen	Feb		1		1952-1953						1953-1954		
												112	186	105				.209	.175	.285	.297
1954		1956		19	57		1.00	1957-1958				110	001	202				154	148	273	247
.199		.267		.211	.260		.160	.240	.315			.146	.221	- J.AC				145	102		
.200		.190		.224	.169		.120	.235	.211			.141		.644				170	241		
.280		.235						.333	.224				.209	.311				171	154		
								.225	.241									109	.154		
								.247	.228		1							.190			
								. 325	. 319												
								.290													
													1957-1958						1958-1959	in the second	
How	Dec	Jan	Fr-D	Mar		Nov	Dec	Jan	Fab	Mar	,200	.259	. 343				.206	.211	.228	. 309	- 357
	Dec	Jan	100				Pre-C	Jan			. 380	.320	.457				.184	.261	. 360	.404	- 335
		1050-1060						1960-1961				.320	- 317				.206	.196	. 360	.380	. 321
		1999-1900	336	268			806	170	107	080	1		. 392					.186	. 348	.264	. 324
		.220	. 332	,200			260	.110	260	262								.191	.405	. 366	. 348
		.230	. 213	. 300			.200	.233	. 300	.373									.405	. 360	
		.241	.210				.190	290			1.										
		.251	.231				.500	.200													
		.217						.290					1959-1960						1960-1961		
											128	.156	. 323	.267	.252			.240	.150		. 360
		1961-1962						1962-1963			267	211	302	216	.283			.200	.250		.120
	.231	.353	.260	.260			.294	.260	.248	.265	104	343	216	278	205			252			
	.140	.180	.240	.285			.320	.289	.267	. 302	1 056	. 34 3	202	270	kon						
			.226				.264	.298	.260	.170	.270	.113	-che	010	.400						
			.211				. 344				1	.530	.241	-212							
			. 332											.292							
											1.11.2										
			Malma	trom AFB,	Great 1	alls, Mon	ntana				1.000			Nov	Dec	Jan	Feb	Har			
																1961-19	62				
Jen		Feb	Mar		Dec	Jan		Jan	Feb		and the second			000	1 ok	175	154	.135			
		1	1.00		and the second									100		020	188	211			
1954		195	5		1955-	-1956		195	1					.120	115	12.3v	246	100			
185		.227	.248		.275	,201		.270	.187					.200	.145		180	.405			
263		230	182		341	. 355		.267	.245					.224	.179		.100				
21.8			250		258	283		254	282		1										
200			270			290		260													
.290			200																		
			.6.30																		

· . .

APPENDIX A

			rnest	Harmon Al	B. Newfour	diand, (Lanada							Sondre	estrom AFB, Gr	eonland (con	1'd)			
Harr	Inc		Feb	Har	-	Nov	Dec	Jan	Feb	Her	Nov	Dec	Jen	Feb	Har	Nov	Dec	Jan	Feb	Her
Nov	.180 .355 .388 .215	Jan 1953-1954 .232 .222 .212 .158 .157	.385 .640	.125 .158 .159 .210 .226			1	1954-1955 .320 .140 .231	.227 .323	.220 .180 .330			1957-1958	. 342 . 309		.250 .270 .217	.290 .240 .250 .251	1959-1960 .251 .222 .235	.250 .246	.218 .261 .252 .286
		1955-1956		.313 .282 .268			180	1956-1957 180	.179		.233 .300	.240 .250 .213	1960-1961 .251 .240 .300 .300	,250 ,266 ,250 ,240	.258 .258	.25 2 .286 .306	.202 .206	1961-1962 ,203 ,239 ,223	.263 .265	
	.000		.208				.150	.302 .200	.100	1.1				600	oe Boy AFB, Le	brador, Cent	de			
	, 393						.289	,420			Nov	Dec	Jan	Feb	Her	Nov	Dec	Jan	Feb	Mar
	.160 .180	1957-1958	.150 .225				,200 .230 .159 .200	1959-1960 .250 .410 .450			.225 .200 .192 .300 .232	.190 .2h6 .268 .315 .2k3 .281	1953-1954 ,190 ,202 ,303 ,299 ,349	.279 .248 .298 .310 .298 .298 .294	.342 .466 .300 .400 .292 .317 .293	.121 .110	.169 .181 .210 .280 .177	1954-1955 .284 .296 .221	.243 .236 .340 .238 .190 .282	.197 .298 .279 .309
	.160 .097	1960-1961 .144 .159 .151 .353	. 376 . 344 . 335 . 453	.417 .402 .371 .419			.119 .120	1961-1962 .199 .312 .188 .239	- 388 .267 .255 .257						.333 .322 .203 .242 Sporrevohn A	PG, Aleska				
				1120							liov	Dec	Jan	Feb	Mar	Nov	Dec	Jan	Feb	Mar
			Nov	Dec .235 .417	Jan 1962-1963 .240 .200	Feb .270 .320 .400	Mar .414 .405 .420				.310 .276 .219	.213	1953-1954 .392 .362 .365	.201 .299 .347	.319 .316		.278 .254 .272	1954-1955 .279 .261 .286	.293 .257 .248	.29Л .300
				Jondrest	rom AFB, G	reenland	. 308					.210 .300	1955-1956	.223 .167		.274 .290 .320	.268 -347 -305	1956-1957 .244 .297	.256 .286	.286 .269 .270
Hov • 300 • 350	Dec - 350 - 360	Jan 1954-1955	Feb	Nar ,250		Hov ,260 ,230	Dec	Jan 1956-195	Feb	ног .278 .335	.230 .200	.299 .334	1957-195	.316 .305 .236	.278 .240	.210 .360		1958-1955 .281 .300	.283 .312	. 303 . 325

