SAFETY ANALYSIS REPORT

for

```
THE MODEL BMI-1 SHIPPING CASK
    Revision A
March 28, 1980
    from
BATTELLE'S COLUMBUS LABORATORIES
        505 KING AVENUE
    COLUMBUS, OHIO 43201
```


TABLE OF CONTENTS

Page
0. PREFACE FOR REVISION A, 3-28-80 0.1
0.1 Document Index 0.1

1. GENERAL INFORMATION 1.1
1.1 Introduction 1.1
1.2 Package Description 1.1
1.2.1 Packaging 1.1
1.2.1. Description of Cask 1.1
1.2.1.2 Description of Product Containers and Baskets 1.5
1.2.2 Operational Features 1.7
1.2.3 Contents of Packaging 1.7
1.2.3.1 Description of Cask Contents 1.7
1.2.3.2 Type and Form of Contents Material 1.11
2. 3 Appendix. 1.19
1.3.3 References 1.19
1.3.2 Drawings 1.19
1.3.3 Patent for Safety Plugs 1.19
3. STRUCTURAL EVALUATION 2.1
2.1 Structural Design 2.1
2.1.1 Discussion 2.1
2.1.2 Design Criteria 2.1
2.2 Weights and Center of Gravity 2.1
2.3 Mechanical Properties cf Materials 2.2
2.4 General Standards for all Packages 2.3
2.4.1 Chemical and Galvanic Reactions 2.3
2.4.2 Positive Closure 2.3
2.4.3 Lifting Device 2.3
2.4.3.1 Cask 2.3
2.4.3.2 Cover 2.5
2.4.3.3 Failure of the Lifting Device would Not Impair Containment or Shielding 2.6
TABLE OF CONTENTS
(Cnntinued)
Page
2.4.4 Tiedown Devices 2.7
2.4.4. No Yielding with $10 G$ Longitudinal, 5G Transverse, and 2G Vertical Forces 2.7
2.4.4.2 Nontiedown Devices Covered or Locked 2.4
2.4.4.3 Failure of the Tiedown Device Would Not Impair Meeting Other Requirements 2.23
2.5 Standards for Type B and Large Quantity Packaging 2.23
2.5.1 Load Resistance 2.23
2.5.2 External Pressure 2.26
2.6 Normal Transport Conditions 2.26
2.7 Hypothetical Accident Conditions 2.29
2.7.1 Free Drop 2.29
2.7.1.1 End Drop 2.29
2.7.1.2 Side Drop. 2. 36
2.7.1.3 Corner Drops 2.37
2.7.2 Puncture 2.41
2.8 Special Form 2.42
2.9 Fuel Rods 2.42
2.10 Product Containers 2.44
2.10.1 Canister 2.44
2.10.2 TRIGA Fuel Shipping Assembly 2.48
2.10.2.1 Free Drop 2.49
2.10.2.2 Description of Welds on Fuel Element Tubes 2.74
2.10.2.3 ज-Ring Material 2.74
2.10.2.4 Inread Sealant 2.74
2.10.3 Pulstar Fuel Pin Canister 2.76
2.10.3.1 Hoist Fitting 2.76
2.10.3.2 Shear Load on Base Plate Weld 2.77
2.10.3.3 Pressure Check of Stress and Deflection 2.77

TABLE OF CONTENTS
 (Continued)

page
2.10.4 EPRI Crack Arrest Capsules 2. 31
2.11 Baskets 2.81
2.11.1 Copper Basket for Fermi Fuel Elements. 2.81
2.11.2 BMI-1 Basket Modified for MTR Fuel 2.82
2.11.2.1 Lifting Devices 2.83
2.11.2.2 Free Drop 2.84
2.11.3 BMI-1 Basket Modified for Pulstar Fuel 2.90
2.11.3.1 Lifting Devices 2.91
2.11.3.2 Free Drop 2.92
2.12 Appendix. 2.106
2.12.1 References 2.106
2.12.2 Results of Cover Lifting Tests 2.108
2.12.3 Description of MONSA Computer Program. 2.112
3. THERMAL EVALUATION 3.1
3.1 Discussion 3.1
3.1. Summary of Results 3.1
3.1.2 Maximum and Minimum Decay Heat 3.1
3.2 Summary of Thermal Properties of Materials 3.5
3.3 Technical Specifications of components 3.5
3.4 Thermal Evaluation for Normal Conditions of Transport 3.5
3.4.1 Thermal Model. 3.5
3.4.2 Maximum Temperature 3.8
3.4.2.1 BRR/MTR Fuel 3.8
3.4.2.2 Fermi Fuel 3.14
3.4.2.3 EPRI Crack Arrest Capsules 3.17
3.4.3 Minimum Temperatures 3.22
3.4.4 Maximum Internal Pressures 3.22

TABLE OF CONTENTS
 (Continued)

Page
3.5 Hypothetical Accident Thermal Evaluation 3.23
3.5.1 Thermal Model 3.23
3.5.2 Package Conditions and Environment 3.25
3.5.3 Package Temperatures 3.28
3.5.4 Evaluation of Package Performance for the Hypothetical Accident Thermal condition 3.28
3.5.4.1 Lead Melt 3.28
3.5.4.2 Maximum Contents Temperature 3.32
3.6 Appendix 3.41
3.6.1 References 3.41
3.6.2 Experimental Tests of Copper Shot 3.42
3.6.2.1 Thermal Tests 3.42
3.6.2.2 Calculation of Copper Shot Conductivity 3.47
4. CONTAINMENT 4.1
4.1 Containment Boundry 4.1
4.1.1 Containment Vessel 4.1
4.1.2 Containment Penetration 4.1
4.1.3 Seals and Welds 4.1
4.1.4 Closure 4.1
4.2 Normal Conditions of Transport 4.2
4.3 Hypothetical Accident Conditions 4.2
4.4 Appendix 4.3
4.4.1 References 4.3
5. SHIELDING ANALYSIS 5.1
5.1 Discussion and Results 5.1
5.1.1 Applicable Regulatory Criteria. 5.1
5.1.2 Design Features 5.2
5.2 Source Specification 5.2
5.2.1 Description of Radiation Sc irces. 5.2
5.2.2 Source Radiation Type and Intensity 5.3

TABLE OF CONTENTS

(Continued)

Page
5.3 Model Specification 5.3
5.3.1 Source Geometry 5.3
5.3.2 Description of Shield. 5.3
5.4 Shielding Evaluation 5.8
5.4.1 Dose Rate Under Normal Conditions 5.8
5.4.1.1 General Contents 5.8
5.4.1.2 Specific Contents 5.10
5.4.2 Dose Rate Under Accident Conditions 5.13
5.4.2.1 Standard Fire 5.13
5.4.2.2 Corner Drop 5.14
5.4.2.3 Side Drop. 5.15
5.5 Appendix. 5.15
5.5.1 References 5.15
6. CRITICALITY EVALUATION 6.1
6.1 Discussion and Results 6.1
6.1.1 Applicable Regulatory Criteria. 6.1
6.1.2 Determination of Allowable Number of Packages 6.2
6.1.2.1 Fissile Class I. 6.2
6.1.2.2 Fissile Class II 6.3
6.1.3 Contents Evaluated 6.3
6.2 Criticality Evaluation for General Contents 6.4
6.2.1 Package Fuel Loading 6.4
6.2.2 Shipment Without Inner Container 6.4
6.2.2.1 Calculational Model 6.4
6.2.2.2 Results 6.6
6.2.3 Shipment with Inner Container 6.9
6.2.3.1 Calculational Model 6.9
6.2.3.2 Results 6.11

TABLE OF CONTENTS (Continued)

Page
6.3 Criticality Evaluation for BRR Fuel Elements 6.13
6.3.1 Package Fuel Loading 6.13
6.3.2 Calculational Model 6.16
6.3.3 Package Regional Densities 6.16
6.3.4 Results 6.21
6.4 Criticality Evaluation for MTR Fuel Elements. 6.22
6.5 Criticality Evaluation for Fermi Fuel Elements 6.22
6.6 Criticality Evaluation for TRIGA Fuel Elements 6.23
6.6.1 Package Fuel Loading 6.23
6.6.2 Results. 6.23
6.6.3 Criticality Measurements 6.23
6.7 Criticality Evaluation for PULSTAR Fuel Elements. 6.27
6.7.1 Package Fuel Loading. 6.27
6.7.2 Normal Conditions. 6.30
6.7.3 Accident Conditions 6.30
6.7.3.1 Calculational Model 6.30
6.7.3.2 Pac:i?ce peqional Densities. 6.33
6.7.3.3 Results 6.37
6.8 Appendix 6.39
6.8.1 References 6.39
7. OPERATING IROCEDURES
7.1 Procedures for Loading the Package. 7.1
7.1.1 Preuse Test and Examination 7.1
7.1.1.1 Preuse Test 7.1
7.1.1.2 Preuse Visual Examination 7.2
7.1.2 Preloading Operations 7.4
7.1.3 Loading the Cask 7.4
7.1.4 Final Preparation for Shipment of Package 7.8
7.1.4.1 Radiation Surveys 7.8
7.1.4.2 Smear Survey 7.9
7.1.4.3 Security Seal 7.9
7.1.4.4 Label and Markings 7.9
7.1.4.5 Packing List. 7.10
7.1.4.6 Shipping Documents 7.10

TABLE OF CONTENTS
 (Continued)

Page
7.1.5 Quality Assurance 7.10
7.1.6 Package Transport 7.11
7.1.7 Postshipment Requirements 7.12
7.2 Procedures for Unioading the Package 7.12
7.2.1 Receipt of Package. 7.12
7.2.2 Unloading the Empty or Loaded Cask 7.14
7.3 Preparation of an Empty Package for Transport. 7.15
7.4 Appendix 7.16
7.4.1 References 7.16
7.4.2 Pressure Check Procedures NS-PI-1.4. 7.16
7.4.3 Form HP-S1-73 7.21
7.4.4 Form HPT-1-76 7.23
7.4.5 Work Completion Check Sheet 7.25
8. ACCEPTANCE TESTS AND MAINTENANCE PROGRAM. 8.1
8.1 Acceptance Tests 8.1
8.2 Maintenance Program 8.1
8.2.1 References 8.1
8.2.2 Inspections 8.1
8.2.2.1 Types 8.1
8.2.2.2 Frequency 8.2
8.2.2.3 Inspecting Personnel 8.2
8.2.2.4 Records 8.3
8.2.3 Periodic Inspections 8.4
8.2.3.1 Annual 8.4
8.2.3.2 Biennial 8.6
8.2.4 Preusage Inspections 8.6
8.2.4.1 General Condition 8.6
8.2.4.2 Closure 8.7
8.2.4.3 Radiation and Contamination 8.7
8.2.4.4 Tiedown. 8.8
8.2.5 Postaccident Inspections 8.8
8.2.5.1 Purpose 3. 8
8.2.5.2 Items of Inspection 8.8

TABLE OF CONTENTS
 (Continued)

Page
8.2.6 Preventive Maintenance 8.9
8.2.6.1 Definition 8.9
8.2.6.2 Frequency. 8.9
8.2.6.3 Records 8.10
8.2.6.4 Items 8.10
8.2.7 Documentation 8.11

LIST OF FABLES

Page
Table 0.1 Index of Documents Previously Submitted 0.3
Table 1.1 Comparison of Requested Shipment of TRIGA Fuel to Present License 1.15
Table 1.2 Materials in the EPRI Crack Arrest Capsules 1.19
Table 2.1 BMI-1 Cask Weight 2.1
Table 2.2 Material Properties Utilized in BMI-1 Cask Design 2.2
Table 2.3 Impact Forces Used in Analyses for Fuel Can Integrity 2.49
Table 2.4 Results of Analysis of Top End Impact Orientation 2.54
Table 2.5 Results of Analysis of Bottom End Impact 2.58
Table 2.6 Properties of Type 304 Stainless Steel 2.83
Table 2.7 Properties of Type 304 Stainless Steel 2.91
Table 3.1 Therrophysical Properties Employed for Lead and Steel 3.6
Table 3.2 Test Data 3.46
Table 5.1 Summary of Maximum Dose Rates (mR/hr) 5.4
Table 5.2 Radionuclides and Associated Curie Limits Planned for Transport in Modified BMI-1 Cask (Sole use of Vehicle) 5.5
Table 5.3 Radionuclides and Associated Curie Limits Pla ined for Transport in Modified BMI-1 Cask (Shipments by Commercial Carrier) 5.5
Table 5.4 Radiation Characteristics of Limiting Radionuclides 5.6
Table 5.5 Linear Attenuation Coefficient of the Source and Shield Materials 5.9
Table 5.6 Irradiation Parameters for EPRI Crack Arrest Capsules 5.13

LIST OF TABLES

(Continued)

Page
Table 6.1 Results of the Keno Code Calculations of KEFF for Shipment without an Inner Container 6.8
Table 6.2 Results of Keno Code Calculations of $\mathrm{K}_{\mathrm{EFF}}$ For Shipment with an Inner Container. 6.12
Table 6.3 Composition of BRR's Fuel Assembly 6.13
Table 6.4 Number of Atoms per CC in the Homogenized Fuel Basket 6.16
Table 6.5 Measured Results During Loading to Critical in TRIGA at the University of Arizona. 6.25
Table 6.6 Number of Atoms per CC in the Homogenized Fuel Region 6.35
Table 6.7 Number of Atoms per CC in Stainless Steel 6.35
Table 6.8 Number of Atoms per CC in Boral Poison Plate. 6.36
Table 6.9 Fissile Class III (I, II, III) 6.38

LIST OF FIGURES

Page
Figure 1.1 Crack Arrest Irradiation Capsule 1.18
Figure 2.1 Critical Tipping Orientation 2.7a
Figure 2.2 Typical Force System on Tiedowns 2.7b
Figure 2.3 Sketch of Fuel Can for the Transport of TRIGA Fuel Assemblies 2.51
Figure 2.4 Model of Fuel Can for Top End Fall Orientation 2.52
Figure 2.5 Analytical Model for Bottom End Impact Orientation 2.56
Figure 2.6 Schematic of Fuel Can for Side Impact Orientation 2.62
Figure 2.7 Model of Draw Bolt for Side Impac ${ }^{+}$ Orientation 2.63
Figure 2.8 Model of Inner Can 2.69
Figure 2.9 Model of Fuel Can Cover for Side Impact Orientation 2.72
Figure 2.10 Location of Fuel Tubes in Fuel Shipping Canister 2.75
Figure 3.1 Effective Thermal Conductivity of Lead to Shell Interface, Gap (Node 118) 3.7
Figure 3.2 Sketch of Model for Heat Flow From EPRI Crack Arrest Capsule to Cavity Wall 3.19
Figure 3.3 Thermal Model Employed for BMI-1 Fire Thermal Analysis 3.24
Figure 3.4 Starting Temperatures for BMI-1 Fire Analysis 3.26
Figure 3.5 Calculated Heat-Rejection Capability Versus Exterior Wall Temperature and Ambient Temperature for 5MI-1 3.27
Figure 3.6 Calculated Thermal History for the Modified 3MI-1 3.29

LIST OF FIGURES

(Continued)
Page
Figure 3.7 Melt-Front Boundary Versus Time 3.30
Figure 3.8 Sketch of Fuel Basket 3.33
Figure 3.9 Representative Time-Temperature Relation- ship in Simulated Fuel Subassembly with Copper Shot 3.45
Figure 5.1 Shield Configurations Utilized in the Dose Rate Calculations for the Modified BMI-1 Cask 5.7
Figure 6.1 Calculation Model Utilized in Criticality Evaluation. 6.5
Figure 6.2 Cross Section of $3 \times 3 \times 3$ Array of Casks 5.7
Figure 6.3 Calculation Model Utilized in Criticality Evaluation. 6.10
Figure 6.4 Standard Fuel Assembly for Battelle Research Reactor 6.14
Figure 6.5 Top View of Shipping Cask Fuel Basket 6.15
Figure 6.6 Axial Representation of the System (System Immersed in Water) 6.17
Figure 6.7 Keno Cross-Sectional Representation of BMI's Shipping Cask Immersed in Water 6.18
Figure 6.8 Loading to Critical Results in TRIGA Using Aluminum-Clad Fuel Elements 6.26
Figure 6.9 Fuel Storage Canister. 6.28
Figure 6.10 Fuel Loading Arrangement 6.29
Figure $6.11 k_{o o}$ Versus Fuel Pin Loading 6.32
Figure 6.12 Keno Cross-Sectional Representation of BMI's Shipping Cask Immersed in Water. 6.34
Figure 7.1 Pressure and Liquid Check Manifold 7.17

LIST OF DRAWINGS

Drawing No.	Title	Page
$\begin{aligned} & \text { 43-6704-0001, } \\ & \text { Rev. A } \end{aligned}$	Shipping Cask Assembly BMI-1	1.20
$\begin{gathered} 44-4409-0003 \\ \text { Rev. B. } \end{gathered}$	Lid, BMI-1	1.20A
420040	Safety Plug Assembly	1.21
$\begin{gathered} \text { 41-4409-0004, } \\ \text { Rev. B } \end{gathered}$	Basket Assembly BMI-1 Cask	1.22
00-000-421, Rev. C	Inner Can Assembly BMI-1 Cask	1.23
$\begin{aligned} & \text { K } 5928-5-1-0049 \mathrm{D} \\ & \quad \operatorname{Rev} 5 / 12 / 66 \end{aligned}$	Proposed Method of Shipping One Fermi Fuel Element in BriI-1 Cask	1.24
1020, Rev. B	Fuel Shipping Assembly University of Arizona	1.25
00-000-236, Rev. A.	BMI-1 Basket Made to Ship Texas A\&M Fuel Assembly	1.26
00-000-391, Rev. C.	Basket BMI-1 Cask (AI)	1.27
AIHL S8DR 0019-01	S8DR Storage Can	1.28
00-001-376, Rev. A.	BMI-1 Basket Made to Ship Suny Pulstar Fuel Canister Assembly	1.29
00-001-375	Pulstar Fuel Storage Canister S.U.N.Y.	1.30
$818 C 199$	Pulstar Fuel Element	1.31
RRM245	BMI-1 Cask Basket Spacer for ALRR Converter Fuel	1.32

0.1
 0. PREFACE FOR REVISION A, 3-28-80
 0. 1 Document Index

This revised Safety Analysis Report for Packaging (SARP)
for the BMI-1 cask contains a compilation of 17 documents including the original license application of 1963,15 subsequent revisions amendments, or communications, and the certificate of compliance. In this revised SARP, the 17 documents have been reorganized into the standard format suggested in Regulatory Guide 7.9.1.* The information in those 17 documents is presented unchanged except in a few instances. In addition, some new sections prepared specifically for this revision have been included. In order to enable ready identification of the source of the data and information presented, the _ollowing identification system is used:

```
The 17 documents previously submitted are listed
in Table 0.1 in chronological order. Each
document has been assigned a "Document"
Number as shown in Table 0.1. The appropriate
Document Number appears at the upper right
side of each page that contains data from
any of these 17 documents. Where new data
or information is included or changes to
the previously submitted data have been
made, the bcttom of the page bears the iden-
tification "REV. A, 3-28-80" and the changed
lines are identified by a solid vertical bar in
the right hand margin. If the entire page
is new or has been changed, the vertical
bar is omitted. When the only change to
```

```
*U.S. Nuclear Regulatory Guide 7.9, Standard Format and Content
    of Part 71 Applications for Approval of Packaging of Type 3,
    Large Quantity, and Fissile Radioactive Material, Revision , ,
    January, 1980.
```

REV. A, 3-28-80
a page is to the section titles, in order to conform to those suggested in Regulatory Guide 7.9, the vertical bar and the identification "REV. A, 3-28-80" are omitted.

TABLE 0.1 INDEX OF DOCUMENTS PREVIOUSLY SUBMITTED

Document Number	Title of Document
1.	```Safety Analysis for Battelle Research Reactor Spent Fuel Shipping Cask, dated November 14, 1963.```
2.	Addendum to Structural Integrity Analysis, BMI-1 Shipping Cask, dated January 27, 1964.
3.	Safety Analysis for the Shipment of Power Re^{-} actor Development Company, Irradiated Fermi Fuel Subassemblies, dated July 19, 1965.
4.	Addendum to Safety Analysis for BRR Spent Fuel Shipping Cask BMI-1, to Show Compliance with 10CFR-71 Regulations and to List Maximum Quantities of Nuclear Materials to Be Shipped, dated September 8, 1969.
5.	Addendum II to Safety Analysis for Nuclear Material Shipping Cask BMI-1, to Show Compliance with loCFR-71 Regulations and to List Maximum Quantities of Nuclear Material to Be Shipped, dated May 7, 1970.
6.	Addendum III to Safety Analysis for Nuclear Material Shipping Cask BMI-1, to Show Compliance with loCFR-71 Regulations and to List Maximum Quantities of Nuclear Material to Be Shipped, dated July 15, 2970.
7.	Telegram to Transportation Branch/D.M.L. from B.C.L. correcting Addendum Number II, dated July 24, 1970.

REV. A, 3-28-80

```
Document
    Number
    8.
    9.
    10.
    1 1 .
    12.
    13.
    14.
    15.
        Title of Document
    Addendum IV to Safety Analysis for Nuclear
    Shipping Cask BMI-1 to Show Compliance with
    10CFR-71 Regulations for Shipment of Battelle
    Research Reactor Fuel Having an Increased
    Loading of U-235, dated September 21, 1970.
    Addencum V to Safety Analysis for Nuclear
    Shipping Cask BMI-1 to Show Compliance with
    10CFR-71 Regulations for Shipment of Battelle
    Research Reactor Fuel Having an Increased
    Loading of U-235, dated January 18, 1971.
    Safety Analysis Report for Shipment of TRIGA
        Fuel by the University of Arizona, dated
    December 8, 1971.
    Safety Analysis Report for Shipment of TRIGA
        Fuel by the University of Arizona, Upgraded
        Analysis, dated December 8, }1971
    Supplement Number 1 to Request for License to
        Transport Irradiated TRIGA Fuel in BMI-1
        Shipping Cask, dated June 15, 1972.
    Results of Loading-to-Critical Experiment in
        the University of Arizona TRTGA, dated
        September 14, 1972.
    Safety Analysis Repor for Shipment of MTR Fuel
        by Texas A&M University, dated September 29,
        1972.
    Safety Analysis Report for Shipment of PULSTAR
        Fuel by The State University of New York at
        Buffalo, dated October 13, 1977.
```

 REV. A, 3-23-80
 $$
0.5
$$

TABLE 0.1 (Continued)

Document Number	Title of Document
16.	U.S. Nuclear Regulatory Commission Certificate of Compliance 5957, Revision 5, Docket Number 71-5957; Package Identification Number USA/ 5957B () F.
17.	Safety Analysis Repu t for Shipment of EPRI Crack Arrest Capsules in BMI-1 Shipping Cask, dated February 8, 1980.

1. GENERAL INFORMATION

1.1 Introduction

The Safety Analysis Report for Packaging (SARP)
demonstrates that the Model No. BMI-1 shipping cask meets the current regulatory requirements ${ }^{(1)}$ for shipment of the contents listed below in Section 1.2.3. as Fissile Classes I, II, and III. This SARP shows that an infinite number of packages i_{i} be transported per shipment with Fissile Class I contents, and up to 25 packages may be transported per shipment with Fissile Class II contents.

1.2 Package Description

1.2.1 Packaging

1.2.1.1 Description of Cask

Cask Design Drawing Number 43-6704-0001 Rev. A accompanying this safety analysis report presents the configuration of the modified BMI-1 nuclear-material-shipping cask. The modified cask has a measured shipping weight of 23,660 pounds. The total e elope dimensions, including the lifting trunnions, are 59.12 inches in diame er $x 78$ inches high.

The basic cask body is 33.37 inches in diameter $\times 73.37$
inches high. It consists of two concentric stainless steel shells which form an annular region which is filled with lead. The outer shell is of a laminated steel construction. The innermost layer of the two laminates is made of 0.50 -inch Type 304 stainless plate. This invor is the body of the cask as first constructed. The 0.12 -inch outer layer of the laminated outer shell is welded to the inner layer at the corners of the cask and at all penetrations of the shell. This added outer shell is spaced 0.06 inch from the original shell by weld spots spaced on approximate $8-1 h^{-*}$-enters.
(1) References to Section 1 , found in Section 1.3.1.

The inner shell is made of $0.25-i n c h-t h i c k$ stainles; steel plate and is unchanged from the original design. With the cover in place, the internal cavity dimensions are 15.5 inches in diameter $x 54$ inches long. The cover fits into a recess in the cask body formed by stepping the internal cavity diameter to about 18.5 inches. This recess is about 8 -inches deep and has tapering sides. The top of the cask body is made of 0.75 -inchthick steel plate welded to the inner and outer shells. Lead shielding consists of an $8.0-i n c h$ annulus on the sides with a 7.75 -inch slab section in the cover and a 7.5 -inch slab section in the bottom under the cavity. Lead-expansion space was provided in the former design by peripheral cones welded in both ends of the cask. In the modified design, the void space at the top end of the cask will be filled with lead.

A liquid drain line penetrates the inner cavity at about the center of the cavity bottoin. The arain line terminates in the side of the shell about 5.5 inches from the bottom. A stainless steel needle valve with the discharge end closed with a pipe plug affords a closure of this drain. The closure is protected from mechanical damage by a housing made of 0.50 -inch thick stainless steel welded to the 0.50 -inch thick cask shell. Safety plugs (Patent Number $3,466,444^{*}$) are welded into the cask wall and cover plate as an added safety feature in case water should enter the lead cavity or in case the cask should be exposed to a fire which exceeds the orescribed test fire.

The safety plug, shown on Drawing 420040 , consists of a nominal $1 / 4$-inch stainless steel pipe plug, which screws into a stainless steel body. The body, which is 1.0 -inch diameter x 0.62 -inch thick, has stainless steel filter welded to the back side. The body is welded in the shell of the cask with the filter toward the lead. The $1 / 4$-inch pipe plug has a $1 / 8$-inch hole drilled clear through and is filled with a low melting alloy. The pipe plug screws into the body so it is flush at the outside surface.

* Patent included in Section 2.3.3

In the event of extreme temperature, the low melting alloy melts and permits venting of gases through the filter and pipe plug. The porous stainless steel disc readily passes gases, including steam, but it is substantially impermeable to liquid lead, thus retaining the shielding material, should it become molten.

Four lugs are welded to the top plate of the cask as a means of tying the cask to the vehicle. The thickness of these lugs has been increased to 1.5 -inch, to comply with the $10 \mathrm{G}, 5 \mathrm{G}$, and $2 G$ combined load prescribed in the regulations.
 welded into the top plate of the cask on a 23.37-inch-diameter bolt circle to secure the cover. Two alignment pins are provided in the same bolt circle to protact the threads on the studs. A $t a_{1}=r e d$ surface is machined on the circular edge at the joint between the inner cavity shell and the top plate of the cask. This surface is the seat for the o-ring used to provide a seal for the cask cavity.

The cover of the cask is nominally 26.5 inches in diameter x 9.75 inches thick. The sides are tapered to fit the recess in the cask body. The sides of the cover are 0.25 inch thick and the bottom is 0.75 inch thick. The top plate of the cover is laminated. The inner layer is 1.0 -inch-thick stainless steel and the outer layer is 0.12 -inch-thick stainless steel. The outer layer is cut out and seal welded at all penetrations and around the outer periphery. The cover-lift device is made of two 0.25 -inch-thick Type 304 stainless steel plates. An alternate cover lifting device consists of a U-bolt welded to the top of the cover. The chemical lead-filled section between the top and bottom plates of the cover is 7.75 inches thick providing 0.25 inch of space between the top cover plate and the lead. The cover is fitted with a thermocouple/thermometer well for monitoring internal cavity temperatures.

Lifting trunnions 3.5 inches in diameter are mounted on the sides of this cask and are positioned above the shell of the cask. In this position, it is not possible for the trunnions to act as rods to penetrate the shell in an accident. The trunnions have outboard supports to fit unloading equipment at ICPP.

The cask is mounted on a mild steel beam-type skid measuring $6 \mathrm{ft} \times 8 \mathrm{ft}$. This skid serves to spread the weight of the cask on the floor and to add stability in shipment. Four tie rods 1.5 inches in diameter with adjustable turnbuckles are attiched to the cask at a height of 38 inches from the skid and extend to the corners of the skid. In addition, eight 1 -inchdiameter A325 steel bolts are used to anchor the cask to the skid. Bumper blocks are also used to prevent shearing of the bolts between the cask and skid. A 0.75 -inch-thick stainless steel plate is positioned between the cask proper and the skid. This plate is attached to the skid by the same bolt-block system as the cask base plate. The plate is used to comply with the u. loading facility at the ICPP. This plate also provides greater resistance to heat flow through the cask bottom from the fire test than does the laminated construction used on the side wall of the cask.

The BMI-1 cask is designed to be used either for dry or water-filled shipments. A pressure gauge, pressure-relief valve, and filter are provided at the top of the cask. These items are protected by a housing of 0.50 -inch-thick stainless stael similar to that which protects the drain valve.

Some of the basic information pertaining to the cask is summarized in the following information.
(a) Total maximum weight, 23,660 pounds
(b) Outside diameter, 33.37 inches
(c) Inside cavity diameter, 15.5 inches
(d) Outside shell thickness, 0.50 inch
(e) Inside shell thickness, 0.250 inch
(f) Over-all length, 73.37 inches
(g) Opertting pressure, 50 psig
(h) Design pressure, 100 psig
1.5
(i) Maximum operating temperature (inside cavity), 320 F
(j) Lid weight, 1,100 pounds
(k) Contents weight, 1,110 pounds
(1) Skid weight, 1,700 pounds

1.2.1.2 Description of Produet Containers And Baskets

a) BMI-1 Canister

The containment canister to be used inside the Bnf-1 cask cavity, as shown on Drawing 00-000-421 Rev. C., is constructed of 304 type stainless steel. The wall of the can is 0.125 inch thick, and the ends are 0.50 inch thick. Ten 0.213 -inch socket head cap screws secure the cover to the can. A silastic rubber o-ring located in a groove in this cover provides the seal. The canister is designed to fit into the cask cavity with 0.25-inch clearance on the diameter and 0.50 -inch clearance on the length.

(b) BMI-1 Basket

Fuel assemblies are positioned within the central cavity by two identical stainless steel baskecs, with one basket supported on top of the other, BMI Drawing Number 41-4409-0004, Rev. B. A permanent neutron poison is provided by boral clad with stainless steel used as dividing plates in the baskets.

(c) Enrico Fermi Copper Basket

The copper basket shown on Drawing K5928-5-0049D, Rev. to May 22 , 1966, may be used as needed as additional radial gamma shielding and as a device to better conduct heat from a load of small dimensions to the cask wall. It was designed, licensed, and used for shipping a single fuel element from the Enrico Fermi
1.6
reactor. It was also ured for shipping a load of 40,000 curies of stainless steel encapsulated Co-60, with a decay heat output of 1.25 kw .
(d) University of Arizona Basket for TRIGA Fuel

A special basket has been designed (BMI Drawing 1020, Rev. B) to individually support 38 TRIGA fuel elements in the BMI-1 cask. The TRIGA fuel will be shipped dry in this basket. The basket is a sealed container made of stainless steel to serve as a secondary containment of this shipment.

(e) Texas A\&M Basket

Basket assembly defined by $B M$ Drawing Number 41-4409-0004, Rev. B, as modified by BMI Drawing Number 00-000-236, Rev. A.

(f) S8DR Fuel Basket

Basket assembly and storage can defined by BMI Drawing Number 00-000-391, Rev. C, and Atomic International Drawing Number AIHL, S8DR 0019-01, respectively.

(g) Pulstar Fuel Basket and Canisters

Basket assembly as shown in BMI Drawing Number 41-4409-0004, Rev. B, as modified by BMI Drawing Number 00-001-376, Rev. A, and fuel canister as shown in BMI Drawing Number 00-001-375, Rev. 0 .

The BMI-1 fuel basket, modified to Battelle Memorial Institute Drawing Number 00-001-376, Rev. A, will be used to ship 12 canisters containing 21 pulstar fuel pins each. The basket modification drawing and the Pulstar fuel pin canisters, Drawing Number 00-001-375, Rev. O, are attached.

BMI-1 Cask Basket Spacer for ALRR Converter Fuel; Ames Laboratory Research Reactor, (File Drawing) Number RRM 245, dated 4/3/77.

1.2.2 Operational Features

Operation of the BMI-1 is discussed in Section 1.2.1. That Section and the referenced drawings clearly explain operation of the cask and show all valves, openings, seals, etc.
1.2.3 Contents of Packaging
1.2.3.1 Description of Cask Contents

In accordance with the requirements of 571.22 (b) of 10-CFR-71-Subpart B, the materials planned for shipment in the BMI-1 cask are described as follows.
(1) Radioactive Constituents Identifization and Maximum Radioactivity
(a) Shipments by Any Transport Vehicle (Except Aircraft)

Assigned for Sole Use. The radioactive contents of the cask may include any radionuclides(s) classified according to the transport grouping in Appendix C of $10-C F R-71$. Quantities (in curies) of the respective radionuclides may be equal to or less than any of the following group limits:
1.8

Transport Group*	Quantity (in curies)
I	1,000
II	8,120
General Mixed fission products	Unlimited**
III	4,960
IV	11,070
V	8,120
VI and VII	800,000

* As defined in 5173.390 of 49 CFR and Appendix C of $10-C 2 R-71$. ** Limit will be impused by dose-rate limits specified in § 173.393 (i) of 49 CFR .

Also, 40,000 curies of $\operatorname{co-60}$, as licensed in Amendment 71-3, License Number SNM-7, Docket Number $70-8$, July 17, 1969, or equivalent sources of nonfissile isotopes having gamma or Bremsstrahlung emission energies less than 1.33 Mev may be shipped in the modified BMI-1 cask with the copper basket or other additional internal shielding.
(b) Shipments by Commercial, Contract, Governmental, and Private Carriers. The radioactive contents of the cask may include any radionuclide(s) classified according to the transport grouping in Appendix C of $10-C F R-71$. Quantities (in curies) of the respective radionuclides may be equal to or less than any one of the following group limits:

Transport Group* Quantity (in curies)

I
II
General mixed fission products
III
IV
V
1,000
2,520
Unlimited**
1,540
3,440
5,000
IV and VII

(2) Identification and Maximum Quantities of Fissile Constituents

(a) Without Leakproof Inner Container. Fissile constituents planned for shipment in the cask without the leakproof inner container along with respective quantities are as follows:

$$
\mathrm{U}-233 \text {. } 280 \text { grams }
$$

Pu-239. 280 grams
$\mathrm{U}-235$. 500 grams

* As defined in $\$ 173.390$ of 49 CFR and Appendix C of $10-C F R-71$. ** Limit will be imposed by dose-rate limits specified in 5173.393 (i) of 49 CFR .
(b) With Leakproof Inner Container. Fissile constituents planned for shipment in the cask with the leakproof inner container along with respective quantities are as follows:

$$
\begin{aligned}
& \mathrm{U}-233 . \\
& \mathrm{Pu}-239
\end{aligned}480 \text { grams }
$$

(3) Chemical and Physical Form

Radioactive and fissile radioactive materials of the following chemical and physical forms may be shipped in the BMI-1 cask:
(a) Special form, as defined in s $71.4(0)$ of 10-CFR-Part 71.
(b) Normal form, providing that the materials are solid and are securely confined in the leakproof inner container, Drawing 00-000-421, Rev. C., during all normal and accident conditions.

$$
1.10
$$

(c) Normal form providing that all materials are packaged and securely confined in the cask cavity. Normal form shall be defined as solid material nonpowder that must remain solid up to 500 F . Only special form materials may ' e shipped in the cask with water coolant.

$\frac{\text { (4) Extent of Reflection, Neutron Absorbers, and }}{\text { H/X Atomic Ratios }}$

(a) Without Inner Container. Reflection, absorption, and atom m_{\perp} characteristizs of the package contents witiout the inner container are summicized as follows:

Extent of reflection Masimum reflection Nonfissile neutron
absorbers present. None assumed (al hough various types would be present)

$$
\begin{aligned}
& \text { Atomic ratio of moderator } \\
& \text { to fissile conrtituents*: } \\
& \qquad \begin{array}{cc}
\text { Isotope } & \frac{H / X}{U 50} \\
U-233 & 500 \\
\mathrm{Pu}-235 & 800
\end{array}
\end{aligned}
$$

(b) With Inner Container. Reflection, absorption, and atomic characteristics of the package contents with the inner container are summarized as follows:

Extent of reflection Maximum reflection
Nonfissile neutron
absorbers present. Nct. assumed (although various types would be present)

$$
1.11
$$

$$
\begin{aligned}
& \text { Atomic ratio of moderator } \\
& \text { to fissile constituents*: } \\
& \qquad \begin{array}{cc}
\frac{\text { Isotope }}{U-233} & 20 \\
U-235 & 20 \\
\mathrm{Pu}-239 & 20
\end{array}
\end{aligned}
$$

(5) Maximum Weight

The maximum weight of the package contents is 1,800 pounds.
(6) Maximum Amount of Decay Heat

A decay heat load of 1.5 kw is the maximum analyzed for the package contents.

1.2.3.2 Type and Form of Contents Material

(a) BRR/MTR Type Fuel Elements

Intact irradiated MTR or $3 R R$ fuel assemblies containing not more than 200 grams $U-235$ per assembly prior to irradiation. Uranium may be enriched to a maximum $93 \mathrm{~W} / \mathrm{O}$ in the $\mathrm{U}-235$ isctope. Active fuel length shall be 25 inches.

This report presents a safeguards evaluation of the design and proposed uses of a shielded cask for transporting irradiated fuel assemblies from the Battelle Research Reactor to the idaho Falls Chemical Processing Plant. The shipment of irradiatt d fuel is to be made by truck-trailer according to regular commercial conditions and regulations.

The Texas A\&M University reguests a special permit to make shipments of MTR reactor fuel in the BMI-1 Shipping Cask (Number SP5957). This request involves the shipment of 23 partially irradiated and 13 unirradiated elements from the Texas AsM Nuclear Science Center to the University of Virginia.

The BMI-1 fuel basket has been modified according to Battelle Memorial Institute Drawing Number 00-000-236. Rev. A, (attached) to individually support 12 MTR fuel elements in the BMI-1 cask.

(b) Enrico Fermi. Fuel Elements

Intact irradiated Enrico Fermi Core. A fuel assembly containing not more than $4.77 \mathrm{kgs} \mathrm{U}-235$ prior to irradiation. Uranium may be enriched to $25.6 \mathrm{w} / 0$ in the $\mathrm{U}-235$ isotope.

This report presents an evaluation of the proposed use of the BMI-1 spent fuel shipping cask to transport one Enrico Fermi Atomic Power Plant core-A fuel subassembly per trip from the Enrico Ferm plant located near Monroe, Michigan, to the Battelle Nuclear Center near Columbus, uhio, and then to the Nuclear Fuels Services reprocessing plant near West Valley, New York. The BMI-1 cask was approved in July, 1964, and given License Number SNM 807 (Docket Number 70-81j) for use in shipping 24 spent BRR fuel elements per trip to SRL. Shipment in this cask of one Fermi fuel subassembly, removed from the reactor 10 days prior to shipment, requires a different fual element basket and basket support inside the cask. Enclosed Drawing Number C049D, Rev. 5/12/66, provides a description and details of the proposed modifications. The main part of this modification is a copper casting which provides mechanical support, additional shielding, and a good thermal path for the removal of decay heat from the subassembly. There are no other cask modifications necessar!.

The analysis given in this report is based on shipment of fuel elements with the maximum fuel burnup expected during
the program, about $1.6 \mathrm{a} / 0$ of the uranium. Initial shipments will involve fue: elements with burnups of about $0.2 \mathrm{a} / 0$. Because of the nature of the reactor power cycle, the maximum decay heat from the fuel will be 1.5 kw .

The major problem encountered in development of a method for shipment of the Fermi fuel subassemblies was the loss-ofcoolant condition. Without some type of coolant, the fuel subassemblies with 1.6 a/o burnup would reach excessive temperatures. The use of fine copper shot as a heat transfer medium in the cask, in conjunction with water, has been demonstrated as a
reliable means of preventing excsssive fuel temperatures if the water is accidentally lost from the cask.

The fuel element will be loaded and unloaded under water employing the normal operating instructions for this cask. In loading, the copper shot will be added in a slurry through a tube into the fuel element cavity. Unloading will be accomplished by removing the stainless steel basket from the shot-filled cavity and then removing the shot from the element.

Operating instructions for the cask handling and loading procedure will be followed to ensure that:
(1) The characteristics of the fuel assemblies as shipped are in compliance with the conditions of the license
(2) External radiation and surface concamination of the cask do not exceed prescribed limits
(3) The cask closures are leak-tight at the maximum operating pressures; the cask and skid are fastened securely to the transporting vehicle
(4) All administrative procedures rela ing to the recording and transfer of pertinent data are executed.

Details of the assumptions and calculations used in formulating this method of shipping Fermi fuel subassemblies are included in the following sections.

ENRICO FERMI CORE-A FUEL SUBASSEMBLY SPECIFICATIONS

(1) Dimensions: $34 \times 2.646 \times 2.646$ inches
(2) Type: Pin type with 140 active pins
(3) Pin Diameter: 0.156 inch
(4) Cladding: 0.005 inch zirconium
(5) Loading: Total uranium 18.616 kg
(6) Enrichment: 25.6 percent
(7) Reactor Operating Power: 110 megawatt
(8) Peaking Factor: Axial maximum to averag 1.23
(9) Estimated Maximum Burnup: $1.6 \mathrm{a} / \circ$
(10) Irradiation Time: Alternating 28-day on-off cycles
(11) Cooling Time: 10 days
(12) Void Volume per Element: 1902 cc
(13) Maximum Decay Heat: 1.5 kw (based on alternate 28-day on, 28-day off power cycles).
(c) TRIGA Fuel Elements

Irradiated Triga Type III fuel assemblies a raining not more than 40 grams $U-235$ per asscmbly prior to irradiation. Uranium may be enriched to a maximum $20 \mathrm{w} / \mathrm{O}$ in the $\mathrm{U}-235$ isotope. Active fuel length shall be 15 inches for stainless steel clad assemblies and 14 inches for aluminum clad assemblies.

The University of Arizona requests a special permit to make a Fissile Class III shipments of TRIGA III reactor fuel in the BMI-1 Shipping Cask (Number SP5957). This request involves the shipment of 63 Al-clad elements from the University of Arizona

TABLE 1.1 COMPARISON OF REQUESTED SHIPMENT OF TRIGA FUEL TO PRESENT LICENSE

Item	Conditions of Present Request	Conditions of Present License SNM-7(a)
Contents	38 Irradiated Triqa Tvpe III fuel assemblies	Various fuels and radiation sources
	$\begin{aligned} & 8.5 \mathrm{w} / \mathrm{o} U^{235} \\ & \text { Al or SS clad } \end{aligned}$	
Maximum decay heat generation per package	112.5 Watts	1,5ng Watts maximum
Maximum external lose rate	$0.6 \mathrm{mr} / \mathrm{hr}$ maximum at 3 ft from the cask external surface	$10 \mathrm{mr} / \mathrm{hr}$ at 3 ft from external surface of the cask
Criticality	Subcritical (6J assemblies recuired for criticality - 3ε assemblies maximum to be shipped)	All packages subcritical
Contents in maximum impact accident situation	Basket maintains integrity after experiencing 87 G impact for ${ }^{\circ} \epsilon$	Maximum impact force of 87 G experienced

(a) BM^{\top} License SMN 7, Amendment Number 71-4.

```
to the University of Utah and the shipment of }87\mathrm{ partially
spent stainless steel clad elements from Gulf General Atomics,
San Diego, California, to the University of Arizona.
The BMI-1 License SMN 7, Amendment Number 71-4, does not specifically provide for the shipment of TRIGA fuel. Table 1.1 summarizes t'ie pertinent aspects of the shipment of this fuel in the BMI-1 cask and compares this shipment to the present cask license. As shown in Table l.1, the TRIGA fuel to be shipped has a very low heat and radiation content and the number of elements to be shipped is well below the number required to achieve criticality. The following discussion expands on the areas of criticality, thermal, and structural analysis of this shipment and also provides a shipping procedure for the TRIGA fuel.
The cask has a maximum capacity of 38 TRIGA fuel elements Number 103. The fuel assemblies are stainless steel and aluminum clad, 8.5 percent \(U 235\) in a zirconium hydride matrix.
```


(d) Pulstar Fuel Elements

Irradiated Pulstar Ziscaloy clad fuel pins containing not zore than 31 grams $U-235$ per pin prior to irradiation. Uranium may be enriched to a maximum $6 \mathrm{w} / \mathrm{O}$ in the $\mathrm{U}-235$ isotope. Active fuel length shall be 24 inches.

The State University of New York at Buffalo, requests a special permit to make shipments of Pulstar reactor fuel in the BMI-1 Shipping Cask (Number SP5957). This request involves the shipment of 600 irradiated element pins from the S.U.N.Y. Nuclear Science and Technology Facility to the Idaho Chemical Processing Plant.
(e) S8DR Fuel Elements

Irzadiated SBDR fuel elements 0.56 inch $O D$ by 18.7 inches long by $0.010-$ inch wall thickness of Hastelloy-N. The fuel material is $U Z 24$ fully enriched in $U-235$.

Intact irradiated CP-5 fuel assemblies containing not more than 176 grams U-235 per assembly prior to irradiation. Uranium may be enriched to a maximum $93 \mathrm{w} / 0$ in the $\mathrm{U}-235$ isotope. Active fuel length shall be 285 inches.

```
(g) Fissile Material
```

Greater than Type A quantities of radioactive material which may include the uranium enriched in the $\mathrm{U}-235$ isotope, $\mathrm{U}-233$, plutonium, as metal, oxides, or compounds which are thermally stable up to 600 F .

(h) Byproduct Material

Greater chan Type A quantities of byprodact material in special form.

Greater than Type A quantities of byproduct material in normal form as metal, oxides, or compounds which are thermally stable -o 600 F .

(i) EPR+ Crack Arrest Capsules

This Safety Analysis Report shows that the EPRI Crack Arrest Capsriles shown in Figure 1.1 can be shipped in the RMI-1 cask. The capsules are essentially rectangular parallelepipeds made of aluminum and containing carbon steel specimens. Lesser amounts of other materials are present as shown in Table 1.2.

FIGURE 1.1. CRACK ARREST IRRADIATION CAPSULE

TABLE 1.2. MATERIALS IN THE EPRI CRACK ARREST CAPSULES

Material	Component	Weight, 1b
Aluminum	$\begin{aligned} & \text { Capsule walls } \\ & \text { Piping } \end{aligned}$	$\begin{array}{r} 68 \\ 5 \end{array}$
Carbon Steel	Specimens	123
Stainless Steel (Type 304 and 347)	Seal Plugs, T / C \& Heater Sheath	10
Constantan Wire	Thermocouples	~ 1
Magnesium oxide	T/C Insulation	6
Nickel	Heaters	~ 2
Inconel	Heaters	~2
U^{238}	Fission Monitor	36 mg
Np237	Fission Monitor	60 mg

1.3 Appendix

1.3.1 References

(1) Packaging of Radioactive Material for Transport and Transportation of Radioactive Material Under Certain Conditions; U.S. Nuclear Regulatory Commission, Title 10 , Chapter 1, Part 71, June 30, 1978.
(2) Paxton, H. C., et al, "Critical Dimensions of Systems Containing U-235, Pu-239, and U-233", USAEC, TID 7028 (1964).
1.3.2 Drawings

The drawings of the cask, skid, and the various canisters and baskets follow.

1.33.
1.3.3 Patent for Safety Plugs

REV. A, 3-28-80
Sept. 9, 1969
E. C. Lusk
3,466,444

DIFTEREMTIALLIT VEAZED GAREYTNG CASK POR RADIOACTIYE MATERIALS

Flied Aug. 24, 1965

FIG. I

REV. A, 3-28-80

3,466,444
DFFFERENTLAIIY VENTED CARRYDVG CASK FOR RADIOACITVE MATERLALS
Emer C. Last, Colambers, Ohio, sesignor, by mesme an sigrments, to Edward Lead Company, Colnmbas, Ohio, a corporation of Ohio

Fled Aag, 24, 1965, Ser. No. 483,905
Imt Cl G21 5100
US. C. 250-108
9 Claims

ABSTRACT OF THE DISCLOSURE

There is disclosed a carrying eask structure for radioactive materials, and the cask is characterized by having a tusible solid shielding material disposed interiorly thereof in a substantially slled space, there further being in the cask structure a differential material vent, the vent comprising a porons outlet-defring arrangement ba ing pores of a mean pore size in a vent path from the forementioned space for the pores to vent gas from tha: space at a pressure at which the pores are substantially impermeable to molten shielding material in the space and to vent molten shieldiog material at an increased pressure from the space.

