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NOMENCLATURE

A convection-dif fusion function, Eq. [5.3]

a ' *E' "e'
'

B

'" "~ #" *a ' * b' *p'N n >

a,a' "Wg T,

>

. a,a, finite-difference coefficients arising from the
e P uns,teady term

b " constant" term in the finite-difference method

c specific heat at constant pressure
P-

c turbulence constant
9

.

D diffusion strength, Eq. [5.5]

d pressure coefficient, Eq. [6.8]

E wall-law constant
.

F- flow rate, Eq. [5.4]
4

G source in turbulence energy due to buoyancy (Table 1)

g turbulence quantity, Eq. [2.8]

g gravitational acceleration in the j th direction

h enthalpy

J total (convection + diffusion) flux

K interfacial drag coefficient

k turbulence kinetic energy
'

s

M a large number, Eq. [9.8]

P resistance of laminar sublayer, Eq. [9.4]; source
in turbulence energy (Table 1)

P source term in scalar energy g (Table 1)

p pressure

p* guessed value of pressure,

vi



NOMENCLATURE

p' pressure correction

Pr laminar Prandtl number

Pr turbulent Prandtl number
t

~Q heat generation per unit volume, Eq. [2.5]

R interfacial heat transfer coefficient,- Eq. [2.5]

r r-coordinate in cylindrical and spherical coordinate
systems (Appendices A and B)

S source term, Eq. [2.9)

; S' Parts of the linearized source term, Eq. [4.15]C P

S,S ,S source terms for g, k, c

S ,S positive and negative parts of S, Eq. [11.7)2

T temperature

t time

u, v, w velocity components
* *

u , v*, w velocities based on p*

[1, y, w pseudo-velocities, Eq. [6.7)

V viscous source term; volume

# Ve3 City mponents (cylindrical coordinates, Appendix A)v'#r 0' z

vel ity components (spherical coordinates, Appendix B)vg, v ' "$0

x,x,x e rdinate directions
7 3

+y dimensionless distance from wall, Eq. [9.2]

cx under-relaxation factor; thermal diffusivity; defined
in Eq. [8.7); void fraction in Appendices A and B.

T diffusion coefficient, Eq. [2.9]

T,T'r'I diffusion coefficients for g, h, k, cg h k c

at time step

- Ax , Ay, Az control-volume dimensions

Ax distances fhown in Fig. 4.3

vii
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NOMENCLATURE

6 ' distance from wall

c- dissipation rate

K- turbulence-Constant

! A thermal conductivity

u viscosity

.p density *

p "new" density at point Pp

*
| p old value

i

6 defined in Eq. [8.7]'

!

| t general dependent variable, Eq. [2.9]; &-coordinate
in spherical coordinate system (Appendix B)

j

4 "new" value of 4 at point Pp

4* "old" value of 4 at point P

4* 1ast-iteration value of &pp
!
| 0 0-coordinate in cylindrical and spherical coordinate

systems (Appendices A and B)

0,.0 v id fractions for phase 1, phase 2
1 2

y volume porosity

y,y,y surface permeability in x, y, and z-directions

source due to phase change (evaporation or condensation)D , 0,, Oh
| in the continuity, momentum, and energy equations
i

! 4 viscous dissipation, Eq. [2.5]

v kinematic viscosity

Subscripts

1,2 phase 1, phase 2

P,E,N,W grid positions (1,j ,k) , i+1, j+1, 1-1,
S T,B j-1, k+1, k-1

; e,n,w.s, grid positions i+1/2, j+1/2, 1-1/2, j-1/2,
'

t,b k+1/2, k-1/2

viii
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Superscripts

* last iteration value; guessed value
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' ABSTRACT

This report' describes a-general numerical proced,re for

' the calculation of steady / unsteady, single-phase /two-phase,
:

three-dimensional fluid flow. The procedure is based on the

|
coptrol-volume approach, which enables the derivation of

i-

: physically meaningful finite-difference equations. The conser-

.
vation equations employed are based on a two-fluid model. This

permits the analyses of nonhomogeneous and nonequilibrium flow

conditions. In addition, surface permeabilities and volume

:
porosities are included .in the finite-difference formulations

to account for dispersed solid objects in a flow domain. The
-

.

<

derivation of the equations and the required iteration scheme are
,

presented, and flow charts are provided for the planning and,

.

design of a computer program.
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1. INTRODUCTION

This report describes a general numerical method for the solution of the

g verning equations for three-dimensional, single-phase /two-phase, steady /u'n-
ctcady flow with heat transfer. The method outlined here has been developed

and refined over a number of years, and already a large number of computations

for complex single-phase flow situations have been performed. In the present

repor t , this method has been extended to two-phase flow. The description here

etarts with the differential equations and deals with the numerical method

and its possible . trporation into a computer program.

Section 2 is devoted to the set of governing equations for the situation

considered. In Section 2.5, the general form of all the governing equations is

r cognized; this generalization facilitates a unified development of the

numerical method and the construction of the computer program.
The conservation equations for quasi-continuum regime are presented in

Section 3. We define the quasi-continuum regime as a flow regime which contains

finite, dispersed, stationary heat generating (or absorbing) solid objccts. The

effects of solid objects in a flow regime are accounted by introducing surface

ptrmeabilities, volume porosities and distributed resistances and heat sources.

In Section 4 we present some preliminary considerations before we start
a: sembling the finite difference equations. The finite difference formulation

of the general equation is presented in Section 5. As we use a staggered grid

cystem, the control volumes for momentum equations are different and require
cpecial considerations. The special features of the finite-difference

equations for momentum are discussed in Section 6. In Section 7 we have

presented the finite difference forms of the continuity equations.

Section 8 contains the derivation of pressure and pressure correction

equations. In the present report we have presented two methods for deriving

the pressure and pressure correction equations from the continuity and momentum
squations. The first procedure is an extension of the single-phase numerical

procedure [1], known as SIMPLER (Semi-Inplicit Method for Pressure Linked
Equation - Revised). In this procedure we use the two-phase continuity

squations to determine the void fractions, and use the combined continuity

equation to derive the pressure correction equation. In the second pro-

c dure also we use both of the phase continuity equations to determine the
void fractions; the difference lies in the derivation of the pressure

1



c:rrsctisn cqu2tirn. In this prec: dure wa differentiate the phase continuity

equations and momentum equations and then combine them to obtain the pressure
correction equation. This is analogous to the numerical procedure [2] known as
Inter Phase Slip Analyser-[IPSA).

Section 9 deals with the boundary conditions for the different dependent
.

variables. A discussion of the ways.of handling irregular geometries is

included in Section 9.5.

A line-by-line procedure for solving the finite-difference equations is

presented in Section 10. This procedure has been found to be superior to the
usual point-by-point procedure.

In Section 11, we take an overall view of the entire calculation sequence.

The various steps in +.he iteration scheme are listed in Section 11.1, while
the remainder of Section 11 is devoted to matters that enhance the chances of
obtaining a converged solution.

The incorporation of the numerical method into a computer program re-

quires careful planning and design. The flow charts given in Section 12 are
intended to contribute to this process.

Although all formulations in the report are for Cartesian co-ordinate

system, we have provided tables in the Appendices A and B showing all the

| necessary changes needed to apply these formulations to cylindrical and
spherical co-ordinate systems.

:)

i
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2. DIFFERENTIAL EQUATIONS: CONTINUUM

The governing equations for a single-phase /two-phase, three-dimensional,
unsteady flow with heat transfer are given here in Cartesian tensor notation.

Far two-phase flow, we use two-fluid model cf Harlow and Amsden [3] t.s
d2 cribe the conservation quatians of mass, momentum and energy. The three

co:rdinate directions, x, y, z, are denoted by x , and the three velocity
1

components, u, v, and w are denoted by u . A repeated index implies the sum
f

of three terms; that is:

+ + [2.1]=
.

The subscripts 1 and 2 are used to denote phase 1 and phase 2. However,; 7

the formulation is applicable to both phases, we have avoided the subscripts
1 or 2. In the Appendices A and B, we have provided tables to apply the
formulations to cylindrical and spherical co-ordinate systems.

2.1 Continuity Equations

For phase 1:

3[P 0 ]11 3

at + 3x 1 1"li l [ . al
"

.
,

i

Here, 0 is the source term due to phase change [ evaporation or condensation]7

and 0 is the void fraction. The continuity equation for phase 2 is similar.
By combining the two continuity equations, we eliminate the source terms,
because 0 - 0 , and obtain=

1 2

3 3
p [P 017+p22l + 3x 1 1"li + P 0 "21] = 0 [2.2W22 .

i

2.2 Momentum Equations

For phase 1 and for the j direction:

3 3 3p 3 ljIE P 0 "1jl + 3x 1 1 yf 1j] = - 01 3x + 3x
( 1 1 3xi/

P0u u "11
i j i

+P0g +V +0 + K[u - "lj] [2.3]t7 2j
.

The subscript j can take the values 1, 2, or 3 depending on the momentum
direction chosen. The subscript i is a repeated index and implies the summa-
tion convention outlined.in Eq. [2.1]. The term O, is a source to the momentum
field due to phase change and K is the interfacial drag coefficient. The
viscous contribution to the mcmentum equation is expressed by two terms:

-

3 au
.

3x "1 1 13
i 3x ,

- .

3

.



and V , which is given by

[0"11b3 [2.4]y0V |=

7 |(g j) ~
.

g
i

For turbulerIt flow, all quantities in Eqs. [2.2] and [2.3] are con-
sidered time averaged values and the viscos.'ty y is interpreted as the
effective viscosity.

2.3 Energy Equations

For phase 1:
[ 3h h ( )

0 I+0 1 II 111 a 1 1"11 1 3 1
(h173x1/ \ )i i

-T]+0 [2.5]
hl + R [T2 y 7 + Qy+D .

Here, O stands for A/c , where A is the thermal conductivity, and e is
h

the specific heat at constant pressure. The heat generation rate per unit
volume, the source due to phase change, the interf acial heat transfer co-

t

efficient, and viscous dissipation are denoted by Q, 0, R, and 4, respectively.

The term ap/3t accounts for the fact that the internal energy [rather than
enthalpy) is stored in a fluid.

For turbulent flow, P is interpreted as the effective transport co-
h

efficient for enthalpy.

2.4 Turbulence Equations

Calculation of the ef fective viscosity and the effective transport co-

efficient for the enthalpy of ten requires additional differential equations.
One such proposal for single-phase is the k-c-g model described in [4] . As f ar
as we know, no generalized turbulence model exists for two-phase flows. We are
assuming here that the turbulence equations for two-phase flows have the same

general form as those for single-phase. We further assume that all terms con-
taining interaction between the phases can be considered as part of the source
term. With these assumptions, the equations for the turbulence quantities
k, c, and g can be written as:

For phase 1:

3 3 3 1
8 T 0 ; [2.6]

i i Q kl 1 ax )| + 8at' IP 0 k ] + ax IP11y 1 1"li " ax kl
1

4



ID 0 c11y] + [p 0 uy1 y] T 0 +Sc = .x yy gyg c1 1 x) [2.7]i i 1

IP 0 g I + 3 [p 0 u17 yg y] r 0 + Sg =
11y 3x g1 7 gy [2.8)

.

i iq i)

Here, the quantities r ' I , and r are the diffusion coefficients for k, c,k c
and g, respectively, and S , S , and S are the corresponding source terms.

g
The actual expressions for these T's and S's depend on the particular details
of the turbulence model. The turbulence equations for phase 2 can be
described in a similar manner.

