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NOMENCLATURE

convection-dif fusion function, Eq. [5.3]

finite~difference coefficients

finite-difference coefficients arising from the
uns.teady term

"constant" term in the finite-difference method
specific heat at constant pressure

turbulence constant

diffusion strength, Eq. [5.5]

pressure coefficient, Eq. [6.8]

wall-law constant

flow rate, Eq. [5.4]

source in turbulence energy due to buoyancy (Table 1)
turbulence quantity, Eq. [2.8]

gravitational acceleration in the jth direction
enthalpy

total (convection + diffusion) flux

interfacial drag coefficient

turbulence kinetic energy

a large number, Eq. [9.8]

resistance of laminar sublayer, Eq. [9.4]; source
in turbulence energy (Table 1)

source term in scalar energy g (Table 1)
pressure

guessed value of pressure
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NOMENCLATURE

pressure correction

laminar Prandtl number

turbulent Prandtl number

heat generation per unit volume, Eq. [2.5]
interfacial heat transfer coefficient, Eq. [2.5]

r-coordinate in cylindrical and spherical coordinate
systems (Appendices A and B)

source term, Eq. [2.9]

parts of the linearized source term, Eq. [4.15]

source terms for g, k, ¢

positive and negative parts of S, Eq. [11.7]
temperature

time

velocity components

velocities based on p*

pseudo-velocities, Eq. [6.7]

viscous source term; volume

velocity components (cylindrical coordinates, Appendix A)
velocity components (spherical coordinates, Appendix B)
coordinate directions

dimensionless distance from wall, Eq. [9.2]

under-relaxation factor; thermal diffusivity; defined
in Eq. [8.7]; void fraction in Appendices A and B.

diffusion coefficient, Eq. [2.9]
diffusion coefficients for g, h, k, ¢
time step

control-volume dimensions

distances fhown in Fig. 4.3
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Subscripts

NOMENCLATURE

distance from wall
dissipation rate
turbulence constant
thermal conductivity
viscosity

density

"new" density at point P
old value

defined in Eq. [8.7]

general dependent variable, Eq. |2.9]; ¢-coordinate
in spherical coordinate system (Appendix B)

"new" value of ¢ at point P
"0ld" value of ¢ at point P
last-iteration value of ¢P

f§-coordinate in cylindrical and spherical coordinate
systems (Appendices A and B)

void fractions for phase 1, phase 2
volume porosity
surface permeability in x, y, and z-directions

source due to phase change (evaporation or condensation)
in the continuity, momentum, and energy equations

viscous dissipation, Eq. [2.5]

kinematic viscosity

phase 1, phase 2

grid positions (i,j,k), i+l, j+1, i-1,
j=1, k+l, k-1

grid positions i+1/2, j+1/2, i-1/2, j-1/2,
k+1/2, k-1/2
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ABSTRACT

This report describes a general numerical proced.re for
the calculation of steady/unsteady, single-phase/two-phase,
three-dimensional fluid flow. The procedure is based on the
control-volume approach, which enables the derivation of
physical’y meaningful finite-difference equations. The conser-
vation equations employed are based on a two-fluid model. This
permits the analyses of nonhomogeneous and nonequilibrium flow
conditions. In addition, surface permeabilities and volume
porosities are included in the finite-difference formulations
to account for dispersed solid objects in a flow domain. The
derivation of the equations and the required iteration scheme are
presented, and flow charts are provided for the planning and

design of a computer program.



1. INTRODUCTION

This report describes a general numerical method for the solution of the
governing equations for three-dimensional, single-phase/two-phase, steady/un-
steady flow with heat transfer. The method outlined here has been developed
and refined over a number of years, and already a large number of computations
for complex single-phase flow situations have been performed. In the present
report, this method has been extended to two-phase flow. The description here
starts with the differential equations and deals with the numerical method
and its possible . —rporation into a computer program.

Section 2 is devoted to the set of governing equations for the situation
considered. In Section 2.5, the general form of all the governing equations is
recognized; this generalization facilitates a unified development of the
numerical method and the construction of the computer program.

The conservation equations for quasi-continuum regime are presented in
Section 3. We define the quasi-continuum regime as a flow regime which contains
finite, dispersed, stationary heat generating (or absorbing) solid objccts. The
effects of solid objects in a flow regime are accounted by introducing surface
permeabilities, volume porosities and distributed resistances and heat sources.

In Section 4 we present some preliminary considerations before we start
assembling the finite difference equations. The finite difference formulation
of the general equation is presented in Section 5. As we use a staggered grid
system, the control volumes for momentum equations are different and require
special considerations. The special features of the finite-difference
equations for momentum are discussed in Section 6. In Section 7 we have
presented the finite difference forms of the continuity equations.

Section 8 contains the derivation of pressure and pressure correction
equations. In the present report we have presented two methods for deriving
the pressure and pressure correction equations from the continuity and momentum
equations. The first procedure is an extension of the single-phase numerical
proceédure [1], known as SIMPLER (Semi-Inplicit Method for Pressure Linked
Equation - Revised). In this procedure we use the two-phase continuity
equations to determine the void fractions, and use the combined continuity
equation to derive the pressure correction equation. In the second pro-
cedure also we use both of the phase continuity equations to determine the

void fractions;: the difference lies in the derivation of the pressure



correction equation. In this procedure we differen.iate the phase continuity
equations and momentum equations and then combine them to obtain the pressure
correction equation. This is analogous to the numerical procedure [2] known as
Inter Phase Slip Analyser [IPSA].

Section 9 deals with tne boundary conditions for the different dependent
variables. A discussion of the ways of handling irregular geometries is
included in Section 9.5.

A line-by-line procedure for solving the finite-difference equations is
presented in Section 10. This procedure has been found to be superior to the
usual point-by-point procedure.

In Section 11, we take an overall view of the entire calculation seguence.
The various steps in *he iteration scheme are listed in Section 11.1, while
the remainder of Section 11 is devoted to matters that enhance the chances of
obtaining a converged solution.

The incorporation of the numerical method into a computer program re-
quires careful planning and design. The flow charts given in Section 12 are
intended to contribute to this process.

Although all formulations in the report are for Cartesiar co-ordinate
system, we have provided tables in the Appendices A and B showing all the
necessary changes needed to apply these formulations to cylindrical and

spherical co-ordinate systems.



2. DIFFERENTIAL EQUATIONS: CONTINUUM

The governing equations for a single-phase/two-phase, three-dimensional,

unsteady flow with heat transfer are given here in Cartesian tensor notation.
For two-phase flow, we usr two-fluid model cf Harlow and Amsden [3] wu
describe the conservation Juations of mass, momentum and energy. [he three
coordinate directions, x, y, z, are denoted by X and the three velocity

components, u, v, and w are denoted by ug. A repeated index implies the sum

of three terms; that is:

i Ju av aw

--——axi' 3x+3—y_ 'a'; . [2.1]

The subscripts 1 and 2 are used to denote pnase 1 and phase ?. However, . 1

the formulation is applicable to both phases, we heve avoided the subscripts

1 or 2. 1In the Appendices A and B, we have provided tables to apply the

formulations to cylindrical and spherical co-ordinate systems.
2.1 Continuity Equations
For phase 1:
3[p,8,]
t By | + 3

at 3xi [0191u11] - Ql s [2.2a]

Here, Ql is the source term due to phase change [evaporation or condensation]

and 6 is the void fraction. The continuity equation for phase 2 is similar.

By combining the two continuity equations, we eliminate the source terms,
because Ql = - 92’ and obtain

3 3
= [o 8, + 0292] +_3x1 [o

2.2 Momentum Equations

161"11 - pzezuZi] =0 % [2.2b]

For phase 1 and for the j direction:

du
3 ap 1j
3 Pr0ywyl + 5 ("191 1%y = - & x *x, axi <“181 ox )
+p elgj - v 1 + lej - K[u2j - ulj] . (2:3]

The subscript j can take the values 1, 2, or 3 depending on the momentum

direction chosen. The subscript i is a repeated index and implies the summa-

tion convention outlined in Eq. [2.1]. The term Qm is a source to the momentum

field due to phase change and K is the interfacial drag coefficient. The

viscous contribution to the mcnentum equation is expressed by two terms:

3 au
x, | "% U
i axi



and vlj’ which is given by
gu
Vlj = 3%; ulel ax;i [2.4]
For turbuient flow, all quantities in Eqs. [2.2] and [2.3] are con-
sidered time averaged values and the viscos'ty u is interpreted as the
ef fective viscosity.
2.3 Energy Equations
For phase 1:
3 3 - 3
'392["191“1] * x, (o 8yupyhy] = x, "1 ax, * % ("a'%)
+Qh1+R[T2—T1]+01+Q1 . 12.5]

Here, Qh stands for A/cp, where A is the thermal conductivity, and cp is

the specific heat at constant pressure. The heat generation rate per unit
volume, the source due to phase change, the interfacial heat transfer co-
efficient, and viscous dissipation are denoted by Q, @, R, and ¢, respectively.
The term 3p/3t accounts for the fact that the internal energy [rather than
enthalpy] is stored in a fluid.