Contractions AND Contract

APPENDIX A

	Hur	683. 683.		Mar	.310		Mar	162 1300 1300		563. 295				
	Peb	-236 248		Feb	.185		Feb					202		
	Jan	1974-1935 .338 .266 .176 .171 .171		Jan	0142. 015. 015. 015.		Jan	4201-5201 645- 685- 665-	The Lord	0/41-//41 0/6. 0/2.	9561-1561	1959-1960 .160 .190	201.	
(p. 100	Ipec.	-200 -219 -219 -230		Dec	653. 285.		Dec	.350		-350 -290 -120 -120 -120 -120	-300 -300 -300	.248		
anoda (c	Not	200 242 242 242	kota	Nov			Nov							
Y, HWF, C		1 2110	Borth De		Certho	The second se								
lsher lk	Mar	28. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	Purgor	ther	and and the		Mar	.250						
Frob	Feb	EE.		Fieb	186. 646.	4	Feb	231 231 261		161.				
	Jan	1951-1951 196- 196- 198- 1982- 1982-		Jan	1961-6261 CIE. Ses. Ses.		Jan	151. 151. 152. 152. 152. 152.	Lock Lock	Lis.	1956-1957 721 725 7419 7297	6561-9561		
	Duc	963- 128- 888-		Dec	162		Dec	.126 .212 .336 .224		-220 -150 -3 ^{1/2}		.106 .106	1/14.	ł
	Not	465. 1935		Hov	•		Nov							
				Har	250 2170 2170 2170 2170 2170 2170 2170 217		Mar	412. 216. 218.	Har		200 200 200 200 200 200 200 200 200 200	2	Mor	.250 .330 .286 .238
	Feb	Act. 202. 3046.		Feb	955. 1955. 109. 109.		Peb	959 165. 318 306.	Fob	240 340 320	201 310 321		Yeb	230
	Jan	6961-296		Jan	1955- 205 -312 -330 -330 -330 -330 -320 -320 -320 -32		Jun	19601 1987 1987	Jan	012 001-030 0012- 0012- 0012-			Jan	
(0,	Dec	1 242 386		Ibod	.340 .306		Dec	2027 1227 1227	Doc	1 012.	.100 .180 .280		Dec	218 142 .360
bia (cont			lichigan	Hor	259 		lier	36.	llov			Geneda	Ikov	-350 -230 -162
APS, Alas	Dec	61. 200 273	liarie, l	Feb	954-1955 .350 .220 .220 .220 .220		Feb	1958 272 102 0,12 370				INN. NWE	311. 2	
rrovolu	NOL	2(0)2. .320	ult 3te	Jon	1. 230 230 210		Jan	106. 250 250 250 250 250	llar	400 400 318.	.261 .330 .110	obteher	1tar	62- 110- 110- 110- 110- 110- 110- 110- 11
010			ai ,				Dec	.254 .350 .230	Feb	350	269 200 208 208 208	21	Pob	.345 .315 .310 .310 .310
	Jan	U.2. Eyz.		tiar	002. 65E.				Jan	059-1960 -160 -260 -310 -310	279 279 279 308 .308 .308		Jan	53-1954 .340 .310 .310
	Disc	642. 642.		Feb	923-1954 -3300 -330 -350 -350 -350		Feb	1957 253 263 263 263 263	Dec	51	15 222 157 232 232		Dec	.330 .320 .320 .330
	Lov	1 (0) 1160 235 219 242 245		Jan	200 1 200 200 201 200		Jan	1956- 2520 2650 2653 2653 2653 2654	Hov				Nov	330

APPENDIX A

÷.

.

