$$
\begin{aligned}
& \text { Prepared by } \\
& \text { Jeffrey } M \text {. Reutter } \\
& \text { James } W \text {. Fletcher }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Prepared for } \\
& \text { Toledo Esison Company } \\
& \text { Toledo, Onio }
\end{aligned}
$$

$$
\begin{aligned}
& \text { THE OHIO STATE UNIVERSITY } \\
& \text { CENTER FOR LAKE ERIE AREA RESEARCH } \\
& \text { COLUMEUS, OHIO } \\
& \text { February } 1979 \quad 8002120003
\end{aligned}
$$

3.1.2.a.1 Plankton Studies (Phytoplankton and Zooplankton)

Procedures

Plankton samples were collected approximately once every 30 days from May through Noveniber from 7 sampling stations in the vicinity of Locust Point (Figure 1). Samples could not be collected during April due to an unusually long winter and the presence of ice. Four vertical tows, bottom to surface, were collected at each station with a wisconsin plankton net (12 cm mouth; no. $20,0.080 \mathrm{~mm}$ mesh). Each sample was concentrated to 50 ml . Two samples were preserved with lugol's and used for phytoplankton analysis. Soda water was added to the remaining 2 samples to relax the $z 00 p l a n k t e r s$ prior to preservation with 5% formalin. The volume of water sampled was computed by multiplying the depth of the tow by the area of the net mouth. Three $1-m$ aliquots were withdrawn from each $50-\mathrm{ml}$ sample and placed in counting cells.

Whole organism counts of the phytoplankton were made from 25 random whipple Disk fields in each of the three $1-\mathrm{ml}$ aliquots from 2 samples. when filamentous forms number 100 or more in 10 Whipple fields, tney were not counted in the remaining 15 fields. Identification was carried as far as possible, usually to the genus or species level.

All zooplankters within each of the three $1-m 1$ aliquots from 2 samples were counted by scanning the entire counting cell with a microscope. Identification was carried as far as possible, usually to the genus or species level.

Phytoplankton

Results. Phytoplankters collected from May througn November 1978 were divided into 54 taxa, generally to the genus level (Table 1). Fifteen taxa were grouped in Bacillariophyceae, 23 in Chlorophyceae, 1 in Chrysophyceae, 2 in Dinophyceae, 1 in Euglenophyceae, 10 in Myxophyceae, and 2 in Protozoa.

Monthly mean phytoplankton populations ranged from $29,607 / 1$ in July to $281,852 / 1$ in May (Table 1). The mean density from all samples collected in 1978 was $109,768 / 1$. Phytoolankton densities at individual sampling stations ranged from 3,389/1 at Station 8 in Jun. ${ }^{2}$ to $504,678 / 1$ at Station 1 in May (Table 2). Population pulses were observed in the spring and the fall (Figure 2). The spring pulse was caused by diatoms while the fall pulse was caused by green algae (Figure 3).

Monthly mean bacillariophycean densities ranged from $915 / 1$ in july to $280,066 / 1$ in Hay (Table 1). The annual mean bacillariophycean density from all samples collected during 1978 was $46,267 / 1$ or 42 percent of the entire phytoplankton density. The dominant diatom taxa were Melosira sp. in May, June, and July; Asterionella formosa in August; and Fragilaria crotonensis in September, October, and November. Melosira so. had the largest annual mean population, $13,972 / 1$. Diatoms were the dominant phytoplankton group in May when they constituted 99 percent of the entire phytoplankton population.