For turbulent flow, 'L is interpreted as the effective transport co-

h
efficiert for enthalpy.

2.4 Turbulence Equations

Calculation of the effective viscosity and the effective transport co-
efficient for the enthalpy often requires additional differential equations.
One such proposal for single-phase is the k-c-g model described in [4]. As far
as we know, no generalized turbulence model exists for two-phase flows. We are

assuming here that the turbulence equations for two-phase flows have the same
general form as those for single-phase. We further assume that all terms con-
taining interaction between the phases can be considered as part of the source
term. With these assumptions, the equations for the turbulence quantities
k, €, and g can be written as:
For phase 1:
3 .

3 3 .
3¢ (P81 + i, (pq8yuy4 %] W, nafi e |t By f (2.6]



3 3 3 e
EE[OIGICII + T&I [0191 uliell - 'a—‘—; (.»clel Sx:) <’-S€1 . (2.7]

2 o . 2 g\, <
at 10,9181 + ax, (py8yuy 4% g (rg181 8x1)+ Sg1 - (2.8]

Here, the quantities Fk, re, and Pg are the diffusion coefficients for k, ¢,

and g, respectively, and Sk' Se’ and S8 are the corresponding source terms.
The actual expressions for these I''s and S's depend on the particular details
of the turbulence model. The turbuleace equations for phase 2 can be
described in a similar manner.

It is to be noted here that we require additional auxiliary equations
which relate k, €, and g to effective viscosity and tramsport coefficient for
enthalpy appearing in Eqs. [2.4] and [2.5], respectively.

2.5 General Form

Equations [2.3], [2.5], [2.6], [2.7], and [2.8] can be seen to possess

a common form. If the general dependent variable for phase 1 is denoted by ¢1,
the corresponding differential equation has the form:

9 - . 3 38

T Lo L i, 11t - i, (%191 Bxi>+ o £2.9]

where the four terms can be referred to as: the unsteady term, the convection
term, the diffusion term, and the source term. The density p and the velocity
components u, satisfy the continuity equation [2.2]. The diffusion coefficient
I‘° and the source term S¢ are specific to each meaning of ¢. Source terms for
all conservation equations are given in Table 1.

The recognition of this gecneral form of the governing differential
equations is the first important step toward formulation of a general
r merical scheme and construction of an efficient computer program. For,
much of the formulation can be completed by reference to Eq. [2.9] alone,
and a single sequence of computer instructicns is all that may be needed for

olving any number of equations possessing the general form,



Table 1. Source terms for continuity, momentum, energy and turbulence «juations.
Equation Variable 4 Source Term S° = Sc¢ + sn¢¢
S S
- P
Continuity Void fraction 8 Q -
(phase 1) 1 1
Momentum Velocity a +V,.+ 0 + -8, =22 -
phase 1, U1 ©1°184 1j mlj Kqu 1 ij Kulj
j direction
Energ 3p i
¥ Enthalpy hy 6, 3¢ +0, +& + Q +5m, RT,
(phase 1) 1
Turbulence Turbulence k p.8, (P, +G,) + 1 -p,6.¢e./k
equation kinetic energy 1 1'1 "1 1 k1 g e ey
for kl
' '
"iad “as
2
Turbulence Kinematic 610 > (C P. + [C G ]
13
equation dissipation & 1) ! ( 3)e:L 1 K o flcle
for €, rate of tur- 1 kl el 27¢el kl

bulence energy

Ju

. *
[91 wiadh T (3“ i
3xk axk

)




Table 1. Source terms for continuity, momentum, energy and turbulence equations. (contd.)

S S
Equation Variable ) c P
3 % £1
Turbulence Scalar energy g o.6.p , + :"w-(a P »7~—)-+ 1
equation 1 .02 1 1'17gl * 8x, \ 1171 ax, gl kR
for 8y 2

In the above table:
P: Generation rate of turbulence energy due to mean velocity gradient.
P : Generation rate of g by mean temperature gradients
I: Source due to interaction between two phases.
G: Generation rate of turbulence energy due to buoyant effects.
#: Thermal diffusivity, and
(Cl)e, (CZ)"’ and (03)£ are empirical coefficients.

Definitions of generation terms P, Pg and G and the values of empirical coefficients (Cl) > (CZ) , and

(C3) are given in [3]. ’
5
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3. CONSERVATION EQUATIONS: QUASI-CONTINUUM
3.1 Flow Domain with Solid Objects
The presence of solid objects in a flow domain has two effects on fluid flow.

One is the geometrical effect; here the presence of solid objects infl' 1ces
the flow by reducing the available space. This effect is taken into account by
including volume porosity and surface permeabilities in the governing equations.
The second is the physical effect; here, the colid objecis influence the momen-
tum and heat transfer to fluid flow. This effect is taken into account by
considering solid objects within a control volume as distributed resistances
to momentum transfer and distributed sources [or sinks] for heat transfer.

In applying the concept of volume porosity and surface permeability, we
are assuming that a real system containing numerous solid objects can be re-
placed by an idealized system having distributed solid objects such that both
systems have the same volumetric porosities, same surface permeabilities,
and same interactions [momentum and heat transfer] between fluid and solid
surfaces.

3.2 Volume Porosity and Surface Permeability

We consider a fixed finite region of volume V in space with enveloping
surface A. There are finite numbers of dispersed, fixed heat generating
solids inside V, some may be cut through by A as illustrated in figure 3.1.
Clearly, V = Ve + Vs where Ve is the total fluid volume and Vg is the total
solid volume. Only a fraction of the enveloping surface A is unobstructed to
fluid flow.

We define Y, as the local volume porosity, i.e., fraction of the local
volume inside V that is occupied by the fluid. It may take on value between
0 and 1. If the local volume under consideration is completely inside a
dispersed solid, wetn if it is completely in the fluid, y = 1. If the
local volume is partly in a dispersed solid and partly in fluid, then °SYv51'

Hence, in general, o ° ¥, =< 1.

The local surface permeability Y, 18 defined as the fraction of the local
surface in A that is unobstructed to fluid flow. It is easy to see that, in
gensral, Osy‘sl- We define the average volume porosity as:

Y ._.Ljyv dv [3.1]

v Vv ol

and the average surface permeability as



Total volume V (solid+ fluid)
with enveloping surface A

Some of the dispers«d
solids may be cut
through by A

Fig. 3.1 Domain containing dispersed solid objects

Z(w)

Fig. 3.2 Finite control volume in Cartesian co-ordinates

9



i [3.2]

Here, the subscript Xy refers to direction normal to surface area under con-

sideration. 3Sirce, the unobstructed area Ax that is availahle for free fluid

flow is f 4
(Af) 5. %, % Y da, [3.3]
i x1i i
it follows immediately, that
(AL) = ¥y A . [3.4]
f Xy X, Xy
Similarly,
Vf = va' [3.5]

3.3 Continuity Equations

The formulations of the conservation equations for quasi-continuum flow
regime are given ia [5]. W. are presenting here only the final equations.

We consider « stationary volume element
AV = Ax Ay Az, [3.6]

through which fluid is flowing (see figure 3.2). 1It's enveloping surface
BA = 2(Aybz + AzAx + AxAy).

The centroid of V is located at 0 (x,y,z). The velocity components in the
x,y and z directions are u,v, and w respectively. The continuity equation

for phase 1 is:

: 3(0161) " A(olelgix—l N A(olelvlyy)
v at Ax Ay

A .

+ (pielwxyz) B Qlyv [3.7]
Az

Here, O, is the source per unit fluid volume and we define,
) +ax, 72~ x. - ax./2

AQ) X xj/ X, xJ/ [3.8]
A Ax
*3 3

10



The continuity equation for phase 2 is similar.
3.4 Momentum Equations

The momentum equation for phase 1 in x-direction is:

2
3 Py A[olelu 1Y%} N “"181“1"1')']
at 1"1%1 %y ax Ay
A(p 0,0 w v )
1111z _ - Ap
* Az (plelgxyv) e1yv Ax
AgelrxxYx) A(61752722 AgelszYzl
* - Ax e Ay - Az
* Y, K (=) =R (3.9]

Here, Rx is the distributed frictional resistance per unit volume in x-direction.

Equations for second phase and for other directions are sim!lar.

3.5 Energy Equations

Energy equations for phase 1:

Afp;0.u h,y A(p,8,v.h, Yy
2, ( 21323 x) _(_1 1'% XZ
aelfy byl 4 * Ay

Ax
A(p 8.w.h yg) d(pé ) X
1111z2) _ f 1) Ly ] W

Y bz v e Yy | Qs Y+ 0+ R(T,T)) +Qh1

aT ar oT

1 1 L

A = v -— —
. (elyx"l 3x) ¥ A<el'1kl 3y) . i(el”zH 3¢ (3.10]

Ax Ay Az
Here, Q. is the distributed heat source per unit fluid volume and Q is the
1 ls

rate of heat transfer between fluid and dispersed solid objects per unit fluid
volume. The energy equation for phase 2 is similar.