2

			Lor	ing AFB,	Caribou,	Netne	cont 'd)								Burter	Island,	Alaska					
Jen	Feb	Har		Dec	Jen	Feb		Jan	Feb	Har	1 liov	Dec	Jan	Feb	Har		Nov	Dec	Jan	Peb	Far	
	1062.10	6			1961-196			10	062-1963		1.12		1952-195						10-2-10-5			
263	170-17	.282		. 300	.330	. 370		.230	.291	.294	.177	.242	.244	.255	.244		486	. 385	421	. 335	332	
.247		. 31 4		.350	. 330	.450		.207	. 304	.329	.236	.192	. 311	.286	.304		. 373	. 398	.400	394	325	
		.317				.483	•	. 314	.319	.355	.232	.232	.254	.241	.240		. 378	. 399	. 361	355	291	
		.340						.276			.238	.296		.300	.312		. 382	.408	.261		.254	
															.294				.288			
				Northean	et Cape A	FS, Alas	ka												. 344			
Nov	Dec	Jan	Feb	Mar		Nov	Dec	Jon	Feb	Her	1			How	Dec	Jen	Feb	Siar				
		and and						1060 1060			1.1.1											
0.0	-	1901-1902	alla	908		200	806	1902-1903	430	260	1			21.6	260	974-1977	366	368				
-200 05h	266	-693	318	307		270	263	.336	204	.314	1			361	- 361	- 324	- 355	382				
.679	.200	. 303	. 310	. 301				• • • • •		.290				. 361	.361	356	. 364	. 382				
										.411	1			-359	.354	.356	.369	.416				
											1					-355						
			W	urtealth	AFB, Osc	oda, Mic	higen															
															Eures	a, NWF,	Conede					
Feb	Mar		Dec	Jan		Jan		Feb	Fier		Nov	Dec	Jan	Feb	Far		How	Dec	Jan	Eab	Max	
	1954		195	-1955		1958		1950	9									ere	541		mas	
256	.250		440	.216		. 300		.275	. 320				1951-1952						1953-1954			
.217	.216		. 312	.288		.260		.252	.415		1		. 378	.431	. 345			. 372	. 342	.345	. 381	
.240	. 333			.260				-357	.340				. 399	.422	-373			. 369	. 363	.362	. 396	
				.252				. 31 3						- 394				. 361	- 347	.356	. 388	
								.262						. 345				. 350	. 366	- 350		
								.261										.345				
											1		1954-1955						1955-1956			
Non	Dec	Jan	Seb	Mar		Nov	Dec	Jan	Feb	Mar	.351	.371	.356	. 336	. 383		.259	.360	.330	. 336	346	
HUY	THO C	Jan	160	mar		140.4	Part.		100		.369	. 383	- 355	. 321	. 364		.355	. 363	.350	. 351	.352	
		1959-1960						1960-1961				. 322	.364	. 361	. 372		- 339	. 333	- 311	. 367	.352	
	.233	. 340	. 398	. 341			.270		.253	.210		. 367	. 336		. 367		. 349	. 360	.323	. 362		
	.280	.422	.410	. 383			.275		.140	.240		. 361			.357		. 370			. 361		
	.410	. 372	. 381	. 316					.174	. 351	1											
	,200	. 334	-333	. 316					.355				1956-1957	-					1957-1958			
	.300										.334	. 321	.311	.315	. 334		.302	.239	.273	. 360	.424	
	.212										.213	. 304	-321	- 319	- 331		.292	.248	-339	. 361	.438	
		and and						and a set a			.300	. 300	- 313	.291	. 322		.254	.258	. 382	. 371	.430	
		1961-1962		and			000	1962-1963	200		1	. 330	.219	.201	. 302		.505	.201	- 342	.410	. 309	
		.174	.290	. 334			.200	.200	. 300		1							.234			. 302	
		263	- 300	300			320	300	450													
	Sec. 1.	.203	200	. 500			. Je0	240	450				1958-1959						1959-1960			
		300	293	. 400							.255	.254	.257	.255	.277		.186	.260	301		. 114	
											.243	.257	.247	.272	.277		.204	.268	.238		. 320	
											.252				.270							
				Cape L	isburne A	FS, Ales	ka				.250				.264							
Nov	Dec	Jan	Feb	Mar		Nov	Dec	Jan	Feb	Her												
		1061-1062						1962-1962														
2011	366	1901-1902	356	.600		-254	.290	,290	347	.220	1											
.210	APE.	. 353	.311	. 364		. 320	.280	.240	. 344	.267												
		. 342		.400			.290	a line of		.298	1											

APPENDIX A

			Eur	roka, NW	r, Canada (cont'd]										Miere, Mast	Contractor				
Nov	Dec	Jan	Feb	Наг		Nov	Dec	Jan	Feb	Har	1	Nov	Dec	Jan	Feb	Nor	Nov	Dec	Jan	Peb	He I'
.286 .282	- 338 .298	1960-1961 .332 .295	.336 .293 .332	.293 -353		.275 .222	. 322	1961-1962 .322 .365 .337	.330 .370	.363 .360		.203 ,166		1953-1954 .146 .172	.209 .184		.269 .315 .313 .321	. 371 .296 .343 .335 .283	1954 .955 .204 .273 .331 .380	. 372 . 352 . 368 . 372	- 359 - 295 - 359 - 327 - 406
			Nov	Dec	Jan	Feb	Her							•					in a star		
			.242 .232	.224 .369	1962-1963 .344 .350	.297 .284	. 303 . 362					. 388 . 407 . 408 . 384	.370 .412 .381 .376 .380	1955-1956 - 374 - 359 - 414 - 407	. 383 . 394 . 386 . 372	. 386 . 324 . 351 . 339 . 334	.360 .418 .278 .405	.402 .430 .385 .330 .382	1955-1957 .404 .307 .436	.440 .430 .463 .461 .440	.415 .419 .402 .327
				neeoru	ca, ner, ca		120														
Nov .275 .283	Dec	Jan 1952-1953 .336 .374	Реб - 349 - 358	Мыт . 365 . 330		Nov .308 .251 .327	.292 .310 .276 .272	Jan 1953-1954 .284 .297 .306 .306	. 321 . 352 . 350 . 352	.317 .360 .371 .374		. 300 .288 .283 .361	. 384 . 266 . 332 . 406 . 316	1957-1958 . 387 . 260 . 360 . 368	.322 .322 .331	-329 -337 -332 -328	• 357 • 399 • 256 • 423	. 329 . 367	1958-1959 - 323 - 292 - 424	.341 .347	. 384 . 331 . 338 . 362 . 281
								NOTE NOTE			1			1050-1060					1960-1961		
.301 .305 .322 .318	. 321 . 315 . 346 . 335	1954-1955 .332 .326 .322 .324	. 304 . 314 . 308 . 325 . 335	. 329 . 325 . 334 . 334		.308 .343 .317 .335	.371 .355 .356 .397	.370 .335 .360 .355 .353	. 336 . 301 . 350 . 368	.346 .333 .37` .36b		.248 .203 .310 .370	.272 .327	.360 .360	.286 .288 .367	.242 .316 .331 .328	.300 .400	. 329 . 312	.313 .312	.344 .327	.323 .367
. 380 . 397 . 387 . 268	.382 .419 .396 .420	1956-1957 . 393 . 371 . 324 . 426	.962 .397 .394 .397	- 394 - 347 - 376 - 415		.260 .310 .300 .320	- 350 - 310 - 340 - 310	1957-1958 .290 .240 .320 .350	. 330 . 341 . 310 . 341	.270 .250 .290 .300 .295			.371 .489 .452	1961-1962	.383 439 .275	.405 .357 Hould Bay,	.264 .271 .359	.329	1962-1963 .363 .340	.383 .346	.367 .317
	.421			. 309		.230	-335	. 310							Fab	Mar	Nov	Dec	Jan	Feb	Har
- 300 - 418 - 437 - 337	.448 .368 .405	1959-1960 . 365 . 408	. 395 . 363	. 366 . 368			. 340 . 311 . 396	1960-1961	. 309 .252	. 323 - 355		.297 .316	.297 .323 .292	1953-1: 54 . 30 . 304 . 267	.305 .314 .291 .291 .336	.290 .349 .309	.428 .420 .429 .433	.415 .415 .409 .421	1954-1955 .414 .403 .364 .392 .399	. 391 . 402 . 364 . 404	.415 .401 .410 .354
.254 .247	. 364 . 460	1961-1962 .361 .357 .356		. 381 . 433 . 361			. 372 . 374 . 361	1962-1963 .374 .387	. 380 . 374			. 341 . 380 . 41 3 . 459	.404 •359 •369 •431 •353	1955-1956 . 382 . 318 . 375 . 353 . 314	.317 .378 .369 .329	.313 .338 .345 .358	.385 .407 .390	- 375 - 387 - 395 - 388 - 399	1957-1958 .415 .401 .447 .362	.320 .358 .383 .366	-373 -318 -267 -327

