BIG ROCK NUCLEAR POWER STATION
 EVACUATION TIME ESTIMATES

HMM Document No. 80-053

June 1980

Prepared for:
CONSUMERS POWER COMPANY
1945 Parnall Road
Jackson, Michigan 49201

Prepared by:
HMM ASSOCIATES, INC.
One Forbes Road
Lexington, Massachusetts 02173

TABLE OF CONTENTS

Page
1

1. INTRODUCTION
2. STUDY AREA3
2.1 Townsnips within 2,5 , and 10 miles 3
2.2 Sector Analyses 4
3. POPULATION DISTRIBUTION AND ESTIMATED VEHICLE 6
DEMAND
3.1 Population and Vehicle Estimates Associated 6
with General Evacuation
3.2 Population and Vehicle Estimates Associated 10
with Facilities Having Special Evacuation Needs
4. ROAD NETWORK CHARACTERISTICS AND EVACUATION ROUTES 11
5. EVACUATION TIMES 12
5.1 Summary 12
5.2 Assessment and Notification to Evacuate 12
5.3 General Evacuation 16
5.4 Special Facilities Evacuation 22
5.5 Confirmation of Evacuation 24
5.6 Total Evacuation Time 25
APPENDIX A
APPENDIX B
APPENDIX C APPENDIX D APPENDIX E

APPENDIX F

APPENDIX G
LETTERS: (NRC AND MICHIGAN DEPARTMENT OF TRANSPORTATION CORRESPONDENCE) DISTRIBUTION OF VEHICLE DEMAND ESTIMATES FOR PERMANENT, SEASONAL, AND TRANSIENT POPULATIONS
1979 SURVEY OF HOUSING UNITS
CAPACITY CALCULATIONS
EVACUATION ROUTINGS
CHARLEVOIX COUNTY COMPREHENSIVE PLAN EOC ACTIVATION ALERT LIST

LIST OF TABLES

LIST OF ILLUSTRATIONS

	Within 10-Mile Radius of the Rig Rock ! clear Plant
Figure 2	Evacuation Analys is Study Areas
Figure 3	Location of Selected Land Uses
Figure 4	Estimated Vehicles Associated with a Summer Weekend
Figure 5	Estimated Venicles Associated with a Winter Weekday
Figure 6	Road Network Within a 10 Mile Radius of the Big Rock Nuclear Plant

1. INTRODUCTION

In a letter dated November 29, 1979, the U.S. Nuclear Regulatory Commission (NRC) requested all reactor operators to provide information on evacuation time estimates for specified zones in the vicinity of their nuclear power plants for both routine and adverse weather conditions. Other information concerning evacuation time estimates for "special facilities", was also requested in the NRC letter. A copy of this letter is attached as Appendix A. The purpose of this report is to provide a partial response to the NRC letter. Information collected and reviewed during the period January 7 to 18 was used for this evaluation and reporting effort.

This information was developed for areas within the $2-$, 5- and $10-\mathrm{mile}$ radii of the Big Rock site. Subsequent to the November 29, 1979 letter, a second letter was sent to Consumers Power Company from the NRC. A copy of this letter dated June 13, 1980 is also included in Appendix A and indicates that the plume exposure EPZ is defined as the area within about a 5 -mile radius of the Big Rock plant. Information on the area within 5 to 10 miles of the site has also be included as further background material.

The Emergency Operations Plan for Charlevoix County describes the interrelationship of the Big Rock Nuclear Plant personnel and state and local authorities in the event of emergency conditions. This plan has been reviewed for the purpose of providing information on established emergency procedures to protect populations within certain areas surrounding the Big Rock facility. This emergency response information was combined with data regarding area population distribution (estimated summer and winter populations) and local road network characteristics to estimate various times that an evacuation could take.

These evacuation time estimates are discussed in Section 5 and sumarized on Table 9. Appendix A also includes correspondence with the Michigan Department of Transportation,

Traffic and Safety Division The Departient reviewed work performed and provided comments which are attached. Section 2 describes the spatial areas analyzed in the vicinity of the site. Estimates of vehicles to be evacuated are described in Section 3. Information on the local road network to be used during an evacuation is included in Section 4.

2. STUDY AREA

2.1 Townships within 2, 5, and 10 Miles

Figure 1 shows the county, township and city boundaries within the 10 -mile radius. This radius falls mostly in Charlevoix County with a small portion in Emmet County.

- 2-Mile Radius. Charlevoix County (area includes portions of Hayes and Charlevoix Townships).
- 5-Mile Radius. Charlevoix County (area includes portions of Hayes and Charlevoix Townships and the City of Charlevcix, located at three to five miles southwest of the site). Charlevoix City, with a current permanent population of approximately 5,000 persor .- the largest population grouping in both the 0 - to 5 -mile and 0 - to 10 -mile radii. Other concentrations of populations are found near water bodies such as Lake Michigan and Lake Charlevoix.

10-Mile Radius. Charlevoix County (area includes all of Hayes and Charlevoix townships, and the City of Charlevoix, and portions of Norwood, Marion, Eveline, Bay and Evangeline townships). Smaller population groupings associated with unincorporated settlements or villages such as Ironton and Horton Bay also exist within the 10 -mile radius. Boyne City with a projected 1980 population of approximately 4,000 persons, is located 12 miles southeast of the Big Rock Nuclear Plant.*

Emmet County (area includes portions of Resort, and West Traverse Townships). The Cities of Petoskey,

[^0]> with a current population estimated at 7,000 , and Harbor Springs, with a population of about 2,000 , are each respectively located approximately 10.5 miles east and east-northeast of the Big Rock Nuclear Plant.*

2.2 Sector Analyses

Spatial areas examined were within the $2-, 5-$, and $10-\mathrm{mile}$ radii of the reactor site. Figure 2 shows the study areas examined in this report. The 2 -mile radius was analyzed as a single area (180° sector) while the areas within the 0 - to 5 -mile and 0 - to 10 -mile radii were divided into two parts for this evaluation $\left(90^{\circ}\right.$ sectors).** The same study area sectors were examined for both an assumed summer fair-weather condition and winter adverse-weather condition. Sectors evaluated were established following a review of available population information, a review of maps of the local road network, and a limited field inspection. Appendix E contains maps which delineate the various sectors analyzed. The following is a brief description of the sectors analyzed.

$2 \quad 0-5$

22-1/20
Sectors
ENE, E, lredominantly rural with some ESE, SE, i idustry. Main evacuation SSE, S, r iutes include U.S. 31, Boyne SSW, SW City Road and Old U.S. 31

S, SSW, Includes City of Charlevoix. SW, WSW Outside of City is predominantly rural. Main evacuation routes include U.S. 31, M-66, Boyne City Road, and Marion Center Road

[^1]Analysis Area

22-1/20 Seztors

ENE, E.,
ESE, SÉ, SSE

S, SSW, SW, WSW

Description

Predominantly rural with some industry. Seasonal residents are located along Lake Charlevoix. Main evacuation routes include U.S. 31, Boyne City Road and Pin Cherry Road.

Between 5 and 10 miles is predominantly rural. Small communities at Ironton and Barnard. Seasonal residents along Lake Charlevoix. Main evacuation routes include U.S. 31, M-66, Barnard Road and Marion Center Road.*

NE, ENE, E, ESE, SE, SSE

Predominantly rural with seasonal residents along Lake Charlevoix and Walloon Lake. Sparcely populated area exists between Lake Charlevoix and the South Arm. Main evacuation routes include U.S. 31, Boyne City Road Intertown Road, Peninsula Road, and Ferry Road*.

[^2]
3. POPULATION DISTRIBUTION AND
 ESTIMATED VEHICLE DEMAND

Available population and related housing data were reviewed. Tnese data provided the basis for estimating the potential number of vehicles involved in a general evacuation. Population and housing unit distribution data for 1980 for permanent residents, seasonal residents and daily transients were combined to obtain estimates of vehicies for a general evacuation analysis. In addition, some dat on selected facilities having special evacuation needs were developed.

Since the study area has an influx of seasonal residents during the summer period, a vehicle demand estimate for a summer weekend condition was made and used for this evacuation time analysis. A second vehicle demand estimate was made for a winter weekday condition. This second demand estimate was also used to evaluate evacuation times under adverse weather conditions. A capacity approach was used to make both the summer weekend and winter weekday vehicle demand estimates. Vehicle demand estimates and information on special facilities are described below:

3.1 Population and Venicle Estimates Associated with a General Evacuation

- Permanent and Seasonal Population

Table 1 provides a summary of the projected 1980 permanent and seasona+ populations by township and city. This table also summarizes estimates of vehicles associated with permanent and seasonal populations.

Vehicle demand estimates included in Table 1 are based on numbers of seasonal and year-round dwelling units. These data were obtained through the Charlevoix and Emmet County Planning Offices and are believed to reflect current conditions (see Appendix F).

Tables 2 through 7 provide summary information on several categories of facilities located within the 10 -mile radius of the site. These categories include:

Table 2 Major Employers,
Table 3 Overnight Accommodations,
Table 4 Campgrounds and Selected Recreation Areas,
Table 5 Recreational Boating,
Table 6 Medical Related Facilities, and
Table 7 Educational Facilities.
Information on sector locations of these selected major facilities and, where possible, estimates of associated vehicle demand are included on these tables. Facility locations are keyed to sectors and shown on Figure 3.

- Populations Associated with "Special Events"

During the summer and fall periods, a number of "special events" take place in the Charlevoix area which result in short-term increases of transient populations. Major events noted include:*

1) Art Fair. Major event. Next Art Fair scheduled for August 1980. Throughout this day, persons arrive and depart from Charlevoix City (East Park). Total permanent and seasonal resident and daily transient population visiting this area throughout the event is roughly estimated at 30,000 persons.
*Charlevoix Chamber of Commerce, Ms. J. Merta.
2) Venetian Festival. Major event. Similar to Art Fair with respect to attendance and location.
3) Hobby Craft. Another major event scheduled for July 12, 1980 at East Park, City of Charlevoix. Total daily attendance is estimated at 10,000 persons.
4) Castle Farms Concert. Major music concerts scheduled for several weekends during the summer months. No schedule for 1980 is presently available. Persons arrive in the afternoon for concerts normally scheduled for evening hours. Peak population est ated at a previous concert was $18,0^{n}$ persons. Castle Farms is located approximately $5-1 / 2$ miles south-southwest of the plant, and two miles south of the City of Charlevoix, on Route 66.
5) Golf Tournament. Tournament is held annually at the Belvedere Golf Club (City of Charlevoix). Attendance is estimted at 200 golfers and a large spectator population.
6) Fall Color Cruises. Boat cruises in Lake Charlevoix and Lake Michigan occur during the autumn period. It is estimated that 200 to 300 persons per day attend the cruises which occur over a 5 -day period.
7) National Sailboat Regatta. Scneduled for the summer of 1980 , this event may involve 100 boats (or 200 to 300 persons).

Vehicles associated with these events were not included in the following estimates of vehicle demand, since they occur only on several days during the year.

- Vehicle Demand Estimates

The estimated summer (Figure 4) and winter (Figure 5) vehicle (private automobile) demand distributions were based on the following occupancy factors and estimates:

Summer Weekend Estimate

1. One vehicle per permanent residence (Table l)
2. Two venicles pei seasonal residence (Table 1)
3. One vehicle per unit at accommodations such as motels (Table 3)
4. One vehicle per campsite or other estimate for recreational areas (Table 4)
5. Major employers not included in estimate, weekend condition assuming fewer workers at place of employment
6. One vehicle per marina mooring or boat slip estimate (Table 5)

Winter Weekday Estimate

1. One vehicle per permanent residence (Table 1)
2. One vehicle for 50% of seasonal housing units (Table 1)
3. Same, but includes only facilities open yearround (Table 3)
4. Camping not included
5. Major employers in area (Table 2), weekday condition assuming workforce at major employment locations
6. Recreational boating not included in estimate

The resultant vehicle demand distributions for the various 1980 population categories are included in Appendix B.
Figures 4 and 5 combine individual venicle demand estimates associated with permanent, seasonal and transient populations for assumed summer and winter conditions. The approach to estimating vehicle demand may result in some double counting of vehicles. These vehicle demands were used to estimate sector evacuation times between the point of notification to evacuate, and the point of confirmation that an evacuation has teen completed. The method used to estimate general evacuation times is described in Section 5.3. A discussion of notification procedures, general evacuation times, status of
evacuation procedures for facilities with special needs, and possible confirmation procedures is also included in Section 5. Several other sources of information were used to estimate vehicle demand. A field survey of housing units, conducted in the summer of 1979 by Consumers Power Company, was used to estimate the population and its sector distribution within four miles of the site. A copy of this survey is included as Appendix C. Venicle demand estimates and their distribution for the area between four and ten miles of the site were based c, 1980 city and township population projections (see Table 1), aid a review of U.S.G.S. and township plat maps.

3.2 Population and Vehicle Estimates Associated wit: Facilities Having Special Evacuation Needs

A number of facilities located within the 10 -mile radius were identified which have special evacuation needs. For example, these facilities include the medical, (see Table 6), educational, (see Table 7), and other facilities requiring special consideration. Vehicle demands for these special facilities were not included in the summer and winter estimates associated with the general population (see Figures 4 and 5). Evacuation of special facilities would require the use of a combination of additional automobiles, buses, or emergency vehicles (ambulances). Evacuation of special facilities are addressed separately in Section 5.4.

4. ROAD NETWORK CHARACTERISTICS AND EVACUATION ROUTES

The road network utilized in the evacuation analysis is shown in Figure 6. An inventory of the physical and operational characteristics of the road network within the 10 -mile radius of the Big Rock Nuclear Site has been developed. Results of the inventory are summarized in Table 8 , which is keyed to Figure 6.

Segments of routes within the network links were driven and timed as part of the inventory process. Figure 6 also shows measured driving times for selected road segments. Field timings of links were taken on January 8 th and $9 t h$, 1980, when characteristic winter weather conditions prevailed, i.e., snow and wind. Driving times when roads are free of snow can be expected to be less than those recorded for such winter conditions. Although the times do not reflect a worst-case situation (e.g., most roads closed due to snow), they do represent a topical winter scenario.

The road network inventory information was used to calculate evacuation times for analysis areas. Evacuation routings for sectors analyzed are shown on figures included in Appendix E.

As described in Section 2, the $10-$ mile area surrounding the plant has an adequate number of excellent egress routes.
${ }^{?} 1$, Boyne City Road and M-56 are the major egress routes as they lead to reception areas identified in the Charlevoix County Emergency Operations Plan. In addition, these routes have higher vehicle capacities than the numerous secondary routes within the 10 -mile study area. The majority of the study area is rural and the roadway network reflects this. The roads vary from asphalt/bituminous to gravel. The topography within the 10 -mile radius is generally quite hilly resulting in steep grades on portions of some secondary roads.

5. EVACUATION TIMES

5.1 Summary

An analysis has been performed to estimate the time that might elapse for completing a public evacuation of each of the sector config ations shown on Figure 2. These estimates are for the time that would elapse from initial notification of the need to evacuate (Time period one, $T-1$) to the time that the defined sector evacuation is completed within the 0 to 2-, 0 to $5-$, and 0 to 10 -mile radii (Time period two, $T-2$), to the time special faci?ities are evacuated, if not completed within the general evacuation period (Time period three, T-3), and to the point in time that confirmation of evacuation has occured (Time period four, T-4).