It is to.be noted here that we require additional auxiliary equations
which relate k, c, and g to effective viscosity and transport coefficient for
enthalpy appearing in Eqs. [2.4] and [2.5], respectively.

2.5 General Form

Equations [2.3], [2.5], [2.6], [2.7], and [2.8] can be seen to possess
a ccrnmon form. If the general dependent variable for phase 1 is denoted by 4 ,

1
the corresponding differential equation has the form:

IP 0 4 ] + [p 0 u #l I 0 + S [2.9]111 g 1 1 li 1 0 41 1 y=
,

where the four terms can be referred to as: the unsteady term, the convection

term, the diffusion term, and the source term. The density p and the velocity
conponents u satisfy the continuity equation [2.2]. The diffusion coefficienty

P and the source term S are specific to each meaning of 4 Source terms for

all conservation equations are given in Table 1.

The recognition of thia general form of the governing differential

equations is the first important step toward formulation of a general
r merical scheme and construction of an efficient computer program. For,

much of the formulation can be completed by reference to Eq. [2.9] alone,
and a single sequence of computer instructicns is all that may be needed for
'olving any number of equations possessing the general form.

5
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Table 1. Source terms for continuity, momentum, energy and turbulence equations.

Variable $ Source Term S =S +S 4
Equation

S S
c p

Continuity Void fraction 0 0
-

(phase 1) 1 1 -

Momentum Velocity 0 -0 -Kuo0g11j+Vlj + mij + Ku2j 1 3x lju
phase 1, lj

3
j direction

yh+0 + + 9 + RT -RTEnergy Enthalpy h O h 1 1 2 yy
1(phase 1)

Turbulence Turbulence k _p e e gp61 1 (P1+G)+Ikl 111 11 1
equation kinetic energy

for k
1 /u'yg u'yf

2 j(

G ~Turbulence Kinematic 0oc ~ C P +
C)c13 l 0y

111equation dissipation c _ cl
-(C )c1for e rate of tur- 1 k,

-

2 kel* 11 ,bulence energy
Bu'yy f Bu'g B u' yy.

#

.
*k \ 3*k + 3*1 ) ,1

,.
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Table 1. Source terms for continuity, momentum, energy and turbulence equations. (contd.)
S S

Equation Variable & c p

/ 381) 1
C

3

i \ y y 3 3x )I+ I
la p 0 - kRp6p +3Turbulence Scalar energy gy gy

1 11
equation 1 T2

2for gy

In the above table:

P: Generation rate of turbulence energy due to mean velocity gradient.
P: Generation rate of g by mean temperature gradients

u 8
I: Source due to interaction between two phases.

G: Generation rate of turbulence energy due to buoyant effects.
a: Thermal dif fusivity, and

and(C)c(C
are empirical coefficients.

(C
, , 32

c C

Definitions of generation terms P, P and C and the values of empirical coefficients (C , (C , and
2

(C
are given in [3].

3
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3. CONSERVATION EQUATIONS: QUASI-CONTINUUM

3.1 Flow Domain with Solid Objects

The presence of solid objects in a flow domain has two effects on fluid flow.,

One is the geometrical effect; here the presence of solid objects inf1' ices

the flow by reducing the available space. This effect is taken into account by

including volume porosity and surface permeabilities in the governing equations.

The second is the physical effect; here, the solid objects influence the momen-

tum and heat transfer to fluid flow. This effect is taken into account by

considering solid objects within a control volume as distributed resistances
'

to momentum transfer and distributed sources [or sinks] for heat transfer.
In applying the concept of volume porosity and surface permeability, we

are assuming that a real system containing numerous solid objects can be re-

placed by an idealized system having distributed solid objects such that both

systems have the same volumetric porosities, same surface permeabilities,

and same interactions [ momentum and heat transfer] between fluid and solid
surfaces.

3.2 Volume Porosity and Surface Permeability

We consider a fixed finite region of volume V in space with enveloping

surface A. There are finite numbers of dispersed, fixed heat generating

solids inside V, some may be cut through by A as illustrated in figure 3.1.

Clearly, V = Vg + V,, where Vf sis the total fluid volume and V is the total

solid volume. Only a fraction of the enveloping surface A is unobstructed to

fluid flow.

We define y as the local volume porosity, i.e., fraction of the local
y

volume inside V that is occupied by the fluid. It may take on value between

0 and 1. If the local volume under consideration is completely inside a

1. If thedispersed solid, y = 0; if it is completely in the fluid, y =
y

local volume is partly in a dispersed solid and partly in fluid, then osy sl.y

Hence, in general, o 1 Y 1 1.y

The local surface permeability ya is defined as the fraction of the local
surface in A that is unobstructed to fluid flow. It is easy to see that, in

general, osy,s1. We define the average volume porosity as:
1_ [y dy [3.1]y y

v V y

and the average surface permeability as

8
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n
Total volume V (solid + fluid)
with enveloping surface A

k cA
fs

#idA
n;

Some of the dispersed
solids may be cut
through by A

Fig. 3.1 Domain containing dispersed solid objects

i

Z (w)
n

|

|
r o

I
.- L _ ._ _a. -

J. / ,/o /
- y(y)

/.,

//y _ /A f7
X(u)

Fig. 3.2 Finite control volume in Cartesian co-ordinates
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7*i *i [3.2]
1 day*f

=

^
A x

Here, the subscript x refers to direction normal to surface area under con-y
cideration. 31r.ce, the unobstructed area A that is availabla for free fluidg

flow is

(A )
f A Y da, [3.3]=

x
i xi i

it follows immediately, that

(A )g y A [3.4]=
.

i i i

Similarly,

y V. [3.5]V =
f

3.3 Continuity Equations

The formulations of the conservation equations for quasi-continuum flow

regime are given in [5]. We are presenting here only the final equations.

We consider a stationary volume element

Ax Ay Az, [3.6]AV =

through which fluid is flowing (see figure 3.2). It's enveloping surface

2(Ayaz + AzAx + AxAy).AA =

The centroid of V is located at 0 (x,y,z). The velocity components in the

x,y and z directions are u,v, and w respectively. The continuity equation

for phase 1 is:

3(p 0 ) A(p 0 u y ) A(p 0 V T )11 y1yx y11y
Y +v at Ax Ay

A(p 0 "l z)Y Oy [3.7]y1 =+ yy
Az

Here, 0, is the source per unit fluid volume and we define,

( )x + Ax /2 ~ - Ax /2 [3.8)x

Ax ax

10
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The continuity equation for phase 2 is similar.
3.4 Momentum Equations

The momentum equation for phase 1 in x-direction is:

2Alp 0 u y x] A[p 0 u v y ly3 11 11lyyP 0 "1 y]Y + +It 11 3x 3y

A(p 0 u w y )y11yz 3}+ (P 1 1 x y) - 0y" 8YAz 7y gx

,,( 1 xx x) A(0 T
0 T Y 1 xy y ) A(O Ty xz z )Y y

Ax Ay Az
;

+ y K ("2 - "1) -R (3.9]y

Here, R is the distributed frictional resistance per unit volume in x-direction.
Equations for second phase and for other directions are similar.

3.5 Energy Equations

Energy equations for phase 1:

0("1 1"1 l y) + A(p0 Y 111y}0#hy
~3 IP1 1 l y]0hY +
3t Ax Ay

u(P1 1"1 yhy}-Y d (p01+ + + +dt v 1s 1 1+ (2~ 1) hAz V

_ l_

1x1 0yA AOyAY 7y1 g +~yzl {3.10]+ +
Ax Ay Az

-
_

Here, h is the distributed heat source per unit fluid volume and h , is they y
rate of heat transfer between fluid and dispersed solid objects per unit fluid
volume. The energy equation for phase 2 is similar.

11
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4. PRELIMINARY CONSIDERATIONS

The numerical solution of the governing differential equations is
accomplished by constructing a grid and obtaining the values of the dependent

'

variables at the grid points. Although the principles used can be applied

to a grid in any coordinate system, only a Cartesian-coordinate grid is employed
here.

The finite-difference equations are derived by integrating the differential
equation over a control volume surrounding each grid point. Thus, the derivation
process and the resulting equations have direct physical meaning, and the
consequent solution satisfies the conservation principles (such as the conser-
vation of mass, the conservation of momentum,) over any group of control
volumes and, of course, over the whole calculation domain. This de-
sirable feature of the present method exists for any number of grid points,
and not just in the limit of a very fine grid.

4.1 Construction of Control Volumes.
The control volumes around the grid points can be defined in a number

of ways. Two practices for this will be described here. Any one of these
practices can be employed, depending on the taste and convenience of the

user. In the first practice, the control volume faces are located midway
between neighboring grid points. Figure 4.1 shows the grid points by dots and
the control-volume boundaries by dashed lines. Although only a two-dimen-
sional view is shown, the three-dimensional configuration can be easily

imagined. It is not necessary for the grid lines to be uniformly spaced.
In the recond practice, one decides the locations of the control-

volume faces first and then places a grid point in che geometrical center of

each control volume. Again, the control volumes can have nonuniform sizes.

This type of construction is shown in Figure 4.2.
This may be a convenient place to remark on the use of nonuniform

grids. A misconception seems to prevail that the nonuniform grids lead to
lower accuracy than do the uniform grids. This is simply not true. The

grid spacing should be directly linked to the way the dependent variable
changes in the domain. Obviously, a fine grid is sufficient where the
changes are steep, and a coarse grid is sufficient where the changes are
rather flat. Indeed, a nonuniform grid enables us to deploy the com-

puting power in an effective way. For most problems, it is desirable to

compute exploratory coarse-grid solutions, from which useful guidance can
be obtained for designing an appropriate nonuniform grid.

12
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1 4.2 Unsteady Situations

The s'slution for an unsteady situation is obtained by marching in time.
For every time step, the values of the dependent variables at the beginning
of the time step are supposed to be known, and those at the end of the step
are to be calculated. A fully implicit scheme is recommended in this re-
port. This means that the "new" values govern the entire time step, and
the "old" values appear only through the term 3[p04]/3t. When the time
step at is made very large, the calculation procedure automatically reverts
to the steady-state formulation.

4 . "- Convection and Diffusion Terms
If the total convection + difftssion flux of phase 1 is expressed by J :

B& h1

El 1"11 1 4'ik3x#~ ~

$1 1,

the convection and diffusion terms in Eq. [2.9] can be written as:

# (#41)13 13

eel 1"11 1 - 3x 41 1 3x 3x [4.2]# "

3x
1 i i i

- -

Integration of these terms over the control volume will lead to the balance of
the total fluxes entering and leaving the control volume at its faces.

Figure 4.3 shows a control-volume face between grid points P and E.
The face is normal to the x-direction and has an area [Y AyAz]. The expressionx

for the total flux J can be based on the exact solution for a one-dimensional
problem, given in [6] .

For a one-dimensional case

h [P ] [4.3]h [peu$] =

with the boundary conditions

x = o; 4= 4
x = L; 4= 4 [4.4]

,

the solution is

@~ #o exp[Pe x/L] -1 .

4-4 exp[Pc] -1 [4.5],

14



_ _ . _ . . _ . _ , _ . _ .__ . . ._. .._ _ .__ _ . _ . _ - _ _.__
. _

;

!

|

|

area = ayazy
x

/

---T/
_ _ _ _ .