10.00

APPENDIX A

Nould Boy, NWT, Canada (cont'd)

Nov	Dec	Jen	Feb	Mar		Nov	Dec	Jan	Feb	Har
		1058-1059						1960-1961		
247	. 301	,260	.327	. 349		. 390	.290	.422	.349	.359
.271 .285 .294	.304	.317	.261	.350 .309 .255		.256	. 382	. 306	.352	.331
			Nov	Dec	Jan	Feb	Mar			
					1961-1962					
			.303		.403	.403	. 360			
			. 313		. 328	.375	.348			
	•			Isach	wen, NWT, (Canada				
Nov	Dec	Jen	Feb	Har		liov	Dec	Jen	Feb	Mar
		1952-1953						1953-1954		
. 309	.339	.314	.355			. 392	.401	.420	.401	.401
.305	.311	.333	.358			. 387	.409	-435	.431	.424
	. 308	-359	.350			.422	.439	418	420	430
		. 350	. 320			.375	,	.377		
		1054-1055						1955-1956	16 C	
. 310	. 375	.351	.335	.420		. 389	.428	.408	. 372	
.400	. 361	.333	.427	.333		.297	.403	.413	- 393	
.340	.336	.400	.321	.438		.406	.650	.400	.427	
.340	.318	.420		.323		.400				
		1956-1957						1957-1958	3	
		.,,,	.322	.324		. 348	.329	. 383	- 378	.310
			. 324	. 308		. 313	.336	. 309	- 394	. 300
						- 357	. 500	- 3/1	401	382
						.314				. 368
		1958-1959	ad ¹					1959-196	0	
.247		.292				.248		.267		. 384
.212		.276				.252		- 332		.342
.264						- 334				.410
						.313				
		1960-1961			,			1961-196	2	
.280	.306	.283		. 344		. 320	.315	- 325	.413	-393
.256	.303	.319		.346		. 319	.350	. 399		.473
			Nov	Dec	Jan	Feb	Her			
					1962-1963					
			.342	. 371	.355	.412	.403		1.1.1	
•				.378	. 366	.412	.378	1.1		
							.310			