This invention relates to differential material venting devices and more paricuiarly, it relates to a differential vent for the removal of gases from a container while retaining molten Iquid within the container. The invention furber relates to a differential material venting device used in combination with a lead-iined shipping cask for radioactive materials
In the transportation of radioaclive materials, shippiag casks are used which generaily comprise an inner container asd as outer shell with lead shieldiag malerial contained in the aanular cavity defined :zerebetween. The area within the corsiner canies radioactive materials being shipped. In the rabrieatica of these shipping casks, moiten lead is poured within the annular space defined by the inner cortainer and outer shell. Because of the bigh coefficient of tharmal expansion of lead as compared to the contaiper and shell mateitais, the lead shriniks upon solidification and puils away from the outer shell. This leaves a \%oid berween the outer surface of the lead and the inoer sorface of the outer shell. Safery requirements dictate that the void voiume thus formed must remain to provide room for expansion of the lead in the event of fire in the vieiniry of the shipping eask. In fact, suffieient void volume must be allowed to take up the expansion of the lead resulting from semperarure rise and transformation to the liquid state at temperatures equivaient to those that would be encountered in a fire. Lack of sufficient space for expansion of lead would result in rupture of the outer shell and loss of shielding naterial with attendant radiation hazards. The presence of ihe required void voiume in the wail of the shipping cas': has caused another ssignificant danger. In some cases, cracks in the outer shell have allowed moisture to enter iato the void volume. This is a particular hazard where radioactive materiais are loaded into the shipping cask uider water. The cracks through whith water has been admitted may subsequently become sealed by the action of corrosion. dirt paint, lead packing or shifting, and by yieiding of the metal shell It has been found that when the shipping eask is exposed to bigh temperature, the moisture entrapped as described above trassforms to steam and produces dangeroosly bigh pressures within the lead-filiad cavity. Even where the crack remains open, considerabls pressure is still generated to a dazgerousiy bigh level jecause the area of the opening through wnich steam may escape is insignifieant. Catastrophic expiosions of shipping
easks have resalted from transformation of entrapped moisture to rapor as described above. The venting of entrapped steam is made difficalt by the likelijood of the presence of molien lead at temperatures of steam formation. Loss of lead must be avoided to minimize the risk of a radiation hazard.
It is therefore an oiject of this invention to provide a vent for a container which allowz gases to escape therefrom but which retains molten liquids therein.
It is a sull further object of the present invention to provide a shipping cask for radioactive material having little likelihood of explosion from the presence of entrapped moisture within the container wall and thus increased utility over coraventional containers.
It is another object of this invention to provide a vent for the lead-flled walls of shipping cashs for radio-setive materials

It is ssill another object of this invention to provide a vent for the lead-flled will of shipping casks characterized by the abuity to allow vaporized moisture to escape from the void volumes defined therein without allowing molten lead to flow therefrom.

Various otber objects and advantages will appear from the description of the embodiments of the invention in the ensuing specifiation, which is to be read in conjumetion with the attached drawings wherein:

FIG. 1 is a vertical sectional view through a vent constructed in accordance with one embodiment of the invention:

FIG. 2 is a vertical sectional view through a vent construcied in accordance with another embodiment of the invention; and,

FIG. 3 is a fragmentary view of a shipping cask having a wall thereof combined with a venting device.

Briefly described, the invenuion ivcludes within its scope the preferential venting of materiais and a differential material venting device therefor comprising a body Afred with a porous metal plate member adapted to veni steam and otber geses under pressure but to restrain the flow of molten liquids therethrough.
Referring to FIG. 1, an assembly of a differential material veatiog device 10 according to this invention is shown comprising a cylindrical body 12 with a centrally located threaded opening 17 extending therethrough. Circumferential shoulder 14 is outwardly disposed from one extremity of cylindrical body 12 to define a shallow opening 16 therein while flanged portion 15 is provided at the opposing extremity of cylindrical body 12. A pc us metal member 19 is suitably affixed to the face of circumferential shoulder 14. The dependent threads in opening 17 of cylindrical member 12 are threaded with plug member 23 baving a centrally located opening therethrough Illed with a material 22 automatically removeble at a predetermined temperature avove room temperature.

In operation, the assembly is connected into the wall of a container with tanged portion 15 extending outwardly. Gas pressure that develops within the container is vented through porons plate member 19 and the large area defined by space 16. Material 22 is selected so as to be automatically removable at temperarures iust below the temperature at which significant vaporization of the liquid is likely to ocenr within the conta ner.

Material 22 ean be 2 solder baving a melting range withia the required temperazare limits. Bi -metallic map out disks are equally suitable. In this way, porous metal plate metaber 19 is protected from posribie costamianting infloences from without the contaiper during the time that assembly 10 is not in active operation. It should be uncerstood that material 22 is not absolutely exseztial for the operation of the differential material venting
assembly but merely is convenient. In some applieaticna, it will be obvious that water entering the container from without the vent is merely vented back out as steam when eievated temperatures arise.
Assembly of the pressare venting device is relatively simpie. Poroes metal member is merely weined by conveaieat means to circumferential shouider 14. Plug member 23 is tapped by convenient means and the opening exteading therethrough fitted with material 22. The threaded exterior of piug 23 engages threads on the interior of opening 17 extending through cylindrical member 12
Referring to FIG. 2, a pressure veating device 30, aiso according to this invertion, comprises a funnel-sbaped body 32 terminating respective in openings 33 and 34. A centrally located vent port 35 communicates with smaller diameter opening 33 in funnel-shaped body 32. Vent port 35 is provided with threads for fred attachment to dependent threads provided within the wall of a contaiver, thus allowing assembly 30 to communicate with the interior. At the larger diameter opening 34 of funnel-sbaped jody 32, a porous netal plate member 37 is disposed within recess 39 provided on the iaside diameter deined by larger opening 34 of funnei-shaped member 32. A cap 45 is provided for engagement with larger diameter opening 34. Projections 44-44 on the inside face of cap 45 force the porous metal piate 37 to fit snugiy into recess 39 while maintaining a suitabie spacing of cap 45 from the same. Numerous small diameter openings $42-42$ filled with a material automatically removabie at a preferred temperature range extend through the face of cap 45 at various locations thereon.

In assembly of the pressure vesting device described above, porous metal piate 37 is metely disposed within recess 39 provided within the inside diameter of larger diameter opezing 34 defined at one extremity of funnelshaped body 32 . Cap 45 is secured tightly so that projections 41 4 4 on the iaside face thereof engage poruus member 37 to secure the same in place on recess 39 and to seal the assembly 30 .
The porous metal plate member comprises the key member of the material venting device of this invention. The porous metal member is availaije commercially with a variety of different pore sizes. Where bigh pressures or high-liquid heads may be developed, a small pore size is selected. Similarly, for a given pore size, a thicker porous metal member is seiected where high metal beads may be encountered. Generally it is advisabie to seleet a pore opening size and thickness of porons metal member to restrain the flow of the contained liquid and allow the passage of gases therethrough. The actual size of the differentia! material vent depends on the active surface area noeded for the porous metal plate. This, in turn, depends on the gas fow capacity of the porous netal piate, the strength of the porous metal plate, the volume of gas estimated to be generated in the contaiser, and the length of time daring which gas would be formed. When these factors are koown, the surface area required to vent gas ean be determined by simple calcuiation. Whers the calculated surface area is large it may be convenient to assembie a piurality of differential material vents for use in the container. The sum of the areas presented by each veat being equal to or greater than the required ares. The use of a plurality of vents would also provide an additional safery factor is the eveat of injury to one of the veats daring transit

Ia FIG. 3 one of the bereinbefore described devices 10 is represented consected for venting the space 53 between an inver conntaiutr 51 and an outer sheil 52 of a shipping eask 50 for radioactive eiements and very satisfactorily includes a porous metal plate member fabricated from stainiess stee!. For example, for a porous piate mamber of stairjess steel having a thickness of 0.187 -insh and a mean pore diameter of 0.0002 inch, moiten lead will be restrained at pressures over $42 p-i \operatorname{lig}$.

This is equivalent to a metal head of 8 feet . In a cask having a void volume of 1521 in 3, a surface ares of 56 in. 2 in porous stainiess steel plate as described above vented the quantiry of steam that would be expected to form within the lead-illed wall without achieving pressures in excess of 50 p.si.s.

In operation in the lead-ified wall of a shipping eask for radioactive elements, the porous metal plate member can be protected at its outer surdace by a material that is automatically removable to open and exit for gases at temperatares slightly below the belling point of water. Upon encountering conditions sucil as fire wherein the temperature of the atmospbere surrounding the cask rises rapidly, the material in the exit gas opening is antomatically removed thus leaving free opexings to communicate with the porous metal piate. As temperature continues to increase, sleam begins to form and is vented through the porous metal plate. Further increase of temperature causes the lead to become molitez but the molten lead is retained within the wall of the cask by the porous metal plate. Sbould temperatures in the vicinity of the eask exceed values currently foreseen by safery requirements, it has been found that the differential material vent of this iovention will still not cause atastrophic ruptare of the outer sbell of the coatainer. The higher pressures ocassioned by these higber temperatures will merely result in a slow leakage of molien lead throagh the porous viate member thas relieving the excess pressure caused by expansion of moiter lead.

The body of the differential material vent may be made from a variety of materials, though it has been found that components of stainless steel are very satisfactory. In the embe "iments of the invention showa, the porous metal member is a disk configuration. It is obvious that any configuration disposed between the contents of the outer shell and an opening entering the atmospbere would be satisfactory.

One advantage of this invention is that a material venting device is provided to exhaust steam or other gases at a safe pressure from a cavity filled with molten liquid.
Still another advantage of this invertion is that a material verting devise is characterized by a porous metal plate having substantial strength and resistance to breakage in service.
In its application to shipping casks for radioactive elements, the material venting device of this invention provides several significant advantages which make the shipping of idicactive elements less bazardous.

It will be apparent that new and useful means for differential venting of materials bave been described. Although several preferred embodiments of the invention have been described, it is apparent that modifications may be made therein by those skilled in the art. Such modifications may be made without departing from the spirit or scope of the invention, as is set forth in the appsaded claims.

What is claimed is:

1. In a earring cask for radicactive materials which includes an inner container, an outer shell spaced outwardly from said inner conaainer, and a fusible solid shielding material substantially filling the space between said outer shell and said inner container, the improvement comprising a diferential material vent including a porous stracture having pores of a mean pore size in a vent passage from said space for said pores to vent gas from said space at a pressure at which said pores are snbstantially impermeabie to molten said siaielding material and said pores to vent molten wid shielding material at an increased pressure from said space.
2 The carrying eask of claim 1, wherein said fusible solid shielding material is a monolithic casting within said space.
2. The earrying eask of claim 2 whernin sa.d zonotithic casting includes lead.

5

4. The carrying cask o! claim 3, wherein said porous strueture comprises porous stainiess steel.
5. The crrrying cask of claim 1 , and including thermally sensitive sealing means arranged in said vent passage to seal seid space closed and to be automatieally dispiaced to vent said space through said pores after temperature ef said thermally sensitive sealing means exceeds a minimum rive.
6. The carrying cask or claim 1 , whercin a vent member is connected haviag an opening therej; for commanicating with said pores and with said spe ; and said cask is further characterized by including the mally sensitive sealing means arranged to close said ver member opening and to be antomatically displaced , reat said space throut' aid veat member opening and through said por is after temperature of said thermally seusitive sealing meaisi exceeds a minimum value.
7. The canying ank of clainn 6, wherein said thermally

6
seasitive sealing means comprises a low-melting range solder which fuses when said minimum temperatare is exceeded.
8. The earrying cack of claim 6, wherein said poroma 5 seid space arranged having said pores interposed berween
9. The carying cask of claim 6, wherein said vent member has said opening tberein interposed between said space and said pores.

No references cited.

RALPH G. NILSON, Priraary Examiner
SAUL ELBAUM, Assistant Eraminer
US. CL XR.
$220-44,89,250-106$

2. STRUCTURAL EVALUATION

2.1 Structural Design

2.1.1 Discussion

The principal members and systems of the BMI-1 cask are identified and discussed in Section 1.2.1.1.

2.1.2 Design Criteria

The sask was designed to have a positive margin of safety based on the yield strength for all normal conditions and §or a positive margin of safety based on the yield strength or ultimate strength $f(:$ all accident conditions.

2.2 Weights and Center of Gravity

Calculated weights of the BMI-1 cask and skid and the allowable contents weight are presented in Table 2.1. All structural calculations were performed on the basis of the calculated weights. The total measured weight is about 0.3 fnrcent greater than that calculated. This difference is considered neglible and thus the results of the structural analyses based on the calculated weight are considered acceptable.

TABLE 2.1. BMI-1 CASK WEIGHT

Component	Weights, pounds	
	$\frac{\text { Calculated }}{19,200}$	$\frac{\text { Measured }}{19,750}$
Body	1,200	1,100
Cover	1,400	1,700
Skid	$\frac{1,800}{23,600}$	$\frac{1,110}{23,660}$
Contents (maximum)		
TOTAL		

(1) Weight of heaviest basket and contents, the copper basket for the Fermi Fuel Elements.
REV. A., 3-28-80

The center of gravity is assumed at the geometric center of the cask.

2.3 Mechanical Properties of Materials

The cask is constructed entirely of stainless steel plate. The material pcoperties used in the analyses were obtained from MIL-HDBK-5A. (1) In cases where property data were not specified, the values were estimated by referencing to similar properties of the same or similar materials. The ASTM A.? 5 bolts specified in the design correspond to the Type 4 fasteners included in MIL-HDBK-5A. The maximum surface temperature of the cask during normal operation is 190 F. At this temperature, the properties of the cask construction materials are essentially Linchanged from room-temperature conditions. Therefore, roomtemperature properties were used in the analys3s. Table 2.2 summarizes the properties of the cask construction materials.

TABLE 2.2 MATERIAL PROPERTIES UTILIZED IN BMI-I CASK DESIGN

Material		Property

(1) References to Section 2, found in Section 2.12.1.

2.4 General Standards for All Packages

2.4.1 Chemical and Galvanic Reactions

The materials used--stainless steel and lead--do not react with each other in such a way as to cause deleterious amounts of corrosion products.
2.4.2 Positive Closure

Closure of the cask is accomplished by 12 Type 304 stainless steel studs. These studs provide positive closure of the cask during normal shipping conditions. The closure, with respect to accident conditions, is analyzed in a subsequent section.

2.4.3 Lifting Device

This section demonstrates the safet of the lifting devices associated with the package. The adequacy of lifting devices associated with the baskets are presented in Section 2.11 .
2.4.3.1 Cask

According to i $72.34(e)$, the cask-lifting must be capable of lifting 6 times the weight of the cask without exceeding the yield strength of the materials in the device.

REV A 3-28-80

The tensile stress in the $5 \times 1 / 2$ inch plate is:

$$
\sigma=\frac{P}{A}=\frac{48,000}{5 \times 0.5}=19,200 \mathrm{psi}
$$

The maximum tensile stress in the web is:

$$
\sigma=\frac{P}{A}=\frac{5420}{1 \times 0.5}=10,850 \mathrm{psi}
$$

The bending stress in the 3.5 -inch bar is:

$$
\sigma=\frac{M}{S}=\frac{102,000}{4 \cdot 22}=26,600 \text { psi }<30,000 \text { psi yield }
$$

The average shear stress in the 3.5 inch bar is:
$T=\frac{P}{A}=\frac{48,000(4)}{\pi(3.5)^{2}}=5,000$ psi $<15,000$ psi shear yield.

Checking attachment to the cask, the maximum bending stress is 1,000 psi and the average shear stress is 1,950 psi, as shown below.

$$
\begin{aligned}
& I_{\mathrm{N} . \mathrm{A} .}=11,278 \mathrm{in} . \\
& \mathrm{A}=36^{11}
\end{aligned}
$$

$$
\sigma=\frac{M c}{I}=\frac{(70,200)(8.19+1.87)(15)}{11.278}=1000 \mathrm{psi}
$$

$$
\tau_{\text {avg }}=\frac{P}{A}=\frac{70,200}{36}=1950 \mathrm{psi}
$$

Cross-section
of Trunnion
of Cask Surface

2.4.3.2 Cover

To meet the requirements of $\phi 72.34$ (f), the lid-lifting device must be capable of lifting six times the weight of the lid and contents without exceeding the yield strength of the materials in the device.

The lifting device must be capable of lifting $6(1,690)=$ 10,130 pounds. The following calculations show that the device is adequate to lift the lid. It should be stated that the attachment plates have purposely been made as thin as possible for lifting purposes so that in the event of a top impact, they will collapse and not penetrate the lid.

$$
2.6
$$

Force to shear out holes

$$
F=4(15,000)(2)(1 \mathrm{xl} / 4)=30,000 \mathrm{lbs}-0 . \mathrm{K} \text {. if only } 2
$$ holes are used

Tensile stress in weld

$$
\sigma=\frac{P}{A}=\frac{10,130}{2(20 \times 1 / 4)}=1013 \mathrm{psi}
$$

The alternate lifting device (U-bar) was tested at 3 times the cover weight to show adequacy. The test report is presented in Section 2.12.2. The lifting device on the cover and the cover closure is not designed to permit its use as a casklifting device. Therefore, a U-plate, which bolts onto the device, is provided to prevent inadvertent use of the component as a cask-lifting device.

```
2.4.3.3 Failure of the Lifting Device
would not Impair Containment or
Shielding
```

Impairment of containment or shielding due to failure of the lifting device would be less severe than in the case of the 30 foot drop which is considered in a subsequent section.

2.4.4 Tiedown Devices

2.4.4.1 No Yielding with 10G Longitudinal, 5G Transverse, and 2 G Vertical Forces

The design analysis assumes that the cask and skid act as a single unit. Therefore, the four tiedown ears must withstand the applicable $10 G, 5 G$, and $2 G$ forces applied to combined weight of the cask and skid. As is customary, it was assumed that the cask is adequately blocked so that tipping, rather than sliding or tipping and skidding, is impeded. The critical tipping orientation is when the $10 G$ force is acting in the direction of the 72 inch dimension of the cask skid, i.e., the tipping axis is 36 inches from the vertical axis of the cask, Figure 2.1.

For purposes of analysis, it was assumed that the cask will tip on the assumed tipping axis, Figure 2.1, rather than the side of the cask. The assumed axis was taken, however, at the same distance from the center of the cask as the true tipping axis, i.e., 36 inches. This is a conservative assumption since the skid provides greater stability for tipping from a diagonal force (11.18 G) than for a force directed perpendicular to the long side of the cask skid.

Direct solution of the tiedown forces is not possible because the system is statically indeterminate. It was therefore, assumed that the force in each tiedown ear is proportional to the distance of tha ear from the vertical plane through the tipping axis. Thus:

$$
\frac{F_{1}}{L_{1}}=\frac{F_{2}}{L_{2}}=\frac{F_{3}}{E_{3}}=\frac{F_{4}}{L_{4}}
$$

where:

$$
\begin{aligned}
& L_{1}=t+r \\
& L_{2}=t-r
\end{aligned}\left[\begin{array}{lc}
\cos (\theta-\psi)]
\end{array}\right]
$$

$2.7 a$

I

FIGURE 2.1. CRITICAL TIPPING ORIENTATION

$$
\begin{aligned}
& 2.8 \\
& L_{3}=t-r[\cos (\theta-\psi)] \\
& L_{4}=t+r \quad[\cos (\theta+\psi)] \\
& t=36 \text { inches } \\
& r=16.62 \text { inches } \\
& \theta=45 \text { degrees } \\
& \\
& =26.57 \text { degrees. }
\end{aligned}
$$

Substituting and solving for the forces in terms of F_{1} yields:

$$
\begin{aligned}
& F_{2}=0.5945 F_{1} \\
& F_{3}=0.3910 F_{1} \\
& F_{4}=0.7975 F_{1}
\end{aligned}
$$

The components of each force were then determined. The force vector coordinate axes and the vectors for the force on a typical ear are shown in Figure 2.2. The force vectors which will produce a moment about the tipping axis are the x and y components. They are:

$$
\begin{aligned}
& F_{1 x}=F_{1} \sin : \cos (\theta-\psi) \\
& F_{1 y}=F_{1} \cos \alpha \\
& F_{2 x}=F_{2} \sin \alpha \cos (\theta-\psi) \\
& F_{2 y}=F_{2} \cos \alpha \\
& F_{3 x}=F_{3} \sin \alpha \cos (\theta-\psi) \\
& F_{3 y}=F_{3} \cos \alpha \\
& F_{4 x}=F_{4} \sin \alpha \cos (\theta-\psi) \\
& F_{4 y}=F_{4} \cos \alpha
\end{aligned}
$$

2.9

Then, for $a=35$ degrees, the components, in terms of F_{1}, are:

$$
\begin{aligned}
& F_{1 x}=0.5440 F_{1} \\
& F_{1 y}=0.8192 F_{1} \\
& F_{2 x}=0.1078 F_{1} \\
& F_{2 y}=0.4865 F_{1} \\
& F_{3 x}=0.2126 F_{1} \\
& F_{3 y}=0.3200 F_{1} \\
& F_{4 x}=0.1448 F_{1} \\
& F_{4 y}=0.6530 F_{1} .
\end{aligned}
$$

Moments can then be summed about the assumed tipping axis to determine the maximum force, F_{1}, at impending tipping.

$$
\begin{align*}
& \rightarrow=\sim \\
& \text { (W) (11.18 G) (C) (} F_{1 x} \text {) (H) } \\
& \text { (W) } \begin{array}{lll}
(2 G) & (t) & \left(F_{1 Y}\right)
\end{array}\left(L_{1}\right) \\
& \text { (} \mathrm{F}_{2 \mathrm{x}} \text {) (H) } \\
& \left(F_{2 \mathrm{Y}}\right) \quad\left(L_{2}\right) \\
& \text { (} F_{3 x} \text {) } \tag{H}\\
& \left(F_{3 Y}\right) \quad\left(L_{3}\right) \\
& \text { (} F_{4 \mathrm{x}} \text {) (H) } \\
& \left.{ }^{\left(F_{4 Y}\right)} \text {) (} L_{i y}\right)
\end{align*}
$$

where:

$$
\begin{aligned}
& W=23,600 \text { pounds } \\
& C=43.4 \text { inches (Figure } 2.2 \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{t}=36.0 \text { inches (Figure 2.1) } \\
& \mathrm{H}=79.12 \text { inches (Figure 2.2) }
\end{aligned}
$$

and the values for the force components and the lever arms, I_{1}, L_{2}, L_{3}, and I_{4} are given above. Solving the above equation yields:

$$
F_{1}=110,000 \mathrm{lb}
$$

The ear and cask can fail by:
(1) Tensile failure in the eye
(2) Shear through the eye
(3) Bearing in the eye
(4) Shear bending in the weld between the doubler plate and the original l-inchthick ear
(5) Shear bending of the ear in the weld to the cask
(6) Compression of the cask shell
(7) Shear in bolts at the base of the cask.

These are evaluated below.
(a) Tensile Failure in the Eye

The minimum stress area (see sketch below) is:

2.11

$$
\begin{aligned}
A & =(6-2)(1)+(5-2)(0.5)+(0.5)(0.5)\left(\frac{1}{2}\right) \\
& =5.75 \text { inches }^{2}
\end{aligned}
$$

The stress is:

$$
\sigma=\frac{F_{1}}{A}=\frac{110,000}{5.75}=19,130 \mathrm{psi}
$$

and the margin of safety is:

$$
M S=\frac{F_{\mathrm{tu}}}{\sigma}-1=\frac{30,000}{19,130}-1=0.57
$$

(b) Shear Through the Eye

It was conservatively assumed that a $1-1 / 2$ inch nominal shackle bolt might be used through the eye. Therefore, for purposes of analysis, the length of the shear area was reduced to 3.5 inches (from 4.0 inches for the centerline distance of the hole). The area for shear is:

$$
A=2[(3.5)(1.5)] \quad=10.5 \text { inches }^{2}
$$

The stress is:

$$
\sigma_{s}=\frac{F_{1}}{A}=\frac{110,000}{10.5}=10,500 \mathrm{psi}
$$

The margin of safety is:

$$
M S=\frac{F_{\text {Su }}}{\sigma_{S}}-1=\frac{20,000}{10,500}-1=0.90
$$

(c) Bearing in the Eye

Assuming that a $1-1 / 2$ inch shackle bolt would be used, the e/D for bearing in the eye is:

$$
e / d \cong \frac{3.5}{1.5}>2.0
$$

Therefore, the design bearing strength is:

$$
F_{\text {bry }}=50,000 \text { psi }
$$

The bearing area is:

$$
A=(1.5)(1.5)=2.25 \text { inches }^{2}
$$

The stress is:

$$
\sigma_{b r}=\frac{F_{1}}{A}=\frac{110,000}{2.25}=48,900 \mathrm{psi}
$$

The margin of safety is:

$$
\text { MS }=\frac{F_{b r y}}{\sigma_{b r}}-1=\frac{50}{48}, \frac{000}{900}-1=0.02
$$

(d) Shear-Bending in Doubler Weld

That portion of the force, F_{1}, restrained by the doubler plate must be transferred to the original ear member by the weld between the doubler and the original ear. If it is assumed that the entire force, F_{1}, is carried by the weld at the top of the cask (see the sketch on the following pagel the weld would be in combined bending and shear.

$$
F_{1}
$$

The area in shear is:
$A=[(2)(1.5)+$
(5) $]$
$\left(\frac{1}{2}\right)(0.707)=2.828$ inches 2

It is assumed that $\frac{1}{3}$ of force, F_{1}, is carried in the doubler. Then, the stress is:

$$
\sigma_{s h}=\frac{\frac{1}{3} F_{1} \sin \alpha}{A}=\frac{(110,000)(0.5736)}{(3)(2.828)}=7300 \mathrm{psi}
$$

If it is assumed that the bending moment is equal to the product of the vertical force component and a lever arm equal to half the length of the doubler over the cask (i.e., $2=\frac{1}{2}(1.5)$ in the sketch), the moment is:

$$
2.14
$$

The area moment of inertia about this axis is:

$$
M=\left[\frac{1}{3} F_{1} \cos \alpha\right]\left[\left(\frac{1}{2}\right)(1.5)\right]=\frac{110,000}{3}(0.8192)\left(\frac{1}{2}\right)(2.5)
$$

$=22,500$ inches-pounds .

The area moment of inertia about this axis is:

$$
\begin{aligned}
I= & 2\left(\frac{b h^{3}}{12}\right) \text { side } \\
= & 2\left[\frac{b h^{3}}{12}+\mathrm{Ad}^{2}\right] \text { end } \\
& \quad+(0.707)(0.5)(2)^{3} \\
& \left.(0.707)(6)(0.5)(0.75)^{2}\right] \\
= & 0.471+0.022+1.192 \\
I= & 1.685 \text { inches }^{4} \quad .
\end{aligned}
$$

The maximum fiber distance is:

$$
c=1 / 2 \quad \ell=\frac{1}{2}(1.5)=0.75
$$

The stress is:

$$
\sigma_{b}=\frac{M c}{I}=\frac{(22,500)(0.75)}{1.685}=10,000 \mathrm{psi}
$$

The total stress on the area is the vector sum of the shear and bending forces or:

$$
\begin{aligned}
\sigma_{\text {tot }} & =\sqrt{\sigma_{s h}^{2}+\sigma_{b}^{2}}=\sqrt{7,300^{2}+10,000^{2}} \\
& =12,400
\end{aligned}
$$

The margin of safety is:

$$
M S=\frac{F_{\mathrm{tu}}}{\sigma_{\text {tot }}}-1=\frac{30,000}{12,400}-1=1.42
$$

(e) Mear-Bending in Original Weld

The area for shear in the weld between the original ear and the cask is:
$A=[(2)(2)+(2)(6)]$
$(1)(0.707)=11.30$ inches.

The stress is:

$$
\sigma_{s h}=\frac{F_{1} \sin \alpha}{A}=\frac{(110,000)(0.5736)}{11.3}=5,580 \mathrm{psi}
$$

For the case of bending of the weld, it is assumed that the moment is:

$$
\begin{aligned}
M & =\left(F_{1} \cos \alpha\right)\left(\frac{1}{2} \ell\right) \\
& =(110,000)(0.8192)\left(\frac{1}{2}\right)(2)=90,000 \text { inch-pounds. }
\end{aligned}
$$

$$
2.16
$$

The area moment of inertia is:

$$
\begin{aligned}
I & =2\left[\left(\frac{b h^{3}}{12}\right)_{\text {side }}+\left(\frac{b h^{3}}{12}+A d^{2}\right)_{\text {end }}\right] \\
& =2\left[\frac{(0.707)(1)(2)^{3}}{12}+\frac{(6)(0.707 \times 1.0)^{3}}{12}+(6)(1)(0.707)(1)^{3}\right] \\
& =2[0.472+0.177+4.240] \\
& =9.778 \text { inch }^{4} .
\end{aligned}
$$

The maximum fiber distance is:

$$
C=\frac{1}{2}(2)=\frac{1}{2}(2)=1.0 \text { inch }
$$

The stress is:

$$
\sigma_{b}=\frac{M c}{1}=\frac{(90,000)(1)}{3.778}=9210 \mathrm{psi}
$$

The total combined stress is:

$$
\begin{aligned}
\sigma_{\text {tot }} & =\sqrt{\sigma_{s h}^{2}+\sigma_{b}^{2}} \\
& =\sqrt{5580^{2}+9210^{2}} \\
& =10,900 \mathrm{psi}
\end{aligned}
$$

$$
2.17
$$

The margin of safety is:

$$
\text { MS }=\frac{F_{\text {tu }}}{\sigma_{\text {tot }}}-1=\frac{30,000}{10,900}-1=1.75
$$

(f) Compression of Cask Shell

Considering only the original 1/2-inch-thick cask shell, the area in compressive loading directly under the ear is:

$$
A=(t)(\ell)=\frac{1}{2}(6)=3 \text { inches }^{2} .
$$

The stress is:

$$
\sigma_{C}=\frac{F_{1} \cos \alpha}{A}=\frac{(110,000)(0.8192)}{3}=30,000
$$

The margin of safety is:

$$
M S=\frac{F_{C Y}}{{ }_{C}^{C}}-1=\frac{35,000}{30,000}-1=0.17
$$

(g) Shear in Bolts at Base

The shearing force on the eight l-inch A 325 bolts holding the cask to the skid is:

$$
F_{s h}=(11.18 G)(W)+F_{2 x}+F_{3 x}-\left(F_{1 x}+F_{4 x}\right)
$$

If \mathbb{W} is taken to include the skid weight:

$$
F_{s h}=(11.18)(23,600)+(0.1078+0.2126-0.544
$$

$$
-0.1448)(110,000)=222,400 \text { pounds }
$$

$$
2.18
$$

The area of eight bolts is:

$$
A_{s h}=(8)(0.6331)=5.06 \text { inches }^{2}
$$

The stress is:

$$
\sigma_{s h}=\frac{F_{s h}}{A_{s h}}=\frac{222,400}{5.06}=44,000 \mathrm{psi}
$$

The margin of safety is:

$$
\text { MS }=\frac{F_{\text {su }}}{\sigma_{\text {sh }}}-1=\frac{89,000}{44,000}-1=1.02
$$

(h) Stress in Turnbuckles

The question was raised about the response of the turnbuckles and their points of attachment to the cask in the event of an incident suct as the 30 foot fall conditions included in the regulations. Our analyses indicate that the turnbuckle will fail before damage could occur to the cask. These analyses are shown below.

The turnbuckles are attached to the cask through two, $1 / 2$ inch plates welded to the outer shell of the casks as shown in the sketch following.

The force required to cause shear in the welds between the two plates and the cask shell is:

$$
F_{y}=\sigma_{s u} A=\sigma_{s u} t L(.707)
$$

```
where \sigma su = the shear strength = 40,000 psi
    t = the weld thickness = . 5 inch
    L = total length of weld = (4) (4) = 16 inches.
```

Then

$$
F_{Y}=(40,000)(.5)(16)(.707)=226,000 \text { pounds } .
$$

The force required to cause puncture of the two plates through the cask shell (using the punch press shear stress technique) is:

$$
F_{x}=\sigma_{s u} A=\sigma_{s u} t L
$$

```
where \sigma su = the shear strength = 40,000 psi
    t = the shell thickness = . 5 inch
    L = length of the shear plane = 2 (4 + 4 + .5 + .5)
    = 18 inches. .
```

Then

$$
F_{x}=(40,000)(.5)(18)=360,000 \text { pounds. }
$$

If the case of incipient shear in the weld is assumed, $F_{Y}=$ 226,000 pounds as above, and

$$
E_{X}=\left(\frac{30.12}{36}\right) F_{Y}=189,000 \text { pounds }
$$

Since the value of F_{x} is less than that required to produce penetration through the shell (360,000 pounds), the weld will shear first. The force in the turnbuckle is:

$$
\begin{aligned}
R & =\sqrt{F_{X}^{2}+F_{Y}^{2}} \\
& =\sqrt{189,000^{2}+226,000^{2}}=294,000 \text { pounds }
\end{aligned}
$$

The turnbuckle is $1-1 / 2$ inches in diameter and 47 inches long. From the Euler buckling formula, the force required to cause instability buckling of the turnbuckle under a compressive load is:

$$
P=\frac{A \pi^{2} E}{\left(\frac{L}{R}\right)}
$$

where

$$
\begin{aligned}
& A=\text { area }=\frac{\pi \mathrm{d}^{2}}{4}=\frac{(\pi)(1.5)^{2}}{4}=1.765 \text { inches } \\
& E=\text { the elastic modulus }=(29)\left(10^{6}\right) \text { psi } \\
& \frac{L}{r}=\text { the slenderness ratio }=\frac{47.0}{0.375}=125
\end{aligned}
$$

Then

$$
P=\frac{(1.765)\left(\pi^{2}\right)(29)\left(10^{6}\right)}{(125)^{2}}=32,300 \text { pounds }
$$

Thus, the case of a compressive load on the turnbuckle, the turnbuckle will collapse by column instability before the attachment plates will shear away from the cask shell.

In the event the load on the turnbuckle is a tensile load, failure will occur when the load is:

$$
F=\sigma_{t u^{A}}
$$

where

$$
\begin{aligned}
F_{\text {tu }} & =\text { the tensile ultimate strength }=120,000 \text { psi } \\
\mathrm{A} & =\text { area }=1.765 \text { inches }^{2}
\end{aligned}
$$

Then

$$
F=(120,000)(1.765)=212,000 \text { por:/ads }
$$

Since the force in the turnbuckle required to cause shear of the attachment welds (R) is 294,000 pounds, the turnbuckle will break before shear failure would occur. In addition, since the tensile ultimate strength of the cask shell is 75,000 psi, or about twice the shear ultimate strength used in the calculations above, the turnbuckle would fail in tension before the cask shell would fail due to the tensile force applied at the plate attachments.
2.4.4.2 Nontiedown Devices Covered
or Locked

The nontiedown devices will be covered as described above in Section 2,4.3.2.

```
2.4.4.3 Failure of the Tiedown
Device Would Not Impair Meeting
other Requirements
```

Failure of the tiedown device would not impair meeting other requirements of the cask as described above in Section 2.4.3.3 and in the subsequent section on accident conditions.
> 2.5 Standards for Type B and Large Quantity Packaging

2.5.1 Load Resistance

A question has been raised as to the accuracy of the beam strength calculation provided in the Hazards Report on this cask. The purpose of this section is to provide an answer to this question.

The original beam strength calculation was based on a $10-\mathrm{g}$ loading uniformly applied as required in lOCFR Section 72.32(a). The maximum stress was calculated using the common beam stress equation $\frac{M c}{I}$. The maximum stress calculated was 5,160 psi. This stress is only approximately correct for the given loading and support condition because the cask tends to flatten at mid-span introducing additional bending stresses.

A more accurate sclution to the problem is outlined by wojtaszak ${ }^{(2)}$. The solution applies to the case of a circular cylindrical shell freely suppor zed at the edges as shown below and submitted to the pressure of liquid within the shell.

The loads and displacements in the Wojtaszak solution are in the form of a double-summation trigonometric series.

$$
q=\Sigma \Sigma D_{m n} \cos n \phi \sin \frac{m \pi x}{l}
$$

To simplify the solution and reduce the number of terms needed in the series solution m was taken as 1 , which makes the x-axis load distribution a sine wave. This approximation of a uniform load with a sine wave loading was necessary to obtain a solution to the problem in a reasonable length of time. The sine wave loading, however, is a conservative approximation of the uniform loading. The total load applied as a sine wave, was taken to equal 10 times the weight of the cask, 23,200 pounds.

Following through the solution as outlined by Wojtaszak, the displacements for the $\mathrm{n}=0$, mode were found to be:

$$
\begin{array}{ll}
u=327 \frac{Y_{h}}{D} \cos \frac{\pi x}{l} & \text { (longitudinal) } \\
v=0 & \text { (circumferenti } \\
w=750 \frac{\gamma^{h}}{D} \sin \frac{\pi x}{2} & \text { (radial) }
\end{array}
$$

2.25

For the $\mathrm{n}=1$ mode, the displacements are:

$$
\begin{aligned}
& u=-1,885 \frac{\gamma^{h}}{D} \cos \phi \cos \frac{\pi x}{l} \\
& v=-6,850 \frac{\gamma_{h}}{D} \sin \phi \sin \frac{\pi x}{l} \\
& w=+7,150 \frac{\gamma^{h}}{D} \cos \phi \sin \frac{\pi x}{l}
\end{aligned}
$$

where

$$
\begin{gathered}
y=3.98 \text { pound/inches }{ }^{3} \text { obtained by equating the } \\
\text { total cask weight to the insicie volume. } \\
D=\frac{2 E h^{3}}{3(1-v)^{2}}=\frac{2\left(30 \times 10^{6}\right)(0.25)^{3}}{3\left(1-0.3^{2}\right)}=342,000 \text { inch-pound }
\end{gathered}
$$

flexural rigidity.

With the displacements known, it is possible to calculate the strains, and, in turn, the stresses. The final circumferential and longitudinal stresses (including membrane and bending), are calculable from the following equations for the cask under consideration:

$$
\begin{aligned}
& \sigma_{L}=\{2.700[1+3.08 \cos \phi]+33.4[1+9.77 \cos \phi]\} \sin \frac{\pi x}{2} \\
& \sigma_{C}=\{4640[1+0.868 \cos \phi]+10[1+12.1 \cos \phi]\} \sin \frac{\pi x}{2}
\end{aligned}
$$

By inspection, it can be observed that the maximum longitudinal and circumferential stresses occur at $x=\frac{2}{2}$ and the maximum stresses are tensile and occur at $\phi=0$, the bottom of the shell.

The maximum tensile stresses were found to be:

$$
\begin{aligned}
& \sigma_{L}=11,360 \mathrm{psi} \\
& \sigma_{C}=8,800 \mathrm{psi}
\end{aligned}
$$

Since these stresses are less than ultimate, the cask meets the requirement of $10 C F R$, Section 72.32 (a).
2.5.2 External Pressure

The requirements are that the cask must be able to withstand an external pressure of 25 psig without loss of contents. The cask will oferate normally at 100 psig internal pressure and was designed for this conlition.* The pressure condition under the application of this requirement is a net 75 ps internal pressure. Therefore, the cask complies with the $r_{\text {culu }}$ uirement.

2.6 Normal Transport Conditions

The structural requirements of the cask for normal transport conditions, as specified in 571.35 of $10-C F R-71$, are less severe than those analyzed in previous sections, as well as those analyzed in subsequent sections for accident conditions.

The following analysis shows that the inner cask wall, inner cask bottom head, and lid are sufficient to withstand the design pressure of 100 psig at 320 F as required in s 72.32 (d) of the 10-CFR-72.

Inner Cask Wall Thickness

The wall thickness of the inner cask wall is 0.250 inch, which is adequate according to ϕ UG-27(c) of Section VIII of the 1962 ASME Boiler and Pressure Vessel Code.

$$
t_{\text {reqd }}=\frac{P R}{S E-0.6 \mathrm{P}}=\frac{100(7.75)}{15,890(0.8)-0.6(100)}=0.0613 \text { inch }
$$

where

```
treqd}= minimum wall thicknes
    P = 100 psig, design pressure
    R = 7.75 inches, inside radius
    S = 15,800 psi, allowable stress from Table UHA-23, ASME Code
    E = 0.8 joint efficiency for single-welded butt joint with
    a backing strip--spot radiographed.
```


Inner Cask Bottom Head

The thickness of the bottom head is 0.75 inch, which is adequate according to Section UG-34(2) of the ASME Code as shown below:

$$
t_{\text {reqd }}=D \sqrt{\frac{C P}{S}}=15.5 \sqrt{\frac{0.3(100)}{15,890}}=0.675 \text { inch }
$$

where

$$
\begin{aligned}
t_{\text {reqd }} & =\text { minimum head thickness } \\
D & =15.5 \text { inches, inside cask diameter }
\end{aligned}
$$

$\mathrm{c}=$ a geometry cor ficient which, according to the ASME Code for the configuration used, is 0.3 .

Cask Lid

Lid Thickness. The thickness of the lid is 1.125 inches, which is adequate according to Section UG-34(2) of the ASME Code as shown below:

$$
\begin{aligned}
& t_{\text {reqd }}=d \sqrt{\frac{C P}{s}+\frac{1.73 W h_{G}}{s d^{3}}} \\
& t_{\text {reqd }}=20.75 \sqrt{\frac{0.3(100)}{15,890}+\frac{1.78(34,130)(1.375)}{15,890(20.75)^{3}}}=1.04 \text { inches }
\end{aligned}
$$

where
$d=20.75$ inches, diameter of gasket circle
$C=0.3$, constant which is a function of geometry
$W=\frac{\pi d^{2}}{4} p+\pi d\left(F_{G}\right)=33,800+330=34,130$ pounds, pressure head
$h_{G}=1.375$ inches, distance from gasket to boit ring circle

Lid Bolts

The total force w, acting on the lid as a result of the pressure and rubber sealing gasket, was calculated above to be 34,130 pounds.

Twelve l-inch-diameter stainless steel studs have been provided to hold the lid in place. The stress in these bolts is 5,160 psi as shown in the calculation following:

$$
\sigma=\frac{P}{A}=\frac{34,130}{12(0.551)}=5160 \mathrm{psi}
$$

2.7 Hypothetical Accident Conditions

This section demonstrates the safety of the packaging under the hypothetical accident conditions. Response of the product containment and the baskets are presented in Sections 2.10 and 2.11 , respectively.

2.7.1 Free Drop

The first condition which the cask must withstand in the hypothetical accident sequence is a 30 -foot fall onto a flat, unyieiding surface. There are three critical orientations which the cask can assume at the moment of impact. These include direct impact on an end, direct impact on the cylindrical side, and impact on an edge at such an angle that the reaction force is directed through the center of mass of the cask.

2.7.1.1 End Drop

(a) Bottom

For impact on the bottom, the collapse of the skid would absorb some energy and the remainder would be absorbed by deformation of the cask. If it is assumed that the skid absorbs no energy, a conservative value of cask deformation can be determined. The impact area, from the sketch following, is:

$$
A=\frac{\pi}{4} d^{2}=\frac{\pi}{4}(23.75)^{2}=441 \text { inches }{ }^{2}
$$

The kinetic energy to be absorbed is:

$$
K E=360(W)=(360)(23,600)=8.5\left(10^{6}\right) \text { inch-pounds } .
$$

Then, if the lead flow pressure, P, is 10,000 psi, the depth of deformed lead is:

$$
\begin{aligned}
& \delta=\frac{K E}{P A}=\frac{(8.5)\left(10^{6}\right)}{(10,000)(441)} \\
& \delta=1.92 \text { inches }
\end{aligned}
$$

The lead thickness on the end is 7.5 inches. Therefore, the thickness of lead shielding remaining is:

$$
t=t-\delta=7.5-1.92=5.58 \text { inches }
$$

The question that has come up is whether the bottom plate of the lid is adequate since the thickness is reduced at the edge.

$$
2.31
$$

In a bottom impact, the force on the bottom plate of the lid would tend to shear the plate around the edge. Using the requirements of Section 72.32 (c), the bottom plate must be able to withstand a force of 60 times the lid weight. The force is, therefore, $60(1,050)=63,000$ pounds.

The average shear stress at the edge for the above loading is 3450 nsi as shown in the following calculation. This is well kelow the 15,000 psi yield stress of this material in shear and, therefore, should be adequate.

$$
\tau=\frac{P}{A}=\frac{63.000}{\pi(15.5)(0.375)}=3450 \mathrm{psi}
$$

(b) TOP

Trunnion Weld Shear. For the case of an impact on the top end, the lifting trunnions would strike the flat surface first. If it is assumed that the trunnion welds shear off, the weld area in shear on each trunnion is, from the sketch below:

$$
\begin{aligned}
A_{\text {sh }} & =2(6+12)(0.75)(0.707)+(16+16+5)(0.25)(0.707) \\
& =25.65 \text { inches }^{2} \text { per trunnion } \\
& =51.3 \text { inches }^{2} \text { for both trunnions } .
\end{aligned}
$$

$3 / 4-\mathrm{in}$. weld
$1 / 4$-in. weld

$$
2.32
$$

The maximum force developed in shearing the weld is:

$$
F=\left(F_{\text {su }}\right)\left(A_{\text {sh }}\right)=(40,000)(51.3)=2,050,000 \text { pounds } .
$$

The deceleration is:

$$
\begin{aligned}
& a=\frac{F}{m}=\frac{F G}{W} \\
& a=\frac{2,050,000}{23,600} G=86.8 \mathrm{G}
\end{aligned}
$$

This deceleration, applied to the weight of the lid and contents, would produce a tensile load in the lid bolts:

$$
\begin{aligned}
F_{\text {deceleration }} & =a\left(W_{\text {lid }}+W_{\text {contents }}\right) \\
& =(86.8)(1,200+1,800)=260,000 \text { pounds }
\end{aligned}
$$

The maximum stress in the 12 bolts is:

$$
\sigma=\frac{F_{\text {deceleration }}}{12(\mathrm{~A})}=\frac{260,000}{(12)(0.6331)}=34,200 \mathrm{psi}
$$

The margin of safety is:

$$
M S=\frac{F_{\mathrm{tu}}}{\sigma}-1=\frac{75,000}{34,200}-1=1.19
$$

Cask Deformation. If it is assumed that energy absorbed by the shearing of the trunnions is negligible compared to the kinetic energy of the cask at the moment of impact, the kinetic energy which must be absorbed by deformation of the cask body is:

$$
K E=H W=(360)(23,600)=8.5\left(10^{6}\right) \text { inch-pounds } .
$$

The area presented by the deformed volume (see sketch below), is approximately:

$$
A=\frac{\pi}{4}(32.0)^{2}=804 \text { inches }^{2}
$$

If it is assumed that the flow pressure of lead is taken as 10,000 psi, and all of the energy is dissipated in the lead, the deformation, δ, is:

$$
s=\frac{K E}{(A)(P)}=\frac{(8.5)\left(10^{6}\right)}{(804)(10.000)}=1.06 \text { inches }
$$

The lead in the cover is 7.75 inches thick. Therefore, the thickness of lead remaining after impact is:

$$
t_{\text {left }}=7.75-1.06=5.69 \text { inches }
$$

2.34

Fire Shell. Drawing 43-6704-201, Rev. A has been

 revisc the region immediately below the trumaions. The $1 / 8-$ inch-thick steel shell added to the cask is terminated two inches below the bottom of the trunnion. Thus, thr trunnion would not tend to remove the shell should it be sheared off the cask body during a top end impact.Penetration of Cover Lifting Device. The cover lifting device consists of two $1 / 4$-inch plates, 5 inches high, and 20 inches long. Roark ${ }^{(3)}$ shows that for a long thin flange which has one end free and one end fixed, and which is loaded on the edge, (see sketch below) the buckling stress is:

$$
\sigma^{1}=\frac{1.09}{1-r^{2}}\left(\frac{t}{b}\right)^{2}
$$

where

$$
\begin{aligned}
& E=\text { elastic modulus }=29.0 \times 10^{6} \mathrm{psi} \\
& Y=\text { possoins ratio }=0.3 \\
& t=\text { thickness }=0.25 \text { inch } \\
& b=\text { width }=20 \text { inches }
\end{aligned}
$$

$$
2.35
$$

Then the buckling stress is:

$$
\begin{aligned}
& \sigma^{1}=\frac{(1.09)(29)\left(10^{6}\right)}{1-(.3)^{2}}\left(\frac{.25}{20}\right)^{2} \\
& \sigma^{1}=5430 \mathrm{psi} .
\end{aligned}
$$

The force to product this stress is:

$$
F^{1}=\sigma^{1} t b=(5430)(.25)(20)=27,000 \text { pounds }
$$

The force required to cause the lifting device to shear through the top plate of the cover is:

$$
F_{s}^{1}=\sigma_{s} A_{s}=F_{s} w(2 \mathrm{t})
$$

where

$$
\begin{aligned}
& F_{s}=\text { ultimate shear stress }=40,000 \mathrm{psi} \\
& \begin{aligned}
\mathrm{w} & =\text { the thickness of the top plate } \\
& =1.25 \text { inches }
\end{aligned}
\end{aligned}
$$

and b and t as above .

Then

$$
F_{s}^{1}=(40,000)(1.25)(2)(20)(.25)=2.02\left(10^{6}\right) \text { pounds }
$$

The margin of safety is

$$
\text { MS }=\frac{F_{S}^{1}}{F^{1}}-1=\frac{(2.02)\left(10^{6}\right)}{27,000}-1=\text { large }
$$

2.7.1.2 Side Drop

In the event of an accident in which the cask falls on its side, the highest impact load is experienced if the cask is separated from the skid. The deformed shape of the cask then is as shown below.

$$
\begin{aligned}
\theta-\sin \theta & =\frac{8 V}{d^{2} L}=\frac{(8)(850)}{(32)^{2}(66)} \\
& =.1007
\end{aligned}
$$

then $\theta=49.0$ degrees.