#
l

1
P J EMea is
%r rs

|

1

_ _ _ _I _ _ _ _ _ . _ _ _- _ _ _ _

X

(6x)Pe (dx) eE

Fig. 4.3 Total flux across a control-volume face

.

15



- _ _

|

|

Here, Pe = (puL/T ) is the Peclet number. Equation (4.5] leads to:

J , (y Ayaz) E (#p ~# }'+ e@p
= a * *E

| where
i

1

{F,/[exp[F,/D,] - 1])a = [4.7)E ,

[peu]eF Y yaz, [4.8)=
,x

|

!

and
.,,

[YAyAz]f.(6x)pD (P p p) + (6x)eEe=
* *e x $E E. -

Here, F is the flow rate across the control-volume face, while D
e

represents the strength of diffusion. The ratio F /D, is the local Peclete
j number. L'e can see from Fig. 4.4 that Eq. [4.7] reduces to the central-

difference scheme at low values of the Peclet number and progressively takes
on an " upwind" character as the Peclet number is increased.

I The definition of D,, given in Eq. [4.9], is based on the model that

j the value T prevails in control volume around point P, and the value Pp E
rules the behavior in the control volume around E. That this representation

leads to more realistic and accurate solutions has been shown in [7]; also
the formulation makes it easy to handle irregular geometrias or obstacles,
as we shall explain later.

| Since the computation of the exponential in Eq. [4.7) is time-
consuming, an approximation to the equation has been devised, which, for
all practical purposes, would perform almost identically to Eq. [4.7].

| This approximation is:

I

J ,[Y AyAz] a [#p ~ # + i I*
=

4 x E E ep
!

!

or

J e[y Ayaz] = a [$p 4l + e@ Ex p E ' *

where

{D ( 0, [1 - 0. l|F /D, |] ) + {- F , 0) f , [4.12]a =
E e

16
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e

I

and

D, ( 0, [1-0.1|F/D|] ]+[F,,0} [4.13]a =

Figure 4.5 shows comparison of various finite difference schemes for convection

and dif fusion terms. We can see that the approximation [4.12] is very close
to the exact solution.

Here,thenewoperator[ ]istobeinterpretedas(A,B]=the
greater of A and B. [4.14]
It should be noted that (A,B]isequivalenttoAMAX1[A,B]inthecomputer
language FORTRAN.

4.4 Source Term
,

For the finite-difference representation of the source term S in Eq.

[2.9], it is convenient to express S as:

($p) [4.15]S S + S=

p

where the quantities S ,S and $ would be assumed to prevail over the ;

control volume surrounding pc, int P. This "linearization" of the source term'

is an effective device for stability and convergence. The exact expressions
for S and S will depend on the actual form of S . Some advice on this

-linearization will be presented later. Here it may be noted that S must

always be kept equal to or less than zero, or else instability, divergence
or physically unrealistic solut' ions would result. When the expression for S
is rather complicated, one may set S equal i.c zero, and S equal to S .

4
When the S $ variation is nonlinear, S and S can themselves be

functions of $p; then they chould be iteratively recalculated until conver-
gence is achieved.

4.5 Unsteady Term

For the representation of the term B[p0$]/at, we shall assume that the,

values p 6 and4 prevail over the control volume surrounding point P. TheP. P. P
integration of the unsteady term over the control volume would then give:

[c.v. 3[p04]/at dxdydz [p O 4 - pO4p p ] y AxAyaz/At [4.16]=

pp y

where the superscript o denctes the known . values at the beginning of the
time step.

18
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5. GENERAL FINITE-DIFFERENCE EQUATION

-5.1 General Form

The basic details outlined so far enable us to obtain the finite-
difference form of the general differential equation 2.9]. Let us consider

the control volume shown in Fig. 5.1. It is constructed around point P,

which has E and W as its east and west neighbors, N and S as the north and

south neighbors, and T and B as the top and bottom neighbors representing the
r.-dire ction. The control-volume faces are denoted by e, w, n, s, t, and b.

The general finite-difference equation for variable & can be arranged as: ;

Phase 1 or Phase 2

a +g + 9w + a tus+a43s "T+T
++a +, =

gp

+b [5.1]ai +
Bd "P P

| where:

[ -F,,0 ) , [5.2a]A +a "

j E e

( F ,0 ) , [5.2blA +a =

| g y

(-F.0}, [5.2c)A +a =
N

|

( F,,0 ) , [5.2d]+
| g A,a =

(-F,0 }, [5.2c)A +a =
7 e

B b b,0 ), [5.2flA +a =

pO y AxAyaz/At , [5.2g]'

a =
p

S y AxayAz [5.2hlb =

and

p E "W "N g T B "P
- S Y oxAyaz . [5.2il+ + a + a + a +a = a + P4 v

are defined in an identical manner.The quantities A,,A , A , A,, A , and Ab

| -For exampic:

A, D, ( 0, (1 - 0.1 | F,/D,|) [5.3]= ,

where F, and D, are given by Eqs. (4.8) and (4.9). For any other face,

( appropriate definitions of F and D are to be used, such as:

[p0w]t Y axAy [5.4]F = ,

t z
|
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and.

T T) ]. [5.5](6z) g/(T(y Axay) / [(6z) p /(P p p) + O0D =

Therefore,

( 0, (1 - 0.1 |F /D |) j [5.6]A D= .
t gt t

The derivation of Eq. (5.21) is as follows. If we combine equations

(4.6) , (5.2a) , and (5.3), we get:
J (Ygyaz) { A, + ( -F , 0 j}(4 -4} + i |= * *

e p E ep

From the definition of aE (Eq. 5.2), we can now write Eq. (5.7) as:

E (# e*pJ, (Y/yaz) *= a ~ *

P E

Similar expressions would hold for J and J . For the remaining fluxes,
9

the corresponding expressions are:

( -F , 0 jf(4g-$p) D.O{A + F 4gJ (Y AyAz) += ,
yy x

which is obtained from Eq. (5.7) by replacict 4p and 4 by 4 and4E g p

respectively. A further rearrangement gives:

{A + ( F , 0 ) f ($g-4 )J (Y Ayaz) =
y p

+ F4 [5.10]+ { { -F , 0 j - ( F , 0 j f (4 -4 ) .

9 p

Noting that:

[-F , 0 j - ( F , 0 ] = -F [5.11],
y

we obtain:

{A+ {F,0 ] f ($g -4 ) + F4 [5.12]J (y ayAz) = .
p pg

With a defined by Eq. (5.2b), we write:y

[5.13]g (4g - $ p) + F $pJ (YgyAz) = a .

Similar expressions can be written for J, and J . With all these fluxb
expressions for the control-volume faces, and with the contributions from
Eq. (4.15) and (4.16), the coef ficient of & can be written as:

a = a + F, g - F_, N 3 - F+ a + a + F + a
E B

+ a + F + a
| T B ~ b ~ p4 v

[5.14]0 y, AxAyaz/At+ p .

Substitution of Eq. (5.2g) into this leads to:

|
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p. g w+a3 s + ^T
+ "a + $-s y AxayAza = a + a + a - gy g3,333

f(pO - p*0* y axAyaz/At + F -F +F - F, + F -F b)+
*p y

The terms in the curly brackets can be recognized as the discretized form of
the continuity equation (see Eq. 7.1, for example), and hence can be regarded

,

as equal to zero. With the contents of the curly brackets in Eq. (5.15) set
equal to zero, we obtain Eq. (5.21) .

5.2 Formulations in i,j,k, Notations

Consider the control volume shown in Fig. (5.2) . It is constructed

- around grid point 'P (1,j ,k) which has E (i+1, j , k) and W (1-1, j , k) as
its east and west neighborc, N(1, j+1, k) and s (1, j-1, k) as the north and
south neighbors, and T (1, j , k+1) and B ( i, j , k-1) as the top and bottom
neighbors representing the z-direction. The control volume is formed by
six planes xi-1/2' *1+1/2' I -1/2, Y +1/2, *k-1/2, and s +1/2 For

j j k

simplicity, the indices 1, j, and k are suppressed. Therefore,

4 +1/2 f +1/2, j, k; # + and-so on.
"

1 i =
py 1 1k

The general finite dirrerent.e equation can be arranged as

"ijk ijk "i+1 i+1 "i-1 1-1 "j+1*j+1 a _y&j_y+ + +"

j

a +1*k+1+ k "k-1 k-1 "ij k&jk+bijk [5.16]* +

Here,

+-(-F+1/2,0]A ,y72 [5.17a]"i+1
=

g ,
i

i-1/2,03 [5.17b]A + Fa _1 i-1/2
=

,g

+ ( -F +1/2, 0 ]A +1/2 [5.17c]"j+1 ~
,

j j

j-1/2,OlA + F [5.17d]"j-1 j-1/2
=

,

+[-F+1/2,0,jA +1/2 [5.17e]"k+1
=

,k k

k-1/2,0]a " A + F [5.17f]k-1 k-1/2 ,

ijk (p 0*)13g(y Ax Ay Az )/At [5.17g]*a =
y 1 j k

b '8 y ax Ay Az [5.17h]"
ijk 4y k ,

and

gjk "i+1 + '"i-1 + + + +a ~ " a ,1 a _y a +1 "k-1j kj

'

[5.171]+a -S y ax Ay Az .
p y

'I
123'
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The quantities AM1/2,FiM/2, etc. , in Egs. (5.17a) to (5.17f) are defined
in the following manner: -

R1/2|)5D 0, (1 - 0.1 | F /DA ' = [5.18]M1/2 M1/2
..

M1/2 ,

.

(ay az )
(Y )i+1/2.

3 g x '

D +173
-

x -
=

g
i xi+1

[5.19]2y 0)ijk + 2r 0
-

,

,1+1 1+1
. .

and

ggjy (p0uy ) gjgay az [5.20]F =
.k

Similarly for other faces, e.g.

k-1/2g)5 j, [ 5. 2 ~.3k-1/2 ( 0, (1-0.1|Fk-1/2k-1/2 /DD=

ax ayj(y,)k-1/21
D "~
k-1/2 Az Az

k-1

2(r 0)ijk 4,k-1 k-1
I

and
~ ~

k-1/2 (pew,)k-1/2 *iay [5.23]F 0=
.

3
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6. THE FINITE-DIFFERENCE FORM OF MOMENTUM EQUATIONS

Since the momentum equations conform to the general $ equation, no
separate derivation of their finite-difference form should be necessary. How-
ever, because it is desirable to calculate the velocity components for

" staggered" locations, as will be explained shortly, some differences of
detail arise in constructing the momentum finite-difference equations.

6.1 Staggered Grid

Although all dependent variables are calculated for the grid points,
the velocity components u, v, and w of both phases constitute an exception.
They are calculated for displaced or " staggered" locations, and not for the
grid points. The displaced locations of the velocity components are such
that they are placed on the faces of the control volumes. Thus, the x-

direction velocity u is calculated at the faces which are normal to the
x direction.

Figure 6.1 shows the locations of u and v, by short arrows, on a

two-dimensional grid; the three-dimensional counterpart can be easily
imagined. With respect to the grid points, the u locations are displaced
only in the x direction, the v locations only in the y direction, and so
on. The location for u thus lies on the x-direction link joining two

adjacent grid points. It is the pressure difference between these grid

points that will be used to " drive" the velocity u located between them.
This is the main consequence of the staggered grid.

,

Wherbtr the staggered velocity locations lie exactly midway between

the adjacent grid points depends on how the control volumes are defined.
The velocity components are located on the control-volume faces, but the
latter may or may not be midway between the grid points, as outlined in
Section 4.1.