APPENDIX A

1

decomposition of this, but of server is of orders and the server were the independence of the server were server in the server is and		ONTROL DATA - R	L D	All and a state of the second state of the
Security Cold Regions Research & Engineering Laboratory Renover, New Hampehire 03755 In Advised Field And Color Cover Density of Advised Backer Hill Cover Cover Density of Advised Backer Cover Density Michael A. Eliello Reference of Cover and Industry Cover and Industry Cover Cover Density Michael A. Eliello In Honory Cover Density Cover Cover Density Backer Hill Cover Cov	Servity classification of title, body of obstract and inde	sing mnoterion must be e	ntered when the ow	erall report is classified)
U.S. Arry Cold Regions Research & Decimaring Laboratory RECATTORSHIPS DETWEEN CLEMATE AND REDIONAL VARIATIONS IN SNOW-COVER DENSITY IN NORTH AMERICA RELATIONSHIPS DETWEEN CLEMATE AND REDIONAL VARIATIONS IN SNOW-COVER DENSITY IN NORTH AMERICA RELATIONSHIPS DETWEEN CLEMATE AND REDIONAL VARIATIONS IN SNOW-COVER DENSITY IN NORTH AMERICA RELATIONSHIPS DETWEEN CLEMATE AND REDIONAL VARIATIONS IN SNOW-COVER DENSITY IN NORTH AMERICA RELATIONSHIPS DETWEEN CLEMATE AND REDIONAL VARIATIONS IN SNOW-COVER DENSITY IN NORTH AMERICA RELATIONSHIPS DETWEEN CLEMATE AND REDIONAL VARIATIONS IN SNOW-COVER DENSITY IN NORTH AMERICA RELATIONSHIPS DETWEEN CLEMATE AND REDIONAL VARIATIONS IN SNOW-COVER DENSITY IN NORTH AMERICA RELATIONSHIPS DETWEEN CLEMATE AND REDIONAL VARIATIONS IN SNOW-COVER DENSITY IN NORTH AMERICA RELATIONSHIPS DETWEEN CLEMATE AND REDIONAL VARIATIONS IN SNOW-COVER DENSITY IN NORTH AMERICA RESEARCH REPORT 267 A DENSITY OF THE STORE A DESCRIPTION OF THE STORE OF THE STORE OF THE STORE OF THE STORE A DESCRIPTION OF THE STORE OF THE STORE OF THE STORE OF THE STORE A DESCRIPTION OF THE STORE OF THE STORE OF THE STORE OF THE STORE OF THE STORE A DESCRIPTION OF THE STORE OF TH	ORIGINA TING ACTIVITY (Carporate suther)		LA REPORT SECU	RITY CLASSIFICATION
A Security of Security (1995) Security (1	U.S. Army Cold Regions Research		Unclass	ified
Hanover, New Hampshire 03755 RELATIONSTIPS DEVELOPMENT OF ADD REDIONAL VARIATIONS IN SNOW-COVER DENSITY IN NORTH AMERICA Description of the index index index index index Michael A. Elello Autor form December 1969 In total to or sease index index index index December 1969 In total to or sease index index index index December 1969 In total to or sease index index index index December 1969 In total to or sease index index index index December 1969 In total to or sease index index index index December 1969 In total to or sease index index index index December 1969 In total	& Engineering Laboratory		28. GROUP	
ARDEATIONS THE BETWEEN CLIMATE AND REDIONAL VARIATIONS IN SNOW-COVER DENSITY IN NORTH ANGRICA SECONFILE NOTES (Pyr stream and melaners serve) Michael A. Bilello Michael A. Bilello	Hanover, New Hampshire 03755		1	
RELATIONSHIPS BETWEEN CLIMATE AND REDIONAL VARIATIONS IN SNOW-COVER DENSITY IN NORTH AMERICA SECOND AND AND AND AND AND AND AND AND AND A	AEPORT TITLE			
SECTION VIE A VERY ANY NOTES (Prove of reach and manufacture dates) AUTHORNEY (Ministry) Michael A. Bilello Michael A. Bilello Michael A. Bilello Michael A. Bilello Secondary of GRAFT NO. Secondary NO. DA Task 17061102B52A02	RELATIONSHIPS BETWEEN CLIMATE AND RECI IN NORTH AMERICA	ONAL VARIATIONS	IN SNOW-COV	TER DENSITY
Michael A. Ellello AFFORT DATE 1969 AFFORT TARE 1969 AFFORT TARE 1969 AFFORT TARE 1969 AFFORT TOTAL NO. OF FACES AFFORT AFFORT TOTAL NO. OF FACES AFFORT TOTAL NO. OF FACES AFFORT AFFORT AFFORT AFFORT AFFORT AFFORT AFFORT AFFORT AFFORT AFFORT AFFORT AFFORT AFFORT AFFORT AFFORT AFFORT AFFORT AFFO	DESCRIPTIVE HOTES (Type of report and inclusive dates)			Aller Aller and
Michael A. Ethello Michael A. Ethello	AUTHORIS) (First neme, middle initial, last neme)			
AMEMORY SATE December 1969 23 26 23 26 26 24 26 26 25 26 26 26 27 26 27 26 26 28 26 26 28 26 26 29 26 26 20 27 26 20 27 26 21 26 27 22 26 27 22 27 27 23 27 27 24 27 27 25 27 27 26 27 27 27 27 27 28 27 27 29 20 27 20 27 27 20 27 27 20 27 27 20 27 27 20 27 27 20 27 27 20 <td>Michael A. Bilello</td> <td></td> <td></td> <td></td>	Michael A. Bilello			
CONTACT ON GRAATSO. A CONTRACT ON GRAATSO. A CONTRACT ON GRAATSO. A CONTRACT ON TAXENESS CONTRACT ON TAXENESS CONTRACT ON TAXENT CONTRACT ON CONTRACTORS CONTRAC	December 1969	74 TOTAL NO. 0	PAGES 7	26
Research Report 267 Research Report 267 Second and vindy stations of the Arctic. Skewness coefficients computed for each stations of the Arctic. Skewness coefficients computed for each stations and the norther that each states of 0.03 g/cm ³), stations of the Arctic. Skewness coefficients computed for each stations coefficients coefficients computed for each stations reporting light winds; Category 2 (0.32 to 0.36 g/cm ³), cold and windy stations of the Arctic. Skewness coefficients computed for each stations speed are the independent variables makes it possible to estimate the average snow density and the Arctic. Skewness coefficients computed for each station speed are the independent variables makes it possible to estimate the average snow density on the Arctic. Skewness coefficients computed for each stations speed are the independent variables makes it possible to estimate the average snow density on the Arctic. Skewness coefficients computed for each stations protein model and windy stations of the Arctic. Skewness coefficients computed for each stations speed are the independent variables makes it possible to estimate the average snow density may of North America was drawn and the continent withided into areas based on the four categories. 14. KEY WORDS Climatology Snow cover Snow density	CONTRACT OR GRANT NO.	M. ORIGINATOR	S REPORT NUMBE	(R(S)
A PROJECT NO. 10 A TASK INVOLUCED PAGE A CONTRACTION FORTHER TO CONTRACT THE STATE OF THE STATE		Person	ah Remot 2	57
 A strand of the set of the set	A TASK INOTICEDENCE	Nebear	en neper -	
A SITTREGUTION STATEMENT This document has been approved for public release and sale; its distribution is unlimited. It superclassified. It superclassified in four content with a standard error of estimate of 0.0 (density 0.20 to 0.23 g/cm ³), inland stations reporting light winds; Category 2 (o to 0.27 g/cm ³), stations reporting moderate winds; Category 3 (0.28 to 0.30 g/cm ³), cold and windy stations of the Arctic. Skewness coefficients computed for each stations speed are the independent variables makes it possible to estimate the average snow cover density for any location in the Arctic, subarctic and North Temperate Zones, yielded a correlation coefficient of 0.91 with a standard error of estimate of 0.0 g/cm ³ . An average snow density may of North America was drawn and the continent widivided into areas based on the four categories. 14. KEY WORDS Climatology Snow dover Snow density Climatology Snow dover Snow density DD	£	this report)	AT NOLSI (ANY OWN	