TABLE 1 MONTHLY MEAN POPULATIONS* OF
INDIVIDUAL PHYTOPLANKTON TAXA AT LOCUST POINT - 1978

TAXA	May 11	June 29	$\begin{aligned} & \text { July } \\ & 25 \end{aligned}$	Aug. 17	$\begin{gathered} \text { Sept } \\ 15 \end{gathered}$	$\begin{aligned} & 0 c t \\ & 17 \end{aligned}$	Nov. 1	Grand Nean
BACILLARIOPIYCEAE (Diatoms)								
Asterionella formosa	23896	68	15	1111	354	1159		
Diatoma sp.		0	0	111	354 5	1159 0	4841 0	4492
Fragilaria crotonensis	10483	676	71	880	3331	8900	9310	4807
Gyrosigma sp.	0	$\begin{array}{r}0 \\ \hline\end{array}$	0	1	0	8900 0	9310 0	$\begin{array}{r} 4807 \\ 0.2 \end{array}$
Melosira sp.	121411	4734	828	927	1040	1882	1977	0.2 18972
Navicula sp.	223	34	-	0	1047 0	1882 0	1977 0	18972 37
Nitzschid sigmoidea	0	0	0	3	0	0 0	0 0	$\begin{array}{r} 37 \\ 0.4 \end{array}$
Nitzschia sp.	167	0	0	0	0	0	0 0	$\begin{array}{r} 0.4 \\ 24 \end{array}$
Sceletonema subsalsa	117382	0	0	0	0	0	0	$\begin{array}{r} 24 \\ 16769 \end{array}$
Stephanodiscus binderanus	3147	0	0	64	0 65	0 24	0 0	16769
Stephanodiscus $s p$.	0	0	0	64 0	$\begin{array}{r} 65 \\ 0 \end{array}$	24 0	0 9	$47!$
surirella sp.	22	0	0	5	8	0 0	9	1 5
Synedra actinastroides	0	0	0	2	0	0	0	0.2
Synedra sp.	673	0	0	40	16	34	18	1;
Tabellaria sp	2662	26	0	336	177	506	315	5,
Subtotal	280066	5539	915	3372	4997	12505	16471	46267
CHL OROPHYCEAE (Green Algae)								
Actinastrum hantzchii			0	0	2		0	
Actinastrum sp.	0	0	0	0	0	0	7	1
Ankistrodesmus falcatus	0	0	0	1	2	0 0	$\begin{aligned} & 7 \\ & 2 \end{aligned}$	1
Binuclearia tatrana	0	0	9958	749	1168	23603	114539	21431
Botryococcus sudeticus	0	0	632	2585	168 413	23603 64	114539 78	21431 539
Closteriopsis longissima	0	0	0	$\begin{array}{r}20 \\ \hline\end{array}$	47	64 30	78 208	539 44
Closterium acerosum	0	0	0	0	14	0	0	2
Closterium sp.	0	0	0				0	

TABle 1 (Con't.)
MONTIILY MEAN POPULATIONIS* OF
INDIVIOUAL PHYIOPLANKTON TAXA AT LOCUST POINT - 1978

TAXA	$\begin{aligned} & \text { May } \\ & 11 \end{aligned}$	June 29	July 25	Aug. 17	$\begin{aligned} & \text { Sept. } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { Oct } \\ & 17 \end{aligned}$	Hov. 1	Grand Mean
CHL OROPHYCEAE (Green Algae)								
Coelastruin sp.			138		3	0	0	20
Cosmarium sp.	0	0	0	6	8	0	0	2
Dictyosphaerium sp.	0	0	982	1	0	0	0	141
Kirchneriella sp.	0	0	8	ก	0	0	0	1
0ocystis $s p$.	0	7	0	6	4	0	7	4
Pediastrum duplex	102	579	441	312	202	2023	1466	733
Pediastrum simplex	225	36	607	441	916	1434	1166	689
Scenedesmus sp.	105	40	11	4	6	4	28	24
Selenastrum sp.	28	0	0	0	0	0	0	A
Spirogyra crassa	0	0	0	0	7	0	0	1
Spirogyra sp.	0	0	2	0	0	0	0	0.2
Staurastrum paradoxum	20	0	198	62	51	3	89	0.2 60
Tetraspora sp.	0	0	32	0	0	0	0	60 5
Irentepohlia sp.	0	0	18	0	0	0	0	3
Unidentified	0	2117	0	0	0	0	0	302
Subtotal	482		13026	$.4192$	2845	27160	117566	24008
CHRYSOPIIYSEAE (Brown Algae)								
Dinobryon sp.	0	0	0	0	0	0	4	1
DINOPITYCEAE (Dinoflagellates)								
Ceratium hirundinella		100	1164					
$\frac{\text { Peridinium } s p .}{\text { Subtotal }}$	0	0 100	1168 1166	54 0	11	0	0 0	191
	7	100	1166	54	13	0	0	
LUGLENOPHYCEAE (Euglenas)								
Euglena sp.	0	0	0	0	4	0	0	1