11



4, PRELIMINARY CONSIDERATIONS

The numerical solution of the governing differential equations is

accomplished by constructing a grid and obtaining the values of the dependent
variables at the grid points. Although the principles used can be applied

to a grid in any coordinate system, only a Cartesian-coordinate grid is employed
here.

The finite-difference equations are derived by integrating the differential
equation over a control volume surrounding each grid point. Thus, the derivation
process and the resulting equations have direct physical meaning, and the
consequent solution satisfies the conservation principles (such as the conser-
vation of mass, the conservation of momentum,} over any group of control
volumes and, of course, over the whole calculation domain. This de-
sirable feature of the present method exists for any number of grid points,
and not just in the limit of a very fine grid.

4,1 Construction of Control Volumes.

The control volumes around the grid points can be defined in a number
of ways. Two practices for this will be described here. Any one of these
practices can be employed, depending on the tuste and convenience of the
user. In the first practice, the control volume faces ere located midway
between neighboring grid points. Figure 4.1 shows the grid points by dots and
the control-volume boundaries by dashed lines. Although only a two-dimen-
sional view is shown, the three-dimensional configuration can be easily
imagined. It is not necessary for the grid lines to be uniformly spaced.

In the recond practice. one decides the locations of the control-
volume faces first and then places a grid point in che geometrical center of
each control volume. Again, the control volumes can have nonuniform sizes.
This type of construction is shown in Figure 4.2.

This may be a convenient place to remark on the use of nonuniform
grids. A misconception seems to prevail that the nonuniform grids lead to
lower accuracy than do the uniform grids. This is simply not true. The
grid spacing should be directly linked to the way the dependent variable
changes in the domain. Obviously, a fine grid is svfficient where the
changes are steep, and a coarse grid is sufficient where the changes are
rather flat. Indeed, a nonuniform grid enables us to deploy the com-
puting power in an effective way. For most problems, it is desirable to
compute exploratory coarse-grid solutions, from which useful guidance can

be obtained for designing an appropriate nonuniform grid.

12
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4.2 Unsteady Situations

The s~lution for an unsteady situation is obtained by marching in time.
For every time step, the values of the dependent variables at the beginning
of the time step are supposed to be known, and those at the end of the step
are to be calculated. A fully implicit scheme is recommended in this re-
port. This means that the "new" values govern the entire time step, and
the "old" values appear only through the term 3[p8¢]/3t. When the time
step At is made very large, the calculation procedure automatically reverts
to the steady-state formulation.

4.~ vonvection and Diffusion Terms

1f the total convection + diffusion flux of phase 1 is expressed by J¢l:

a¢1 )
J = pB.u,,$, = I | — [4.1]
( °1)1 1°1%14%, o i\ %,

the convection and diffusion terms in Eq. [2.9] can be written as:

3 _ 3 ! 3414

[oGu¢ ,‘—” FG - 4.2
ax, 117141 ix, | o171 ax, ax, [4.2]

Integration of these terms over the control volume will lead to the balance of
the total fluxes entering and leaving the control volume at its faces.

Figure 4.3 shows a control-volume face between grid points P and E.
The face is normal to the x-direction and has an area [y Ayiz]. The exj ression
for the total flux J¢e can be based on the exact solution for a one-dimensional
problem, given in [6].

For a one-dimensional case

d d de
i leow] = G (r 5 ) i3]

with the boundary conditions
=8 9,
x = L; ¢= ¢ [4.4]

the solution is

= 9, . <exp[Pe x/L] =~ 1 .
o= ¢, exp(Pe] -1 [4.5]
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Fig. 4.3 Total flux across a control-volume face
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Here, Pe = (puL/Fo) is the Peclet number. Equation {4.5] leads to:

J o (YxAyAz) = ay (Op - St * Fe¢P . [4.6]
where

. = { Fe/[exp [Fe/De] - 1]} ’ [4.7]

Fo = [ebu], v dysz , [4.8]
and '

De = [yxAyAz]',[(dx)Pe./(F¢P$P) - (Sx)eE//(Y®E¢E)] : [4.9]

Here, Fe is the flow rate across the control-volume face, while De
represents the strength of diffusion. The ratio Fe/De is the local Peclet
number. We can see from Fig. 4.4 that Eq. [4.7] reduces to the central-
difference scheme at low values of the Peclet number and progressively takes
on an "upwind" character as the Peclet number is increased.

The definition of De’ given in Eq. [4.9], is based on the model that
the value FP prevails in control volume around point P, and the value FE
rules the behavior in the control volume around E. That this representation
leads to more realistic and accurate solutions has been shown in [7]; also
the formulation makes it easy to handle irregular geometrics or obstacles,
as we shall explain later.

Since the computation of the exponential in Egq. [4.7] is time-
consuming, an approximation to the equation has been devised, which, for
all practical purposes, would perform almost identically to Eq. [4.7].

This approximation is:

J“leAyAZI - anlop - ¢E] + Fe°p [4.10]
or
J“[beyAZ] = ap[¢p ] + Fép [4.11]
where
ap = o, [ o, n-oafem n°] + - F.o0] ), (4.12]
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. 5
. - {De[ 0, (1-0.1ir /17 ]+ F,0] [4.13)

Figure 4.5 shows comparison of various finite difference schemes for convection
and diffusion terms. We can see that the approximation [4.12] is very close
to the exact solution.

Here, the new operator u n is to be interpreted as [ A, B ] = the
greater of A and B. [4.14]
It should be noted that [ A, B ] is equivalent to AMAX1 [A,B] in the computer
language FORTRAN.

4.4 Source Term

For the finite-difference representation of the source term S in Eq.
[2.9], it is convenient to express S as:

- 4.15
s@ s“ “ Spo (¢P) [ ]

where the quantities Sc and op would be assumed to prevail over the

S
¢’ “po
control volume surrounding pcint P, This "linearization" of the source term

1s an effective device for stability and convergence. The exact expressions

for Sc¢ and Sp°

iinearization will be presentea later. Here it may be noted that Sp¢ must

always be kept equal to or less than zero, or else instability, divergence

will depund on the actual form of S¢. Some advice on this

or physically unrealistic solutions would result. When the expression for §

is rather complicated, one may set S equal (¢ zero, and S equal to SO'

Pe ce

When the S¢ . ¢ variation 1is nonlinear, Sc¢ and SP¢ can themselves be
functions of ¢p; then they should be iteratively recalculated until conver-
gence is achieved.

4.5 Unsteady Term

For the representation of the term 3[p6¢]/3t, we shall assume that the

values °p Bp and¢p prevail over the controal volume surrounding point P, The
» ’
integration of the unsteady term over the control volume would then give:
0.0.0
3 3t dxdydz = ] - 8 AxAyAz/At 4.16
j;.v. (o86]/ xdydz CRCRCR ppipty 1 Y Axy82/ (4.16]

where the superscript o denctes the known values at the beginning of the
time step.
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5. GENERAL FINITE-DIFFERENCE EQUATION

5.1 General Form

The basic details outlined so far enable us to obtain the finite-
difference form of the general differential equation 2.9]. Let us consider
the control volume shown in ¥ig. 5.1. It is constructed around point P,
which has E and W as its east and west neighbors, N and § as the north and
south neighbors, and T and B as the top and bottom neighbors representing the
c-direction. The control-volume faces are denoted by e, w, n, s, t, and b.

The general finite-difference equation for variable ¢ can be arranged as:

Phase 1 or Phase 2
ad, = aghy *oagy *oagy *oagg +oad, *

‘B’u + aP‘P + b 15:1)
where:
ay = A, # [ -Fe.0 | e [5.2a]
a, = o, + [ v,0]. (5.2b]
a, = A+ [-F01], [5.2¢]
ag = A, + [ F‘,Ol, (5.24d]
a, = A+ [-7,0 I. (5.2¢]
ag = & + [r.0 1, [5.2¢]
.: = ppop v, Axbyaz/ot [5.2g]
b = Sc¢yvAxAyAz (5.2h]
and

‘P = .E + .\vl + ay + ag + ay + Ay + a; - SP¢YvﬂxA)'/\Z-[5-2”
The quantities Ae’ Aw' An’ A., At' and Ab are defined in an identical manner.