6.2 The Momentum Control Volumes.
A direct consequence of the staggered grid is that the control

volumes to be used for the conservation of the momentum must also be
ataggered. The control volumes s;.own in Figs. 4.1 and 4.2 will now be
referred to as the main control volumes. The control volumes for momentum ,

will be staggered in the direction of the momentum such that its faces
normal to that direction pass through the grid points (see figure 6.1).
Thus, the pressures at these grid points can be directly used for cal-
culating the pressure force on the momentum control volume. Figure

6.2 shows the control volumes for the x-direction momentum.
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6.3 The Finite-Difference Equation for Momentum.

All the basic concepts developed in Section 4 and implemented in
S!ction 5 can now be applied to the staggered control volumes for momen-
tum. The~ differences are mainly geometrical and involve the appropriate
calculation of the flow rates and diffusion strengths for the faces of
the momentum control volume.

Consider the situation shown in Fig. 6.3. Let F and F denote thenE
flow rates for the two main control volumes which contribute to the momentum
control volumJ around e. It will be assumed that the calculation of F and
F is already performed. The part of F that contributes to the y-directionnE

flow rate at the upper face of the momentum control volume is:
F x (distance Pe) / (distance we) .

Similarly, the contribution of F is:
nE

(distance eE) / (distance e-eE),F xg

where eE is the point on the right side of E where an arrow is shown in
Fig. 6.3. Thus, the total y-direction flow rate at the upper face of the
momentum contisl volume is:

distance Pe distance eEy p
n , distance we nE distance e-eE ,

The diffusion quantity for the same face is calculated from
stance Pe istance eED + D.n distance we nE distance e-eE.

.

The evaluation of the main-control-volume diffusion strengths D and D a
nE

to be performed in the manner stated in Eq. (4.9).
The x-direction flow rate entering the momentum contrcl volume at

P is obtained by linear interpolation:
distance Pe distance wP7 p p,

, , ,p w distance we e distance we

The x-direction flow rate entering che momentum control volume at P can be

obtained by a linear inter olation between F and F . The diffusion strength
at P is wholly governed by f and hence calculated as:

y AyAzl' 8 / (6x) ,D [6.1]=
.

1
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The quantity (p e y AxAyaz) in Eq. (5.5g) stands for the mass of
PPV

fluid contained in the main control volume around point P. The corresponding
quantity for the momentum control volume shown in Fig. 6.3 can be obtained
by taking the appropriate mass contributions from the main control volumes

currounding points P and E.

With these details, the momentum finite-difference counterpart of
Eq. (5.1) can be constructed. One additional feature, however, should now be

introduced. As seen from Eq. (2.3), the pressure gradient appears in the
nomentum equation, but the pressure field is neither known beforehand nor

directly obtainable from some sort of " conservation equation for pressure."
. Thus, pressure must be regarded as unknown and determined indirectly from

i the constraint that the velocity field satisfies the continuity equation
(2.2). For this reason, it is necessary to display separately the pressure-
containing terms in the finite-difference form of the momentum equation.

From these considerations, we write the finite-difference equation
for the control volume shown in Fig. 6.3 as:

+ * +(Y 0AyAz) (p -pa,u, Ea=

nb"ab ' *e x p E

where the subscript nb denotes a neighbor u and the summation is to be
taken over the six neighbors surrounding u,. The term a u, arises from
the unsteady term 11 the differential equation; a, is to be calculated
similar to a , as already defined. The definitions of the neighbor

P
coefficients a and the center coefficient a, are identical to those ing
Eq. (5.2), with appropriate calculations of the flow rates F and diffusion

strength D. However, in order to aid computer programming, a few of the
coefficients of the finite difference momentum equation are presented here
in i,j,k notation.

= A +1/2,j+1/2 + - i+1/2,j+1/2,0], [6.3a]Ne " *i+1/2,j+1a
i

"w ~ *i-1/2 i,j ,k i,j,k,0j, [6.3b]=A +

+ [ F +1/2,j-1/2 ,A +1/2,j-1/2 6.3c]"Se " *i+1/2, j-1 =
i i

,

^ne " ^1+1/2,j+1/2 =

" D +1/2,j+1/2 [ 0, (1-0.1|F / dim /2JM/2 )5 ) [6.4]
i !iM/2 #1/2

:
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# F +1/2,j+1/2=
i =ne

f(p0v) i+1/2.j+1/2 Y"
17 +1/2j

# +1,j+1/2 i+1 k
1 [6.5],

D D +1/2,j+1/2= "
ine

\1 Ax=

Y +1/2 ^*1+1 Y +1,j+1/2
+ Y2 j

i

Ax ,y
'

Ax
f1

(p ,7 j,7(MO D +1 1,1) 0 + 00 p ,y ,3,7 i+1,j+1, [6.6]gji
,

I The contributions of the source term that enter a, and b do not contain
the pressure gradient; the effect of the pressure gradient is expressed by
the last term in Eq. (6.2) , where (y AyAz) is the area on uhich the pressure

drop (p - P ) acts. h e momentum equations for the y- and z- m ections
p E

can be obtained in a similar manner.

6.4 Velocity-Pressure Relationships. j

In order to convert the indirect specification of pressure contained

in the continuity equation into a direct algorithm for calculating pressure,

we need to establish relationships between the velocity components and corre-

i sponding pressure drops. For this purpose, let us define a pseudo-velocity

by:

[6.7]g nb b]/a,E [Ia u + au +u, .

This enables us to write Eq. (6.2) as:
! .

; u, u, . d,[p -p], [6.8]+=
E

where

E [y 0Ayaz]/a [6.9]j d, .

I Pseudo-velocities y and w can be similarly obtained from the corresp.,nding

momentum equations.

If we now imagine that the pressure changes from a guessed value p*
to a new value p, the corresponding change in the velocity can be expressed
as:

u, - u,* d, [ (p -p *) - (p -Pa *

E E
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wh;re we have assumed that the change in u, is unimportant. If the change

in pressure is denoted by the " pressure correction" p', i.e. ,

P." P* + P' [6.11],

w2 can derive a velocity-correction formula from Eq. (6.10) as:

"e = u,* + d, [p' - p l [6.12].

E
*

Hire u, is the value of u, given by Eq. (6.2) when the guessed value p* is
cubstituted for the pressure p.

The similarity between Eqs. (6.8) and (6.12) should be noted.

N

>

f

,

e
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7. FINITE-DIFFERENCE FORMS OF THE CONTINUITY EQUATIONS

7.1 Phase Continuity Equation

We can see that the phase continuity equation has the same form as the
general Eq. (2.9) without the diffusion term. We can therefore, make T=0

0

and use the formulations described in Section 5. It may be noted here that

due to the absence of the diffusion turn, the final finf.te-difference equations

that we obtain correspond to the equations that we obtain by upwind differencing.
The finite-difference equation for void fraction 0 of phase 1 can be1

arranged as:

a ,1(0 )3,1ijk(0 ) ijk "i+1(0 )g,y a _1(0 )1-1 ++a0 =a "
j yg 1y yp 1p

a[jk(0 )ijk1 *k-1(0 )k-1a _y(0 )J-1 +
3 1 "k+1(0 )k+1 ++ ++ *11

[7.1]
where

0 ) [7.2a][-F,777, <=a ,7 ,
f f

} [7.2b][F Oa _1
=

1-1/2, ,g

-F +1/2, 0), [7.2c]="j+1 j

E, [7.2d][F 0
a)_1

=
j -1/2,

0 [7.2e]-F +1/2,a +1
= ,k k

F E7 2fl=

"k-1 k-1/2, '

[7.2g][p YMijk(Ax ay az ] / Ata = ,f jk

[7.2h]b 0 Y Ax Ay Az,= ,
1y f

0 ), [7,21]F +1/2,"i+1
=

i

f, [7.2j]a _y [-F O=
f 1-1/2,

0 ), [7.2k]a +1 k j+1/2,*
j

a _1 (-F 0 3, [7.2 1]=

3 j-1/2,

0 ), [7.2m]F +1/2,=
a +1 kk

-F 0 ), [7.2n]a =
k-1 k-1/2,

5[jk (P Y )ijk(Ax ay)Az )/At, [7.2 o]*
vy f k
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and

+"ij k = + +a ,7 a ,y a),7 a),yi g

~

+ a + a + apy k- I [7.2p].

.

The coefficients without overscore represent " inflows" while the coefficients
with overscore represent " outflows". The quantities F appearing in equation
(7.2) are as defined previously but without void fraction. Thus

F +1/2 (P "1 x)i+1/2 Ay az [7.3]
"

Yi l j k .

Tha finite-difference equation for void fraction 0 is similar.
2

7.2 Combined Continuity Equation
'

The combined continuity equation, Eq. (2.2b) is integrated over the
control volume as shown in Fig. 5.1 to yield:

,
, ,

(p 0 u + p 0 "2)Y (R 0 9 + p
2 2"2)Y

> ,-'. ." . ,8),
(Ayaz)y7y 22 x

,

177_ x

+ (p 0 v '
p 0 *2)Y - '(p 0 v + p22 y 17y 2 2"2)Y (0 *0 *)y7y,

s y ,

n
+ "(p ew + p 0 "2}Y (# 0 w + p2 2"2)Y (Axay)0~ily 22 z 11y 3b '

t

+
~. p 0 }, ~ (P 0 5p0) (Y axayAz/ t)' =0

. .

(p 0 +
11 22 17 22 y

[7.4].
.

We use the two phase continuity equations to compute the void fractions,
and the combined continuity equation (7.4) for determining the pressure
correction. Since the pressure or the pressure correction do not appear
hare, further manipulation is needed to derive the finite-difference equa-
tions for p and p'.

!'
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8. PRESSURE AND PRESSURE CORRECTION EQUATIONS

8.1 Pressure Equation

Substitution of the velocity-pressure relations such as Eq. [6.8] into
Eq. [7.4] leads to:

N N + "S g + a PBg+b, [8.1]ap =aPEE+apgg+aP Ppp

where
,

#0d17y+p02 2 2 ) Y* ( }aE" '

e

(p0d11 y + p 0 d )Y (AyAz) [8.2b]a - ,
,

222g
*

> ;

(P e dlyy+p0d Y (Axaz) [8.2c] faN" ,

22 y
r ;

(ped 1yy+p8d222)Y (Axaz) [8.2d]a -< ,

3
, y

,

1i1+ Ped)T i.d (AxAy) [8.2e]"B " ' P ,

222 z
.b,

r ;

2 2 2) Y, (AxAy) [8.2f]dPedlyy+paT"'
,

t

"E
E "W "N * "S "T "Ba = a '

and,
-- - , ,-

. .