The corresponding depth of the deformed lead is:

$$
\begin{aligned}
& \delta=\left(1-\cos \frac{\theta}{2}\right) \frac{d}{2}=(1-\cos [24.5 \text { degrees }])\left(\frac{32}{2}\right) \\
& \delta=1.44 \text { inches } .
\end{aligned}
$$

The eckivalent "g" load is:

$$
G=2 \frac{h}{5}=\text { (2) } \frac{360}{1.44}=500 \mathrm{~g}
$$

In Drawing 43-6704-0003, Area $2-c$, it is noted that the holes in the cover for the studs are $1-1 / 8$ inch diameter. Thus, the holes provide a 0.062 inch radial clearance. In Area 3 c of this drawing, it is noted that the radial clearance between the cover and the cask cavity is 0.03 inch. Thus, should the cover be moved in the radial direction by a side impact, the sides of the cover will, contact the cask cavity before the holes in the cover can contact the closure studs and product a shear load upon them. Therefore, the closure is maintained for the case of a side impact.

2.7.1.3 Corner Drops

In the case of impact on an edge, the deformed lead volume may be represented as shown in the sketch below.

$$
2.38
$$

The volume is given by:

$$
V=\left(\frac{D}{2}\right)^{3} \tan a\left(\sin \theta-\frac{\sin ^{3} \theta}{3}-\theta \cos \theta\right)
$$

For the edge impact:

$$
a=24.75 \text { degrees }\left(\tan a=\frac{\text { cask diameter }}{\text { cask height }}=\frac{33.25}{72.12}\right. \text {) }
$$

If the flow pressure of lead, P, is taken as 10,000 psi, the volume of lead deformed in order to absorb the kinetic energy at impact is:

$$
\begin{aligned}
& V=\frac{K E}{P}=\frac{360 \mathrm{~W}}{P}=\frac{(360)(23,600)}{10,000} \\
& V=850 \text { inches }^{3}
\end{aligned}
$$

The equation above for the volume of the deformed lead shown in the sketch can be solved by trial and error for θ. Then for:

$$
D=33.25 \text { inches, } \theta=79.0 \text { degrees }
$$

The lead thickness on the side is 8 inches and on the end it is 7.5 inches. Using solid geometry, it can be shown that depth of deformed lead, δ (measure perpendicular to the deformed surface) is 5.63 inches and that the minimum thickness of lead shielding left at the edge is 4.53 inches. The deceleration is:

$$
\begin{aligned}
G & =\frac{H t}{5} 2 \\
& =\frac{360}{5.63}(2)=128 \mathrm{G}
\end{aligned}
$$

Cover bolts. For impact on the top edge, the deceleration of the cask lid and contents would produce both shear and tensile stresses in the bolts. If the combined weight of the cover and contents are assumed to act at the center of the bottom face of the cover as shown in the sketch following, the maximum loan the bolts can be evaluated.

The maximum tensile stress in the bolts will occur in the bolt farthest away from the point of impact, 0 , and is evaluated by the following equation:

$$
\sigma=\left(\frac{M c}{I}\right) 0
$$

where:

$$
M=\left[\left(W_{Y}\right) \frac{D}{2}-\left(W_{x}\right) t_{c}\right] G=W G\left(\frac{D}{2} \cos \alpha-t_{c} \sin a\right)
$$

$$
\begin{aligned}
& c=\frac{1}{2}\left(D+D_{B C}\right) \\
& I_{o}=\varepsilon\left(I_{c}+A d^{2}\right)
\end{aligned}
$$

where:

```
    W = ~ t h e ~ w e i g h t ~ o f ~ t h e ~ c o v e r ~ a n d ~ c o n t e n t s ~ = ~ 3 , 0 0 0 ~ p o u n d s
    G = the "G" impact load = 128 G
    D = the cask diameter = 33.25 inches
    t
D
    Ic}=\mathrm{ area moment of inertia for one bolt about its own
        neutral axis = 0.0319 inches 4
    A = the effective area of one bolt - 0.633 inch2
    d = the distance of each bolt from a horizontal axis
        through "O"
    a}=24.75\mathrm{ degrees
```

Therefore,

$$
\begin{aligned}
& M=(4.36)\left(10^{6}\right) \text { inches-pounds } \\
& C=28.3 \text { inches } \\
& I=2,619 \text { inches }^{4}
\end{aligned}
$$

and

$$
\sigma_{t}=\frac{M c}{I}=\frac{(4.36)\left(10^{6}\right)(28.3)}{2,619}=47,200 \mathrm{psi}
$$

$$
2.41
$$

The corresponding margin of safety is:

$$
\text { MS }=\frac{F_{t u}}{\sigma_{t}}-1=\frac{75,000}{47,200}-1=0.59
$$

In addition, the shear stress:

$$
\sigma_{\text {sh }}=\frac{W G}{n A}=\frac{W_{\text {Cover }}{ }^{G} \sin A}{n A}
$$

where:

$$
W_{\text {cover }}=\text { weight of the cover only }=1,200 \text { pounds }
$$

The shear stress then is:

$$
\sigma_{s h}=\frac{(1,200)(128)(\sin 24.75)}{(12)(0.633)}=8,500
$$

The margin of safety is:

$$
\text { MS }=\frac{F_{s u}}{\sigma_{s h}}-1=\frac{40,000}{8,500}-1=3.7
$$

2.7.2 Puncture

An empirical equation for the minimum steel shell thickness required for lead-filled casks has been developed by the Oak Ridge National Laboratory. ${ }^{(4)}$ The equation has the form:

$$
t=\left(\frac{W}{F_{t u}}\right) 0.71
$$

where:

$$
\begin{aligned}
t & =\text { minimum shell thickness, inch } \\
\mathrm{W} & =\text { weight of lead-lined cask, pourd } \\
F_{t u} & =\text { ultimate tensile strength, psi }
\end{aligned}
$$

Therefore, the required shell thickness is:

$$
t=\left(\frac{\mathrm{W}}{\mathrm{~F}_{\mathrm{tu}}}\right)^{0.71}=\left(\frac{23,600}{75,000}\right)^{0.71}=0.44 \mathrm{inch}
$$

On the basis of an outer shell thickness of 0.68 , the cask design is shown to comply with the regulatory puncture criteria.

2.8 Special Form

The BMI-1 shipping cask is capable of =ransporting a variety of radioactive materials, including various special form materials, as stated in the Certificate of Compliance, Revision 5, as follows:

Paragraph 5 (b) (l) (iv) - Greater than type A quantities of by-product material in special form.

Paragraph $5(b)(2)(i v)$ - For the contents described in 5 (b) (1) (iv): Gamma sources securely confined in the cask cavity to precl'nde secondary impacts during accident conditions of transport. Thermal heat generation rate shall be limited to 200 watts.

Materials shipped under these conditions will be shown to meet the special form requirements of Paragraph $71.4(0)$ of Appendix D, to 10CFR, Part 71.

2.9 Fuel Rods

To meet licensing requirements for shipment of the Fermi fuel subassemblies, it is necessary that the element not fail under Rev. A. 3-28-80
credible shipping conditions. The failure temeperature, as Cefined in $10 C F R$, Part 72 , is the minimum temperature at which the element will release 100 curies of beta-gamma activity or one curie of alpha activity over a 48 -hour period.

There are two different means by which failure could occur during shipment of the Fermi fuel subassemblies. These are: (1) corrosion in water, air and steam, or a dry air atmosphere, and (2) swelling and subsequent rupturing of the fuel pins caused by the expansion of gaseous fission products in the fuc alloy at an elevated temperature. Swelling of the fuel is not expected, since the in-reactor fuel operating temperature of 800 F is well above that which will be encountered during shipment.

The fuel pins are not expected to fail by corrosion since the corrosion rate of zirconium in 680 F water is $0.004 \mathrm{mils} /$ day , in 750 F steam, at 15 psi , the corrosion rate is $0.00^{7} \mathrm{mils} / 100 \mathrm{hrs}$ and in 750 F steam, at $1,500 \mathrm{psi}$, the corrosion rate is $0.21 \mathrm{mils} / 100$ hrs. ${ }^{(5)}$ Also, the corrosion rate of zirconium in air is such that at 930 F , oxidation would penetrate the clad to a depth of only 1.2 mils in a 100 -hour period. (6) It can be concluded that temperatures in excess of 900 F would have to be maintained for a period of over 400 hours before failure in a dry oxidizing atmosphere would occur, and that temperatures in excess of 750 F would have to be maintained for a period of over 2,000 hours before failure of the $5-m i l$ clad would occur in a steam and air atmosphere. From these data, it is expected that corrosion of the clading in steam or air at 521 F would proceed very slowly. The normal trip from Monroe, Michigan, to Columbus, Ohio, should require less than 5 hours.

Discussions with corrosion specialists at BMI indicate that with the presence of copper shot in water, there would probably be some plating out of the copper but there would be no effect on the corrosion rate of the zirconium. (7)

2.10 Product Containers

2.10.1 BMI-1 Canister

In the event of a 30 -foot free fall accident condi on, the inner container will be subjected to an impact load du to its inertia. There is a minimal radial clearance between t.e inner container and the inner cavity. Thus, in the event of a side impact, the cavity walls would support the inner container cver its entire length. However, in the event of an end or corner impact, the inner container would experience an end loading that would produce axially-oriented compressive stresses in the walls of the can due to the inertia of the can. The weights of the various components of the can, Drawing 00-000-421 Rev. C, are shown on the sketch below:

Can top and flange $w_{1}=35.6 \mathrm{lbs}$.

Can side walls $W_{2}=44.8$ lbs.

Can bottom $\mathrm{w}_{3}=26.5 \mathrm{lbs}$.

For impact on the bottom, the cask deforms 1.92 inches. The associated g load is:

$$
g=\frac{2(\text { drop height })}{\delta}=\frac{(2)(360)}{1.92}=375 \mathrm{G}
$$

The load experienced by the car will be less than this since significant damping occurs in the cask body. If however, it is conservatively assumed that the can experiences the full g load, the impact force is:

$$
F_{I_{\text {bottom }}}=g\left(w_{1}+w_{2}\right)=375(35.6+44.8)=30,200 \text { pounds }
$$

The cross section of the can wall is:

$$
A=\pi d t=\pi(14.88)(.062)=2.90 \text { square inches }
$$

The compressive stress in the can wall is:

$$
\sigma_{I_{\text {bottom }}}=\frac{F_{I_{\text {bottom }}}}{A}=\frac{30,200}{2.90}=10,400 \mathrm{psi}
$$

The margin of safety is:

$$
\text { MS }=\frac{F_{c y}}{\sigma_{I_{\text {bottom }}}}-1=\frac{35,000}{10,400}-1=2.37
$$

For impact on the top, the cask deforms 1.06 inches. The associated g load is:

$$
g=\frac{2(\text { drop height) }}{5}-1=\frac{2(360)}{1.06}=680 \mathrm{G}
$$

Rev. A. 3-28-80

If, as before, it is assumed that the can experiences the full g load, the impact force is:

$$
\begin{aligned}
F_{I_{\text {top }}} & =g\left(w_{2}+w_{3}\right)=680(44.8+26.5) \\
& =48,500 \text { pounds } .
\end{aligned}
$$

The compressive stress in the can wall is:

$$
\sigma_{I_{\text {top }}}=\frac{F_{I_{\text {top }}}}{A}=\frac{48,500}{2.90}=16,700 \mathrm{psi}
$$

The margin of safety is:

$$
M S=\frac{F_{c y}}{{ }^{\sigma_{\text {top }}}}-1=\frac{35,000}{16,700}-1=1.10
$$

In addition, the end impact will produce a shock wave pattern which will travel the length of the can. The inner container can be represented by a bar with free ends. For the condition of an end impact, Roark ${ }^{(8)}$ shows that the stress produced is:

$$
\sigma_{d y}=v \sqrt{\frac{0 E}{386.4}}
$$

where:
σ is the stress produced by the traveling wave induced by the end impact
v is the relative velocity between the impacting body and the inner container
p is the density of the inner container material $=0.29$ pound per inch ${ }^{3}$.

$$
\text { Rev. A. } 3-28-80
$$

```
E is the elastic modulus of the inner container
    =29 * 106 psi
```

The velocity can be represented by:

$$
v^{2}=v_{0}^{2}+2 a s
$$

where:

```
v
    a is the acceleration of gravity = 32.2 fps 2}=386.4 ips 2,
    s}\mathrm{ is the fall distance = 30 feet = 360 inches.
```

Then

$$
\begin{aligned}
v & =\sqrt{0+(2)(386.4)(360)} \\
& =528 \mathrm{ips}
\end{aligned}
$$

It should be noted this is conservative in that no credit is taken for energy absorption in the deformation of the cask.

Substituting above:

$$
\begin{aligned}
& \sigma_{d y}=528 \sqrt{\frac{(.286)(29)\left(10^{6}\right)}{336.4}} \\
& \sigma_{d y}=77,300 \mathrm{psi} .
\end{aligned}
$$

This stress will initially be a compressive stress traveling with the wave front. If it is conservatively assumed that no
internal damping occurs, the wave will rebound from the opposite (free) end and produce a tensile stress of equal magnitude traveling behind the rebounding shock wave. Thus, if no credit is taken for internal damping, the maximum tensile stress which the inner container could experience is 77,300 psi.

It has been shown that materials under dynamic load exhibit greater apparent strength than under static loads. For austenitic stainless steels, Brown and Edmonds ${ }^{(9)}$ indicate that the dynamic yield strength is about 11 percent greater than the static yield strength. If it is assumed that the ultimate strength exhibits a similar relationship, the dynamic ultimate strength will be:

$$
F_{\mathrm{TU}}^{\mathrm{dY}} \text { }=(1.11)\left(\mathrm{F}_{\mathrm{TU}}\right)=(1.11)(75,000)
$$

$=83,200 \mathrm{psi}$.

The margin of safety is:

$$
\mathrm{MS}=\frac{\mathrm{F}_{\mathrm{TU}}}{\sigma_{\mathrm{dy}}}-1=\frac{83,200}{77,300}-1=0.08
$$

The condition for an impact on a corner is less severe than a direct end impact since part of the load will be transmitted to the side wall of the cask cavity.
2.10.2 TRIGA Fuel Shipping Assembly

In a letter dated March 10, 1972, additional information was requested by the Division of Material Licensing to support the request by the University of Arizona to transport TRIGA fuel assemblies in the BMI-1 shipping cask. The BMI-1 cask has previously
been licensed and the license application concerned the use of a Fuel Shipping Assembly (fuel can) to hold the TRIGA fuel assemblies in the cask during transport, University of Arizona, Drawing 1020, Rev. B. The request for additional information concerned substantiation of the fuel can integrity in the event of the 30 foot free fall hypothetical accident, confirmation in the use of specific sealant materials and a request for a copy of the report upon which the criticality analyses were based.

2.10.2.1 Free Drop

In a telephone conversation with the DML reviewer, clarification was obtained of the specific questions underlying some of the items noted in the request for additional information. It was notec that for the 30 foot free fall incident, the cask impact forces calculated by DML during their review ciffer slightly from those fresented in the Safety Analysis Report for the cask. For the purpose of consistency, the impact forces determined by DML are used in this response. They are presented in Table 2.3. It should be noted that the impact forces presented in Table 2.3 are those calculated to exist at the outer surface of the cask in the region of impact. No credit is taken for energy attenuation through the walls of the cask and at the interface of the cask cavity and the fuel can. This conservative approach is taken since the exact degree of attenuation cannot be accurately predicted.

$$
\begin{array}{ll}
\text { TABLE } 2.3 \text { IMPACT FORCES USED IN ANALYSES } \\
& \text { FOR FUEL CAN INTEGRITY }
\end{array}
$$

Orientation	Impact Force, G
End Fall, on top	87.5
End Fall, on bottom	368
Side Fali	400
Corner (obi zue)	153

The cover plate of the fuel can has been modified as shown on the attached University of Arizona drawing, Sheet 1020 , Revision B. A solid ring of rectangular cross section has been added at the outer edge of the cover to support the edge of the cover in the event of a top impact. Since the ring thickness is the same as the head of the draw bolt, the bolt and the ring will strike the end of the cavity simultaneously in the event of a top end impact. In order to evaluate the stresses on the fuel can, in the event of a top end fall incident, the can was modeled and analyzed with the aid of a computer program MONSA (Multilayer Orthotropic Nonsymmetric Shell Analysis), used by the Applied Solid Mechanics Division at Battelle. This nrogram, based on the work of Dr. A. Kalnins, is discussed briefly in Section 2.12.3. A paper by Dr. Kalnins which is the basis for the computer program is also included in Section 2.12.3.

The can is sketched in Figure 2.3 and the model used in the analyses for the top end impact incident is presented in Figure 2.4. Because of the massiveness of the anchor nut relative to the thickness of the bottom, a fully fixed condition was assumed for the can bottom at the location of the anchor nut. The stresses in the can bottom and walls were analyzed by superimposing the effect of the static load of the draw bolt and the inertia load of the can and comparing the result with the effect of the static load and inertia load of the draw bolt. A seal load of 10 pounds per inch is usually considered adequate for the type of seal used on the fuel can. However, as an extra assurance factor, a seal load of 20 pounds per inch has been selected. This would require a draw bolt tensile load of 945 pounds. The operations manual was revised to indicate that the bolt should be tightened to a torque of 22 feet/pounds, which will result in about 1,000 pounds of tensile load in the bolt (~ 21 pounds per inch, seal load).
2.51

FIGURE 2.3 SKETCH OF FUEL CAN FOR THE TRANSPORT OF TRIGA FUEL ASSEMBLIES

Boundary Conditions
$\begin{array}{ll}\text { At Pt. A Displacement } \mathrm{x}=0 \\ & \text { Slope }=0\end{array}$
At Pt. C Displacement $y=$ Displacement $x=0$ Moment $=0$

The MONSA program was first run for the static condition, i.e., the effect of the 1,000 pounds normal draw bolt load on the can. The results are summarized in Table 2.4. Under an impact condition, the inertial load of the anchor nut and bolt might either increase the load on the can or decrease it depending on the relative deformation between the can and the bolt. It is noted in Table 2.4 that for the 1,000 pound static condition the deformation of the can bottom at Point A is 0.00433 . The MONSA computer program was then run to evaluate the effect of the inertia load of the can bottom and walls on the stresses in the can. As shown in Table 2.4, the can bottom at Point A would deflect 0.00607 inches if unsupported by the draw bolt. The total deformation then would be 0.01040 inches.

The deformation of the bolt under static and impact loads can be calculated by the relation:

$$
e=\varepsilon L=\frac{\pi}{E}=\frac{F L}{A E}
$$

where

```
e = total deformation of bolt, inches
\varepsilon = unit strain
\sigma = stress in the bolt
E = Young's Modulus = 29(106) psi
L = length of the bolt = 49.75 inches
F = static force of 1,000 pounds or impact force
    at 87.5 G, pounds
A = area of the 1-1/4 OD x 1/4 wall bolt = 0.7854
    square inches
g = impact force = 87.5 G .
```


2.54

TABLE 2.4 RESULTS OF ANALYSIS OF TOP END IMPACT ORIENTATION

Load Condition	At Point $A^{\text {(a) }}$			At Point $\mathrm{B}^{(a)}$		At Point $c^{(a)}$	
	Stre	s, psi	Deflection	Stress	s, psi	Stress	, psi
	$\begin{aligned} & \text { Inner } \\ & \text { Surface } \end{aligned}$	Outer Surface	to Point G, inches	$\begin{aligned} & \text { Inner } \\ & \text { Surface } \end{aligned}$	Outer Surface	$\begin{aligned} & \text { Inner } \\ & \text { Surface } \end{aligned}$	Outer Surface
Static 1,000 1b	5,412	-5,492	-0.00433	-5,333	4,862	472	-943
Inertia of can bottom and can walls only, no restraint from bolt	3,624	-3,715	-0.0060?	-6,299	5,317	3,608	-7,217
Total	8,036	-9,207	-0.01040	-11,632	10,179	4,080	-8,160

(a) Refer to Figure 2.4

For the static load condition, the bolt would be elongated 0.00218 inches. For the impact case, it was assumed that the effective force acting at the top of the bolt is equal to half the weight of the bolt plus the weight of the anchor nut. The weight of the bolt is 2.67 pounds per foot, and the weight of the 4 -inchdiameter nut is 42.73 pounds per foot. Thus, the total effective force is:

$$
F=(1 / 2)(2.67)(49.75)(87.5) / 12
$$

$$
+(42.73)(3.5)(87.5) / 12=1575 \text { pounds } .
$$

Therefore, the total compressive deformation is 0.00344 inches. The effect of the inertia loading on the bolt itself would be to relieve the tensile load on the bolt and place it in a compression. Its total deflection then is $0.00344+0.00218=0.00562$ inches. Since the bolt would only deflect 0.00562 inches and the bottom, if unsupported, would deform 0.01040 inches, the bolt will provide a significant degree of restraint to deformation of the can. Thus, the greatest stress which the can will experience is probably $1 / 2$ to $1 / 3$ the maximum stress of 11,632 psi, shown in Table 2.4. The margin of safety, based on a 30,000 psi yield strength, will be greater than 1.5 ,

$$
\left(M S=\frac{30,000}{11,632}-1=1.58\right)
$$

The can also acts as a column under compressive loading. By inspection, it is seen that the case for the bottom end impact is more severe than for the top end impact, since the impact force, 368 G , is greater and the cover is heavier than the can bottom. Thus, the column action of the can was not evaluated here.

a) Cover

b) Shell

Analyses of the effect of the added load from the can on the draw bolt was not considered necessary. The bolt closely fits through cover and thus misalignment during impact is prevented. Should the bolt experience any plastic deformation during the impact, it would not be detrimental to the seal. Any "shortening" of the bolt due to the impact would produce a greater tensile load in the bolt tending to keep the cover in place. Therefore, the above analyses have indicated that the integrity of the can and seal are maintained during a top end impact condition.

(b) Bottom End

In the event of an impact on the bottom end, the inertia force of the cover will tend to increase the pressure on the seal at the edge of the cover. However, the pressure on the seal under the head of the draw bolt could be lessened. The possibility of this occurring is evaluated below. The MONSA computer program was used to evaluate the model shown in Figure 2.5a for the static condition and for the inertia effect on the cover as if the draw bolt were not present. The maximum deflection of the cover, Point A in Figure 2.5a, relative to the outer seal, Point B, was calculated to be 0.00340 inch under the combined static and inertia load, Table 2.5. The MONSA program was then used to analyze the model of the can shell alone, shown in Figure 2.5b. Tha fcrce F_{c} is 1,000 pounds for the static case and, for the impact case, F_{C} is the total inertia force of the cover acting on the top edge of the can. The cover weighs 65.67 pounds. Thus, for the 368 G inertia load, the force F_{c} is 24,170 pounds. The total deflection of the shell alone under the static load is 0.00042 inch. Under the inertia load of the cover and the shell, the deflection is 0.01507 inch (Point B :o Point C in Figure $2.5 b$). Thus, the total deflection of the shell only is 0.01549 inch, and the total deflection of the cover, Point A, relative to the bottor of the can Point C, is 0.01889 inch.

TABLE 2.5 RESULTS OF ANALYSIS OF BOTTOM END IMPACT

Load Condition	At Point $A^{\text {(a) }}$			At Point $B^{(a)}$			At Point $C^{(a)}$	
	Inner Surface	Outer Surface	to Point B inches	Inner Surface	Outer Surface	to Point C, inches	$\begin{gathered} \text { Inner } \\ \text { Surface } \end{gathered}$	Outer Surface
Static load on cover only	-423	-1,689	-0.00044	145	36	--	--	--
Inertia load on cover only	1,391	$-2,787$	-0.00296	1,493	373	--	--	--
Total, static and inertia of cover on cover only	968	-4,476	-0.00340	1,638	409	--	--	--
Static load on shell only	--	--	--	-236	-236	-0.00042	-107	-364
Inertia load of shell and cover on shell only	--	--	--	$-5,696$	$-5,696$	-0.01507	$-5,146$	$-17,293$
Total, static and inertia of cover and shell on shell only	--	--	--	$-5,932$	$-5,932$	-0.01549	$-5,253$	$-17,667$

[^0]It was shown above that the bolt is elongated 0.00218 inch under the static 1,000 pound load. It was also shown that the bolt will compress axially 0.00344 inch under a 87.5 G load. Thus, under a 368 G load, the bolt will compress (368) (0.00344)/ 87.5 or 0.01466 inch. Thus, the total deflection which the bolt will experience is $0.00218+0.01446=0.01664$ inch. Since this is less than the deflection of the cover, the bolt does not contribute any load to the cover under the impact condition. These calculations indicate that the compression on the seal under the bolt head will be relieved 0.00225 inch. However, the seal is initially compressed about 0.030 inch so that this amount of relief under impact represents only about 7.5 percent of the initial amount. Stated another way, the 0 -ring is still compressed over 90 percent of its initial amount which is considered sufficient to maintain the seal.

The maximum stress in the can, Table 2.5, is 17,667 psi. The margin of safety is:

$$
\text { MS }=\frac{30,000}{17,667}-1=0.70
$$

The can also acts as a column under a compressive load equal to the inertia weight of the cover and can shell. It was assumed that the total inertia load experienced by the can es a column is equivalent to the cover weight and half of the inertia "weight" of the shell. From above, the inertia weight of the cover is 24,170 pounds. The static weight of the shell is 63.27 pounds. Thus, total inertia load on the can shell as a column is:

$$
P=24,170+(1 / 2)(368)(63.27)=35,810 \text { pounds }
$$

The critical buckling load for a column rigidly fixed at one end is:

$$
P_{\text {crit }}=\pi^{2} E I / 4 L^{2},
$$

where

$$
\begin{aligned}
& E=\text { Young's Modulus }=29\left(10^{6}\right) \text { psi } \\
& I=\text { Moment of inertia }=\pi d^{3} t / 8 \\
& d=\text { Mean diameter }=14.91 \text { inches } \\
& t=\text { Thickness }=0.09 \text { inches } \\
& I=\text { Length }=51.75 \text { inches }
\end{aligned}
$$

Then

$$
P_{\text {crit }}=3.13\left(10^{6}\right) \text { pounds }
$$

Thus, the can will not buckle.
As above, any deformation or shortening of the draw bolt due to the impact incident would not be detrimental to the integrity of the seal. Therefore, it was not considered necessary to evaluate the impact effect on the bolt.
(c) Side Drop

The safety analysis report for the BMI-1 shipping cask indicated that the impact force on the cask in the region of contact between the cask and the unyielding surface may be as great 2s 400 G . The impact force on the basket and contents of the cask may be only 200 G or less, due to attenuation by the lead filled cask wall and the interface between the cask cavity and
the basket. The degree of attenuation is difficult to predict, however, and thus, for purposes of analysis, the impact force on the basket was conservatively assumed to be the same as that calculated for the exterior of the cask, 400 G .

For the side impact orientation, the side of the can and the cover are supported by the full length of the cask cavity. Thus, the critical regions which must be considered include the stress and defiection in several regions of the draw bolt and the integrity of the seal under loads and moments transmitted by the bolt. A general schematic model of the can is shown in Figure 2.5 . As shown, the bolt is rigidly supported at the bottom by the anchor nut, and at the top by the close fitting hole in the cover. It also nominally has a center support, the spacer can bottom, except that the spacer can has a 0.031 inch radial clearance and thus, the center of the bolt could deflect about 0.036 inch (the spacer can guide clearance plus the bolt clearance) before any degree of support could be expected.

Consider the model in Figure 2.7. The bolt is represented as a beam under a tensile load, restrained at the ends from bending and with a center support available after 0.036 inch of deflection. In the actual situation, the "center" support is about 1.38 inches from the midlength of the bolt. For purposes of analysis, it was considered sufficiently accurate to assume that deflections at the center and 1.38 inches from the center were essentially the same. Then from Roark ${ }^{(10)}$, Table VI, Case 18 , the deflection at the center is:

$$
Y=\frac{w j^{2}}{8 p}\left[\frac{4 U(1-\cosh U / 2)}{\sinh U / 2}+U^{2}\right]
$$

FIGURE 2.7. MODEU OF DRAW BOLT FOR SIDE IMPACT ORIENTATION
where

$$
\begin{aligned}
& w=\text { uniform load } \\
& j=\sqrt{\frac{E I}{P}} \\
& E=\text { Elastic modulus }=29\left(10^{6}\right) \text { psi } \\
& I=\text { Area moment of inertia }=\pi\left(D_{0}^{4}-D_{i} 4\right) / 64 \\
& D_{0}=O D \text { of draw bolt }=1.25 \text { inches } \\
& D_{i}=I D \text { of draw bolt }=0.75 \text { inch } \\
& P=\text { Tensile load }=1,000 \text { pounds }
\end{aligned}
$$

```
U = L/ j
L = Length of the bolt = 47.75 inches
```

This equation was solved for w for the case where $y=0.036$. At this deflection, $w=8.19$ pounds per inch. However, the bolt weighs 2.67 pounds per foot and therefore, under a 400 G impact force, the distributed load would be 89.0 pounds per inch. Since this is more than the 8.19 pounds per inch distributed load required to deflect the center of the bolt 0.036 inch, the bolt will receive support from the spacer can bottom under the 400 G impact. The maximum moment in the bolt occurs at the end and is expressed as:

$$
M=w j^{2} \quad[(U / 2) / \tanh U / 2-1]
$$

With a distributed load of 8.19 pounds per inch, the moment is 1,538 inch pounds.

After the bolt receives support from the spacer can bottom, it then, for practical purposes, will respond as before, a beam with fixed ends and under a tension load. This is not truly the case since the "center" support is not truly at the midspan but 1.38 inches away. However, it is felt that negligible error will be introduced by this assumption. The calculation is as above then, except that the uniform load and the beam length are changed. The uniform distributed load for this case is the difference between the total impact load under the 400 G force, 89.0 pounds per inch, and the distributed load of 8.19 pounds per inch required to bring the draw bolt into contact with the spacer can bottom. Thus, $w=89.0-8.19=80.81$ pounds per inch. The length of the beam is the distance from the spacer can bottom to the bottom of the can, Point A in Figure 2.7. Thus, $L=$ 25.25 inches. Then, $M=4,278$ in pounds. The total moment at
the end of the draw bolt is the sum of this moment and the moment produced at the instant of contact of the draw bolt with the spacer can bottom. Thus, $M_{\text {TOT }}=1,538+4,278=5,816$ in pounds. The fiber stress is:

$$
\sigma=M_{\text {tot }} C / I
$$

where

```
C = maximum fiber distance from neutral axis of the
    1-1/4 inch bolt in end of draw bolt (at thread root) =
    0.5335 inches
I = moment of inertia of 1-1/4 inch bolt at tread root =
    \piC
```

Then the fiber stress is

$$
\sigma_{\mathrm{fm}}=48,770 \mathrm{psi}
$$

The fiber stress developed by the 1,000 pound tensile load in the bolt is:

$$
\sigma_{f t}=P / A
$$

where

```
P}=1,000 pound
A = area of the 1-1/4 inch bolt at the thread root
    =0.8942 square inch .
```

Then

$$
\sigma_{\mathrm{ft}}=1,120 \mathrm{psi}
$$

The total fiber stress is:

$$
\sigma_{f}=48,770+1,120=49,890 \mathrm{psi}
$$

The shear stress is:

$$
\sigma_{s h}=\frac{F_{s h}}{A}
$$

The shear force, $F_{s h}$, was taken as half the impact force or

$$
F_{\text {sh }}=w L / 2=(89.0)(25.25) / 2=1,125 \text { pounds }
$$

The shear area, A, at the thread root, is 0.8942 square inch. The shear stress is:

$$
\sigma_{s h}=1,125 / 0.8942=1,260 \mathrm{psi}
$$

The combined stress is:

$$
\sigma_{c o m b}=\sqrt{\sigma_{f}^{2}+\sigma_{s h}^{2}}=48,790 \mathrm{psi}
$$

The threaded section of the bolt is made of A 325 steel which has a yield strength of 92,000 psi. The margin of safety is:

$$
M S=\frac{F_{y}}{\sigma_{\mathrm{comb}}}-1=\frac{92,000}{48,790}-1=0.89
$$

At the center of the span, the bending moment is:

$$
M=w j^{2}\left(1-\frac{U / 2}{\sinh U / 2}\right)
$$

where the terms are defined as above. At the instant of contact of the draw bolt with the spacer can bottom, the moment at the center of the 47.75 inch long span is 758 inch loading beyond this point, the support at the center causes the location of the maximum moment to shift toward the center of the two short spans. The maximum load experienced by the short spans is the total inertia load. Thus, $w=89.0$ pounds per inch and $L=25.25$ inches. Then:

$$
M=2,350 \text { inch/pounds } .
$$

The stress is:

$$
\sigma_{f}=M c / I
$$

where

$$
\begin{aligned}
M & =2,350 \text { inch/pounds } \\
C & =\text { Maximum fiber distance }=1.25 / 2=0.625 \text { inches } \\
I & =\text { Moment of inertia }=\pi\left(D_{0}^{4}-D_{i}^{4}\right) / 64 \\
D_{0} & =1.25 \text { inches } \\
D_{i} & =0.75 \text { inch } .
\end{aligned}
$$

Then

$$
\sigma_{f}=12,260 \mathrm{ps}:
$$

The body of the bolt is made of $\mathrm{C}-1018$ cold rolled carbon steel which has a yield strength of 60,000 psi. The margin of safety is:

$$
M S=\frac{60,000}{12,260}-1=3.89
$$

The above analyses assume that the center support, i.e., the spacer can bottom will not move radially more than about 0.036 inch. The spacer can is supported by the guide trbe which fits into the inner can. The inner can is rigidly held by the nest of fuel tubes except for the endmost 5.75 inches into which the spacer can guide fits. This 5.75 inch extension, therefore, acts as a cantilever beam in supporting the spacer can bottom. Consider the model of Figure 2.8. The fiber stress in the inner can is:

$$
\sigma=\frac{M C}{I}=\frac{F L C}{I}
$$

where

```
F = Inertia force of bolt and spacer can
L = Length of inner can extension = 5.75 inches
c= Maximum fiber distance = 4.25 inches
I = soment of inertia = \pid 3}t/
d = Mean diameter = 8.41 inches
t = Thickness = 0.09 inch .
```


FIGURE 2.8 MODEL OF INNER CAN

2.70

The force was taken as half the inertia weight of the bolt and $3 / 4$ the inertia weight of the spacer can. The spacer can has a static weight of about 35 pounds. Then the inertia force is:

$$
F=(89.0)(47.75) / 2+(400)(35)(3 / 4)=12,620 \text { pounds. }
$$

Then

$$
\sigma_{f}=14,680 \text { psi }
$$

The shear stress is

$$
\sigma_{s h}=F / A=12,620 /(\pi \mathrm{dt})=5,300 \mathrm{psi}
$$

The combined stress is

$$
\sigma_{c o m b}=\sqrt{\sigma_{f}^{2}+\sigma_{s h}^{2}}=15,600 \mathrm{psi}
$$

The margin of safet.. far the inner can which is made of Type 304 stainless steel i

$$
\text { MS }=\frac{F_{y}}{\sigma_{\mathrm{comb}}}-1=\frac{30,000}{15,600}-1=0.92
$$

The total deflection is:

$$
Y=F L^{3} / 3 E I=0.0013 \text { inch }
$$

Thus, the spacer can will move 0.0013 inch more than the 0.036 inch assumed above. This difference is only 3.6 percent and thus will not significantly change the results presented above.

The integrity of the weld between the spacer can guide and the spacer can bottom must also be evaluated. The stress is:

$$
\sigma_{s h}=F / A=12,620 /(0.707 \pi d t)
$$

where

```
d=mean weld diameter }\cong7.90\mathrm{ inches
t = weld thickness = 0.12 inch
```

Then

$$
\sigma_{s h}=5,990 \text { psi . }
$$

The margin of safety is

$$
M S=\frac{F_{s h}}{\sigma_{s h}}-1=\frac{15,000}{5,990}-1=1.50
$$

In the side fall incident, the bending moment present in the boit at the cover will tend to "lift" one edge of the seal. The close fit of the bolt in the cover negates any poss.bility of "iifting" of the seal under the bolt head. However, the tendency for lifting of the seal at the edge of the cover must re evaluated. Consider the model in Figure 2.9. The ioment, M, tends to lift the seal at point B while the moment of the draw bolt sensile force, P, about Point A tends to matain the seal at roint B. The moment, M, is assumed to be the same as the moment in the draw bolt at the anchor nut. (It actually will be slightiy less since the unsupported span of the top part of the bolt is 2.75 inches shorter than the bottom part.) Then, $M=5,81$ if in pounds. The restoring moment is:

$$
M_{R}=p d / 2=(1,000)(15 / 2)=7,500 \text { inches } / \text { pounds }
$$

This is about 30 percent greater than the moment tending to open the seal. Thus, the tendency for lifting is sufficiently restrained to maintain the seal.

2.72

The conclusion of the above analysis is that the integrity of the fuel can and seal is maintained in the event of a side fall impact orientation.

(d) Corner Drop

The fuel can fits in the cask cavity with only nominal clearance. Thus, for the corner drop orientation, the can is supported both on the side and an end. Since the impant loads for the corner drop orientation are less severe (153 G) than for: the impact loads for the bottom end drop or side drop configurations, the analyses for the bottom corner drop configuration need not be evaluated. For the case of a top corner impact orientation, the 153 G impact force is greater than that experienced by the cask for the top end drop configuration, 87.5 G . However, the aspect ratio of the cask (L/d) is relatively large; thus, the top edge drop orientation is very close to the vertical orientation of the end fall condition. The response of the fuel can to a top corner impact orientation can then be evaluated by taking the conservative approach and assume it strikes on the top end with the 153 G impact force. This is conservative since for the end impact orientation, no support is considered by the side walls of the cask cavity.

The response of the fuel can is proportional to the impact load. Since for the assumed case here the impact force is 153 G , the stresses and leflections experienced by the fuel can would be $153 / 87.5=1.75$ times greater than for the case of the top end drop orientation. By inspection, it is seen that the stresses are well belcw the yield stress and thus, the can integrity is maintained. Similarly, by inspection it is seen that the seals will not be loosened for the top corner impact orientation and thus seal integrity is maintained.
2.10.2.2 Description of Welds
on Fuel Element Tubes

The fuel elements are located in individual tube positioners for transport. These tubes are located in an annular region between the outer shell of the fuel can and an inner shell. Both the inner and outer shells are welded to the bottom plate of the fuel can with full circumferential welds, Drawing $10: 0$, Rev. B. The tubes are held in place by the manner in which they fit in the annulus so that contact with adjacent cubes and the inner or outer shell of the fuel can prevents any relative motion between the tubes. The tubes in the annulus are attached to the bottom plate by one 0.090 inch wide $\times 0.50$ inch long welds as shown in Figure 2.10. At the top of the tubes, each tube is welded to the adjacent tubes which touch it and to the inner or outer shell, Figure 2.10. Since each tube in the inner row of tubes contacts four other tubes and the inner shell, it has five welds, 0.130 inch wide $\times 0.38$ inch long around its top edge. Each tube in the outer row, touches two tubes in the inner row and the outer shell and thus, is welded at three locations, Figure 2.10 .
2.10.2.3 O-Ring Material

All applicable drawings and operation procedures have been revised to reflect the use of only silicone rubber (silastic) seal materials.
2.10.2.4 Thread Sealant

There are no plugs on the fuel can which form part of the sealing system.

$\frac{2.10 .3 \text { Pulstar Fuel Pin }}{\text { Canister }}$

Twenty-one irradi ated fuel pins (ref. Westinghouse Canada, Ltd. Drawing 818C199) are loaded in a stainless steel tube. Twelve such canisters are loaded in a modified BMI-1 basket for shipment to the Idaho Chemical Processing Plant and subsequent storage in a pool. The loaded canisters are to be shipped in water. Each group of 21 pins weighs approximately 38 pounds.

The material selected for the canisters is 3 inches square, .120 inch wall. Type 304 stainless steel tubing. The design of the canister is shown on BCL Drawing Number 00-001-375. The base and cap plates are $3 / 16$ inch, 304 S.S. plate as is the hoist fitting.

The canisters are analyzed for a 5 g handling load. Since they are transported in the BMI-1 basket, other transportation loads are analyzed as basket loads. The canisters are shipped dry and are sealed with Swagelock ${ }^{\mathbb{R}}$ fittings, Type S -1610-C. The total weight of each canister and fuel is calculated to be 50.4 pounds. The total load in the basket is approximately 604.8 pounds.
2.10.3.1 Hoist Fitting

The load factor $=5.0 \mathrm{~g}$
The maximum shear-out load on a canister hoist fitting = $(50.4)(5.0)=252$ pounds.

Allowable shear stress (annealed value) $=20,000$ psi.

Shear-Out of the Hoist Fitting.

$$
\text { Shear area }=(2)(.95)(.125)=.238 \text { inch }^{2}
$$

$$
\begin{aligned}
& \mathrm{fs}=\frac{252}{.238}=1,059 \mathrm{psi} \\
& \mathrm{MS}=\frac{20,000}{1,059}-1=17.89
\end{aligned}
$$

2.10.3.2 Shear Load on Base Plate Weld

The base plate is welded to the 3 inch square tubing for a total of 12 inches of weld. Based on the annealed value for 304 SS, the allowable shear stress $=20,000$ psi.

Width of weld $=.06$ inch minimum
The shear area $=(12)(.06)(\sqrt{2})=1.02$ inches 2

Assume total weight acting on base $=50.4$ pounds

Shear stress $=\frac{P}{A}=\frac{(50.4)(5)}{(1.02)}=247$ psi
$M S=\frac{20,000}{247}-1=$ very high
2.10.3.3 Pressure Check of Stress and Deflection

Square Tubes $\times \frac{1}{M} \quad 3$ inches $\times 3$ inches $\times .12$ inch 304 S.S.
Internal Pressure $=37$ psig ${ }^{(11)}$

Test pressure $=120 \times 37=44.4 \mathrm{psig}$.

Assume all edges fixed--uniform load 44.4 psig:

$$
\begin{aligned}
& \frac{a}{b}=\infty \\
\therefore & B=.5 \text { (Reference } 12) \\
& a \quad .0284
\end{aligned}
$$

The maximum stress occurs at the center of the long edges:

$$
\begin{aligned}
& S_{\max }=\frac{\mathrm{wb}^{2}}{t^{2}}=(.5) \frac{44.4\left(3^{2}\right)}{\left(.120^{2}\right)} \\
& =13875 \mathrm{psi}<30,000 \text { psi } 304 \text { SS ald. } \\
& \text { (annealed value) } \\
& y=a \frac{w b^{4}}{E t^{3}}=(.0284) \frac{44.4\left(3^{4}\right)}{\left(28 \times 10^{6}\right)\left(.120^{3}\right)}=.00203 \text { inch } . \\
& =.00203 \text { inch each side of canister } \\
& 2 y=.00406 \text { inch--well within space available of } 0.31 \text { inch }
\end{aligned}
$$

$$
2.79
$$

Equivalent pressure load due to side drop imposed by fuel pins.

$$
w=37.8 \text { pounds } \times 5 \mathrm{~g}^{\prime} \mathrm{s}=189 \text { pounds. }
$$

Area of pin impact--assume 2.5×26 inches.

$$
A=2.5 \times 26=65 \text { inches }^{2}
$$

$$
P=\frac{189}{65}=2.91 \mathrm{psi}
$$

The wall deflection due to the pin load is negligible.

The total side presusre load $=44.4+2.9=47.3 \mathrm{psi}$.

$$
\begin{aligned}
\therefore \mathrm{S}_{\max } & =13875 \frac{(47.3)}{(44.4)}=14781 \text { psi, one side only } \\
\mathrm{Y}_{\max } & =.00196 \frac{(47.3)}{(44.4)}=.0021 \text { inch, one side only } \\
2 Y & =.0042 \text { inch }
\end{aligned}
$$

Internal pressure on end of tube:

$$
p=44.4 \text { psig }
$$

$$
\begin{aligned}
\frac{a}{b} & =1, \beta=0.3078, a=0.138 \\
S b & =\beta \frac{w b^{2}}{t^{2}}=(0.3078) \frac{(44.4)\left(3^{2}\right)}{(.1855)^{2}} \\
& =3,499 \text { psi } \\
\operatorname{Max} y & =a \frac{w b^{4}}{E t^{3}}=(0.138) \frac{(44.4)\left(3^{4}\right)}{\left(29 \times 10^{6}\right)(.1875)^{3}} \\
& =.0026
\end{aligned}
$$

Bottom load due to weight of 21 fuel pins:

$$
\begin{aligned}
w & =(37.8)(5.0 \mathrm{gs})=189 \text { pounds } \\
\text { Area } & =2.75 \times 2.75=7.5625^{2}
\end{aligned}
$$

Equivalent pressure load $p=\frac{189}{7.5625}=25 \mathrm{psi}$

$$
\begin{aligned}
S_{b} & =(3,499)\left(\frac{25}{44.4}\right)=1,970 \mathrm{psi} \\
\text { Total } S_{b} & =3,499+1,970=5,469 \mathrm{psi} \\
\text { Max } y & =.0026 \frac{(25)}{(44.4)}=.0015 \text { inch }
\end{aligned}
$$

$$
\text { Total } y=.0026+.0015=.0041 \text { inch in center }
$$

2.10.4 EPRI Crack Ärrest Capsules

The six fission monitors consist of 0.25 inch $O D \times 0.38$ inch long stainless steel tubes containing either 12 mg of U238 (3 monitors) or 20 mg of Np^{237} (3 monitors). Each tube is sealed and fits into a steel dosimeter block which is sealed by welding. Because of the way in which the fissile material is encapsulated, release into the cask cavity or to the environment is extremely remote. Moreover the quantities are much less than the maximum release permitted b; the proposed regulations ${ }^{(13)}$. The amount of U^{238} present is $1.2\left(10^{-8}\right)$ curies and the amount of Np 237 present is $4.2(10-5) \mathrm{ci}$. The maximum which can be released according to the proposed requlations is unlimited for U^{238} and 0.005 Ci for Np^{237}.

2.11 Baskets

2.11.1 Copper Basket for Fermi Fuel Elements

The BMI-1 cask was approved in July, 1964, and given AEC License SN:8807 for use in transporting to a reprocessing site 24 spent $B R R$ fuel elements per trip. Information regarding this structural analysis is recorded in Docket Number 70-813 at the AEC.

For the shipment of the Fermi fuel only a different fuel element basket and basket support are required. Drawing Numiver K5929-5-1 0049 Rev. 5/12/66, describes this modification. The entire assembly inside the cask inciuding the fuel element, basket, and copper shield, has a calculated weigst of 1,109 pounds. This assembly is supported by $12,1 / 4$ inch $\times 1-1 / 2$ inch $\times 1-1 / 2$ inch brass angles that extend the entire length of the cask cavity. The yield strength of the architectural bronze used in the angles is-

20,000 psi. The cross sectional area of the 12 angles is 8.4 inches ${ }^{2}$. Since all the side thrust is taken by the cask wall, only the compressive load must be supported by the angles. Thus, the norma. stress on the supporting angles is 132 psi. If the loaded cask were to be subjected to some accident condition which would cause the angles to yield, the force on the fuel subassembly would be decreased and the unit displaced toward the point of contact. Axial motion of the unit in the cask should cause no damage to the fuel subassembly. All radial forces would be adequately restricted by the six, 0.75 inch x 2 inch x 36 inch copper ribs which are part of the copper shielding casting. Each rib would have an area of 27 inches 2 and a yield strength of 10,000 psi. Applying the entire weight of 1,109 pounds to one rib, the normal stress would be 41 psi. From the above description of the modifications inside the cask, it is obvious that the fuel subassembly is well protected within the cask.

2.11.2 BMI-1 Basket Modified for MTR Fuel

The only modifications made for shipment of the fuel from Texas A\&M were to the fuel basket. Therefore, the cask itself meets all the structural requirements as shown in current license, SMN7 for the shipment of MTR type fuels. The analyses presented in this section show compliance of the modified basket with the regulations of $10 C F R$-Part 71. The aplicable sections from those regulations affecting licensability of the modified basket are as follows:

```
Section 71.31(c) General Standards, Lifting Device
3ection 71.36(a) Standards for Hypothetical Accident Conditions.
```

The details of the modified basket for the shipment of fuel from Texas A\&M University to the University of Virginia are shown in BMI Drawing Number $00-000-236$, Rev. A. The material used in the basket is Type 304 stainless steel. The mechanical properties used in the analysis are presented in Table 2.6.

```
TABLE 2.6 PROPERTIES OF TYPE 304
    STAINLESS STEEL
```

Property	Design Stress, psi
Tensile yield stress	30,000
Tensile ultimate stress	75,000
Compressive yield stress	35,000
Shear yield stress	20,000
Shear ultimate stress	40,000
Bearing yield stress	50,000

The calculated weight of the modified basket is 269 pounds. Each fuel element weighs approximately 9.25 pounds.

2.11.2.1 Lifting Devices

The regulations state that the lifting devices should be able to support three times the weight of the loaded basket. This weight is calculated as 3 (380 pounds) $=1,140$ pounds. Assuming a 45 degree angle for the lifting cables, the force in each cable is:

$$
T=\frac{W}{2(.707)}=\frac{1,140}{2(.707)}=806 \text { pounds }
$$

The bending stress at the root of the handle can be calculated as:

$$
S_{b}=M c / I
$$

where

$$
\begin{aligned}
& \mathrm{M}=\text { bending moment }=(6.75)(.707)(\mathrm{W}) \text { inch/pounds } \\
& \mathrm{C}=\text { distance from neutral surface }=.339 \text { inch } \\
& I=\text { moment of inertia of area }=.7037 \text { inch }^{4} \\
& \mathrm{~S}_{\mathrm{b}}=\frac{(6.75)(.707)(806)(.339)}{.0737}=17,700 \mathrm{psi}
\end{aligned}
$$

The tensile stress can be calculated as:

$$
S_{t}=\frac{P}{A}=\frac{(806)(.707)}{.625 \text { inch }^{2}}=912 \mathrm{psi}
$$

The combined stress is therefore:

$$
S_{\max }=S_{b}+S_{t}=18,600 \mathrm{psi}
$$

The margin of safety is:

$$
M S=\frac{30,000}{10,600}-1=051
$$

2.11.2.2 Free Drop

AEC Regulation $10 C F R$ - Part 71, stipulates that the cask must withstand a fall of 30 feet to a hard, unyielding surface. The impact forces resulting from such a fall are presented in Table 2.3.