 ANTHON WATCHENT This document has been approved for public release and sale; its distribution is unlimited. It superclause notes It superclause notes	٤			
This document has been approved for public release and sale; its distribution is unlimited. The unrelease national decision of the public release and sale; its distribution is unrelease and sale; its distribution Analysis of snow-cover observations made during November - March at 27 stations in Alaska, Canada and the northern United States for a 2 to 11 year period showed that the average snow density can be classified in four general categories: Category 2 (0 to 0.27 g/cm ³), stations reporting moderate winds; Category 3 (0.28 to 0.30 g/cm ³), inland and coastal locations with stronger winds; Category 4 (0.32 to 0.36 g/cm ³), cold and windy stations of the Arctic. Skewness coefficients computed for each st showed bias toward lower densities for cat. 1 and 2, and bias toward higher densit for cat. 3 and 4. A nomograph in which the average winter air temperature and win speed are the independent variables makes it possible to estimate the average snow cover density for any location in the Arctic, subarctic and North Temperate Zones. comparison between observed and estimated densities for ten other test stations yielded a correlation coefficient of 0.91 with a standard error of estimate of 0.0 g/cm ³ . An average snow density map of North America was drawn and the continent w divided into areas based on the four categories. 14. KEY WORDS Climatology Snow cover Snow density DD .form.1473 States content were the state average for the other test stations unclassified	. DISTRIBUTION STATEMENT			
 13 Unlimited. 14. PORSONNE MULTARY ACTIVITY U.S. Army Cold Regions Research & Engineering Laboratory Eanover, New Hampshire 03755 Analysis of enow-cover observations made during November - March at 27 stations in Alaska, Canada and the northern United States for a 2 to 11 year period showed that the average snow density can be classified in four general categories: Category 2 (0. to 0.27 g/cm³), stations reporting moderate winds; Category 3 (0.28 to 0.30 g/cm³), inland stations reporting light winds; Category 2 (0. to 0.27 g/cm³), stations reporting moderate winds; Category 3 (0.28 to 0.30 g/cm³), inland and coastal locations with stronger winds; Category 4 (0.32 to 0.36 g/cm³), cold and windy stations of the Arctic. Skewness coefficients computed for each stations showed bias toward lover densities for cat. 1 and 2, and bias toward higher densities for cat. 3 and 4. A nonograph in which the average winter air temperature and winn speed are the independent variables makes it possible to estimate the average snow cover density for any location in the Arctic, subarctic and North Temperate Zones. comparison between observed and estimated densities for ten other test stations yielded a correlation coefficient of 0.91 with a standard error of estimate of 0.0 g/cm³. An average snow density map of North America was drawn and the continent w divided into areas based on the four categories. 14. KEY WORDS Climatology Snow cover Snow density 	This document has been approved for p	public release a	nd sale; it.	s distribution
U.S. Army Cold Regions Research & Engineering Laboratory Eanover, New Hampshire 03755 Analysis of anow-cover observations made during November - March at 27 stations in Alaska, Canada and the northern United States for a 2 to 11 year period showed that the average snow density can be classified in four general categories: Category 1 (density 0.20 to 0.23 g/cm ³), inland stations reporting light winds; Category 2 (0. to 0.27 g/cm ³), stations reporting moderate winds; Category 3 (0.28 to 0.30 g/cm ³), cold and windy stations of the Arctic. Skewness coefficients computed for each stations showed bias toward lower densities for cat. 1 and 2, and bias toward higher densities for cat. 3 and 4. A noncograph in which the average winter air temperature and winny speed are the independent variables makes it possible to estimate the average snow cover density for any location in the Arctic, subarctic and North Temperate Zones. comparison between observed and estimated densities for ten other test stations yielded a correlation coefficient of 0.91 with a standard error of estimate of 0.00 g/cm ³ . An average snow density map of North America was drawn and the continent widivided into areas based on the four categories. 14. KEY WORDS Climatology Snow cover Snow density DD .'Cm. 1473 "Market States States States and and ensity DD .'Cm. 1473 "Market States States States and and another test stations when the states and and the states and and the continent with the states and and areas based on the four categories.	is unlimited.	12. SPONSORING	MILITARY ACTIV	TY
Analysis of snow-cover observations made during November - March at 27 stations in Alaska, Canada and the northern United States for a 2 to 11 year period showed that the average snow density can be classified in four general categories: Category 1 (density 0.20 to 0.23 g/cm ³), inland stations reporting light winds; Category 2 (0 to 0.27 g/cm ³), stations reporting moderate winds; Category 3 (0.28 to 0.30 g/cm ³), inland and coastal locations with stronger winds; Category 4 (0.32 to 0.36 g/cm ³), cold and windy stations of the Arctic. Skewness coefficients computed for each stu- showed bias toward lower densities for cat. 1 and 2, and bias toward higher densiti for cat. 3 and 4. A nomograph in which the average winter air temperature and wing speed are the independent variables makes it possible to estimate the average snow cover density for any location in the Arctic, subarctic and North Temperate Zones. comparison between observed and estimated densities for ten other test stations yielded a correlation coefficient of 0.91 with a standard error of estimate of 0.0 g/cm ³ . An average snow density map of North America was drawn and the continent we divided into areas based on the four categories. 14. KEY WORDS Climatology Snow cover Snow density				the state of the s
