HYDROGENATION OF AMO CUS SILICON NITRIDE*

H. J. Stein, P. S Peercy and D. S. Ginley Sandia Nations' ... oratories[†], Albuquerque, New Mexico 87185 USA

ABSTRACT

ng tor all j nagy i skidulo

here

A relationship between hydrogen and the equilibrium positive charge in silicon nitride films has been confirmed by rehydrogenation of annealed films using a hydrogen plasma. The primary relation between hydrogen and silicon-nitride charge is associated with Si-H formation.

INTRODUCTION

Previous experiments have shown that several atomic percent hydrogen is incorporated in chemical vapor deposited (CVD) silicon nitride (SiN_X) films prepared for MNOS (Metal or Si-gate/nitride/oxide/Si) memory device applications.¹⁻⁴ The total hydrogen concentration and the relative concentrations of N-H and Si-H bonds are dependent on the ammonia:silane flow ratio and deposition temperature.^{1,4} Subsequent heating of films above the deposition temperature, which is typically 700 to 900°C, results in hydrogen loss by trap-limited diffusion.⁴ Depositions of SiN_X for pchannel MNOS are usually performed at temperatures between 700 and 750°C because there is more equilibrium positive nitride charge, Q_{NC}, at these lower temperatures which gives negative equilibrium flat-band and threshold voltages. However, post deposition annealing at either MOS or Si-gate processing temperatures causes degradation of SiN_X properties, particularly for films deposited at these lower temperatures.

Parallels in the dependence of $Q_{\rm NC}$ and hydrogen on deposition and annealing characteristics have been noted previously;^{1,5} however, many simultaneous effects occur during deposition and annealing. Methods for introducing hydrogen into SiN_x with minimum disturbance of the structure are thus required to establish the relationship between $Q_{\rm NC}$ and hydrogen. In the present paper we report studies in which hydrogen was introduced into annealed SiN_x films by exposure to a low pressure hydrogen plasma at temperatures between 300 and 700°C. Infrared absorption, nuclear reaction analysis, and capacitance-voltage measurements were used to investigate the reintroduction of hydrogen and to determine the relationship between $Q_{\rm NC}$ and hydrogen in SiN_x.

EXPERIMENTAL DETAILS

Silicon nitride films were deposited onto n-type Si substrates from NH₃ and SiH₄ mixed with N₂ carrier gas in an AMV 1200 reactor. Flow ratios of 100:1 and 200:1 for NH₃:SiH₄ and substrate temperatures between 700 and 775°C were used to achieve

*This article sponsored by the U. S. Department of Energy under Contract DE-AC04-76-DP00789.

[†]A U. S. Department of Energy facility.

8008010/16

Even page No.

60 1 31

he fel

a tes shed

the desired Q_{NC} and chemical bonding of hydrogen. Isochronal (20 min.) annealing was performed in flowing N₂ at temperatures between 750 and 975°C, and radiative heating of samples in a tesla-coil-generated hydrogen plasma at \sim 2 torr was used for rehydrogenation of SiN_x after annealing.

Nuclear reaction analysis (NRA) with the $1_{\rm H}(15_{\rm N}, (\alpha, \gamma)12_{\rm C}$ reaction (depth resolution of ~ 100 Å) was used to measure the hydrogen depth distribution and concentration before and after plasma hydrogenation. Chemically-bonded hydrogen was determined from Si-H and N-H stretch modes measured by the multiple internal reflection (MIR) technique, and QNC (assumed proportional to flat-band voltage) was determined from 1 MHz capacitance-voltage (C-V) measurements which were made by using a mercury probe on SiN_x films deposited on Si MIR

RESULTS AND DISCUSSION

Chemically-bonded hydrogen and the C-V characteristics after successively higher annealing temperatures are shown in Fig. 1 for 1000 Å of SiN_X deposited from a 100:1 NH3:SiH4 ratio at 750°C onto a <100> Si (MIR) plate. The similarity between the reduction of chemically-bound hydrogen and the shift of the C-V characteristic toward zero (reduction of Q_{NC}) is apparent from these data.