(a) Top End

In the event of a fall on the top of the cask, the cask would experience a maximum impact force of 87.5 G . It was conservatively assumed that no attenuation to this shock force would occur in the cask and that the basket would, therefore, also experience a force of 87.5 G . In the inverted position, the inertia force of the modified basket would be resisted by the two lifting bars. It is assumed that both bars strike the top of the cavity simultaneously and half of the force is resisted by each bar. Thus, the impact force on one bar is:

$$
F=g w=\frac{(87.5 \mathrm{G})(269 \text { pounds })}{2}=11,770 \text { pounds }
$$

The critical buckling load for a column in compression is given by Roark ${ }^{(14)}$ as :

$$
P^{\prime}=\frac{\pi^{2} E I}{(0.71)^{2}}
$$

where

$$
\begin{aligned}
P^{\prime} & =\text { critical buckling load, pounds } \\
E & =\text { modulus of elasticity, } 28 \times 10^{6} \mathrm{psi} \\
1 & =\text { length of bar, } 6.75 \text { inches } \\
I & =\text { molicht of inertia about bending axis } \\
& =.0737 \text { inch }^{4} . \\
P^{\prime} & =\frac{\pi^{2}\left(28 \times 10^{6}\right)(0.0737)}{[0.7(6.75)]^{2}}=9.12\left(10^{5}\right)
\end{aligned}
$$

[^1]The maximum compressive stress on the bar is:

$$
s_{c}=\frac{11,770}{(.625)}=18,830 \text { psi }
$$

The margin of safety for yielding in compression is:

$$
M S=\frac{35,000}{18,830}-1=0.86
$$

(b) Bottom End

In the event of a bottom impact, the cask would experience a maximum impact force of 368 G . The 15 inch diameter spacer can must resist the impact force of the rest of the basket and the fuel elements. The combined weight of these two components is 347 pounds. The force which must be resisted by the spacer can is:

$$
F=(368)(347)=128,000 \text { pounds. }
$$

Assuming this force is evenly distributed around the top edge of the can, Roark ${ }^{(15)}$ gives the formula for the critical buckling stress as:

$$
s=\frac{1}{\sqrt{3}} \frac{}{\sqrt{1-v^{2}}} \frac{t}{r}
$$

where

$$
\begin{aligned}
& E=\text { elastic modulus }=28\left(10^{6}\right) \text { psi } \\
& v=\text { Poisson's ratio }=0.3 \\
& t=\text { wall thickness }=0.12 \text { inch } \\
& r=\text { radius of can }=7.5 \text { inches }
\end{aligned}
$$

$$
S=\frac{1}{\sqrt{3}} \frac{\left(29 \times 10^{6}\right)}{\sqrt{1-(.3)^{2}}} \frac{(0.12)}{(7.5)}=272,000 \mathrm{psi}
$$

The stress in the can is:

$$
s=\frac{128,000 \text { pounds }}{\pi(15)(0.12)}=22,600 \mathrm{psi}
$$

By inspection, the margin of safety for buckling is large.

The margin of safety for yielding in compression is:

$$
M S=\frac{35,000}{22,600}-1=0.55
$$

The potential of the fuel elements for puncturing the $1 / 2$ inch thick stainless steel plate can be evaluated by considering the shear stress produced during impact,

$$
\text { Shear strength }=\frac{\text { load for rupture }}{\text { area of material sheared }}
$$

For the case of a fuel rod lower end guide puncturing the $1 / 2$ inch plate, the shear area would be:

$$
A=(0.5)(\pi)(2.06)=3.24 \text { inches }^{2}
$$

The impact load for one fuel element is:

$$
\begin{aligned}
& F=(368 \mathrm{G})(9.25 \text { pounds })=3,400 \text { pounds } \\
& \frac{F}{A}=\frac{3,}{3 .} \frac{400}{24}=1,050 \mathrm{psi} .
\end{aligned}
$$

The ultimate shearing strength of stainless steel is $40,000 \mathrm{psi}$. By inspection, the margin of safety against rupture is large. The $1 / 2$ inch plate is attached to the spacer can by a continuous weld. The shear stress in this weld can be computed as:

$$
s_{s}=\frac{3}{0.707 \mathrm{hI}}
$$

where

$$
\begin{aligned}
& \mathrm{P}=\text { impact load from fuel elements }=\mathrm{ngw} \\
& \mathrm{n}=\text { number of elements }=12 \\
& \mathrm{~g}=\text { impact force }=368 \mathrm{G} \\
& \mathrm{w}=\text { element weight }=9.25 \text { pounds } \\
& \mathrm{h}=\text { size of weld, } 0.18 \text { inch } \\
& 1=\text { length of weld }=-(15) \\
& \mathrm{S}_{\mathrm{s}}=\frac{(12)(368)(9.25)}{(0.707)(0.18)(15)(\pi)}=6,820 \text { psi }
\end{aligned}
$$

Assuming the ultimate shear stress for the weld to be the same as virgin metal, the margin of safety for shearing the weld is:

$$
M S=\frac{40,000}{6,820}-1=4.9
$$

The ultimate load that the plate can support before collapse is given by Roark ${ }^{(16)}$ as:

$$
W u=S Y(2.814) \pi t^{2}
$$

The plate is assumed to have fixed edges since it s welded all arvund to the spacer can $1-3 / 4$ inches below the rigid bottom of the original basket. It has been shown that the yield strength
for impact loading is approximately 11 percent highar than the static yield stress ${ }^{(9)}$. Therefore, the load that the plate can support is:

$$
\begin{aligned}
W u & =(30,000)(1.11)(2.814)(\pi)(0.5)^{2} \\
& =73,500 \text { pounds } .
\end{aligned}
$$

Since the impact load from the fuel elements is (12)(368)(9.25) $=40,900$ pounds, the margin of safety for failure is:

$$
M S=\frac{73,500}{40,900}-1=0.80
$$

Assuming that the plate does not yield, the maximum deflection is given by Roark ${ }^{(17)}$ as:

$$
y_{\max }=\frac{3 W\left(m^{2}-1\right) a^{2}}{16 \pi E m^{2} t^{3}}
$$

where

$$
\begin{aligned}
W & =\text { load }=40,900 \text { pounds } \\
m & =\text { reciprical of Poisson's ratio }(=1 / 0.3) \\
a & =\text { radius of plate }(=7.5 \text { inches }) \\
t & =\text { plate thickness }(=1 / 2 \text { inch }) \\
E & =\text { elastic modulus }=28\left(10^{6}\right) \text { psi } . \\
Y_{\max } & =\frac{3(40,900 \text { pounds })\left(3.33^{2}-1\right)\left(7.5^{2}\right)}{16 \pi\left(28 \times 10^{6}\right)\left(3.33^{2}\right)\left(0.5^{3}\right)} \\
& =0.0357 \text { inch } .
\end{aligned}
$$

The haximum stress under this loading is:

$$
S_{\max }=\frac{3 \mathrm{~W}}{4 \pi t^{2}}=\frac{3(40,900)}{4 \pi(0.25)}=39,000 \text { psi }
$$

This occurs at the outer edge. It is seen that the stress calculated is approximately 17 percent above the yield stress of stainless steel under impact conditions. Therefore, the deflection as calcula ed above, using equations based on elastic theory, is not exact. However, since the stress calculated is only 17 percent grater than the yield stress, the degree of plastic Yielding and thus deflection beyond 0.0351 inches will be small. If the plastic yielding is assumed to increase the deflection by as much as 50 percent, the total deflection of the center of the plate will be about 0.053 inch. It is estimated that the fuel elements can be displaced vertically, about 0.25 inch, without affecting the criticality.

Thus, the margin of safety is about

$$
M S=\frac{0.250}{0.053}-1=3.7
$$

2.11.3 BMI-1 Basket Modified for Pulstar Fuel

The only madifications made for shipment of the fuel from the Seate University of New York were to the flel basket. Therefore, the cask itself meets all the structural requirements as shown in current licenses for the shipment of Pulstar type fuels. The analyses presented in this section show compliance of: the modified basket with the regulations of $10 C F R$-Part 71. The applicable sections from those regulations affecting licensability of the modified basket are as follows:

```
Section 71.31(c) General Standards, Lifting Device
Section 71.36(a) Standards for Hypothetical Accident
    Conditions
```

The details of the modified basket for the shipment of fuel from the State University of New York to the Idaho Chemical Processing Plant are shown in BMI Drawing Number 00-001-376, Rev. A. The naterial used in the basket is Type 304 stainless steel. The mechanical properties used in the analysis are presented in Table 2.7.

TABLE 2.7 PROPERTIES OF TYPE 304 STAINLESS STEEL

Property	Design Stress, psi
Tensile yield stress	30,000
Tensile ultimate stress	75,000
Compressive yield stress	35,000
Shear yield stress	20,000
Shear ultimate stress	40,000
Bearing yield stress	50,000

The calculated weight of the modified basket is 345 pounds. Each fuel canister weighs approximately 50 pounds.

2.11.3.1 Lifting Devices

The regulations state that the lifting devices should be able to support tiree times the weight of he loaded basket. This weight is calculated as (3) (950 pounds) $=2,850$ pounds. The force in each cable is $2,850 / 2=1,425$ pounds. A spacer bar between the cables is rcquired at this load level to prevent bending at the handles. The tensile stress in the handles is calculated as:

$$
S_{t}=\frac{P}{A}=\frac{1,425}{.50}=2,850 \mathrm{psi}
$$

The margin of safety is:

$$
M S=\frac{30,000}{2,850}-1=9.52
$$

2.11.3.2 Free 3rop

AEC Regulation $10 C F R$-Part 71 stipulates that the cask must withstand a fall of 30 feet to a hard, unyielding surface. The impact forces resulting from such a fall are presented in Table 2.3.

(a) Top End

In the event of a fall on the top of the cask, the cask would experience a maximum impact force of 87.5 G . It was conservatively assuned that no attenuation to this shock force would occur in tha cask and that the basket would, therefore, also experience a force of 87.5 G . In the inverted position, the inertia force of the modified basket would be resisted by the two lifting bars. It is assumed that both bars strike the top of the cavity simultaneously and half of the force is resisted by each bar. Thus, the impact force on une bar is:

$$
F=g w=\frac{(87.5 \mathrm{G})(345 \text { pound } s)}{2}=15,094
$$

The critical buckling load for a column in compression is given by Roark ${ }^{(14)}$ as:

$$
P^{\prime}=\frac{\pi^{2} E I}{(0.7 L)^{2}}
$$

where

$$
\begin{aligned}
P^{\prime} & =\text { critical buckling load, pounds } \\
E= & \text { modulus of elasticity, } 28 \times 10^{6} \mathrm{psi} \\
I & =\text { length of bar, } 6.75 \text { inches } \\
I= & \text { moment of inertia about bending axis } \\
& =.0737 \text { inch }^{4} .
\end{aligned}
$$

Since the impact force is 15,094 pounds, by inspection the margin of safety for buckling is large.

The maximum compressive stress on the bar is:

$$
s_{c}=\frac{15,094}{(.625)}=24,150
$$

The margin of safety for yielding in compression is:

$$
M S=\frac{35,000}{24,150}-1=0.45
$$

(b) Bottom End

In the event of a bottom impact, the cask would experience a maximum impact force of 368 G . T $~ \geq 15$ inch diameter spacer

2.94

can must resist the impact force of the rest of the basket and the fuel elements. The combined weight of these two components is 841 pounds. The force which must be resisted by the spacer can is:

$$
F=(368)(950)=349,600 \text { pounds }
$$

Assuming this force is evenly distributed around the top edge of the can, Roark ${ }^{(15)}$ gives the formula for the critical buckling stress as:

$$
S=\frac{1}{\sqrt{3}} \frac{E}{\sqrt{1-v^{2}}} \frac{t}{r}
$$

where

$$
\begin{aligned}
& E=\text { elastic modulus }=28\left(10^{6}\right) \text { psi } \\
& V=\text { Poisson's ratio }=0.3 \\
& t=\text { wall thickness }=0.25 \text { inch } \\
& r=\text { radius of can }=7.5 \text { inches }
\end{aligned}
$$

$$
s=\frac{1}{\sqrt{3}} \frac{\left(28 \times 10^{6}\right)}{\sqrt{1-(.3)^{2}}} \frac{(0.25)}{(7.5)}=566,490 \mathrm{psi}
$$

The stress in the can is:

$$
s=\frac{349,600}{\pi(15)(0.25)}=29,675 \mathrm{psi}
$$

By inspection, the margin of safety for buckling is large.
The margin of safety for yielding in compression is:

$$
M S=\frac{35,000}{29,575}-1=0.18
$$

The potential of the fuel canister for puncturing the $1 / 2$ inch thick stainless steel plate can be evaluated by considering the shear stress produced during impact,

$$
\text { Shear strength }=\frac{\text { load for puncture }}{\text { area of material sheared }}
$$

For the case of a fuel canister puncturing the $1 / 2$ inch plate, the shear area would be:

$$
A=2(3)+2(.125)(0.5)=3.125 \text { inches }^{2}
$$

The impact load for one fuel canister:

$$
\begin{aligned}
& F=(368 \mathrm{G})(50.4 \text { pounds })=18,547 \text { pounds } \\
& \frac{F}{A}=\frac{18,547}{3.125}=5,935 \mathrm{psi} .
\end{aligned}
$$

The resistance to shearing of stainless steel is $40,000 \mathrm{psi}$. The margin of safety against puncture $=\frac{40,000}{5,935}-1=5.74$.

The $1 / 2$ inch plate is attached to the spacer can by a continuous weld both top and bottom. The shear stress in this weld can be computed as:

$$
s_{s}=\frac{P}{0.707 \mathrm{hl}}
$$

where

```
P = impact load from fuel canisters = ngw
n = number of canisters = 12
g = impact force = 368G
w = canister weight = 50 pounds
```

$$
\begin{aligned}
& \mathrm{h}=\text { size of weld, } 0.375 \text { inch } \\
& 1=\text { length of weld }=\pi(15) \\
& \mathrm{S}_{\mathrm{s}}=\frac{(12)(368)(50.4)}{(0.707)(.375)(15)(\pi)}=18,580
\end{aligned}
$$

Assuming the ultimate shear stress for the weld to be the same as the parent metal, the margin of safety for shearing the weld is:

$$
M S=\frac{40,000}{18,580}-1=1.15
$$

The support plate requires beam support for the bottom end drop accident. While the $1 / 2$ inch plate can withstand the puncture load from the canister hoist fitting, the plate is not sufficiently thick to act as its own beam, nor is it practical from a weight or welding standpoint to increase the thickness. Therefore, three parallel, vertical webs have been welded to the bottom of the plate to stiffen it, and a vertical plate which acts as an intermediate support point for the beams and the plate has been welded to the inside of the cylinder. This plate provides a simple support only. The vertical plate and the cylinder walls are comparable to a standard 14 inch x 8 inch wide flange column with the same load capability.

The general arrangement is shown below.

For ease of analysis, the plate will be assumed to be simply supported at the cylinder walls.

Four loading cases will be considered for the canisters. Case 1 will orient the canister base plates perpendicular to the direction of the three support beams. Case 2 will orient the canister base plates parallel to the beams as shown below. Cases 3 and 4 are discussed later.

Case 2

Case 1 permits the consideration of the load as uniform on a continuous, multi span beam. This establishes a bending moment relationship for Case 2 as point loaded. A single vertical web, perpendicular to the three cross beams provides simple support to the plate upon which the canisters rest. The base plate is welded continuously, top and bottom, to the cylinder wall. The three support beams provide stiffness to the base plate enabling it to transmit half of the canister loads into the cylinder walls. The other half of the load is transmitted to the vertical web and thence into the cylinder walls and the cask bcttom.

Assume the center portion of the plate carrying eight of the canisters to be a separate, simply supported, continuous beam with five supports as illustrated below. The load wl represents the weight of the canister (50.4 pounds) times the g force (368).

* $1 / 2$ of load is carried by the center web shown in dotted outline.

Neglecting the support from the center web and the continuity of the plate at the sides, consider the bending stress in the plate as a beam. The maximum moment occurs at beams 1 and 3 . The assumed width is 7.0 inches.

$$
\begin{aligned}
& I=\mathrm{bh}^{3} / 12=(7)(0.5)^{3} / 12=.073 \text { inch }^{4} \\
& \mathrm{fb}=\frac{\mathrm{Mc}}{I}=\frac{(7,950)(.25)}{.073}=27,257 \mathrm{psi}<75,000 \mathrm{psi} \\
& \text { ultimate } .
\end{aligned}
$$

The remaining half of the load is carried by the center web as a compression load. The web and the cylinder walls form an I section. This and other loads on the web will be summed up later.

Case 2 loads are based on the relationship of center span moments for uniformly loaded beams and point loaded beams. In this analysis, the center span moments are assumed to be three times the Case 1 moments.

On that basis, the maximum bending moment of 7,950 inchespounds for Case 1 becomes, $(1.5)(7,950)$ or 11,925 inches-pounds. The area moment of inertia is still .073 inch ${ }^{4}$. The bending stress at the sipport is then:
$(1.5)(27,257)=40,885 \mathrm{psi}<75,000$ psi ultimate

Summation of Loads on Center, Vertical Web. The center web, stabilized by the cylinder walls, carries one-half of the load from the eight canisters along the center web, and approximately 50 percent of the load from the remaining four canisters. The web and the walls form a wide flange column. The load is imparted to the web by the plate-beams and by direct bearing of the plate between the beams.

The shear at each of the supports is shown by:

At $1,5\left(\frac{11}{28}\right)(18,500)=7,287$ pounds

At $2,4\left(\frac{17}{28}+\frac{15}{28}\right)(18,550)=21,200$ pounds

At $3,\left(\frac{13}{28}+\frac{13}{28}\right)(18,550)=17,225$ pounds
45,712 pounds $\times 2=91,424$ pounds

The continuous beam shear loads from eight canisters is 91,424 pounds and an assumed 50 percent load from the remaining four is $(.50)(4)(18,550)=37,100$ pounds for a total of 128,524 pounds. This load is assumed to be uniformly distributed on the top edge of the web. Neglecting the cylinder "flanges" the least radius of gyration ρ is found,

$$
\begin{aligned}
& I=\frac{(14.75)(.5)^{3}}{12}=.1536 \text { inch }^{4} \\
& A=(14.75)(.5)=7.375 \text { inches }^{2} \\
& O=\sqrt{\frac{.1536}{7.375}}=.1443 \text { inch }
\end{aligned}
$$

The allowable load is found from $P / A=C \pi^{2} E /(L / P)^{2}$

$$
\begin{aligned}
P & =(7.375)(1.5)\left(\pi^{2}\right)\left(28 \times 10^{6}\right) /(13.25 / .1443)^{2} \\
& =362.584 \text { pounds }
\end{aligned}
$$

\therefore The web, stabilized by the cylinder will support the 128,524 pounds.

Case 3. The bending of the plate-beam combinations at 90 degrees to the foregoing analysis is presented next. The beams are more effective in this orientation. The center vertical web again reacts a large share of the canister loads as the center support for the beams.

2.102

The beam plate area monent of inertia is based on the center 8 inch plate section, the center beam and one-half of each of the side beams.

This beam plate section carries eight of the twelve canisters. The other canisters are carried, two each, by a beam plate made up of the remaining half of the side beam, the cylinder wall and the section of the plate between the side beams and the cylinder wall.

		A	Y	AY	AY^{2}	Io, ($\left.\mathrm{bh}^{3} / 12\right)$
1	(8) (.5)	4.0	3.25	13.0	42.25	. 0833
2	(.75)(3)	$\underline{2.25}$	1.50	3.375	5.06	1.6875
		6.25		16.375	47.31	1.771
$\bar{Y}=\frac{A Y}{A}+2.62$ inches						
$I_{N A}=I 0+A Y^{2}-A Y \bar{Y}$						

$$
\begin{gathered}
f_{b}=\frac{M c}{I}=\frac{(68,400)(2.62)}{6.18}=28,998 \mathrm{psi}<75,000 \mathrm{psi} \\
M . S .=\frac{75,000}{29,000}-1=1.58 .
\end{gathered}
$$

The shear at the center support is $(10 / 8)(W 1)=92,750$ pounds. This is approximately the same value determined for Cases 1 and 2 .

The side beam loads are illustrated as follows: (The value of W is found by $(50.4)(368)=18,547$)

The area moment of inertia of the plate-beam is found below.

$$
\begin{aligned}
& \bar{Y}=\frac{A Y}{A}=\frac{6.00}{2.25}=2.67 \text { inches } \\
& I_{N A}=I_{C}+A Y^{2}-A Y \bar{Y} \\
& =.593+17.532-(6.0)(2.67) \\
& =2.105 \text { inches }^{4} \\
& f_{b}=\frac{M c}{I}=\frac{(14,500)(2.67)}{2.105}=18,390 \text { psi }<75,000 \text { psi ultimate. } \\
& \text { Case 4. When the canisters are oriented } 90 \text { degrees to } \\
& \text { the foregoing, the plate alone is sufficient to bear the loads } \\
& \text { between the side wall and the side beam. }
\end{aligned}
$$

The area moment of inertia of the plate is found by:

$$
\begin{aligned}
& 2.105 \\
& I=\frac{\mathrm{bh}^{3}}{12}=\frac{(3)(.5)^{3}}{12}=.031 \mathrm{inch}^{4} \\
& W=18,550 \text { pounds (at } 368 \mathrm{~g}^{\prime} \mathrm{s} \text {) } \\
& 1=30 \text { inches } .
\end{aligned}
$$

Assuming a fixed end beam in this case, with a uniformly distributed load,

$$
\begin{gathered}
M=\frac{W 1^{2}}{12} \text { where } W 1=W \\
=\frac{(18,550)(3)}{12}=4,640 \text { inches-pounds } \\
f_{b}=\frac{M c}{I}=\frac{(4,640)(.25)}{.031}=37,400 \text { psi }<75,000 \text { psi ultimate }
\end{gathered}
$$

```
Document: 2, 3, 4, 5,
    12, 14, 15,
    1 7
```


2.12 Appendix

2.12.1 References

(1) Metallic Materials and Elements for Aerospace Vehicle Structures, MII-HDBK-5A, Change Notice 2, Sections 2.8 and 8.1, July 24, 1967.
(2) Wojtaszak, I. A., "Deformation of Thin Cylindrical Shells Subject to Internal Loading", phil. Mag. 5.7, 18, (123), December, 1934, p 1099.
(3) Roark, R. J., Formulas for Stress and Strain, McGraw-Hill Book Co., 4th Ed., Equation 6, (1965), p 271.
(4) Nelms, H. A., "Structural Analysis of Shipping Casks, Vol 3, Effects of Jacket Physical Properties and Curvature on Puncture Resistance", Oak Ridge National Laboratory, ORNL-TM-1312, Vol 3, June, 1968.
(5) Lustman, B., and Kerze, F., The Metallurgy of Zirconium, p 626, McGraw-Hill Book Co., New York (1955).
(6) Tipton, C., Reactor Handbook, 2nd Ed., Vol I, Materials, p 727.
(7) Tipton, C., p 867.
(8) Roark, R. J., Equation 15, p 366.
(9) Brown, A. F. C., and Edmonds, R., "The Dynamic Yield Strength of Steel at an Intermediate Rate of Loading", Proceedings of the Institution of Mechanical Engineers, 159, 1948, p 11-23.
(10) Roark, R. J., Case 18, p 152.
(11) Private communication from Dr. Martin N. Haas, Associate Director, Nuclear Science and Technology Facility, State University of New York at Buffalo to Mr. R. Denney, Allied Chemical Company, 550 Second St., Idaho Falls, Idaho, 83401, File Ref. J-759.
(12) Roark, R. J., Case 41, p 227.
(13) Nuclear Regulatory Commission, Packaging of Radioactive Material for Transportation and Transportation of Radioactive Material Under Certain Conditions; Compatibility with IAEA Regulations, Proposed Rules loCFR 71, August, 1979.

```
        2.107
    (14) Roark, R. J., Case 25, p 352.
    (15) Roark, R. J., p 243.
    (16) Roark, R. J., Case 6, r 217.
    (17) Baumeister, T., Mark's Standard Handbook for Mechanical
        Enqineers, 7th Ed., McGraw-Hill Book Co., New York, p 13-25
        (1966).
```


[^2]DEL / Cm

$$
\text { REV. A, } 3-28-80
$$

QUALITY ASSURANCE DOCLDE:T

LIQUID PENETRANT INSPECTION
 WORK COMPLETION RECORD

BATTELLE

Columbus Laboratories
505 King Avenue Columbus, Ohio 43201

Prepared by

> D. E. Dozier Pe

April 2, 1280
Date

REV. A, 3-2.8-80


```
2.110
bIQUID PENETRANT INSPECTION
WORK CONPLETION RECORD
```

1. Scope

This record documents the implementation and results of a liquid penetrant inspection.
2. Reference
2.1 BCL Hot Lab CA Manual (Sections HL-X-1 and HL-I-1).
2.2 HL-PP-60 Liquid Penetrant Inspection.
3. Work Completion Records
3.1 Work completion. records shall be documented by the certified inspector performing the inspection and reviewed by a Q. A. respresentative.
3.2 Document the inspection on Record Form WC-60.

REV. A, 3-28-80

$$
2 .+11
$$

RECORD FORM WC-60
LIQUID PENETRANT INSPECTION
+2/i/1-1 init is

1. Item inspected \qquad有备
2. Inspection method (check method used).
2.1 Visual Dye, i.e. spotcheck \qquad
2.2 Fluorescent Penetrant
Initial Date
3. Inspection performed as per HL-PP-60.

4. Item approved as per acceptance criteria in HL-PP-60.

5. Defects observed: !-Y/2
\qquad
\qquad
6. Corrective action taken on defects:
\qquad
\qquad
\qquad
6.1 Reinspect after corrective action and document on another Record Form WC -60.
7. Inspection conducted by:

8. Reviewed by:

Date \qquad

2 12.3 Description of MONSA Computer Program

MONSA (multilayer Orthotropic Nonsymmetric Shell Analysis) is a digital computer program written in FORTRAN IV. It is based on the multisegment numerical integration method for the analysis of boundary value problems.

MONSAS determines the displacements, forces, and stresses for a composite shell of revolution. A composite shell is defined as a shell composed of a number of distinct parts which may have the following shapes: cylindrical, spheroidal, ellipsoidal, paraboloidal, conical and toroidal. The shell wall may be composed of four different layers of orthotropic materials. The shell layers are specified by giving their location with respect to a reference surface.

Mechanical and temperature loadings can be applied to the shell. For nonsymmetric loadings, the user must determine the Fourier harmonics of the loadings and perform the appropriate number of shell calculations. Temperatures can vary along the shell meridian as well as through the thickness of the wall. The latter can be accomplished by specifying the temperature on the inner and outer surfaces and on three internal surfaces of the shell wall. A shell spinning about its longitudinal axis can be analyzed. A shell subjected to harmonically varying mechanical or temperature loadings can also be analyzed.

MONSAV will determine the natural frequencies and mode shapes of composite shells of revolution described above. The procedure is based on an iterative technique in which a trial frequency is picked and a determinant is calculated. The trial frequency becomes a natural frequency when the determinant vanishes.
A. KALNINS

Assistant Prafessor af Engineering and Appllied Science,

Yale University, New Haven, Conn. Mem. ASME

Analysis of Shells of Revolution Subjected to Symmetrical and Nonsymmetrical Loads'

The boundary-alue probien of deformation of a rotutionally symmetric steil is stated in terms of a new system of firt order ardinary differential equations which can be derited for any consistent linear bending theory of sheils. The dependent turiables contuined in this system of equations are those quantities which appear in the natural botndury conditions on a rotationally symmetric edge of a shell of recolution. it numerical method of solution rhich combines the adrantages of both the direct integration and the finite-difference approach is deceloped for the analysis of rotationaily symmetric shells. This method eliminates the loss of accuracy encountered in the urual application of the direct integration approath to the analysis of sheils. For the purpose of illustration, stresses and displacements of 4 pressurised torus are calculated and detatied numerical results are presented.

THE sheil of revolucic. . . mportant structural element, and the literature devoted to its analysis is extensive. With regard to axisymmetric deformation, various methods have been employed to obtain solutions of the bending theory of sheils ui revviution by means of the 日. Reissner-Meissner equations. For example, Naghdi and DeSilva [1]² use asymptotic integration; Lohmann \{2], Müns [3], Klingbeii (4), employ a direct numeric i integration approach; Galletly, et al. [5] find the solu-

[^3]tion for an ellipsoidal shell of revolution by both the finite-difference and the Runge-Kutta method; and Peany [6], Radkowski, e: al. [7], and Sepetoski, et a). [8] utilize the finite-diference terhnique. A number of additional references which deal with the solution of the H. Reismer-Meissner equations can be found in the papers cited.
For probiems of bending in the absence of axial symmetry, a reduction of the governing equations of arbitrary shells of revolution to a system of four second-order differential equations invulving four unknowns has been carried out by Budiansky and Radikowski [9]. A method for obtaining the solution of these equations is given in [9] which is an extension of that employed in [7] and [8]. Furthernore, treatments of nonsymmetric defurmation of shells of revolution are found in papers by Goldbery and Bogdanoff [10], where a system of first-order differential equations for conical sheils is derived, and by Steele [11] and Schile [12], where solutions of certain types are ennsidered by means of saymptotic integration.
Among the papers which employ numerical analysis, two dif-

Nomenclature-

$$
\begin{aligned}
& \phi, \theta, 5=\text { coordinates of a point of } \\
& \text { sheil } \\
& s=\text { distance measured from } \\
& \text { an arbitrary origin } \\
& \text { along meridian in } \\
& \text { positive direction of } \phi \\
& \text { to. to, } n=\text { unit vectors tangent to } \\
& \text { coordinate iurves (see } \\
& \text { Fig. 1) } \\
& R_{o}, R_{\theta}=\text { principal radii of curva- } \\
& \text { ture of middle surface } \\
& r=\text { distance of a point on } \\
& \text { mididle surface from } \\
& \text { axis of symmetry } \\
& E=\text { Young's moriuins } \\
& y=\text { Poisson's ration } \\
& h=\text { thickness of sheil } \\
& \alpha=\text { srefficient of therrual ex- } \\
& \text { pansion } \\
& D=E h^{2} /\left[12\left(1-p^{2}\right)\right. \\
& \kappa=E h /\left(1-\nu^{2}\right) \\
& \text { 's. } v_{3}, 4=\text { ivmponents of displace } \\
& \text { ment of middle surface } \\
& \beta_{\infty} \beta_{0}=\text { angie of rotation of nor- } \\
& \text { mal } \\
& p_{o n} p_{p}, p=\text { components of mechani- } \\
& \text { cal surface loads } \\
& m_{\phi}, m_{t}=\text { components of moment } \\
& \text { of surface inads } \\
& T, T_{\mathrm{t}}, T_{1}=\text { temperature increment } \\
& \text { and temperature re- } \\
& \text { suitants } \\
& X_{\phi r} V_{\phi}, V_{\phi-}=\text { membrane stress resuit- } \\
& \text { ants } \\
& M_{0,}, K_{*}, M_{* 0}=\text { moment resultants } \\
& \text { Qor } Q_{0}=\text { transverse-shear resuit- } \\
& \text { ants } \\
& X, Q=\text { effective-shear resultants } \\
& J=1 / R_{0}+\sin \phi / r \\
& U=1 / R_{0}+\nu \sin \phi / c \\
& H=1 / R_{0}-\sin \phi / r \\
& n=\text { integer, designating } n \text {th } \\
& \text { Fonrier component } \\
& \Sigma=\text { length factur }
\end{aligned}
$$

```
().z = derivative with respect to
                any coordinate
    m= order of syztem of equa-
                tions
    J= number of segments
    I}=\mathrm{ independent varizible,
                either Qors
    2. = end point of segment
F
        tal varisbles
A(x)=(m,m) matrix, cueffi-
        cients of differential
        equations
B(x)=(m, ) matrix, nonhu- mogeueous coefficients
\(Y(s)=(m, m)\) matrix, homngeneous solutions
\(Z(x)=(m, 1)\) matrix, nomhumogenenus solutions
\(C=(m, 1)\) matrix, arhirary constants
\(I=\) unt matrix
```

erent methods of solution of the boundary-value probiem of deformation of sheils must be recognized; i.e., the direct integrstion (2-5] and the finite difference approach [5-9]. While the direct integration approach has certain important advantages, it also has a serious disadvantage; i.e., when the length of the sheil is increased, a loss of accuracy invariably results. This phenomenon was cleariy pointed out in [8]. The loss of accuracy does not resuit from accumulative errors in integration, but it is caused by the subtraction of almost equal numbers in the process of determination of the unknown boundary values. It follows that for every set of geometric and material parameters of the sheil there is a critical length beyond which the solution loses ail accuracy. The advantage of thi finite-difference approach over direct inteeration is that it caa aveid such a loss of accuracy. It is conciuded from [8] that if the solution of the system of algebraic equations, which result from the finite-difference equations, is obtained by means of Gaussian elimination, then no loss of accuracy is experienced if the length of the shell is incressed.
This paper is concerned with the general problem of deformation of thin, eiastic sheils of revolution, symmetrically or nonsymmetrically losded, and with the development of a numerical method of its solution, which employs the direct iategration technique, but eliminates the loss of accuracy owing to the length of the shell. The method developed here is applicabie to any twopoint boundary-value probiern which is governed within an inteival by a system of m first-order linear ordinary differential equat. - : ogether with $m / 2$ boundary conditions prescribed at each end of the interval. It is shown that the boundary-value probiem of a rotationaily symmetric shell can be stated in this form for any consistent linear bending theory of shells in terms of those quantities which appear in the natural boundary conditiors on a rotationally symmetric edge.

The method of this paper offers definite advantages over thie finite-difference approach. The main advantages are: (a) It can be applied conveniently to a large system of first-order differential equations, and (b) it permits as automatic seiection of an optimum step size of integration at each step according to the desired accuracy of the solution. The first point means that the equations of the theory of shells of revolution, characterized in terms of first-order diferential equations, can be integrated directly, and further reduction of the equations to a smaller aumber of unknowns is not necessary. The second point seems to be of grest importance if a truly general method is desired which is expected to hold for arbitrary loads, shail configurations, thickness, and so on. With the firite-difference spprosch, a meaningful a priori estimate of the step size is often difficuit, if not impossible, especially when rapid changes and discontinuities in the sheil parameters are encountered. If a predictor-eorrector direct integration approseh is employed with the method of this paper, then the step size can be selected sutomatically at ench step which ensures a prescribed accuracy of the solution and optimum efficiency in the caiculation.

The merhod green in this paper can be divided into two parts: (a) Direct irregration of $m+1$ initial value probiems over preselected segments of the total interval, and (b) the use of Gaussian elimination for the solution of the resulting system of matrix equations. The first part of this method is a generalization of that which is employed over the whole interral in [2-3]. Here, however, the :nitial value problems are defined over segments of the total interval, the lengths of which are within the range of the applienbility of the direct integration approach. After the initial value probiems are integrated over these segments, continuity conditions on all variables sre written at the endpoints of the segments, and they constitute a simuitaneous system of linear matrix equations. This system of matrix equations is then solved directly by menns of Caussian eiimination. The result is that the direct integration method is employed and at the same time there is no ioss of accuracy because the lengths of the segments are seiected in such a way that the solutions of the initial value probiems are kept sufficiently amall. A convenient parameter is
given from which the apprupriate lengths of the segraents can be estimated easily.

In the application of this raethod to the analysis of rotationally symmetric shells, the boundary-value problem is formulated in terms of first-order ordinary differential equations. Fur this purpose, starting with the erusations of the linear classical bending theory of shells in which we thermal effects are included, first a system of equations is derived in the form oi eight partial differential equations involving eight unknowns in suck i manner that the system of enuations contains no derivatives of the :material parameters, thickness, or principal radii of curvature. The absence of the derivatives in the coefficients of the differential equations permits the calculation of the coefficients at a point without regard to the values of the sheil oarameters at preceding or following points. Then, assuming separability with respect to the independent variables, the desired syastem oi eight first-urder ordinary diffarential equations is obtained which together with the boundary conditions on two edges of the sheil constitute 3 two-point boundary-value problem. The derived system of equations is appiicable to rotationally symmetric sheils with arbitrary meridional variations (including discontinuities) in Young's modulus, Poisson's ratio, radii of curvature, thiciness, and coefficient of thermal expansion. While such a system of equations is derived in this paper only for une version of the classical theory of shells, it can be derived in the same way for ail other consistent linear jending theories of sheils, inciuding those which account for the dynamic effects, transverse shear deformation, nonhomogeneity, and snisotropy.

Finally, with the use of the method and the equations given in this paper, stresses and displacements are calmulated in a thinwailed torus subjected to internal pressure. The solution shows that the meridional membrane stress is imost identical to that predicted by membrane theory, but ti st the bending stresses aven for a relativeiy thin torus may not te negi: gible.

Geometry and Basic Equations

The position of a point of a shell of revoluti,n is given by the coordinates θ, ϕ, ζ measured along the t vet of anit vectors t_{4}, t_{0}, n, respectively, as shown in Fig. 1. The shape if the shell is determined by specifying the two principal radii of curvature R_{ρ}, R_{d} of the middle surfac; as functions of ϕ. Instead of R_{9}, it is convenient ω use the d stance r from a point on the middle surface to the z-axis; from. 7 g . 1 it foilows that
$=R_{g} \sin \phi$
If the generating curve of the middle surface is given by $r=-(z)$ then

Fig. 1 Elament of a shall af revalution

$$
\begin{align*}
& R_{0}=-\left[1+\left(\frac{d r}{d z}\right)^{2}\right]^{1 / t} / \frac{d^{2} r}{d z^{2}} \\
& R_{0}=r\left[1+\left(\frac{d z}{d z}\right)^{2}\right]^{1 / 2} \tag{2}
\end{align*}
$$

The foilowing analysis requires frequent differentiation of r (or R_{d}) with respect to ϕ, and it is convenient to express his derivative by the Codazzi relation

$$
\begin{equation*}
\frac{d r}{d \phi}=R_{o} \cos \phi \tag{3}
\end{equation*}
$$

The displacement components of the midale surface of itu shell and the rotations of the normal are defined by the expression of the displacement vector U of the form

$$
\begin{equation*}
U=\left(u_{\theta}+\zeta \beta_{\theta}\right) t_{\theta}+\left(u_{e}+\zeta \beta_{\theta}\right)_{\theta}+u n \tag{4a}
\end{equation*}
$$

The sheil is subjected to the mechanical load vector p, which is measured as foree per unit area of the niddle surface and written as

$$
\begin{equation*}
p=p_{0} t_{0}+p_{0} L_{0}+p n \tag{4b}
\end{equation*}
$$

and the moment vector m, which is measured as moment per unit area and given bs

$$
\begin{equation*}
m=-m_{\phi} t_{\phi}+m_{\rho} t_{e} \tag{tc}
\end{equation*}
$$

With reference to Fig. 1, equations (4) serve the purpose for establishing the positive direct' ns of the components of the disp 'scement and mechani- ad vectors.

The temperature ..sution in the sheil caused by some thermal loads is accounted for in the usual manner by meuns of the integrated temperature effect of the form

$$
\begin{align*}
& T_{e}(\phi, \theta)=\frac{1}{h} \int_{-\frac{h}{2}}^{\frac{h}{2}} T(\phi, \theta, \zeta) d \zeta \tag{5a}\\
& T_{i}(\phi, \theta)=\frac{12}{h^{2}} \int_{-\frac{h}{\hbar}}^{\frac{h}{2}} ; T^{\prime}(\phi, \theta, \zeta) d \zeta \tag{3b}
\end{align*}
$$

The derivation of a new set of equations carried out in the next section is based o.t a linear cisssical theory of sheils given by Reisener [13]. Wien referred to arbitrary sheils of revolution, the goveraing system of equations of [13] can be sritien in the foilowing form. Equations of equilibrium:

$$
\begin{align*}
& X_{\theta, \phi}+\frac{r}{R_{\theta}} N_{\phi \theta}+2 \cos \phi N_{\phi \theta}+Q_{\theta} \sin \phi+r p_{\theta}=0 \tag{6a}\\
& N_{\phi-\theta}+\frac{r}{R_{\phi}} N_{\phi-\phi}+\left(N_{\phi}-N_{\phi}\right) \cos \phi+\frac{r}{R_{\phi}} Q_{\phi}+r p_{\phi}=0 \tag{6b}\\
& Q_{0 . \theta}+\frac{r}{R_{*}} Q_{\phi-\phi}+Q_{\theta} \cos \phi-N_{t} \sin \phi-\frac{r}{R_{*}} N_{*}+T p=0 \tag{7}\\
& Y_{\theta . \theta} \div \frac{r}{R_{\theta}} Y_{\theta \theta \cdot \theta}+2 \cos \phi M_{\theta_{\theta}}-r Q_{\theta}+r m_{\theta}=0 \tag{82}\\
& M_{\phi \theta-\theta}+\frac{r}{R_{\theta}} M_{\phi . \phi}+\left(M_{\theta}-M_{\theta}\right) \cos \phi-r Q_{\theta}+m_{\phi}=0 \tag{sb}
\end{align*}
$$

Stress-strain reiations:

$$
\begin{align*}
& X_{\theta}=K\left(\epsilon_{0}+\nu \epsilon_{0}\right)-(1+\nu) \alpha K T_{0} \tag{9a}\\
& X_{0}=K\left(\epsilon_{0}+\gamma \epsilon_{0}\right)-\left(1+\nu i \alpha K T_{0}\right. \tag{9b}
\end{align*}
$$

$$
\begin{align*}
& Y_{\theta \theta}=Y_{\theta \theta}=\left(1-\nu K A_{\theta}\right. \tag{9c}\\
& M_{\theta}=D\left(\kappa_{\theta}+\nu K_{\theta}\right)-\left(1+\nu \alpha D T_{1}\right. \\
& M=D\left(\kappa_{\theta}+\nu K_{\theta}\right)-1+\nu, \alpha D T_{1} \\
& M_{\theta \theta}=M_{\theta}=\left(1-\nu D K_{\theta_{\phi}}\right. \tag{10c}
\end{align*}
$$

Strain-displacernent relations:

$$
\begin{align*}
& t_{\theta} \quad{ }^{1} u_{s . \theta}+u_{0} \cos \phi+w \sin 0 . \tag{11a}\\
& \epsilon_{\theta}=\frac{1}{R_{\theta}}\left(v_{0.0}+v\right. \tag{11b}\\
& 2 \epsilon_{\theta_{\phi}}=\frac{1}{r}\left(u_{\phi, \theta}-u_{\phi} \cos \phi\right)+\frac{1}{R_{\theta}} u_{0.0} \tag{11c}\\
& x_{\theta}=\frac{1}{r}\left(\beta_{\theta, \theta}+\beta_{0} \cos \phi\right) \tag{12a}\\
& \kappa_{*}=\frac{1}{R_{\phi}} \beta_{\phi \cdot \phi} \tag{12b}\\
& 2 \kappa_{\theta \phi}=\frac{1}{r}\left(\beta_{\phi, \theta}-\beta_{\theta} \cos \phi\right)+\frac{1}{R_{\theta}} \beta_{\theta \cdot} \tag{12c}\\
& \beta_{\theta}=-\frac{1}{r} v_{0}+\frac{\sin \phi}{r} u_{c} \tag{13a}\\
& \beta_{\theta}=-\frac{1}{R_{\phi}} v_{. \phi}+\frac{1}{R_{\phi}} u_{\phi} \tag{13b}
\end{align*}
$$

The positive directions of the stress resultants in the foregoing equations are the same as the corresponding stresses on the edge of ths shell. The definitions of the stress resultants ate found in [13].
The order of the system of equations $(6)-(13)$ is eight with respect $\omega \phi$, and consequentiy it is possible to reduce $(6)-(13)$ to eight first-order differential equations which involve eight unknowns. If the eight unknowns are those quantities which enter into the natural boundary conditions at the edge $\phi=$ const, then the boundary-value problem of a rotationally symmetric shell can be completely stated in terms of these unknowns. For this reason, the eight differential equations, derived in the following sections, and the eight uniknowns are called the fundamental set of equations and the fundamental variables, respectively.

Derivation of Fundamental Set of Equations

According to the classical theory sheils, the quantiones *hich appear in the natural boundary conditions on a rowationally symmetric edge of a shell of revolution inciude the eriective shear resultants V and Q defined by

$$
\begin{align*}
& V=N_{t \phi}+\frac{\sin \phi}{r} M_{t_{0}} \tag{1+a}\\
& Q=Q_{\theta}+\frac{1}{r} M_{t \theta \cdot \theta} \tag{14b}
\end{align*}
$$

Thus, the fundamentai variables, which are-consistent with the theory of [13], are the four generalized displacenients $w, u_{s,}, u_{b}, 3_{c o}$ and the four generalized forces $Q, N_{o, N}$, and M_{0}.

In the derivation of the fundamental equations, it is more convenient to empioy the distance s, measured along the meridian of the sheil, rather than the angul-p ecordinate ϕ. H - aver, after the equations are derived, the priblem can sgaw be easily formulated in terms of ϕ by means of the relation

$$
\frac{1}{R_{0}} \frac{\partial}{\partial \phi}=\frac{\partial}{\partial s}
$$

As a preliminary step, it is necessary to express $V_{b}, M_{d}, M_{j_{0}}$ in terms of the fundamental variables. From (9a) it follows that
$x_{\theta}=x_{0}+K \frac{1-\nu^{2}}{r}\left(w \sin \phi+u_{\theta, \theta}+u_{0} \cos \phi\right)$

$$
\begin{equation*}
-\alpha K^{\prime}\left(1-\nu^{2}\right) r_{0} \tag{15}
\end{equation*}
$$

and from (10a) that

$$
\begin{array}{r}
M_{\theta}=\nu M_{\theta}+D \frac{1-\nu^{2}}{r}\left(-\frac{1}{r} w_{P \theta}+\frac{\sin \phi}{\tau} u_{\theta, \theta}+\beta_{0} \cos \phi\right) \\
 \tag{16}\\
-\alpha D\left(1-\nu^{2}\right) T_{1} \quad(16
\end{array}
$$

Elimination of $u_{d, a}$ and $u_{\text {, st }}$ from equation (12c) leads to an expression for $M_{s \infty}$ in the form

$$
\begin{align*}
3_{\theta \theta}=L D \frac{1-p}{2 r} & {\left[2 \beta_{0 . \theta}+\frac{2 \cos \phi}{r} u . \theta\right.} \\
& \left.+H u_{\theta} \cos \phi-J_{0 . \theta}\right]+\frac{L D}{K} \frac{\sin \phi}{r} N \tag{17}
\end{align*}
$$

where

$$
L=\frac{1}{1+\frac{\sin ^{2} \phi}{r^{2}} \frac{D}{K}}
$$

In the derivation of the four equations of the fundamental set which involve the derivatives of the stress resultants with respect to s, the use of (14) is essential. Elimination of Q_{p} from (6a) and ($5 a$) by means of ($14 a$) leads to

$$
\begin{align*}
& \therefore_{. \theta}=H \frac{\operatorname{co\theta } \phi}{r} M_{\theta \theta}-\frac{2 \cos \phi}{r} N-\frac{1}{r} N_{t . \theta} \\
& \quad-\frac{\sin \phi}{r^{2}} M_{\theta \cdot \theta}-p_{\theta}-\frac{\sin \phi}{r} m_{\theta} \tag{18}
\end{align*}
$$

Similarly, elimination of Q_{9} from (7) and (Sn) gives

$$
\begin{align*}
Q . \theta=-\frac{2 \cos \phi}{r^{2}} M_{\theta \theta . \theta} & -\frac{\cos \phi}{r} Q+\frac{\sin \phi}{r} N_{\theta} \\
& +\frac{1}{R_{\theta}} N_{\theta}-\frac{1}{r^{2}} M_{\theta . \theta \theta}-p-\frac{1}{r} m_{\theta . \theta} \tag{19}
\end{align*}
$$

Solving (6b) from No. there results

$$
\begin{align*}
& X_{\theta}=-\frac{1}{r} N_{1},-\frac{1}{r} f M_{t o \theta} \\
&+\frac{\cos \phi}{r}\left(X_{\theta}-N_{\phi}\right)-\frac{1}{R_{\phi}} Q-p_{0} \tag{20}
\end{align*}
$$

and it follows from (Sb) that

$$
\begin{equation*}
M_{0 . t}=-\frac{2}{r} M_{t o n}+\frac{\cos \phi}{r}\left(M_{\theta}-M_{0}\right)+Q-m_{0} \tag{21}
\end{equation*}
$$

Wherever secessary, $X_{s \theta}$ and Q_{0} were eliminated with the use of (11).