Eanover, New Hampshire 03755 Handysis of enow-cover observations made during November - March at 27 stations in Alaska, Canada and the northern United States for a 2 to 11 year period showed that the average snow density can be classified in four general categories: Category 1 (density 0.20 to 0.23 g/cm ³), inland stations reporting light winds; Category 2 (0. to 0.27 g/cm ³), stations reporting moderate winds; Category 3 (0.28 to 0.30 g/cm ³), inland and coastal locations with stronger winds; Category 4 (0.32 to 0.36 g/cm ³), cold and windy stations of the Arctic. Skewness coefficients computed for each station showed bias toward lower densities for cat. 1 and 2, and bias toward higher densities for cat. 3 and 4. A nomograph in which the average winter air temperature and wind speed are the independent variables makes it possible to estimate the average snow- cover density for any location in the Arctic, subarctic and North Temperate Zones. comparison between observed and estimated densities for ten other test stations yielded a correlation coefficient of 0.91 with a standard error of estimate of 0.00 g/cm ³ . An average snow density map of North America was drawn and the continent widivided into areas based on the four categories. 14. KEY WORDS Climatology Snow cover Snow density DD .'251473 Subjects 200 CONNERS Climatology Snow cover Snow density			Cold Region	ng Research
Analysis of snow-cover observations made during November - March at 27 stations in Alaska, Canada and the northern United States for a 2 to 11 year period showed that the average snow density can be classified in four general categories: Category 1 (density 0.20 to 0.23 g/cm ³), inland stations reporting light winds; Category 2 (0 to 0.27 g/cm ³), stations reporting moderate winds; Category 3 (0.28 to 0.30 g/cm ³), inland and coastal locations with stronger winds; Category 4 (0.32 to 0.36 g/cm ³), cold and windy stations of the Arctic. Skewness coefficients computed for each sta showed bias toward lower densities for cat. 1 and 2, and bias toward higher densiti for cat. 3 and 4. A nomograph in which the average winter air temperature and win speed are the independent variables makes it possible to estimate the average snow cover density for any location in the Arctic, subarctic and North Temperate Zones. comparison between observed and estimated densities for ten other test stations yielded a correlation coefficient of 0.91 with a standard error of estimate of 0.00 g/cm ³ . An average snow density map of North America was drawn and the continent w divided into areas based on the four categories. 14. KEY WORDS Climatology Snow cover Snow density DD		V.S. Army	eering Labo	ns Research ratory
DD . 1473 Structs DD . OR AND UNCLASSIFIED	. ABSTRACT	& Engin Hanover,	Cold Region seering Labor New Hampshi	ns Research ratory re 03755
DD . 1473 States Por and 1478. I Jan 44. THICH IS Unclassified	Analysis of snow-cover observations manalysis of snow-cover observations manalska, Canada and the northern United the average snow density can be class: (density 0.20 to 0.23 g/cm ³), inland s to 0.27 g/cm ³), stations reporting mod inland and coastal locations with stru- cold and windy stations of the Arctic showed bias toward lower densities for for cat. 3 and 4. A nomograph in whice speed are the independent variables man cover density for any location in the comparison between observed and estima yielded a correlation coefficient of (g/cm ³ . An average snow density map of divided into areas based on the four of 4. KEY WORDS Climatology	ade during Noven Hanover, ade during Noven d States for a 2 ified in four ge stations report derate winds; Cat onger winds; Cat conger winds; Cat . Skewness coes r cat. 1 and 2, ch the average w akes it possible Arctic, subarct ated densities : 0.91 with a star f North America categories.	Cold Region seering Labor New Hampshi ber - March to 11 year eneral categ ing light wi tegory 3 (0 regory 4 (0. Micients co and bias to winter air t to estimat the to estimat the to estimat the to estimat the to estimat	ns Research ratory re 03755 at 27 stations in period showed that ories: Category 1 nds; Category 2 (0.2 .28 to 0.30 g/cm ³), 32 to 0.36 g/cm ³), mputed for each stat ward higher densities emperature and wind e the average snow- h Temperate Zones. A r test stations of estimate of 0.016 nd the continent was
	Analysis of snow-cover observations ma Alaska, Canada and the northern United the average snow density can be class: (density 0.20 to 0.23 g/cm ³), inland s to 0.27 g/cm ³), stations reporting mod inland and coastal locations with stru- cold and windy stations of the Arctic showed bias toward lower densities for for cat. 3 and 4. A nomograph in whis speed are the independent variables ma cover density for any location in the comparison between observed and estim- yielded a correlation coefficient of 0 g/cm ³ . An average snow density map of divided into areas based on the four 4. KEY WORDS Climatology Snow cover Snow density	ade during Noven d States for a 2 ified in four ge stations report derate winds; Cat onger winds; Cat . Skewness coes r cat. 1 and 2, ch the average v akes it possible Arctic, subarct ated densities : 0.91 with a star f North America categories.	Cold Region seering Labor New Hampshi ber - March to 11 year eneral categ ing light wi ategory 3 (0 egory 4 (0. Fricients co and bias to winter air t to estimat tic and Nort for ten othen adard error was drawn a	ns Research ratory re 03755 at 27 stations in period showed that ories: Category 1 nds; Category 2 (0.2 .28 to 0.30 g/cm ³), 32 to 0.36 g/cm ³), mputed for each stat ward higher densitie emperature and wind e the average snow- h Temperate Zones. A r test stations of estimate of 0.016 nd the continent was
Security Classification	Analysis of snow-cover observations me Alaska, Canada and the northern United the average snow density can be class: (density 0.20 to 0.23 g/cm ³), inland s to 0.27 g/cm ³), stations reporting mod inland and coastal locations with stru- cold and windy stations of the Arctic showed bias toward lower densities for for cat. 3 and 4. A nomograph in whis speed are the independent variables me cover density for any location in the comparison between observed and estim- yielded a correlation coefficient of 0 g/cm ³ . An average snow density map of divided into areas based on the four of 4. KEY WORDS Climatology Snow cover Snow density	ade during Noven d States for a 2 ified in four ge stations report derate winds; Cat onger winds; Cat . Skewness coes r cat. 1 and 2, ch the average w akes it possible Arctic, subarct ated densities : 0.91 with a star f North America categories.	Cold Region seering Labor New Hampshi ber - March to 11 year eneral categ ing light wi tegory 3 (0 cagory 4 (0. Cricients co and bias to winter air t to estimat the to estimat the to estimat for ten othen indard error was drawn a	ns Research ratory re 03755 at 27 stations in period showed that ories: Category 1 nds; Category 2 (0.2 .28 to 0.30 g/cm ³), 32 to 0.36 g/cm ³), mputed for each stat ward higher densitie emperature and wind e the average snow- h Temperate Zones. F r test stations of estimate of 0.016 nd the continent was