The results of this analysis are shown in Tables 9 and 10. An effort has been made to present information for both an assumed summer fair-weather condition, and a winter adverseweather condition.

The following subsections elaborate on estimates, assumptions, and methods used to est ate notification time, general and special evacuation times, and confirmation time.

5.2 Assessment and Notification to Evacuate - Time Period One

An evaluation of the time periods associated with recognizing a general emergency condition, assessing off-site radiological consequences, and notifying off-site authorities and, if necessary, the general public, invol"əs assumptions that stem from the emergency planning framework which has been established for the Big Rock Nuclear Plant. Such assumptions are based on the Big Rock Emergency Operation Plan arrangements and methods as they are currently conceived.

Annex B - Warning (Attachment 7, Nuclear Power Plant Emergency Response, page B15) of the Charlevoix County Emergency Operations Plan outlines actions to be implemented
by the "Warning officer", based on the initial infcrmation of an accident at the Big Rock Nuclear Plant. These tajor notification time steps are as follows:
a) Activate the "EOC Activation Alert List", Attachment 3 of Annex B. A copy of the alert list is attached as Appendix G. This list includes telephone and radio telephone notification to various local agencies and several special facilities (i.e., hospitals and schools). This list includes the drawbridge in Charlevoix, which will be directed to remain in the down position, since it is part of the evacuation road network.
b) Provide available information to dispatch points in Emmet County.
c) Notify Deputy Emergency Services Coordinators in municipalities of the situation and advise to standby to support county operations.
d) Coordinate with the Emergency Public Information Office to determine the aporopriate message to be used in pulic notification.
e) Based on the advice of those involved, warn the population of the affected sectors.
f) Alert managers of radio and television stations to be prepared to transmit Emergency Public Information messages as provided by the Public Information officer.
g) Coordinate with Law Enforcement and Fire Services to extend public notification by sector, utilizing public address systems on emergency vehicles.
h) Follow-up with a door-to-door cistribution of mass produced, detailed Emergency Public Information materials by Law Enforcement and Fire Service personnel, utilizing radiation detection devices and protective measures as appropriate.
i) Notify County Public Health to alert County Emergency Medical Services (EMS) for the possible need to move the infirm and disabled including mutual aid tnrough the district health office. This will include assistance from adjoining county's EMS. List of the infirm receiving state assistance is available through the County Office of Social Services.

It is estimated that contacts on the alert list would be made within 10 to 30 minutes. This estimate is based on a test alert conducted by the Charlevoix County Sheriff's Office. Items b), c), and d) all involve activities which could take place simultaneously with item a) activities. Time estimates for these three itens (b, c, and d) are therefore included within the 10 - to 30 -minute initial notification estimate.

Notification steps e) through i) would require additional time to implement. These steps include activities which extend public notification to sectors and assume a door-to-door type notification. Item ') includes notification of infirm and disabled persons. Notification time estimates for these five items (e through i) are shown below. The notification time (fair weather) estimate for the area within two miles was based on a field reconnaissance effort. This involved the EOC coordinator driving this area. Results of this effort were also discussed with the Charlevois County Sheriff's Department Staff. The other notification time estimates were also based on the driving time survey. A telephone alert list will be prepared to assist in notification of persons within the 2 -mile radius of the plant. This list of calls would be broken down
and assignments made in order to ${ }^{5}$ acilitate this notification process. Personnel available or, a 24 -hour basis include staff of the Charlevoix County Sh-riff's Department, Emmit County Sheriff's Deparcment, Charlevoix Police and Fire Departments, (Petosky) State Police Post, East Jordan Police and Fire Departments, and (Charlevoix) U.S. Coast Guard Station. (Source: Mr. Earl Muma, EOC coordinator).

Maximum
Fair Weather Condition
Estimate

Maximum Adverse Weather Condition Estimate

| 0 to 2 mile radius (Area 1) | 1 hour |
| :--- | :--- | :--- |
| 0 to 5 mile radius (Areas $2 \& 3$) | 3 hours |
| 0 to 10 mile radius (Areas $4 \& 5$) | 4 hours |

2 hours
7 hours
8 hours*

These time estimates assume approximately 50 support personnel would assist in the notification process, and that notification within the City of Charlevoix would be accelerated by the use of two police vehicles equipped with loud speakers for broadcast of an emergency condition. Assistance from East Jordan for notification of persons along the South Arm of Lake Charlevoix will occur. This support was assumed at a level of approximately ten persons. The times noted reflect primarily the use of standard passenger vehicles and some 4 -wheel drive vehicles. A situation where roads were impassable due to snow or for other reasons, notification times could be extended.

Thus, it is estimated that the sector notification times for the $2-, 5-$, and $10-m i l e$ radii would be:

Fair Weather
hrs:min - hrs:min

Advese Weather hrs:min - hrs:min
$2: 10-2: 30$
$7: 10$ - $7: 30$
$8: 10-8: 30$ *

$0-2$ Miles (Area 1)	$1: 10-1: 30$		
$0-5$ miles (Areas 2 \& 3)	$3: 10-$	$3: 30$	
$0-10$ miles (Areas $4 \& 5)$	$4: 10$	-	$4: 30$

[^3]Notification times under fair-weather are about half those for an adverse-weather condition.

5.3 General Evacuation - Time Period Two

In order to determine the time needed to evacuate vehicles from the various analysis areas, roadway capacǐies must be determined.

Roadway capacity is expressed in vehicles per hour (v / h). Once the roadway capacities are known, vehicles can be routed through the network. Clear times will be much higher if the flow of vehicles on a roadway approaches its capacity.

Roadway capacities were determined by following procedures outlined in the Highay Capacity Manual.* Physical data for each roadway were needed before the capacities could be calculated. A field inspection of the majority of roads within 10 miles of the plant was undertaken to collect the necessary data. Table 8 presents the results of this investigation.

Capacity calculations are based on the assumption that each travel lane has a theoretical capacity of $2,000 \mathrm{v} / \mathrm{h} . * *$ Modifications to this value are made based on the number of travel lanes, lane width, distance to nearest obstruction, worst traffic grade and the percentage of trucks on the roadway. Roadway capacity is increased with an increase in the lane width and number of travel lanes. If there is a sufficiently wide paved shoulder, an extra lane may be possible during an evacuation. This possibility was not included in the evacuation analysis.

[^4]**See Appendix D.

An obstruction (guardrail, telephone pole, mailbox, etc.) at the inner edge of a roadway reduces capacity as drivers tend to slow down to avoid the obstruction. Where a paved or gravel shoulder was present, an obstruction was assumed to be present at the edge of the shoulder. Where no shoulder was present, an obstruction was assumed to be at the pavement edge, allowing for a more conservative capacity value.

It is not anticipated that heavy duty trucks will be used in an evacuation. The presence of large trucks results in a reduced roadway capacity. Under normal conditions, a significant number of trucks would not be expected on secondary roads. For conservatism, tiucks were assumed to be present on the major highways (U.S. 31 and $\mathrm{M}-66$). The percentage of trucks on these arterials was obtained from the 1978 Michigan Highways Sufficiency Rating.* The roadway grade is included in the capacity calculations where trucks are present. If an uphill grade is present on a roadway with trucks, the theoretical capacity will be reduced.

There are two signals within the 10 -mile radius. One is located in downtown Charlevoix, and is functional all year round. The other signal is at the drawbridge in Charlevoix and only turns red when the bridge is up. In addition, there is a blinking beacon at the intersection of U.S. 31 and M-66 in Charlevoix. The Highway Capacity Manual contains a procedure for determining roadway capacity based on the green time of a signal. Appendix D contains sample calculations illustrating the methodology used to arrive at the intersection capacity, as well as the other roadway capacities.

Using the vehicle demand figures (see Figures 4 and 5), total projected auto demand by analysis area was determined. These areas are snown on Figure 2. Vehicles weere then assigned to the evacuation road network.

[^5]In assigning the identified vehicle demand to the road network, vehicles were apportioned to the evacuation route, previously identified, within or nearest to the major population center(s) within each sector or ring. In those cases where there was more than one route, population was split evenly among them, unless roadway capacities dictated a different apportionment. For example, if one road had a capacity significantly higher than another, it would receive more of the demand than would be indicated by a $50-50$ split.

Cumulative venicle demand was derived by adding to a road:
a) the demand estimated to be originating near it; and
b) all the demand from vehicles upstream which will be passing by on their way out of the evacuation area.

While demand at any one time on a road would not be equal to the total cumulative demand, it was assumed tnat all cars were on the network at the same time. The implication of this is that, from the time of first vehicle movement, the furthest downstream roads always have vehicles moving on them. This is important in the clear time calculations, as will be seen below.

Clear times were defined as the time to clear the evacuation area of all vehicles, starting from the point at which notification of the public is complete. The method used involved calculating clear times for all major evacuation routes. Not all routes necessarily start at the plant site; however, the longest routes tend to originate there.

For each road segment of a route, the time to clear the vehicles projected to use that route was calculated. In the case where demand was less than capacity, cars were assumed to travel with three seconds between them (3-second headway). The assumption of $3-s e c o n d$ headway is considered reasonable, since it yields a maximum flow of only 1,200 vehicles per hour. This
implies that when demand is less than capacity, no matter how high the capacity, traffic flows at no more than 1,200 vehicles per hour. Most secondary roads in the area have a calculated capacity of about 1,200 vehicles per hour. In addition, a 3-second headway allows for a safe stopping distance.

For example, in a 2 -mile evacuation, 125 vehicles will traverse the plant access road. Allowing three seconds for each vehicle, it would take about six minutes to clear the segment.

Where demand would exceed capacity, the calculated capacity was used as the maximum flow rate.* In this case, dividing demand by capacity gave an estimate of clear time for the segment. This method was used when demand exceeded capacity, since the roadway capacity was the constraining factor. The headway metnod was used when demand did not exceed capacity as the demand was the constraining factor.

After clear times for each link were calculated, it was necessary to determine route clear times. An imaginary last car was routed through the network and the clear time calculated for each evacuation route, by sectors, for both winter and summer scenarios. Table 10 lists the maximum calculated clear times for each evacuation route. The route clear times and vehicle detands for each analysis are shown on figures contained in Appendix E. The summer values are conservative as they include travel times obtained under adverse winter weather conditions. Capacity was not reached on any roadway east of the plant. Roadway capacity was reached in the City of Charlevoix, under summer venicle demands. This is the reason for the much higher clear times for the western sectors.

[^6]The maximum clear times west of the plant assume a limiting capacity of $760 \mathrm{v} / \mathrm{h}$ at the signalized intersection in downtown Charlevoix. However, if point control were available at the intersection, the clear times would be reduced. Assuming the signal did not exist, the theoretical capacity would be $1,260 \mathrm{v} / \mathrm{h}$. The resultant clear times would be 5 to 25 minutes less, depending on the evacuation route and time of year. Maximum clear times assuming point control at the downtown Charlevoix intersection are also shown on Table 10.

Several factors were not included in the analysis. There will be a queue where vehicles are leaving a parking lot or where vehicles cross intersections or turn into traffic. In addition, the model basically assumed no formal traffic control. Vehicles were routed along a route which would probably be taken under nornal conditions. Some control is innerent in the model as vehicles were not allowed to travel towards the plant, even if a faster clear time could be realized.

A special note should be mentioned concerning the
drawbridge on U.S. 31 in downtown Charlevoix. The evacuation analysis assumed the bridge to be in a down position. During the summer months, the bridge is opened every half hour between 6:00 AM and 6:00 PM. Between 5:00 PM and 6:00 AM, the bridge is opened as needed. During the winter months, the bridge is opened when necessary. The bridge operator is on the EOC activation list. In the event of an emergency, the bridge operator would be notified to keep the bridge down.

It should noted that there are less than 1,000 venicles projected to use the bridge as an egress route. The majority of vehicles to be evacuated from the 0 - to 5 -mile and 0 - to 10 -mile raddi enter the network west of the drawbridge from the populated portions of Charlevoix.

It was assumed that during the time of notification, all external traffic (i.e., through traffic not included in demand estimates) will be cleared from the network, and roadblocks will be set up to prevent other traffic from entering. Traffic
control will be available to the extent that tne above action can be taken, and to help minimize turning movement conflicts at intersections. Finally, even though demand will build up at the beginning, and taper off at the end of the evacuation, it is assumed that traffic flow is uniform during the evacuation. This maximizes delays and therefore clear times.

The number of vehicles in the summer analysis represents normal conditions. There are special events which occur during the summer. During the art fair there may be an influx of an additional 3,000 vehicles which, based on the U.S. 31 signalized intersection capacity, would result in an estimated clear time of five hours. Under special conditions such as this, control would be expected which would reduce the clear time significantly.

In an actual situation, it is reasonable to assume that the agencies and personnel responsible for conducting an orderly evacuation would adapt to actual conditions as they developed. It is beyond the capability of the simple analytical model to account for this kind of adjustment. For example, if it were observed that a particular route was becoming overly congested while traffic on another nearby route was light, traffic could be diverted from the more crowded to the less congested route. Similarly, traffic could be directed to use both lanes outbound on certain $2-1$ ane roads to speed the evacuation process. Actions such as these would produce evacuation times which are faster than the times estimated in this analysis.

Conside zation has been given to accomplishing an evacuation without the use of vehicles. Walking is a viable alternative to evacuating by vehicle. Assuming an able-bodied adult walking at 2.5 miles per hour from the plant via U.S. Route 31 either north or south to the 2 -mile radius (about 2.5 miles), one hour would elapse. Continuing at the same rate to the 5 (about six miles) and 10 (about 11) mile radii via Route 31 , the walking times would be about $2-1 / 2$ and $4-1 / 2$ hours, respectively. These walking times assume a fair weather condition.

5.4 Special Facilities Evacuation

- General Considerations

Noti ication to evacuate and confirmation of evacuation of areas will involve both individual residences as well as other populated facilities and locations. Total population in areas surrounding the plant will vary. Populations associated with selected facilities such as those noted in Tables 2 through 7 will be notified and evacuated as part of a general evacuation to the maximum extent possible. It is assumed that persons located at major employers (Table 2), overnight accommodations (TaDle 3) and most other facilities within an evacuation area will rely on passenger vehicles for transportation.

Facilities for which special evacuation requirements could exist include children's camps (Table 4), Charlevoix Area Hospital (Table 6) and educational facilities (Table 7). Evacuation of such facilities could require the use of a combination of additional transport vehicles. Infirm and handicapped personnel residing in the area may likewise require supplementary assistance and transportation. No major correctional facilities were identified in the study area. If persons were at the Charlevoix County Jail, they would be evacuated by the Charlevoix County Sheriff's Department personnel.

- Ambulance Demand

Emergency vehicles would be required if evacuation of the Charlevoix Area Hospital was required. The hospital would have the greatest concentration of persons with special evacuation needs. This facility is located approximately 5 -miles southwest of the Big Rock Nuclear Plant in tne City of Charlevoix. The 44 -bed hospital has an estimated average occubancy of 27 in-patients. It is estimated that one-third of
these in-patients (9 persons) would require ambulance transportation to other hospitals.* Otner patients and staff could be evacuated by private automobile in an emergency. Evacuating "special need" patients would be evaluated on a case-by-case basis by administrators and staff of the hospital. No estimate of emergency venicle requirements for infirm or handicapped persons at other locations was made. Evacuation of persons with special needs will be coordinated througn the Charlevoix County Sheriff's Department and EOC.