The fuadamental at of equations consists of (18)-(21), where $X_{\theta}, M_{b}, M_{\rho_{0}}$ can be replaced directly in ternis of the fundamental variables by ineans of $(15)-(17)$, and four additional equations in roiving the derivatives of $e_{c}, u_{\infty}, u_{\infty}, \beta_{\phi}$ with respect to s, which arc obtained from (13b), (11c), ($(1 b),(12 b)$, respectively. Zinally, the system of eight differential equations that governs the deformation of a sheil of revolution can be expressed in terms of the eight funilamental variables and written as

$$
\begin{align*}
\beta_{\phi, \Delta}=\frac{\nu}{r^{2}} v ., \theta-\frac{\nu \sin \phi}{r^{2}} u_{\phi, \theta}- & \frac{\nu \cos \phi}{r} \beta_{0} \\
& +\frac{1}{D} M_{\theta}+\alpha(1+v) T_{1} \tag{22d}
\end{align*}
$$

$$
-D(1-\nu) \frac{\cos \phi}{r^{2}}(1+\nu+2 L) \beta_{0 . \infty \theta}+U V_{0}-\frac{\nu}{r^{2}} M_{0 . \mu}
$$

$$
-\frac{L D \sin 2 \phi}{K r^{2}} N,-\frac{\cos \phi}{r} Q-p-\frac{1}{r} m_{\theta . \theta}
$$

$$
\begin{equation*}
-\alpha\left(1-y^{2}\right) \frac{1}{r}\left(K \sin \phi T_{0}-\frac{1}{r} D T_{\mathrm{L} \cdot \omega}\right) \tag{22}
\end{equation*}
$$

$$
\begin{aligned}
& N_{.}=\frac{1-\nu}{r^{2}}\left[H L D \frac{\cos ^{2} \phi}{r}\right. \\
& \left.-(1+\nu) K \sin \phi+(1+\nu) D \frac{\sin \phi}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}\right] E, \\
& -(1-\nu) \frac{\cos \phi}{r^{2}}\left[\frac{1}{2} L . D J H+(1+\nu) K\right] u_{0 . \theta} \\
& +\frac{1-\nu}{r^{2}}\left[\frac{1}{2} L D H^{2} \cos ^{2} \phi-(1+\nu)\left(\kappa+\frac{D \sin ^{2} 0}{r^{2}}\right) \frac{\partial^{2}}{\partial \partial^{2}}\right] u_{4} \\
& -D(1-p) \frac{\cos \phi}{r^{2}}\left[(1+p) \frac{\sin \phi}{r}-L H\right] 3_{0 .}, \frac{\nu}{r} X_{0 .}
\end{aligned}
$$

$$
\begin{align*}
& N_{\epsilon . .}=(1-\nu) \frac{\cos \phi}{r^{2}}\left[\frac{1}{r} L D S \frac{\partial^{2}}{\partial \theta^{2}}+(1+p) K \sin \phi\right] w \\
& +\frac{1-\nu}{r^{2}}\left[(1+\nu) K \cos ^{2} \phi-\frac{1}{2} L D J^{2} \frac{\partial^{2}}{\partial A^{2}}\right] u_{0} \\
& +(1-p) \frac{\cos \phi}{r^{2}}\left[\frac{1}{2} L D J H+(1+p) K\right]_{0 . \theta}+J L D \frac{1-p}{r^{2}} \beta_{0 . A} \\
& -\frac{1}{R_{\theta}} Q-(1-p) \frac{\cos \phi}{r} N_{\phi}-\frac{1}{r}\left(1-\frac{L D J \sin \phi}{h_{r}}\right) \because_{\text {, }} \\
& -p_{\phi}-\alpha\left(1-\nu^{2}\right) h^{\cos \phi} \frac{c_{2}}{r} T_{i}
\end{align*}
$$

$$
\begin{aligned}
& Q .=\frac{1-\nu}{r^{4}}\left[D(1+\nu) \frac{\partial^{4}}{\partial \theta^{4}}-2 L D \cos ^{2} \phi \frac{\partial^{2}}{\partial \theta^{2}}\right. \\
& \left.+(1+p) K r^{2} \sin ^{2} \phi\right] w+(1-\nu) \frac{\cos \phi}{r^{2}}\left[\frac{1}{r} \operatorname{LDJ} \frac{\partial^{2}}{\partial A^{2}}\right. \\
& +(1+\nu) K \sin \phi] u_{\varphi}-\frac{1-\nu}{r^{2}}\left[\frac{1}{r} L D H \cos ^{2} \phi\right. \\
& -(1+p) K \sin \phi+D\left(1+\theta ; \frac{\ln \phi}{r^{2}} \frac{\partial^{2}}{\partial A^{2}}\right] u_{\theta, *}
\end{aligned}
$$

$$
\begin{align*}
& v_{,}=\frac{1}{R_{0}} n_{0}-\beta_{0} \\
& u_{0 .,}=-C i x-\frac{\nu \cos \phi}{r} u_{0}-\frac{\nu}{r} u_{\theta . \theta} \\
& +\frac{1}{K} N_{0}+\alpha(1+v) T_{2} \tag{225}\\
& u_{\theta . t}=-\frac{L D \sin 2 \phi}{K r^{2}} w .,-\frac{1}{r}\left(1-\frac{L D J \sin \phi}{K r}\right) u_{0.9}, \\
& +\frac{\cos \phi}{r}\left(1-\frac{L D H \sin \phi}{\kappa r}\right) u_{\varphi}-\frac{2 L D \sin \phi}{\kappa_{r}^{2}} \beta_{0.9} \\
& +\frac{2}{(1-p) K}\left(1-\frac{L D \sin ^{2} \phi}{K r^{2}}\right) N \tag{23c}
\end{align*}
$$

$$
\begin{align*}
& -\frac{\cos \theta}{r}\left(2-\frac{L D H \sin \phi}{\hbar r}\right) \cdot \mathrm{V}-\frac{\nu \sin \phi}{r^{2}} M_{\theta \cdot \theta}-p_{\theta}-\frac{\sin \phi}{r} m_{\theta} \\
& \left.\div c\left(1-\nu^{2}\right) \frac{1}{r}, \quad i T_{0 . \theta}+D \frac{\sin \phi}{r} T_{1 . \theta}\right) \tag{22g}\\
& I_{0 . t}=-(1-\nu) D \frac{\cos \phi}{r^{4}}(1+\nu+2 L)_{v . s e}+L D J \frac{1-\nu}{r^{2}} u_{\text {© }}=\theta \\
& +D(1-\nu) \frac{\cos \phi}{r^{2}}\left[(1+\nu) \frac{\sin \phi}{r}-H L\right] u_{\text {e. }} \\
& -D \frac{1-\nu}{\lambda^{2}}\left[(1+\nu) \cos ^{2} \phi-2 L \frac{\partial^{2}}{\partial \theta^{2}}\right] \beta_{\theta}+Q-\frac{2 L D \sin \phi}{K r^{2}}, N_{\theta} \\
& -(1-\nu) \frac{\cos \frac{t}{r} u_{*}-m_{\phi}-\alpha\left(1-\nu^{2}\right) D \frac{\cos \phi}{r} i}{2} \tag{22h}
\end{align*}
$$

Equations (22), (14), and (15) to (17) deternine all unknown variabies except (\%) thich can be found from (Sa) and written in the form

$$
\begin{equation*}
Q_{\theta}=\frac{1}{r} M_{\theta . \theta}+M_{t \theta . \theta}+\frac{2 \cos \phi}{r} M_{t \theta}+m_{\theta} \tag{23}
\end{equation*}
$$

By caiculating $M_{t o x s}$ from (17) and making use of (16), it is possible to express Q_{0} directly in terms of the fundamental variables. This txpression is lengthy and contains derivatives with respect to s of the shell parameters. Since Q_{0} does not enter into any boundary enditions on the edige : $=$ const, it is preferable to calculate Q_{θ} as the last unknown directly from (23). The derivative of $U_{\Delta *}$ can be easily obtained by numerical differentiation.

The procedure for the derivation of an equivalent set of equations for other linear classical theories of isotropic shells is identical to that given before. For general anisotropic and/or nonhomogeneous shells of revolution with rotationally symmetric properties, the fundamental set of equations is derived in the same way as (22) except that (9) and (10) must be repiaced by the appropriate stress-strain resations given, for example, by Ambartsumyan [14]. Otherwise, the derivation is straightforward. For the improved theory of sbeils, such as the one given by Naghdi [15], in which the effects of transverso-shear deformation are accounted for, the following tea fundamental variables are required: $v_{c}, u_{\infty}, u_{\phi}, \beta_{\infty}, \beta_{\phi}, Q_{\infty}, V_{\phi}, V_{\infty}, M_{\phi}, M_{s t}$. Since now Q_{ϕ} and Q_{0} appear in (13), the elimination of Q_{0} from (6a), (7), (8a), is done by means of ($13 a$). The required equations for the derivativee of the generalized forces are obtained directly from the five equationa of equilibrium (6), (7), (8). The remaining five equations are derived by following a proc dure similar to that of the foreg ing.

Fundamental Equations for Separabie Soiutions

For shelis of recolution which consist of complete latitude circies, the surface loass are periodic with res;ect to θ with a peri/d of 2π, and they can be assumed to be of the form

$$
\begin{align*}
\left\{p_{\phi}, p_{1}, m_{\infty}\right\} & =\left\{p_{\infty}, p_{n}, m_{\infty-\infty}\right\}\left\{\begin{array}{l}
\cos n \theta \\
\sin n \theta
\end{array}\right\} \tag{24a}\\
\left\{T_{n}, T_{1}\right\} & =\left\{T_{0 n}, T_{i \theta}\right\}\left\{\begin{array}{l}
\cos n \theta \\
\sin n \theta
\end{array}\right\} \tag{24b}\\
\left\{p_{\infty}, m_{\theta}\right\} & =\left\{p_{\infty}, m_{n}\right\}\left\{\begin{array}{l}
\sin n \theta \\
\cos n \theta
\end{array}\right\} \tag{2+c}
\end{align*}
$$

wt.ere the variables with subscripts n depend only on s, and each integral ralue of n in (24) can be regaried as one Fourier comp cuest in a general Fourier series expausion of arbitrary periodic surface loeds.

Separable solutions of (22), corresponding to the value of n in (24), are then obtained in the form

$$
\begin{align*}
& \left\{u, u_{\infty}, \beta_{0} \left\lvert\,=\left\{u_{\infty}, i_{\infty-\infty}, \beta_{0 n}\right\}\left\{\begin{array}{l}
\cos n \dot{\theta} \\
\sin n \theta
\end{array}\right\}\right.\right. \tag{25a}\\
& \left\{V_{\infty}, M_{\Delta}, Q \left\lvert\,=\left\{V_{\Delta \infty}, M_{\Delta \infty}, Q_{n}\right\}\left\{\begin{array}{l}
\cos n \partial \\
\sin n \sigma
\end{array}\right\}\right.\right. \tag{25b}\\
& \left\{u_{\theta}, V\right\}=\left\{u_{\theta m}, V_{n}\right\}\left\{\begin{array}{l}
\sin n \theta \\
\cos n \theta
\end{array}\right\} \tag{25c}
\end{align*}
$$

The s-iependent coefficients with subscripts n a the righthand side of (25) are governed by a system of equations which is obtained from (22) and, after using the assumprion that the shell is thin, ${ }^{3}$ can be written as

$$
\begin{align*}
& \omega_{n, t}=\frac{1}{R_{\theta}} u_{\infty n}-\beta_{\infty} \tag{26a}\\
& u_{\text {ono. }}=-U w_{*}-\frac{\nu \cos \phi}{r} u_{\Delta s} \quad \frac{\nu n}{r} u_{\theta_{0}} \\
& +\frac{1}{K} v_{o n}+\alpha(1+\nu) T_{s o n} \tag{26b}
\end{align*}
$$

$$
\begin{align*}
u_{\text {on,t }}= \pm \frac{D \sin 2 \phi}{K r^{2}} w_{*} & =\frac{n}{r} u_{\infty n}+\frac{c o s}{r} u_{\theta_{n}} \\
& =\frac{2 D n \sin \phi}{K r^{2}} \beta_{\infty}+\frac{2}{(1-\nu) K} V \tag{26c}
\end{align*}
$$

$$
\begin{align*}
\beta_{\phi n, t}=-\frac{v n^{2}}{r^{2}} v_{n} \neq \frac{v n \sin \phi}{r^{2}} u_{\phi \theta} & -\frac{\nu \cos \phi}{r} \beta_{\phi \theta} \\
& +\frac{1}{D} M_{\phi n}+\alpha(1+v) T_{:} \tag{2+5d}
\end{align*}
$$

$$
\begin{align*}
& Q_{0 . t}=\frac{1-\nu}{r^{4}}\left((1+\nu) n^{\prime} D\right. \\
& \left.+2 n^{2} D \cos ^{2} \phi+(1+\nu) \kappa^{2} \sin ^{2} \phi\right] \omega_{0} \\
& +(1-p) \frac{\cos \phi}{r^{2}}\left[(1+p) K \sin \phi-\frac{n^{2}}{r} D J\right] u_{\phi \theta} \\
& \pm \frac{(1-\nu) n}{r^{3}}\left[(1+\nu) D \frac{n^{2}}{r^{2}} \sin \phi+(1+\nu) K \sin \phi\right] u_{\mathrm{sm}} \\
& +n^{2}(1-\nu)(3+\nu) D \frac{\cos \phi}{r^{4}} \beta_{o n}-\frac{c(1)}{r} Q_{n}+U N_{o n} \\
& \neq \frac{n D \sin 2 \phi}{K r^{2}} N_{n}+\frac{\nu n^{2}}{r^{2}} M_{\sigma_{n}} \cdots p_{n}=\frac{n}{r} m_{m} \\
& -\alpha\left(1-\nu^{2}\right) \frac{1}{r}\left(K \sin \phi T_{o s}+D \frac{n^{2}}{r} T_{i n}\right) \tag{2be}\\
& V_{\text {on }, ~}=(1-\nu) \frac{\cos \phi}{r^{2}}\left[(1+\nu) K \sin \phi-\frac{n^{2}}{r} J D\right] \cdot v_{*} \\
& +\frac{1-\nu}{r^{2}}\left[(1+\nu) K \cos ^{2} \phi+\frac{n^{2}}{2} D J^{2}\right] u_{2 n} \\
& \pm \frac{\left(1-\nu^{2}\right) n h^{2} \cos \phi}{r^{1}} u_{4 n}-\frac{n^{2}(1-\nu)}{r^{2}} D J \beta_{0 n} \\
& -\frac{1}{R_{0}} Q_{n}-(1-\nu) \frac{\cos \phi}{r} V_{o n} \neq \frac{n}{r} V_{0}
\end{align*}
$$

${ }^{2}$ In the derivation of the system of aryations (6)-(13) the assumption is made that the sheil is sulficient!y thin. so that $1+h^{2} / 12 R^{2} \approx$ 1. Where R denotes the minimum principal radius of curvature. This same approximation is used to obtain the foilowing equations from (22).

$$
\begin{align*}
& -p_{o n}-\alpha\left(1-\gamma^{2}\right) K \frac{\cos \phi}{r} T_{o n} \\
& X_{\ldots,}= \pm \frac{n(1-\nu)}{r^{2}}\left[(1+\nu) D \frac{n^{2}}{r^{2}} \sin \varphi+(1+\nu) K \sin \phi\right] w_{n} \\
& \pm \frac{\left(1-\nu^{2}\right) n K^{2} \cos \phi}{r^{2}} u_{\theta n}+\frac{n^{2}\left(1-\nu^{2}\right) K}{r^{2}} u_{\theta n} \\
& \pm n D \frac{1-p}{r^{2}} \cos \phi\left[(1+\nu) \frac{\sin \phi}{r}-H\right] \beta_{\infty} \\
& =n \frac{\nu}{r} N_{\text {on }}-\frac{2 \cos \phi}{r} N_{\text {. }} \\
& =\frac{v n \sin \phi}{r^{2}} M_{\phi \theta}-p_{\theta_{n}}-\frac{\sin \phi}{r} m_{\theta_{\theta}} \\
& F \alpha\left(1-\nu^{2}\right) \frac{1}{r}\left(K T_{i n}+D \frac{\sin \phi}{r} T_{i n}\right) \\
& H_{o \operatorname{ant}}=n^{2}(1-\nu)(j+\nu) D \frac{\cos \phi}{r^{2}} w_{n}-n^{2} \frac{1-y}{r^{2}} J D u_{\phi n} \\
& \pm n D \frac{1-v}{r^{2}} \cos \phi\left[(1+p) \frac{\sin \phi}{r}-H\right] u_{c_{0}} \\
& +D \frac{1-y}{r^{2}}\left[(1+p) \cos ^{2} \phi+2 n y \beta_{\infty}+Q=\frac{2 n D \sin \phi}{K r^{2}} N_{n}\right. \\
& -(1-\nu) \frac{\cos \phi}{r} M_{\phi \theta}-m_{\infty n}-\alpha\left(1-\nu^{2}\right) D \frac{\cos \phi}{r} T_{1 n} \tag{25h}
\end{align*}
$$

The double signs in (26) correspond to the top or bottom trigonometric function employed in (24) and (25).

The quantities which are not included in the fundamental variables can be expressed by mesns of separstion of variabies by

$$
\begin{align*}
& \left\{N_{\theta}, M_{\theta}, Q_{\theta}\right\}=\left\{N_{\theta_{n}}, M_{\theta_{0}}, Q_{\phi_{n}}\right\}\left\{\begin{array}{l}
\cos n \theta \\
\sin n \theta
\end{array}\right\} \tag{27a}
\end{align*}
$$

where the s-depeadent coefficients with subscripts n must satisfy a set of equations obtained from equations $(14)-(17)$ and (23) in the form

$$
\begin{align*}
& N_{\phi_{0}}=\nu N_{\infty}+\left(1-\nu^{2}\right) \frac{K}{r^{2}}\left(w_{n} \sin \phi+u_{\infty-\infty} \cos \phi \pm n u_{g_{n}}\right) \\
& -a\left(1-p^{2}\right) K T_{0} \tag{28a}\\
& M_{\theta_{x}}=\nu M_{\omega_{x}}+\left(1-\nu^{2}\right) \frac{D}{r}\left(\frac{n^{2}}{r} \omega_{x}+\beta_{\infty} \cos \phi\right. \\
& \left.t n \frac{\sin \phi}{r} u_{\text {e* }}\right)-\alpha\left(1-p^{2}\right) D T_{\text {in }} \tag{28b}
\end{align*}
$$

$M_{\partial_{\theta n}}=D \frac{1-v}{2 r}\left(\mp \frac{2 \pi \cos \phi}{r} w_{n} \pm n J u_{\Delta n}\right.$

$$
\begin{equation*}
\left.+H \cos \phi u_{\theta_{n}} \neq 2 n \beta_{\theta_{n}}\right)+\frac{D}{K} \frac{\sin \phi}{r} N_{n} \tag{28c}
\end{equation*}
$$

$Q_{\theta-}=\frac{n}{r} M_{\theta n}+M_{\theta \theta n . t}+\frac{2 \cos \phi}{r} M_{\theta \theta_{n}}+m_{\theta_{n}}$
$N_{\text {tos }}=N_{*}-\frac{\sin \phi}{r} M_{\text {tos }}$
$Q_{\Delta n}=Q_{0} \mp \frac{n}{r} M_{* \Delta v}$

The double signs again correspond to the top or buttom trigonometric function employed in (24), (25), and (27).

The remainder of this paper is concerned with the solution of the syatem of equations (26), subject to the boundary conditions on two edges $s=$ const. It should be anted that after the expension of the load. in Fourier series, the solution to (26) is obtsined for each 'ategral vai'e of n separatcly, and then the solutions are superimposed to form a Fourier series expansion for the unknown variables.

Reduction to Initial Value Problems

This section is conceraec with the reduction of a two-point boundary-value problem governed hy

$$
\begin{equation*}
\frac{d y(x)}{d x}=A(x) y(x)+B(x) \tag{29a}
\end{equation*}
$$

to a series of initial-value problems. In (29a), $y(x)$ is an (in, 1) matrix which represents m unknown functions; z is the independent variable; $A(z)$ denotes the (m, m) enefficient matrix; and $B(z)$ is the ($m, 1$) matrix of the nonhomogeneous terms. The elements of $A(x)$ and $B(x)$ are given piecewise continuous functions of x. The object is to cletermine $y(x)$ in the interval $a \leq z \leq$ b subject to m boundary conditions stated in terms of linear combinations of $y(a)$ and $y(b)$ in the form

$$
\begin{equation*}
F_{\Delta} y(a)+F_{s} v(b)=G \tag{29b}
\end{equation*}
$$

where $F_{\text {a }}, F_{\text {s }}$ are (m, m) matrices and G is an $(m, 1)$ matrix, which are known from the statement of the boundary conditions of the problem. It should be clear that the governing system of equations (26) derived in the preceding section is stated in the form of (29 a), and that the appropriate boundary conditions for a shell of revolution can be expreseed in the form of (200).

Let the complete solution of $(29 a)$ be written as

$$
\begin{equation*}
y(x)=Y(x) C+Z(z) \tag{30}
\end{equation*}
$$

where the ($m, 1$) matrix C represents m arbitrary constants, and $Y(x)$ is an (m, m) and $Z(x)$ an $(m, 1)$ matrix which are defined as the homogeneous and particular solutions of (29a) in the form

$$
\begin{align*}
& \frac{d Y(z)}{d x}=A(x) Y(x) \\
& \frac{d Z(x)}{d x}=A(x) Z(x)+B(z) \tag{31b}
\end{align*}
$$

The initial sonditions for determining $Y(x)$ and $Z(z)$ are

$$
\begin{align*}
& Y(a)=I \tag{32a}\\
& Z(a)=0 \tag{32b}
\end{align*}
$$

where I is the unit matrix.
Evaluation of (30) at $x=a$ leads at once, in view of $(32 a, b)$, to $C=y(a)$, and then (30) at $x=b$ can be written as

$$
\begin{equation*}
y(b)=Y(b) y(a)+Z(b) \tag{33}
\end{equation*}
$$

Together with (29b), equation (33) constitutes a system of 2 m inear algebraic equations from which the $2 m$ unknowns, $y(a)$ sad $y(b)$, are determined. Once $y(a)$ is known, the solution at any value of z is obtained from (30) provided that the values of $Y(z)$ and $Z(x)$ at that p-ticular z are stored. This compietes the rer.uction of a two-poins boundary-value probiem defined by (29) io $m+1$ initial-value problems given by (31, 32).

As stated in the introduction, the solution for sheils obtained by means of this procedure suffers a complete loss of sceuracy at some critical length of the interval. The reason for this phenomenon can be seen clearly from (33). When the iaitial-value problems defined by $(31,32)$ aro soived with the use of the equa-

Fig. 2 Notation for division of total interval into segments
tions (26) for shells of revolution, it is observed that the eiements of $Y(x)$ and $Z(x)$ increase in magnitude in such a way that if the length is increased by any factor n, then these solutions increase in magnitude epproximately exponentiaily with n.

Consider, for exampie, the axisymmetric case when the deformation in the sheil is caused by some prescribed edge conditions at $z=a$, say, by $M_{\rho}(a)=1$ and $\left.N_{\rho}(a)=Q . i\right)=0$. It is reasonable to expect that the corresponding solutions at $x=b$ become smaller and smaller wher the interval (a, b) is incressed in length. The connection between $y(b)$ and $\psi(a)$ is given by the matrix equation (33) with the following magnitudes of the eiements: $y(b)$-small, $Y^{\prime}(b)$-iarge, $y(a)$-unity. Clearly, the only way that the matrix product of (33) ean give small values of $y(b)$ is that a number of significant digits of the large values of $Y(b)$ subtract out. When the length of the interval is increased, $Y(b)$ incresse, while $y(b)$ decrease, and invariably ail accuracy is lost at some critical length because all significant digits of $Y(b)$ in (33) are lost. This simple example serves as an illustration for the loss of accuracy encountered in the analysis of sheils if the foregoing reduction technique is employed.

A convenient length factor, defined by

$$
\begin{equation*}
\beta=l\left[3\left(1-\nu^{2}\right)\right]^{1 / 4} /(R h)^{1 / 2} \tag{34}
\end{equation*}
$$

where l is the length of the meridian of the shell and R is a minimum radius of curvature, can be used for an approximate estimate of the critical length of the shell. If the solutions $Y(z)$ and $Z(z)$ are obtained with a six-digit accuracy, then the foregoing procedure gives good resulta in the range $\beta \leq 3-5$.
However, the lose of accuracy of the solution can be avoided and sheils of revolution with much larger values of β can be analyzed by means of the direct integration technique if the multisegment method given in the pext section is empioyed.

Multisegment Method of Iniegration

Let the shell be divided into 3 -segmente (denoted by S_{i}, where $i=1,2, \ldots, 3$) of arbitrary length in each of which $\beta \leq 3$. Denote the coordinates of the ends of the segments by $x=x_{i}$, where the left-hand edge of the shell is at $x=x_{1}$ and the righthand edge is at $x=x_{\mathrm{X}+\mathrm{i}}$, as shown in Fig. 2. In analogy to (30), the sointion in the total interval $x_{1} \leq x \leq x X_{+1}$ now can be written as

$$
\begin{equation*}
Y(x)=Y_{(}(x) Y\left(x_{0}\right)+Z_{0}(x) \tag{35}
\end{equation*}
$$

where $Y_{,}(z)$ and $Z_{,}(x)$ denote the matrices corresponding to $Y^{\prime}(z)$ and $Z^{\prime} z^{\prime}$) in each segment $S_{i}\left(x_{1} \leq x \leq x_{i+1}\right)$ sind are given by

$$
\begin{align*}
& \frac{d Y_{1}(s)}{d x}=A(x) Y_{1}(x) \tag{3ra}\\
& Z_{1}\left(z_{1}\right)=I \tag{36b}\\
& \frac{i Z_{1}(x)}{d x}=A\left(z, Z_{0}(s)+B(x)\right. \tag{366}
\end{align*}
$$

$$
\begin{equation*}
Z_{i}\left(z_{i}\right)=0 \tag{3Gd}
\end{equation*}
$$

Requiriag continuity of ail elemenis of $y(x)$ at the points z, i $=2,3, \ldots, M+1$, the following $1 f$-matrix equations are ,btained from (35):

$$
y\left(z_{i+1}\right)=Y_{s}\left(z_{i+1}\right) y\left(z_{3}\right)+Z_{,}\left(I_{i+i}\right)
$$

where $i=1,2, \ldots, M$. Equations (3i) invoive $\mathbb{I I}+1$ unknown ($m, 1$) matrices: $y\left(z_{1}\right), i=1,2, \ldots, M+1$. However, if the quantities prescribed at the edges of the shell are the fundamental variables, then the total number of unknowns is reduced by m, becatise $m / 2$ elements of $y\left(x_{1}\right)$ and $m / 2$ elements of $y\left(z x_{+1}\right)$ are known. The same is true if the boundary conditions are stated in terms of linear combinations of the fundamental variables in the furm of (29b). In this case, $y\left(z_{1}\right)$ and $y\left(z_{1 r+1}\right)$ should be premultilied by nonsingular (m, m) tranaformation matrices F_{1} and P_{X-1}, respectively, so that the elements of the products contain the quantities prescribed at each edge. After eliminating $y\left(x_{1}\right)$ and $y\left(z_{N+1}\right)$ from (37) by means of these products, it is concluded that (3i) will retain its form if, after integration and before substitution into (37), $Y_{\mathrm{R}}\left(z_{2}\right)$ is postmuitiplied by F_{1}^{-1}, while $Y_{u\left(z_{N-1}\right)}$ and $Z_{w\left(z_{N+1}\right)}$ are premultipied by F_{X+1}. In the following, it will be regarded that this transformation is carried out and that $y\left(x_{1}\right)$ and $y\left(z_{N+1}\right)$ contain among their eiements those quantities which are prescribed at $x=x_{1}$ and $z=x_{X+1}$, respectively.

Thus for all boundary conditions in the form of (29b), the sy3tem of M matrix equations (37) involves exactly $1 f$ times m unknowns, and i-mally it can be solved by any method which is spplicable to a large number of equations. However, the success of the procedure given in this paper lies in the application of Gaussian elimination directly on the matrix equations (37).
First a rearrangement of elements is performed. Since those $m / 2$ elements of $y\left(x_{1}\right)$ and $y\left(x_{x+1}\right)$ which are known through the boundary conditions can be any $m / 2$ of the m-elements, it is necessary to rearrange the rows of $y\left(x_{1}\right)$ and $y\left(x_{\mathrm{N}+1}\right)$ so that the known lements are separated from the unknowa eiements. It is assumed here that the first $\pi / 2$ elements of $y\left(x_{1}\right)$, denoted by $y_{1}\left(x_{1}\right)$, are known and that the last $m / 2$ elements, denoted by $y_{2}\left(z_{1}\right)$, are unknown. On the other hand, $y_{1}\left(z_{x_{+1}}\right)$ are the unknown and $y=\left(z_{X+1}\right)$ ars the known elements of $y\left(x_{(x+1}\right)$. Since the order of the variables in the column matrix $y(z)$ is arbitrary, it should be emphasived that this separation of elements does not involve any restriction on the boundary conditions, and that any natural boundary conditios in the form of (29b) can be prescribed at each edge. The separation is achieved by a simple rearrangement of the columns of $Y_{i}\left(z_{i}\right)$ and the rows of $\left.Y_{v(~}^{s i t+1}\right)$ snd $Z_{w}\left(I_{X+1}\right)$ after integrating the initial-value probiems defined by (36) to the ends of the segmentes S_{1} and S_{y} and nultiplying by F_{1}^{-1} and F_{K+1} as stated in the foregoing.
Once it is established which parts of $y\left(x_{1}\right)$ and $y(z y+i)$ are known, the continuity conditions (37) are rewritten as a partitioned matrix product of the form
$\left[\frac{y_{1}\left(z_{i+1}\right)}{y_{r}\left(z_{i+1}\right)}\right]=\left[\frac{Y_{1}^{\prime}\left(z_{i+1}\right) Y_{Y}^{\prime}\left(z_{i+1}\right)}{Y_{1}^{\prime}\left(z_{i+1}\right) Y_{i}^{\prime}\left(z_{i-1}\right)}\right]\left[\frac{y_{1}\left(x_{1}\right)}{\frac{y_{(}\left(z_{i}\right)}{}}\right]+\left[\begin{array}{l}Z_{1}^{\prime}\left(z_{i+1}\right) \\ Z_{1}^{\prime}\left(z_{i+1}\right)\end{array}\right]$
so that each of the equations (37) turns into a pair of equations, given by

$$
\begin{align*}
& Y_{1}^{2}\left(z_{i-1}\right) y_{1}\left(z_{3}\right)+Y_{1}^{2}\left(z_{i+1} / y_{5}\left(z_{i}\right)-y_{i}\left(z_{i+1}\right)=-Z_{,} Y_{\left(z_{i+1}\right)}\right. \\
& Y_{1},\left(z_{i+1}\right) y_{1}\left(z_{i}\right)+Y_{1}\left(z_{i+1}\right) y_{2}\left(z_{i}\right)-y_{2}\left(z_{i+1}\right)=-Z_{1} Y\left(z_{i+1}\right)
\end{align*}
$$

The result is a simultaneous system of 3 If linear matrix equaltions, in which the knowr, coefficients $Y_{,}^{\prime}\left(I_{i-1}\right)$ and $Z_{v}\left(X_{i-1}\right)$ are ($m / 2, m / 2$) and ($m / 2,1$) matrices, respectively, and the unknowns $y_{i}\left(z_{i}\right)$ are $(m / 2,1)$ matrices. Sinco $y_{1}\left(x_{i}\right)$ and $y_{2}\left(z N_{-1}\right)$ are kaown, there are exactly $2 . M$ unknowns: $y_{i}\left(z_{3}\right)$, with $i=2,3$.
$M+1$, and $y_{r}\left(z_{i}\right)$, with $i=1,2, \ldots, M$.

By means of Gaussian elimination, the system of equations (39) is first brought to the form
$\left[\begin{array}{cccc}E_{1} & -I & 0 & 0 \\ 0 & C_{i} & -I & 0 \\ 0 & 0 & E & -I \\ 0 & 0 & 0 & C_{2} \\ \hdashline 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right.$

0	0	$y=\left(z_{1}\right)$		A_{1}
0	0	$y+\left(z_{2}\right)$		B_{1}
0	0	$y=\left(2 z_{2}\right)$		A_{2}
-1	0	$y_{1}\left(x_{y}\right)$	-	B_{z}
E_{H}	-1	$y=\left(z_{H}\right)$		A_{M}
0	C_{y}	$y_{1}\left(x^{(1-1}\right)$		$\left.B_{M}\right]$

(40)
ϕ on the sheil. Such loads intruduce discontinuities in the solution for the corresponding stress resultants, and they can be represented at every $z_{\text {; }}$, by an ($m, 1$) discontinuity matrix which is simply added to the matrix $Z_{1}\left(z_{i+1}\right)$ on the right-hand side of (37). This feature is of great value if shell juints are considered. Any discontinuity, either in geometry or in loads, is essily handied by requiring that the ead point of a segment coincides with the loration of the discontinuity. Since integration is restarted at the begnnaing of each segment, the precise effect of the discontinuity is obtained. The program outputs all fundamental variables at a number of desired points within each segment, and it also enmputes the values of $y\left(x_{i}\right)$ twice; once from (43) and then from (35). If a certain number of significant figures of these valuez match, then the continuity conditions are known to be satisfied to the same number of figures. In this way, a convenient error estimate of the solution is obtained for every case.

Example: Pressurized Torus

In this section the stresses and displacements are determined in a complete torus subjected to a constant internal pressure. It is well known that the solution of this problem, when obtained by means of the linear membrane theory of shells, has a discontinuity in the displacement fieid. It has been shown by Jordan (16) and by Sanders and Liepins [17] that a satisfactory solution with reburd to the displacement fieid for a sufficiently thin sheil can be obtained if the nonlinear membrane theory of shells is employed. Subsequently, Reissner [18] established bounds on certain parameters which show when the nonlinear mernbrane and when the linear beading theory is applicable. It seems worthwhile to give here the solution for a pressurized torus as predicted by the linear beading theory.

The geometry of the torus is shown in Fig. 3. With regard to the quantities empioyed in equations (26), the two ancessary psrameters for a torus are given as

$$
\begin{align*}
R_{\phi} & =b \\
r & =a+b \sin \phi \tag{t+b}
\end{align*}
$$

($4+a$)

Because of symmetry with respect to the place KX, Fig. $\hat{\text { In }}$, the

Pig. 3 Geometry of tarus sonsidered in example

[^4]It should be nored that $(41)-(43)$ must be evaluated in succession, because each equation invoives the result obtained by the preceding equation.

Once all the unknosms $y\left(z_{3}\right)$ are found, the fundamental variables are determined from (35) at any value of z at which the solutions Y_{1}, z and $Z,(\alpha)$ are stored duriag the integration of the initial-vaiue pribiems of (36). The integration of (36) can be accomplished hy mesas of any of the standard direct integration methods.

On the basis of the system of equations (20) given in an eartier section and the method of solution developed in the last two sections, the authot has prepared a computer program ${ }^{4}$ which has been applied to manv shell configurations having large values of 3 and successfully tested against known results. One example of a pressurizel torus with $3=37$ is presented in the next sec⿻inn.

The program admits arbitrary meridional variations, acludiag dismontinuizies, in all shell parameters. It also adnits ring loaris in the form of prescribed values of $N_{\infty}, M_{\infty}, V$, of Q at any value of

Table 1 S. estes and diepiacements of a presturized torus; $\rho b / 5 h=0.002, a / b=1.5, y=0.3$

V/b	$\begin{gathered} \pi+m / E \\ \times \quad 10^{3} \end{gathered}$	$]_{0.05}^{\left(\sigma_{\varphi s} / E\right) \times 10^{4}-}$			- $(w / b) \times 10^{2}$		
of	0.005				0.05	0.02	0.005
96	1.601	-0.063	-0.031	-0.016	1. 249	1. 284	1. 298
108	1.613	-0.188	-0.093	-0.019	1.261	1.315	1.325
126	1. 6.70	-0.586	-0.123	-0.030	1.359	1.393	1.42:
144	1.720	- -.915	-0.908	-0.020	1.786	1. 307	1.1523
162	1.332	-0. 545	-1.378	-0.910	2.520	2.550	2.159
171	1.506	1.002	0.168	-0.605	3. 467	3.493	3.297
150	1. 090	3. 059	2.277	1.482	3.904	4.3334	4. 515
184.3	2.042	3.890	3.035	1.968	4.150	4.376	3.243
159	2104	4.270	3.119	1.520	+. 208	4.637	3.1.51
193.3	2.175	4.178	2.380	0.530	4.156	+. 309	4693
198	2.254	3.610	1. 259	-0.274	3.998	4.221	4.162
216	2.642	-0.387	-0.957	-0.079	2.652	2.537	2.451
234	3.168	-1.245	-0.291	-0.040	1.273	1. 269	1.269
252	3. 730	-0.717	-0.344	-0.077	0.116	0.417	0.414
270	399%	-0.324	-0.3231	-0.081	0.103	0.101	0. 100

Fig. 4 Meridienal beneling stress oft at aster fiher verses maridional ceardinate \oplus
integration of the initial-value problems is carried out from $\phi=$ 90° to $\phi=270^{\circ}$, and the boundary conditions at these endpoints are $u_{\phi}=\beta_{\phi}=Q=0$. For the purpose of comparison with the results of [16] and [17], the ioad parameter is chosen as $p b / E h$ $=0.002$ and $a, b=1.3$.

The numericat values of the sormal displacement, meridional membrane stress $\sigma_{\phi}=N_{\phi} / h$, and meridional bending stress $\sigma_{c}=6 . M_{\phi} / h^{2}$ at $\zeta=h / 2$ for s pressurized terus are shown in Tabie 1 and in Figs. 4 and 5 . These resuits were taken frum the output of the coniputer program prepared for an arbitrary shell of revolution after prescribing the geonetric parameters as given by (44). The meridional membrane strese distribution agrees very well with that obtained in [17] by means of the membrane theory of sheils and it shows only a small variation with h / b. The deformed shapes of the crose section of the torus shown in Fig. 3 for three values of h / b are in qualitative agreement with those given in [16] and [17], but their quantitative agreement cannot be expected because the values of h / b used in this example are outside the mage where the bending effects are negligible. This is confirmed by the examination of the hending stresses shomn in Fig. 4. The maximun value of σ_{∞} securs at $\phi=159^{\circ}$ for $h, b=0.05 \mathrm{and}$ at $\rho=154.5^{\prime}$ or $h, b=0.0005$, which are also the poinis of maxinum nurmal displacement and enrvatare as seen a Fig. 3. The eomparison of the memurane ar the maximum hedoing stress at various vaiues of h / b is shown in Tanie 2 .

Fig. 5 Narmal displacement wersus o shewing deforn ed sectio:

Tabie 2 Meximum meridional bending stress and meridienal membrane stress at $\phi=\phi_{c}$

h / b	0.05	0.02	0.003
∞	159**	189*	184.5°
$(\sigma \underline{n} / E) \times 10^{3}$	2.053	2.052	2.042
$\left(\sigma_{\text {co }} / E\right) \times 10^{3}$	0.427	0.312	0.197
100 ($\%$ d/ $/ \mathrm{cm}$)	20.8	1.3 .0	9.6

It is of significance to note that even for the thickness ratio $h / b=0.005$, which for many applications would be regarded as small, the maximum bending stress is about 10 percent of the membrane stress at the same point. Such effects of bending in a torus were previously noted by Clark [19], and they are also in agreement with the statement made by Goidenveizer [20] that when the middle surface touches a cinsed-plane curve, which in a torus corresponds to $\phi=180^{\circ}$; then in the vicinity of this curve hending stresses should be expected and the membrane therry is not applicable.

The boundary layer shown in Fig. 4 is also in agreement with the cunclusions reached in [18] to the effect that when μ and ρ given by

$$
\begin{aligned}
& \mu=\left[12\left(1-p^{2}\right)^{1} \because h / a(b / h)\right. \\
& \rho=12\left(1-p^{2}\right)\left(p E^{\prime}(b, h)^{2}\right.
\end{aligned}
$$

are large compared to unity, then a boundary layer in the neighborhood of $\phi=180^{\circ}$ should be saticipated. For the present example, μ ranges from 44 to 40 and ρ from 9 to 874 . However, since p is the only load parameter of the problem, the solutions shown in Figs. 4 and 5 are proportional to p, and the boundary layer remains unsffected if p alone is varied. Of course, for very large values of p the deformation of the torus may exceed th. limits of a linear theory which according to [18] reatrict ρ to the range $\rho \lll \mu^{1 / 2}$.

Acknowiedzments

This research has been supported by the National Science Foundation Grant $\$ 23922$. Many ideas leading to t is paper originated from the consulting work performed by the auihor for the Caited Technology Center, Sunnyvale, Califoraia. The author wishes to thank the staff of the Applied Mechanics Department of UTC for maay illuminating discussions concerning this subject.

Refarences

1 P. M. Nisgndi and C. N. DeSilva, "Deformation of Elastic Ellipsoidal Shells of Revolution." Proceedings of the Second U. S. National Congrest if A pplied Mechanics, 1954. pp. 333-343.

2 TV. Lohmann, "Beitrag zur Integration der Reissner-Meissnerschen 3chaienglenchung fo. Bebaiter unter konstantem Ianerdruck," Ingenieur-Archis, voi. 6. 1935. pp. 338-346.

3 H. Mana. "Ein Integrationsverfahren far die Berechnung der Biegespaanuagen achsensymmetrischer Schaien unter achsensymmetrischer Belastung." Ingenieur-Archiz, vol. 19, 1951, pp. 103-117, 255-270.

4 E. Klingbeii, "Zur Theorie der Rotationsschalen vom Standpunkt numeriacher Rechnungen," Ingenieur-drehiz, vol. 27, 1959, pp. 242-249.

3 G. D. Gailetly, IF. T. Kyner, and C. E. Moller, "Numerical Methods and the Bending of Ellipsoidal Sheils." Journal of the Society of Irulustriai and Applied Machematics, vol. 9, 1961, pp. 489-513.

6 R. K. Penny, "Symmetric Bendiag of the General Sheil of

Revolution by Finite Difference Mechod." Journal of Mechanical Engineering Science, vol. 3, 1961, pp. 369-377

7 P. P. Radkowski. R. M1. Davis, and MI. R. Bolduc, "Sumerica! Analyais of Equations of Thin Sbelis of Revolution." Americar Rocict Soctety Journal. vol. 32, 1962, pp. 36-41.

8 W. K. Seperniki, C. E. Pearson, :. W. Dingwell. and A. IT. Adkins, "A Digital Computer Program for the General Axially Symmetric Thin-Bheil Prohlem." Jocanal of Applied Mecranics, vol 29. Trus3, tSME, vol. 84. Series E, 1962, pp. 655-061.

9 B. Budiansky and P. P. Radkowni, "Numerical Analysis of Unsymmetrical Bending of Sheifis of Revolution," AI.A.A Journall, vol. 1, 1963. pp. 18.33-1942.
10 J. E. Goldbers and J. L. Bogdanoff, "Static 2.d Dynamic Analy*is of Nonuniorm Conical Sheils under Symmetrical and Casymmetrical Conditions," Proceedings of the Sirth Symposium on Ballistic 3 issile and Acrospace Technology. Academic Press, New York. S. Y.. vol. 1. 1961. pp. 219-238.
11 C. R. Steele. "Shells of Revolution With Edze Loads of Rapid Circumferential Variation," Jotrnal op Applied Mechanic3. vol. 39. Travs. AsME, vol. 34, Series E, 1962, pp. 701-707.

12 R. D. Schile, "Asymptotic Solution of Noa*hallow Sheils of Revolution Subjected to Xonsy nmatric Loads," Journal of the derospace Sciences, voi. 29, 1963. pp. 1375-1379.

13 E. Reissner. "A New Derivation of the Equations for the Deiormation of Elastic Shells," American Journal of Sathematics, voi. 63. 1941. pp. 177-194.

14 S. A. Ambartaumyan, "Theory of A isotropie Sheils" (in Russian), Gonudarstrennoys Iadatel'stro Firico-Malematicheskoi Literatury, Moscow, USSR. 1961, p. 91.
15 P. M. Naghdi. "On the Theory of Thin Elastic Shells," Quarteriy of Applied Mathemarics, vol. 14, 1957, pp. 369-380.

16 P. F. Jordan. "Stresses and Deformations of the Thin-IV alled Pressurized Torus," Journal of the Aerospace Sciences, vol. 29, 1062, pp. 213-225.
17 J. L. Sanders, Jr., and A. Liepins, "Toroidal Mambrane Uader Internal Pressure," ArAA Journal, vol. 1. 1963, pp. 2105-2110.

18 E. Reissrer, "On Stresses and Deformations in Toroidal Shells of Circular Cross Section Which Are Acted Upon by Uniform Norma! Pressure," Quarterly of Applied Mathamatics, vol. 21, 1963, pp. 177187.

19 R. A. Clark, "On the Theory of Thin Elastic Toroidal Shells," Journal of Mathematice and Phymies, vol. 29, 1950, pp. 146-175.

20 A. L. Goidenveizer, Theory of E'astic Thin Shells. Pergamon Press, New York, N. Y., 1961, p. 480.

3. THERMAL EVALUATION

3.1 Discussion

3.1.1 Summary of Results

For normal operation with $1 . E \mathrm{kw}$ decay heat with a 130 F ambient temperature, the cask inner liner temperature will be about 227 F . During the hypothetical fire accident, the inner liner temperature will be about 560 F .

The Fermi fuel subassembly will be shipped in the BMIshipping cask, which has been provided with a special basket. During shipment, the cask cavity is filled with water. The void spaces between the fuel rods in the subassembly are filled with a settled bed of copper shot in water. The cask is to be shipped by truck so that under normal conditions the maximum fuel and water temperature is about 230 F .
3.1.2 Maximum and Minimum

Decay Heat

(a) BRR/MTR Fuel

The total fission product decay heat is calculated from the data in ORNL-2127 ${ }^{(1)}$. Following the analysis in Reference (1), the Number $\mathrm{U}-235$ atoms in a BRR fuel element is:

$$
\mathrm{N}=\frac{3.2 \times 10^{10} \mathrm{p}}{\sigma \phi}
$$

where

```
p = irradiation power (watts)
f fission cross section used in Tables = 580 barns
p = thermal neutron flux.
```

The maximum U-235 burn-up in a BRR element is 17.5 percent For a fuel loading of $162 \mathrm{~g} \mathrm{U-235}$, with a capture to fission ratio of 1.18 , the fission product production is 24.1 g . For an irradiation time of 313 days, the irradiation power is $\mathrm{P}=$ 24.1 MWD/313 D $=7.7 \times 104$ watts per element (assuming $1 \mathrm{~g} \mathrm{U}-235=$ 1 MwD). Thus, for $\phi=10^{14} \mathrm{n} / \mathrm{cm}^{2} \mathrm{sec}$:

$$
N=\frac{\left(3.2 \times 10^{20}\right)\left(7.7 \times 10^{4}\right)}{(580)\left(10^{14}\right)}=\begin{aligned}
& 4.25 \times 10^{22} \text { atoms } \\
& U-235 \text { per element. }
\end{aligned}
$$

From the data in Reference (1), the total decay heat (beta plus gamma) for an irradiation time of 313 days and a cooling time of 90 days (with $\phi=10^{14}$) is $q=10^{-21}$ watts/atom $U-235$, or:

$$
Q=\left(10^{-21}\right)\left(4.25 \times 10^{22}\right)=42.5 \text { watts/element }
$$

For 24 elements with the same irradiation history, the decay heat is $24 \times 42.5=1.02 \mathrm{~km}=3,480 \mathrm{Btu} / \mathrm{hr}$.

(b) Fermi Fuel

The heat transfer analysis is based on a total (beta plus gamma) decay heat of 1.5 kw in a maximum burnup subassembly. In such a subassembly, the fuel is irradiated at a power of 1.4 Mw for eight 28 -day periods to a burnup of 1.6 percent. The reactor is shut down for 28 days between each 28-day irradiation period. The fuel is cooled 10 days before shipment. The axial power peaking factor is 1.23 . The decay heat calculation is given in APDA Memo $\mathrm{P}-64-11^{(2)}$.

IMAGE EVALUATION
 TEST TARGET (MT-3)

MICROCOPY RESOLUTION TEST CHART

IMAGE EVALUATION TEST TARGET (MT-3)

MICROCOPY RESOLUTION TEST CHART

The fission product activity was estimated to be 250 curies per element in November, 1970 (based on radiation measurement made at that time). Assuming 2 MEV per event, the decay heat of the fuel is:

```
250 curies/element x 3.7 < 10 10 events/sec/curie x
    2 MEV/event }\times1.6\times1\mp@subsup{0}{}{-13}\mathrm{ watts/MEV/sec
    = 2.96 watts/element
```

The total heat load for the cask is 22.5 watts. This is a very conservative estimate since the fuel has cooled ~ 2 years and has a cooling factor greater than 3.0 . The BMI-1 cask is licensed to handle up to 1.5 kw of decal heat. Thus, the thermal inventory for this shipment is well within the limits for the cask.

(d) PULSTAR Fuel

The average decay heat output per fuel pin at the time of shipment is 5.0 watts and the maximum heat output per pin is 7.0 watts. The heat source for the fully loaded cask will therefore be:
$252 \frac{\text { pins }}{\text { cask }} \times 5.0$ watts $/$ pin $=1,260$ watts/cask

Certificate of Compliance Number 5057 approves a heat load of 1.5 kw for the cask.

(e) EPRI Crack Arrest Capsules

The total decay heat generated by the capsule at discharge is 197 watts. The axial heat rate over the height of the capsule is (197)(12)/21.5 = 110 watts/ft. The cask is rated for contents whose decay heat is up to 1,500 watts. The cavity length is 54 inches. Thus, the axial heat rate permitted for the cask is $(1,500)(12) / 54=$, watts/ft. Thus, the decay heat is within permissible levels.