For example:

5
A, = D, [ o. a-o0.1yrmD I, [5.3]

whare Fe and D. are given by Eqs. (4.8) and (4.9). For any other face,
appropriate definitions of F and D are to be used, such as:

= [pew]t v, 0%y [5.4]

20






D, = (yxAxAy) ! [(82) Pt/(roPeP) + (82) :r’(r¢r”r) [5.5]
Therefore,
A, = o, [0, a-0a1 |1-'t/o';|)S ] . [5.6]

The derivation of Eq. (5.21) is as follows. If we combine equations
(4.6), (5.2a), and (5.3), we get:
J, (vpysz) = { A, + [-F,.0 | ‘(@P -0g) + Foo . [5.7]
From the definition of ap (Eq. 5.2), we can now write Eq. (5.7) as:
I, Crghydz) = a (bp = 8) + B0 . (5.8]

Similar expressions would hold for Jn and Jt' For the remaining fluxes,

the corresponding expressions are:
3, (pvaz) = | A, + [ -F, 0 ]} Gy-ep) + Foog o (5.9]
which is obtained from Eq. (5.7) by replaci.= *p and M by by and@P

respectively. A further rearrangement gives:
3, Gasea = (A, + [ FLo]} e

HE % 0 J-[ 7 01} Gytp + Rsy - (5-10]
Noting that:
[-F.00]- [¢¥, 0] = -F, ) (5.11]
we obtain:
3, (rpysz) = {ag+ [ ¥, 0 I}, 00+ Fo, - [5.12]

With ay, defined by Eq. (5.2b), we write:
Jw (v,Aydz) = a, (¢w -¢p + Foo, . [5.13]
Similar expressions can be written for Js and Jb. With all these flux

expressions for the control-volume faces, and with the contributions from

Eq. (4.15) and (4.16), the coefficient of ¢p can be written as:

.p r aE N Fe by “w 3 FJ . aN » Fn » aS . Fs
+ - ! AxAyA
+ aT Ft + aB Fb SPQ’Yv yiz
+ 8 AxAyAz /At " 5.14
0o %pYe y [ )

Substitution of Eq. (5.2g) into this leads to:
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e B A TR TR TR TR TR Sl L TR
+ {(ppep - 0%0° v AxAydz/At + F = F +F -F +F -F, |
The terms in the curly brackets can be recognized as the discretized form of
the continuity equation (see Eq. 7.1, for example), and hence can be regarded
as equal to zero. With the contents of the curly brackets in Eq. (5.15) set
equal to zero, we obtain Eq. (5.21).
5.2 Formulations in i,i,k, Notations

Consider the control volume shown in Fig. (5.2). It is constructed
around grid point P (i,j,k) which has E (i+l1, j, k) and W (i-1, j, k) as
its east and west neighborz, N(i, j+1, k) and S (i, j-1, k) as the north and
south neighbors, and T (i, j, k+l) and B ( 1, j, k-1) as the top and bottom

nvighbors representing the z-direction. The control volume is formed by

oix planes X, 112° ®141/2° YV5-1/2, Y301/2, Be-1/2, %08 fpery2c PO

simplicity, the indices i, j, and k are suppressed. Therefore,

bie172 T Pas1/2, 5, ks °j+1 = ¥ 41,k and so on.
The general finite dirrerence equation can be arranged as
ity T i Yo %% Y oaatya ¢t “j 1°j-1
ot * o %catier t o a5regge  Pygy (54160
Here,
a1 = Ay Y0Pl [5.17a]
oy Ny AR Vg ) (5.17b]
a1 " A2 +[- Fii2, o] i3:37e)
8 = A+ T, ol [5.17d]
a1 = Az * [P, 01 (3.37¢]
-1 " M2 t | F-1/2, ) T (3.171]
a°“k- (0°0°) g g Cryax 8y a2 ) /o [5.17g)
bijk = c¢YvAx1 jAzk ! [5.17h]
and
T T Ny A Y A R YRy
+a° - swy Ax ij x [5.171]
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Fig. 5.2 Control volume around point P in ijk notation
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The quantities A1+1/2. F1+1/2. etc., in Egs. (5.17a) to (5.17f) are defined
in the following manner:

5
A1+1/2 = Di+1/2 [0. (1 -0.1 IF1+1/2/D1+1/2 l) J] , [5.18]

: Joo Wy Oy
i+1/2 [T : ”__A"H-l
LUV PP L

r

’ [5.19]

F1+l/2 = (peuyx)H_l,szjdzk 5 [5.20]

Similarly for other faces, e.g.

5 3
M1z = Perzz [0 =01 0% 0/ 1,007 ] [5.22,
5 _ Ax 8y O w12
k-1/2 [ Az

k_ o, k-l
rtr 8)

{1
P T LT L
and

Ptz = (0OWY) ) 08%40Y, : 13.33)



6. THE FINITE-DIFFERENCE FORM OF MOMENTUM EQUATIONS

Since the momentum equations conform to the general ¢ equation, no

separate derivation of their finite-difference form should be necessary. How-
ever, because it is desirable to calculate the velocity components for
"staggered" locations, as will be explained shortly, some differences of
detail arise in constructing the momentum finite-difference equations.

6.1 Staggered Grid

Although all dependent variables are calculated for the grid poin‘s,
the velocity components u, v, and w of both phases constitute an exception.
They are calculated for displaced or "staggered" locations, and not for the
grid points. The displaced locations of the velocity components are such
that they are placed on the faces of the control volumes. Thus, the x-
direction velocity u is calculated at the faces which are normal to the
X direction.

Figure 6.1 shows the locations of u and v, by short arrows, on a
two~dimensional grid; the three-dimensional counterpart can be easily
imagined. With respect to the grid points, the u locations are displaced
only in the x direction, the v locations only in the y direction, and so
on. The location for u thus lies on the x-direction link joining two
adjacent grid points. It is the pressure difference between these grid
points that will be used to "drive" the velocity u located between them.
This is the main consequence of the staggered grid.

Whet' :r the staggered velocity locations lie exactly midway between
the adjacent grid points depends on how the control volumes are defined.
The velocity components are located on the control-volume faces, but the
latter may or may not be midway between the grid points, as outlined in
Section 4.1,

6.2 The Momentum Control Volumes.

A direct consequence of the staggered grid is that the control
volumes to be used ‘or the conservation of the momentum wmust also be
astaggered. The control volumes s.own in Figs. 4.1 and 4.2 will now be
referred to as the main control volumes. The control volumes for momentum
will be staggered in the direction of the momentum such that its faces
normal to that direction pass through the grid points (see figure 6.1).
Thus, the pressures at these grid points can be directly used for cal-
culating the pressure force on the momentum control volume. Figure

6.2 shows the control volumes for the x-direction momentum.
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6.3 The Finite-Differeace Equation for Momentum.

All the basic concepts developed in Section 4 and implemented in
Section 5 can now be applied to the staggered control volumes for momen-
tum. The differences are mainly geometrical and involve the appropriate
calculation of the flow rates and diffusion strengths for the faces of
the momentum control volume.

Consider the situation shown in Fig. 6.3. Let Fn and FnE denote the
flow rates for the two main control volumes which contribute to the momentum
control volum around e. It will be assumed that the calculation of Fn and

FnE is already performed. The part of Fn that contributes to the y-direction

flow rate at the upper face of the momentum control volume is:
Fn x (distance Pe) / (distance we).
Similarly, the contribution of FnE is:

FnE x (distance eE) / (distance e-eF),

where eE is the point on the right side of E where an arrow is shown in
Fig. 6.3. Thus, the total y-direction flow rate at the upper face of the

momentum contivl volume is:

¥ distance Pe v distance eE
n * distance we nE ' distance e-eF

The diffusion quantity for the same face is calculated from

b distance Pe & distance eE
n ° distance we nE ° distance e-eE -

The evaluation of the main-control-volume diffusion strengths Dn and DnE is

to be performed in the manner stated in Eq. (4.9).

The x-direction flow rate entering the momentum contrcl volume at
P is obtained by linear interpolation:

g = p distance Pe £ distance wP
w ' distunce we e ' distance we

The x-direction flow rate entering :he momentum control volume at P can be
obtained by a linear inter-olation between Fw and Fe. The diffusion strength

at P is wholly governed by R¢P and hence calculated as:

Dp = YxAyAzP¢pap/ (Gx)we g [6.1]
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The quantity (p:e:yvpryAz) in Eq. (5.5g) stands for the mass of

fluid contained in the main control volume around point P. The corresponding
quantity for the momentum control volume shown in Fig. 6.3 can be obtained

by taking the appropriate mass contributions from the main control volumes
surrounding points P and E.

With these details, the momentum finite-difference counterpart of
Eq. (5.1) can be constructed. One additional feature, however, should now be
introduced. As seen from Eq. (2.3), the pressure gradient appears in the
momentum equation, but the pressure field is neither known beforehand nor
directly obtainable from some sort of "conservation equation for pressure."
Thus, pressure must be regarded as unknown and determined indirectly from
the constraint that the velocity field satisfies the continuity equation
(£2.2). For this reason, it is necessary to display separately the pressure-
containing terms in the finite-difference form of the momentum equation.