School Bus Transportation

Evacuation of educational facilities (see Table 7) would require use of buses as a primary mode of transport. No educational facilities were identified within the 2 -mile radius. Seven such facilities were identified within the 3-to 5-mile radii southwest of the Big Rock Nuclear Plant. One facility exists in Ironton, approximately seven miles south of the site. A total school related population (students and staff) is estimated at 1,800 persons in the 5 -mile radius and within the City of Charlevoix. The largest student populations are associated with the three Charlevoix public schools (Charlevoix High School, Charlevoix Intermediate School, and Charlevoix Elementary School). No estimate of bus requirements was made.

Several camps were identified within the 10 -mile radius. Three of these facilities, Mt. McSauba Day Camp (SW 2-3 miles), Camp Seagull (SE 6-7 miles), and Camp Daggett (SE 6-7 miles) accommodate populations of children when open. Supplementary transport could be required to evacuate thesa camps. No estimate of possible vehicle requirements for these camps was made as part of this reporting.

[^7]It is assumed that evacuation of educational facilities and camps would be directed by administrators and staff at these facilities. Additional transportation, if required, would be coordinated through the Charlevoix Sheriff's Department and EOC.

- Evacuation of Boaters

Recreational boating and fishing occurs in the area. Notification and assistance in evacuation and confirmation of evacuation of boats or major water bodies (i.e., Lake Michigan and Lake Charlevoix) would be directed by Charlevoix County Sheriff's Department. Available support from the the Michigan Department of Natural Resources, Marine Division may be provided. Coast Guard and the Department of Natural Resources Stations exist in the City of Charlevoix, approximately $4-1 / 2$ miles southwest of the plant. Evacuation of persons from other water bodies in the area ould be undertaken as part of the general evacuation. Table 5 lists major docking areas within the $10-$ mile radius.

- Evacuation During "Special Events"

\therefore number of "special events" occur in the Charlevoix area during the summer and fall periods. Major events identified which result in large increases in population for a number of days during these periods are briefly described in Section 2.

The Charlevoix County Sheriff's Office and EOC will coordinate notification and evacuation of persons associated with special events. Notification would likely include the use of police vehicle loud speakers.

5.5 Confirmation of Evacuation

Confirmation of an evacuation implies a thorough review of areas notified. Section 5.2 provides best estimates of notification time for fair and adverse weather conditions. It
is simply assumed that confirmation times would be roughly comparable to notification time estimates. Confirmation time is, therefore, estimated as follows:

Maximum	Maximum
Fair Weather	Advese Weather
hrs:min -hrs:min	hrs:min-hrs:min

$0-2$ miles (Area 1)	$1: 10$	-	$1: 30$	$2: 10$	-
$0-5$ miles (Areas 2 \& 3)	$3: 10$	-	$3: 30$	$7: 10$	-
$0-10$ miles (Areas $4 \& 5)$	$4: 10$	-	$4: 30$	$8: 10$	-
$0: 30 *$					

Times noted are for entire areas within the 2-, 5-, and 10 -mile radii. Confirmation times for smaller areas (i.e., 90° sectors) would be less than those reported above.

Confirmation would be undertaken by appropriate federal, state and local authorities. The type of confirmation employed will be based on a review of the emergency situation as it exists. A general review of the evacuated area would be followed by more detailed confirmation efforts, such as door-to-door type checking again based on Drevailing emergencv conditions.

5.6 Total Evacuation Time

Emergency evacuation involves:

- notification as described in Section 5.2 whereby broadcast of a general emergency is followed by door-to-door type notification,
- evacuation including the evacuation of facilities and persons with special needs, and
- confirmation that evacuation is complete.

[^8]Some time overlap between these three activities is likely to occur in an emergency requiring evacuation as protective measure. This overlap results in conservative total evacuation times, if the times to complete the three activities are added together. These totals assume that evacuation of persons with special needs occurs within the notification, general evacuation, and confirmation time periods.

Estimates for notification and confirmation (see Sections 5.2 and 5.5) were not based on a detailed analysis. These estimates were provided b : the Director of the Charlevoix County Energency Operations Center in consultation with Charlevoix County Sheriff's office personnel. The notification and confirmation times presented are simply assumed to reflect maximum times required to undertake door-to-door type notification and confirmation with about 50 persons. The use of additional warning systems beyond those that presently exist could reduce notification and confirmation time estimates.

Following is a brief summary of evacuation time estimates for fair- and adverse-weather scenarios. These were obtained by summing the notification, general evacuation, and confirmation time estimates.

- Fair Weather Scenario

It is estimated that notificaton and general evacuation of the area within 2 -miles of the plant could require $1-1 / 2$ to 2 hours. Including confirmation, this time may increase to afproximately 3 hours for the assumed fair-weather scenario. Estimated notification and general evacuation of the 0 - to 5 -mile radius is 5 hours. Total time would increase to about 8 to $8-1 / 2$ hours with confirmation included. Combined notification and evacuation time for the areas within the 0 - to $10-\infty$ ile radius is estimated at $4-1 / 2$ to 6 hours.* The confirmation period increases this estimate by $4-1 / 2$ hours.

[^9]- Adverse Weather Scenario

The total evacuation time for area 1 (within the 2 -mile radius) is approximately 5 hours. Total times for the 0 - to $5-\mathrm{mile}$ and 0 - to $10-\mathrm{mile}$ * areas are 16 hours and $18-1 / 2$ hours, respectively.

[^10]TABLES

TAnLE 1
POPULATION \& VEHICLE DEMAND ESTIMATES

6) 1972-1973 Housing Survey, Charlevoix County Planning Department,
(7) Table X, Projected Population 1980-90, by Areas, Charlevoix County Comprehensive Plan.
(8) Estimate of vehicles 0 to 4 miles for seasonal and year round was estimated from field survey work completed by Consumers Power Co, during the summer of 1979. The survey identified location and number of total units withir the 4 mile radius from the plant. An estimate of seasonal and permanent units was made and based on the ratio of seasonal to permanent units projected for 1980 , (i.e. 295 permanent +127 seasonal $=422$ units or about 30% of total units in Hayes Township being grouped as seasonals. Also within 422 - (0 to 4 mile total units of $\alpha 288$) $=134$ units in other areas of Hayes beyond 5 miles. Distribution of units for the 4 to 5 mile radius was estimated from counts of structures indicated on the most recent U.S.G.S. map. The map indicates an additional 70 total structures within the 4 to 5 mile radius in Hayes. Thus it is estimated that $=288$ units exist within 0 to 4 miles, 70 structures within 4 to 3 miles and an additional 64 units within the remaining portions of Hayes beyond the 5 mile radius. A ratio of 70% permanent to 30% seasonal was used in estimating vehicle demand.
(9) The city of Charlevoix is located witlin the 5 mile radius. It was estimated that $=25$ to 30% of the towns population is within 3 to 4 miles and 70% within 4 to 5 miles. It is estimated that 1478 permanent and 437 seasonal residents are in the 3 to 4 mile radius and 3449 permanent and 1,021 seasonal residents are found in the approximate 4 to 5 mile radius.
(10) Estimated by counting dots on U.S.G.S. map (Bay Shore quadrangle). Assumes 50% seasonal and 50% year round units. Numbers reflect dielling units not population.
AMAppendix f includes portions of Comprehensive Plan describing historical pooulation trends and projections of growth for Charlevoix County.
(12) Assumption of 1 vehicle for 50% of all seasonal dwelling units during Winter Assumption of 2 vehicles for all seasonal dwelling units during Summer:.

TABLE 2

MAJOR EMPLOYERS WITHIN 10 MILES OF THE BIG ROCK NUCLEAR PLANT

Map Code	Name	Address and Telephone	Sector Location	Estimated No. of Employees	Notes
E1	Lexalite Corp. of Charlevoix	$\begin{aligned} & \text { N. U.S. } 31 \\ & \text { Charlevoix } \\ & 547-6584 \text { or } \\ & 547-6550 \end{aligned}$	ENE/0-1	$\begin{aligned} & 110 \\ & (\approx 70 \text { day } \\ & \text { shift }) \end{aligned}$	3 shifts
E2	Leitz Indus- tries	N. U.S. 31 Charlevoix 547-2891	E/0-1	7	
E3	Will-Flow Cord.	Petoskey Rd. Charlevoix 547-6545	SW/2-3	60	2 shifts
E3	Charlevoix Manufacturing Co.	400 Martin Rd. Charlevoix 547-4451	S'S/2-3	32	
E3	Huffocd Industries	Petoskey Ave. Charlevoix 547-9921	5W/2-3	34	Swing shift
E3	CRE North Bar Beverage Control	U.S. 31 N . Charlevoix 547-4459	SW/2-3	10	
E3	Charlevoix Products	Industrial Blvd. Charlevoix 547-4049	SW/ 2-3	N.A.	
E4	Freedman Artcraft Engineering Corp.	$\begin{aligned} & \text { S. U.S. } 31 \\ & \text { Charlev ix } \\ & 547-6501 \end{aligned}$	SW/ 5-6	151	1 shift 4 day week

TABLE 2
MAJOR EMPLOYERS WITHIN 10 MILES OF THE BIG ROCK NUCLEAR PLANT

Map Code	Name	Address and Telephone	Sector Location	Estimated No. of Employees	Notes
E5	Hoskins Manuufacturing Co.	$\begin{aligned} & \text { M-66 } \\ & \text { Charlevoix } \\ & 347-9411 \end{aligned}$	SSW/5-6	85	3 shifts
E6	American Mold Engineering Co.	$\begin{aligned} & \text { S. O1d M-66 } \\ & \text { Charlevoix } \\ & 547-6578 \end{aligned}$	SW/4-5	88	```3 shifts (only 2 or 3 on 2nd & 3rd shifts)```
E7	Medusa Cement Co.	Bells Bay Rd. Charlevoix 547-9971	SW/5-6	112	7 days a week, 24 hrs./day
E8	Penn-Dixie Ind.	Charlevoix Rd. Petoskey 347-2531	E/8-9	190	
E9	U.S. Air Force Detachment 61 st CEG	Townline and Martinchek Rds. Bayshore 347-8731	E/5-6	77	
E3	Weather Shield Sports Equipment, Inc.	Petoskey Rd. Rt非3 Box 227 $547-6534$	SW/ 2-3	75	1 shift
E10	Midwest Ind.	Stover Rd. $547-4073$	SSN/4-5	25	
E11	Wojan Aluminum	Stover Rd. Box 91 547-6545	SSW/4-5	28	

TABLE 2
MAJOR EMPLOZERS WITHIN 10 MILES OF THE BTG ROCK NIJCLEAR PLANT

TABLE 3
ACCOMMODATIONS (Guest Houses, Hotels, Motels, Cottages)
within 10 Miles of the Big Rock Nuclear Plant

Map Code	Name	Address and Telephone	Sector Location	Estimated No. of Vehicles	Yearly Schedule	Number of Units
A1	North Star Motel	1409 Bridge St. Charlevoix 547-2344	SW/4-5	12	All year	12 units
Al	Silver Birch Motel	South U.S. 31 Charlevoix 547-6601	SW/4-5	8	Summer onlv	8 units
A1	Sunset Lodge	W. Dixon Ave. Charlevoix 547-9216	SW/4-5	10	Summer only	10 units
Al	Charlevoix Hotel	206 Antrim Charlevoix 547-2861	SW/4-5	10	All year	i units
A2	Alray Cottages	$\begin{aligned} & \text { M-66 } \\ & \text { Ironton } \\ & 547-2006 \end{aligned}$	S/7-8	10	All year (ice fishing)	10 un.ts
A3	The Lodge	$\begin{aligned} & \text { U.S. 31N } \\ & \text { Charlevoix } \\ & 547-6565 \end{aligned}$	SW/4-5	40	All year	40 units
A3	Weathervane Terrace	$\begin{aligned} & \text { U.S. } 31 \\ & \text { Charlevoix } \\ & 547-9955 \end{aligned}$	SW/4-5	36	All year	36 units
A1	Airport Motel	South U.S. 31 Charlevoix 547-9080	SW/4-5	11	Summer	11 units

Source: Charlevoix Chamber of Commerce, Ms. J. Merta.

TABLE 3
ACCOMMODATIONS (Guest Houses, Hotels, Motels, Cottages) within 10 Miles of the Big Rock Nuclear Plant

Map Code	Name	Address and Telephone	Sector Location	Estimated No. of Vehicles	$\begin{gathered} \text { Yearly } \\ \text { Schedule } \\ \hline \end{gathered}$	Number of Units
A1	Archway Motel	S. Bridge St. Charlevoix 547-2096	SW/4-5	13	All year	13 units
A1	The Capri Motel	U.S. 31 Charlevoix 547-9224	SW /4-5	17	Summer only	17 units
A4	Charleboyne Motel	Boyne City Rd. Charlevoix $547-9340$	SSW/2-3	8	Summer only	8 units
A1	$\begin{aligned} & \text { Colonial } \\ & \text { Motel } \end{aligned}$	U.S. 31 S. Charlevoix 546-6637	SW/4-5	11	$\begin{aligned} & \text { Summer } \\ & \text { only } \\ & 5 / 1-11 / 1 \end{aligned}$	11 units
A1	Villa Moderne	S. Bridge St. Charlevoix 547-2578	SW/4-5	8	A11 year	8 units
A5	Wayside Motel \& Cabins	Petoskey Rd. Charlevoix 547-2192	SW/ $2-3$	27	Summer only	15 cabins 12 rooms
A5	Golf View Motel	Petoskey Rd.	SW/ 3-4	25	Summer only May-Oct.	25 units
A6	Valkommen	113 Michigan	SW/ 3-4	10	Summer only June-Sept	10 units
				$\begin{aligned} & \text { TOTAL (all year) : } 141 \\ &(\text { summer only) : } 115 \\ & \hline \end{aligned}$		
						56

TABLE 4
CAMPGROUNDS AND SELECTED RECREATIONAL AREAS within 10 Miles of the Big Pock Nuclear Plant

Map Code	Name	Address and Telephone	Sector Location	Number of Campsites	Estimated No. of Vehicles	\qquad
C1	Nine Mile Point Fark	U.S. 31 N Hayes Twnshp. 547-6740	ENE/2-3	50	50	Cherlevoix Chamber of Commerce Ms. J. Merta
12	Uhrick's Modern Camp	$\begin{aligned} & \text { U.S. } 31 \\ & \text { Charlevoix } \\ & 547-4285 \end{aligned}$	SW/ 3-4	30	30	Charlevoix Chamber of Commerce Ms. J. Merta
C3	Windmill Campground	Boyne City Rd. Hayes Twnshp. 547-2746	SE/6-7	$\begin{aligned} & (500 \text { acres }) \\ & \approx 250 \end{aligned}$	250	Estimatenot confirmed with operators of campground
C4	Open Gate Campground	Wickersham Rd. Charlevoix 547-4772	S/8-9	$\begin{aligned} & (160 \text { acres }) \\ & \quad \approx 100 \end{aligned}$	100	Telephone Communication (owner's wife)
C5	Fisherman's Island State Park (formerly Bells Bay Campground)	Bells Bay Rd. Charlevoix	WSW/5-6	41	41	Charlevoix Chamber of Commerce Ms. J. Merta
C6	Whiting County Park	$\begin{aligned} & \text { M-66 } \\ & \text { Eveline Twnshp. } \end{aligned}$	SSE/9-10	40	40	Charlevoix Chamber of Commerce Ms. J. Merta
C7	Young State Park	Boyne City Rd. Evangeline Twnshp.	SE/ $10+$	296	296	Charlevoix Chamber of Commerce Ms. J. Merta