3.1.3 Solar Heat

From Reference (3), p 1,636, the solar heating is:

$$
Q=429 \mathrm{~T}\left[\varepsilon_{H} A_{H} \cos \theta_{H}+\varepsilon_{V}{ }^{A} V \cos { }^{\theta} V\right]
$$

where

```
T = atmospheric transmittance = 0.6
```

$\varepsilon=$ absorbtivity $=0.5$
$A=$ area of surface
H. = refers to horizontal surface or top of cask
$V=$ refers to vertical surface or side of cask.

At noon during the summer solstice, at 40 degrees latitude:

$$
\begin{aligned}
& \cos \theta_{H}=0.96 \\
& \cos \theta_{V}=0.284
\end{aligned}
$$

The outside of the cask is 33 inches in diameter and 72.375 inches in height. Thus:

$$
\begin{aligned}
& A_{H}=\frac{\pi}{4} D^{2}=5.93 \text { feet }^{2} \\
& A_{V}=D H=16.6 \text { feet }^{2} \text { (protected area). }
\end{aligned}
$$

The solar heat is:

$$
\begin{gathered}
Q=429(0.6)[(0.5)(5.93)(0.96)+(0.5)(16.6)(0.284)] \\
=732+607=1.339 \mathrm{Btu} / \mathrm{hr} .=0.392 \mathrm{kw}
\end{gathered}
$$

3.2 Summary of Thermal Properties of Materials

The materials' thermopr'sical properties which were employed are shown in Table 3.1. Also, since it has been well demonstrated that the lead will contrac ${ }^{+}$away from the outer shell after casting (fabrication experience indicates a potential gap of 0.060-0.100 inch), the thermal model included a variable air gap (Node 118) which has an effective thermal conductivity that increases with temperature as shown in Figure 3.1.
3.3 Technical Specifications of Components

Relief Value - 75 psig

Pressure gauge - 30 in Hg vacuum to 100 psig pressure.

3.4 Thermal Evaluation for Normal Conditions of Transport

3.4.1 Thermal Model

The analysis for normal operation were performed assuming only radial heat flow from the contents through the cask wal: 3 to the environment.

Rev. A. 3-28-80

TABLE 3.1 THERMOPHYSICAL PROPERTIES EMPLOYED FOR LEAD AND STEEL

Lead

$\xrightarrow[F]{\substack{\text { Temperature } \\ F}}$	$\begin{gathered} \text { Thermal Conductivity, } \\ \text { Btu/hr-ft-F } \end{gathered}$	$\begin{gathered} \text { Specific Heat, } \\ \text { Btu/1b } \\ \hline \end{gathered}$	Emissivity
32	20.1	0.0303	1.0
212	19.6	0.0315	1.0
572	18.0	0.0338	1.0
621	8.8	0.0337	1.0
900	8.9	0.0326	1.0

Steel
Density $=488$ pounds $/$ feet 3
Latent Heat $=120 \mathrm{Btu} / 1 \mathrm{~b}$
Melting Temperature $=1,800 \mathrm{~F}$

$\begin{gathered} \text { Temperature, } \\ \hline \end{gathered}$	Thermal Conductivity, Btu/hr-ft-F	$\begin{gathered} \text { Specific Heat, } \\ \text { Btu/lb } \\ \hline \end{gathered}$	Emissivity
32	8.0	0.11	$0.8{ }^{(a)}, 1.0^{(b)}$
212	9.4	0.11	0.8, 1.0
572	10.9	0.11	0.8, 1.0
932	12.4	0.11	0.8, 1.0
1,800	15.0	0.11	0.8, 1.0

(a) For steel surface exposed to flame, $\varepsilon=0.8$.
(b) For steel surfaces viewing each other across internal air gaps, $\varepsilon=1.0$.

3.4.2 Maximum emperature

3.4.2.1 BRR/MTR Fuel

(a) External Heat Transfer

During normal operation, heat is dissipated from the outside surface of the cask by radiation and natural convection in air. The heat transferred by radiation is:

$$
Q_{r}=0.173 \varepsilon \mathrm{~A}\left[\left(\frac{T_{0}}{100}\right)^{4}-\left(\frac{T_{a}}{100}\right)^{4}\right]
$$

and the heat transferred by convection is:

$$
Q_{c}=h_{c} A_{c}\left(T_{0}-T_{a}\right),
$$

where

$$
\begin{aligned}
\varepsilon & =\text { surface emissivity }=0.5 \text { for steel } \\
T_{o} & =\text { cask surface temperature } \\
T_{a} & =\text { ambient temperature }=100 \mathrm{~F} \\
\mathrm{~h}_{\mathrm{c}} & =0.19\left(\mathrm{~T}_{0}-\mathrm{T}_{\mathrm{a}}\right)^{1 / 3} \text { (McAdams } \\
\mathrm{A}_{\mathrm{r}} & =\mathrm{A}_{\mathrm{c}}=\text { heat transfer area }
\end{aligned}
$$

Heat transfer from the outside corners and top of the cask is partly obstructed due to the air pockets built into the lead to provide for lead meltdown space in case of fire. The air pockets also insulate the cask from solar heating. Two estimates of the maximum heat load are made. In the first case, the full solar load and total cask surface area are considered.

In the second case, heat transfer from areas obstructed by air pockets is neglected, and only the solar load on the side is included. In the firsc case, the total heat load on the outside surface of the cask is $Q=3,480+1,339=4,819 \mathrm{Btu} / \mathrm{hr}$; and, the heat-transfer area including the top and bottom is $A=52.1+$ $11.36=63.96 \mathrm{ft}^{2}$. In the second case, the solar load is $540 \mathrm{Btu} / \mathrm{hr}$ for a total heat load of $4,020 \mathrm{Btu} / \mathrm{hr}$; and the heattransfer area, neglecting the top and corners, is $A=46.3+$ $3.4=49.7 \mathrm{ft}^{2}$. In the first case, the heat flux is $75.4 \mathrm{Btu} / \mathrm{hr}$ $f t^{2}$, and in the second case is $80.9 \mathrm{Btu} / \mathrm{hr} \mathrm{ft}^{2}$. The second case is calculated below since it leads to conservative results
(higher surface temperatures).
The total heat, removal capacity of the cask is: $Q=Q_{r}+Q_{C}$, or
$Q=(0.173)(49.7)\left[\begin{array}{c}\left.\left(\frac{T_{0}}{100}\right)^{4}-\left(\frac{560}{100}\right)^{4}\right]+0.19(49.7)\left(T_{0}-560\right)^{4 / 3} .\end{array}\right.$
For:

$$
\begin{aligned}
Q=3,480 & \left.+540=4,020 \mathrm{Btu} / \mathrm{hr}, 4,020=4.29\left[\mathrm{~T}_{0} \mathrm{~T}_{100}\right)^{4}-981\right] \\
& +9.44\left(T_{0}-560\right)^{4 / 3}
\end{aligned}
$$

and:

$$
\mathrm{T}_{0}=617 \mathrm{R}=157 \mathrm{~F} .
$$

Thus, the maximum cask surface temperature will be 157 F , assuming there is no heat loss (or addition), through the top and corners of the cask. The surface temperature is below 180 F, which meets the $A E C$ requirements.
(b) Heat Transfer in Cask Wall

The temperature drop across the lead in the wall of the cask is:

$$
\Delta T=\frac{Q}{2 \pi k L} \ln D_{2} / D_{1}=4.05 \mathrm{~F},
$$

where

$$
\begin{aligned}
& Q=3,480 \mathrm{Btu} / \mathrm{hr} \\
& k=19 \\
& L=5 \text { feet } \\
& D_{2}=32 \text { inches } \\
& D_{1}=16 \text { inches }
\end{aligned}
$$

The total temperature drop across the inside (thickness $=0.25$ inches) and outside (thickness $=0.5$ inch) steel plates is $\Delta T=$ 0.7 F .

As $t l \geqslant$ lead solidifies in the manufacturing process, a small air gap is formed between the outside steel shell and the lead. The thickness of this gap is estimated to be 0.0817 inch. The heat transferred by conduction and radiation across the gap is:

$$
Q=\frac{k A \Delta T}{t}+0.173 \mathrm{FA} \frac{4 \mathrm{~T}^{3} \Delta T}{10^{8}}
$$

where

$$
\begin{aligned}
& Q=3,480 \mathrm{Btu} / \mathrm{hr} \\
& A=50.2 \mathrm{ft}^{2} \\
& \mathrm{t}=0.0817 \mathrm{inch}
\end{aligned}
$$

$$
\begin{aligned}
& F=0.231 \\
& T=180 \mathrm{~F}=640 \mathrm{R}
\end{aligned}
$$

The total temperature drop across the cask wall is $\Delta T=$ 23.8 F . It is expected that the lead will settle during transportation and close the air gap. Thus, the temperature drop across the wall of the cask should decrease in later shipments.

The total temperature drop across the cask wall is $\Delta T=$ $4.05+0.7+23.8=28.6 \mathrm{~F}$. The temperature at the inside surface of the cask wall is $T=157+28.6=185.6 \mathrm{~F}$.

(c) Internal Heat Transfer

During normal operation, the cavity of the cask is filled with water, and the fuel elements are cooled by natural circulation of the water. The water flows up through and around the fuel elements to the top of the cavity and then flows down through the space between the cask wall and the fuel elements. The heat absorbed by the water as it flows up through the elements is dissipated as the water flows down past the cooler cask wall.

The natural convection heat transfer can be calculated from the pertinent pressure drop and heat balance equations. These equations have been solved and placed in a form convenient for calculation in Reference 5. According to the analysis in Reference 5 , the equations which must be solved for the maximum water temperature $T(L)$ are:

$$
\begin{equation*}
T(L)=T_{c}=\frac{\gamma}{1-e^{-a L}} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& y=T(L)-T(0)=\frac{Q}{C_{D}}\left(\frac{1}{A V}\right) \\
& a L-2\left(F_{A}-1\right)=\frac{384}{\rho g B}\left[\left(A_{i} D_{i}\right)^{2,-1}+\left(A_{0} D_{0}^{2}\right)^{-1}\right]\left(\frac{A V}{\gamma}\right) \\
& \alpha L=\frac{P_{H} L}{C O}\left(\frac{h_{0}}{A V}\right) \tag{2}\\
& h_{0}=0.05\left[\frac{o^{2} k^{2} g B C}{\mu}\right]^{\frac{1}{3}}\left(\frac{\gamma}{\alpha L}\right)^{\frac{1}{3}} \tag{3}
\end{align*}
$$

where

$$
\begin{aligned}
T(L) & =\text { maximum water temperature (at top of cask) } \\
T(O) & =\text { water temperature at bottom of cask } \\
T_{C} & =\text { cask cavity wall temperature } \\
Q & =\text { decay heat } \\
A V & =\text { flow velocity (ft }{ }^{3} / \mathrm{hr} \text {) } \\
A_{i} & =\text { total element flow area (up-flow region) } \\
D_{i} & =\text { equivalent diameter of element region } \\
A_{O} & =\text { flow area of down-fiow region } \\
D_{O} & =\text { equivalent diameter of down-flow region } \\
F_{A} & =\text { axial peaking factor } \\
P_{L} & =\text { heat-transfer area = area of cavity wall } \\
G & =\text { gravitational constant }
\end{aligned}
$$

water properties:

```
c= specific heat
0 = density
u = viscosity
B = volume expansivity (F
k = thermal conductivity
```

The required numerical data are:

$$
\begin{array}{rlrl}
\mathrm{T}_{\mathrm{av}} \sim 195 \mathrm{~F} & \mathrm{~F}_{\mathrm{A}} & =1.40 \\
\mathrm{C}=1.0 \mathrm{Btu} / 16 \mathrm{~F} & \mathrm{~A}_{\rho} & =68.5 \text { inches }^{2} \\
\rho=60.2 \text { pounds } / \mathrm{ft}^{3} & \mathrm{D}_{\mathrm{O}} & =2.76 \text { inches } \\
\frac{384 \mu}{\rho \mathrm{gB}}=0.28 \times 10^{-4} & \mathrm{~A}_{\mathrm{i}} & =88.7 \text { inches }{ }^{2} \\
{\left[\frac{\mathrm{k}^{2} \rho^{2} \mathrm{GBC}}{\mu}\right]^{\frac{1}{3}}=487} & \mathrm{D}_{\mathrm{i}} & =0.477 \text { inches } \\
& \mathrm{P}_{\mathrm{H}} & =48.7 \text { inches } \\
\mathrm{L} & =52.5 \text { inches } \\
Q & =3.480 \text { Btu/hr }
\end{array}
$$

Using these numerical data, Equations (2), (3), (4), and (5) become:

$$
\begin{align*}
y & =57.8 / \mathrm{AV} \tag{2}\\
a L & =0.8+0.03(\mathrm{AV} / \mathrm{y}) \tag{3}\\
a L & =0.295\left(\mathrm{~h}_{0} / \mathrm{AV}\right) \tag{4}\\
\mathrm{h}_{0} & =24.4 \quad(\mathrm{y} / \mathrm{aL}) \frac{1}{3} \tag{5}
\end{align*}
$$

The solutions to these equations are $y=4.3 \mathrm{~F}, a \mathrm{a}=0.896$, $A V=13.5 \mathrm{ft}^{3} / \mathrm{hr}$, and $\mathrm{h}_{0}=41.2 \mathrm{Btu} / \mathrm{hr} \mathrm{ft}^{2} \mathrm{~F}$. From Equation (1), $T(L)-T_{c}=7.3 \mathrm{~F}$.

From Section 3.4.2.1(b), the maximum inside cask wall temperature is $T_{C}=185.6 \mathrm{~F}$. The maximum water temperature is $T(L)=185.6+7.3=192.9 \mathrm{~F}$.

The design pressure of this cask is 100 psig so that the maximum permissible operating pressure is 50 psig. Thus, the
maximum operating temperature (193 F) is well below the boiling point (298 F) at the maximum permissible operating pressure.

3.4.2.2 Fermi Fuel

Du_- j normal conditions, the cask is water filled and the ambient temperature is 100 F . The decay heat load is 1.5 kw , and the solar load is 0.392 kw .
(a) External Heat Transfer

From Section 3.4.2.1(a), the surface temperature T_{s} of the cask is given by the equation:

$$
Q=4.29\left[\left(\frac{T_{s}}{100}\right)^{4}-\left(\frac{T_{0}}{100}\right)^{4}\right]+9.44\left(T_{s}-T_{0}\right)^{\frac{4}{3}}
$$

where

$$
\begin{aligned}
\mathrm{Q} & =1.5 \mathrm{kw}+0.392 \mathrm{kw}=6,459 \mathrm{Btu} / \mathrm{hr} \\
\mathrm{~T}_{\mathrm{O}} & =\text { ambient temperature }=100 \mathrm{~F}=560 \mathrm{R} \\
\mathrm{~T}_{\mathrm{S}} & =\text { surface temperature }
\end{aligned}
$$

The solution to this equation is $T_{S}=643 \mathrm{R}=183 \mathrm{~F}$. The surface temperature is slightly above 180 F , and access to the surface of the cask will be restricted when the ambient temperature is above 97 F .
(b) Temperature Drop in Cask Wall

A temperature drop of 29 F at 1.4 kw has been measured across the wall of the BMI-1 cask. At 1.5 kw , the temperature drop is:

$$
\Delta T=\frac{1.5}{1.4} \times 29=31 \mathrm{~F}
$$

(c) Heat Transfer in Cavity

During normal conditions, heat is transferred from the surface of the basket to the cask wall by natural convection in water and by conduction through the six radial copper ribs extending from the basket to the wall. The heat transferred by natural convection from the basket to the water is:

$$
Q=h A_{b}\left(T_{b}-T\right) ;
$$

and the heat transferred from the water to the cask wall is:

$$
Q=h A_{w}\left(T-T_{w}\right),
$$

where $h=$ heat transfer coefficient $=100 \mathrm{Btu} / \mathrm{hr} \mathrm{ft}{ }^{2} \mathrm{~F}$,
(McAdams, Ref. 4, p. 175)

$$
A_{b}=\text { basket area }=7.5 \mathrm{ft}^{2}
$$

$$
A_{w}=\text { wall area }=17.5 \mathrm{ft}^{2}
$$

$$
T_{b}=\text { basket temperature }
$$

$$
\mathrm{T}_{\mathrm{w}}=\text { cask wall temperature }
$$

$$
T=\text { water temperature }
$$

From the equations above, the temperature drop $\left(T_{b}-T_{w}\right)$ is given by the relation:

$$
Q=\frac{A_{w} A_{b}}{\left(A_{w}+A_{b}\right)} h\left(T_{b}-T_{w}\right)
$$

If all the heat transferred by convection $(Q=5,120 \mathrm{Btu} / \mathrm{hr})$ then $\left(T_{b}-T_{w}\right)=9.8 \mathrm{~F}$. Heat transfer by conduction in the copper ribs will reduce this temperature drop a few degrees (see Section 3.5.4.2(b). From the above, the temperature of the outside surface of the copper basket is $T_{b}=183+31+9.8=224 \mathrm{~F}$. The temperature drop across the copper basket is:

$$
\Delta T=\frac{Q}{2 \pi k L} \ln \frac{D_{2}}{D_{1}}=1.3 \mathrm{~F}
$$

where

$$
\begin{aligned}
& \mathrm{k}=200 \mathrm{Btu} / \mathrm{hr} \mathrm{ft} \mathrm{~F} \\
& Q=5,120 \mathrm{Btu} / \mathrm{hr} \\
& D_{2}=10.75 \text { inches } \\
& D_{1} \sim 4 \times 3.38 / \pi=4.3 \text { inches } \\
& L=34 \text { inches }
\end{aligned}
$$

Inside the cavity of the copper basket are contained successive
 fuel subassembly. Using the experimentally determined conductivity of wet copper shot bed $k=6.1 \mathrm{Btu} / \mathrm{hr} f t F$, the temperature drop across the outer layer of copper shot is:

$$
\begin{aligned}
\Delta T=\frac{Q a x}{k A} & \\
& =5,120 \times 1.23 \frac{.125 \times 12}{6.1 \times 4 \times 3.38 \times 31}=3.8 \mathrm{~F}
\end{aligned}
$$

where the axial peaking factor of 1.23 has been conservatively included in the total heat load. The temperature of the outside surface of the steel can is $T=225+1.3+3.8=229 \mathrm{~F}$.

The temperature drop across the steel can, the inner layer of copper shot, and a dummy fuel subassembly was measured experimentally (Section 3.6.2). With a heat load of 0.350 kw in a 12 -inch-long section of the dummy fuel subassembly, filled with shot and water, a temperature drop of 40 F was measured. Extrapolating this data to the actual subassembly which is 31 inches long with a decay heat of $Q=1.5 \times 1.23=1.85 \mathrm{kw}$, taking into account the peaking factor, the temperature drop would be:

$$
T=40\left(\frac{1.85}{.350}\right)\left(\frac{12}{31}\right)=82 \mathrm{~F} .
$$

It was observed experimentally (Section 3.6.2), however, chat at the heat generation rate of the maximum burnup fuel subassembly the fuel pin temperature is uniform through the subassembly and comes to equilibrium at the saturation temperature corresponding to the ambien pressure. This condition was observed as long as the ends of the experimental assembly were covered with water. Under these circumstances, heat was apparently being removed from the subassembly primarily by evaporation and convection. When water was allowed to evaporate from the shot bed, a radial temperature distribution was observed which is typical of simple conduction heat transfer through the dry copper shot.

Based on the experimental evidence, heat transfer by means of evaporation-condensation and convection will cause the fuel element to come to an equilibrium saturation temperature corresponding to the pressure inside the cask with no loss of coolant. The equilibrium temperature in the fuel element would then be only a few degrees above the basket temperature of 229 F .

3.4.2.3 EPRI Crack Arrest Capsules

It was shown in the September 8, 1969 Addendum that for a 130 F ambient temperature and 1,500 watt thermal load, the
outside wall temperature is about 190 F and the cask wall Δt is about 37 F . For a 100 F ambient with 1,500 watts becay heat the outside wall temperature would be 190-30 $=160$ F. For the reduced heat load of 110 watts/ft, the outside wall temperature would be approximately $(160-100)(110 / 333)+100=120 \mathrm{~F}$. The Δt through the cask wall would be $(37)(110 / 333)=12 \mathrm{~F}$. Thus, the cavity wall temperature would be about $120+12=132 \mathrm{~F}$. These temperatures are conservatively high since they assume no radial heat flow in the cask wall.

The temperature of the capsule is calculated assuming that all cooling take place by convection and radiation. The capsule will be transported without a canister. However, a wire mesh basket having a maximum wire size of 11 gage (0.125-inch) and minimum mesh size of 1.0 inches may be used to aid in handling the capsules. Thus, it is assumed that convection and radiation heat transfer wil take place directly between the capsule wall and the cask inner cavity wall, Figure 3.2 .

In order to facilitate the calculations, it is assumed that the cavity wall is a plane, as wide as the capsule (14 inches), as tall as the capsule (21.5 inches), and located approximately 4 inches away. From McAdams ${ }^{(6)}$ the convection heat transfer correlation is given by:

$$
N u=\frac{C}{(L / x)^{1 / 9}}(G r \cdot P r)^{n}
$$

where

$$
\begin{aligned}
\mathrm{Nu} & =\frac{\mathrm{hx}}{\mathrm{k}} \\
\mathrm{x} & =\text { distance between planes }=1 / 3 \mathrm{ft} \\
\mathrm{k} & =\text { fluid thermal conductivity } \\
\mathrm{Z} & =\text { height of planes }=1.79 \mathrm{ft} \\
\mathrm{Gr} & =a x^{3} \mathrm{st} \\
a & =\text { fluid property constants in Groshof Number }
\end{aligned}
$$

$$
3.19
$$

FIGURE 3.2. SKETCH OF MODEL FOR HEAT FLOW FROM EPRI CRACK ARREST CAPSULE TO CAVITY WALL
Pr = Prandl number which is function of fluid property.

For

$$
\mathrm{Gr}>2\left(10^{4}\right) ; \mathrm{C}=0.071 \text { and } \mathrm{n}=1 / 3
$$

Thus

$$
h / k=0.0589(\mathrm{aPr})^{1 / 3} \Delta t^{1 / 3}
$$

Heat transfer ${ }^{n}$, convection is expressed by:

$$
\begin{aligned}
Q_{C V} & =h A \Delta t \\
A & =\text { area of plane surface }=(14)(21.5) / 144=2.09 \mathrm{ft}^{2} \\
h & =\text { coefficient from above correlation } .
\end{aligned}
$$

Then

$$
Q_{\mathrm{CV}}=0.123 \mathrm{k}(\mathrm{aPr})^{1 / 3} \Delta t^{4 / 3}
$$

Heat transfer by radiation is expresses, by:

$$
Q_{r}=\operatorname{FeFa\sigma A}\left(T_{1}^{4}-T_{2}^{4}\right)
$$

where $\mathrm{Fe}=$ emissivity factor

$$
\begin{gathered}
=\frac{1}{\frac{1}{E_{1}}+\frac{1}{E_{2}}-1} \\
E_{1}=\text { emissivity of capsule }=0.2 \\
E_{2}=\text { emissivity of cask wall }=0.5
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{Fe} & =0.167 \\
\mathrm{Fa} & =\text { view factor }=1.0 \\
\sigma & =1.73\left(10^{-9}\right) \mathrm{R}^{4} \\
\mathrm{~A} & =2.09 \mathrm{ft}^{2} \\
\mathrm{~T}_{1} & =\text { capsule temperature, } \mathrm{R} \\
\mathrm{~T}_{2} & =\text { cask cavity temperature, } \mathrm{R}
\end{aligned}
$$

Thus

$$
Q_{r}=6.04\left(10^{-10}\right)\left(\mathrm{T}_{1}^{4}-\mathrm{T}_{2}^{4}\right)
$$

It is assumed that the Δt is about 200 F and that the mean air temperature between the capsule and the cask wall is about 230 F . Then the air properties are:

$$
\begin{aligned}
\mathrm{k} & =0.0188 \mathrm{Btu} / \mathrm{hr} \mathrm{ft} \mathrm{~F} \\
\mathrm{a} & =4.78\left(10^{5}\right) / \mathrm{ft}^{3} \mathrm{~F} \\
\mathrm{Pr}_{r} & =0.68 \\
\mathrm{~T}_{1} & =460+132+200=792 \mathrm{R} \\
\mathrm{~T}_{2} & =460+132=592 \mathrm{R}
\end{aligned}
$$

Substituting the values in the eyations above results in the following:

$$
\begin{aligned}
Q_{c v} & =186 \mathrm{Btu} / \mathrm{hr} \\
Q_{r} & =163 \mathrm{Btu} / \mathrm{hr}
\end{aligned}
$$

And the total heat flow is $349 \mathrm{Btu} / \mathrm{hr}=102$ watts. Thus, the capsule temperature for normal transportation is about 332 F .
3.4.3 Minimum Temperatures

From Section 3.4.2.1(c), the minimum water temperature is $192.9-4.3=188.6 \mathrm{~F}$ for an ambient temperature (T_{a}) of 100 F and a decay heat load (Q) of $3,480 \mathrm{Btu} / \mathrm{hr}$. With no solar load, the water temperature is 180 F . For other values of T_{a} and Q, the water temperature (T) is approximately:

$$
T=(180-100)\left(\frac{Q}{3,480}\right)+T_{a}
$$

The water will freeze when $T=32 \mathrm{~F}$, or $T_{a}=32-Q / 43.5$. The water will not freeze at an ambient temperature of $\mathrm{T}_{\mathrm{a}}=-20 \mathrm{~F}$ if the decay heat is greaer than $Q=2,260 \mathrm{Btu} / \mathrm{hr}=0.662 \mathrm{kw}$. When these conditions are satisfied, no antifreeze is needed in the water.

In later shipments it is expected that the temperature drop across the cask wall will decrease due to settling of the lead and closing of the air gap between the lead and outer steel shell. In this case, the water temperature may decrease from 180 F to about 160 F under normal conditions. Thus, in later shipments the decay heat will have to be over $Q=0.88 \mathrm{kw}$ to prevent freezing at $T_{a}=-20 \mathrm{~F}$. Provisions will be made to cover the cask with a canvas blanket (which will decrease heat transfer from the outer surface) when ambient temperatures and cask internal temperatures indicate the possibility of freezing.

3.4.4 Maximum Internal Pressures

The design pressure of this cask is 100 psig so that the maximum permissible operating pressure is 50 psig. The maximum operating temperature (230 F) is 68 F below the boiling point $(298 \mathrm{~F})$ at the maximum permissible operating pressure.

3.5 Hypothetical Accident Thermal Evaluation

The thermal analysis presented in this section examines the thermal response, and associated effects, of the modified BMI-1 cask when subjected to the environmental fire condition outlined in Appendix B of $10-C F R-71$. The fire is defined as a radiant thermal source having a temperature of $1,475 \mathrm{~F}$ lasting for 30 minutes. In addition, the "standard fire" is defined to have an effective source emissivity of 0.9 , and the thermal absorptivity of the exposed cask surface is defined to be 0.8 .

3.5.1 Thermal Model

Tha thermal transient analysis was carried out using the THT-D heat-transfer code (a generalized heat-transfer program available at Battelle). A cylindrical section, representative of the center region of the BMI-1 cask, was analyzed. Figure 3.3 illustrates the thermal model and THT-D node identification.

The prinary modification to the BMI-1 cask, which is directed at fire survival, is the addition of a $1 / 8$-inch-thick outer stainless steel shell (a thermal buffer shell) which encapsulates the existing $1 / 2-i n c h$ steel outer shell. The planned use of even'y spaced weld spots, $1 / 16$-inch high, will assure an air gap between buffer shell and original outer shell. This air gap will impede the thermal pulse resulting from the hypothetical fire. A constant 0.060 -inch air gap was employed in the transient calculations although it can be shown that a $1 / 8$ -3/16-inch air gap would exist due to differences in thermal expansions during the fire period.

3.5.2 Package Conditions and Environment

The starting temperatures (at start of the 30 -minute fire) of the cask system, shown in Figure 3.4, were calculated for conditions corresponding to a 130 F day and a cask thermal load of $1.5 \mathrm{kw}_{\mathrm{t}}$. The correlation of analytics with experimental data is shown in Figure 3.5, where the variation of cask outer surface temperature is shown as a function of thermal load and environmental temperature. The experimental point, measured for the BMI-1 cask without an outer shell, shows a measured outer shell temperature of 130 F on a 70 F day for a 1.4 kw t thermal load. The calculated result is 133 F on a 70 F day. The external area change due to the addition of a $1 / 8$-inch fire shell can be considered negligible. In addition, the experimental data for the $1.4 \mathrm{kw}_{\mathrm{t}}$ thermal load can be scaled to calculate an inner liner temperature of 227 F for the conditions of a 130 F day with a thermal load of $1.5 \mathrm{kw}_{t}$. Therefore, normal shipment with the contents contained in water will not result in any pressurization problems if the $1.5 \mathrm{kw}_{\mathrm{t}}$ heat load is not exceeded. The data contained in Figure 3.4 and 3.5 can be readily employed to assess other ambient and thermal load conditions.

For conservatism, the thermal capacitance of material(s) within the cask internal cavity was neglected, or an empty cavity was assumed for the thermal transient calculations.

The Fermi fuel subassembly will be shipped in the BMI-1 shipping cask, which has been provided with a special basket. During shipment, the cask cavity is filled with water. The void spaces between the fuel rods in the subassembly are filled with a settled bed of copper shot in water. The cask is to be shipped by truck so that under normal conditions the maximum fuel and water temperature is about 230 F .

3.5.3 Package Temperatures

The calculated thermal history of selective nodes (see Figure 3.3 for identification) is shown in Figure 3.6. The $1 / 8$ inch outer shell, represented by Node 124 (a shell surface node), has little thermal capacitance and, therefore, responds very rapidly to the fire pulse. The outer shell, $1 / 2$ inch thick, follows in succession, and since it also has only a nominal thermal capacitance, results in the closure of the internal air gap (Node 118). Commencement of lead melting is calculated to be at 16 minutes and the absorption of heat via latent heat capacity causes a reversal in the temperature response (see Figure 3.6) for a short time period. As the melt front travels inward, the outer shells then continue their temperature rise. The temperature reversal, and retardation, mentioned above are also the result of the thermal capacitance of the lead shield which has now become thermally soupled to the outer shell due to the lead-shrinkage gap (Node 118) being closed.

The "melt-front" boundary is shown in Figure 3.7, as a function of radial position and time

3.5.4 Evaluation of Package Performance for the Hypothetical Accident Thermal Condition

> 3.5.4.1 Lead Melt

The cylindrical region of the BMI-1 cask was analyzed in detail to assess the potential for lead melting during a postulated hypothetical fire. The analysis assumed temperatures at commencement of fire corresponding to normal operation on a 130 F day with a 1.5 kw internal heat load.

This analysis considers heat transfer through the cylindrical wall of the cask. This is the most severe thermal condition which could exist since the cover lid, corners, and bottom of the cask have sufficient thermal protection in the form of thick structural plates (i.e., 1-1/4-inch lid plate), skid I-beams, and corner lead-expansion voids. These structures provide a significant thermal capacitance and/or resistance.

The results of the thermal transient analysis indicate lead melt, within the outer regions of the lead shield.

The outer radius of the lead is 16.0 inches, and melting is calculated to proceed inward to a radial depth of 1.65 inches. Lead melting does not occur at the inner regions. Resolidification begins at about 33 minutes within the lead interior, followed by resolidification at the outer radius starting at 40 minutes. The results of these transient calculations indicate a maximum potential lead melt of 34 volume percent of the total lead if the cask is at the starting temperatures used in the calculation. Since expansion volume is provided for by shrinkage from the original casting, the expansion void needs only to accomodate the 3.8 percent increase in volume of the lead that melts. The built-in expansion void (752 inches ${ }^{3}$) is more than sufficient to accommodate the excess volume of molten lead (574 inches ${ }^{3}$), therefore, no pressure will be exerted on the wall of the cask. Also, no lead is lost. The adequacy of lead shielding afteresolidification is discussed in the shielding section.

The lid, bottom, and corner volumes were not analyzed specifically since it is felt that the analysis presented above contains sufficient conservatism to permit extrapolation to those cask regions. For example, the lid cover is $1-1 / 8$ inches thick and the corners at the loading end have $3 / 4$-inch steel plates, respectively. The thermal capacitance of these plates, along with the internal dir gaps ($1 / 4$ inch in the cover and expansion volumes in the corners) will very likely result in zero lead
melt for those regions. The bottom of the cask also has corner-expansion volumes, and a l-inch base plate. The base plate is furthermore thermal radiatively shielded by the I-beams employed in the skid. Previous calculations (i.e., NRBK-43) on similar cask systems have shown that the I-beam structure provides sufficient shielding from the fire to preclude, or minimize significantly, lead melting. Therefore, the bare cylindrical sides are the most susceptible to melting from a hypothetical fire, and were analyzed in detail. Based on the above analysis, the maximum canister flange temperature reached during/after a fire test is estimated to be less than 600 F .

3.5.4.2 Maximum Contents Temperature

(a) 3RR/MTR Fuel, Loss of Coolant

The fuel element baskets in this cask contain two solid sheets of steel (neutron poison) which divide the baskets into quadrants containing three elements each. Since no heat is transferred between quadrants, the solid sheets have no effect on heat transfer. The three fuel elements in ach quadrant are heid in place by means of vertical steel strips on the corners of the elements. These strips partially oostruct radiation heat transfer, but have no effect on conduction or convection heat transfer.

Figure 3.8 is a sketch of one quadrant of the basket. Heat is transferred from Element 2 to Element 1 by radiation and conduction in air. Heat is transferred from Element 1 to the inner cask wall by radiation and convection. Analytically this is expressed as:

$$
\begin{equation*}
Q_{21}=0.173 F_{21} A_{2}\left[\left(\frac{T_{2}}{100}\right)^{4}-\left(\frac{T_{1}}{100}\right)^{4}\right]+\frac{k A_{2}}{t}\left(T_{2}-T_{1}\right) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
Q_{1 c}=0.173 F_{1 c} A_{1} \cdot\left[\left(\frac{T_{1}}{100}\right)^{4}-\left(\frac{T_{c}}{100}\right)^{4}\right]+c_{1} A_{1}\left(T_{1}-T_{c}\right) \tag{7}
\end{equation*}
$$

As discussed later, conduction in the aluminum elements smoothes out the axial temperature distribution so that the axial power peaking factor does not have to be included in Q_{21} or $Q_{1 c}$. From Section 3.1.2(a), the total decay heat per element is $145 \mathrm{Btu} / \mathrm{hr}$. Thus, $Q_{21}=145 / 2=72.5 \mathrm{Btu} / \mathrm{hr}$ and $Q_{1 c}=145 \times 3 / 2$ $=218 \mathrm{Btu} / \mathrm{hr}$. The heat transfer coefficient h_{c} is:

$$
h_{c}=\frac{0.071}{\left(\frac{L}{t}\right)^{\frac{1}{9}}}\left[\frac{\rho^{2} k^{2} g 8 c}{4}\right]^{\frac{1}{3}}\left(T_{1}-T_{c}\right)^{\frac{1}{3}} \cdot \underset{p 181)}{(\text { McAdam }}(4)
$$

FIGURE 3.8. SKETCH OF FUEL BASKET

The numerical data needed to calculate h_{c} are:

$$
\begin{aligned}
& T_{a v}=390 \mathrm{~F} \\
& \mathrm{~L}=25 \text { inches } \\
& t=D_{0} / 2=1.38 \text { inches } \\
& {\left[\frac{\rho^{2} k^{2} g g c}{\mu}\right]^{\frac{1}{3}}=1.25 }
\end{aligned}
$$

and

$$
h_{c}=0.0643\left(T_{1}-T_{c}\right)^{\frac{1}{3}}
$$

Neglecting the effect of the corner strips, the radiation interchange factors F_{12} and $F_{2 c}$ are:

$$
\begin{aligned}
F_{21} & =\left(2 / \varepsilon_{A 1}-1\right)^{-1}=(2 / 0.15-1)^{-1}=0.081 \\
F_{1 c} & =\left(1 / \varepsilon_{\mathrm{Al}}+1 / \varepsilon_{\mathrm{Fe}}-1\right)^{-1}=(1 / 0.15+1 / 0.5-1)^{-1} \\
& =0.131
\end{aligned}
$$

For two steel surfaces, $F=0.333$.
Now, consider the effect of the corner strips on radiation heat transfer. Assume that the surfaces A_{1}, A_{2}, and A_{3} are parallel and that heat is transferred by radiation from A_{1} to A_{2} to A_{3}. Then:

$$
Q_{12}=\sigma F_{12} A_{1}\left(T_{1}^{4}-T_{2}^{4}\right)
$$

$$
\begin{gathered}
3.35 \\
Q_{23}=\sigma F_{23} A_{2}\left(T_{2}^{4}-T_{3}^{4}\right)
\end{gathered}
$$

and

$$
\frac{Q_{12}}{\sigma F_{12} A_{1}}+\frac{Q_{23}}{\sigma F_{23} A_{2}}=T_{1}^{4}-T_{3}^{4}
$$

Since $Q_{12}=Q_{23}=Q_{13}$ and $A_{1}=A_{2}=A_{3}$,

$$
Q_{13}=\sigma\left[\frac{F_{12} F_{23}}{F_{12}+F_{23}}\right] A_{1}\left(T_{1}{ }^{4}-T_{3}^{4}\right)
$$

Thus, for the portion of the area between Elements 1 and 2 where the steel strips obstruct radiation heat transfer:

$$
F_{21}=\frac{0.131 \times 0.131}{0.131+0.131}=0.065
$$

For the obstructed area between Element 2 and the cask wall:

$$
F_{1 c}=\frac{0.131 \times 0.333}{0.131+0.333}=0.0935
$$

The steel corner strips obstruct one inch of the three inch element width. Averaging the radiation factors over the element width:

$$
F_{21}=\frac{1(0.065)+2(0.081)}{3}=0.076
$$

and

$$
F_{1 c}=\frac{1(0.0935)+2(0.131)}{3}=0.118
$$

The assembled numerical data needed to calculate T_{2} and T_{1} are:

$$
\begin{array}{ll}
Q_{21}=72.5 \mathrm{Btu} / \mathrm{hr} & \mathrm{t}=\frac{0.75}{12}=0.0625 \mathrm{ft} \\
Q_{1 c}=218 \mathrm{Btu} / \mathrm{hr} & \mathrm{~A}_{2}=3 \times 25 / 144=0.52 \mathrm{ft}^{2} \\
\mathrm{~F}_{21}=0.076 & \mathrm{~A}_{1}=2 \mathrm{~A}_{2}=1.04 \mathrm{ft}^{2} \\
\mathrm{~F}_{1 \mathrm{c}}=0.118 & \mathrm{~A}_{1}=(1+1 / \sqrt{2}) \mathrm{A}_{2}=0.39 \mathrm{ft}^{2} \\
T_{c}=186 \mathrm{~F}=646 \mathrm{R} & \mathrm{k}=0.0239 \mathrm{Btu} / \mathrm{hr} \mathrm{ft} \mathrm{~F} . \\
\mathrm{h}_{c}=0.0643\left(\mathrm{~T}_{1}-\mathrm{T}_{\mathrm{c}}\right)^{\frac{1}{3}} &
\end{array}
$$

Using these data, Equations (6) and (7) become:

$$
\begin{align*}
& 72.5=0.00683\left[\left(\frac{T_{2}}{100}\right)^{4}-\left(\frac{T_{1}}{100}\right)^{4}\right]+0.199\left(T_{2}-T_{1}\right) \tag{6}\\
& 218=0.01815\left[\left(\frac{T_{1}}{100}\right)^{4}-1.732\right]+0.067\left(T_{1}-646\right)^{4 / 3} \tag{7}
\end{align*}
$$

The solutions to these equations are $T_{1}=461 \mathrm{~F}$ and $\mathrm{T}_{2}=615 \mathrm{~F}$. Thus, the maximum element temperature during loss of coolant is 615 F .

In the calculations above, the axial power peaking factor has been neglected since the aluminum in the fuel elements effectively evens out the axial temperature distribution. For a riangular power distribution with an axial peaking factor of 1.4 , tie fraction (1.4-1)/4 $=0.1$ of the power is generated it a power greater than average. The temperature drop required to conduct this 10 per cent excess heat from the center to the end of the element is approximately:

$$
\Delta T=\frac{0.10\left(\frac{2}{2}\right) L}{K A}
$$

where

$$
\begin{aligned}
Q & =145 \mathrm{Btu} / \mathrm{hr} \\
L & =25 / 2=12.5 \text { inches } \\
k & =135(\text { aluminum at } 600 \mathrm{~F}) \\
A & =2.55 \text { inches }^{2} \\
\Delta T= & \frac{(0.10)(72.5)(12.5)(12)}{(135)(2.55)}=3.16 \mathrm{~F}
\end{aligned}
$$

Thus, the axial peaking factor increases the element temperature by 3.2 F .

It has also been assumed in the work above that the fuel elements are isothermal. The temperature drops across the elements themselves depend on the orientation of the fuel elements in the basket. In the worst case, the temperature drop would be about 15 F .

In conclusion, considering all the factors discussed above, the maximum fuel element temperature during loss-of-coolant will be $T_{2}=615+3+15=633 \mathrm{~F}$. This is a safe temperature for aluminum plate-type fuel elements.

Steam produced in the cask cavity during a fire is vented through a $1 / 16$-inch-thick filter with a flow area $0: 20$ inches ${ }^{2}$. According to data obtained for pressure differentials (ΔP) up to about 20 psi, the flow capacities of these filters are $\mathrm{W} / \mathrm{A}=$ $26.5 \Delta P+50 \mathrm{ft}^{3} / \mathrm{min}$ per ft^{2} of filter area. Using this equation to extrapolate to $\Delta P=75$ psi, the flow capacity is $W=283 \mathrm{ft}^{3 /}$ min. (The pop-off value is set at $\Delta \mathrm{P}=75 \mathrm{psi}$.$) At 89.7$ psia, 283 pound 3 of water forms 1,382 feet 3 of steam. Thus, the cavity can be vented in $t=1,382 / 283=4.9$ minutes. Ten minutes is considered a reasonable time to empty the cask. Thus, a 100 per cent safety factor in the design has been allowed, which is more than adequate to compensate for the possibility that the extrapolated filter-flow-capacity data is not accurate at $\Delta P=75$ psi.

During the loss-of-coolant accident, the water drains from the cask and evaporates from the shot beds. The shot beds are held in place by a stainless steel can with porous steel end plates so that the shot will not drain out with the water. It is assumed during loss of coolant that the cask is exposed to 100 F ambient air and a solar heat load of 0.392 kw . From Section 3.4.2.2(a), the surface temperature of the cask is 183 F .

With water in the cask cavity, the temperature drop across the wall of the cask was 31 F . During loss of coolant, this temperature will be increased because the adjustable brass contact angles cover only 37 percent of the surface area of the inside wall of the cask. The temperature increase is less than:

$$
T=\frac{Q}{2 \pi k L} \ln \frac{D_{2}}{.37 D_{1}}=24 \mathrm{~F}
$$

where

$$
\begin{aligned}
Q & =5,120 \mathrm{Btu} / \mathrm{hr} \\
\mathrm{k} & =19 \mathrm{Btu} / \mathrm{hr} \mathrm{ft} \mathrm{~F} \\
\mathrm{~L} & \sim 3 \mathrm{ft} \\
D_{2} & =32 \text { inches } \\
D_{1} & =16 \text { inches }
\end{aligned}
$$

The total temperature drop across he cask wall is less than $\Delta T=31+24=55 \mathrm{~F}$.

The temperature drop across the six copper ribs and the copper basket is about 8 F . The temperature of the outside surface of the first layer of copper shot is thus $T=183+55+8=246 \mathrm{~F}$.

Using the experimentally determined value for the conductivity of the dry cooper shot bed, $k=0.675 \mathrm{Btu} / \mathrm{hr} / \mathrm{ft} / \mathrm{F}$, the temperature drop across the outer layer of cooper shot is:

$$
\Delta T=\frac{Q \Delta x}{k A}=5120 \times 1.23\left(\frac{.125 \times 12}{0.675 \times 4 \times 3.38 \times 31}\right)=28^{\circ} \mathrm{F},
$$

where the maximum heating rate of $Q=5120 \times 1.23 \mathrm{Btu} / \mathrm{hr}$ has been used in the calculation. The temperature of the surface of the steel can which contains the subassembly is thus $T=$ $246+28=2740 \mathrm{~F}$. As discussed in an earlier section, the temperature drop across the steel can, the inner layer of copper shot, and a shot-filled dummy fuel subassembly was measured experimentally. In these experiments with a $12-i n-10 n g$ section of dummy subassembly, a temperature drop of $225^{\circ} \mathrm{F}$ was measured with a heat load of 0.648 kw . The temperature drop in a full size fuel subassembly would be

$$
\Delta T=\left(\frac{1.5 \times 1.23}{0.648}\right) \quad\left(\frac{12}{31}\right) \quad 225=247^{\circ} \mathrm{F}
$$

The maximum fuel subassembly temperature during loss of coolant is thus $T=274+247=521^{\circ} \mathrm{F}$. This maximum temperature is well below the actual fuel operating temperature of $800^{\circ} \mathrm{F}$ in the anrico Fermi Reactor.
(c) EPRI Crack Arrest Arsules

It was show in the September 8, 1969 SAR Amendment, that for a full .. L load of 1,500 watts, and starting into the hypothetical fire accident from condition for a 130 F ambient temperature, the maximrm cask cavity wall temperature during the incident is about 560 F . Conservatively it is assumed that the Δt from the cask wall to the capsule is the same as for the steady state condition. Then the maximum capsule temperature during the hypothetical accident is $560+(332-132)=760 \mathrm{~F}$. This is well below the melting temperatures for all the materials in the capsule. The maximum temperature of 760 F is a conservative value for the following reasons:
(1) The starting conditions are for an ambient temperature of 130 F . However, a 100 F ambient is allowed for determining starting conditions.
(2) The heat capacity of the capsule is neglected which will lower the maximum temperature ir seality
(3) The Δt from t : q capsule to the cask cavity wall is assumed to be a constant over the temperature range. In reality, radiation heat transfer will become more dominant at the higher temperatures resulting in lower maximum capsule temperatures.
3.6 Appe inx

3.6.1 References

(1) J. O. Blomeke and M. F. Todd, "U-235 Fission Product Production as a Function of Flux, Irradiation Time, and Decay Time", ORNL-2127, Part I, Vol 2 (1957).
(2) Nims, J. B., "Generalized Subassembly Decay Heat Curves", APDA Memo p-64-11, January 14, 1964.
(3) L. S. Marks, "Marks' Handbook", McGraw-Hill, Inc. 5th Ed. (1951).
(4) W. H. McAdams, "Heat Transmission", McGraw-Hill, 3rd Ed. (1954).
(5) R. O. Wooton and H. M. Epstein, "Heat Transfer from a Parallel Rod Fuel Element in a Shipping Container", to be published, Battalle Memorial Institute (1963).
(6) McAdams, w. H. p 181, Eq7-9b.

3.6.2 Experimental Tests of Copper Shot

The shipment of an Enrico Fermi Core-A fuel subassembly with a decay heat output of 1.5 kw requires a heat transfer medium which remains in the cask under all conditions to prevent excessive fuel temperatures. Copper shot was considered to offer the most promise for this application.* To test this concept, experiments were performed with an actual Enrico Fermi Core-A fuel subassembly and a dummy subassembly fabricated using electrical resistance heaters to simulate fuel pins. The experiments were designed to investigate the thermal conductance of shot beds as applied to the Fermi fuel shipment. Details of these experiments and the results are discussed below.

3.6.2.1 Thermal Tests

A simulated fuel subassembly was constructed using actual cross-sectional dimensions including the proposed shipping basket. The unit had 12 inches of active length and thermal insulation was employed on the bottom to decrease the axial heat loss. The zirconium clad fuel pins were represented by stainless steel sheathed, magnesium oxide insulated, nichrome wire resistance heaters. These resistance heater pins had the same diameter (0.156 -inch $O D$) as the Fermi fuel pins and were spaced on the same center to center distances as the Fermi fuel pins. The $18-\mathrm{ga}$. nichrome wire in the heater pins had a resistance of one ohm per foot and the radial heat transfer characteristics of the heater pin was calculated to be slightly less than that of Fermi fuel pins.

[^5]basket in the shipping cask. The heaters and both wrapper tubes were welded to a common bottom to make a liquid-tight unit. A drain tube covered by a porous stainless steel filter was welded to the bottom of the cavity.

To simulate the heat sink provided by the cask, an additional
cylindrical can was welded to the common bottom plate. Inside this can was a copper cooling coil which was attached to a cold water line. Oil was used in this heat sink so that a higher range of temperatures could be used. The oil was continuously stirred by air bubbles to maintain as uniform heat sink temperatures as possible over the length of the apparatus.

The 144 heazer wires were connected in series in four circuits which were :onnected in parallel to a controlled voltage power source. An att:empt was made to regulate the heat input to approximate that of the center section of the Fermi fuel element. Precision meters monitored the circuits to maintain a constant heat : put during the test periods.

Temperatures in this apparatus were measured in 13 locations with stainless-steel-sheathed, cromel-alumel thermocouples. The thermocouple sheath was 0.062 -inch $O D$ with the junction grounded to the sheath at the end. The thermocouples were positioned as shown on Drawing Number 0050D, and attached to a twelve-point recorder. A direct reading millivolt meter was used for the extra thermocouple. The thermocouples were placed so that Number 1 through Number 5 monitored center temperatures on two inch spacings from bottom to top, Number 3 being the center point. Thermocouples 6 through 10 were spuced at the 6-inchheight level (same as Number 3) progressing in 0.250 -inch increments from center to outside. Thermocouples Numbers 11,12 and 13 monitored the oil bath heat sink with Number 11 being at the 6 -inch height.