From these considerations, we write the finite-difference equation
for the control volume shown in Fig. 6.3 as:

)
au, La u. + au_ +b +(yx66yAZ) (pp - pE) ’ [6.2]

where the subscript nb denotes a neighbor u and the summation is to be
taken over the six neighbors surrounding ug. The term aouz arises from
the unsteady term in the differential equation; az is to be calculated
similar to a;. as already defined. The definitions of the neighbor
coefficients as and the center coefficient a, are identical to those in
Eq. (5.2), with appropriate calculations of the flow rates F and diffusion
strength D. However, in order to aid computer programming, a few of the

coefficients of the finite difference momentum equation are presented here
in i,j,k notation.

Ne = 214172541 " Az, 02 H L Fuao 500, 00 [6.3a]
& =3 02 Mgk *lF 5, 0] (6.3b]
85e = 4+41/2, =1 = A1+1/2,j.1/2 ¥ [FE+1/2,j_1/2 , 0 ] ’ [6.3c]

Aie " Ma1/2,30172 =

“P12,34172 [0, @ - o0.1)F /D

1#1/2,34172"P14172,54120% 1 (6.4
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lrne - F1+1/2,j+1/2 =

(pov) 1+1/2,j+1/2 [ ij+1/2Axi

+Y bx Az
Yi41,541/2 i+1] % (6.5]

N

Dne = Di41/2,341/2

\

Ax .y
i'y * %Y
( 2 1Y 441, 441/2 /

PO

ks 2 AXir1 ]
(8 g 19540) Giyer®ye1 ¥ Hiar,342%141, 50 (6.6]

The contributions of the source term that enter a, and b do not contain
the pressure gradient; the effect of the pressure gradient is expressed by
the last term in Eq. (6.2), where (yx AyAz) is the area on vhich the pressure
drop (pp - pE) acts. The momentum equations for the y- and z- directions
can be obtained in a similar manner.

6.4 Velocity-Pressure Relationships.

In order to convert the indirect specification of pressure contained
in the continuity equation into a direct algorithm for calculating pressure,

we neel to establish relationships between the velocity components and corre-
sponding pressure drops. For this purpuse, let us define a pseudo-velocity
by:

u = [Za

00
R abnb T %Ye * b]/ae . [6.7]

This enables us to write Eq. (6.2) as:

ue - “e 3 de [PP'PElo [6.8]

where

d
e

Pseudo-velocities v and w can be similarly obtained from the corres: nding

i

[YxeAYAZI/ae . [6.9]

momentum equations.

If we now imagine that the pressure changes from a guessed value p*
to a new value p, the corresponding change in the velocity can be expressed
as:

Uy Ut m A [ () =M - (b - ot ] [6.10]
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where we have assumed that the change in ue is unimportant. If the change

in pressure is denoted by the "pressure correccion" p', i.e.,
P = p* + p' . [6-11]
we can derive a velocity-correction formula from Eq. (6.10) as:

- ) &= ]
u, ue* K de [pp pB] - [6.12]

*
Here u, is the value of ue given by Eq. (6.2) when the guessed value p* is
substituted for the pressure p.

The similarity between Eqs. (6.8) and (6.12) should be nocted.
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7. FINITE-DIFFERENCE FORMS OF THE CONTINUITY EQUATIONS

7.1 Phase Continuity Equation

We can see that the phase continuity equation has the same form as the
general Eq. (2.9) without the diffusion term. We can therefore, make re- 0
and use the formulations described in Section 5. It may be noted here that
due to the absence of the diffusion turn, the final finite-difference equations
that we obtain correspond to the equations that we obtain by upwind differencing.

The finite-difference equation for void fraction 91 of phase 1 can be

arranged as:

+ a

800" 25k ®) 4 = 40 v 20D #+1@ 1 441

o] o
a0 a6 r A @) oA @ Y B

(7.1]
where

agy = L-Fuay, © I L
ay = [ Fypp, © 1. (7.2b]
8441 © [-Fj+l/2, 0] ¥ Ll
8. ° [Fj-l/Z, o] ., [7.2d]
a1 = LFaya, © n ’ it
oy ~0ry, ol 17,253
ajjk = BYvJyplaxpyazd /o, [7.28]
bk T ByYybxgdy bz, : (7.2h]

[7.21]

i+1 [ Fiers2, ©

0 ’ [7.25]

-1 CFi2,

]
I
0 B = [7.2k]
I
J

841 ° EF3+1/2,

C -7y, © - (7.2 1]
1 " [Fk+1/2, 0 , (7.2m]
;k-l & [-Fk—l/Z, 0 ] ’ [7.2n]
;:jk B (vav)ijk(AxiijAzk)/At, (7.2 o]
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8.

PRESSURE AND PRESSURE CORRECTION EQUATIONS

8.1 Pressure Equation

Substitution of the velocity-pressure relations such as Eq.

Eq. [7.4] leads to:

AP, = gy * Py + aypy + agpg + aghy + b,
where
a = ‘("191"1 SUCHLS ‘ ’ (hyhs)
ay = ‘("191"1 059297 ) Yy ,w (8ydz)
o - {(pleldl pzezdz) Yy } (axAz)
n
. * ‘(pleldl p262d2) Y ‘s (axAz)
ag ~ l(°1°1"1 P2829,) 7, }b AREEY s
o * l(°161d1 ozezdz) s ‘: (Axay)
ap B aE + aw aN +ra,*?* aT + ag »
and,
![" 1" "292“‘2)”::]“ - :("161“1 + 0,000,
[[(o 8,v1 * 0,59, Z)Y ]s - ("191"1 +p Bzuz)v
‘[(o ] w 0262;2)72 ]b - -("161"1 + 0, 62"'2)"
+ el + 9262) (p 0 + Py 2) ](vaxAyAz/At)

8.2 Pressure

Correction Equation 1

-

-

-

[6.8] into
(8.1)
[8.2a]
[8.2b)
(8.2¢]
[8.2d]
[8.2e]
[8.2f)
(8.2g]
} (Aybz)
e
(AxAz)
4n
(AxAy)
wy -
[8.2h)

In this section we have derived the pressure correction equation for two-

phase flow by extending the 'SIMPLER' procedure for single phase.

If we sub-

titute Eq. [6.12] (and similar velocity-correction formulas for v and w) into

Eq. [7.4), we get the pressure correction equation
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Now from Eq. [7.1]), the void fraction for phase 1 is given by

n =6 * .
2:_:, ®10°1n vty
B B
* inflow |
G1 n=6 _ L. — ’ (8.7]
“gl ‘ln . .10
outflow

Here the subscript n refers to six neighboring points. From Eq. [8.7] we

derive a void fraction correction formula.

n=6 , n:6 =
ol L 2148 -8l 2 A,

n=1 n=1
L]
- inflfw outflow , (8.8a]
1 az
1
or
0-6 ' * * n.6 _'
Z alneln N 91(2 21n
n=1 n=1
1
g = inflow outflow . (8.8b]
1 01

Here an and ;1n are the changes in coefficients due to pressure correction p'.
'

-t
In order to determine aln and aln we look at the coefficients (81)14'1 and

(;1)“_1 (Eq. [7.2]) making note that the coefficients a5 and a, exist only

In
for inflows and outflows, respectively (Eq. [7.2]);
= = - *

@) 441 = 1Pe1/2 tafrow = = ©10141 ©1% 054172 Y9025 (8.9]
and

- »

@) 141 = Frr/2)0utfrow = P14 14172 BY9%% [8.9]
Combining Eq. [8.9] with Eq. [6.12] we get

' ' '

(81) 41 = © D101 0,81 14172 89487, (Pyyy = Py) » (inflow ondy) 185308
and

¥ ' '

(.1)14‘1 = (01)i (de1)1+1/2 ijbzk (pi - p1+1) (outflow orly) [8.10b]
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pijk]
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(Ad,)

1'n
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(p 61)

+

1k ¥

out flow
only

Here A represents the cross sectional area, e.g.

A1 = O ge172 BY40% »

-1 ® Ydyo1y2 Y405 -

[8.12] is our final pressure correction equation.

pressure corrections (Eq. [8.12]) we use Eqs. [8.11]
fraction corrections.

to account for these corrections.

2 (0 92)1Jk (8.12]

[8.13a]

(8.13b]

After solving for
for computing void

The velocities and void fractions are then modified
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9.1 Design of near-boundary control volumes

Fig.
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9.3 Poundary Conditions for the Ceneral ¢ Equation

Given Value of the Dependent Variable

The simplest treatment of the boundary condition is available when the
vulue of the dependent variable is specified at the boundary. This occurs at
the walls of known temperature, and at the inflow boundaries. Whin fluid enters
a calculation domain, we normally know the values of ¢ it brings with it. If
this information is not obtainable, the problem is not properly posed. A no-
slip wall simply indicates that the velocity at the wall is known to be zero.