TABLE 1 (Con't.)
moHithly mean populations* of
INDIVIDUAL PHYTOPLANKTON TAXA AT LOCUST POINT - 1978

* Expressed as no. of whole organisms/liter and computed fron duplicate vertical tows (bottom to surface) with a $\|$ isconsin plankton net (12 cm diameter, 0.080 mmesh) from 7 sampling stations on dates indicated.

TABLE 2
MONTHLY MEAN PHYTOPLANKTON POPULATIONS* FROH
SAMPLING STATIONS AT LOCUST POIHT, LAKE ERIE - 1978

Station	May 11	June 29	$\begin{gathered} \text { July } \\ 25 \end{gathered}$	August $1 ?$	Sept. 15	$\begin{aligned} & 0 \mathrm{ct} . \\ & 17 \end{aligned}$	Nov. 1	Grand Niean
1	504678	52904	24934	30122	69070	65157	260749	143945
3	267168	15420	28707	48336	67592	226943	244023	128313
6	298575	33599	47841	36724	86274	88069	172088	109024
8	191915	3389	15871	116805	86739	71015	199435	97881
13	214234	42701	23913	119697	93823	77695	75855	92559
14	251516	33442	28692	95567	33979	64988	118177	96623
18	244880	36995	37254	89559	123929	105053	89567	103891
Grand Mean	281852	31207	29602	76687	83484	99846	165699	109768

* Data presented as no. of whole organisms/liter and computed from duplicate vertical tows (bottom to surface) with a Wisconsin plankton net (12 cm diameter, 0.630 mm mesh) at each station.


```
    F:GURE 3
    MONTHLY MEAN SACILLAR:OPHYCEAE, CHLOPOPHYCEAE, AND
MYXOPHYCEAE POPULATICNS FOR LAKE ERIE AT LOCUST PO:NT, 1978.
```


Monthly mean chlorophycean densities ranged from 482/1 in May to $117,566 / 1$ in November with an annual mean population trom all samples collected during 1973 of $24,208 / 1$ or 22 percent of the total phytoplankton population (Table 1). The dominant green algae taxa vere pedistr, m simplex in May; an unidentified specimen in June; ginuclearia tatranc in Jiy, September, October, and Hovember; and Botryococcus suoeticus in Aug.s:. 3nnuclearia tatrana had the largest annual mean p, vulation, 21, $431 / 1$. Chloropnyceae was the dominant phytoplankton class if November, representing 71 percent of the entire phytoplanktón population.

Chryscphyceae was a rare class represented only by Dinobryon sp. It was present in samples trom November, $4 / 1$ (Table 1).

Dinophyceans were represented by 2 taxa, Ceratium hirundinella and Peridinium Sp. (Table 1). Neither occurred in samples from Octoder or November. Ceratium hirundinella was the dominant of the two during the remaining months.

Euglenophyceae was represented only by Euglena sp. It occurred in September, 4/1 (Table 1).

Monthly mean myxophycean densities ranged from $1,292 / 1$ in May to $75,577 / 1$ in September with an annual mean density from all samples collected in 1978 of $39,278 / 1,36$ percent of the total phytoplankton mean (Table 1). The dominant myxophycean taxa were Oscillatoria Sp. in May and November and Aphanizomenon flos-aquae fiom June througn uctober. Aphanizomenon exhioited the largest annual mean density, $36,621 / 1$. Myxophyceae was the dominant algal class from June through October, representing 73 percent, 49 percent, 90 percent, 91 percent, and 60 percent, respectively, of the total phytoplankton population.