One test was conducted with no shot or liquid in any of the apparatus to give an indication of temperatures under
these conditions. The apparatus was then loaded with shot through openings in the spacer plate between the heater wires. The copper shot used in these tests were the same as that used in the flowability tests. The shot were thoroughly wetted before being added as a slurry into the water-filled apparatus. The shot readily displaced the water in the apparatus. As noted on Drawing Number 0050D, shot filled the space in the apparatus around the heater pins and between the wrapper tube and the basket tuke. During the tests, most of the water was vaporized and passed readily through the porous shot bed. As the temperature approached 212 F , some water was forced ahead of the steam through the shot bed and appeared on the top of the apparatus. This movement of water and steam through the shot bed appeared to settle the bed slightly. Table Number 3.2 lists data from three of the tests.

During the testing, equilibrium conditions were reached about two hours after energizing the heaters. All the tests were run at least four hours and one test was continued for 51 hours. A slight improvement in the conductivity of the bed was noted in the 51 hour test as the test progressed. Figure Number 3.9 gives the time temperature relationships during a typical testing period. In Figure 3.9 time intervals are marked A through E to delineate significant periods during a typical test. The first 20 minutes, listed as "A", was required as a warm-up period with a full heat load. Section " B " marks the time during which evaporative and convective heat transfer took place. Ding this period, all the thermocouples in the shot bed registered the same temperature (approximately 212 F) and water vapor issued from the top of the apparatus. As the shot bed dried, Section "C", Number 3 thermocouple being in the center responded quite rapidly to an increase in temperature in that area. Other thermocouples quickly followed the rising temperature in the shot bed

TABLE 3.2 TEST DATA

Test Number	Thermocoup e Numbers												
	1	2	3	4	5	6	7		9	10	11	12	13
	Temperatures in Degrees, F												
Test Number 1 Empty apparatus	960	1133	1201	1201	1209	1172	1146	1065	783	373	165	156	
Heat input 491													
Test Number 2	156	162	174	186	197	173	169	165	160	155	139	115	157
Wet copper shot Heat input 350 watts													
Test Number 3	471	483	490	480	485	473	459	440	395	337	265	260	259
Copper shot													
Heat input 648 watts													

as it progressed from the center section of the apparatus. The heat transfer mode, during this time, was apparently changing from evaporative and convective to conductive via the residual copper shot bed. During the period represented by "C" some adjustments were made in the heat sink temperature by controlling the flow of water in the cooling coil. In periods "D" and "E", a constant ΔT is exhibited by the system indicating stabilized heat transfer conditions representative of complete loss of coolant. The rising temperatures in period "D" demonstrate the effect of raising the heat sink temperature.

Each test was made with a clean loading of shot, necessitating the removal of the shot between tests. During the tests with the copper shot, a crust of oxidized shot formed on the top and extended about $1 / 8$ inch into the bed. Penetration of this crust permitted the remainder of the shot to be poured from the apparatus. From the experience with the test apparatus, it appears that very little difficulty would be encountered in removing the shot from a full size fuel element after a loss-of-coolant incident.

3.6.2.2 Calculation of Copper Shot conductivity

The experimental heat transfer data were used to calculate the conductivity of the copper shot bed. Consider the dummy Fermi fuel subassembly to be a series of concentric cylinders in which the walls of the cylinders are composed of rows of fuel pins. The outer cylinder contains 44 pins, the next one 36 pins, the next 28 , etc. The heat generated in a given cylindez is proportional to the number of fuel pins in it. The temperature drop across a given cylinder has contributions due to heat generated in interior cylinders and due to heat generated in the cylinder itself. (The calculated thermal conductance of the heater pins
was very similar to that of an actual fuel $\mathrm{F}^{2} \mathrm{n}$. .) Let R be the resistance to heat being conducted across a unit cell (fuel pin plus surrounding copper shot) of a cylinder. The resistance of a given cylinder is approximately inversely proportional to the number of cells in it. The resistance of the outer cell is approximately $R / 44$; or in the general $R /(8 k-6)$ where $k=2, \ldots$, 6 is the cylinde:" index number.

Proceeding in this manner, it can be shown that the temperature drop across the k th cylinder is:

$$
T_{k-1}-T_{k}=Q R\left(\frac{2 k^{2}+1}{4 k-3}\right)
$$

where

$$
\begin{aligned}
& Q=\text { decay heat per fuel rod (Btu/hr) } \\
& R=\text { resistance of unit cell (F hr/Btu) } \\
& k=2, \ldots, 6:(2, \ldots, 6)
\end{aligned}
$$

The total temperature drop is:

$$
T_{0}-T_{6}=Q R \Sigma_{1}^{6}\left(\frac{k^{2}+1}{4 k-3}\right)+0.4 Q R=23.58 Q R
$$

The resistance of a unit cell of the Fermi element can be written 7.pproximately as:

$$
\mathrm{R}=\frac{\left(\frac{1.562}{k_{1} L}\right)\left(\frac{2.42}{k L}\right)}{\left(\frac{1.562}{k_{1} L}\right)+\left(\frac{2.42}{k L}\right)}+\left(\frac{0.21}{k L}\right)
$$

where

$$
\begin{aligned}
\mathrm{k}_{1} & =\text { fuel rod conductivity }(\text { Btu } / \mathrm{hr} \mathrm{ft} \mathrm{~F}) \\
\mathrm{k} & =\text { copper shot conductivity } \\
\mathrm{L} & =\text { fuel rod length }(f t)
\end{aligned}
$$

This formulation of R assumes the unit cell is composed of three resistances, which are added as two parallel and one series resistance. For $k_{1}=k$ the equation above should reduce to $R=1 / k L$; however, it reduces to $R=1.16 / \mathrm{kL}$. Thus, the resistance is 16 per cent too large (for $k_{1}=k$, at least); and the temperature drop is overestimated.

The conductivity of the shot bed can now be calcilated from the experimental data using the above equations. The temperature drop across the fuel element a d the layer of copper shot is:

$$
\Delta T=23.58\left(\frac{Q}{144}\right) R+\frac{Q \Delta X}{K A}
$$

where

$$
\begin{aligned}
Q & =\text { total heat load } \\
\Delta x & =\text { thickness of shot layer } \\
k & =\text { conductivity of shot } \\
k_{1} & =\text { rod conductivity }=8 \mathrm{Btu} / \mathrm{hr} \text { ft } F
\end{aligned}
$$

For the wet shot bed the experimental data gives:

$$
\begin{aligned}
& Q=0.350 \mathrm{kw}, L=12 \text { inches, and } \Delta T=35 \mathrm{~F} \\
& \text { (using readings from thermocouples Number } 2 \\
& \text { and Number } 11 \text {). Substituting in the equation } \\
& \text { above, }
\end{aligned}
$$

$$
\begin{gathered}
3.50 \\
35=\frac{90}{0.19 k+2.42}+\frac{58.5}{k}
\end{gathered}
$$

and $k=6.1 \mathrm{Btu} / \mathrm{hr}$ ft F for the wet-shot bed. For the dry copper shot bed, the experimental data gave $Q=0.648 \mathrm{kw}, \mathrm{L}=12$ inches, and $\Delta T=225 \mathrm{~F}$. Substituting in the equation above:

$$
225=\frac{166}{0.19 k+} 2.42+\frac{108}{k}
$$

and $k=0.675$ Btu hr ft F.

4. CONTAINMENT

4.1 Containment Boundry

4.1.1 Containment Vessel

For certain uses as defined in Reference 1 , (Gection 4.4.1) the cask cavity liner provides the containment. For other uses, also defined in Reference 1 , an inner containment vessel (canister) is also used to provide containment. These are described in Section 1 , including the drawings in the Appendix to Section 1.

4.2.2 Containment Penetration

Penetrations to the cask cavity include the vent/pressure relief line at the top and a drain at the bottom. The specified relief pressure is 75 psig. The drain line is leak tight.

The special containment canisters used within the cask cavity do not have any penetrations.
4.1 .3 Seals and Welds

Seals on both the cask cavity and inner canisters are elastometric as discussed in Section 1 . All welds are full penetration welds.

4.1.4 Closure

The closure of the cask cavity is accomplished by twelve 1 inch x studs with two lock nuts per stud. The initial tightening torque on the nuts is 50 feet/pounds. The closure of the canister is accomplished by ten $3 / 8 \times 16$ inch bolts. The initial tightening torque on the bolts is 60 inch/pounds.

Rev. A. 3-28-80

4. 2 Normal Conditions of Transport

The performance of the cask and inner canister during normal conditions of transport are presented in the applicable subsections of Section 2 and 3.
4. 3 Hypothetical Accident Conditions

The performance of the cask and inner canister during the hypothetical accident conditions are presented in the applicable subsections of Sections 2 and 3 .

Rev. A. 3-: - 8 -

4.4 APPENDIX

4.4.1 References

U.S. Nuclear Regulatory Commission Certificate of Compliance for Radioactive Materials Package Number 5957, Rev. 4, June 15, 1978.

5. SHIELDING ANALYSIS

5.1 Discussion and Results

5.1.1 Applicable Regulatory Criteria

Packages such as the modified BMI-1 cask which are transported in a vehicle assigned for the sole use of the consignor, and unloaded by the consignee from the transport vehicle in which they are originally loaded have radiation dose-rate limits [\$173.393(j) of 49 CFR] under normal conditions of:
(1) 1,000 millirem per hour at 3 feet from the external surface of the package (closed transport vehicle only)
(2) .200 millirem per hour at any point on the external surface of the car or vehicle (closed transport vehicle only)
(3) 10 millirem per hour at 6 feet from the external surface of the car or vehicle and
(4) 2 millirem per hour in any normally occupied position in the car or vehicle (except in the case of private motor carriers).

Packages such as the modified BMI-1 cask which are transported by a commercial carrier have radiation dose-rate limits [$3173.393(i)$ of 49 CFR] under normal conditions of:
(1) $200 \mathrm{mr} / \mathrm{hr}$ at any point on the external surface of the package and
(2) The transport index does not exceed 10 (i.e., $10 \mathrm{mr} / \mathrm{hr}$ at 3 feet from the surface of the package).
In addition to the above radiation limits for normal shipping conditions, the package must meet the shielding requirement for hypothetical accident conditions which is listed in $\$ 71.36$ (a) (1) of 10 -CFR-71 as:
"The reduction of shielding would not be sufficient to increase the external dose rate to more than 1,000 milliroentgens per hour or equivalent at 3 feet from the external surface of the package."

5.1.2 Design Features

Lead shielding is provided in the BMI-1 cask to limit the surface dose co less than $200 \mathrm{mr} / \mathrm{hr}$ and the dose at 3 feet from the surface of the cask to less than $10 \mathrm{mr} / \mathrm{hr}$. As required by the regulations, the dose will be measured before shipment to verify that these limits are not exceeded. The shielding for the sides of the cask is provided by 8 inches of lead and 0.875 inch of steel, where 0.25 inch of steel is in the inside cylinder and 0.025 inch of steel is in the outside cylinder and fire shield. The bottom is shielded by 7.75 inches of lead and 1.875 inches steel, where 0.75 inch of steel is in the inside plate and 1.125 inches is in the outside plate. The top is also shielded by 7.75 inches of lead and 1.875 inches of steel, where 0.75 inch of steel is in the inside plate and 1.125 inches is in the outside plate and fire shield.

5.2 Source Specification

5.2.1 Description of Radiation Sources

Types and quantities of radioactive materials analyzed for shipment in the modified BMI-1 cask $f a l 1$ within the transport
groups and corresponding curie limits indicated in Tables 5.2 and 5.3. These analyses were carried out to determine the maximum quantity of radioactive materials in each transport group which, when transported in the BilI-1 container, result in compliance with the regulatory dose-rate limits.
5.2.2 Source Radiation Type and Intensity

Table 5.4 lists the radiation characteristics of the radionuclides which control the curie limit of each of the transport groups listed in Tables 5.2 and 5.3.

5.3 Model Specification

5.3.1 Source Geometry

All radiation sources were assumed to be right-circular cylinders 15.5 in. in diameter by 54 in . high with an average density equivalent to that of aluminum* (i.e., $2.7 \mathrm{~g} / \mathrm{cm}^{3}$).
5.3.2 Description of Shield

Figure 5.1 illustrates the shield configurations utilized in the dose-rate calculations for the modified BMI-1 cask under normal and hypothetical accident conditions. For purposes of analysis, the shield was assumed to consist of an annular lead cylinder $8.50 *$ in. thick with end plates of $8.75-\mathrm{in}$. thickness.

* This material was used for purposes of simulating the average packing density of approximately $150 \mathrm{lb} / \mathrm{ft}^{3}\left(2.4 \mathrm{~g} / \mathrm{cm}^{3}\right)$ which is based on past shipping experience with the NECO-3 cask.
** For photon energies above 1.5 Mev and below 4 Mev , the $1-i n$. steel thickness is equivalent to about 0.75 in . of lead.

$$
5.4
$$

TABLE 5.1. SUMMARY OF MAXIMUM DOSE RATES (mR/hr)
$\left.\begin{array}{llcl}\hline & \begin{array}{c}\text { Package Surface } \\ \text { Side Top Bottom }\end{array} & \begin{array}{c}\text { Feet from Sur- } \\ \text { face of Package }\end{array} \\ \text { Side Top Bottom }\end{array}\right\}$

TABLE 5.2 RADIONUCLIDES AND ASSOCIATED CURIE LIMITS PLANNED FOR TRANSPORT IN MODIFIED BMI-1 CASK (SOLE USE OF VEHICLE)

Transport Group*
I.
II.

TABLE 5.4 RADIATION CIARACTERISTICS OF EIMITING RADIONUCLIDES

Transport Group	Limiting Radionuclide*	Radiation Type	Radiatior Energy and Int asity	Limiting Radiation
I	Ac- 228	$3^{-}, 4$	$\underline{3}$	1.64 and 1.59 Mev 7
			$\begin{aligned} & 2.18(108), 1.85(9.68), \\ & 1.7(6.78), 1.11(538), \\ & 0.64(7.68), 0.45(138) \end{aligned}$	
			$\begin{aligned} & 1.64,2.59, \frac{Y}{1} .095,1.035, \\ & 0.965,0.907,0.458,0.410, \\ & 0.336,0.232,0.184,0.174, \\ & 0.1275,0.113,0.0978, \\ & 0.0781, \\ & 0.0568 \end{aligned}$	
II	$\mathrm{kr}-87$	$3^{-},{ }^{-}$	$\begin{aligned} & 3.8(708), 3 \frac{3}{3}(58), \\ & 1.3(258) \end{aligned}$	2.57 y 's
			$\begin{aligned} & 2.57(258), \frac{7}{0} .85 \text { (108), } \\ & 0.403(508) \end{aligned}$	
III	CO-56	$3^{+},{ }^{\text {r }}$	1.5 (188) \&	$3.47-1.36 \mathrm{Mev} y^{\prime} \mathrm{s}$
			$\begin{aligned} & 3.47(18), 3 \frac{1}{25}(128), \\ & 2.99(18), 2.6(168), \\ & 2.02(118), 1.75(188), \\ & 1.36(58), 1.24(718), \\ & 1.03(168), 0.845(1008), \\ & 0.51 \end{aligned}$	
IV	Cl-38	3°,	$\begin{aligned} & 4.81(538), \frac{3}{2} .77(16 \%), \\ & 1.11(318) \end{aligned}$	2.15, 1.6 y's
			2.15 (50\%), I. 6 (408)	
V	$\mathrm{Kr}-87 * *$	$3^{-}, Y$	$\begin{aligned} & 3.3(708), 3^{\frac{3}{3}}(58), \\ & 1.3(258) \end{aligned}$	$2.57 \mathrm{Mev} \mathrm{r}^{\prime} \mathrm{s}$
			$\begin{aligned} & 2.57(258) ; \frac{Y}{0} .35(108), \\ & 0.403(508) \end{aligned}$	
$V I$ and VII	$\mathrm{Kr}-85$	$3^{-}, \gamma$	$0.672(1008)^{\frac{3}{4}}$	$0.6723^{\prime} \mathrm{s}$
			$0.517(0.78)^{Y}$	

* Radionuclide which results in the highest external dose rate for a given curie level.
* Uncompressed.

(a) Normal Conditions

(b) Accident Conditions

FIGURE 5.1 SHIELD CONFIGURATIONS UTILIZED IN THE DUSE RATE CALCULATIONS FOR THE MODIFIED BMI-1 CASK

5.4 Shielding Evaluation

5.4.1 Dose Rate Under Normal Conditions

5.4.1.1 General Contents

Point kernel integration techniques were utilized to calculate the gamma dose rates at 6 ft (the $10 \mathrm{mr} / \mathrm{hr}$ value at this distance is the most stringent of the aforementioned limits for sole use of vehicle transport) from the transport vehicle and 3 ft from the cask (the $10 \mathrm{mr} / \mathrm{hr}$ value at this distance is the most stringent of the aforementioned limits for shipment by commercial carrier) for various quantities of radionuclides. The basic equation employed was:

$$
D_{\gamma}=\frac{K(E) B(E, \mu t) S_{\gamma} e^{\mu(E) t}}{4 \pi r^{2}}
$$

where:

$$
\begin{aligned}
D_{\gamma}= & \text { gamma dose rate at distance } r \text { from source, mrem/hr } \\
K(E)= & \text { flux-to-dose conversion factor as a function of } \\
& \text { photon energy, } \frac{m r e m / h r}{\text { photon } / \mathrm{cm}^{2}-s e c} \\
B(E), \mu t)= & \text { dose buildup factor as a function of } E \text { oton energy } \\
& \text { relaxation length in the shield } \\
S Y= & \text { source strength of photons with energy } \therefore \text { photons/ } \\
& \mathrm{cm}^{3}-s e c \\
\mu(E)= & \text { linear attenuation coefficient for photons of } \\
& \text { energy } E, m^{-1} \\
& t=\text { shield thickness, cm } \\
& r=\text { source-to-dose point separation distance, } \mathrm{cm} .
\end{aligned}
$$

Parameters used in the abore equation for the shield and source materials are listed in Table 5.5. The curie limits for each of the transport groups listed in Tables 5.2 and 5.3 were obtained by varying the source quantity and calculating the dose rate at 6 ft from the vehicle and at 3 ft from the cask until a maximum dose rate of $10 \mathrm{mr} / \mathrm{hr}$ was reached. Exceptions to this procedure were made for Transport Group I as well as for VI and VII in which cases curie limits of 1000 Ci and $800,000 \mathrm{Ci}$, respectively, were considered sufficiently high although the corresponding dose rates at the aforementioned distance were well below the allowable limit.

TABLE 5.5 LINEAR ATTENUATION COEFFICIENT OF THE SOURCE AND SHIELD MATERIALS

Group	Energy, Mev	$\mu_{\text {source }} \mathrm{m}^{-1}$	$\mu_{\mathrm{Pb}}, \mathrm{cm}^{-1}$
1	4.0	0.071	0.474
2	3.0	0.081	0.476
3	2.0	0.099	0.500
4	1.55	0.110	0.585
5	1.0	0.140	0.729

Actually, the curie limit for iransport Groups VI and VII was established by the restrictions on internal heat load. That is, $800,000 \mathrm{Ci}$ of $\mathrm{Kr}-85$ corresponds to about 1500 watts of decay heat which is consistent with the value utilized for heattransfer analyses (see thermal analysis section).

In the case where the shipper wishes to ship a mixture of radionuclides classified under various transport groups, the following conditional equation may be used to determine the shipping limits:

where:

$$
\begin{aligned}
\mathrm{Ci}_{\mathrm{K}}= & \text { number of curies in Transport Group } \mathrm{K} \text { to be } \\
& \text { shipped } \\
\text { Limit }_{\mathrm{K}}= & \text { curie limit (maximum shipment) for the } \mathrm{K} \text { th } \\
& \text { transport group } \\
\mathrm{K}= & \text { an index number assigned to each transport group } \\
& \text { (i.e., } \mathrm{K}=1 \text { implies Transport Group } \mathrm{I} \text {, etc.). }
\end{aligned}
$$

It should be noted that the curie limits referenced above are the "large-quantity" limits listed in Tables 5.2 and 5.3. These limits are based on a safety-related shielding analysis and, in several cases, involve inert gases* which will not be shipped); nevertheless, these limits will be maintained though overly restricted in the case of nongaseous elements.

5.4.1.2 Specific Contents

(A) Co-60

Gamma dose rates at the cask surface and a position
3 feet from the surface in the axial midplane were estimated to be 356 and 35.6 mrem/hour, respectively, for a 40,000 -curie Co-60 source. These estimates were based on an assumed point isotropic source with no self-absorption. If the copper basket is placed around the co-60 source, these dose rates are decreased to 12.2 and 1.22 mrem/hour, respectively.

[^6]The shielding of the BMI-1 cask has been increased by placing a 3.0 -inch-thick cylinder of copper around the Fermi fuel subassembly. The gamma dose was calculated using the Perkins and King ${ }^{(1)}$ data to obtain the radiation sources and Rockwell ${ }^{(2)}$ data for the flux equations and cross-section data. The calculated doses without the 3-inch-thick copper shield were $1190 \mathrm{mr} / \mathrm{hr}$ at the surface and $47.7 \mathrm{mr} / \mathrm{hr}$ at three meters. The copper shield reduced these doses to $89 \mathrm{mr} / \mathrm{hr}$ and $3.6 \mathrm{mr} / \mathrm{hr}$, respectively. Additional shielding is not needed at the ends of the subassembly because of the smaller angle subtended by the Fermi subassembly compared to the $B R R$ fuel load.
(C) TRIGA Fuel

The stainless steel elements were measured at $1.6 \mathrm{R} / \mathrm{hr}$ at 10 ft in air in the summer of 1970, after approximately 6 months' cooling time. Assuming the Way-Wigner relation for fission product decay to be valid for this case indicates a cooling factor of 3.4, or that the current (December, 1971) activity of the $S S$ elements is about $0.47 \mathrm{R} / \mathrm{hr}$ at 10 ft . The Al-clad elements have been measured at $0.30 \mathrm{R} / \mathrm{hr}$ at 10 ft in air (5-day cooling period). Using $0.5 \mathrm{R} / \mathrm{hr}$ as the maximum activity for one element at 10 ft , 38 elements in air would be $19.0 \mathrm{R} / \mathrm{hr}$ at 10 ft . (This assumes no self-attenuation). The BMI-1 cask has 8 in. of Pb shielding which is more than five loth-value thicknesses. (The tenth value thickness of 1.5 MEV gamma is 1.5 in.$)$. The 38 fue assemblies surrounded by 8 in . of lead would have an activity of $20.2 \mathrm{mr} / \mathrm{hr}$ at 10 feet or $0.6 \mathrm{mr} / \mathrm{hr}$ at 3 ft . These values are well within the regulations.
(1) References to Section 5, are found in section 5.5.1.

In practice the shielding of the BMI-1 cask has been found to be conservatively designed for the types of applications for which it has been employed. The pulstar fuel provides a less severe shielding requirement than that of previous shipments. Section 6.3 covers the shipment of 24 Battelle Research Reactor fuel elements at a loading of 200 grams ${ }^{235} \mathrm{U}$ per element. The integral burnup of the fuel shipped for this case was

$$
\begin{aligned}
& \frac{200 \text { gram }}{\text { element }} \times 0.45 \text { atom percent burnup } \times \frac{1 \text { gram fissioned }}{1.18 \text { gram burnup }} \times \\
& \frac{1 \text { MWD }}{1 \text { gram fissioned }} \times 24 \frac{\text { elements }}{\text { cask }}=1830 \frac{\text { MWD }}{\text { cask }}
\end{aligned}
$$

whereas, for the Pulstar fuel the integral burnup at $10,000 \mathrm{MWD} /$ $\mathrm{MTU}^{(3)}$ is

$$
\frac{10^{4} \mathrm{MWD}}{10^{6} \mathrm{~g}} \times \frac{503.2 \mathrm{gU}}{\text { pin }} \times 252 \frac{\text { pins }}{\text { cask }}=1270 \frac{\mathrm{MWD}}{\text { cask }}
$$

(E) EPRI Crack Arrest Capsules

The activity of the capsules was determined with the computer code ORIGEN using the material quantities given in Table 1.2 and the irradiation parameters given in Table 5.6.

The results indicated that shortly after discharge (230 to 60 min), the activity is about 5200 Ci due entirely to isotopes in Transport Group IV. Since the present license for the BMI-I cask permits up to $11,000 \mathrm{Ci}$ of activity of materials in Transport Group IV the activity is within permissible levels.

TABLE 5.6. IRRADIATION PARAMETERS FOR EPRI CRACK ARREST CAPSULES

Target Fluence ($E>1.0 \mathrm{Mev}$)
Fast Flux (E>1.0 Mev)
Thermal Flux
Fission in Fission Monitors
$1\left(10^{19}\right) \mathrm{n} / \mathrm{cm}^{2}$
$2.2\left(10^{12}\right) \mathrm{n} / \mathrm{cm}^{2}-\mathrm{sec}$
$1.8\left(10^{12}\right) \mathrm{n} / \mathrm{cm}^{2}-\mathrm{sec}$
U^{238}
$1.2\left(10^{14}\right) \mathrm{f} /$ dosimeter
Np 237
$1.5\left(10^{15}\right)$ f/dosimeter
5.4.2. Dose Rate Under Accident Conditions

Accident conditions which can significantly alter the dose rate external to the cask are (a) the fire condition, (b) the $30-f t$ corner drop, and (c) the side drop in which case gross displacement of the lead occurs. Each of these cases is discussed in the following paragraphs.
5.4.2.1 Standard Fire

Since the amount of lead which could escape from the cask due to a fire is less than (i.e., 3 to 4 percent* of the melt or 574 in. 3 would melt) the amount displaced in the $30-\mathrm{ft}$ corner drop, the resulting dose rate at 3 ft from the surface of the cask would be below $1 \mathrm{R} / \mathrm{hr}$.

[^7]A drop in the lead level of 3 inches at the corner of the cask, will not increase the gamma dose above tolerable levels. Consider only the 2.18 Mev gamma dose from Pr-144 (which accounts for 70 percent of the dose) where ${ }^{4} \mathrm{~Pb}=0.493 \mathrm{~cm}$ and $\mu_{\mathrm{Fe}}=0.30: \mathrm{cm}^{-1}$. For the most weakly shielded ray, the lead thickness is 3.25 in . and the steel thickness is 2.25 in. Compared to the side of the cask, this is 4.75 in . less lead and 1.5 in . more steel. The increase in dose along the most weakly shielded ray is proportional to

$$
e^{4.75 \times 2.54 \times 0.493} e^{-1.5 \times 2.54 \times 0.307}=e^{4.78}=119
$$

The increase in dose also depends on the angle subtended at one meter by the weakly shielded region. The ratio of the angles subtended by the weakly shielded region to the total source is about 1:7. Under normal conditions, the maximum dose one meter from the side of the cask is $13 \mathrm{mr} / \mathrm{hr}$. Considering only the reduction in shielding, the dose at the upper corner after a fire would be less than $119 \times 13=1.55 \mathrm{r} / \mathrm{hr}$. When the angles subtended by the radiation sources are considered, the dose will be less than $1 \mathrm{r} / \mathrm{hr}$ at one meter after a fire.

5.4.2.2 Corner Drop

As shown in the section on structural integrity analysis, the maximum deformation of the lead shield at the corner resulting from the $30-f t$ drop onto an unyielding surface is 5.63 in . which Lesults in a residual lead thickness of 4.53 in . at the point closest to the source region. This deformation results in a maximum dose rate of less than $1 \mathrm{R} / \mathrm{hr}$ at 3 ft from the surface of the cask for the curie levels listed in Tables 3.2 and 5.3. The
analysis was conducted by numerically integrating* the previously defined point kernel over the source volume while incorporating the effects of the irregular shield geometry.

5.4.2.3 Side Drop

The maximum impact load on the side of the cask will
cause 1.44 inches deformation of the lead. Since this is less than the 1.65 inches lead melted during the fire accident, which was previously demonstrated to be safe, the dose rate 3 feet from the surface after impact will be less than 1.0 rem/hour.

5.5 Appendix

5.5.1 References

(1) Perkins, J. F., and King, R. W., Nuclear Science and Engineering, Vol. 3, p 725, 1953.
(2) Rockwell, T., "Reactor Shielding Design Manual", TID-7004, 1956.
(3) Private communication from Dr. Martin N. Haas, Associate Director, Nuclear Science and Technology Facility, State University of New York at Buffalo to Dr. C. E. Williams, Manager, Idaho Operations Office, U.S. ERDA, 550 second Street, Idaho Falls, Idaho 83401.

[^8]
6. CRITICALITY EVALUATION

6.1 Discussion and Results

6.1.1 Applicable Regulatory Criteria

Regulatory criteria pertaining to criticality which are applicable to Fissile Class I and II shipments are delineated in $\$ 71.37$, 571.38 , and $\$ 71.39$ of $10-$ CFR-Part 71 . These sections are summarized as follows:
571.37 Evaluation of an array of packages of fissile material
(a) An array of packages shall be evaluated by subjecting a sample package to the conditions specified in $71.38,71.39$, or 71.40 .
(b) In determining whether the standards of the Class I, II, and III sections are met, it will be assumed that, consistent with the condition of the package:
(1) The fissile material is in the most reactive credible configuration.
(2) Water moderation occurs to the most reactive extent.
§71.38 Specific standards for a Fissile Class I package.
A Fissile Class I package shall be so designed and constructed and its contents so limited that:
(a) Any number of such undamaged packages would be subcritical in any arrangement, and with optimum interspersed hydrogenous moderation unless there is a greater amount of interspersed
moderation in the packaging, in which case that greater amount may be considered; and
(b) Two-hundred-fifty such packages would be subcritical in any arrangement, if each package were subjected to the hypothetical accident conditions.
\$71.39 Specific standards for Fissile Class II package.
(a) For a Fissile Class II package; designed, constructed, loaded, and number limited so that:
(1) Five times the number of undamaged packages would be subcritical in any arrangement with close water reflection.
(2) Two times the number of packages damaged by the Appendix " B " tests would be subcritical in any arrangement with close water reflection and optimum interspersed moderation, or built-in moderation if it is greater.
(b) The number of radiation units to be fifty divided by the allowable number of packages, rounded up to next higher tenth.
6.1.2 Determination of Allowable Number of Packages
6.1.2.1 Fissile Class I

For Fissile Class I shipments a $1000 \times 1000 \times 1000$
array was analyzed.

6.1.2.2 Fissile Class II

The number of allowable packages that can be shipped under Fissile Class II was calculated from the equation:

$$
\frac{50}{\mathrm{~N}}=I_{t}
$$

where N is the allowable number of packages and I_{t} is the transport index or minimum number of radiation units. For the case of sole use of vehicle shipments, $\$ 173.396(f)$ of 49 CFR states that for nuclear criticality control purposes, the transport index must not excesd 10. Thus, using this transport index, the number of casks that could be shipped was calculated from the above equation and found to be 5 .

On the basis of the allowable number of packages determined above, $\$ 71.39$ of $10-C F R-P a r t ~ 71$ specifies that 5 N or 25 packages remain subcritical under normal conditions and that 2 N or 10 packages remain subcritical under accident conditions.

The container is shown to undergo little dimensional change in the accident conditions; thus, shipment of 25 packages will be the most reactive case.

6.2.3 Contents Evaluated

The following contents are evaluated for shipment in the BMI-1 cask

- General contents
- ERR Fuel Elements
- MTR Fuel Elements
- Fermi Fuel Elements
- TRIGA Fuel Elements
- pulstar Fuel Elements.

6.2 Criticality Evaluation for General Contents

6.2.1 Package Fuel Loading

A criticality evaluation was made of the modified BMI-1 cask using the KENO ${ }^{(1)}$ computer code. The analysis was made for mutually exclusive shipments of $\mathrm{U}-235$ or Pu-239. Two separate criticality analyses were performed for shipment with and without an inner container. In addition, a check calculation was made for the case of a critical solution of $\mathrm{U}(30.45) \mathrm{O}_{2} \mathrm{~F}_{2}$ in spherical geometry to verify the accuracy of the Hansen and Roach ${ }^{(2)}$ cross sections used in the aforementioned analysis.

6.2.2 Shipment Without Inner Container

6.2.2.1 Calculational Model

The configurational model of the modified BMI-1 cask used for the criticality analysis is shown in Figure 6.1. The fissile material is assumed to contain the concentration of water required to make the material most reactive (i.e., optimum H / X atomic ratio) and is located in a spherical volume at the geometric center of the container. The remainder of the inner cavity of the container is assumed to be void.*

The criticality calculations (to determine $X_{e f f}$) for Fissile Class II shipments were performed on $3 \times 3 \times 3^{* *}$ array

* This represents the most reactive condition.
** For simplicity of the calculational model, 27 casks were used in lieu of 25 .
(1) References for Section 6, are found in Section 6.8.1.

of BMI-1 casks. The array (shown in Figure 6.2) has a cubic lattice with a pitch of 33.0 inches, and the array is completely surrounded by a 10 -inch water reflector.

The criticality calculations for Fissile Class I shipments were performed on a $1,000 \times 1,000 \times 1,000$ array of BMI-1 casks. This array was assumed to be infinite for calculational purposes.
6.2.2.2 Results

The results of the KENO calculations for shipment without an inner container are given in Table 6.1. These results show that an infinite array (i.e., l billion units) of BMI-1 casks, each of which contains 500 g of U-235 or 280 g of Pu-239, remains subcritical. Since Pu-239 is more reactive on a mass basis than $\mathrm{U}-233,280 \mathrm{~g}$ of $\mathrm{U}-233$ in an infinite array would also be subcritical.

The difference in $k_{e f f}$ for 27 (i.e. $3 \times 3 \times 3$ array) and 1 billion (i.e., $1,000 \times 1,000 \times 1,000$) casks each containing 500 g of $\mathrm{U}-235$ was found to be only 0.01 . Thus, the lattice type was found to be unimportant in the case of the foregoing calculations.

FIGURE 6.2. CROSS SECTION OF $3 \times 3 \times 3$ ARRAY OF CASKS
table 6.1. RESULTS OF THE KENO CODE CALCULATIONS OF KEFF FOR SHIPMENT WITHOUT AN INNER CONTAINER

Run No.	Description	Fissile Material	Mass Fissile Material (grams)	$H / X^{(a)}$ Atomic Ratio	$\begin{gathered} \text { Calculated } \\ K_{\text {eff }} \end{gathered}$
1	Critical sphere test case ${ }^{(b)}$	U-235	991	573	1.01 ± 0.01
2	```3\times3\times3 array - H2O reflected (cubic lattice)```	U-235	500	500	0.93 ± 0.02
3	```1,000 < 1,000 < 1,000 array``` (cubic lattice)	U-235	500	500	0.94 ± 0.025
4	```1,000 x 1,000 x 1,000 array (cubic lattice)```	Pu-239	280	800	0.93 ± 0.02

(a) Reference 3, pages 12,14 , and 35 .
(b) Reference 3, page 12.

In the case where the shipper wishes to ship a mixture of the fissile isotopes considered here, the following conditional equation may be used to determine the mass limit for shipment:

$$
\begin{equation*}
\sum_{k=1}^{3} \frac{M_{K}}{\operatorname{Limit}_{K}} \leq 1 \tag{1}
\end{equation*}
$$

where:

$$
\begin{aligned}
\mathrm{M}_{\mathrm{K}}= & \text { mass (grams) of } \mathrm{K} \underline{t h} \text { fissile isotope } \\
& \text { to be shipped } \\
\text { Limit } \mathrm{K}= & \text { mass limit (grams) (maximum shipment) } \\
& \text { for the } \mathrm{K} \frac{\text { th }}{} \text { fissile isotope } \\
\mathrm{K}= & \text { an index number assigned to each fissile } \\
& \text { isotope (i.e., } \mathrm{K}=1 \text { for } \mathrm{U}^{235} ; \mathrm{K}=2 \\
& \text { for } \mathrm{Pu}^{239} \text {; and } \mathrm{K}=3 \text { for } \mathrm{U}^{233} \text {). }
\end{aligned}
$$

6.2.3. Shipment with inner Container

6.2.3.1 Calculational Model

The configurational model of the modified BMI-1 cask used for the criticality analysis is shown in Figure 6.3. The fissile material is assumed to contain an H / X ratio not greater than 20 and is located in a spherical volume at the geometric center of the container. The remainder of the inner cavity of the container is assumed to be void.

The criticality calculations for Fissile Class I shipments were performed on a $1,000 \times 1,000 \times 1,000$ array of BMI-1 casks. This array was assumed to be infinite for calculational purposes.

6.2.3.2 Results

The results of the KENO calculations are given in Table 6.2. These results show that an infinite array (i.e., 1 bilison units) of BMI-1 casks, using an inner container each of which contains 1,000 grams U-235 or 600 grams Pu-239, remains subcritical. Since Pu-239 is more reactive on a mass basis than $U-233,600$ grams of $U-233$ in an infinite array would also be subcritical.

Since the lattice extent was found to be unimportant for the arrays of casks without inner containers, it is obvious that a $3 \times 3 \times 3$ cubic array of casks (Fissile Class II) with inner containers and with 1,000 grams U-235 or 600 grams Pu-239 would also be subcritical.

In this case where the shipper wishes to ship a mixture of the fissile isotopes considered here, Equation (1) may be used to determine the mass limit for shipment.

TABLE 6.2. RESULTS OF KENO CODE CALCULATIONS OF KEFE FOR SHIPMENT WITH AN INNER CONTAINER

Run No.	Description	Fissile Material	Mass Fissile Material (grams)	H/X Atomic Ratio	$K_{\text {eff }}$
1	$\begin{aligned} & 1,000 \times 1,000 \times 1,000 \text { array } \\ & \text { (cubic lattice) } \end{aligned}$	U-235	1,000		0.83 ± 0.02
2	$1,000 \times 1,000 \times 1,000$ array (cubic lattice)	Pu-239	600	20	0.81 ± 0.02

6.3 Criticality Evaluation for BRR Fuel Elements

6.3.1 Package Fuel Loading

The modified BMI-1 shipping cask is a cylindrical, double-walled stainless-steel vessel, in which the space between the inner and outer shells is occupied by lead shielding. Fuel assemblies are positioned within the central cavity by two identical stainless-steel clad boral plates acting as center dividers as shown in Drawing 0004, Rev. B.

For this analysis, BRR fuel elements with 200 g of U-235 were considered. Each is $3.16 \times 3.00 \times 23.25$ in., fueled length. A description of a standard fuel assembly for Battelle's Research Reactor is given in Figure 6.4. Each fuel assembly is a heterogeneous mixture of $\mathrm{Al}, \mathrm{H}_{2} \mathrm{O}, \mathrm{U}-235$, and $\mathrm{U}-238$. The composition of a BRR fuel element is given in Table 6.3.

TABLE 6.3. COMPOSITION OF BRR'S FUEL ASSEMBLY

		Atoms or Molecules Material		Weight, gm	per ce (Volume Homogenized)
$\mathrm{H}_{2} \mathrm{O}$	2725	2.5253×10^{22}			
Al	2780	1.7188×10^{22}			
$\mathrm{U}-235$	200	1.41×10^{22}			
$\mathrm{U}-238$	15	1.05×10^{19}			

A cross section of BMI-1 shipping cask's fuel basket is shown graphically in Figure 6.5 and in detail in Drawing 0004. This is the fuel basket used to ship the fuel element assemblies. The dimensions of each of the 12 cavities are 3.34×3.34 in. The fuel assemblies are shipped into these cavities.

FIGURE 6.4. STANDARD FUEL ASSEMBLY FOR battelle research reactor

FIGURE 6.5. TOP VIEW OF SHIPPING CASK FUEL BASKET

6.3.2 Calculational Model

The fuel assembly was volume-homogenized for calculational purposes. Since the thermal flux is depressed in the fuel and peaks in the water of the cell, this is a conservative approximation, i.e., one that would tend to give relatively greater importance to the fuel and overpredict the value of $K_{e f f .}$
The effect is known to be small.
In order to properly account for transverse leakage effects, $\mathrm{Fe}-\mathrm{Pb}-\mathrm{Fe}$ end plugs for the BMI-1 cask were incurporated into the two cask systems as shown in Figure 6.6.

A void region was also defined between the casks in order to increase the effect of neutron interaction between casks (see Figure 6.7 for details). The remainder of the two cask systems was immersed in a water reflector.

A 16 -group set of cross sections was used. This modified Hansen-Roach set has been shown ${ }^{(4)}$ to predict, accurately, values of $K_{\text {eff }}$ when used in conjunction with the KENO program for systems such as the one described here.

6.3.3. Dackage Regional Densities

Table 6.4 gives the number densities for a basket cavity with a fuel assembly in it (volume fraction of fuel cell, 0.85 , volume fraction of water, not in the cell, 0.15).

TABLE 6.4 NUMBER OF ATOMS PER CC IN THE HOMOGENIZED FUEL BASKET

Element	$\mathrm{N} \times 1024$
H	0.05298 I
0	0.0264905
Al	0.0146098
$\mathrm{U}-235$	0.0001199
$\mathrm{U}-238$	0.0000089

FIC, RE 6.6. AXIAL REPRESENTATION OF THE SYSTEM (SYSTEM IMMERSED IN WATER)

FIGURE 6.7. KENO CROSS-SECTIONAL REPRESENTATION OF BMI'S SHIPPING CASK IMMERSED IN WATER

When considering the cruciform boral plates a simple volume homogenization is not adequate since it does not account for self-shielding effects, and thus would tend to over-estimate the bozon absorption.

The total reaction rate in the homogeneous mixture of absorber (boral plates) and diluent (Al-cladding and SS), $\mathrm{V}_{\mathrm{T}}[0$, can be related to the reaction rate of each of the components by:

$$
\begin{equation*}
\mathrm{v}_{\mathrm{T}} \overline{\bar{Z}}^{\bar{\phi}}-\mathrm{V}_{\mathrm{a}} \bar{Z}_{\mathrm{a}} \bar{\phi}_{\mathrm{a}}+\mathrm{v}_{\mathrm{d}} \overline{\bar{\Sigma}}_{\mathrm{d}} \bar{\phi}_{\mathrm{d}} \tag{2}
\end{equation*}
$$

where V_{a}, V_{d}, V_{T}, refer to the volumes of the absorber, the diluent, and the total, respectively. Equation (2) can be interpreted as a defining equation for proper homogenization, with the average flux defined by:

$$
\begin{equation*}
v_{T} \bar{\phi}=v_{a} \bar{\phi} a+V_{d} \bar{\phi} d \tag{3}
\end{equation*}
$$

Using Equations (2) and (3), the properly homogenized number densities, N, are then found to be:

$$
\begin{equation*}
N \text { (absorber) }=\frac{v_{a}^{f} N^{\circ} \text { (absorber) }}{v_{a}^{f}+v_{d}^{f}{\stackrel{\emptyset}{\phi_{a}}}^{i}} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
N \quad \text { (diluent) }=\frac{v_{d}^{f} N^{\circ} \text { (diluent) }}{v_{a}^{f} \overline{\phi_{s}}+v_{d}^{f}} \tag{5}
\end{equation*}
$$

where f indicates volume fractions and N° are the true number densities of absorber and diluent materials. A ratio of the surface $\left(\bar{T}_{d}=\sigma_{s}\right)$ to average flux in the absorber $\bar{T}_{s}{ }^{\sigma_{a}}$ is equivalent to volume-homogenized number densities. The effect of using Equations (4) and (5) is to decrease the simple volume weighted number density of the absorber and to increase that of the cladding, as expected.

The boral plate, 62 mils thick, is composed of a 0.103 cm thick $\mathrm{B}_{4} \mathrm{C}$-Al plate containing $35 \mathrm{wt} / \circ \mathrm{B}_{4} \mathrm{C}$ in the $\mathrm{B}_{4} \mathrm{C}-\mathrm{Al}$ mixture ($65 \mathrm{w} / 0 \mathrm{Al}, 27.4 \mathrm{w} / 0 \mathrm{~B}, 7.6 \mathrm{wt} / 0 \mathrm{C}$), and clad with aluminum. There are also two outer SS plates, each 31 mils thick. The volume fractions of diluent Al, diluent $S S$, and absorber $B_{4} \mathrm{C}-\mathrm{Al}$ mixture are, 17.3 percent, 50 percent, and 32.7 percent, respectively.

It has been shown ${ }^{(5)}$ that conventional calculations of the absorption cross-section of boral do not consider channeling of neutrons due to $B_{4} C$ lumping. Experimentally, it has been verified ${ }^{(6)}$ that $B_{4} C$ lumping in the boral plates reduces the thermal neutron absorption cross-section about 20 to 30 percent. This implies that the number density (above) of B should be reduced by that factor for computation of the absorption cross sections. It can be shown that:

$$
\frac{\phi_{s}}{i_{a}}=\frac{2(2-3)}{?} \Sigma_{a} \quad \frac{v}{s}
$$

where B is the capture fraction, and V and S refer to the volume and surface of the absorber. For a slab,

$$
\frac{\Phi_{s}}{\Phi_{a}}=\frac{(2-\beta)}{\beta} \Sigma_{a^{\ell}}
$$

For heavy absorbers, $3 \div 1$, we have

$$
\frac{\phi_{s}}{\bar{s}_{a}}=\Sigma_{a^{\ell}}
$$

Where z_{a} is the absorption cross section of $B_{4} C-A l$ mixture and ℓ is the thickness of the plate. $\Sigma_{a} \neq 17.664 \mathrm{~cm}^{-1}, 2=0.103 \mathrm{~cm}$, therefore,

$$
\frac{\phi_{a}}{t_{a}}=1.82
$$

The properly homogenized number densities are then,

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{d}}(\mathrm{~A} 1)=\frac{(0.173)(0.0602) \times 10^{24}}{\frac{(0.327)}{(1.82)}+(0.173+0.5)}=0.0122 \times 10^{24} \\
& \mathrm{~N}_{\mathrm{a}}(\mathrm{~A} 1)=\frac{(0.327)(0.0392) \times 0.7 \times 10^{24}}{(0.327+(0.673)(1.82)}=0.00578 \times 10^{24}
\end{aligned}
$$

6.3.4 Results

The $k_{\text {eff }}$ for two BMI-1 shipping casks loaded with 24 BRR fuel elements (200 g of $\mathrm{U}-235$ per element), having the inner davity filled with water, a void between the casks where they are in contact, and the cask systems surrounded by a water reflector was calculated to be:

$$
k_{e f f}=0.934
$$

with a standard deviation of ± 0.0099.

6.4 Criticality Evaluation for MTR Fuel Elements

The MTR fuel assemblies to be shipped comply in type and form to $5(b)$ (i) (i) of the present BMI-1 container license. The modified basket maintains the identical geometry for the active fuel portion of the MTR assemblies as the licensed package containing 24 assemblies. The criticality analysis for shipment of 24 assemblies is detailed in Section 6.3. The present shipment represents the same geometzy as analyzed in Amendment 5 except the length of the active fuel is reduced from 48 inches to 24 inches. This is a less critical $l \mathrm{C} . i g$ and geometry than analyzed in Section 6.3 Thus, the shipment of 12 MTR assemblies in the modified basket will remain subcritical in the most reactive credible configuration.

6.5 Criticality Evaluation for Fermi Fuel Elements

The Fermi fuel subassembly cuntains 18.616 kg of uranium, including 4.771 kg of uranium-235. The subassembly as shipped is 2.6 inches square and 31 inches long. The H to $U 235$ atomic ratio for the Fermi element is about 10 . According to the Nuclear Safety Guide, ${ }^{(7)}$ Figure 3 pp 15 , safe infinite cylinder diameter is about 4.7 inches. With copper shot displacing water, the critical mass would be larger. Thus, under normal conditions, there is no criticality problem.

The melting points of all the materials in the fuel element are above 2000 F (U-10 w/o Mo fuel alloy with zirconium cladding). Since it is not expected that this temperature would be encountered during shipment, the fuel element configuration will be maintained, and there is no danger of meltdown.

6.6 Criticality Evaluation for TRIGA Fuel Elements

6.6.1 Package Fuel Loading

Irradiated Triga Type III fuel assemblies containing not more than 40 grams U-235 per assembly prior to irradiation. Uranium may be enriched to a maximum $20 \mathrm{w} / 0$ in the J-235 isotope. Active fuel length shall be 15 inches for stainless steel clad assemblies and 14 inches for aluminum clad assemblies.

38 fuel assemblies as contained in product containers specified in $5(a)(4)$ (iv).

6.6.2 Results

Experiments have shown that in an optimally moderated array, critcality is achieved with 60 TRIGA fuel elements. Information on these experiments is contained in "Torrey Pines TRIGA MARK III Reactor Startup and Post Critical Tests", GAMD-7445. Only 38 elements will be shipped in the BMI-1 cask and the geometry for shipment is highly nonideal. Structural analysis shows the basket maintains its integrity during the accident sequence. Thus the shipment of 38 elements will remain subcritical under both the normal and accident conditions for transport.

6.6.3 Criticality Measurements

Following are the results of the loading-to-critical experiment in the University of Arizona TRIGA. The aluminum-clad fuel is the fuel which we anticipate shipping to the University of Utah at Salt Lake City, Utah. The measured value of k for the 38 -element loading in the most reactive configuration is seen to
be 0.83 ; however, by curve fitting as shown in Figure 6.8 the best value would be a k of 0.80 .

TABLE 6.5. MEASURED RESULTS DURING LOADING TO CRITICAL IN TRIGA AT THE UNIVERSITY OF ARIZONA

Fuel Elements	$C P M$	$\frac{1}{M}=1-k$
0	188	1
6	188	1
16	317	0.76
25	495	0.38
33	678	0.17
38	1135	0.12
46	1543	0.09
50	2111	0.05
58	3722	0

Number of Fuel Elements

FIGURE 6.3. LOADING TO CRITICAL RESULTS IN TRIGA USING ALUMINUM-CLAD FUEL ELEMENTS.