No special treatment is reeded when the value of ¢ at the boundary is known.
The boundary value will simply appear as one of the neighbors of the near-
boundary grid point, and its influence will be correctly felt in the solution.
Civen Flux at the Boundary

Since for the near-boundary control volume, a face of the control volume
coincides with the boundary, the known flux at the boundary surface can be in-
corporated as an additional source term for the control volume. At the same
time, the coefficient connecting the unknown boundary value of ¢ should be
set equal to zero.

The given flux situation arises when the heat flux at a wall 1s given.
Also, any surface of symmetry represents a zero-flux situation. Further, an
outflow boundary can be treated as a zero-flux situation, as will be ex-
plained below.

At an outflow boundary, the boundary value of ¢ is normally not known.
Further, there is no need to know it since the value lies on the downstream
side «.f the calculation domain and is thus unable to influence the solution.
Thus, setting the coefficient of that boundary value to zero is all that is
needed to treat an outflow boundary. Since this is all that we do at a zero-
flux boundary, the treatment for an outflow boundary turne out to be identical
to that of a zero-flux boundary.

Lastly, a slip wall is also to be treated by setting the boundary-value
coefficient equal to zero.

Incorporation of Wall Functions

When the flow is turbulent, and the turbulence wudel accounts for only
the fully turbulent region, the near-wall region (whe¢r2 the laminar and tur-
bulent transj rts are comparable) is usually handled by way of wall functions.
The use of wall functions for the k-c model is described in [7]. The compu-

tational aspecis of wall functions are illustrated here.
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The wall functions described here have been based on a rather simple
situation, namely a zerr-pressure-gradient, uniform-property-flow near an
impermeable wall. That they can often be used in more complex situations
with reasonable success is a consequence of the thinness of the wall layer to
which they apply. 1In a thin layer, the effects of pressure gradient, property
variation or mass transfer are likely to have only a second-order importance.
By the same argument, the curvature of the wall can be ignored, for the pur=
pose of the wall functions, in the immediate vicinity of the wall. Thus, the
wall functions for a flat plate can often be used near a pipe wall without
modification,

The purpose of the wall functions is to provide the correct value of
the relevant diffusion flux at the wall boundary. This can be accomplished
either by specifying an additional source term for the near-wall control

volume or by using an appropriate value of I' at the boundary.

Let B denote a boundary location and P the grid point in the near-
boundary control volume. The distance, normal to the wall, between P and B
is given by §.

The requirement that the velocity distribution near the wall conform

to the "law of the wall" can be expressed via the following expression for
the boundary I' for the velocity.

Py = ¥ for y' < 11.5
[9.2]
= uy e/1n(Ey") for y© > 11.5
Here u is thv laminar viscosity, x and E are constants (usually taken
k= 9,4, E=9.0), and y' is defined by
&
y' = pk:/Zc‘leé/u . (9.3

where k is the turbulence kinetic energy, and cu is a constant (cu = 0.09).
For the energy equation, the corresponding wall value of ' is given by

FB = u/Pr for y+ < 11.5
[9.4]
- uy+/{l’rt[(l/u<)ln(£y+) +?])  for y' > 11.5

where Pr and Prt stand for the laminar and turbulent Prandtl numbers respec-
tively, and P is the so-called resistance of the laminar sublayer, given by

P = 9.0(Pr/Prt - 1) (Pr/Ptt)~1/A [9.5]
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There is insufficient evidence and well-coordinate knowledge about the
variation of the turbulent Prandtl number in complex situations. If a constant
value of the turbulent Prandtl number Prt is to be used, a value around 0.9 is
found to be appropriate for flow near walls, while Prt = 0.5 seems to be appli-
cable to free jets and wakes.

Calculation of Boundary Coefficients

For the situation shown in Fig. 9.2, the calculation of the coefficient

ay in the finite-difference equation for will now be explained.

b

P
a is still defined by Eq. [5.2b], but the flow rate Fw is now to be

calculated from the density and velocity stored at point W. Thus,

F, o= 9,7, 0vdz . [9.6]

Also, the diffusion conductance Dw should be calculated from Fw alone. That

is,
Dw - (YxAyAz) Fw/(éx)wp . [9.7]
9.4 Boundary Conditions for the Press «d Pressure-Correction
Equations

Since the continuity equation has been reformulated as the pressure
equation and the pressure-correction equation, special attention should be
given to the boundary conditions for these equations. Normally, either the
velocity normal to the boundary is specified or the pressure at the boundary
is given.

Given Normal Velocity at the Boundary

A control volume adjacent to a boundary is shown in Fig. 9.2, If the

velocity u , entering the control volume at the boundary face is known, then,

W
in the derivation of the pressure and pressure-correction equations, we would

not substitute uy in terms of u, or u;; we would directly use the known value

of U Thus, Py ©°f p; would nor appear in the p or p' equations. In other
words, the coeffic’ent ay will be zero in thes. equations. Since this boundary
coefficient is zero, no information about the boundary pressure is needed.

The given velocity boundary condition occurs at walls, symmetry plares,
and inflow brundaries with known flow rate. Even the outflow boundaries can
be treated as known-velocity boundaries by specifying the normal velocity
there by reference to overall mass conservation. Only when the flow rates are
unknown, but the pressure drop is specified, do we need to turn to the given-

pressure boundary condition.
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Given Pressure at the Boundary

When the pressure &« the boundary point W in Fig. 9.2 is anown, the
situation is straightforward. For the pressure equation, the known value Py
is to be used in the u?propriate neighbor term. Further, if p; is set equal
to Py we shail have Py = 0, which serves as the known boundary value for

the pressure-correction equation.

9.5 Boundary Values for Turbulence Quantities

For the boundary values of all the turbulence quaatities such as k, e,
the correct specification of the values at all inflow boundaries must be given
80 that we know what turbulence level and scale are brought into the calculation
domain by the incoming streams. Many a times, this information is unavailable

and must be guessed.

Fortunately, in many situations the flow within the calculation domain
is so complex that it is insensitive to the boundary values of k and ¢ con-
vected by the inflow streams. The reason is that a complex flow causes sub-
stantial generation of k and ¢ within the domain. The distribution of k and
¢ is thus largely governed by the source terms and only very weakly by the
convection terms. It is then sufficient to assume that the inflow streams
bring rather small values of k and ¢ and show that the results are independent
of the exact magnitude of these small values.

9.6 Irregular Geometries

When the actual boundaries of the calculation domain do not coincide
with the boundaries of the nominal (rectangular) domain, special treatment is
needed to incorporate the "internal" boundaries. Two practices are suggested
below, which could be used in combination if desired. When the boundary is
internal to the nominal calculation domain, the grid should be so designed
that the actual boundary is suitably approximated by a succession of control-
volume faces. Figure 9.3 illustrates this for a solid obstacle projecting
into the nominal celculation domain. The dashed lines indicate the control-
volume faces, while the shaded area denotes the obstacle.

The treatment of irregular boundaries through appropriate choice of the
's is described in [6]. When ¢ stands for velocity, the corresponding values
of I' for the cont ol volumes that lie in the solid can be made very large.

This results in ve v small (essentially zero) values of velocity predicted for
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the solid region. A given value of ¢, such as temperature, can also be
arranged at t i@ internal boundary by making the I' values for the solid large
and by specifying the given value of ¢ at the nominal boundary adjacent to
the solid. An adiabatic surface, on the other hand, can be simulated by the
use of a very low Fh for the solid.

An alternative practice for the treatment of internal boundaries works
through the use of the source term. The given fluxes at the actual boundary
can be incorporated as additional sources into the appropriate near-boundary
control volumes, If the boundary values of the dependent variable are given,
they can be established at the desired grid points by the following specifi-

cation of S and Sp for those points

C
SC - M¢given . [9.8]
S = =M ’ 9.9
b [(9.9]

where M is a large number (say, 1030). The consequence of these large sources

is that they alone dominate the finite-difference equation which then reduces

to

v
S TR [9.10]




10. SOLUTION OF THE FINITE-DIFFERENCE EQUATIONS

The finite-difference equations derived in Section 5-8 (for the general

variable ¢, for the velocity components, for pressure, and for the pressure
correction) have a common form. They all relate the value of the variable
at P to the values at the six neighbor points. It is, therefore, sufficient
to describe the method of solution for the algebraic equations of the
general form.
Although the general finite-difference equation contains seven unknowns,

the equations for the near-boundary control volumes have fewer unknowns. This

1lts from the fact that either the boundary values are known or their in-
fluence has been set equal to zero through our boundary-condition practice.
Thus, we may always regard the boundary values as known for the purpose of
solving the equations.

10.1 Tri-Diagonal-Matrix Algorithm

The primary building block in the solution method is the Tri-Diagonal-

Matrix Algorithm (TDMA). It enables us to solve directly for all the values
along one line.