Protozoa, grouped here with the phytoplanktor, was represented by 2 taxa, Domatomonas $S P$. and an unidentified flagellate. Domatomonas occurred in every collection and was always the dominant of the two.

All raw data were keypunched and are stored in Columbus, Onio at the offices of the Center for Lake Erie Area Research on the campus of The Ohio State University.

Analysis. The Center for Lake Erie Area Research has monitored phytoplankton populations at Locust Point since 1974 (Figure 2). Radigal differences were noted between populations in 1974 and 1975 , but 77 percent of the variation was explainable by variation in physical and chemical parameters of water quality (Reutter, 1976). Bacillariophycean and Chlorophycean populations observed in 1974 and 1975 were quite comparable (Figures 4 and 5). The Myxopnycean component of the populations accounted for the differences between the 2 years. No Myxophycean bloom occurred in 1974, whereas a huge Aohanizomenon sp. bloom occurred in August 1975. This bloom was highly corretated with increased transparency (80 percent greater than in 1974) and decreased turbidity (20 percent of that observed in 1974) (Reutter, 1976). A correlation of this type was first hypothesized by Chandler and Weeks (1945).

FIGURE 4. MONTHILY MEAN BACILLARIOPHYCEAE, CHLOROPHYCEAE, AND MYXOPHYCEAE POPULATIONS FOR LAKE ERIE AT LOCUST FOINT - 1974.

FIGUIRE 5. MONTHLY MEAN BACIL LARIOFHYCEAE, CHLOROPHYCEAE, AND MYXOPHYCEAE POPULATIONS FOR LAKE ERIE AT LOCUST POINT - 1975.

Bacillariophyceae and Chlorophyceae populations in 1976 were similar in size and zomposition to those observed in 1974 and 1975 (Figures 4, 5, and 5). The diatom population, especially, was strikingly similar from year to year, with 1976 most rasembling 1974. Populations were always greatest in spring and fall, and pulses which began and ended abruptly were commonolace. Chlorophycean populations tended to increase in the fall. A very small pulse was observed in June 1975 which was not observed in 1974 or 1975 .

The 1976 Myxophycean population was between the extremes set forth in 1974 and 1975. A bloom of Aphanizomenon Sp. occurred in July and August which corresponded well in time of occurrence with the 1975 August bloom, but, though it was slightly longer in peak duration, it was only one third the magnitude of the 1975 bioom and started and ended much more abruptly. Again, these pulses appear to be explainable by variation in transparency and turbidity. Transparency in 1978 was similar to 1975 and much greater than 1974, while turbidity, though more variable than in 1974 or 1975 , reached a low in july similar to that observed in 1975 and below that of 1974 (Reutter and Herdendorf, 1977).

The 1977 phytoplankton population exhibited diatom blooms in fall and spring as in preceding years, however, the spring bloom was approximately twice as large as those observed from 1974-1976 (Figure 7). The myxophycean population showed pulses in summer as in 1975 and 1976 , but blue-greens also increased in the fall which was only hinted at in previous years. Chlorophycean populations were generally low and were very similar to those observed in 1974 and 1976.

The major differences between 1977 and previous years were in the size of the spring and fall diatom pulses and the summer myxophycean pulse. However, lack of a large summer blue-green bloom was not unusual (1974) and the unusually long and cold winters of 1976-1977 and 1977-1978 undoubtedly had a large influence on diatom densities as they are cold water forms. Furthermore, the increase in the myxophycean densities in the fall of 1977 was due to Oscillatoria SD. which is also a cold water form.

The 1978 phytoplankton population exhibited spring and fall blooms and was very nearly a mirror image of the 1977 population (Figure 2). However, the composition of this population was quite different from the 1977 population. All three major components of the phytoplankton, diatoms, greens, and bluegreens, exhibited relatively large blooms during 1978.