22 x." _
1 y y + p 0 "2)Y ' (Ayaz)(D 0 ub=' (p O uy y + p 0 "2)Y ~

22 x,
,

,
-

, , .-
. . -

(p 0 uy7y+p2 2"2)Y (4xaz)(p 0 v17y+p2 2"2)Y -+' y_y_ ,
,

- , , .
- -

'
, ,

(p 0 w11y+p2 2"2)Y (111+P2 2 2}T (Axay)+
z.z -

-b,

- (P11+P2 2} . (Y AxAyaz/At) [8.2h]+ (p 017+p022 y
,

8.2 Pressure Correction Equation 1

In this section we have derived the pressure correction equation for two-

phase flow by extending the ' SIMPLER' procedure for single phase. If we sub-

titute Eq. .[6.12] (and similar velocity-correction formulas for v and w) . into
-Eq. [7.4], we get the pressure correction equation
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f f f f f f f

ap = ape E + "W g + a pN N + "S 3 + a pTT+apBB+p ppp ' *

vhere a ' "W' "N' "S' "T' "B' "" "p "#* 8 **" 7 9"* ** *8'E

end b is given by
-

* . * -

* *
- -

b=< (p 0 u +p0u)T - IP e ux. y . l g y + p 0 "2)Y ' (Ayaz). y7 272 22 x.e
- -* *

-

* *
-

+' (p1 1"1 + P2 2"2)T - b111+P2 2"2)Y (0*O*)Y
_ y., y..

'-

, , . , ,
.

.

(p 0 wygl+P2 2"2)Y -+'
(p 0 w17y+p2 2"2}Y (AxAy),g, z-b _

-t

+ (p11+P0} - (#11+P2 2) (Y axAyAz/At). [8.4]22 y
,

The similarity between Eqs. [8.2h] and [8.4] should be noted. The only
difference between the two equations is that, whereas the b for the pressure
equation is calculated in terms of u, v, and w, the corresponding quantity
for the pressure correction equation is obtained in terms of u, v, and w.* * *

8.3 Pressure Correction Equation 2

The pressure correction equation derived in this section is based on the
procedure very similar to the numerical procedure kncwn as IPSA[2]. In this

procedure we differentiate the phase continuity equations and momentum equa-
tions and combine them with the condition

0 +O =1
2 [8.5]

to obtain the pressure correction equation.

Let us assume that we have an estimated pressure field p . We can then
* * *

solve the momentum equations to obtain velocity fields u , v) and w for* * * y y
phase 1 and u ' "2 ""d "2 f r phase 2. These velocity field. an be used in2

* *the continuity equations to obtain void fractions 0 and 9 . As the
7 2

void fractions are based on estimated pressure field p , they will, in general,
not add up to 1. We, therefore, require the corrections to void fractions
0 and 0 such that2

* *
0 +0 + 02+0 =1 [8.6],

or

' - ' * *

07+O2- 7 - 0=1-0
2 [8.6a].
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Now from Eq. [7.1), the void fraction for phase 1 is given by

[n a6 )

(n{=1
I a *

1 1ln

n)I"f1W g

[8.71*
=- .0 =

1 [n=6_ j _ ya

[a "loI 1

in) outflow
n1

Here the subscript n refers to six neighboring points. From Eq. [8.7] we

derive a void fraction correction formula.

[n=6 ,h [n=6_, ),

~O'
"1(n=1 "In in) l(n=1 "In)' inf1 w utflow [8.8a],

0 =

1 ,2
1

or

[n=6 ) , [n=6 _ , h f, ,

[a 8I ~

(n=1 lnin)if1w l(n=1 1n)
utflow' [8.8b]n -

0 =
1 ay

, _I are the changes in coefficients due to pressure correction p'.
Here ah ""d din

(a ) gy andIn' order to determine a and a we 1 k at the coefficients yh b
and a exist only(a ) U1 (Eq. [7.2]) making note that the coefficients ah hy

for inflows and outflows, respectively (Eq. [7.2]);

l ~ ~ (# }i+1 ("1 x)i+1/2 Ay Az *"
(n }i+1 Y '~

1 3 ki+1/2 inflow1

and

11("1 x)i+1/2 OY az= (F +1/2) outflow " P(a )i,y T * *

j kiy

Combining Eq. [8.9] with Eq. [6.12] we get

OY azk (P +1 -p) (inflow only) [8.10a](a )y,y = (p )g4y(y d )i+1/2 ,

i1 1 x1 j

and
f f ,

- P +1) (outflow ody) M.W(a ) y,y = (p ) g (yx 1)i+1/2 OY azk (Pg iy y j
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Equations for other neighboring coefficients and for phase 2 can be obtained
in an identical manner. We now substitute all these coefficients in Eqs.
[8.7] and [8.8a). After simplification we get

n=6

*
0 (p Ad e )n (P -P)= <

y y

n=1
,

A

inflow
only

n=6 '

-(P 0 *) ij k (Ad ) (p - p') [8.lla]17 y ,
,

n=1

outflow #

only

In=6 *
0

(2Ad 0 ) (p -p)=

2 +

n=1

' nflowi

only

'n=6

- (P 0 )ijk (Ad }n (P -P) [8.llb]22 2 > .

n=1
#outflov

only

and

f

n=6
- ~, ,

, ,
* (P Ad e ) (p Ad 0 )n1 - (0 * +0 ) y gy 2 22'" W<

2 +a a1 2
~

in[ low6

only
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,- . -,

3.
.

(Ad )n ( 2 2}ijk(Ad )n 2 * 'y *

IP 0 )ijk ++ > P11 na
2y

J
.

s

outflow only

P

n=6
- -

, ,

(p Ad e )n(p Ad 0 ) 2 22, y 17
+- P j k'i a ay 2

n=1 . .

inflow*

only

'
n=6 ~

.,

" (p e )ij k + [8.12](P 0 )ijk+ ;.

22 ,ly a,

n=1 .

'
#

outflow
only

llore A represents the cross sectional area, e.g.

Ay az [8.13a]A ,y - (yx i+1/2 j k,g

g = (y ) M /2 Ay Az [8.13b]A .

Eq. [8.12] is our final-pressure correction equation. After solving for
pressure corrections (Eq. [8.12]) we use Eqs. [8.11] for computing void
fraction corrections. The velocities and void fractions are then modified
to account for these corrections.

l'
I

[ <
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9. BOUNDARY CONDITIONS

9.1 Preliminary Considerations

Within the general framework outlined in this report, a variety of
boundary-condition practices can be used. The practices that are suggested
in this section have been found to be convenient, but the general numerical
method is in no way restricted to these particular practices.

At first, it will be assumed that the calculation domain has the shape
of a rectangular box. The boundary-condition treatment for such a domain
will be outlined. Later, it will be explained how actual boundaries internal
to this nominal domain can be accommodated.
Design of Control Volumes

The calculation domain will be divided such that the control volumes
fill the entire domain. The boundaries of the domain will be both control-
volume faces and the grid-point locations. The scheme is illustrated in
Fig. 9.1. An advantage of this design is that it can be conveniently used
whether the boundary value of 4 or the corresponding boundary flux is speci-
fled. Further, since the control volumes fill the entire domain, the integral
conservation is always satisfied. Lastly, the presence of a grid point on the
boundary surface enables us to use the values of P and p there directly for
the calculation of diffusion flux mass-flow rate across the boundary.

9.2 Initial Conditions

Generally, before the solution sequence can begin, all values of variables
must be assigned. This can be accomplished by either continuing a previous run
via the restart capability or by specifying the initial temperature, pressure,
and velocity distribution throughout the interior points of the space under con-
sideration. When the initialization is not a restart, density and enthalpy can I

be calculated from equations of state, using the specified pressures and tem-
peratures. If the determination of these distributions and their subsequent
input into the code are found to be tedious, certain options [8] can be provided
to ease the initialization task. When a steady-state solution is being sought,
an initialization as close as possible to the expected solution should be used
to reduce computer running time.

I

Pressure Initialization for Static Head
When gravity is acting along any of the three principal coordinate axes

and there is either constant or one-dimensional temperature variation in that
same direction, an option can be used to reduce the initialization task. This
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cption can be exercised by specifying a pressure at a point and either the con-

stant or one-dimensional temperature variation. The entire temperature field

can be generated froa the input temperature information. The density field

can then be computed by the equation of state. With this density field and

the point pressure, a pressure field can be generated to account for the static

head. From the pressure and temperature fields, the enthalpy can be obtained,
thus completing this initialization option.

Pressure-drop Initialization

! A linear variation or constant-pressure-gradient initialization option

can also be used as in COMMIX-l[8). This can be used when the constant pres-

cure gradient is along any one of the three principal axes. It is accomplished

by specifying the constant pressure gradient as either BP/3x, BP/3y, or 3P/3z, k
and a point pressure. This option can be used along with the static-head ini-

tialization. However, if the constant pressure gradient is along the same

axis as gravity, the pressure gradient due to gravity must be included in the

epecification of the constant pressure gradient.<

Initial Values for Turbulence Quantities
t

For the correct specification of the mathematical problem, the initial

values of all the dependent variables, which include the turbulence quantities

such as k, c, must be specified.

Often, however, this information is unavailable and must be guessed. It is

usually reasonabic to assume that the turbulence kinetic energy at a point
is about 1% to 10% of the mean-motion kinetic energy at that point. The value

of c is harder to guess. One may be able to estimate the mixing length for
4

a given situation and derive the value of c from it. If L is the mixing [

length, the corresponding value of e is given by
I

[9.1] -

3/4 3/2k j,

p

where e is a constant (c = 0.09 usually). Alternatively, one may adjust
p

c such that the Reynolds number based on the torbulent viscosity p (where

u = c pk /c) and a characteristic length scale is of the order of 500.
t
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9.3 Boundary Conditions for the General & Equation

Given Value of the Dependent Variable

The simplest treatment of the boundary condition is available when the
value of the dependent variabic is specified at the boundary. This occurs at

the walls of known temperature, and at the inflow boundaries. Whtn fluid enters

a calculation domain, we normally know the values of $ it brings with it. If |
this information is not obtainable, the problem is not properly posed. A no-

slip wall simply indicates that the velocity at the wall is known to be zero.
No special treatment is needed when the value of $ at the boundary is known. )
The boundary value will simply appear as one of the neighbors of the near-
boundary grid point, and its influence will be correctly felt in the solution.

Given Flux at the Boundary

Since for the near-boundary control volume, a face of the control volume
coincides with the boundary, the known flux at the boundary surf ace can be in-
corporated as an additional source term for the control volume. At the same
time, the coefficient connecting the unknown boundary value of $ should be
set equal to zero.

The given flux situation arises when the heat flux at a wall is given.

Also, any surface of symmetry represents a zero-flux situation. Further, an

outflow boundary can be treated as a zero-flux situation, as will be ex-

plained below.

At an outflow boundary, the boundary value of f is normally not known.

Further, there is no need to know it since the value lies on the downstream

side (,i the calculation domain and is thus unable to influence the solution.

Thus, setting the coefficient of that boundary value to zero is all that is

needed to treat an outflow boundary. Since this is all that we do at a zero-

flux boundary, the treatment for an outflow boundary turns out to be identical
to that of a zero-flux boundary.

Last!y, a slip wall is also to be treated by setting the boundary-value

coefficient equal to zero.

Incorporation of Wall Functions

When the flow is turbulent, and the turbulence model accounts for only

the fully turbulent region, the near-wall region (whe ra the laminar and tur-

bulent transp _rts are comparable) is usually handled by way of wall functions.

The use of wall functions for the k-c model is described in [7]. The compu-

tational aspects of wall functions are illustrated here.
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The wall functions described here have been based on a rather simple
situation, namely a zero-pressure-gradient, uniform-property-flow near an
irpermeable wall. That they can often be used in more complex situations
with reasonable success is a consequence of the thinness of the wall layer to
which they apply. In a thin layer, the effects of pressure gradient, property
variation or mass transfer are likely to have only a second-order importance.
By the same argument, the curvature of the wall can be ignored, for the pur-
pose of the wall functions, in the immediate vicinity of the wall. Thus, the

wsil functions for a flat plate can often be used near a pipe wall without
modification,

The puipose of the wall functions is to provide the correct value of
the relevant, diffusion flux at the wall boundary. This can be accomplished
either by specifying an additional source term for the near-wall control

volume or by using an appropriate value of r at the boundary.

