UNITED STATES
NUCLEAR REGULATORY COMMISSION
WASMINGTON, D. C. 2065
Enclosure 1
SAFETY EVALUATION BY THE OFFICE OF NUCLEAR REACTOR REGULATION PLANT SYSTEMS BRANCH
OFFSITE RADIOLOGICAL CONSEQUENCE OF LOCA DURING CONTAINMENT PURGE
ZION NUCLEAR POWER STATION, UNITS 1 AND 2
DOCKET NOS. 50-295 and 50-304

1.0 INTRODUCTION

Zion Units 1 and 2 (CECO) has responded to an NRC request to propose TS to primarily constrain operation of the large ($42^{\prime \prime}$) containment purge supply and exhaust valves on these units.
The former Plant Systems Branch, Section A, of the Division of PWR Licensing A, requested Section B of the same branch to review the offsite radiological consequences of this proposal.

2.0 EVALUATION

Background review shows that the facility was evaluated on the basis of normally closed purge valves so that these consequences were never included In the Zion SER. Further, that a letter from Westinghouse (W) to Commonwealth Edison Company dated October 22, 1976 on the subject of "Offsite Doses During LOCA and Containment Purge" (Ref. 2) has never been evaluated by the NRC. Subsequent to the TMI-2 event, the operability and automatic control of these valves was evaluated leading to the request for the required TS, but the Radiological Assessment was left is a "longer) term issue" (Ref. 3) which was intended to be resolved in a subsequent probabilistic risk assessment which definitively excluded it from consideration without any Justification (Ref. 4).
The \mathbf{y} analyses undertaken under Commonwealth Edison instruction, uses an RCS operational inventory of $60 \mathrm{uc} / \mathrm{gm}$ equivalent I 131 at the time of the accident With a resulting site boundary thyroid dose due to iodine (during closure of the valves). of 52 ram , and which added to the containment leakage dose of 123 rem gives a total 175 rem which is within the 10 CPR 100 init of 300 rem. The total iodine inventory of the RCS is assumed to be released into containment on initiation of the LOCA; a 50% plate out is assumed leaving the residual 50% as part of containment inventory for discharge out through both fully open containment purge ines for a total of seven (7 seconds).
However, when reviewed against the BTP CSB 6-4, Item B.5.a requires that:
"The source term used in the radiological calculations should be based on a calculation under the terms of Appendix k to determine the extent of fuel failure and the concomitment release of fission products, and the fission product activity in the primary coolant."

Further: SRP 4.2 identifies fuel fallure with infringement of DNBR crsterid. with the related requirement that gap activity be considered as part of the source term, and Regulatory Guide 1.77 recommends that under similar circumstances, gap activity should be assumed at 108 of core activity. Fuel damage criteria also includes the occurrence of center line melting with measures of additional activity release also guided by Regulatory Guide 1.77. but the 2 ion SAR shows this does not occur.

Revising the source term to Appendix K calculations [in which all fuel goes to DNBR in second] with related release of all gap activity into containment, with limited blowdown to offsite during the related 7 seconds closure time and absent a 50% plate out of iodine as can be interpreted from the above referenced item B.5.A, increases offsite dose due to containment purge above by a factor of 3400 to $176,000 \mathrm{rsm}$ and would thereby be completely unacceptable. Limiting the purge line vaives to an opening of 50° could reduce offsite dose to 64,000 rem and represents the least value which may be proposed within the licensing basis.
Note: The BTP CSB $6-4$ proposing that valve closure within 5 seconds will ensure purge valves are closed before the onset of fuel fallures has since been extended by the staff on a plant-specific basis to 25 seconds. Further, the writer cannot find any safety evaluation report supporting these positions. These positions cannot be sustained for 210 n since a) ONBR infringement (from Appendix K calculations) and hence fuel failure and gap activity release [Ref. SRP 4.2) of 10% of core inventory (Ref. Regulatory Guide 1.77) occur within t second of the inftiation of the LOCA, b) related maximum clad temperatures of $1750^{\circ} \mathrm{F}$ occur imediately and never reduce below $1400^{\circ} \mathrm{F}$, c) RCS pressure in the region of the core rapidly reduces from 2250 psia to 900 psia in 7 seconds increasing potential pressure drop across the cladding for release of gap activity to the RCS inventory, d) the massive bulk boiling and blowdown surrounding the failed fuel uitimately discharges 270,000 lbs of RCS inventory into the containment at 7 seconds into the event increasing containment pressure from 0.3 psig to 23.8 psig (in these 7 seconds), and e) causes $15,000 \mathrm{lbs}$ of the resulting containment inventory to be discharged to the environment through $2 \times 42^{\prime \prime}$ fully open lines, or 5400 lbs for the same lines with valve closed to 50°.

3.0 CONCLUSIOM

The $42^{\prime \prime}$ valves at 2 ion should rema in closed in Modes 1, 2, 3 , and 4 because the consequences of the offsite dose to thyroid (from iodine) during a LOCA is unacceptably high; whole body dose has not besn evaluated. The least value for offsite dose to the thyroid which may be proposed within the existing licensing basis is 64,000 rem.
The conventional treatment of BTP CSB 6-4 which assumes that fuel fallure does not occur over the first $5-15$ seconds after a LOCA and thereb; that only RCS operating inventory of fission products is released to the containment, and then to the environment, cannot in general be susteined against thermal hydraulic andyses for containment response, and licensing basis requirements (including criterfa) for the calculation for, and the occurrence of, fuel damage and the quantification and ireatment of the resulting source terms.

1. Letter from P. C. Blond (CECO) to H. P. Denton (: RRC) : Subject: 2ion, Units 1 and 2. Proposed Amendment to Facility Operating License Nos. DPR-39 and DPR-48 dated February 21, 1986.
2. Letter from R. L. Kelley (ψ) to C. Reed (CECO): Subject: Of isite Dose During LOCA and Contǟnment Furge, dated October 22, 1986.
3. Letter to L. ${ }^{n}$. DelGeorge (CECO) from S.A. Vorga (NRC); Subject: Generic Concerns of Purging and Venting Containments, dafed September 9, 1981.
4. Memo for F. H. Robinson from R. W. Houston, Subject: "Evaluation of the Risik at Zion. "dated August 14, 1985.
```
Plant Name: Zion Nuclear Generating Stations, Units 1 and 2
SER Subject: Containment Purge and Vent Valve Operation
TAC Nos.: 55417/8
```


Summary of Review/Inspection Activities

The licensee provided an evaluation of offsice doses undertaten in 1976. This was undertoken with a methodology and source term chosen by the 1icensee. The Ifcensee did not present results from alterna tive more detailed methodologies which could be considered enforceable under exitting regulatory positions and the related circumstances.

Narrative Discussion of Licensee Performance - Functional Area
The single only methodology used by the licensee is not an acceptable approach for estimating doses under the proposed circumstances and especially since alternate detalled evaluations recuired by the SRP give greatly increased values beyond 10 CFR Part 100 limits. A prudent approaech vould have recognized the veficiencies and risks in the single methodology adopted with resulting substantively different recommenda cions to ensure public healith and safety.
Author: Robert B. A. Líciardo
Date: May 11, 1989