The spring diatom bloom was the largest recorded to date, and its composition would indicate that it was probably much larger. The rationale for this statement is that approximately half thé bloom was composed of Sceletonema Subsalsa which is generally too small to be collected with an 80μ plankton net. Therefore, although 'arge numbers appeared in the sample, even greater numbers were probably present but passed through the net. Consequently, this should not be viewed as a new species in the area, but rather a species which normally is not sampled by these methods. Its presence at this time is probably due to clogging of the plankton bucket with the large Melosira so. population and suspended sediments.


```
    FIGJRE }
    MONTHLY NEA:I BACILLARIOPHYCEAE, C- OROPLYCEAE, AHO
NYYOPHYCEAE PCPULATIONS FOR LAKE ERIE AT LOCUST POINT, 1977.
```


The chlorophycean population was very similar to that observed in 1974 and 1977. However, the maximum wnich occurred in November was the highest observed for this grouo. This peak was almost entirely due to a bloom of zinuclearia tatrana. It should be pointed out that a monthly sampling frequency for plankton can lead to this type occurrence. It is also worth noting that Mougeotia 52 . was absent. Although never an extremely abundant taxon, it is usualiy comon. Recounting several samples indicated that aithough it was present, the numbers were so low that it was most often missed when counting 25 random whipple Disk fields of view. A check of similar samples collected througnout the Western Basin of Lake Erie for the USEPA by the Center for Lake Erie Area Research, revealed a similar trend.

Myxophycean populations in 1978 were most live those from 1975 and 1976. As usual, the dominant taxa were Aphanizomenon and Oscillatoria.

In summary, phytoplarikton populations observed at Locust point during 1978 are similar to those of previous years and appear typical for those occurring in the nearshore waters of the Western Basin of Lake Erie.

Zooolankton

Results. Zooplankters collected May through November 1978 were grouped in 41 taxa generally to the species level (Table 3). Fwenty taxa were grouped under Rotifera, 12 under Copepoda, 8 under Cladocera, and 1 under Protozoa. Monthly mean densities ranged from $135 / 1$ in November to $557 / 1$ in September. The mean density from all samples collected in 1978 was $339 / 1$. Zooplankton densities at individual sampling stations ranged trom 124/1 at Station 8 in May to $394 / 1$ at Station 18 in September (Table 4).

Monthly mean rotifer densitics ranged from $33 / 1$ in June to 264/1 in May (Table 3). The annual mean rotifer density for all samples collected in 1973 was $108 / 1$ or 32 percent of the entire zooplankton density. The dominant rotifer taxa during 1978 were Synchaeta Spp. in May; Irichocerca multicrinis in June, July, and August; Polyarthra Vugaris in September and November; and an unknown rotifer in October. Polyartinra vulgaris had the largest annual mean density, 30/1. Rotifera was the dominant zooplankton group during May, September, October, and November constituting 39 percent, 38 percent, 49 percent, and 37 percent rescectively, of the total zooplankton population. In contrast to this, rotifers constituted only 6 percent of the June population.

Monthly mean copepod densities ranged from $31 / 1$ in May to $141 / 1$ in August (Table 3). The mean copepod density from all samples collected in 1973 was $88 / 1$ or 26 percent of the entire zooplankton population. Cyclopoid nauplif dominated every month but August when Diaptomus siciloides was the dominant taxon. Copepoda was the dominant 2000 lankton group in vuly and August representing 34 percent and 56 percent, respectively, of the total zooplankton population.

Monthly mean cladoceran densities ranged from $1 / 1$ in May to $360 / 1$ in June (Table 3). The mean cladoceran density from all samples collected in 1973 was $113 / 1$ or 35 percent of the total zooplankton population. Cladoceran populations were dominated by Diaphanosoma leuchtenbergianum in May; Eubosmina corregoni
TABLE 3