Let B denote a boundary location and P the grid point in the near-
boundary control volume. The distance, normal to the wall, between P and B
is given by 6.

The requirement that the velocity distribution near the wall conform
to the " law of the wall" can be expressed via the following expression for
the boundary F for the velocity.

T ~U #I IB
[9.2 ]

+= py r/ln(Ey+) for y+ > 11.5

Hare p is the laminar viscosity, K and E are constants (usually taken as:
= 0.4, E = 9.0), and y+ is defined byK

+ E pk1/2 1/4e 6/p [9.3]y ,

where k is the turbulence kinetic energy, and e is a constant (c = 0.09).p

For the energy equation, the corresponding wall value of f is given by
'r = pRt for y $ 11.5g

[9.4],

= yy Pr (1/K)1n(Ey ) + P f for y+ > 11.5
,

where Pr and Pr stand for the laminar and turbulent Prandtl numbers respec-
tively, and P is the so-called resistance of the laminar sublayer, given by

~!P = 9.0(P'r/Pr - 1) . (Pr/Pr ) [9.5]
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There is insufficient evidence and well-coordinate knowledge about the

variation of the turbulent Prandtl number in complex situations. If a constant

value of the turbulent Prandtl number Pr is to be used, a value around 0.9 is

found to be appropriate for flow near walls, while Pr 0.5 seems to be appli-=

: cable to free jets and wakes.

' Calculation of Boundary Coefficients

For the situation shown in Fig. 9.2, the calculation of the coefficient

egg in the finite-difference equation for $p will now be explained.
a is still defined by Eq. [5.2b], but the flow rate F is now to be, W

calculated from the density and velocity stored at point W. Thus,

F '= gg g x4 y AyAz [9.6].

>

Also, the diffusion conductance D should be calculated from P alone. Thaty

is,

[9 JdD = (y AyAz) P /(6 )gp .
; W
1 -

9.4 Boundary Conditions for the Press, . - .. d Pressure-Correction
Equations

|
Since the ccntinuity equation has been reformulated as the pressure

equation and the pressure-correction equation, special attention should be
- given to the boundary conditions for these equations. Normally, either the

velocity normal to the boundary is specified or the pressure at the boundary

is given.

| Given Normal Velocity at the Boundary

| A control volume adjacent to a boundary is shown in Fig. 9.2. If the

velocity u entering the control volume at the boundary face is known, then,p
in the derivation of the pressure and pressure-correction equations, we would

oru(,;wewoulddirectlyusetheknownvaluenot substitute.u in terms of uy g
, ,

of u . Thus, p or p would not appear in the p or p equations. In other
W g g

words, the coefficient a will be zero in these equations. Since this boundaryg
coefficient is zero, no information about the boundary pressure is needed.

The given velocity boundary condition occurs at walls, symmetry planes,

and inflow be.undaries with known flow rate. Even the outflow boundaries can

Lbe treated as known-velocity boundaries by specifying the normal velocity

there by reference to overall mass conservation. Only when the flow rates are !

, .

.
- r

|
unknown, butithe pressure drop is specified, do we need to turn to the given-

; pressure boundary condition.
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Given Pressure'at the Boundary

' When the pressure oc the boundary point W in Fig. 9.2 is known, the

situation is straightforward. For the pressure equation, the known value p
W

is to be used in the appropriate' neighbor term. Further, if p* is set equalg
to p , we shall have p = 0, which serves as the known boundary value forg g
the pressure-correction equation.

9.5 Boundary values for Turbulence Quantities

For the boundary values of all the turbulence quantities such as k, c,

the correct specification of the values at all inflow boundaries must be given

so that we know what turbulence level and scale are brought into the calculation

domain by the incoming streams.. Many a times, this infermation is unavailable

and must be guessed.

Fortunately, in many situations the flow within the calculation domain
is so complex that it is insensitive to the boundary values of k and c con-
vected by the inflow streams. The reason is that a complex flow causes sub-
stantial generation of k and c within the domain. The distribution of k and

c is thus largely governed by the source terms and only very weakly by the
convection terms. It is then sufficient to assume that the inflow streams !

bring rather small values of k and c and show that the results are independent
of the exact magnitude of these small values.

9. 6 Irregular Geometries

When the actual boundaries of the calculation domain do not coincide
with the boundaries of the nominal (rectangular) domain, special treatment is

needed to incorporate the " internal" boundaries. Two practices are suggested
below,sdaich could be used in combination if desired. When the boundary is
internal to the nominal calculation domain, the grid should be so designed

that the actual boundary is suitably approximated by a succession of control-
volume faces. Figure 9.3 illustrates this for a solid obstacle projecting

into the nominal celculation domain. The dashed lines indicate the control-
volume faces, while-the shaded area denotes the obstacle.

The treatment of irregular boundaries through appropriate choice of the
T's is described in [6]. When $ stands for velocity, the corresponding values

of T - for the cont"ol volumes that lie in the solid can be made very large.

This results in ve y-small (essentially zero) values of velocity predicted for
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the~ solid region. A given value of 4, such as temperature, can also be

arranged at t ie internal boundary by making the r values for the solid large !

l
and by specifying the given value of 4 at the nominal boundary adjacent to I

the solid. An adiabatic surface, on the other hand, can be simulated by the

use of a very low T f r the solid.h
An alternative practice for the treatment of internal boundaries works

through the use of the source term. The given fluxes at the actual boundary

can be incorporated as additional sources into the appropriate near-boundary

control volumes. If the boundary values of the dependent variable are given,

they can be established at the desired grid points by the following specifi-

cation of SC "" f r those points
p

*lC ' "#givenS '

[9.9]S = -M i

P

where M is a large number (say,1030). The consequence of these large sources
,
-

is that they alone dominate the finite-difference equation which then reduces

to

*p *given [ .10]
.
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10. SOLUTION OF THE FINITE-DIFFERENCE EQUATIONS

The fiaite-difference equations derived in Section 5-8 (for the general,

variable 4, for the velocity components, for pressure, and for the pressure
correction) have a common form. They all relate the value of the variable

at P to the values at the six neighbor points. It is, therefore, sufficient
I to describe the method of solution for the algebraic equations of the

general form.

Although the general finite-difference equation contains seven unknowns,
the equations for the near-boundary control volumes have fewer unknowns. This
~ ilts from the fact that either the boundary values are known or their in-
fluence has been set equal to zero through our boundary-condition practice.
Thus, we may always regard the boundary values as known for the purpose of
solving the equations.

10.1 Tri-Diagonal-Matrix Algorithm

The primary building block in the solution method is the Tri-Diagonal-.

Matrix Algorithm (TDMA). It enables us to solve directly for all the values
along one line.

Let the system of equations be represented by

A$ =B$y f41 + C 4 _1 + Df [10.1]1 gg ,

for i = 2, 3, ..., N, with $1 and $ +1 being the known values.N

The first step is to calculate the transformed coefficients P and Q
from

P = B /A 0 = (C @l + U )/A2 [10.2]2 2 2 2 2 2 ,'

and, for i = 3, 4, ..., N

P = B /(A -cpg) ,

[10.3]
O = (Di+CQi f_y)/(A - C P _y)f f fi ,

The second and final step is the "back substitution", i.e., the
calculation of $ from1

for i = N, N-1, N-2, ..., 4,3,2:

$g = P (g + Qg [10.4].

This step gives the solution of the system of equations [10.1].
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.10.2 Line-By-Line Scheme

The line-by-line procedure for solving the finite-difference equations
can be seen as the logical extension of the Gauss-Seidel point-by-point method, j

Instead of visiting a point and solving for the value there by the use of the
availablu values at the neighbor points, we choose a line and solve for all
the values along it by the TDMA.

The procedure is schematically illustrated in Fig. 10.1. A grid line

is chosen for the application of the TDMA. In the finite-difference equations

for all the points along this line will appear the values of the variable
along the four neighboring lines (two of which are shown in Fig. 10.1; the
other two contain the z-direction neighbors). If these neighbor-line values

are assumed to be known, then-the finite-difference equations along the chosen
line will take the form of Eq. [10.1] and can be solved by the TDMA. The main

advantage of this procedure is that the boundary-condition information f rom
the ends of the line is at once transmitted to the interior of the domain, *

no matter how many grid points lie on the line. In the point-by-point proce-

dure, on the other hand, the influences f rom the boundary travel only one
grid interval per iteration.

When all the lines in a given direction are visited, the basic operation
of the line-by-line procedure is complete.

10.3 Traverse and Sweep Directions

The basic operation just mentioned does not, however, give the final
solution of the algebraic equations. The reason is that guessed values from'

neighboring lines were used in the procedure. Only after many repetitions of
the basic operation, we get the correct solution of the equations. Of course,
it is desirable to seek ways of reducing the number of required repetitions.

The direction of the line chosen for the TDMA is called the traverse
direction. In many problems, geometrical and other factors result in a situa-
tion where the coefficients in a particular direction are much larger than
those in other directions. In this situation, a TDMA traverse in the direction

of large coefficients is particularly effective; because the guessed values
from the neighboring lines enter with only weak coefficients. When such a
preferred traverse direction is not available, it is best to conduct three
successive repetitions of the basic operation by choosing a new traverse
direction each time.
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Having chosen the direction of traverse, we need to decide the se-
quence in which the lines are visited. This will be called the sweep direc-
tion. It is convenient to start at one end of the calculation domain and
proceed to the other end, so that the boundary-condition influence is quickly
brought in. If the fluid flow in the domain has a predominant direction, it
is very beneficial to make the sweep direction the same as the predominant
flow direction. Then the upstream information rapidly gets conveyed to the
downstream loqations. In absence of a major flow direction, it is best to
alternate the sweep direction in the successive repetitions of the algorithm.

10.4 Optimization of the Equation-Solving Effort
The equation-solving algocithm described so far is to be used for one

variable at a time. Further, it regards the finite-difference equations as
linear. The nonlinearity of the equations and the interlinkage between the -

variables are to be handled by the iteration scheme outlined in the next

section. During any given iteration we have only tentative values of the co-
efficients in the finite-difference equations. The coefficients must be re-
calculated for every iteration to reflect the changes that have occurred in
the relevant dependent variables. Therefore, the repetitions of the line-
by-line procedure, which is working on merely the tentative values of the co-
efficients, need not be carried to ultimate convergence. It is sufficient

to obtain a reasonably good solution of the algebraic equations before the

coefficients are recalculated. The optimum equation-solving effort should

be determined by experience and experimentation ,but a simple rule is that
the work required for calculating the coefficients should be roughly comparable
to the work involved in solving the equations.
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11. ITERATION SCHEME

For every time step in an unsteady situation, a number of iterations
tiust be performed to account for the interlinkages and nonlinearities. Also,
the solution for a steady-state problem is achieved af ter a number of itera-
tions. A given iteration starts with a set of values of all the dependent
variables (obtained from an initial guess for the first iteration and from
the previous iteration for subsequent iterations) and proceeds to obtain a
new set of values. When subsequent iterations cease to produce any signifi-
cant change in the values, the iteration sequence is said to have reached
convergence.