Fig. 1. Si-H and N-H absorption and C-V characteristics for CVD SiN_X/Si after annealing at successively higher temperatures.

After annealing at 975°C, the SiN_x was hydrogenated by exposure to a hydrogen plasma at 650°C for 17 hrs. and then given a 20 min. post-hydrogenation anneal at the deposition temperature of 750°C. Pre- and post-hydrogenation results are compared in Fig. 2. The comparison clearly shows rebonding of hydrogen during plasma exposure. No hydrogenation occurred in an exposure to H₂ at 650°C in the absence of a plasma. The sharpening of the C-V characteristic produced by hydrogenation indicates hydrogen passivation of interface states, and the large negative shift of the C-V characteristic substantiates a relationship between QNC and hydrogen.

Effects of temperature during plasma treatment are illustrated in Figs. 3 and 4. The data in Fig. 3 show that the intensities of Si-H and N-H absorption bands are largest after 300°C hydrogenation and decrease with increasing temperature. After 750°C annealing, however, the maximum intensities for the bands occur for films hydrogenated at 650°C. These apparently contradictory temperature effects are explained by the hydrogen concentrations and profiles measured by NRA as shown in Fig. 4. The NRA measurements were performed on 800 Å films annealed at 900°C prior

7ig. 2. Chemically bound hydrogen and C-V characteristic after 650°C plasma hydrogenation of annealed SiN_x (solid line). The as-deposited and final anneal data from Fig. 1 are included for comparison.

for all ges et oak

1MPORTANCE

Fig. 4. Effect of plasma treatment temperature on hydrogenation of annealed SiN_x as measured by nuclear reaction analysis before and after 750°C annealing.

Even page No.

shank

to hydrogenation. As can be seen from the data in Fig. 4, hydrogenation at 300°C produces a high concentration of hydrogen near the front surface. Back diffusion at 750°C of this near-surface hydrogen is a major factor in the large decrease in N-H and Si-H intensities produced by annealing. Little or none of the hydrogen introduced in the plasma at 300°C migrates through the film and therefore has little effect on Q_{NC}. On the other hand, hydrogenation at 650°C followed by annealing at 750°C gives a nearly uniform profile with approximately the as-deposited hydrogen concentration and restores the as-deposited C-V characteristic.

Fig. 5. Flat-band voltage normalized to 1000 Å film thickness plotted versus peak intensities for N-H and Si-H for SiN_x films which have a wide range of N-H and Si-H concentrations.

Although rehydrogenation of SiN_x by exposure to a hydrogen plasma and a dependence of Q_{NC} on hydrogen are well demonstrated by the results presented above, these data do not distinguish between Si-H and N-H centers for altering Q_{NC} . Plotted in Fig. 5 are flat-band voltage V_{FB} (voltage for C = 0.7 C_{meas}) versus N-H and Si-H intensities obtained from annealing SiN_x deposited under conditions which yield a wide range in N-H and Si-H concentrations. These results show the same V_{FB} (and hence the same Q_{NC}) for a factor of four increase in N-H concentration which occurs when increasing NH3:SiH4 from 100:1 to 200:1. In contrast, the V_{FB} versus Si-H data show a functional similarity for the different SiN_x materials. From these results we conclude that the primary hydrogen- Q_{NC} relation occurs via the Si-H centers.

ACKNOWLEDGEMENT

The authors are indebted to Mary Mitchell and Doug Weaver of the Sandia Microelectronics Laboratory for providing the silicon nitride films.