TAXA	$\begin{aligned} & \text { May } \\ & 11 \end{aligned}$	June 29	$\begin{gathered} \text { July }_{25} \end{gathered}$	Aug. 17	Sept. 15	$\begin{aligned} & \text { Oct. } \\ & 17 \end{aligned}$	Nov. 1	Grand Mean
ROTIFERA								
Asplanchna priodonta	0.0	0.0	0.0	0.0	1.2	0.9	0.0	0.3
Brachionus angularis	13.6	13.6	4.3	0.1	47.1	3.0	1.0	11.8
B. calyciflorus	19.3	0.0	0.1	0.1	0.0	0.0	0.0	2.8
\bar{B}. diversicornus	0.0	0.0	0.0	0.0	2.4	0.1	0.0	0.4
Cephadella spp.	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.1
Chromogaster sp.	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.01
Filinia terminalis	0.9	0.0	0.0	0.0	0.04	0.0	0.0	0.1
Kellicottia longispina	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.01
Keratella cochlearis	16.0	0.2	0.1	0.7	8.9	7.3	12.9	6.6
K. quadrata	12.1	3.4	0.0	0.0	0.2	0.0	0.04	2.3
K. vulga	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.1
Lecane spp.	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.01
Lepadella sp.	0.2	0.0	0.0	0.1	0.0	0.0	0.0	0.04
Notholca spp.	9.0	0.0	0.0	0.0	0.0	0.0	0.0	1.3
Polyarthra vulgaris	27.9	0.1	5.2	5.0	104.2	32.5	34.9	30.0
Synchaeta spp.	148.3	0.3	0.5	0.0	0.04	0.8	0.4	21.5
Trichocerca spp.	0.0	0.0	0.0	0.0	47.4	0.0	0.0	6.8
T. multicrinis	0.2	15.6	28.4	30.1	0.0	0.5	0.1	10.7
Unknown Rotifer A	15.8	0.0	0.0	0.0	0.0	0.0	0.0	2.3
Unknown Rotifer B	0.0	0.0	0.0	0.0	0.0	74.8	0.0	10.7
Subtotal	263.5	33.4	38.5	36.0	212.8	120.0	49.4	107.6
COPEPODA								
Diaptomus minutus	0.3	0.3	0.8	0.0	0.1	0.0	0.0	0.2
D. sicilis	0.1	0.2	0.9	2.8	0.2	0.0	0.2	0.6
D. siciloides	0.0	0.03	6.6	50.8	8.4	0.9	0.2	9.6
Eurytemora affinis	0.0	0.0	0.9	0.0	0.0	0.0	0.04	0.01
Copepodids, calanoid	3.8 5.1	0.1 0.0	4.3 21.0	28.6 40.0	4.0 7.9	2.6 5	0.4 1.5	6.2

```
TABLE 3(Con't.)
```

MONTHLY MEAN POPULATIONS OF
INDIVIDUAL ZOOPLANKTON TAXA AT LOCUST POIIIT - 1978

TAXA	May 11	June 29	$\underset{25}{\text { Jul }_{25}}$	Aug. 17	Sept. 15	$\begin{aligned} & 0 c t . \\ & 17 \end{aligned}$	Nov. 1	Grand Hean
COPEPODA								
Cyclopoid Copepods								
Cyclops bicuspidatus thomasi	0.04	0.2	0.0	1.1	1.0	0.1	0.6	0.4
C. vernalis	0.5	24.1	11.4	9.0	9.9	4.3	0.5	8.5
Mesocyclops edax	0.0	0.1	0.0	0.0	0.0	0.0	0.1	0.02
Tropocyclops prans nex	0.0	0.0	0.0	0.0	4.0	3.3	3.7	1.6
Copepodids, cyclopoid	3.7	10.2	7.2	3.7	16.5	4.0	9.2	7.8
Naupleii, cyclopoid	17.9	55.2	73.9	5.2	46.8	46.0	32.0	39.6
Subtotal	31.4	90.6	126.1	141.2	108.9	67.1	48.4	87.7
CLADOCERA								
Bosmina longirostris	0.0	0.0	0.0	0.0	0.04	0.1	0.0	0.02
Chydorus sphaericus	0.0	1.3	33.5	30.2	83.7	9.8	11.7	24.3
Diaphanosoma leuchtenbergianuin	0.3	0.1	0.1	2.3	4.8	0.6	0.1	1.2
Daphnia galeata mendote	0.0	0.1	0.3	0.1	0.04	0.5	0.2	0.2
D. retrocurva	0.2	71.1	42.7	13.6	44.5	16.2	1.9	27.2
Eubosmina corregoni (mature)	0.0	274.7	45.1	25.7	59.2	28.3	12.3	63.6
E. corregoni (inumature)	0.0	12.4	0.0	0.0	0.0	0.0	0.0	1.8
$\frac{\text { Leptodora }}{\text { Subtotal }}$	0.0	0.6	0.2	0.3	0.1	0.1	0.0	0.2
Subtotal	0.5	360.3	121.9	72.2	192.4	55.5	26.1	118.4
PROTOZOA Difflugia sp.	0.0	33.4	83.9	0.9				
TOTAL	295.3	517.7	370.3	250.3	557.0	245.9	134.7	338.7