TABLE 4
CAMPGROUNDS AND SELECTED RECREATIONAL AREAS* within 10 Miles of the Big Rock Nuclear Plant

Map Code	Name	Address and Telephone	Sector Location	Number of Campsites	Estimated No. of Vehicles	Information Source
C8	State Rest Area	$\text { U.S. } 31$ Hayes Twnshp.	ENE/0-1	0 (no overnights)	20	Charlevoix County Emergency Services Office Earl Muma
C9	Lake Micnigan Beach	Charlevoix	SW/4-5	$\begin{aligned} & \text { O } \\ & \text { (no over- } \\ & \text { nights) } \end{aligned}$	~ 25	Charlevoix County Emergency Services Office Earl Muma
C9	Depot Beach	Charlevoix	SW/4-5	$\begin{aligned} & \text { (no over- } \\ & \text { nights) } \end{aligned}$	~ 50	Charlevoix County Emergency Services Office Earl Muma
C9	Ferry Ave. Beach	Charlevoix	SW/4-5	$\begin{aligned} & \quad 0 \\ & \text { (no over- } \\ & \text { nights) } \end{aligned}$	~ 100	Charlevoix County Emergency Services Office Earl Muma
C10	Mt. McSauba Day Camp		SW/2-3	(day camp)	*	
C11	Camp Seagull, Inc.	Lake Charlevoix 547-6556	SE/6-7	179 children	*	Charlevoix Chamber of Commerce Ms. J. Merta
C12	Camp Daggett	Walloon Lake	SE/6-7	100 children	*	Charlevoix Chamber of Commerce Ms. J. Merta

TABLE 4

CAMPGROUNDS AND SELECTED RECLKEATIONAL AREAS* within 10 Miles of the Big Rock Nuclear Plant

Map Code	Name	Address and Telephone	Sector Location	Number of Campsites	Estimated No. of Vehicles	$\begin{aligned} & \text { Information } \\ & \text { Source } \\ & \hline \end{aligned}$
C-13	```Charlevoix Girl Scout Camp```	Marion Center Road	SW/ 5-10	(no estimates)	*	Charlevoix County Emergency Services Office Earl Muma

*Transportation for evacuation will be coordinated by the EOC coordinator, notification will be by telephone or police vehicle.

TABLE 5
RECREATIONAL BOATING within 10 Miles of the Big Rock Nuclear Plant

Map Code	Name	Address	Sector Location	Number of Moorings \& \qquad Slips	Estimated No. of Vehicles	$\begin{aligned} & \text { Information } \\ & \text { Source } \end{aligned}$
B1	Irish Marina	Stover Rd. Charlevoix	SW/4-5	- 150	150	Telephone communication Irish Marina employee
B1	Bellinger Marina	125 Belvedere Charlevoix	SW/4-5	210	10	Charlevoix Chamber of Commerce Ms. J. Merta
B1	Fairport Marina	307 Belvedere Charlevoix	SW/4-5	210	10	Charlevoix Chamber of Commerce Ms. J. Merta
B2	Ironton Ferry Landing	Ironton	S/7-8	2.10	10	Charlevoix Chamber of Commerce Ms. J. Merta
B1	$\begin{aligned} & \text { Municipal } \\ & \text { Marina } \end{aligned}$	Charlevoix	SW/4-5	48	48	Charlevoix Chamber of Commerce Ms. J. Merta

TABLE 6
MEDICAL RELATED FACILITIES within 10 miles of the Big Rock Nuclear Plant

Map Code		Address and Telephone	Sector Location	Population		InformationSource
	Name			Number of Beds	Staff	
M1	Charlevoix Area Hospital	Lake Shore Dr. Charlevoix 547-4024	SW/4-5	44	30-50	Mr. Dick Krueger, ${ }^{(1)}$ hospital adminiscrator, (547-4024)
M2.	Home for the Elderly	Maple Grove Rd. Charlevoix 347-1728	ESE/3-4	6	2	Mr. Bert Southwood, (2) operator

${ }^{(1)}$ Average eztimated occupancy is 27 in-patients. Thus the estimate of ambulatory patients is $27-44$. It is roughly estimated that one-third of such patients would require special emergency vehicle transport while the remaining two-thirds may be transported by passenger vehicles. These requirements would vary with in-patients' needs. Two ambulances are stat oned at the Fire Department (City Hall) and other services are available in Pet skey. Patients requiring life support services or critical care would be transfarred to Munson Hospital in Travis City. Those requiring less intensive care would be transferred to the Grandview facility in East Jordan. A best estimate made by (Mr. R. Krueger, $3 / 21 / 80$), a hospital administrator, of time required to evacuate the Hospital following notification is one to three hours and assumes that adequate transportation is available.
${ }^{(2)}$ Facility operates presently as a family unit with less than 20 staff and residents. None presently require the use of emergency vehicles for evacuation.

TABLE 7
EDUCATIONAL FACILITIES within 10 Miles of the Big Rock Nuclear Plant

Map Code	School Name \& Address	G.ades	Sector Location	(A) No. of Students	(B) No. of Teachers/ Staff	$\begin{aligned} & \text { Total } \\ & (\mathrm{A}+\mathrm{B}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Information } \\ & \text { Source } \\ & \hline \end{aligned}$
S1	Charlevoix High School Garfield St. Charlevoix 547-6491	9-12	SW/4-5	591	33	624	Secretary at Charlevoix Public Schools - number of students and faculty Mr. Vince O'Lach
S2	```Charlevoix Middle School Grant St. Charlevoix 547-4407```	6-8	SW/4-5	387	22	409	Secretary at Charlevoix Public Schools - number of students and faculty Mr. Vince O'Lach
S3	```Charlevoix Elementary School Division St. Charlevoix 547-4361```	1-5	SW/ 3-4	592	27	619	Secretary at Charlevoix Public Schools - number of students and faculty Mr. Vince 0'Lach
S2	St. Mary School 1005 Bridge St. Charlevoix $547-9441$		SW/4-5	68	8	76	Sister Agnes Mary St. Mary School
S1	Bergman Center 201 E. Garfield Charlevoix 547-2979	Handicapped	SW/4-5	20-30	8	38	Mr. Ken Brill ${ }^{(2)}$
${ }^{(1)}$ It is expected that evacuation of these facilities will be to other educational facilities in East Jordan.							
(2) No ac an	lan for emergency evac mmodates 15 persons, vacuation.	cuation thus some	ists. He assistanc	xplained and trans	at the fac rtation wo	lity h uld be	one van that quired during

TABLE 7
EDUCATIONAL FACILITIES within 10 Miles of the Big Rock Nuclear Plant

N. A.

Not Available

TABLE 8
SUMMARY OF ROAD NETWORK CHARACTERISTICS
$0-10$ Miles, Big Rock Plant

$\begin{aligned} & \text { Link } \\ & \text { No. } \\ & \hline \end{aligned}$	No. of Travel Lanes	Lane Width (ft)	Paved Shoulder Width (ft)	Distance to Nearest Obstruction (ft)	Worst Traffic Grade (\%)	\% Trucks	$\begin{aligned} & \text { Link } \\ & \text { Capacity } \\ & (\mathrm{v} / \mathrm{h}) \\ & \hline \end{aligned}$
$1^{\text {(a) }}$	2	9	6	6	4	5	760
2	4	9	0	0	4	5	2440
3	2	9	6	6	2	5	1445
4	2	9	6	6	2	6	1430
5	2	9	0	0	6	0	1160
6	2	9	0	0	2	0	1160
7	2	9	0	0	6	0	1160
8	2	9	0	0	4	0	1160
9	1-2	6-8	0	0	6	0	1160
10	2	10	0	3	4	0	1540
11	2	10	0	3	4	0	1540
12	2	10	0	0	2	0	1240
13	2	9	0	0	6	0	1160
14	2	10	0	3	6	0	1540
15	2	10	0	3	4	0	1540
16	2	9	0	0	4	0	1160
17	2	9	0	0	4	0	1160
18	2	9	0	0	4	0	1160
19	2	9	0	0	4	0	1160
20	2	10	6	6	2	6	1525
21	2	9	0	0	6	0	1160

${ }^{(a)}$ Capacity based on signalized intersection. Capacity will be $1260 \mathrm{v} / \mathrm{h}$ if there was point control at the intersections.

TABLE 8
SUMMARY OF ROAD NETWORK CHARACTERISTICS
0-10 Miles, Big Rock Plant

Link No.	No. of Travel Lanes	Lane Width (ft)	Paved Shoulder Width (ft)	Distance to Nearest Obstruction (ft)	Worst Traffic Grade (\%)	\% Trucks	$\begin{gathered} \text { Lirk } \\ \text { Capacity } \\ (\mathrm{v} / \mathrm{h}) \\ \hline \end{gathered}$
22	2	9	0	0	6	0	1160
23	4	9	0	0	2	5	2660
24	2	9	6	6	2	6	1430
25	2	9	0	6	2	8	1415
26	2	9	0	0	2	0	1160
27	2	9	6	6	2	0	1520
28	2	9	5	5	4	6	1215
29	2	9	0	3	4	8	1095
30	2	9	0	0	4	0	1160
31	2	9	0	0	4	0	1160
32	2	9	0	0	4	0	1160
33	2	9	0	0	4	0	1160
34	2	9	0	0	4	9	1160
35	2	9	0	0	6	0	1160
36	2	9	0	0	4	0	1160
37	2	9	0	0	4	0	1160
38	?	9	0	0	4	0	1160
39	2	9	0	0	2	0	1160
40	2	9	0	3	4	0	1440
41	2	9	0	0	4	0	1160
42	2	9	0	0	4	0	1160

TABLE 8
SUMMARY OF ROAD NETWORK CHARACTERISTICS
0-10 Miles, Big Rock Plant

$\begin{aligned} & \text { Link } \\ & \text { No. } \end{aligned}$	No. of Travel Lanes	Lane Width (ft)	Paved Shoulder Width (ft)	\qquad Distance to Nearest Obstruction (ft)	Worst Traffic Grade (\%)	\% Trucks	$\begin{aligned} & \text { Link } \\ & \text { Capacity } \\ & (\mathrm{v} / \mathrm{h}) \end{aligned}$
43	2	9	0	0	4	0	1160
44	2	9	0	0	2	0	1160
45	2	9	0	0	4	0	1160
46	2	10	1	0	4	0	1240
47	2	9	0	0	4	0	1160
48	2	9	0	0	4	9	1160
49	2	9	0	0	4	0	1160
50	2	9	0	0	2	0	1160
51	2	9	0	0	4	0	1160
52	2	9	0	0	4	0	1160
53	2	9	0	0	2	0	1160

TABLE 9
SIMMMARY OF EVACUATION TIME ESTIMATES IN MINUTES

Analysis Area	Radii	$\begin{aligned} & \text { Notifi-(3) } \\ & \text { cation } \\ & \text { T1 } \\ & \hline \end{aligned}$	General Evacuation \qquad \mathbf{T}_{2}	Special Facil- ities \qquad	$\begin{aligned} & \text { Confix-(2) } \\ & \text { mation } \\ & \mathrm{T}_{4} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Notifi-(3) } \\ & \text { cation } \\ & \mathrm{T}_{1} \\ & \hline \end{aligned}$	General Evacu- ation \qquad	Special Facil- ities $-\mathrm{T}_{3}$	$\begin{aligned} & \text { Confit-(2) } \\ & \text { makion } \\ & \mathbf{T}_{4}- \end{aligned}$
1	0-2 mi	70-90	12	(4)	70-90	130-150	14	(4)	130-150
2	0-5 mi	190-210	83	(4)	190-210	430-450	76	(4)	$430-450$
3	0-5 mi	190-210	28	(4)	190-210	430-450	26	(4)	430-450
4	0-10 mi	250-270	95	(4)	250-270	490-510	75	($1 \cdot$)	490-510
5	0-10 mi	250-270	72	(4)	250-270	490-510	75	(4)	490-510

NOTE: BECAUSE (a) EVACUATION NOTIFICATION AND CONFIRMATION TIME ESTIMATES ARE FOR THE ENTLRE 0 TO 5 AND 0 TO 10 MIIE KADII AND (b) ALSO SINCE OVERLAP IN NOTIFICATION, GENERAL EVACUATION AND CONFIRMATION ACTIVITIES WOULD MOST LIKELY TCCIIR, THE ADDITION OF THE ABOVE TIME ESTIMATES COULD RESULT IN CONSERVATIVE EVACUATION TIME ESTIMATES FOR SUMMER AND WINTER SCENARIOS. THIS ASSUMES EVACUATION OF PERSONS WITH "SPECIAL NEEDS" (T ${ }_{3}$) OCCURS CON CURRENTLY AND WITHIN THIS SAME TOTAL EVACUATION PERICD ($\mathrm{T}_{1}, \mathrm{~T}_{2} \& \mathrm{~T}_{3}$).
${ }^{(1)}$ See Figure 2 for nalysis area location.
(2) Notification and confirmation times for the $0-5$ mile and $0-10$ mile distances represent the times for the entire 5 -mile and 10 -mile adius areas, not for the analysis areas, which are smaller
${ }^{(3)}$ This represents the time estimate for notifying the last persons in the sector by door-to-coor methods.
(4) Sufficient information is not available at this time to permic estimates for all special facilities in each analysis area

GENERAL EVACUATION CLEAR TIME ESTIMATES

Winter
Clear Time
Estimates (Minutes)

Summer Clear Time Estimates (Minutes)

Analysis
Areas
$1 \quad 0-2 \mathrm{mi}$
U.S. 31 North
U.S. 31 South

Boyne City Rd. South Old U.S. 31
$0-5 \mathrm{mi}$
2
Radii
Evacuation
Routes

14
12 8
6
4

$83 *(78)$	$76 *(f 8)$
$83 *(68)$	$76 *(52)$
$83^{*}(68)$	$76^{*}(52)$
13	

U.S. 31 North
$3 \quad 0-5 \mathrm{mi}$
Boyne City Rd. South
Boyne City Rd. North Pin Cherry Rd.
U.S. 31 South
$0-10 \mathrm{mi}$ Barnard Rd.
Marion Center Rd.
M-66
Boyne City Rd. South
U.S. 31 North

Intertown Rd.
$5 \quad \mathrm{C}-10 \mathrm{mi}$
Boyne City Rd. South Boyne City Rd. North

$90 *(85)$	$70 *(60)$
$90 *(85)$	$70 *(60)$
$90 *(75)$	$70 *(45)$
$95 *(75)$	$75 *(50)$
13	

70
75
13
12
$72 \quad 32$
$8 \quad 7$
$21 \quad 12$
$22 \quad 13$
$10 \quad 10$ Peninsula Rd. Ferry Rd.
U.S. 131 (portion of West Traverse)
*Represent values based on green time of signal on U.S. 31 in downtown Charlevoix. Values in parenthesis represent approximate clear time if there were point control at the intersection resulting in the cheoretical capacity of the link being $1260 \mathrm{v} / \mathrm{h}$ instead of $760 \mathrm{v} / \mathrm{h}$.