B 06/ 178

REGULATORY INFORMATION DISTRIBUTION SYSTEM (RIDS) 50+327/330 DISTRIBUTION FOR INCOMING MATERIAL

REC: BOYD R NRC

al-in

ORG: HOWELL S H CONSUMERS PWR

DOCDATE: 06/09/78 DATE RCVD: 06/20/78

DOCTYPE: LETTER NOTARIZED: NO SUBJECT

COPIES RECEIVED LTR 1 ENCL 3

FORWARDING PUBLICATION ENTITLED: "RELATIONSHIPS BETWEEN CLIMATE AND REGIONAL VARIATIONS IN SNOW - COVER DENSITY IN NORTH AMERICA", COMPLETING RESPONSE TO NRC REQUEST OF 05/11/78 FOR ADDL INFONUMBER 372.01 ON SUBJECT OF "SNOWPACK DENSITY".

PLANT NAME: MIDLAND - UNIT 1 MIDLAND - UNIT 2

REVIEWER INITIAL: MUX DISTRIBUTER INITIAL: M

PSAR/FSAR AMDTS AND RELATED CORESPONDENCE (DISTRIBUTION CODE BOO1)

FOR ACTION:

PROJ MGR HOOD**W/ENCL

INTERNAL:

REG FILE**W/ENCL I & ETAW/2 ENCL OPERATOR LIC BR**W/ENCL DAB**W/ENCL MIPC**LTR ONLY MECH ENG BR##W/ENCL MATERIAL ENG BR##W/2 ENCL REACTOR SYSTEMS BR##W/ENCL CORE PERFORMANCE BR**W/ENCL AUXILIARY SYS BR##W/ENCL I & C SYSTEMS BR**W/ENCL AD FOR SITE TECH**W/4 ENCL ACCIDENT ANALYSIS**W/ENCL RAD ASSESSMENT BR**W/ENCL GEOSCIENCES BR**W/ENCL

ASST DIR VASSALLO**LTR ONLY BR CHIEF LWR#4 BC**LTR ONLY LIC ASST LWR#4 LA**LTR ONLY

> NRC PDR**W/ENCL OELD**LTR ONLY EMERGENCY PLAN BR**W/ENCL DIRECTOR NRR##LTR ONLY AD FOR ENG**LTR ONLY STRUCTURAL ENG BR**W/ENCL AD FOR REAC SETY**LTR ONLY ANALYSIS BR**W/ENCL AD FOR PLANT SYSTEMS**LTR ONLY CONTAINMENT SYSTEMS**W/ENCL FOWER SYS BR**W/ENCL AD FOR SITE ANLYS**LTR ONLY EFFLUENT TREAT SYS**W/ENCL KIRKWOOD**W/ENCL

EXTERNAL: LPDR'S MIDLAND, MI**W/ENCL TIC**W/ENCL NSIC##W/ENCL ACRS CAT A**W/16 ENCL

MTUSC 4 24

DISTRIBUTION: LTR 57 ENCL 47 SIZE: 1P+24P

CONTROL NRR: 781720153