TABLE 4
MONTHLY MEAN ZOOPLAAKION POPULATIONS*
FROM SAMPLING STATIONS AT LOCUST POINT, LAKE ERIE - 1978

Station	$\begin{aligned} & \text { May } \\ & 11 \end{aligned}$	June 29	$\underset{25}{\text { July }}$	Augus t 17	Sept. 15	$\hat{i c t}_{17}$	Nov. 1	Grand Mean
1	591.9	572.9	436.2	306.5	449.1	298.4	131.9	398.1
3	326.9	534.6	549.7	270.7	541.3	265.3	150.7	377.0
6	309.2	666.1	285.9	216.6	517.5	241.3	131.8	338.3
8	124.4	386.3	318.5	227.8	412.3	252.1	137.3	265.5
13	243.4	497.8	336.5	197.4	513.1	179.3	127.0	299.2
14	240.4	460.8	276.9	270.8	571.3	232.9	135.3	312.6
18	231.2	505.2	406.7	262.3	894.2	252.0	129.1	383.0
Grand Mean	295.3	517.7	370.3	250.3	557.0	245.9	134.7	338.7

* Data presented as no. of organisms/liter and computed from duplicate vertical tows (bottom to surface) with a Wisconsin plankton net (12 cmin diameter, 0.080 mm mesh) at each station.
(matture) in June, July, October, and November; and Chydorus sphaericus in August uni September. Eubosmina corregcni (mature) nad the argest annual mean derisity, 64/1. CTacocera was the dominant zooolankton group only in june constituting 70 percent of the total zooplankton population.

Monthly mean protozoan densities ranged from 0/1 in May to $84 / 1$ in July (Table 3). The annual mean density of $25 / 1$ was 7 percent of the total zooplankton population. Difflugia Sp. was the only protozoan taxon. Protozaa was never the dominant zocplankton group.

All raw data were keypunched and are stored in Columbus, Ohio at the offices of the Center for Lake Erie Area Research on the campus of The Onio State University

Analysis. Zooplankton populations at Locust Point have been monitored since 1972 . n 1978, 2 new monthly lows were established for total zooplankton density. Zooplankton densities observed during May and June were the lowest recorded to date although the June density was very s milar to that observed in 1973 (Figure 8). Results from the other months of 1978 fell within the ranges established from 1972-1977. Densities in July were slightly larger than 1977, slightly less than 1976, and less than those observed from 1972-1975. Densities observed in August were slightly larger than those observed in 1977, similar to those of 1973, and smaller than those of 1972 and 1974-1976. Densities observed in September of 1978 were greater than those observed during September of 1972 and 1975-1977 and virtually equal to those observed during September of 1973 and 1974. October densities were greater than those of 1972 and 1977 and less than those from October of 1974-1976. November densities were greater than 1977 and less than 1972-1976.