FIGURES

LAKE MICHIGAN

LAKE MICHIGAN

FIGURE 4
ESTIMATED NUMBER OF VEHICLES (BY COMPASS SECTOR) ASSOCIATED WITH A SUMMER WEEKEND

FIGURE 5
ESTIMATED NUMBER OF VEHICLES (BY COMPASS SECTOR) ASSOCIATED WITH A WINTER WEEKDAY

DOCUMENT/ PAGE PULLED

NO. OF PAGES 1 oversized mar REASON
\square PAGE MLEGBBLE
\square HARD COPY FILED AT:

$$
\begin{aligned}
& \text { PD CF } \\
& \text { OTHER }
\end{aligned}
$$

\qquad
\square BEER COPY REQUESTED ON \qquad
[PAGE TOO LARGE TO FILM.
\square HARD COPY FILED AT: PPR
(CF)
OTHER \qquad
[T FILED ON APERTURE CARD NO 8008010301

APPENDIX A

NRC AND MICHIGAN DEPARTMENT
OF TRANSPORTATION LELIERS

NUCLEAR REGULATORY COMMISSION
WASHINGTON, D. C. 20555

November 29, 1979

ALL POWER REACTOR LICENSEES

- Gentlemen:

This letter, which is being sent to all licensees authorized to operate a nuclear power reactor and to all applicants for a license to operate a power reactor (FSAR docketed), is a request for information regaraing estimates for evacuation of various areas around nuclear power reactors. The requested information is in addition to that requested by the October 10, 1979 letter to all power reactor licensees from Darrell G. Eisenhut, Acting Director, Division of Operating Reactors, Office of Nuclear Reactor Regulation.

Although evacuation time estimates are expected to be prepared in the course of the upgrading of the state of emergency preparedness as specified in the October 10, 1979 letter, submission of these estimates to the NRC is being requested on an accelerated time scale so that the NRC can identify those instances in which unusual evacuation constraints exist and special planning measures should be considered. In some cases of extreme difficulty where a large population is at risk, special facility modifications may also be appropriate. The requested information will also enable the NRC to be responsive to a recommendation from the Environment, Energy and Natural Resources Subcommittee of the House Committee on Government Operations. The information requested in the enclosure should be submitted no later than January 31, 1980.

The October 10, 1979 letter indicated that efforts to develop a model plan were continuing. It now appears that the model plan will not be completed on a schedule which will be of use in developing upgraded plans for the requested January 1, 1980 submittal. The upgraded plan development should therefore proceed on a site-specific basis.

Enclosure:
Request for Evacuation Time Estimates

CC w/enclosure:
Service List

REQUEST FOR
EVACUATION TIME ESTIMATES (AFTER NOTIFICATION)
FOR AREAS NEAR NUCLEAR POWER PLANTS

Background
Prior to recent NRC requests that means for prompt notification to the public be installed around each nuclear power plant site, a significant component of evacuation time estimates was the time required to notify the public of a need for evacuation. Studies of actual evacuations that have taken place generally do not distinguish between the time required for notification, the time required to implement the evacuation; and the time required to confirm that an evacuation has taken place. - The estimates for time required for evacuations now requested relate primarily to the time to implement an evacuation as opposed to the time required for notification. These estimates may be based on previous local experiences (e.g., chemical spills or floods) or may be based on studies related to population density, local geography and road capacities. No standard method for making such estimates is identified for use at this time. The basis for the method chosen should be described in the response. As an independent check on the evacuation time estimates, agreement with or comments on the time estimates made should be obtained from the principal local officials responsible for carrying out such evacuations. Such agreement should be documented or the areas of disagreement indicated in the submittal.

The format given below is appropriate for reporting to the NRC estimates of the time required to implement evacuation of areas near nuclear power plants. These estimates, are to be made for the primary purpose of making available, to those officials who would make evacuation decisions in an emergency situation, knowledge of the time required to complete one of the protective action options (evacuation) available for a particular potentially affected segment of the population. A second purpose of these estimates is to identify to all concerned those instances in which unusual evacuation constraints exist and that special planning measures should de considered. In some cases of extreme difficulty where a large population is at risk, special facility modifications may also be considered.

Given a decision to evacuate rather than shelter in an actual event, fewer or more sectors or different distances than given in the reporting format might be evacuated should this be the chosen protective action. For example, three $22-1 / 2^{\circ}$ sectors might be initially evacuated in a downwind direction (the sector containing the plume and an adjacent sector on each side), followed by the evacuation of other sectors as a precautionary measure.

1/
Hans, J. M., ur., and T. C. Sell, 1974 Evacuation Risks - An Evaluation, U. S. Environmental Protection Agency, idational Environmental Research Center, Las Vegas, EPA-520/6-74-0U2.

Format for Reporting Information

The areas for which evacuation estimates are required must encompass the entire area within a circle of about 10 miles radius, and have outer boundaries corresponding to the plume exposure EPZ. These areas are as follows:

Distance	Area
2 miles	two 180° sectors
5 miles	four 90° sectors
about 10 miles	four 90° sectors

Estimates for the outer sectors should assume that the inner adjacent sectors are being evacuated simultaneously. To the exent practical, the sector boundaries should not divide densely populated areas. Where a direction corresponding to the edges of areas for which estimates have been made is thought not to be adequately represented by the time estimates for adjacent areas, an additional area should be defined and a separate estimate made for this case. The format for submittal should incluae both a table and a figure (overlaid on a map) which each give the information requested in items 1 and 2 below. Additional material may be provided in associated text.

Required Informotion

1. Two estimates are requested in each of the areas defined in item 1 for a general evacuation of the population (not including special facilities). A best estimate is required and an aqverse weather estimate is required for moverrent of the population.
2. The total time required to evacuate special facilities (e.g., hospitals) within each area must be specified (best estimate and adverse weather).
3. The time required for confirmation of evacuation should be indicated. Conf, mation times may consider special instructions to the public (e.g., tying a hankerchief to a door or gate to indicate the occupant has left the premises).
4. Where plans and prompt notification systems have not been put in place for areas out to about 10 miles, estimates of the times required to evacuate until such measures are in place for the plume exposure emergency planning zone (EPZ) should also be given. Notification times greater than 15 minutes should be included in the evacuation times and footnoted to indicate the notification time.
5. Where special evacuation problems are identified (e.g., in high population density areas), specify alternative protective actions, such as sheltering, which would reduce exposures and the effectiveness of these measures.
€. A short background document should be submitted giving the methods used to make the estimates and the assumptions made including the routes and methods of cransportation used. This document should also note the agreement or areas of disagreement with principal local officials regarding these estimates.
Docket No. 50-155
UNITED STATES
NUCLEAR REGULATORY COMMISSION
WASHINGTON, D. C. 20555
June 13, 1980
Mr. David P. Hoffman
Nuclear Licensing Administrator
Consumers Power Company
212 West Michigan Avenue
Jackson, Michigan 99201
Dear Mr. Hoffman:
The FEMA/NRC Steering Comrittee has reconsidered the appropriate size of Emergency Planning Zones for relatively small water cooled power reactors (less than 250 nm thermal). The Steering Cormittee has adopted the enclosed position on the planning basis for these reactors, which include your plant. The NRC's proposed rule and NUREG-0654/FEMA-REP-1 will be modifiea to conform to this position.

Enclosure:
Planning Basis
cc w/enclosure:
See next page
cc w/enclosure:
Mr. Paul A. Perry, Secretary
Consumers Power Company
212 West Michigan Avenue Jackson, Michigan 49201

Judd L. Bacon, Esquire
Consumers Power Company 212 West Michigan Avenue Jackson, Michigan 49201

Joseph Gallo, Esquire Isham, Lincoln \& Beale 1120 Connect icut Avenue

Room 325

Washington, D. C. 20036
Peter W. Steketee, Esquire
505 Peoples Building
Grand Rapids, Michigan 49503
Sheldon, Harmon and Weiss 1725 I Street, N. W.
Suite 506
Washingt on, D. C. 20006
Mr. John O'Nei11, II
Route 2, Box 44
Maple City, Michigan 49664
Charlevoix Public Library
107 Clinton Street
Charlevoix, Michigan
Chairman
County Board of Supervisors
Charlevoix County
Charlevoix, Michigan 49720
Office of the Governor (2)
Room 1 - Capitcl Building
Lansing, Michigan 48913
Director, Technical Assessment Division
Office of Radiation Programs (AW-459)
U. S. Environmental Protection Agency
Crystal Mall $\ddagger 2$
Arlington, Virginia 20460
U. S. Environmental Protection Agency
Federal Activities Branch
Region V Office
ATTN: EIS COORDIN/TOR
230 South Dearborn Street
Chicago, Illinois 50604
Herbert Grossman, Esq. , Chairman Atomic Safety and Licensing Board U. S. Nuclear Regulatory Commission Washington, D. C. 20555

Dr. Oscar H. Paris
Atomic Safety and Licensing Board U. S. Nuclear Regulatory Comission Washington, D. C. 20555

Mr. Frederick J. Shon
Atomic Safety and Licensing Board U. S. Nuclear Regulatory Commission Washington, D. C. 20555

Big Rock Point Nuclear Power Plant
ATTN: Mr. C. J. Hartman
Plant Superintendent
Charlevoix, Michigan 49720
Christa-Maria
Route 2, Box 108:
Charlevoix, Michigan 49720
William J. Scanlon, Esquire 2034 Pauline Boulevard
Ann Arbor, Michigan 48103

PLANNING BASIS

FOR SMALL WATER REACTORS AND FT. ST. VRAIN

The FMMA/NRC Steering Committee has concluded that small water cooled power reactors (less than 250 MWt) and the Ft. St. Vrain gas cooled reactor may use a plime exposure emergency planning zone of about 5 miles and an ingestion pathway emergency planning zone of about 30 miles. This conclusion is based on the lower potential hazard from these facilities (lower radionuclide inventory and longer times to release significant amounts of activity for many scenarios). The radionuclides considered in planning should be the same as recommended in NUREG-0396.

February 22, 1980

Mr. Milton J. Jury
Consumers Power Company
1945 W. Parnall Road
Jackson, Michigan 49201
Dear Mr. Jury:
We directed to your attention a copy of our letter of February 11, 1980, to Mr. Holzheimer of HMM Associates, Incorporated, relating the results of the Traffic and Safety Division's further review of the Evacuation Time Estimate reports for the Big Rock and Palisades Nuclear Power Stations.

Subsequently, Mr. Donald E. Jones of HMM Associates discussed with our Mr. Conradson his suggested modifications in the Big Rock repor: and has made appropriate changes in that report. In addition, minor revisions have been made in the Palisades report. These several changes are summarized in Mr. Jones' letter to me dated February 19, 1980 (Reference: 80-053), a copy of which was directed to your office.

This is to advise you that the amended Evacuat on Time Estimate reports for the Big Rock and Palisades Nuclear Power S ations meet with our approval.

OFFICE MEMORANDUM
Cadillac, Michigan

DATE: \quad February 6, 1980

TO: R. A. Rigotti, Field Administration Engineer

FROM:
B. A. Conradson, District Traffic and Safety Engineer

SUBJECT: Big Ror.k Nuclear Power Station Evac" tion Time Estimates

My comments regarding the subject matter are as follows:
The report takes notice of probably the only two potential bottlenecks in the major (US-31) evacuation route for southbound traffic. These would be the drawbridge and a traffic signal, both of which are in downtown Charlevoix. Perhaps too much importance is assigned to the signal, the effect of which can be eliminated by point control. This is reflected in the relatively high clear time (83 min) for S.B. US -31 noted in Table 10, and the low capacity ($760 \mathrm{v} / \mathrm{h}$) for link \#1 noted in Table 8. By contrast, the effects of the drawbridge are dismissed, perhaps too easily on page 12, by noting that the bridge will be directed to remain in the down position per notification via the "EOC Activation Alert List."

One other minor comment would pertain to the 2nd paragraph on page 16. The termonology is rather inaccurate and conflicting, and this information could be presented more clearly.

$\mathrm{BAC} / \mathrm{mr}$
cc: C. P. Seufert

Mr. Robert J. Holzheimer
HMM Associates, Incorporated
One Forbes Ruad
Lexington, Massachusetts 02173
Dear Mr. Holzheimer:
Appropriate district traffic and safety engineers from our field offices have reviewed your preliminary Evacuation Time Estimate reports for the Big Rock and Palisades Nuclear Power Stations.

Mr. Edwin H. Miller, who reviewed the Palisades report, offered no suggested changes, so we will approve that report. Mr. Bruce A. Conradson, who reviewed the Big Rock report, offered suggestions contained in the attached copy of his memorandum dated February 6, 1980. In the event you may wish to commuicate directly with him, his office address is 100 East Chapin Street, Cadillac, Michigan 49601. His office telephone number is 616/775-3487.

We will hold in abeyance our official response on both reports pending your review of, and response to, Mr. Conradson's report.

Very truly yours,

Robert A. Rigotti
Field Administration Engineer
Traffic and Safaty Division

Attachments

HMM Associates. Inc
One Forbes Road

February 19, 1980
Reference: 80-053
Mr. Robert A. Rigotti
Department of Transportation
Field Administration Engineer
Traffic and Safety Division
Transportation Building
425 West Ortawa
P. D. Box 30050
Lansing, Mi 48909

Subject: Big Rock and Palisades Evacuation Time Estimates
Dear Mr. Rigotti:
As requested, enclosed are copies of the Evacuation Time Estimate reports for the Big Rock and Palisades Nuclear Power Stations. The time and effort expended by your office in reviewing these two reports is greatly appreciated.

Some changes have been made in the Big Rock report to reflect comments made by Bruce Conradson of the Cadillac office. Agreement to these changes was reached over the telephone. In addition a few minor changes have been made to the Palisades report. Attached is a description of the changes made in each report.

As we discussed on the telephone, if your office agrees with the changes that have been made, an official response should be directed to Milt Jury. If you have any questions or comments concerning the changes, or the reports in general, please do not hesitate to contact me or Robert Holzheimer. Again, thank yout very much for reviewing and commenting on these evacuation analyses.