Let the system of equations be represented by

Agfs = Bydyay ¥ Cy0y, * Dy (10.1]
for i = 2, 3, ..., N, with ¢1 and ¢N+1 being the known values.
The first step is to calculate the transformed coefficients P and Qi

i
from
P, = 52/A2 » Q, = (c2¢1 + D?_)/A2 > [10.2]
and, for i = 3, 4, ..., N
Py = By/A - CRy ) ’
[10.3]
Oy = (0 +CQ /(A - CiPy ) ,
The second and final step is the "back substitution", i.e., the
calculation of ¢i from
for i = N, N-1, N-2, ..., 4,3,2:
Pty (10.4]

This step gives the solution of the system of equations [10.1].




10.2 Line-By-Line Scheme

The line-by-line procedure for solving the finite-difference equations
can be seen as the logical extension of the Gauss-Seidel point-by-point method.
Instead of visiting a point and solving for the value there by the use of the
available values at the neighbor points, we choose a line and solve for all
the values along it by the TDMA.

The procedure is schematically illustrated in Fig. 10.1. A grid line
is chosen for the application of the TDMA. In the finite-difference equations
for all the points along this line will appear the values of the variable
along the four neighboring lines (two of which are shown in Fig. 10.1; the
other two contain the z-direction neighbors). If these neighbor-line values
are assumed to be known, then the finite-difference equations along the chosen
line will take the form of Eq.[10.1] and can be solved by the TDMA. The main
advantage of this procedure is that the boundary-condition information f rom
the ends of the line is at once transmitted to the interior of the domain,
no matter how many grid points lie on the line. 1In the point-by-point proce-
dure, on the other hand, the influences from the boundary travel only one
erid interval per iteration.

When all the lines in a given direction are visited, the basic operation
of the line-by-line procedure is complete.

10.3 Traverse and Sweep Directions

The basic operation just mentioned does not, however, give the final
solution of the algebraic equations. The reason is that guessed values from
neighboring lines were used in the procedure. Only after many repetitions of
the basic operation, we get the correct solution of the equations. 0f course,
it is desirable to seek ways of reducing the number of required repetitions.

The direction of the line chosen for the TDMA is called the traverse
direction. In many problems, geometrical and other factors result in a situa~-
tion where the coefficients in a particular direction are much larger than
those in other directions. In this situation, a TDMA traverse in the direction
of large coefficients is particularly effective; because the guessed values
from the neighboring lines enter with only weak coefficients. When such a
preferred traverse direction is not available, it is best to conduct three
successive repetitions of the basic operation by choosing a new traverse

direction each time.
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Having chosen the direction of traverse, we need to decide the se-
quence in which the lines are visited. This will be called the sweep direc-
tion. It is convenient to start at one end of the calculation domain and
proceed to the other end, so that the boundary-condition influence is quickly
brought in. If the fluid flow in the domain has a predominant direction, it
is very beneficial to make the sweep direction the same as the predominant
flow direction. Then the upstream information rapidly gets conveyed to the
downstream locations. In absence of a major flow direction, it is best to
alternate the sweep direction in the successive repetitions of the algorithm.

10.4 Optimization of the Equation-Solving Effort

The equation-solving algorithm described so far is to be used for one
variable at a time. Further, it regards the finite-difference equations as
linear. The nonlinearity of the équations and the interlinkage between the
variables are to be handled by the iteration scheme outlined in the next
section. During any given iteration we have only tentative values of the co-
efficients in the finite-difference equations. The coefficients must be re-
calculated for every iteration to reflect the changes that have occurred in
the relevant dependent variables. Therefore, the repetitions of the line-
by-line procedure, which is working on merely the tentative values of the co-
efficients, need not be carried to ultimate convergence. It is sufficient
to obtain a reasonably good solution of the algebraic equations before the
coefficients are recalculated. The optimum equation-solving effort should
be determined by experience and experimentation, but a simple rule is that
the work required for calculating the coefficients should be roughly comparable

to the work involved in solving the equations.
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equations for




(13) Perform integral balances on mass flow of gas and liquid.
Correct gas and liquid flows, and pressure.

(14) Return to Step (2) with the new values obtained during this
iterat‘on as improved guesses and continue the procedure
until convergence.

The above described sequence of operations is bas:d on the extension of
the "SIMPLER" procedure. In regard tc the procedure analogo s to "IPSA",
the above sequence of operations remain the same except that Steps (9) and
(11) are replaced by the following two steps:

(9a) Set up and solve the pressure correction equation, Eq. [8.12]
to obtain the values of p'.

(1la) Use the void fraction-correction formulae, Egs. [8.11] to obtain
corrected void fractions.

11.2 Under-Relaxation

The finite-difference equations and the line-by-line scheme have been

constructed such that, if there were no interlinkages and nonlinearities,
convergence will be certain. However, because the equations of interest
here would almost always contain nonlinear and interlinked influences, care
must be taken to prevent divergence. One simple strategy is to slow down
the changes in the coefficients that would occur from iteration to iteration.
This is accomplished via under-relaxation.

Under-Relaxation of the Dependent Variables

The general finite-difference equation, Eq. [5.1 ] can be written as

0,0
ap’p a bonb - 8p¢p iy [11.1)
where the subscript nb denotes the neighbor points. This equation can be

modified as follows: From Eq. [11.1] we can wrice

anb ates
" ol W 2L + b/a (11.1a]
p P
Also, let
new nur *
. i - - 1.1
¢p a¢p (1-a) op [11.1b]

nur

p
obtained directly if Eq. [11.1] is solved; and a is the under-relaxation

«
where ¢p denotes the last iteration value of @p, ¢ denotes the value

factor. Substitution of Eq. [11.la] in Eq. [11.1b] and rearrangement gives
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0. 0 *
= + + - - » 1:2
(8 /0)¢ La |°nl a ¢ b (1 (!)(8 /(l)¢ [1 ]

It is easy to see that, when ¢p becomes equal to ¢: (i.e., the iterations
converge), Eq. [11.2] becomes identical to Eq. [11.1]. In the meantime,
howe:et. Eq. [11.2] would have a tendency to keep the resulting ¢p closed
to Qp (than Eq. [1i.1] would do) provided the relaxation factor ¢ is less
than 1. A value of a close to zero would indicate a very heavy under-
relaxation.

A value of a = 0.5 usually provides sufficient under-relaxation for
most variables. For the velocity components, a value of a = 0.7 may be
used. The pressure equation may be under-relaxed by using a = 0.8. These
values should be regarded as only initial suggestions; a proper set of a

values should be obtained by actual experience for a given class of problems.

Under-Relaxation of Auxiliarv Quantities

in addition to under-relaxing the dependent variables, a number of
other quantities can be under-relaxed with advantage. For example, the

deneity p and the diffusion coefficient ' can be calculated from

=a rnew + (1 - u)I‘old . [11.4]

Often the source terms can be a cause of divergence. Under-relaxation of

the source terms in the form

S =a Snew + (1 - (x)SOld s [11.5]

can be helpful to prevent divergence. Even some boundary values can be

introduced in a controlled manner via

¢B - oB.given * k- u)¢B,old : (11.6]

where ¢B denotes a boundary value.
It should be obvious that the values of a appearing in Eqs. [11.2] to
[11.6] can all be different; indeed, it is permissible, though inconvenient,

to choose a separate value of a for each grid point. Further, the values

of a can be changed as the iterations proceed.
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11.3 Linearization of the Source Term

In the derivation of the finite-difference equations, we have expressed
the source term S via Eq. [4.15] in a linearized form. This form is an attempt
to anticipate the change in S resulting from the change in the value of ¢p.

A proper linearization of S is often the key to obtaining a converged solution.
It has already been mentioned that Sp in Eq. [4.15] should not be allowed to
become positive. Another general recommendation pertains to those dependent
variables which because of their physical significance must always remain
positive. The turbulence quantities k, € and g belong to this category.

Such variables often have positive and negative source terms, and their im-
balance could often lead to negative values of k, € and g, which are not
physically meaningful. These negative values can be eatirely prevented if

the source te-m is linearized according to the following practice.

Let S, and S, denote the positive and negative parts of the source term

1 2

such that

S = S1 - 52 (S1 >0, S2 > 0) " {11.7}
Set SC and Sp according to

Sc = S1 " [11.8]
and

s (S./6) (11.5]

P 2/%p 5 i

where op denotes the last-iteration value of @p.

11.4 Distinction Between Stead; and Unsteady Situations

The calculation method outlined in this report makes only a small dis-
tinction between the steady and unsteady problems. The suggested calculation
sequence for one time step in an unsteady situation is almost identical to
the sequence for obtaining the steady-state solution. If the time step At is
made very large, our finite-difference equations for an unsteady problem re-
duce to those for a steady problem.