There are several plausible explanations for the variation which has occurred. Samples in 1972 were collected with a 3-1 Kemmerer water bottle at the surface. From 1973-1978 samples were collected by a vertical tow, bottom to surface, with a Wisconsin plankton net. A brief comparison study in 1973 showed that the vertical tow captured approximately 50 percent more taxa than a 3-1 grab (Reutter and Herdendorf, 1974). The actual stations sampled have varied from year to year. In 1973 the intake and discharge pipeli es were being dredged, and in 1972, tropical storm Agnes affected the weather. Due to the weather, samples were neither collected on the same day of the month each year nor spaced exactly one month apart. Hubschman (2960) pointed out the tremendous differences which occurred between daily samples, and these samples were taken monthly, while Wieber and Holland (1968) showed that even with replication, wide variation can occur due to patchiness in population densities. The high spring populations from 1975 were undoubtedly largely due to early warming and lower turbidity as the total zooplankton population was significantly correlated with joth temperature and turbidity ($r=0.587$ and -0.328 , respectively) (Reutter, 1976). Finally, operation of station circulating pumps was common in 1976 , 19:7, and 1978.

Of the three main components of the zooolankton population, rotifer densities are by far the most erratic and unpredictable (Figure 9). However, densities observed in 1978 were generally within the bounds described by populations from 1972-1977. The one exception was July when the densities

-21-
observed were the lowest during the 7 year sampling period. Rotifer densities observed during May 1978 were greater than those observed during May of 1975 and 1977 and less than those observed during May of 1973, 1974, and 1976. July densities were greater than 1972, approximately equal to 1976 and 1977, and less than 1973-1975. August densities were greater than 1977 and less than 19721976. September densities were greater than those observed in 1972 and 19751977 and less than those of 1973 and 1974. October densities were greater than those from 1972, 1974, 1975, and 1977, but less than those from 1976. November densities were greater than 1977 and less than 1972-1976.

Copepod populations are much more regular and predictable than rotifer populations (Figure 10). They generally exhibit one peak per year and this usually occurs in the May/June period. In 1978, one peak was observed, however, it occurred about two months later, July/August, and was smaller than those from previous years. However, due to the frequency of sampling and the fact that peaks are always controlled by pulses of immature forms, this lower density in 1978 should not be considered too unusual as the peak may have been missed.

As with the copepod densities, cladoceran densities are quite regular and predictable. They often exhibit two peaks, one in the spring and one in the fall (Figure 11). This was the case in 1978 which was extremely similar to 1975 and 1976. In general these three jears exhibited the oreatest cladoceran densities followed by 1974 and 1977, which were very similar, and 1973 which was a poor year for cladocerans.

In summary, due to the large variability observed in previous years, zooplankton populations observed in 1978 should be considered typical for the south shore of the Western Basin of Lake Erie.

figure 11 . montily mean cladoceran populations for LAKE ERIE At LOCuSt POINT, 1972 - 1978.

LITERATURE CITE:

Chandler, D.C., and O.3. Weeks. 1945. Limnological studies of western Lake Erie V : relation of limnological and meteorological conditions to the production of phytoplankton in 1942. Ecol. Monogr. 15:435-456.

Hubschman, J.H. 1960. Relative daily abundance of planktonic crustacea in the island region of western Lake Erie. Ohio J. Sci. 50:335-340.
Reutter, J.M. and C.E. Herdendorf. 1977. Pre-operational aquatic ecology monitoring program for the Cavis-Besse Nuclear Power Station, Unit 1. The Ohio State University, CLEAR, Columbus, Ohio. 205 pp.
Reutter, J.M. 1976. An Environmental Evaluation of a Nuclear Power Plant on Lake Erie; Sone Aquatic Effects. Ph.D. Dissertation, The Ohio State University, Coiumbus, Ohio. 242 pp .

Reutter, J.M. and C.E. Herdendorf. 1974. Environmental evaluation of a nuclear power plant on Lake Erie. Ohio State Univ., Columbus, Ohio. Project F-41-R-5, Study I and II. U.S. Fish and wildifife Service Rept.
145 pD .

Wieber, P.H. and W.R. Holland. 1968. Plankton patchiness: effects on repeated nt tows. Limnol. Oceanogr. 13:315-321.

X

Section 3.1.2.A.2
 BENTHIC STUDIES