Very truly yours,

Donald E. Jones
DEJ:alt
attachment
cc: Milt Jury

REPORT CHANGES

I. Palisades Nuclear Power Station
A. Page 8 - Footnote - A sentence was added which states that migrants are considered to be part of the general evacuation (i.e., as any other employee).
B. Pages 12-13 - Notification time steps. These were modified to reflect the wording in the County Plan, which was not available at the time of the first draft of the report.
C. Page 16 - Fourth paragraph. There are approx:mately 200 vehicles associated with plant (instead of 75). Therefore, based on a 3 -second headway, it will take 10 minutes (instead of 4) to clear the plant access road.
D. Page 23 - Both winter and summer estimates are approximately the same. The change is due to the increased capacity at the signal in Bangor (changed from $385 \mathrm{v} / \mathrm{h}$ to $575 \mathrm{v} / \mathrm{h})$.
E. Table 2 - There are approximately 200 (not 75) employees at the Palisades plant.
F. Table 7 - Link $\# 57$ capacity changed to $575 \mathrm{v} / \mathrm{h}$ from $385 \mathrm{v} / \mathrm{h}$ due to reevaluation of green time at signal in Bangor.
G. Table 8 - The clear time estimates for the $0-10$ mile radius along 30 th Avenue east have been lowered to 135 minutes in summer (was 194) and 165 minutes in winter (was 242). This is due to the capacity change at the signalized intersection in Bangor.
H. Appendix E - Figure E-5. Clear times changed to reflect change in capacity at signalized intersection in Bangor.
I. Appendix F - The EOC Activation Alert List has been included.
II. Big Rock Nuclear Power Station
A. Page 16 - 2nd paragraph. Reworded paragraph to reflect suggested changes by Bruce Conradson. Distinguished between the blinking beacon and the operational signals.
B. Pages 18-19 - Added paragraphs further detailing the operation of the drawbridge and the signal in downtown Charlevoix. New clear time estimates ($5-25$ minuntes less) were derived assuming point control at the signalized intersection. There is a description of normal drawbridge operation and a special note made that the operator will be instructed to keep the bridge in a down position during an evacuation. The operator is a MDOT employee.
C. Table 10 - Added clear time estimates assuming point control at the signalized intersection in downtown Charlevoix.

NRC LETTER

DISTRIBUTION OF VEHICLE DEMAND ESTIMATES FOR PERMANENT, SEASONAL \& TRANSIENT POPULi:TIONS

FIGURE B-1
ESTIMATED NUMBER OF VEHICLES ASSOCIATED WITH YEAR-ROUND POPULATION (assuming 1 vehicle per residence), (SUMMER and WINTER)

- underlined numbers indicate number of residences as counted from Consumers Power Report, $0-4$ miles.
- * indicates number of residences as counted from Bayshore, Mich. U.S.G.S. map, 1958.

FIGURE B-2
ESTIMATED NUMBER OF VEHICLES ASSOCIATED WITH SEASONAL POPULATION

- SUMMER (assuming 2 vehicles per residence)
- underlined numbers indicate number of residences as counted from Consumer Power Report, $0-4$ miles
(seasonal residences assumed to be 30% of total residences).

FIGURE B-3
ESTIMATED NUMBER OF VEHICLES ASSOCIATED WITH ALL RESIDENCES (year-round and seasonal) - SUMMER

FIGURE B-4
ESTIMAIED NUMBER OF VEHICLES ASSOCIATED WITH CAMPS \& CAMPGROUNDS - ASSUMED SUMMER PEAK

FIGURE B-5
ESTIMATED NUMBER OF VEHICLES ASSOCIATED WITH ACCOMMODATIONS
(hotels, motels, cottages) - ASSUMED SUMMER PEAK

FIGURE B-6
ESTIMATED NUMBER OF VEHICLES ASSOCIATED WITH RECREATIONAL BOATING ASSUMED SUMMER PEAK

FIGURE B-7
ESTIMATED NUMBER OF VEHICLES ASSOCIATED WITH 50% OF SEASONAL DWELLING UNITS - WINTER
(assuming 1 vehicle/dwelling unit)
Dwelling units counted from the Bayshore, Mich. U.S.G.S. map in the ESE sector (Hayes), SE sector (Evangeline and Hayes) and SSE sector (Hayes) were all designated as year-round rather than seasonal units. See Figure B-1.

FIGURE B-8
ESTIMATED NUMBER OF VEHICLES ASSOCIATED WITH ALL DWELLING UNITS (Year-round \& Seasonal) - WINTER

FIGURE B-9
ESTIMATED NUMBER OF VEHICLES ASSOCIATED WITH ACCOMMODATIONS - ASSUMED WINTER PEAK

FIGURE B-10
ESTIMATED NUMBER OF VEHICLES ASSOCIATED WITH MAJOR EMPLOYERS (assuming 1 vehicle/employee)

APPENDIX C
1979 SURVEY OF HOITSING UNITS

CALCULATIOMAL METHODS TO DETERMIME RESIDENCES IN CHARLEVOIX WITHIN THE FOUR MILE COHCENTRIC RING

The town of Charlevoix is partially within the four mile concentric ring. The rings circumscribe a locus centered at the Big Rock Point Plant. The land use survey contains the part of Charlevoix designated by the City of Charlevoix designated by the City as the first ward. Two methods of obtaining the approximute first ward residences were used. The first method uses the relative areas of Charlevoix (1st ward area VS total area).

The maps represertation of the town of Charlevoix and the lst ward were traced on graph paper. The relative area was calculated by counting the number of squares within the trace.

$$
\text { Weighting Factor }=\mathrm{WF}_{\mathrm{a}}=\frac{\text { Number of Squares 1st Ward }}{\text { Number of Total Squares }}
$$

$$
\mathrm{wF}_{\mathrm{a}}=\frac{49}{190}=.25
$$

The second method of calculeting involves a ratio of lst ward voters to the total number of voters.

$$
\begin{aligned}
& W_{v}=\frac{\text { Number of } 1 \text { st Vard Voters }}{\text { Total Number of Voters }} \\
& W F_{v}=\frac{740}{2423}=.3054
\end{aligned}
$$

When multiplied by the total pupulation of Charlevoix, these weighting factors give the approximate ist ward population.
Voter Weighted Population $=P_{V}=.3054$ (Population)
Area Weighted Population $=P_{\mathrm{a}}=.25$ (Population)

$$
\begin{aligned}
& P_{v}=.3054 \mathrm{P} \\
& P_{\mathrm{a}}=.25 \mathrm{P}
\end{aligned}
$$

The estimated population of Charlevoix is 4500 based on a 1970 census of 3519 Chamber of Conmerce estimates.

$$
\begin{aligned}
& p_{v}=.3054(4500)=1375 \\
& p_{a}=.25(4500)=1125
\end{aligned}
$$

The reason for a larcer population estimate for the voter weichted is that the population of Charlevoix is not uniformly distributed. The business, park, pier areas ma a low density (popmletion) oree exist outside of the lst ward. A sample count of the lot ward residonces was taken. The somple count showed thint the $\mathrm{P} v$ vailie is the best estimsto and should yield a conservative result.

A People Per Electric Meter Ratio is known. This ratio will be referenced to as the People Per Meter Factor (PPMF).

PPMF $=2.9$
When the popuiation is divided by the PPMF, the number of residences is the result.

$$
R_{v}=137512.9=475
$$

Therefore, there are approximately 475 residences in the City of Charlevoix within the four mile radius.

REFERETICES

PERSONAL COMUUICATION WITH MACQUHHTHEMEBR - CHARLEVOIX CHAMBER OF COMEREE
Population (1970 Census) 3519
Population (1979 Estimate) 4500
Number of lst Ward Voters 740
Number of 2nd Ward Voters 795
Number of 3rd Ward Voters 888
Industrial Information:

1. Charlevoix Chemical Company

Martin Road - P O Box 456
Charlevoix, MI 49720 - Phone 616/547-9975
5 Employees
2. Charlevoix Manufacturing Company

400 Martin Road
Charlevoix, MI 49720-Phone 616/547-14551
32 Employees
3. Lexalite Corporation

North US 31
Charlevoix, MI 49720 - Phone 616/547-6584
110 Employeos
4. Lietz Industries

North US 31
Charlevoix, MI 49720-Fhone 616/5147-2891
7 Employces
5. Hesther Thicid Sports Equiment, Inc.

Petoskey hoad, lit \#3, Box 227
Charlevoix, MI 49720 - Phone 616/347-6534
75 Eurloyees
6. The Will-Flow Corporation

Rt \#3, Petoskey Rosd, Box 500 Charlevoix, MI 49720 - Phone 616/547-6545

60 Employees

PERSONAL CONVERSAIIONS WITH OWNERS, MANAGERS, EMPLOYEES

Charlevoix Products, Inc	11 employees
Cash Register Exchange, Inc	10 employees
Weathershield Sports Equipment	75 employees
Camp Ground	30 campers
Service Center	30 cars
Lexalite	110 employee
Lexalite Maximum Present	70
Lietz Industries	7 employees

J H CLIMER - M-930A
People per meter (residen'e) factor (1978) - 2.9

The Highway Capacity Manual was used to calculate the capacities of the evacuation roadways within the $10-\mathrm{mile}$ radius of the plant. The methodology differs for 2 and 4 lane roadways and for signalized intersections. There are two sections of U.S. 31 in Charlevoix which have 4 travel lanes. Similarly, there is one signalized intersection in the 10 -mile radius located in downtown Charlevoix. The remaining roadways have 2 travel lanes. Following are sample calculations for determining roadway capacity.

A. Two Lane Roadway

The Manual devotes Chapter 10 to capacity determinations for highways without access control. The formula used to calculate the capacity of a 2 -lane roadway is: $C=2000 \mathrm{~W}_{c} T_{c}$

$$
\text { where: } \begin{aligned}
C & =\text { capacity (mixed vehicles per hour, total in } \\
& \text { both directions) } \\
W_{C}= & \text { ad ustment for lane width and lateral clearance } \\
& \text { at capacity (from Tables) }
\end{aligned}
$$

The number 2000 represents the theoretical capacity of a $2-1$ ane roadway. The lane width adjustment results in a decrease in the capacity for travel lanes less than 12 feet in width. The adjustment also accounts for the distance to the nearest obstruction from the traffic lane. The closer the obstruction, the lower the capacity. Where trucks are present, the capacity of 2000 vehicles/hour is reduced by a factor which reflects the percentage of trucks on the roadway and the type of terrain (level, rolling, or mountainous). Truck percentages were obtained from Michigan highway data and were only placed on major highways. Following is a sample calculation: $\dot{\jmath}=2000 \mathrm{~W}_{c} \mathrm{~T}_{c}$.

The Highway Capacity Manual was used to calculate the capacities of the evacuation roadways within the 10 -mile radius of the plant. The methodology differs for 2 and 4 lane roadways and for signalized intesections. There are two sections of U.S. 31 in Charlevoix which have 4 travel lanes. Similarly, there is one signalized intersection in the $10-\mathrm{mile}$ radius located in downtown Charlevoix. The remaining roadways have 2 travel lanes. Following are sample calculations for determining roadway capacity.

A. Two Lane Roadway

The Manual devotes Chapter 10 to capacity determinations for highways without access control. The formula used to calculate the capacity of a $2-1$ ane roadway is: $C=2000 \mathrm{~W}_{c}{ }^{T} c$

```
where: \(C=\) capacity (mixed vehicles per hour, total in
        both directions)
            \(W_{c}=\) adjustment for lane width and lateral clearance
        at capacity (from Tables)
    \(T_{c}=\) truck factor at capacity (from Tables).
```

The number 2000 represents the theoretical capacity of a $2-1$ ane roadway. The lane wiath adjustment results in a decrease in the capacity for travel lanes less than 12 feet in width. The adjustment also accounts for the distance to the nearest obstruction from the traffic lane. The closer the obstruction, the lower the capacity. Where trucks are present, the capacity of 2000 vehicles/hour is reduced by a factor which reflects the percentage of trucks on the roadway and the type of terrain (level, rolling, or mountainous). Truck percentages were obtained from Michigan highway data and were only placed on major highways. Following is a sample calculation: $C=2000 \mathrm{~W}_{c} \mathrm{~T}_{c}$.

Given: a) 2 travel lanes
b) 9 foot lanes
c) 6 feet to the nearest obstruction
d) 5% trucks
e) level terrain ($0-2 \%$ slope)

Using the correct tables, the adjustments to the 2000 value are obtained. For this roadway, $W_{c}=0.76$ and $T_{c}=0.95$. Therefore, the capacity will be $2000 \times(0.76) \times(0.95)=1444$ vehicles/hour. This capacity is for a segment of U.S. 31 from Mercer Road to Waller Road in Charlevoix. This value is for both directions. However, in an evacuation, there will be little or no opposing traffic, resulting in this value being reasonable for one direction.

B. Four Lane Roadway

The capacity determination for four lane roadways is also included in Chapter 10 of the Manual. The method is essentially the same with adjustments made to reflect a lesser affect of obstructions and trucks on roadway capacity. The formula used to calculate the capacity of a four lane roadway is: $C=2000 \mathrm{~N} \mathrm{~W} \mathrm{~T} \mathrm{C}_{\mathrm{c}}$.

```
Where: \(C=\) capacity (mixed vehicles per hour, total for
                one direction)
    \(\mathrm{N}=\) number of lanes (in one direction)
    \(W=\) adjustment for lane width and lateral clearance
        (from Tables)
    \(T_{c}=\) truck factor at capacity (from Tables).
```

Following is a sample calculation used to calculate the capacity of U.S. 31 from the drawbridge to Mercer Road in Charlevoix. The link has four 9 -foot lanes with 5% trucks and a 4% grade. The nearest obstruction is at the pavement edge. Using the correct tables, the adjustments can be made. For this segment, $N=2, W=0.7$ and $T_{c}=0.87$ resulting in a calculated capacity of 2440 vehicles/hour for both lanes.

C. Signalized Intersection

Chapter 6 of the Manual describes the method for determining the capacity of a roadway at a signalized intersection. Data needed include the approach width, signal green time, the signal cycle, the number of left and right turns, location of the intersection (rural, fringe area, downtown), and the percentage of trucks.

Also included in the analysis is the Peak Hour Factor (PHF). At intersections, the vehicle demand may not exceed the capacity over a one-hour period. However, there are peak volumes of traffic that arrive at the intersection (in a 15 -minute period, for example) which results in a short-term capacity constraint. The PHF is a ratio of the number of vehicles counted during the peak hour and four times the number of vehicles counted during the highest 15 consecutive minutes. Since the capacity of the roadway is to be determined, the PHF will be close to 1.00 . The Manual suggests a value between 0.85 and 1.00 . A value of 0.95 was used. The next step in the procedure is to determine the theoretical intersection approach volume (vehicle per hour of green). This is determined by using the appropriate figures in the Manual. Needed input to the figures include approach width and the load factor. The load factor represents the degree of utilization of an intersection approach roadway during one hour of peak traffic flow. A value of 0.85 is suggested in the Manual. This means that 85% of the green phases are fully utilized (i.e., vehicles always present). This appoach volume is then modified by numbers found in appropriate tables which reflect the percentage of turns at the intersection, intersection location and truck percentage.

Following is a sample calculation for the signalized intersection at U.S. 31 and Clinton Street in downtown Charlevoix. Concern is with the capacity on U.S. 31. The approach width is 15 feet with 40 seconds of green time and a signal cycle of 70
seconds. It is assumed that there will be no left or right turns from U.S. 31 onto Clinton Street. There are 5% trucks and the intersection is located in the central business district. Based on the approach width, the approach volume is 900 vehicles/hour. Adjustments to this value are:

```
peak hour factor =0.95
no left turns = 1.2
no right turns = 1.3
5% trucks = 1.0
central business district = 1.0
green tinle
```

Therefor ϵ, the capacity of the roadway due to the intersection will be y00 $x(0.95) x(1.2) \times(1.3) \times(1.0) \times(1.0) \times(0.57)$ $=760 \mathrm{v} / \mathrm{h}$.