6.7 Criticali'y Evaluation for PULSTAR Fuel Elements

6.7.1 Package Fuel Loading

The BMI-1 shipping cask is a cylindrical, double-walled stainless steel vessel, in which the space between the inner and outer shells is occupied by lead shielding. Fuel assemblies are positioned within the central cavity by a stainless steel fuel basket (containing 12 fuel assemblies) and are supported by a circular stainless steel plate welded to a stainless steel cylinder which occupies the bottom part of the central cavity of the cask. A permanent neutron poison is provided by stainlesssteel clad boral plates which serve as center dividers of the basket.

The spent fuel to be shipped is of the Pulstar type with 6 percent enriched UO_{2} encased in Zircaloy-2 cladding. Each fuel pin is $26-1 / 8$ inches long with an OD of 0.474 inch. Each fuel pin contains an average of 572.80 grams of $\mathrm{UO}_{2}, 505.2$ grams of U, and 30.28 grams of $U-235$. The fuel pellets are 24 inches long. The cladding is 0.020 inch thick and Zircaloy caps are welded at the ends of the fuel pin. These fuel pins are to be loaded into stainless steel canisters (see Figure 6.9), 21 per canister. The canisters are to be loaded into the $3 M I-1$ shipping cask, 12 per cask. A cross-section of the fuel basket is shown in Figure 6.5. The 12 canisters fit into the 3.34 -inch-square spaces provided for by the basket. The basket spacers are made of $1 / 10-i n c h$ stainless steel except the central ones (both vertical and horizontal). These are $1 / 8$-inch stainless steel clad boral plates.

Figure 6.10 shows the overall geometry of the loading in the vertical plane. This geonetry fits snugly into the central cavicy of the cask. This cavity is $15-1 / 2$ inches in diameter by

FIGURE 6.9. FUEL STORAGE CANISTER

FIGURE 6.10 FUEL LOADING ARRANGEMENT

54 inches long. The cask has an inner stainless steel cylindrical shell which is $1 / 4$-inch thick, an outer stainless steel cylindrical shell which is $5 / 8$-inch thick, and 8 inches of lead between these shells on the sides. The stainless steel shell below the cavity is $3 / 4$-inch thick, the cask bottom is $1-1 / 8$ inch thick, and there is $7-3 / 4$ inches of lead below the cask cavity. The removable plug at the top of the cask has $3 / 4$-inch stainless steel at the bottom, $7-3 / 4$ inches of lead, $1-1 / 8$ inches of stainless steel at the top, and $1 / 4$-inch stainless steel cylindrical sides.

6.7.2 Normal Conditions

The shipment of fuel is to be made dry. The total mass of $\mathrm{U}-235$ in the 12 canisters, each containing 21 pins, is then 7.631 kg . The minimum critical mass of 92.5 percent enriched uranium, full reflected, is $22.8 \mathrm{~kg}(7)$. Thus even for two dzy packages in contact and reflected on all sides by water, keff <1.

6.7.3 Accident Conditions

6.7.3.1 Calculational Model

Under accident conditions for Fissile Class III materials, one shipment of packages is to remain subcritical with optimum hydrogenous moderation and close reflection by water.

In this ase the first task is to find what loading of the fuel storage canister is most reactive when the canister is flooded with water. As a guide in this determination it is noted here that based upon initial cold, clean conditions the minimum number of fuel assemblies required for criticality is slightly in excess of 16 for light water mcderation ${ }^{(8)}$. Each fuel assembly consisted of 25 fuei pins with a nominal pitch from pin to pin of 0.606 inch. Furthermore ${ }^{(8)}$, as indicated by the decreasing
curvature of the plot of inverse count rate vs number of fuel assemblies the Pulstar design results in an undermoderated core for the 6 percent enrichment. For this loading there are 25 pins in a square with sides of length approximately 6×0.606 or 3.636 inches. Thus there is about 0.53 square inches per pin. At this same areal density a fuel loading canister which is scuare and of length 2.76 inches on the inside will hold $(2.76)^{2} / 0.53=14.38$ pins. Since this loading is undermoderated, maximum reactivity for the accident condition should occur at a loading of less than 14 pins/can.

To determine the pin/canister loading at which maximum reactivity occurs, a number of computer calculations were made in which this loading was varied. All of the calculations were done using the 23 group net tron structure available with the AMPX-1 modular code system ${ }^{(9)}$. This consists of the 80 GAM-II groups combined with a 30 group THERMOS structure below 1.85 ev . For each of 4 pins per canister loadings the value of K_{∞} was found in the following way. First a NITAWL ${ }^{(9)}$ calculation was made for a unit fuel cell coniiguration. NITAWL corrects for resonance self-shielding in the U-238 of the fuel pin using the Nordheim Integral Treatment and "cell-averages" the resonance crces sections. Then an XSDRNPM ${ }^{(9)}$ calculation was done. This is a one-dimensional transport calculation of k_{∞}. XSDRN also spacially weighs the cross sections of the unit fuel cell, i.e., it generates cross sections consistent with mocking up a cellular configuration as a homogenized region. The spatial "disadvantage factors" are taken into account in the weighing. These cross sections can then be used as input to a KENO calculation to find $k_{e f f}$ of a finite system.

The results of these code calculations are shown in Figure 6.11. A loading of 12 pins per canister was selected as being the most reactive. The spacially weighed cross sections
6.32

found in this run are the ones used to represent the fuel region in a KENO ${ }^{(10)}$ run which was done to find the value of $k_{e f f}$ for the hypothetical accident condition.

The KENO calcuiation was done using the generalized geometry package (GEOM), which allows any system that can be described by a collection of olanes and/or quadratic surfaces arbitrarily oriented and int secting in arbitrary fashion. Figure 6.12 shows a horizontal cross sectional representation of the loaded BMI shipping cask flooded with water and immersed in water. In the vertical direction the geometry was divided into six zones. These zones, in order from bottom to top correspond to the following six regions: bottom of 6-inch reflector to bottom of cask, bottom of cask to bottom of fuel, bottom of fuel to bottom of basket, bottom of basket to top of basket top of basket to top of cask, and top of cask to top of $6-$ inch water reflector. The third zone from the bottom was further divided into four blocks (quadrants) for ease of representation and the fourth zone from the bottom was divided into eight blocks. The modeling of the geometry was made conservative in that in zone 112 the canister material was replaced with water, in zone 114 the fuel region was axtended to 3.8 ? inches upwar ' to the top of the basket, and in zone 115 the canister material was again replaced with water.

6.7.3.2 Package Regional Densities

The kEifo calculation requires as input the number densities of five mixtures. These are the homogeni sed fuel, the stainless steel, the boral poison plates, the lead shield, and the water moderator and reflector. The fuel : efing is that of 12 pins per carister with a volume of $(2.76)^{2} \times 24 \mathrm{in} .^{3}$ or

FIGURE 6.12 KENO CRUSS-SECTIONAL REPRESENTATION OF BMI'S SHIPPING CASK IMMERSED IN WATER
2995.92 cc . The 12 pins occupy a volume of 832.80 cc and water occupies the remaining 2103.12 cc . The 20 mil zircalloy cladding occupies a volume of 134.63 cc . The homogenized number densities for this configuration are given in Table 6.6.

TABLE 6.6. NUMBER OF ATOMS PER CC IN THE HOMOGENIZED FUEL REGION

Element	$\mathrm{N} \times 10^{24}$
$\mathrm{U}-238$	0.0048140
$\mathrm{U}-235$	0.0003109
H	0.0482800
0	0.0342200
zr	0.0019110

The stainless steel is a mixture of 19 percent chromium, 10 percent nickel, and 71 percent iron with a density of 7.904 grams/cc. The resultant number densities are given in Table 6.7.

TABLE 6.7. NUMBER OF ATOMS PER CC IN STAINLESS STEEL

Element	$\mathrm{N} \times 10^{24}$
Cr	0.017400
Ni	0.008114
FC	0.060520

When considering the poison boral plates, a simple volume homogenization is inadequate since this does not account :or self-shielding effects and thus would tend to over-estimate the neutron absorption of the boion. Experimentally it has been shown ${ }^{(5)}$ that $\mathrm{B}_{4} \mathrm{C}$ lumping in the boral plates reduces the thermal neutron absorption cross section by 20 to 30 percent. Thus the number density of boron should be reduced by this factor for the computation of absorption. In order to be conservative, only $1 / 2$ the calculated boron number density was used in the KENO computation. The plate was made up of a $\mathrm{B}_{4} \mathrm{C}-\mathrm{Al}$ core with a thickness of 0.04 inch, a density of $2.64 \mathrm{~g} / \mathrm{cc}$, and containing 35 wt percent $B_{4} C$ and 65 wt percent aluminum. On each side of the core were an aluminum cladding with density $\rho=2.71$ and thickness 0.011 inch and a stainless steel cladding of thickness 0.031 inch. The number densities are given in Table 6.8.

TABLE 6.8. NUMBER OF ATOMS PER CC IN BORAL POISON PLATE

Element	$\mathrm{N} \times 10^{24}$
B	0.00648
C	0.00324
Al	0.02311
Cr	0.00870
Ni	0.00405
Fe	0.03026

The number density in the lead with a density of $11.005 \mathrm{~g} / \mathrm{cc}$ is 0.03199×10^{24} atoms/cc. Water with a density of 1.0 contains 0.066863×10^{24} atoms/cc of hydrogen and 0.033432×10^{24} atoms/cc of oxygen.
6.7.3.3 Results

The computed value of $k_{\text {eff }}$ is

$$
k_{e f f}=0.843 \pm 0.010
$$

Table 6.9 gives a summary of criticality results.

TABLE 6.9. FISSILE CLASS III (\mathbf{I}, II, III)

NORMAL CONDITIONS	I Fissile Class	III
Number of undamaged packages calculated to be subcritical (Fissile Class I, must be infinite; Fissile Class II, must be at least 25; Fissile Class III, must be it least identical shipment).		
Optimum interspersed hydrogeno.ts moderation; yes, required for Fissile Class I.		
Closely reflected by water; yes, required for Fissile Class II and III.		
Package size, cu cm		

ACCIDENT CONDITIONS

Number of damaged packages calculated to be subcritical (Fissile Class I must be at least 250; Fissile Class II must be at least 10).		
Optimum interspersed hydrogenous moderation, full water reflection		
Package size, cu cm		Yes
Fissile class II, minimum transport index (must not exceed lo).		1.04×10^{7}

6.3.1 References

(1) Whitesides, G. E., "Adjoint Biasing in Monte Carlo Criticality Calculations", Trans. Am. Nucl. Socl., 11, 159 (1968).
(2) Bell, G. E., et al, "Los Alamos Group-Averaged Cross Sections", LAMS-2941 (September, 1963).
(3) TID 7028
(4) Whitesides, G. E., Private Communication.
(5) Burrus, W. R., "How Channeling Between Chunks Raises Neutron Transmission Through Boral", Nucleonics, 16, 91-94 (January, 1958).
(6) BMI - Internal Memo from R. O. Wooton to E. C. Lusk (April 9, 1964).
(7) Nuclear Safety Guide, TID-7016, Rev. 1, Goodyear Atomic Corporation (1961).
(8) Private communication from Martin N. Haas, Associate Director, Nuclear Science and Technology Facility, State University of New York at Buffalo to Dr. Richard Denning, Battelle Memorial Institute, Columbus, Ohio 43201 (March 15, 1977).
(9) RSIC Computer Code Collection, ORNL-TM-3076, AMPX-1, Oak kid e National Laboratory, Oak Ridge, Tennessee 37830.
(10) Petrie, L. M., and Cross, N. F., "KENO IV, An Improved Monte Carlo Criticality Program", ORNL-4938, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830.

OPERATING PROCEDURES

7.1 Erocedures for Loading The Package

The procedures outlined in this section are applicable for handling the BMI-1 Cask during loading of the package at Battelle-Columbus Hot Laboratory at West Jefferson, Ohio. It should be used by other facilities as a guide in their operational planning.
7.1.1 Preuse Test and Examination
7.1.1.1 Preuse Test

The Preuse Tests shall be performed imnediately before or during loading for each use. At each use the canister (if applicable) and cask shall be individually subjected to a 50 psig minimum pressure test after they have been loaded and the lid secured in place.

The purpose of the pressure leak test is to establish that the seal of the canister and cask has been accomplished and meets the sealing requirements. The maximum permissible leak rate permitted for the BMI-1 cask is $9.24 \times 10^{-3} \mathrm{~atm}-\mathrm{cc} / \mathrm{sec}$. According to ANSI Standard $N-14.5$, the required sensitivity of a leak test to detect this degree of leak is $4.62 \times 10^{-3} \mathrm{~atm}-\mathrm{cc}$ / sec . The Soap Bubble Leak Test Procedure described below has a sensitivity of $1 \times 10^{-3} \mathrm{~atm}-\mathrm{cc} / \mathrm{sec}$ and, therefore, meets the requirements.

Procedure, Soap Bubble Leak Test
(1) Load and close containment carincer or cask according to the loading procedure.
(2) Attach a pressurized air or inert gas line to the pressure port as applicable. Use Tefion REV. A. 3-28-80
tape or other compatible sealant material on threads.
(3) Slowly pressurize to 50_{-0}^{+1} psig.
(4) With a "soap bubble" detection liquid (i.e., SNOOP), flood the seal region and pressure port attachment.
(5) Observe for a minimum of (2) minutes reapplying solution as required to maintain heavy liquid film layer.
(6) At the completion of a successful test, depressurize slowly and remove solution by convenient method.
(7) Remove pressurization line and insert plug in pressure port according to the loading procedure. Close pressure port valve if applicable.
(8) The acceptance criteria is that there shall be no evidence of bubble formation indicative of a leak. Failure to meet this criteria constitutes failure of the test and requires that the cognizant supervisory personnel be notified and corrective action be initiated.

7.1.1.2 Preuse Visual Examination

Prior to each use the following visual examinations shall be performed.
(1) Cask Body. The cask shall be examined for any obvious deformities or flaws especially in weld area which would impair the safety of the cask. The lid bolt holes shall be examined to assure that they are clean and free of any foreign material and that the threads are not damaged. The bolts shall be examined for damage and REV. A. 3-28-80
replaced if needed. The drain valve shall be inspected to assure that it operates freely. The threads and gaskets on the drain housing and drain housing cover plate shall be examined to assure that the cover fits properly on the housing. The o-ring seat on the cask body and cover shall be inspected to assure that they are free of any scratches which would impair their sealing ability. The lid o-ring shall be inspected for cuts, deformities or other irregularities. The safety plugs shall be inspected for any flaws. The upper pressure relief valve and pressure gage shall be inspected for flaws and proper operation before each cask use and the gage calibrated on an annual schedule.
(2) Skid. The skid shall be examined to assure that it is not twisted, bent, or otherwise damaged such that it would impair the safety of the package. If the skid is not attached to the cask, the bolt holes in the skid shall be inspected to assure that they are free of foreign material and that the threads are not damaged; and the bolts shall be examined to assure that they are not damaged.
(3) Canisters and Baskets. The canisters and baskets shall be inspected for any deformed areas. Any o-ring and seal surfaces shall be examined for scratches or other irregularities which would impair the sealing ability. The bails or lifting eyes shall be inspected to assure that they are not frayed or otherwise damaged and that their attachments to the units are secure. Pressure ports and plugs shall be inspected for any damage REV. A. 3-28-80
or deformed threads shich would affect the sealing ability. Welds shall be inspected for cracks and flaws.

7.1.2 Preloading Operations

Prior to each use the following shall be verified as being in compliance with USNRC Certificate of Compliance Permit Number USA/5957/B()F:
(1) Permit is current and applicable.
(2) Shipper is registered as a user under Section $71.12(b)$ of 10 CFR Part 71.
(3) Assure contents will qualify as to material type, form, and maximum quan 'ity. This shall include meeting the limits for decay heat, fissile quantities and external radiation limits.
(4) Determine the requirement for an internal containment canister or basket.
(5) The maximum gross weight of the cavity contents shall not exceed 1800 pounds.
(6) Verify that the consignee is properly licensed to receive the material and that its license is current.

7.1.3 Loading the Cask

Conduct the loading procedures as stated below after the preloading operations have been: completed. Notify the cognizant supervisor if any damage or deficiency is noted and perform corrective action as directed.

$$
\text { REV. A. } 3-28-80
$$

Procedure

(1) Carefully lift the cask, by using the lifting yoke or by lifting beneath the skic with a forklift truck. Move to wash area if required, otherwise to preparation and loading area.
(2) Wash the cask and place it on blotting paper, if required.
(3) Remove the cover from cask drain valve housing.
(4) Remove the plug from the drain, assuring the drain valve is closed before the plug is removed. (Pressure gauge should read zero.)
(5) If the cask was not opened upon last receipt, perform an internal pressure and liquid check using NS-PI-1.4 (Section 7.4.2) as a guide.
(6) Inspect the drain valve.
(7) Remove all cask lid bolts.
(8) Insert hooks into the cask lid lifting plate.
(9) Remove the cask lid with continuous monitoring by Health Physics.
(10) Perform the preuse inspection described in Section 7.1 .1 and perform any required corrective maintenance.
(11) Pour liquid into cask cavity and collect from drain valve to insure clear drain line.
(12) Ensure that the cask o-ring is properly seated in the lid groove.
(13) Close the drain valve and insert drain plug if loading dry. Leave open if loading plan requires underwater loading.
(14) Check all dimensions of containers, cask, loading areas, crane travel, etc. to assure that all operations can be performed.
(15) Move the cask to the loading area.

REV. A. 3-28-80
(16) Perform a preuse inspection of the containment canister or basket (if one is used) according to the procedures described in Section 7.1 .1 .2 and perform any required corrective maintenance.
(17) Load the canister or basket with the radioactive material.
Place the lid on the canister or basket and bolt in place. Torque the canister bolts to $60 \pm$ 10 inch-pounds.
Perform the canister-cask pressure leak test according to the procedures described in Section 7.1.1.1. Decontaminate the canister if applicable.
Lift the canister or basket using a suitable method and insert it into the cask cavity. Do Not Drop.
(21) Place the lid on the cask and secure with at least two lid bolts.
(22) Remove the cask from the loading area, monitor the cask to assure that radiation limits for shipment outlined in Section 7.1.4.1 will not be exceeded, and then move to a designated area.
22a. Check the coolant (if liquid shipment) for activity after the cask has stood for at least 4 hours (activity shall not exceed that specified for 10 CFR 71.35A3 or DOE Manual Chapter 0529).
22b. Drain 5 percent of the water from the cask to provide expansion space for the water due to changes in ambient temperatures. Close and plug drain and flush valves. When needed, use a compatible antifreeze

$$
\text { REV. A. } 3-28-80
$$

mixture to prevent damage to any com-
ponents of the package due to freezing.
(23) Insert the remaining cover bolts and tighten in alternating sequence to 50 foot-pounds. Perform a preliminary smear survey and decontamination, if required, to meet the facility handing requirements.
Perform a preuse pressure leak check on the cask lid seal, pressure system, and drain valve according to procedures described in Section 7.1.1.1.
(26) Install the plugs in all valve outlets using Teflon tape or suitable material on threads.
(27) Install all cover plates after inspection to assure the areas are contamination free prior to covering.
(28) Remove the lid-lifting hooks from the lid and attach cover plates to the four lifting eyes.
(29) Transfer the cask to the skid.
(30) Bolt the cask onto tile skid and secure the cask to the skid with turnbuckle anchors.
(31) Assure the cask temperature requirements as follows.
(1) Temperatures on any accessible surface may not exceed those specified in 10 CFR 49 Section 173.393 e 2 . (In the shade, assuming still air at ambient tamperatures.)
(a) 122 F nonsole-use vehicle..
(b) 180 F sole-use vehicle.
(2) For liquid shipments, insert thermocouple into well in the lid and follow the cask temperature until it comes to equilibrium.

REV. A. 3-28-80

The equilibrium coolant temperature may not exceed 270 F minus the difference between 100 F and actual ambient temperature.

7.1.4 Final Preparation for Shipment of Package

7.1.4.1 Radiation Surveys

The following procedures shall be followed to assure compliance with the applicable Federal Regulations and BCL requirements for commercial motor freight shipments.
(1) Perform and record a complete radiation survey of the cask and support equipment. The shipping limits are as follows:
(a) Dose rate may not exceed $200 \mathrm{mRem} / \mathrm{hr}$ at cask surface or personnel barrier and is not to exceed a transport index of 10 per package and 50 total for all packages for nonexclusive use of vehicle and any other open transport vehicle.
(b) Dose rate on cask may not exceed $10 \mathrm{mRem} / \mathrm{hr}$ at 3 feet from the cask surface, as per the Certificate of Compliance, and $200 \mathrm{mRem} / \mathrm{hr}$ on the external surfaces of the vehicle (exclusive use, closed transport vehicle only.)
(c) Dose rate may not exceed $10 \mathrm{mRem} / \mathrm{hr}$ at 6 feet from the vertical planes projected from the outer edges of the vehicle lopen or closed vehicle).

$$
\text { REV. A. } 3-28-80
$$

(d) If the dose rates exceed these levels, notify the cognizant engineer, and await his instructions for corrective action before proceeding.

7.1.4. ? Smear Survey

Procedures

(1) Decontaminate the cask until removable contamination on all accessible surfaces is < 2200 $\mathrm{dpm} / 100 \mathrm{~cm}^{2}$ By and $<220 \mathrm{dpm} / \mathrm{cm}^{2} \mathrm{a}$. These limits may be exceeded if the conditions and limits specified under 49 CFR 173.397 are met.
(2) Document the smear survey on Form HPS-Sl-73 (Section 7.4.3).

7.1.4.3 Security Seal

Procedure

(1) Attach a seal to the cask lid, drain line cover, and upper pressure port cover, which is not readily breakable and which, while intact, will be evidence that the package has not been illicitly opened.
(2) Record the seal number on Form HPT-1-76 (Section 7.4.4) for the consignee's verification upon receipt.

7.1.4.4 Label and Markings

Procedure

(1) Attach two address labels identifying both consignor and consignee and their addresses.
REV. A. 3-28-80

Additional identification may be added as applicable.
(2) Fill out and attach two radioactive material hazards labels or "Empty" labels as applicable.
(3) Verify that all container identification information is attached as required by the regulations.

7.1.4.5 Packing List

Procedure

(1) Attach a packing list to the cask container at a minimum, the completed Form HP i-1-76 (sec tion 7.4 4) and Operating Manual NS-COM-1. (1) (Unless previously supplied to receiver.) Additional information which may assist che motor carrier and consignee may also be included.

7.1.4.6 Shipping Documents

Procedure

(1) Prepare ard obtain required signatures on a Bill of Lading (Commercial or Government) in accord with applicable regulations.
(2) Complete Form पPT-1-76 (Section 7.4.4) for attachment in packing list and for internal and external distribution.

7.1.5 Quality Assurance

(1) To assure that all critical functions are performed, the shipper for all shipments originating outside BCL shall complete the applicable
(1) References for Section 7, are found in Section ,.4.1. PEV. A., 3-28-80
Work Completion Check Sheet in Section 7.4.5, or provide similar documentation.
(2) For shipments originating within BCL, the Quality Assurance Documents of NS-PI-1 ${ }^{\text {(2) }}$ shall apply.
7.1.6 Package Transport
(1) Transfer the cask to the trailer.
(2) Secure the cask on the trailer using four chains and binder sets, attach each set to the four tiedown eyes provided at the top of the cask, and rigidly secure to the trailer. The chain shall be at least the equivalent to Columbus-McKinnan 5/16" G-70 with a working load of 4700 pounds and an ultimate load of 18,800 pounds. The ! inders shall have an equivalent rating. The supporting yoke shall be secured to the trailer bed with chains and binders of the same rating.
(3) Apply Radioactive placards to all four sides of the trailer if applicable.
(4) Obtain approval of the driver and cognizant facility supervisor that the load and trailer are properly secured, marked, and sealed.
(5) Seal the trailer doors and record if applicable.
(6) Review any Emergency Instructions with the driver and be sure they are clearly understood by him.
(7) Ensure that all trailer lights and brakes are operating properly, and that tires are in satisfactory condition.
(8) Transmit all applicable documents to the driver. These should include but not be limited to copies of:
REV. A. 3-28-80
(a) Bill of Lading
(b) Radioactive Shipment/Receipt Form, HPT-1-76 (Section 7.4.4)
(c) Emergency Instructions.
(9) Release shipment to vehicle driver.

7.1.7 Postshipment Requirements

The following actions shall be taken after the vehicle leaves the facility.
(1) Notify the consignee of the shipment, ETA, and any special instructions by mail, telephone, or telegraph is applicable.
(2) Distribute documents internally as applicable.
(a) For shipments of accountable material the consignee's and consignor's Materials Accountability Section shall be notified no later than the day of the shipment.
(3) Maintain contact with the consignee to verify safe arrival of the shipment.
7.2 Procedures for Unloading the Package

7.2.1 Receipt of Package

(1) Move the transport vehicle to the unloading ar a. Secure the trailer prior to removing che tractor (if applicable).
(2) Survey and smear the tractor compartment and semitrailer bed and remove any barriers.
2.1 Limits are per Sections 7.1.4.1 and 7.1.4.2.
2.2 If radiation and smear limits are exceeded, perform a major survey and decontamination.

REV. A. 3-28-80
(3) Perform radiation and smear surveys on external surfaces of the cask and support equipment.
Record the results.
3.1 Limits are per Sections 7.1.4.1 and 7.1.4.2.
(4) Notify the Facility Supervisor of the survey results, seal and damage inspections, and obtain his authorization and instructions to unload the cask from the trailer and move it to a designated area.
(a) Check the seal identification and integrity. Compare the seal identification with that appearing on the shipper's documents. Notify a cognizant supervisor of any apparent security violation and await his instructions.
(b) Inspect the external cask components and support equipment for apparent damage or deficiencies and report these to a cognizant supervisor.
(5) Remove the cask from the carrier by using the yoke provided or suitable chain or cable.
(6) Survey and smear the trailer area where the cask was located.
6.1 Limits are per Sections 7.1.4.1 and 7.1.4.2. 6.1.1 The radiation dose rate on any accessible surface of an empty transport vehicle shall not exceed $0.5 \mathrm{mRem} / \mathrm{hr}$ at the time it is released for public use.
(7) Mcve the cask to a designated area.
(8) Clean road dirt from the cask :f required.
(9) Loosen the tension on the tiedowns with the turnbuckles and detach the tiedowns from the cask.
REV. A. 3-28-80
(10) Unbolt the cask from the skid plate.
(11) Mark the orientation of the lid in relation to the cask body.
(12) Move the cask to the facility storage or unloading area.
(13) Tag the cask with identification of the contents and radiation survey data.

7.2.2 Unloading the Empty or Loaded Cask

The following unloading procedures shall be followed at the BCL Hot Laboratory and should be used as a guide for operational planning by other facilities.

Procedure
(1) Review unloading instructions and any special handling, safety, and security procedures.
(2) Check the cask for internal pressure by observing the pressure gage in the pressure control system box. Check for undocumented liquid using Procedure NE-PI-1.4 (Section 7.4.2) as a guideline. Some shipments are authorized to be shipped wet.
(3) Remove the lid bolts. Insert hooks into the lidlifting plate.
(4) Lift the lid from the cask in an area properly controlled for radiation and contamination. Perform a radiological survey as required.
(5) Remove the containment canister or other internal containment devices from the cask cavity using suitable equipment.
5.1 If the canister is empty, perform radiological surveys on the canister and cask cavity and clean both as required in the designated cleaning area.

REV. A. 3-28-80
5.1.1 Return the canister to the cask cavity if applicable, replace the cask lid, secure the bolts, and proceed to Step 13.
5.2 If the canister contains radioactive material proceed to Step 6.
(6) Empty the canister and return it to the cask cp.vity(if applicable).
(7) Replace the cask lid and lid bolts.(8) Remove the cask from the unloading area and takeit to the cleaning area.
(9) Remove the lid bolts and lid.
(10) Remove the canister and clean it.
(11) Flush and clean the cask cavity with a minimum of1 gallon of water remove the drain valve coverdrain plug and open the drain.
(12) Drain all liquid from the cavity, close the drain,replace the drain plug and place the cover on thedrain housing, replace the canister (if applicable),replace the cask lid, and secure the cover bolts.(13) Decontaminate the cask exterior surface as required.(14) Label the cask "Empty" and remove il to a storagearea.
(15) If the cask contains an empty canister, this should be noted on a tag or label.

7.3 Preparation of an Empty Package for Transport

The procedures for shipment of the empty BMI-1 cask are the same as the applicable procedures prescribed for loading the package, Section 7.1.

$$
\text { REV. A. } 3-28-30
$$

7.4 Appendix
7.4.1 References
(1) Operating Manual for BCL Radioactive Materials Package No. BMI-1, NS-COM-1, Revision 0 , Battelle's Columbus Laboratories, November 5, 1979.
(2) Procedures for the Use of BCL Radioactive Materials Shipping Packages - Casks and Canister, Battelle Columbus Laboratories, NS-PI-1, Revision 0, April 17, 1979.
7.4.2 Pressure Chack Procedures NS-PI-1.4
(1) Cask Internal Pressure and Liquid Check
1.1 To ensure that no cask is opened in a pressurized condition, or contains undocumented liquids, a pressure check shall be made prior to release for shipment, and after the cask has been moved to the cask unloading area following its receipt. The following procedure shall be implemented upon receipt of a cask.
(2) General Considerations
2.1 Connect the manifold (Figure 7.1) to the cask cavity drain - lve.
2.2 In the event that liquid enters the manifold and passes through the filter, the in-line filter element shall be replaced after the pressure check.

REV. A. 3-28-80

Pressure and Liquid Check Manifold FIGURE 7.1
2.2.1 This is done to assure the integrity of the manifold filter during pressure checks.
2.3 If any liquid is found in the cask cavity, it shall be collected and disposed of in a "hot" drain.
(3) Procedures
3.1 Remove the cask valve cap from the selected cavity relief or drain valve.
3.2 Ensure that all cask valves are closed.
3.3 Rem Jve appropriate sealing plug from valve to wh ch manifold will be attached.
3.4 Assemble the following manifold device (See Figure 7.1).
$3.4 .1 \mathrm{l} / 4 \mathrm{in}$. pipe nipple -4 in . length minimum - to be attached to the cask.
3.4.2 Absolute in-line filter.
3.4.3 Pressure gage - 0-50 psiq minimum gage must be approved for pneumatic and hydraulic use.
3.4.4 $1 / 4 \mathrm{in}$. globe type valve; two required.
3.4.5 Sufficient heavy wall Tygon tubing, or equivalent, to reach from the cask to a contamination controlled area.

$$
\begin{aligned}
& 3.4 .6 \text { Sight bowl, type ERNST } E-57-0 \text {, or } \\
& \text { equivalent. } \\
& 3.4 .7 \text { Sufficient pipe fillings as necessary } \\
& \text { to complete assembly of manifold. }
\end{aligned}
$$

3.5 With the cask valve and manifold valves closed, attach the manifold to the cask valve.
3.6 Slowly open the cask valve.
3.7 Observe the sight bowl for the presence of liquid. Proceed to 3.8 if no liquid is observed.
3.7.1 If liquid is present, slowly open Valve 1 and read pressure in cask cavity.
3.7.2 If no pressure is present, proceed to 3.7.3.
3.7.2.1 When pressure and/or liquid is present, place the exit end of the exhaust tubing into the airborne zontamination control area.
3.7.2.2 Slowly open Valve 2 and collect the liquid while bleeding off the pressure.
3.7.2.3 Continue the liquid collection and pressure bleeding under constant observation until all liquid is drained from the cask and the manifold gage reads zero.
3.7.2.4 Dispose of collectec liquid in a "hot" drain.
3.7.2.5 Proceed to 3.9.
3.7.3 Perform Steps 3.7.2.1 through 3.7.2.4
deleting the portion pertaining to pressure bleed off.

REV. A. 3-23-80
3.8 Slowly open Valve 1 and read internal cask pressure on the pressure gauge. If no internal pressure exists, proceed to 3.9 . 3.8.1 If the cask is in a pressurized condition, perform Steps 3.7.2.1 through 3.7.2.3 deleting the portion pertaining to liquid collection.
3.9 Close the cask valve.
3.10 Close the manifold valves.
3.11 Remove the manifold from the cask.
3.12 Replace the cask valve plug.
3.13 Package and store the manifold assembly as internally contaminated equipment.
(4) Documentation
4.1 Record and document cavity pressure and above operations on the following form.

Internal Pressure Check Traveler

Procedure Number NS-PI \qquad , Rev. \qquad .

```
Cask Identification Number
```

\qquad .

Initial Date

1. Cask pressure gage present and registering 0 psig or manifold assembled as required
1.1 Manifold attached to cask drain line
2. Cask drain valve opened to pressure gage
\qquad
\qquad
3. Record gage reading:
3.1 Gage at psig
4. Pressurized cask: (if applicable)
4.1 Pressure slowly released from cask \qquad
4.2 Record gage reading:
4.2.1 Gage at psig
\qquad

-

5. Ca_k valve closed

5.1 Manifold removed from cask

\qquad
Comments: \qquad
\qquad
\qquad

Work Completed by: \qquad Date \qquad
Operator
Reviewed by:_Operations Supervisor
Date \qquad

Work Completed by: \qquad Date \qquad Operator

Reviewed by: \qquad Date \qquad
Operations Supervisor

$$
\text { REV. A. } 3-28-80
$$

7.21

7.4.3 Form HP-S1-73

REV. A. 3-28-80

SIEAR SURVEY REPORT

		\%	寿	${ }^{\text {domer }}$	c:8.	${ }_{\text {coma }}$	为	गु/er

7.23

7.4.4 Form HPT-1-76
\qquad

This is to certify that the above named articies are groperty classified. described. packaged, marked and labeied, and are in proper candition for transportation according to othe appicabie reguiations of the Department of Transportation. Signature

$$
7.25
$$

7.4.5 Work Completion Check Sheet

Work Completion Check Sheet - Cask BMI-1
(Shippers Other Than BCL)

Date \qquad
Facility \qquad
Operator(s) \qquad
Shipper \qquad

Material Composition \qquad
Material Identification \qquad
Est. Decay Heat \qquad

1. UNLOADING CASK FROM TRANSPORTFR

Initial Date
1.1 Radiation survey of cask
$\ldots \mathrm{mr} / \mathrm{hr} \beta-\gamma$

1.2 Smear survey of cask

- DPM $\alpha-\beta-\gamma$
1.3 Cask removed from transporter
1.4 Radiation survey of transporter under cask, $\quad \mathrm{mr} / \mathrm{hr} \mathrm{B}-\mathrm{Y}$
1.5 Smear survey of transporter under cask, DPM $\alpha-\beta-\gamma$
1.6 Copy of all documents to transportation coordinator
1.7 Cask seals checked and recorded

1. 8 Cask inspected for damage and so recorded
1.9 Cask tagged to identify contents
REV. A. 3-28-30

7.26

2. PREUSE EXAMINATION AND PROCEDURES
2.1 External components visual inspection and approval
2.2 Preloading operations performed
3. CASK LOADING
3.1 All cover bolts removed

Initial Date
3.2 Cask moved to loading area
3.3 Cask cover removed
3.4 Canister (if used) loaded
3.5 Canister cover bolts torqued to 60 ± 10 inch-pounds
3.6 Pressure leak test performed and canister seal satisfactory
3.7 Canister loaded in cask cavity
3.8 Cover placed on cask and secured with bolts torqued to jo foot-pounds
3.9 Pressure leak test performed on cask
cover seal and drain valve

4. CASK UNLOADING

4.1 Internal cask cavity pressure checked
4.2 All cover bolts removed
4.3 Cask moved to unloading area
4.4 Cask cover removed
4.5 Canister removed from cask
REV. A. 3-28-80

Initial Date
4.6 Canister unloaded, if applicable, and
returned to cask cavity
4.7 Cask cover replaced
4.8 Cask removed from unloading area
4.9 Cask cavity and canister cleaned
4.10 Canister returned to cask cavity and cover bolted in place
4.11 Cask decontaminated externally
4.12 Cask transferred to storage area
5. PREPARATION FOR SHIPMENT
5.1 Radiation survey completed
5.2 Cask decontaminated to acceptable level of removable contamination
5.3 Form HPS-SI-73 (Appendix E) completed
5.4 Radioactive Shipment form
(Appendix D) completed
5.5 Cask properly sealed, labeled, marked,
and identified
5.6 Cask properly secured on transporter
5.7 Transporter vehicle inspected and sealed
5.8 Driver instructed and given proper papers
REV. A. 3-28-80

8. ACCEPTANCE TESTS AND MAINTENANCE PROGRAM

8.1 Acceptance Tests

The BMI-1 Shipping Cask has been in use in its present configuration since 1970. Tests of the package, therefore, properly are part of the maintenance program discussed in the next section.

8.2 Maintenance Program

8.2.1 References

```
RDT-E12-7T - Inspection and Preventive Maintenance of
                                    Radioactive Shipping Containers
10 CFR71 Appendix E - Quality Assurance
RDT-F8-11 - Fuel Shipping Container Tiedown for Truck
    Transport
AECM - 0529 - Safety Standards for the Packaging of
    Fissile and Other Radioactive Materials
ANSI - N 14.5 - Leakage Tests on Packages for Shipment
    of Radioactive Materials
```


8.2.2 Inspections

8.2.2.1 Types

The following types of inspections shall be performed and documented:

Periodic - Annual; Biennial
Preusage
Postaccident.
REV. A. 3-28-80

8.2.2.2 Frequency

(a) Periodic inspections shall be performed before initial use of the packaging and annually thereafter except during periods of prolonged storage. Items specified for biennial inspection may be included in the annual inspection on alternate years. No packaging shall be used which has not been inspected in the immediately preceding year for the items of Section 8.3.3.1 and the preceding 2 years for the items of Section 8.3.3.2.
(b) Preusage inspections shall be performed immediately prior to each offsite shipment of the packaging.
(c) Postaccident inspections shall be performed prior to use of the packaging after it has been subjected to unusual stress conditions including fire, moving transportation accident, nuclear incident, free drop, internal or external explosion, pressurization above maximum design specification, exposure to materials corrosive to structural components, or freezing of liquid contents.

8.2.2.3 Inspecting Personnel

(a) Inspections shall be performed by personnel representing Quality Assurance organizations that are qualified in accordance with 10 CFR 71 Appendix E.
(b) Postaccident inspections shall be directed by a person in charge, designated by the responsible performing organization on the basis of engineering competence, and familiarity with the Safety Analysis Report for the packaging (container) in question.

$$
\text { REV. A. } 3-28-80
$$

8.2.2.4 Records

(a) A corrosion-resistant metal tag indicating expiration date of mest recent periodic inspection shall be firmly and securely affixed in a conspicuous location on the body of the packaging. A similar metal tag shall be affixed to any optional use components such as inserts. Where permanent attachment of a metal tag would damage the component, other durable methods of marking the expiration date, compatible with the materials and service environment, shall be used.
(b) A record of each periodic inspection, including a description of defects and corrective actions which were taken, shall be prepared by the person in charge, and shall indicate his organizational title or responsibility. This record of inspection shall be placed in the Quality Assurance record file required in accordance with AECM 0529.
(c) A detailed description of all tests and inspections performed and the results thereof shall be prepared by the engineer responsible for performing a postaccident inspection. This record shall be placed in the Quality Assurance record file for the packaging. If the results of this inspection indicate the original design specifications are no longer applicabie, then revisions of outstanding drawings, reports, specifications, licenses, and certificates of compliance reflecting the change shall be obtained.

REV. A. 3-28-80
(d) Handling and shipping procedures of the user of packaging shall contain appropriate instructions for preusage inspections and tests ensuring compliance with design and permit requirements. Record copies of these inspections shall be retained for at least 2 years after the shipment.

8.2.3 Periodic Inspections

8.2.3.1 Annual

An annual inspection together with the biennial inspection shall verify that the packaging continues to meet design specifications. Items for annual inspection shall include, but are not limited to the following:
(a) Surfaces. Surfaces shall be free of corrosion, gouges, cracks, or other deformations as determined by visual inspection. Painted surfaces shall be free of cracks, chips, or blisters.
(b) Sealing Surfaces. These surfaces shall be inspected for pits, scratches, burrs, corrosion and other imperfections.
(c) Sliding Surfaces. Surfaces which move relative to one another shall be inspected for excessive wear or roughness not within design tolerances.
(d) Welds. Welds shall be determined to be sound by visual inspection.

$$
\text { REV. A. } 3-28-80
$$

8.5

(e) Closure Devices. Bolts and nuts shall conform to original design specifications and shall not be bent or otherwise deformed. Threads shall be uniform and free of burrs. Provision for installing seal wires shall be present. Latches shall work smoothly and engage properly.
(f) Alignment Devices. Guide pins, lugs, etc., shall not be deformed and shall operate as intended. Match marks shall be clearly visible.
(g) Lifting Lugs, Eyes, and Trunnion. Visual inspection shall indicate no misalignment, wear, or other deformation which would significantly affect strength. Engagement guides and retainers shall be sound and operable as intended. Bearing surfaces shall be smooth to prevent binding.
(h) Valves, Lines, and Connections. Valves shall be freely operable by hand pressure. Lines shail be determined to be free of restrictions. Threaded connections shall be free of deformation or damage. "Quick-disconnect" type fittings shall operate freely. Plugs or caps shall be provided for all line ends except those downstream of pressure relief devices.
(i) Filters. Filters shall be replaced or inspected and tested to verify performance in accordance with design specifications.
(j) Reuseable Gaskets. These gaskets shall have no visible evidence of deterioration or damage. They shall be retained in position on one of the sealing surfaces in a manner which will not affect the seal. One-time-use gaskets are not inspected on periodic inspections.
REV. A. 3-28-80
(k) Tiedown. The tiedown shall comply with RDT F 8-11.
(1) Leaktightness. A test shall be performed to demonstrate leaktightness at least of the degree corresponding to the basis for the certificate of compliance, and in accordance with procedures in ANSI N 14.5.
8.2.3.2 Biennial

Items to be inspected include the following:
(a) Welds. Welds which are subject to stress and which must be sound for safe operation or for compliance with regulations shall be inspected by dye penetrant, radiographic, or ul.iasonic methods.
(b) Pressure Relief Valves and Instruments. Pressure relief valves and instruments such as pressure gages and thermocouples shall be bench-tested and calibrated as necessary to ver:fy performance in accordance with specifications.

8.2.4 Preusage Inspections

Inspections shall be performed before each shipment of a loaded package or contaminated empty packaging to establish compliance with applicable regulations and standards. Items to be inspected include, but are not limited to, the following:

8.2.4.1 General Condition

Visual inspection shall be made for deformation of structural members, missing components, and other possible

$$
\text { REV. A. } 3-28-80
$$

deficiencies. Any necessary maintenance shall be performed. Requirements may differ for loaded packages and empty packaging.
8.2.4.2 Closure

Reusable gaskets shall be inspected visually and determined to be sound before closure is made. Gaskets which are permanently deformed by normal use shall be replaced at each use. Rupture disks shall be visually inspected and determined to be free of imperfections, damage, or corrosion. All valves shall be closed, bolts and nuts shall be determined to be tightened within design torque specifications, and wire seals shall be installed.

After a loaded or internally contaminated package is closed, it shall be determined to be sealed by a leakage test of the sensitivity specified in ANSI N 14.5 to be used before each shipment, or by an alternative procedure approved by the USNRC or DOE Contracting office having jurisdiction of the packaging if a leakage test of such sensitivity is impractical with the package loaded for shipment. When a potential leakage point is submerged in liquid on the upstream sife and clearly visible on the downstream side, a hydrostatic test at 15 psig or more is acceptable, with any observed drops or seepage being cause for rejection. If a hydrostatic test is used with loss of pressure as a measure of leakage, account shall be taken of possible gas in the containment vessel, solubility of gas, temperature change, liquid compressibility, and stretch of the vessel.

8.2.4.3 Radiation and Contamination

Radiation and surface contamination surveys shall be performed on the loaded package. The results of these surveys shall fall within applicable BCL limits.

$$
\text { REV. A. } 3-28-80
$$

8.2.4.4 Tiedown

The tiedown shall comply with design specifications and RDT F 8-11.
8.2.5 Postaccident Inspections
8.2.5.1 Purpose

Performance of postaccident inspection shall verify that the package complies with original design or permit specifications. Where characteristics have changed, but remain within permitted variances, these changes shall be noted in the Quality Assurance file.
8.2.5.2 Items of Inspection

Items of inspection shall include, but are not limited to the following:
(a) Dimensional Stability. Measurements shall be taken to verify that all dimensions which affect performance are within specified tolerances. Particular attention shall be paid to flatness, straightness, or uniformity tolerances affecting fit between parts.
(b) Welds. Welds whose function is simple closure or joining shall be determined to be sound by visual inspection. Welds required to sustain stress shall be determined to be sound by nondestructive examination such as radiographic examination, liquid penetrant and/or ultrasonic means.
REV. A. 3-28-80
(c) Package Shielding. Where the nature of an accident is such that internal shielding material may have melted, deformed, ur cracked, the shielding characteristics of the package shall be reevaluated. This shall be accomplished by enclosing a gamma source of known high energy level in the package cavity. Radiation measurements shall be taken on the surface of the package and shielding effectiveness shall be calculated. The effectiveness thus calculated siall not deviate significantly from that which would be expected from the original shielding design. Where neutron shielding is required, a similar test slall be performed using a neutron source.
(d) Heat Transmission. The heat transmission characteristics of the package shall be reevaluated by enclosing a heat source of design value in the package cavity and, after equilibrium with ambient conditions is achieved, measuring surface and internal temperature of the package. These transmission cha: vcteristics shall agree with the requi :ements of the certificate of compliance.

8.2.6 Preventive Maintenance

8.2.6.1 Definition

Preventive maintenance shall consist of repair, replacement, and adjustment during periods of usage or storage to ensure specified functioning and to avoid deterioration.

8.2.6.2 Frequency

Preventive maintenance shall be performed as follows:
(a) At the time of periodic inspection and at the time of inspection before each shipment, as kEV. A. 3-23-80

considered necessary by the person in charge, to correct deficiencies which might lead to failure or damage.
 (b) Before any period of protracted storage, to provide necessary protection against corrosion or other avoidable deterioration.

8.2.6.3 Records

All maintenance repairs will be recorded and documented per BCL Quality Assurance procedures.
8.2.6.4 Items

Preventive maintenance is intended to be performed before failure or inoperability occurs. Such work shall include, but not be limited to, the following:
(a) Parts Replacement. Damaged, missing, deteriorated, or badly worn parts such as nuts, bolts, filters, gaskets, valves, cables, pressure relief devices and rupture disks shall be repaired or replaced. Such rework shall meet design specifizations.
(b) Decontamination. Prior to shipment, the external surfaces of packages shall be decontaminated to levels within the limits specified by applicable regulations. Prior to storage, the external surfaces of packages shall be decontaminated to levels permitted in the specific storage area. The interior of packages st, $1 l$ be decontaminated as required to maintain consistency with the levels of contamination of items to be shipped therein. Decontamination shall remove contaminants. Application of paint, plastic film, or similar surface coatings to cover or shield contamination is not permitted.

$$
\text { REV. A. } 3-28-80
$$

$$
8.11
$$

8.2.7 Documentation

All Inspections and Preventive Maintenance Activities shall be recorded and documented on the applicable BCL-QA documents.

REV. A. 3-28-80
$166 \div 5$

[^0]: (a) Refer to Figure 2.5

[^1]: Since the impact force is 11,770 pounds, by inspection the margin of safety for buckling is large.

[^2]: The lid-lifting handle welded on the lid of cask BMI-1 was tested by attaching cask BCL-3, with its lid in place, to the BMI-1 lid with a chain. The assembly was then lifted off the floor and suspended for 3 minutes by a crane hooked to the BMI-1 lid-lifting handle. The certified weight of cask 3CL-3 with lid is 2595 lb ., placing a total weight on the lifting handle of $>3695 \mathrm{lb}$. which is in excess of three times the weight of the 1100 lb . 11d.

 The weld was then checked by liquid dye penetrant in accordance with BCL QA Procedure HL-PP-60 with no defects detected.

[^3]: ${ }^{1}$ National Science Foundation Grant No. 23923. Report No. 3. Julv: 1963.
 ${ }^{2}$ Numbers in brackets devignate References at end of paper.
 Presented at the Summer Conference of the Applied Mechanies Division. Boulder, Colo., June 9-11, 1264, of The duraicar Societt of Mecranical Engineers.

 Discusvion of this paper should be addressed to the Editorial Department, ASMIE. United Figgineering Center. 345 Easc tith Street. Sew York, V. Y. 10017, and will be aecepted until Oetober 10, 1964. Discusaion received after the closing date aill be returned. Manuseript received by ASME Appiied Mechanies Division. July 31, 1903. Paper No. 54-APM-33.

[^4]: - The prograns was written and ail calculations were earried out by the author on the TBM 709 compuser at the Fale Computer Center. The disert integration of (36) is performed by means of the Adams predietor-ocrector method. which velects an optimuin atep size at avery step weording to a premeribed securacy:

[^5]: * This cooling concept is being patented by the Edward Lead Company, of Columbus, Ohio.

[^6]: * See Table 5.4 - Transport Groups II, V, VI, and VII.

[^7]: * Due to expansion of the lead upon melting.

[^8]: * By utilizing a simple three-dimensional code under development at Battelle.