REFERENCES

- H. J. Stein, J. of Electron. Mater. 5, 161 (1976); H. J. Stein and H. A. R.
 Wegener, J. of Electrochem. Soc. 124, 908 (1977); and H. J. Stein and V. A.
 Wells, Electrochem. Soc. Extended Abstracts 77-1, 303 (1977).
- 2. F. I. Belyi, F. A. Kuznetsov, T. P. Smirnova, L. V. Chramova and L. K. Kravchenko, Thin Solid Films 37, 139 (1976).
- 3. G. Stubnya, I. C. Szep, G. Hoffmann, Z. Horvath and P. Tutto, Revue De Physique Appliquee 13, 679 (1978).
- 4. P. S. Peercy, H. J. Jtein, B. L. Doyle and S. T. Picraux, J. Electron. Mater. 8, 11 (1979).

5. R. Hezel, J. Electron. Mater. 8, 459 (1979).

DOE .m IR-426 (1/79)

.

.

U.S. DEPARTMENT OF ENERGY

DOE AND MAJOR CONTRACTOR RECOMMENDATIONS FOR DISPOSITION OF SCIENTIFIC AND TECHNICAL DOCUMENT

See instructions on Reverse Side

1 DOE Report No	2 Contract No		12	Subject Category No
SAND80=0510C	2. Contract No.			Subject Category No.
4. Title Hydrogenation of Amorphous S	ilicon Nitride			
H. J. Stein, P. S. Peercy, D	. S. Ginley			
D a Scientific and technical report				
Conference paper: Title of conference	International Top:	ical Conferenc	e on the P	hysics of MOS
	Insv!ators			
		Di	ate of conference	June 18-20, 198
Exact location of conference Raleigh	North Carolina Sponsoring or	ganization		
C. Other (Specify Thesis, Translations, etc.				
6. Copies Transmitted ("x" one or more)				
a. Copies being transmitted for standard di	stribution by DOE-TIC.			
D. Copies being transmitted for special dist	ribution per attached complete ad	Idress list.		
I d Twenty-seven conjet being transmitted t	a DOE_TIC for TIC processing a	IL. nd NTIS salas		
7. Recommended Distribution ("x" one)	o bor - the for the processing a	10 11 10 30163.		
Q a. Normal handling (after patent clearance)	no restraints on distribution exit	cept as may be require	d by the security	classification.
Make available only D b. to U.S. Governmen	t agencies and their contractors.	C c. within DOE	and to DOE cont	ractors.
🗆 d. within DOE.		🗆 e. to those liste	ed in item 13 belo	w.
□ f. Other (Specify)				
8. Recommended Announcement ("x" one)				
a. Normal procedure may be followed.	b. Recommend the following	ing announcement limi	tations:	
 9. Reason for Restrictions Recommended in 7 or 1 a. Preliminary information. b. F 	8 above. Prepared primarily for internal use	. 🗌 c. Other (E	xplain)	
10. Patent Clearance				
Does this information product disclose any new	equipment, process or material?	🗆 Yes	□ No	
Has an invention disclosure been submitted to 1 disclosure number and to whom the disclosur	DOE covering any aspect of this in e was submitted.	formation product? If	so, identify the [No	OE (or other)
Are there any patent related objections to the n	elease of this information product	t? If so, state these obj	ections.	
("x" one) a. DOE patent clearance ha	s been granted by responsible DO	E patent group.		
D b. Document has been sent	to responsible DOE patent group	for rlearance.		
11. National Security Information (For classified do	ocument only; "x" one)			
Document 🗌 a. does 🗌 b. does not	t contain national security inf	ormation other than r	estricted data.	
12. Copy Reproduction and Distribution				
Total number of copies reproduced	Number of copies distribute	d outside originating o	rganization	
T3. Additional Information or Hemarks (Continue of	on separate sheet, if necessary)			
14. Submitted by (Name and Position) (Please print	or type)			
W. L. Garner - Supervisor, D	ivision 3151			
Organization			Sector Sector	
Sandia Laboratories				
Signature		Da	te	
116 anna			6/25/80	jz