APPENDIX Z
EVACUATION ROUTINGS

FIGURE E-1
EVACUATION ROUTINGS
ANALYSIS AREA 1 0-2 MILES
S - Summer
W - Winter

574 veh.

FIGURE E-2
EVACUATION ROUTINGS
ANALYSIS AREA 2 0-5 MILES
S - Summer

EVACUATION ROUTINGS
ANALYSIS AREA 3 0-5 MILES

> S - Summer
> W - Winter

APPENDIX F

CHALEVOIX COUNTY COMPREHENSIVE PLAN

General Characteristics

Perhap the major population trend which bears identification is the level of in-migration being experienced. Data from the Michigan Department of Public Health indicates that betveen 1960 and 1970 , over 62% of the county's growth was attributable to in-migration.

Thile the above figure only represents 1943 persons in a decade, the impact of these newcomers is definite. Often times, the new residents enter the county expecting to play a role in its evolution. In some cases, this conflicts with existing political situations. This trait, perhaps above all other trends, will have a growing influence on decisions made throughouc the county.

Another qeneral category which bears examination is the distribution of population between urban and rural settings. In past years, the pupulation comprising Charlevoix County has been generally grouped in small enclaves, villages or cities. Kany maps of the county still illustrate the nares of such bygone cumpunities as Barnard, Burgess, Sprinovale, Coles Mill and Phelos. This trend is still evident in the unincorporated villages of Norwood, Clarion, Walloon Lake, Ironton, Horton Bay, and Bay Shore, and in the incorporated settlements of Boyne City, Boyne Falls, Charlevoix, and East Jordan.

An examination of the population as delineated by the Census of 1970 shows that the County still naintains a basically urban population distribution. At that time 8,876 persons, or 53.7% of the county's population, resided in the four incorporated cormunities. At the sane time, many of the persons residing in the rural areas were living in the unincorporated villages listed above.

This distribution indicates that Charlevoix County has a basically balanced population distribution. The naticnal and state levels of distribution are substantially different. For example, the United States has approximately 76.3% of its population living in communities of one thousand persons or more. The State of Michigan follows this trend by having 76.7% of its population residing in communities of a sinilar size. Charlevoix County is basically a rural oriented comunity, even though the incorporated subdivisions are beginning to exhibit urban characteristics.

All commities, incorporated units or settloments, will begin to experience increased numbers of urban problems in future years. These situations will ranke from increasing crime, to the need for nore and better library facilities. They all have in comnon an increased need for public awarencss of future developnents and planning to meet these ultimate needs.

As these problens develop, the urban centers will becone less atcractive as locations for new homes. Then this occurs, increased pressures will evolve in the surrounding suburban areas, and it may be necessary for sone of the township units to develop quasi-municipal services. In some cases this is already occurring. It is likely to increase in frequency.

The two abo noted trends help comprise the "personality" of Charlevoix County. These factors nust continually be considered when evaluating future sections of this document. Additional characteristics will be pointed out through evaluation of the tables which follow.

Age, by Sex, 1970:
Table I compares the percent distribution of persons by age, by sex, as depicted in the 1970 Census of Population. The political entities that are connpared are the three najor cities, Charlevoix County, and the State of Michigan.

A point of significance illustrated on this table is found in the distribution of persons 60 years of age or older. Simple addition reveals that the three cities and county have a grouping of senior citizens representing between 15.5 and 17.1 percent of their population. The State of Michigan figure for this age bracket is 12.3 percent, indicating a significant overbalance of senior citizens residing in Charlevoix Crinty.

Compensation for this overbalance in elderly persons is spotty throughout the rest of the chart. In Boyne City and Charlevoix, for example, chere is a lesser percent of persons under 5 years of age than thrcughout the scate. By the same token, in the 35 to 40 age grouping, East Jordan portrays a lesser percentage distribution than the state.

The explanation for this population characteristic is that a number of persons have chosen Charlevoix Covnty as a place co retire. This is significant to this study, as the Comprehensive Plan must recognize the needs of this population group. Such areas of concern as senior citizen housing, recre"ion for the elderly, and school planning must be giver particular attentio..

Households, 1960 and 1970:
The average family size and the number of households located throughout the different poli+ical units within Charlevoix County is illustrated by Table IV. This chart compares 1960 and 1970 information taken from the Census of Population.

Of most significance on the following table is the fact that eleven of the nineteen political units in the county saw a decreased family size between 1960 and 1970. This ranged from .03 to 1.05 persons per household. The county average decreased by . 10 .

Most of the units within the county compare with the State of Michigan averages. Notaile excentions are the townships of Bay (3.62), Hudson (4.29), Marion (3.62), Me?rose (3.76), Norwood (3.65), Peaine (3.63), St. James (3.71), and Wilson (3.55). Hudson Township has the highest number of persons per household in Charlevoix County.

TABLE IV
HOUSEHOLDS, 1960 and 1970
1960 Persons/ 1970

Political Unit Population Households IH

 Townsh1ps| Bay | 348 | 94 | 3.70 | 456 | 126 | 3.62 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Boyne Valley | 688 | 204 | 3.37 | 832 | 258 | 3.22 |
| Chandler | 113 | 26 | 4.35 | 89 | 27 | 3.30 |
| Charlevoix | 290 | 82 | 3.54 | 720 | 221 | 3.26 |
| Evangeline | 420 | 113 | 3.72 | 440 | 139 | 3.17 |
| Eveline | 602 | 176 | 3.42 | 837 | 270 | 3.10 |
| Hayes | 499 | 140 | 3.56 | 706 | 211 | 3.35 |
| Hudson | 162 | 38 | 4.26 | 219 | 51 | 4.29 |
| Marion | 516 | 133 | 3.98 | 687 | 190 | 3.62 |
| Melrose | 672 | 182 | 3.69 | 830 | 221 | 3.76 |
| Norwood | 243 | 74 | 3.28 | 325 | 89 | 3.65 |
| Peaine | 34 | 15 | 2.27 | 58 | 16 | 3.63 |
| St. James | 177 | 48 | 3.69 | 156 | 42 | 3.71 |
| South Arm | 726 | 199 | 3.65 | 934 | 296 | 3.16 |
| Wilson | 464 | 133 | 3.49 | 650 | 183 | 3.55 |

Cities

Boyne City	2,797	856	3.27	2,969	916	3.24
Charlevo1x	2,751	890	3.09	3,519	1,108	3.09
East Jordan	1,919	586	3.27	2,041	628	3.20
County	13,427	3,989	3.37	16,541	5,002	3.27
State (millions)			8.875	2.653	3.27	

Source: 1960 and 1970 Census of Population.

Population Growth Trends

Throughout history, human beings have tended to cluster into neighborhood groups. These groups forned to promulgate a culture and to share population similarities. A comparable situation exists in the multitude of subdivisions developed around the major urban centers throughout the United States.

Charlevoix County does not have densely populated subdivisions akin to those surrounding Detroit, but it is possible to determine certain broad based areas of influence. These are generally structured around school district boundaries, commercial service centers, employment locations, and tecreation facilities. Certain natural barriers have assisted in the formulation of these areas.

The following discussions will recognize six communties within Charlevoix County. For ease of statistical comparison the boundaries were drawn ueing tomship lines. This does not assume that townships are not influenced by two or more neighborhoods. It does, however, provide the best acthod of analysis and evaluation.

A basic concept to be applied in using this areawide evaluation is that it makes more sense to examine a district exhibiting similar characteristics than analyzing small political units which can be affected by the in-migration or loss of a single industry. For example, the City of Charlevolx may be projected to reach a given level of population by 1990. This method of area assessment anticipates that a certain portion of this population will "spill over" into the surrounding towaships. Thercfore, the "area population total" is nore realistic than the figures for individual political units.

Local Growth Trends: 1940-1970, by Areas:
TrF1: VIII prosents a thirty year look at the population of the political units making up Charlevoix County. Following the procedure outlined above, these politica] units have been grouped into areas of influence.

Area one, comprised of the two townships on Beaver Island, has witnessed nerhaps the nost unique growth trend. In this case development has taken a negative direction, with the populaticn dropping a total of 302 persons (138%) since 1940.

The reason for this decrease is mainly due to the chancing nature of employnent on the island. Durinf, the earlier portions of this century, fishing and lumbering were important industries. Since that time, they have diminished in importance, causing the reduction in population.

The second area contains the largest populated comunity in the county. The City of Charlevoix serves as a focal point for a four township neighborhood.

This population grouping, witnessed constant growth since the 1240 s. Select units experienced a decrease between 1940-50 and 1950-60, but the area increased each decade.

Explanations for this growth rate are many; the most likely being Charlevolx's ideal location on the shores of both Lal:e Michigan and Lake Charlevoix. In recent years, the use of Lake Michigan for recreational and scenic purposes has increased, and a nuiber of persons have determined that the Charlevoix area is ideal for both.

Another pcesible explanation for the growth in the Charlevoix arca is the fact that the city serves as the county seat. As county government has grown, the number of job opportunities in the county offices has caused the city's population to increase.

A third area of influence is the largest in the county. This includes Boyne City, the five townships surrounding the city, and the Village of Boyne Falls. Growth in this area since 1940 has been sporatic.

The nucleus of this development area is Boyne City. In 1340, Boyne City contained only 65 fewer persons than in 1970. The city's hich point was reached In 1950, when the population reached 3,028 persons. The 1960 Census of Population saw this drop to 2,750 persons, a decrease of 7.6 percent.

Thile this trend was occuring in Boyne City, the surrounding tormships were experiencing steady Erowth increases. Since 1540, Bay, Evangeline, and Eveline Townships have experienced growth each decade. Boyne Valley Township dininished In population from 1940 to 1950 , but, since that time, the township has grown steadily. T/ilson Township is the only political unit wiich decreased from 1940 unt11 1950. This loss was recovered with a 40.1% rate of crovth from 1960 to 1970.

Explanations for this trend in growth are varue. It is likely that a number of influences were involved. Such things as the development and maturity of the sking industry, the attitude of local officials toward industrial developenent, the location of the Boyne City harbor eichtcen miles east of Lake Michigan, the availability of public, comercial, or service job opportunities, and the slow development of the area as a shoppine center. Each of these factors has inpacted the aria's prowth.

Area 4 is comprised of the City of East Jordan and South Ara Township. It is influenced by Banks, Central Lake, and Echo Townshios in Antrim County. Thile the population of the out-of-county political units is not shown, their influence and past growth trends were used in determining a growth trend for this area.

The East Jozdan community has experienced slow, but steady, growth since 1940. This is basically a single industry environment and as this anfor enterprise expanded in the past, so grew the area. With an influx of additional industrial concerns, and related commercial and service developments, the comunity is influenced by more factors.

While East Jordan has experienced a steady increase in population since 1940 , South Ara Township has witnessed a fluctuating population level. This apparently has bottomed out, and is now heading in an upvard direction, as the township realizes population "spill over" from the city.

The Valloon Lake arca is comprised of Chandler and Melrose Townships, and is Influenced by Resort, Bear Creck, and Springvale Townships and the City of Petoskey in Eumet County. This is a rural area, with the orientation of residents divided between Petoskey, Boyne City, and Vanderbilt (Otsego County).

Most residents of this portion of Charlevoix County have their places of employmert in the surrounding area. These two townships serve as suburban habitats. The Village of Talloon Lake, an unincorporated settlement near the middle of Melrose Township, functions as a "neighborhood" comercial center.

TABLE VIII

LOCAL POPULATION TRENDS
1940-1970, by Areas

AREA	1940	1950	pERCENT CHANGE	1960	PERCENT CHAIIGE	1970	PERCETT CHANGE
1. Beaver Island							
Peakne Twp.	175	99	-43.4	43	-51.5	58	20.8
St. James Twp.	346	297	-14.2	169	-45.1	161	- 1.2
Total	521	396	-31. $=$	217	-82.5	219	0.9
2. Charlevoix							
City of Charlevoix	2299	2695	17.2	2751	2.1	3519	27.9
Charlevoix Twp.	167	183	9.6	290	58.5	720	148.3
Hayes Twp.	702	556	-20.8	499	-10.3	706	41.5
Marion Twp.	523	504	- 3.6	516	2.4	694	34.5
Nlorwood Twp.	260	255	- 1.9	243	- 4.7	325	33.7
Total	3951	4193	6.1	4299	2.5	5964	38.7

3. Boyne City

City of

Boyne City	2904	3028	1.3	2797	-7.6	2969	6.1
ay Township	320	344	7.5	348	1.2	456	31.0
oyne Valley Twp.	677	628	-15.5	588	9.2	832	13.3
vangeline Twp.	271	313	15.5	420	34.2	446	4.8
veline Twp.	533	553	3.8	602	8.9	837	39.0
ilson Twp.	528	-503	-4.7	$\boxed{464}$	-7.8	650	40.1
Total	$\underline{5233}$	5369	2.6	$\underline{5319}$	-0.9	$\underline{6190}$	16.4

4. East Jordan

City of
East Jordan
outh Arm Twp.
Total

1725	$\begin{array}{r}1779 \\ 707 \\ 760\end{array}$
2432	2539

3.1	1919
7.4	726
4.4	2645

7.9	2041
-4.5	995
	3036

6.4
37.1
14.8
5. Walloon Lake

Chandler Twp.
Melrose Twp.
Total

| 129 |
| :--- | :--- |
| 556 |
| 685 |\quad| 144 |
| :--- |
| 735 |

11.6
-21.5
89
-21.2
23.5
3.8
6. Hudson

Hudson Twp. 209
$\begin{array}{llllllll}\text { Total } & 13,031 & 13,475 & 3.4 & 13,427 & -0.4 & 16,541 & 23.2\end{array}$

Source: US Census of Population

Since 1940, Chandler Township has decreased in population by almost 50 percent; while, Melrose Township has increased by a like percentage. This trend can be explained by noting Melrose Townshif's location along heavily travelled U.S. 131, and the relatively isolated location of Chandier Township.

A final area is comprised of Hudson Township. This unit stands alone, as the persons living here generally orient their work, school, and play patterns to the villages of Elrira and Vanderbilt in Otsego County.

As can be seen from the accompanying table, this township has experienced an erratic growth trend since 1940 , with the 1970 populction only 10 persons above that tallied at that time. The 35.2 percent increase from 1960 to 1970 is similar to that in the townships and villages in the surrounding area.

The population profile of these six areas, when viewed as a county, shows a decreasing growth rate from 1940 to 1960 . During the decede of the 1960 s , the county increased by 23.2 percent. This expansion is reflective of the factors pointed out above.

This evaluation of the county's growth trend since 1940 forms a basic background for understanding the future in terns of population.

Estimated Seasonal Population, 3y Aress:
A discussion of scasonal populations in Charlevoix County is highly important, as the influx of temporary individuals causes a notable change in the community during peak resort periods of the year. A clarification of the difference between seasonal and transient residents will be used to introduce this analysis.

Sessonal residents, as defined for purposes of this report, includes those persons who reside on a part time basis in a dwolling unit located within the confincs of Charlevoix County. The dwolling units referred to are normally called second homes or seasonal homes.