The main difference between the two situations turns out to be in the
number of the required iterations. In an unsteady situation, the "initial"
values of ¢ for any time step are either given or known from the previous time

step. If the value of At is reasonable, we do not expect the ¢ values to
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Ap)igpij(l) )ij 1 = Am »

where Am is the error (required-actual). This leads to the relation for

Ap, as follows:
Am

, and
@) A

Awij = (Dw)ij Ap
Note that the Ap correction is uniform, but Aw is different for each cell.

ij

The above expressions can be extended to two-phase flows, considering

the total mass flow as the quantity to be balanced. Thus,

+ _ - - - - 2
] CoPdey Oyt *ET 0Pty T T T R
We can derive in a straightforward way, that
@) o = @)

§[(91" 1P 1) (ezpzn
P+

(Bwy) 4 -(Dw2> ap -
ij

actual

“2)1j]Aij

Ap

(Awl)ij

[11.11]

[11.12]

[11.13]

[11.14]

(11.15]

[11.16]

[11 17]

For multiphase flows, the same practice will also hold goa. if extension

is made for all of the phases.

Uniform Velocity Correction
Let Aw be a uniform correction (over the cross-section) to the axial

velocity at a given plane. We can then write

wit A.. = Am :
i3 P1301

or
._.léL__._
15 Py

Having computed Aw, we can easily derive the relation for Apij'

AW =

Aw 1 Am
15 Oy 5oyt
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12. SUGGESTED FLOW CHARTS

The calculation method described so far can be visualized through the

flow charts presented in this section. It should be recognized that a number
of decisions taken while designing the computer program would have some ef-
fect on the details of the flow charts, but their main framework would con-
tinue to remain useful. The description here is given for an unsteady situa-
tion; the specialization to a steady-state problem has already been dealt
with,

12.1 Time-Step and Iteration Loops

The main structure of the computer program can be seen from Fig. 12.1.
We begin by specifying the grid and, if desired, calculating a number of
geometrical quantities which will be frequently needed in later work. Next,
the initial values of all variables are specified. The output, which will
consist of the initial values at this stage, can be arranged just before we
begin the time step. The iteration sequence, for which further details will
be given shortly, is then repeated a number of times until convergence is ob-
tained. This completes one time step, after which we return to the beginning
of the output section and proceed to the next time step. When the required
number of time steps have been performed, the computation is terminated.

2.2 Iteration Sequence

The details of the iteration sequence are shown in Fig. 12.2. They
follow the steps listed in Section 11.1. More information about the general
¢ equation sequence follows in Section 12.3. The sequences for the momentum
equations, and for the pressure and pressure-correction equations should also
follow the general pattern for the ¢ equation.

12.3 General ¢ Equation Sequence

The flow chart for the sequence of setting up and solving the finite-
difference equations for ¢ is given in Fkig. 12.3. We begin by calculating
the values of FQ, and the source~term quantities (SC)¢ and (Sp)¢ for the
particular ¢ under consideration. The modifications necessary for introducing
the boundary conditions are performed next. This sets the stage for the cal-
culation of the finite-difference coefficients, for under-relaxation and

subsequent solution of the algebraic equations by the line-by-line method.
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(1)
(2)
(3)
(4)
(5)
(6)

(7)
(8)

(9)

(10)

Caiculate densities Py and Py
x-momentum coefficients for both phases. Calculate Gl; 62

y-momentum coefficients for both phases. Calculate 51; v

Lo

~

z-momentum coefficients for both phases. Calculate ;1; wz
Set up and solve the pressure equation

Solve the momentum equations f~r both phases to get

* * * kK 4 *
Ups Uys Viy Vy, Wy, and W,

Solve the phase continui*y equations to get 6; and 8;

Set up and solve the pressure correction equation (Eq. [8.3]
or Eq. [8.12])

Correct the velocities to get Uy vl, wl, uz, v2 and w2

Solve the phase continuity equations to get 81 and 82 or

use the correction equations to correct the void fractions

Y

Y

General ¢ Equation Sequence

(details in Fig. 12.3)

Fig. 12.2 Iteration Sequence
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Separate operations in this sequence can best be performed in separate
subroutines. In particular, subroutines for the calculation of %, SC and Sp,
for boundary modifications, and for the equation-solving algorithm are

especially convenient.
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3.

This report has described a zeneral numerical method for the solution
P 24

of three-dimensional, single-ph.se/two-phase, steady/unsteady flow problems
with heat transfer. The method is based on the control-volumre approach,

ls easy to interpret in physical terms and which ensures overall conservation.
Calculation practices and iteration sequences, which have been found to be
dccurate and efficient for single-phase have been extended to two-phase flows.
lhe structure of the Ccomputer program has been outlined by way of flow

charts. A systematic implementation of this inf ation, with careful and
step-by~-step testing, is expected to lead to an _cficient and reliable com-

puter program,
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v. (alrv1V)v1 A

and the term ?1 which contains the remaining contribution. The momentum

equations for Phase 2 are similar.

Energy Equation : Phase 1:

: ; 2
op P18y D) + Vs (oo hyv) = Vo (T 0,7h) +a) 3o

+“h1+R(T2-Tl)+°1+Q1 .
Similarity

[A.6]

We can see that all conservation equations in cylindrical co-ordinates

have also the same general form.

3 -
3 a0 + V- F) =5,

where

3¢ = (pave - Ta¥s) .

We can, therefore, apply all formulations for (artesian co-orninates to
cylindrical co-ordinates with simple transformations shown in Table A.l.
The source terms for both systems and for Phase 1 are presented in Table
A.2. The viscous contributions in source terms in two co-ordinate systems

are also different. These are presented in Table A.3.
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Table A.2 Source Terms in the Cartesian and
Cylindrical Co-ordinate Systems

Cartesian Co-ordinates Cylindrical Co-ordinates
Continuity Ql Ql
*
Momentum
B (i ( +V, +Q ( +V, +0 + M
4 P1%18y 1x mlx P1%18¢ lr ‘mlr r
i Kx“z . Kxul » Krer - Krvrl)
* %
P,V v
171 el 81
+ + 0 ) - i 8L
(11) (0,8, *+ Viy + n1y (Py218¢ * Vi * “n10 r
+ - -
Kyv2 Kyvl) + ngaz Kevel)
iid ¢ Q
(114) (pyoy8, * Vip * Yt (pgoy8, + Vi * B5cs
+ - -
Kz"Z szl) * "z“zz szzl)
_32 Q _“,.B O
Energy (al 3t + ‘1 + @1 ¢ Q1 ("1 3t + Y + ¢1 + Q1
- 0 -
+ RT2 Tl) K RT2 RTI)

*
Centrifugal force term.

*
Coriolis force term.
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APPENDIX B

Formulations for Spherical Co-ordinate Systems

Governing Equations

Continuity Equation : Phase 1
2 (py0,) + ¥ (p,0,¥,) = Q (B.1]
ot "171 111 1 :
Momentum Equation : Phase 1

r-direction:

(P
3 e o= 11 (2 2 \__ . 3
3t P1%1%) * VY - ("e1 * "01) 1 or

+ Ve(a,T . Iv .) + Vrl - 1918, - ﬁnl - vrl)' [B.2]

1 vl rl

f-direction:

i(pav)+v'(00;v)+p—l—(l—lvv -2cot0 --11-9.2
at P1%1Ye1 121V1Ve1 r r1Ve1 T Vel r a6

+ V-(alrv1Vvel) + Vel + 0,08, + lee + K, (v02 - vel). [B.3]
¢p-direction:
3 2 o
;Y (Dlalvol) + V-(olulvlvwl) +-—;—— [varl - v91v¢1cot3] =

a

1_3p : a
Taind 3¢ + v (alrv17v¢1) . V@1 - Dlalgo + 216

K¢ (v°2 - v¢1) [B.4]

Here, the viscous contribution to the momentum equation is divided into two

parts: the term

V-(GIPVIV)G i
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Table B.1 Transfcrmations Between Cartesian and
Spherical Co-ordinate Systems

Cartesian Co-ordinates

g N < X

Az

<
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Spherical Co-ordinates

r
]

¢

Ar

rAd
rsin6A¢

Ve
Ve






Table B.3

Viscous Contributions in the Source Terms

for Cartesian and Spherical Systems

Cartesian

x~direction
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Sghetical

r-direction

R 2vr . 2 ave . 2vecot6
r v 7 T "2 38 2
r r r
av
+ 22 3;2 + g% (1/3uav+v)
r sinf
avt
“\ar "Vve
f-direction
y =daf2 Wy N Vg _ 2cos® 8v¢]
7
v rjra rsin“6 rs1n29 »

+

-

v
5 - 1 6
36 (1/3paVev) -(-r' %8 Vua)

p-direction

v v
vV = -2 = ¢ 2 ' 4
¢ rsinf rsinf rsin® 93¢
av
2cosf 8 1 3 -
* rsin® 3¢ rsing 53 (1/3ua¥+v)

av
1 ¢,
= Taind (a¢ V“")