11.1 Suggested Sequence of Operations
(1) Start with an initial guess for all the dependent variables.
(2) Calculate the density field from the equations of state.
(3) Calculate the coefficients in the x-direction momentum equa-

tions. Hence obtain the values of $ and u2 (Eq. [6.7]).1
(4) Similarly, obtain the coefficients in the y- and z-direction

momentum equations. Hence evaluate v , v ' "1, and w *y 2 2
(5) Set up and solve the pressure equation (8.1] to obtain the values

of p.

(6) Using this pressure field as p*, solve the momentum equations

(Eq. [6.2] for u and similar equations for v and w) to yield
* * * * * *

u , u '
"l' "2' "1, and w *y 2 2

*(7) Solve phash continuity equation [7.1] for 0 and similar equa-
* 1 * *tion for 82*f r computing phase void fractions, 0 and 0 '

7 2*
(8) If 0 + 0 2 = 1, g to Step 12.
(9) Set up and solve the pressure-correction equation, Eq. [8.3] --

(note that only b needs to be recalculated) -- to obtain the-

values of p'.
(10) Use the velocity-correction formula, Eq. [6.12] (and similar

equations for v and w) to obtain the corrected velocity field
u, v, w.

.

(11) Solve phase continuity equations to obtain 0 and 0 "
7 2

(12) Set up and solve the general finite-difference equation, Eq.
[5.1], for 4, with 4 standing for enthalpies h and h and the

2
turbulence quantities k , k ' *1' "2' E and g ' i" * **9"*""2 l 2
tial manner.
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(13) Perform integral balances on mass flow of gas and liquid.
Correct gas and liquid flows, and pressure.

(14) Return to Step (2) with the new values obtained during this
iterat'on as improved guesses and continue the procedure
until convergence.

The above described sequence of operations is basad on the extension of
the " SIMPLER" procedure. In regard to the procedure analogoas to "IPSA",
the above sequence of operations remain the same except that Steps (9) and

(11) are replaced by the following two steps:

(9a) Set up and solve the pressure correction equation, Eq. [8.12]
to.obtain the values of p'.

(lla) Use the void fraction-correction formulae, Eqs. [8.11] to obtain
corrected void fractions.

11.2 Urider-Relaxation
The finite-difference equations and the line-by-line scheme have been

constructed such that, if there were no interlinkages and nonlinearities,

convergence will be certain. However, because the equations of interest
here would almost always contain nonlinear and interlinked influences, care,

must be taken to prevent divergence. One simple strategy is to slow down

the changes in the coefficients that would occur from iteration to iteration.
This is accomplished via under-re. laxation.
Under-Relaxation of the Dependent Variables

The general finite-difference equation, Eq. [5.1 ] can be written as

"p#p " b*nb + a +b bl.H,

p

where the subscript nb denotes the neighbor points. This equation can be
modified as follows: From Eq. [11.1] we can wrice

0a a4
$p=[anb ,nb , p p + b/a [ll.la].

a p
P P

Also, let

*

4"P = a$"P"# + (1 - a) $
[ll.lb]*"

,

P

* "#

where (P denotes the last iteration value of & , $"P denotes the value
P

obtained directly if Eq. [11.1] is solved; and a is the under-relaxation
factor. Substitution of Eq. [ll.la] in Eq. [ll.lb] and rearrangement gives
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t >

.

*

(a /a)$p = Eanb nb + a $p + b +-(1 - a)(a /a)$p4 [11.2].
| p p p
t-

-*

It is easy to see that, when $p becomes equal to $p (i.e., the iterations

converge), Eq. [11.2] becomes identical to Eq. [11.1]. In the meantime,

however, Eq. [11.2] would have a tendency to keep the resulting &p closed
*

to 4 (than Eq. [11.1] would do) provided the relaxation factor & is less
than 1. A value of a close to zero would indicate a very heavy under-
relaxation.

A value of a = 0.5 usually provides sufficient under-relaxation for

most variables. For the velocity ~ components, a value of a 0.7 may be
used. The pressure equation may be under-relaxed by using a = 0.8. These

values should be regarded as only initial suggestions; a proper set of a
values should be obtained by actual experience for a given class of problems.
Under-Relaxation of Auxiliarv Quantities

In addition to_ under-relaxing the dependent variables, a number of
other quantities can be under-relaxed with advantage. For example, the
density p and the diffusion coefficient P can be calculated from

:

-p=ap + (1 ~ ")P [11.3]new old ,

I""I +( -" I11*43*new old

Of ten the source terms can be a cause of divergence. Under-relaxation of
the source terms in the form

S =. a S + (1 - a)S [11.5]-,

old

can be helpful to prevent divergence. Even some boundary values can be
introduced in a controlled manner via

& ~ " # ,given ( ~ " # ,old [11.6] IB B B
,

where-$ en tes a boundary value. *
B

It should be obvious that the values of a appearing in Eqs. [11.2] to-
[11.6] can all be different; indeed, it is permissible, though inconvenient,
to choose a separate value-of- a for each grid point. Further, the values
of a can be_ changed as the iterations proceed.

I'
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11.3 Linearization of the Source Term.

In the derivation of the finite-dif ference equations, we have expressed

the source term S via Eq. [4.15] in a linearized form. This form is an attempt

to anticipate the change in S resulting from the change in the value of & .
A proper linearization of S is of ten the key to obtaining a converged solution.
It has already been mentioned that S in Eq. [4.15] should not be allowed to

p
become positive. Another general recommendation pertains to those dependent
variables which because of their physical significance must always remain-
positive. The turbulence quantities k, e and g belong to this category.

Such variables often have positive and negative source terms, and their im-
balance could often lead to negative values of k, c and g, which are not

physically meaningful. These negative values can be entirely prevented if
the source term is linearized according to the following practice.

Let S and S denote the positive and negative parts of the source termy 2
such that

[11.7]S=S -S (S1 > 0, S2 > 0) .

2

Set S and S according to
C p

S ~ **
C 1

and
*

[11.9]= -(S /$p)S ,
2p

where & denotes the last-iteration value of & .

31.4 Distinction Between Steady and Unsteady Situations

The calculation method outlined in this report makes only a small dis-
i

tinction between the steady and unsteady problems. The suggested calculation
sequence for one time step in an unsteady situation is almost identical to
the sequence for obtaining the steady-state solution. If the time step At is

I made very large, our finite-difference equations for an unsteady problem re-
duce to those for a steady problem.

The main difference between the two situations turns out to be in the
number of the required iterations. In an unsteady situation, the " initial"

values of & for any time step are either given or known from the previous time
step. If the value of At is reasonable, we do not expect the 4 values to-

i
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change very drastically within one time step. Thus, the values 4 at the
r

start of the time step serve as good guesses for the new values $ , and
therefore, only a few iterations may be sufficient to attain convergence
for the time step. On the other hand, the guesses available for a steady-
state problem are of ten rather " wild", and it is then expected that many
iterations would be necessary before convergence is obtained. '

i

There-is another difference between the two situations; it pertains
to the computer-storage requirement. For an unsteady problem, two sets of
values of the dependent variables, & ~and & , must be given computer storage.

P P

For a steady-state problem, &p has no relevance, and a single set of $p
values represents the storage requirement for the dependent variables.

11.5 Performance of Integral Balances

During the iterative process, because of partial convergence of the
continuity equations, it is possible that the total (or individual phase)
mass flow out of a slab of cells is not equal to the known, correct value.
In order to make the solution at subsequent slabs of cells more accurate,
it is advantageous to correct the velocity and pressure fields to satisfy
the integral mass balance. This section explains such a practice, and de-
scribes its merits.

Consider first a flow in which there is a predominant flow direction
'(e.g., pipe flow). For a pipe flow, we recognize that the total flow outwards
of any plane perpendicular to the pipe axis must be equal to the inflow at the
entrance of the pipe. Mathematically, this means

w 'A{pgj ij gj [11.10]=a

where p is density, w is the axial velocity, and A is the area perpendicular
to the pipe axis. The summation is made over all cells in the cross-sectional
plane. Since the above equation is not always satisfied until convergence,
we wish to correct w by an amount Aw to meet this criteria. There are ag

few different ways to perform the corrections to the w field and associated
pressure field; here two methods found often superior to others will be
described.

Uniform Pressure Correction.

Let Ap be a uniform correction (over the cross-section) to the pressure
-effecting the w velocity at the given plane. Also, let D be fforeach
2 cell. We can then write

i

!

!
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A = AE [11.11]Ap{Epyj(D )yj ij . ,w

where Am is the error '(required-actual) . This leads to the relation for
Ap, as follows :

.

A ' ""P." E E p D) A
^ *

Aw = (D ) Ap . [11.13]

Note that the Ap correction is uniform, but Aw is different for each cell.
The above expressions can be extended to two-phase flows, considering

the total mass flow as the quantity to be balanced. Thus,

I (0 0 }ij ("2}ij^1j +k j (0 p )fj (w )fj fj +A ~ * *"

22 2 t7y y
j

We can derive in a straightforward way, that

( t) req ~ ( t} actual [11.15]3 p ", ,

^id9 + Pkj 11w 22w
2

ij ij _

D Ap , and [11.16](Aw )gj =y w

[11 17](Aw }ij Ap" .

2 w

For multiphase flows, the same practice will also hold goca if extension
is made for~all of the phases.

Uniform Velocity Correction

Let Aw be a uniform correction (over the cross-section) to the axial
velocity at a'given planc. We can then write

* [ll.18a)Aw I E p A = Ain ,

or

# [11.18b)av = .

7g
1 j- 13 13

.

Having computed Aw, we can easily derive the relation for Apg.

Aw 1 A5 (11,79)op = ,

ij (D )g (D ) I p A
gj ij
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It should be noted that in this procedure, we have uniform Aw for all
cells in a plane, but Ap is different for each cell.

We can extend this procedure to two phase flows in the following way.
Let $ and $ be the errors in mass flow rates and Aw and Aw be the1 2 y 2
velocity corrections of phase 1 and phase 2, respectively. We then have

'

Atn
1

s Aw =
y II 0A) [11.20],

i ji 11 1 1

\ |end
,

Am
Aw ~ *

2 II Og [11.21]
1j '

The pressure correction Ap can be obtained by averaging the pressure

corrections required for balancing of each phase of the two, phases. ,Thus
Am Am

AP (APij)1 + (A )13
"

P "
ij D p0A D p02 y1 22

The Aw corrections are applied at the slab concerned, but the Ap
corrections are made to all downstream planes in the domain. This practice
avoids creation of artificial pressure gradients at subsequent planes.

l

l
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12. SUGGESTED FLOW CHARTS
i

The calculation method described so far can be visualized through the J

flow charts presented in this section. It should be recognized that a number

of decisions taken while designing the computer program would have some ef-
feet on the details of the flow charts, but their main framework would con-

tinue to remain useful. The description here is given for an unsteady situa-
tion; the specialization to a steady-state problem has already been dealt
with.

12.1 Time-Step and Iteration Loops

The main structure of the computer program can be seen from Fig.12.1.
We begin by specifying the grid and, if desired, calculating a number of
geometrical quantities which will be frequently needed in later work. Next,

the initial values of all variables are specified. The output, which will

consist of the initial values at this stage, can be arranged just before we

begin the time step. The iteration sequence, for which further details will
be given shortly, is then repeated a number of times until convergence is ob-
tained. This completes one time step, after which we return to the beginning
of the output section and proceed to the next time step. When the required

number of time steps have been performed, the computation is terminated.
12.2 Iteration Sequence

The details of the iteration sequence are shown in Fig. 12.2. They

follow the steps listed in Section 11.1. More information about the general

$ equation sequence follows in Section 12.3. The sequences for the momentum

equations, and for the pressure and pressure-correction equations should also
follow the general pattern for the $ equation.