Transients, on the other hand, are residents of the county for short periods of time, normally utilizing a motel room, hotel room, cabin, campsite, or similar dwelling place while visiting the county. This includes those persons who stay outside of the county and visit on a day-by-dey basis.

It is difficult to profect the number of transient visitors to the county. However, given the many attractors for transient visitors - Youngs State Park, whiting County Park, Boyne Mountain Ski Resort, Thunder Mountain Ski Resort, Walloon Hills Ski Resort, numerous city and township parks and beaches on Lake Michigan, Lake Charlevoix, and Walloon Lake, Belis Bay State Forest Campground, and dozens of public access sites - it is possible to make c "ball-park" estimate of 8,000 to 10,000 persons on a given high use day.

The estimation of the seasonal population is somewhat more scientific. This is done utilizing the 1970 Consus of Housing and the 1972-73 Housing Survey undertaken by the County Planning Department. Table IX depicts the estimated seasonal populations by area.

Assignment of a fanily size of 3.5 persons is undertaken following an assumption that the resort family typically will contain from 1 to 2 children. Larger families are counterbalanced in the system by childiess elderly fanilies and single individuals.

TABLE IX
ESTIMATED SEISONAL POPULATION
By Areas
DWELLING UNITS $\begin{gathered}\text { AVRRAGE } \\ \text { FAMILY SIZE }\end{gathered} \begin{gathered}\text { SEASONAL } \\ \text { POPULATION }\end{gathered} \begin{gathered}\text { TOTAL } \\ \text { POPULATION }{ }^{3}\end{gathered}$

1. Beaver Island Peaine Township
St. Jamer Fownship

	$132{ }^{2}$	3.5 persons	462	520
	101^{2}		353	514
Total	233			

2. Charievoix

City of Charlevoix
Charlevoix Township
Hayes Township
Marion Township Norwood Township

333^{2}	
104^{2}	
102^{1}	
291	
	35^{1}
	Total 603

3. 3 persons 1,166

4,685
1,084
364
1,063
102

$$
796
$$

$$
448
$$

2,112
8,076
3.- Boyne City

City of Boyne ...y 141^{2}
Bay Township
Boyne Valley Township
Evangeline Township
$\begin{array}{ll}1691 \\ p & 481 \\ & 30^{1}\end{array}$
Eveline Township
$\begin{array}{r}3551 \\ 47^{2} \\ \hline\end{array}$
Total - $84 n$

3.5 persons | 494 | 3,463 | |
| :--- | ---: | ---: |
| | 592 | 1,048 |
| | 168 | 1,000 |
| | 280 | 726 |
| | 1,243 | 2,080 |
| | 165 | -81 |
| | 2,942 | 9,132 |

4. East Jordan

City of East Jordan

80^{2}	
Total	166^{1}
	246

3.5 persons

| 280 |
| :--- | :--- |
| 581 |
| 861 |\quad| 2,321 |
| :--- |
| 1,576 |
| 3,897 |

5. Walloon Lake
Chandler Township
3.5 persons $\quad 49$

138
$\frac{861}{910} \quad \frac{1,691}{1,829}$
6. Iudson

Huds on Township
Total $\frac{148^{1}}{2,330}$
3.5 persons $\frac{518}{8,158}$

737

24,699
1 1972-73 Housing Survey, Charlevoix County Planning Department.
21970 Census of Housing.
3 Includes year-round and seasonal. Year-round populations taken fron Table VIII.

This table 11lustrates that the largest number of seasonal residents occupy temporary dwelling units in the Boyne City area. The Charlevoix area is close behind, followed then by the Walloon Lake, the East Jordan, the Beaver Island and the Hudson areas. Taken together, a seasonal population of approximately 8,158 persons resides in the second home units in the county.

As these are actual figures, it is significant to locate major settlements of sessonal residents. Eveline Township, wit' 25 miles of Lake Charlevoix shoreline has an estimated seasonal population of $1243,48.6$ percent more than their yearround population. Other towaships experiencing this phenomenon are: Peaine (696.5%), St. James (123\%), Bay (30\%), Melrose (3.7\%), and Hudson (137\%). South Arm and Hayes Townships and the City of Charlevoix also contain large seasonal populations.

The final columin on Table IX depicts the total year-round and seasonal population by particular units and influence areas. This tabulation presents a more deifintive look at the population of Charlevoix County. The addition of the eight thousand plus estimated seasonal rosidents adds a new divension to the plan "foundation" which will evolve from this study of the county population.

Projected Populations, $1980-90$, by Areae:
Following the above evaluation of past trends and the current status of the population of Charlevoix County, an estimate of the 1980 and 1990 population is presented. Two profections are provided for each political unit. Thesc are based on forccasts undertaken by the Department of Commerce, State of Michigan, and the Cr . - -1evoix County Planning Department (Solid Waste Management Plan, 19:4).

Both projections shown on Table X were based on impacts such as automobile registration trends, voter iists, birth and death rates, and similar growth determinants. The Department of Comerce projection is wholly a statistical profection while the Planning Department estinate attempts to measure the pulse of development in the areas covered by the projections.

Area 1, covering Beaver Island, is expected to grow slightly by 1980, and again slightly by 1990. The total population in 1990 is profected to be 53.3 percent higher than the current leval: however, even with this increase, the island group will not approach the population level of the early century.

Growth in the Beaver Island area will be attributable to an increase in developwent of resort oriented service facilities of both a winter and surmer type. This will yield an increased seasonal population which will support more yearround residents.

The second area on Table X is the Charlevoix area. Population increases here are expected to occur as a continuation of the trends which developed during the decade between 1960 and 1970.

Extcnsion of the rate of growth experienced during the $1960^{\prime} s$ assumes that the conditions causing the increase will continue to impact this area. Indicators available at the time of this report's preparation (1975), support this premise.

TABLE X

PROJECTED POPULATION

1980-90, by Areas

1. Beaver Island TCwnships

. Peaine	70	73	578	648	84	91	723	807
. St. James	193	234	449	642	232	333	561	793
TOTAL	263	307	1,027	1,290	316	424	1,284	,600

2. Charlevoix

City

.Charlevoix Townships	4,927	3,859	1,458	6,385	6,898	4,230	1,823	8,721
- Charlevoix	1,008	1,379	455	1,463	1,411	2,632	569	1,980
- Hayes	988	1,011	446	1,434	1,383	1,446	558	1,941
. Merion	972	936	128	1,100	1,361	1,260	160	1,521
. Worwood	455	432	154	609	637	574	193	1,830
TOTAL	8,350	7,617	2,641	10,991	11,690	10,142	3,303	14,993

3. Boyne City

City

. Boyne City	3,711	4,337	618	4,329	4,539	6,327	773	5,412

Tomships

$.3 a y$	570	620	741	1,311	713	842	926	1,639

4. East Jordan

City
$\begin{array}{lllllllllll}\text { East Jordan } & 2,347 & 2,439 & 350 & 2,697 & 2,699 & 2,915 & 438 & 3,137 \\ \text { Township }\end{array}$

South Arm	1,144	1,497	726	1,870	1,316	2,249	208	2,224
TOTAL	3,491	3,936	1,076	4,467	4,015	5,164	1,346	5,361

5. Walloon Lake

Tounships

6. Hudson

Township
.Hudson
TOTAL
$\frac{28:}{21,360} \frac{302}{22,432} \quad \frac{648}{10,362}$
$\frac{533}{31,722} \quad \frac{371}{27,731} \quad \frac{414}{31,146}$
$\frac{810}{12,764} \quad \frac{1,181}{40,495}$
1 Planning Department, Charlevoix County
2 Department of Commerce, State of Michigan

Profected populetions in Area 3 show Boyne City to be a growth area for the next decade and a half. Both the Planning Department and the Department of Commerce figures support this expansion of the Boync City influence area. The state projection goes so far as to indicate an Increese for Boyne City of 113.1 percent over the 1970 population.

Growth profections of this magnitude are based on the many potentials for developnent in the Boyne City area. Continued proliferation of the sking industry; and increased demand for homesites with a "view" of Lake Charlevoix, Walloon Lake or the various ski resorts; stcady industricl development (augmented by an expresoway to be built into northwestern Michigan sometime in the 1930's); and the evolvement of Boyne City as a major commercial service center, all will contribute to an increase in population in this area.

The East Jorden area is ostimated to dovelop at a lower rate of growth than the aress influenced by the cwo other cities. lany ressons exist for this profection lovel. The most compuling scems to be the dominance of the East Jordan Iron Works industrial location. The plant is situated at the hub of activity in the city and tends to influence the growth attitude of the surrounding area.

This is not to say that the nanufacturin- site is obnoxious; however, when an industry so dominates a setting, the focus of the commity ettitudes tend to follow that lead. This, in turn, sets the standard for lifestyles in the arca.

It also influenecs comunity growth decision making. Because of this, East Jordan hes developed as a primary industrial location in Charlevoix County. This, however, conflicts with the evolvement of "tourist" oriented activities, end, whereas, Boyno City, Charlcvoix, Petoskey, Harbor Springs, and other surrounding comunities have experienced continuous resort development, East Jordan has grown slower duc to its "induatrial" imace.

Actuclly, with the potential for an expressway to provide better transportation to and fron the East Jordan area, it is possible to assign a larger growth percentage here. The estinate on Table X reflects this possibility, however, it assumes a slower, nore deliberate rate of expansion for East Jordan.

Both the Planning Department and the Departnent of Comorec agrec that the Walloon Lake area will expurience substantial growth in the next two decades. The Influence of Petoskey and Boyne City, and, to a lesser extent, Vanderbilt, will support the 69.3 percent increase in total population (ycar-round and seasonal) by 1990.

Area 6 has already been described as overlapping into Otsego County in its orientation. Hudson Township is projected to be the recipient of much of the growth of that area.

Table X profects both an increaso in the seasonal and year-round population of the area within the confines of the township. This is stpported by proposed developents on Thumb Lake (Lake Louise) and Bows Lake and by increased requests for permits to build rural honesites within the township.

Taken together, with the unique eircunstances iffecting ecch of the areas described above, Charlevoix County is slated to withess an cxpansion of its yearround, seasonal, and total population levels. Futu:e plan considerations must reflect the increases of 67.7% (Planning Departnon figures), 56.3%, and 63.9%, respectively, for these population catagories.

APPENDIX G
EOC ACTIVATION ALERT LIST

EOC Staff List for a Nuclear Power Plant Incident (for 24-hour operation)

Executive Group
Chief Executive
Chief of Staff
Public Information Officer
Damage Assessment Group
Damage Assessment Group Chief
Damage Analysis Officer
Damage Assessment Team
Plotter
Radiological Defense Officer
Operations Group
Police Operations Officer
Fire Operations officer
Welfare Operations officer
Public Works Operations Officer
Health Operations Officer
Schocl Support Operations Off.
Resource Group
Conmunications officer
Controller/Log Recorder Plotter
Messenger
State Liaison
Consumers Power Company
Representative (in County EOC)

NORMAL. POSITION

Chairman, Board of Comaissioners
-mergency Services Coordinator
Reporter, Charlevoix Courier

Director, Equalization Department Assistant Director, Equalization Dept. Appraisers
Appraiser I
Planning Department Director

Sheriff
Designee (from Boyne City)
Director, Department of Social Serv.
Road Commission Engineer
Administrator, Health Dept., Dist. 3 Superintendent, Intermediate Schools

Dispatcher
Posse
Appraiser I
Posse
MSP Emergency Services Field Coord.

BACK-UP POSITION

Vice-Chairman
Deputy Coordinator
Reporter, Charlevoix Courier

Assistant Director, Equalization Dept. Appraiser I
Appraisers
Appraiser I
Teacher, Boyne City High School

Under Sheriff

Designee (Chlef, Charlevoix City) Special Services Coordinator, Dept. of Social Services
Road Commission Foreman in
Charlevoix area
Environmental Health Div. Director
Assistant Superintendent

Dispatcher

Posse
Appraiser I
County Secretary
Lt., Community Services
LK I:

Liaison to Scate EOC

```
Attachment }3\mathrm{ to Appendix 1 to the Direction and Control Annex
```


EOC STAFF TELEPHONE NUMBERS*

*Note: Back-up EOC staff telephone numbers in Attachment 4.

Attachment 4 to Appendix 1 to the Direction and Control Annex

BACK-UP EOC STAFF TELEPHONE NUMBERS*

EOC Position	Name	Office	Home
Chief Executive	Donald Meggison	547-6581	547-6444
Emergency Services			
Coordinator	Alice Tunison	N/A	547-6054
Public Information officer	Peg Olhe	547-6558	
Damage Assessment GroupChief			
Radiological Defense Officer	Henry Lentz		
Law Enforcement Operations Officer			
Fire Operations Officer	John Curtis	547-6611	547-2873
Social Services Operations Officer	Doug McCombs	547-4471	547-6042
Public Works Operations Officer			
Health Operations Officer	Dean Mikulski	547-6523	547-9054
School Support Operations Officer	Sue Shepherd	547-9947	347-1389
Controller			
Messenger			
Log Recorder (dispatcher)			
State Liaison	Lt. Robert Beadle (Community Services	$1-946-055$ ict Coord	
Consumers Power Liaison	to be designated		
County Liaison to State on-scene EOC Ralf Harmon, Comm. District 7 $549-2630$			
County Liaison to Plant's EOC	Casimer Toton, Comm District 10		-82-6862

*Note: Primary EOC staff telephone numbers are located in Attachment 3. These people should be called first. If they cannot be reached, this back-up list should he used

FIGURE E-5
EVACUATION ROUTINGS
ARALYSIS AREA 5 0-10 MILES
S - Summer
W - Winter

[^0]: *Boyne City was not included in the evacuation analysis.

[^1]: *Petoskey and Harbor Springs were not included in the evacuation analysis.
 **Approximately corresponding to the 900 and 1800 sectors described in the NRC letter of $11 / 29 / 79$. Note that only two 900 sectors exist since much of the area within 10 miles is over water.

[^2]: ₹ As noted on rage one, the plume exposure EPZ is about 5 miles. Information on the area within 5 to 10 miles of the site has been included as further background material.

[^3]: * As noted on page one, the plume exposure EPZ is about 5 miles. Information on the area within 5 to 10 miles of the site has been included as further background material.

[^4]: *Highway Research Board, Highway Capacity Manual, National Academy of Sciences, National Research Council, Special Report 87, 1905.

[^5]: *Michigan Department of State Highways and Transportation, Michigan Highways Sufficiency Rating, Report No. 153, 1978.

[^6]: *This implies a time headway of $3,600 /$ capacity seconds. Where capacity is greater than 1,200 vehicles per hour, this estimate yields time headways of less than the assumed free-flow 3-second headway.

[^7]: * Source: Telephone communication, Mr. R. Krueger, Charlevoix Area Hospital. Munson Hospital, Turners City, located 55 to 60 mies from the Charlevoix facility is the closest major medical care facility in this region.

[^8]: * As noted on page one, the olume exposure EPZ is about 5 miles. Information on the area within 5 to 10 miles of the site has been included as further background material.

[^9]: * As noted on page one, the plume exposure EPZ is about 5 miles. Information on the area within 5 to 10 miles of the site has been included as further background material.

[^10]: * As noted on page one, the plume exposure EPZ is about 5 miles. Information the area witain 5 to 10 miles of the site has been included as further background material.