12.3 General $ Equation Sequence

The flow chart for the sequence of setting up and solving the finite-
difference equations for 4 is given in Fig. 12.3. We begin by calculating

the values of f , and the source-term quantities (S }$ and (S )4 for theC p
particular $ under consideration. The modifications necessary for introducing

the boundary conditions are performed next. This sets the stage for the cal-
culation of the finite-dif ference coefficients, for under-relaxation and

subsequent solution of the algebraic equations by the line-by-line method.
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Specify grid
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Initialization I

(Give values of tp)
#

Output

V

Begin a time step.
o

Set $p = fp; choose At.
v

.M

Iteration sequence

h h (details in Fig. 12.2

No
< Converged?

Yes3,

Yes re
' < ime steps?

1r No

' Stop

Fig. 12.1 The overall flor chart
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(1)- Calculate densities pg.and p2

(2) x-momentum coefficients for both phases. Calculate u ; uy 2

(3) y-momentum coefficients for both phases. Calculate 0 ; O
7 2

(4) z-momentum coefficients for both phases. Calculate w ; wy 2

(5) Set up and solve the pressure equation;

| (6) Solve the momentum equations for both phases to get
u , u '

"l' "2' "1 and w*
* * * * *

y 2 2

(7) Solve the phase continuity equations to get 0* and 0*

(8) Set up and solve the pressure correction equation (Eq. [8.3]
or Eq. [8.12])

(9) Correct the velocities to get u , v , w , u ' "2 and wy y y 2 2

(10) Solve the phase continuity equations to get 0 and 0 #
'

7 2

use the correction equations to correct the void fractions

V
>

J

3/

General $ Equation Sequence

lk (details in Fig. 12.3)

>
~

No All &'s
,

alculated?

Yes

V

4

Fig. 12.2 Iteration Sequence
1
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(i) Choose a particular $

{(ii) Calculate r I

(iii) Specify S '
C p

(iv) Perform boundary modifications

(v) Calculate the finite-difference coefficients

(vi) Introduce under-relaxation

(vii) Solve the algebraic equations

T/

Ff.g. 12.3 General & Equation Sequence
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.; Separate operations in this sequence can best be performed in separate
subroutines. In particular, subroutines for the calculation ofP , S and S ,

4 C p

.for boundary modifications, and for the equation-solving algorithm are

,
especially convenient.
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13. CONCLUDING REMARKS

This report has described a general numerical method for the solution
of three-dimensional, single-ph ae/two-phase, steady / unsteady flow problems
with heat transfer. The method is based on the control-volume approach, which
is easy to interpret in physical terms and which ensures overall conservation.
Cniculation practices and iteration sequences, which have been found to be

accurate and efficient for single-phase have been extended to two-phase flows.
The structure of the computer program has been outlined by way of flow
charts. A systematic implementation of this inf ation, with careful and

step-by-step testing, is expected to lead to an .rficient and reliable com-
puter program.

|
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APPENDIX A

|

|Formulations for Cylindrical Co-ordinates

Governing Equations

Continuity Equation : Phase 1

(p "l) + *(P "1 1) " 01 [A.1]1 1

Continuity equation for Phase 2 is similar. Combined continuity
equation:

(p a1 y + p "2 +
*(0 "1 1 + P "2 2) = 0 [A.2]2 1 2

Here, v is the velocity vector, p is the density, Q is the source,
and a (to avoid confusion with co-ordinate 0) is the void fraction.
Momentum Equation : Phase 1

r-direction:

2

(p a vy 1 rl} + *(# "1 l rl} ~ " ~ "I#
1 r

d d) + V+ V *(a r Y#
d+P"1r+O& + K (#r2 - "d) - [ A . 3 ]8

l r

0-direction:

(p a vy y el} + *(E "1 l 0l} + "1
# "~

l r

+ V-(a r Vv +
01 + P "1 0 + mle + 0(#02 01) .[A.4]8 ~#y vy 01 1

z-direction:

(p a vy y zy) + V - (p a U vy y y zl} " ~ "I * ("1 v1 zl)+

+V d + # "1 z + &+Kz ("a d) [A.5]8 ~#1

Here, y , v , and v are velocities in r, 0, and z direction, respectively.e

The viscous contribution to the momentum equation is divided into two parts:
the term

69

__ __



V. (a P V) ,

and the term V which contains the remaining contribution. The momentum
7

equations for Phase 2 are similar.

Energy Equation : Phase 1:

-[- (p a h ) + v - (p a h v) - V - (rb1"1Vh)+ary 1 y1y y y

^*-T)+t+ gy + R (T2 y y+Q1 *

Similarity

We can see that all conservation equations in cylindrical co-ordinates
lave also the same general form.

(pa$) + V - (3 ) = S [A.7]
,

where

3 = (pav$ - PaV4) . [A.8]
4

We can, therefore, apply all formulations for Cartesian co-orriinates to
cylindrical co-ordinates with simple transformations shown in Table A.l.
The source terms for both systems and for Phase 1 are presented in Table

A.2. The viscous contributions in source terms in two co-ordinate systems
are also dif ferent. These are presented in Table A.3.
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Table A.1 Transformations Between Cartesian and
-Cylindrical Co-ordinate Systems

Cartesian Co-ordinates Cylindrical Co-ordinates

X
Y

.y. 0

z z
Ax Ar
Ay rA0
Az Az
u

vr
v

v
0

w
v
3
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Table A.2 Source Terms in the Cartesian and
i

Cylindrical Co-ordinate Systems
i

!

| Cartesian Co-ordinates Cylindrical Co-ordinates

Continuity- G D
y y

*
2

Momentum P "l 81#
l

(p a gyyr+ 1r + mir +
| (i) (p a g +V +0 ryy 7 1

r rl}+K# -K#+Ku ~ K "1) r r2x2 x

**# #P "l r181l

1
| (p a gyy8+ 10 + ml0 ~(ii) (p a g +V +n ryy

+K# #+Kv ~ K *l) e 02 ~ 0 012 y

f (iii) (p a g +V +Q (p a g +Vh+OOy

+Kv -Kw) +v v -Kv )
2 y g

l

1
,

i

+ ( _+ 4 +Q a +Og+t +QEnergy a

+ RT ~*T + RT - RT
2 1 2 y

*
Centrifugal force term.

**
Coriolis force term.
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Table A.3 Viscous Contributions in the Source Terms
for Cartesian and Cylindrical Systems

Cartesian Cylindrical

Sx" # + " Yr" ## - "" }
*

- f (pav.e) +f+ pa par + ""3r

3# 2 pay
- 2 0

2 30 - 2
r r

v,- 6 (- e) * (- e) - % (-S) -)6 (-r)
2.

v
e

6(-e)-;4<-.e> 16)::e. ":'r -;-.e;
3V3 'ua z

+ az r 80

v. - 4 (- n) + (u n) v. - t 6 (~ ') + ? A (u- ||*)
3-

6(-e)-;6<-.e> 6( :; -;...e;
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APPENDIX B

Formulations for Spherical Co-ordinate Systems

Governing Equations

Continuity Equation : Phase 1

(p "1) + V*(P "1*1} " 1 *
*

1 1

Momentum Equation : Phase 1
.

r-direction:

(p "1*rl) + Y'IP "1 1*rl) ~ "el + V 1 * ~ "I1 1 r 4

+ V.(a P Vv )+V + pag +d +K (v ~ "d) . [B.2]y y d

I
0-direction:

# -V c t0*(P "1 1"01} + "r1 01 41(p a vy y 01} +
= -

1 r

01+P"10+ mie + 0 (#02 0l} * I *+ V-(a r Vv + 8 -#
1y vy 01

4-direc tion:

P"
3 l

41 rl + #91"$1 l*'(# "1 l 41) + (#g (P a v 1} + ##
1 ry1

"("1 vl 41) + V y+pagyy4+Om14I+~ r ine

[B.4]
4 (v42 41)+K -# .

4

Here, the viscous contribution to the momentum equation is divided into two

parts: the term

V-(a r V)v ,y
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and the term V which contains the remaining contribution. The momentum1
equations for Phase 2 are similar.

Energy Equation : Phase 1:

- - (p a h ) + V. (p a h v) = v. (T Vh ) + a ft Gyy yly hl I y y hl

+ R (T -T)+e+Q [B.5]2 y y y

We can see the same similarities as shown in Appendix A. We can follow

the same procedure and show that all Cartesian formulations can be applied
to spherical geometries with the transformations given in Table B.l. The

source terms and the viscous contributions for spherical co-ordinates are
presented in Tables B.2 and B.3, respectively.
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Table B.1 Transformations Between Cartesian and
Spherical Co-ordinate Systems

i

| Cartesian Co-ordinates Spherical Co-ordinates

x r

0| y

z $
1

Ax Ar'

! Ay rA0
|

| Az rsin0A$

l u v
! r

v v0

| w v4

,

|

1

(
i

;

i

!

1
!

|
'

I

l
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Table B.2 Source Terms in the Cartesian and
Spherical Co-ordinate Systems

Cartesian Co-ordinates Spherical Co-ordinates

Continuity Continuity

0
1 1

Momentum Momentum

x-direc tion r-direction- 2 2/ P "1 *01 + "$11(P11x+Vh+Nmix i
8 P "1 r + rl + mir +8(l r

)+Ku ~ K "l) +Kv -Kv2 x g
d)|

y-d irection 0-direction

[ P "l rl"01#(p a g +V + 0,y l
pagyy8+ 01 + ml0 "yy y yy y r

+Kv - K *l) 1"l 1 )
v t02 y

+ + # #

0 01||
-

r 0 02

z-direction 4-direction
[ P "l*$1"rl(p a 8y1z+ 1z + mlz |

l

P"1$+V + 0,74 -l 8 r\
0 "l 0l $1" )

# #
1+Kw -Kw) -

+ K *$2 $ $1 l
~K#2 y

4r

|
Energy Energy

a +G(y y+47+Qy a +D\y hy + 47+Qy

+ RT - RT + RT - RT2 y
2 y

) )
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Table B.3 Viscous Contributions in the Source Terms
for Cartesian and Spherical Systems'

4

Cartesian Spherical

x -direction r-direction

# # # cot 0
au

| a |! av\[
r + 7 308+

023 + | V= g I pa g/ (pa p/ r"~ 2i V 2x
( ,

r r r

.

*
+ pa 1 - (paV v) + + (1/3pav v)

2
/ r sh0

.

! {av )

\3' ,9g)|
Y

: y-d irection _0-d irec tion
i

. .

## "O 2cose 4" pa 2 r.3
y ax-- Ipa ayj + ay- pa -Y ,

Vy ay 0 r r a0 2 2 a$j g0 %0 ,

4

1 3 1+1 I pa I r 30 (1/3paV 6) - (r a0 + Vpa)1
4 ayj 3 ay-(pav v) +

az
.

|

z-direction 4-direction,

.
-

"" * 2 r1 " 1 V
$ rsino - rsine + rsine a$pa azj + ay- paazj1 y =

- z 3x
.

+ 1 pa 1 - (paV v) + + ( ! "" *rs 0 a rsine
\ / .1

{ 8# \

f ~ rsino(344'Y")
- 1

.

i

3
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