NUCLEAR REGULATOPY COMMISSION

WASHINGTON, O. C. 20555

IRKANSAS POWER \& LIGHT CDMPANY
DOCKET NO, 50-313
ARKANSAS NUCLEAR ONE - UNIT NO. 1
P'IENOMENT TO FACILITY OPERATING LICENSE

Amendment No. 31 License No. DPR-51

1. The Nuclear Regulatory Commission (the Commission) has found that:
A. The application for amendment by Arkansas Power \& Light Company (the licensee) dated December 28, 1977, as supplemented by letters dated January 17 and 30, 1978, and March 3, 1978, complies with the standards and requirements of the Atomic Energy Ast of 1954, as amended (the Act), and the Commission's rules and regulations set forth in 10 CFR Chapter I;
2. The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission;
C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations;
D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and
E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.
3. Accordingly, the license is amended by changes to the Technical Specifications as indicated in the attachment to this license amendment and Paragraph 2.c.(2) of Facility Operating License No. DPR-51 is hereby amended to read as follows:
(2) Technical Specifications

The Technical Specifications contained in Appendices A and B, as revised through Amendment No. 31 , are hereby incorporated in the license. The licensee shall operate the facility in accordance with the Technical Specifications.
3. This license amendment is effective as of the date of its issuance.

FOR THE NUCLEAR REGULATORY COMMISSION

Robert W. Reid, Chief Operating Reactors Branch \#4 Division of Operating Reactors

Attachment:
Changes to the Technical Specifications

Date of Issuance: March 17, 1978

ATTACHMENT TO LICENSE AMENDMENT NO. 31 FACILITY OPERATING LICENSE NO. DFR-51 DOCKET NO. 50-313

Revise the Appendix A Technical Specifications \because follows:

Remove Pages
9

$\frac{\text { Insert Pages }}{9}$
9 b
12
14 b
$30 \& 30 \mathrm{a}$
$47 \& 48$
48 b
48 bb
48 bbb
48 c
48 cc
$48 \mathrm{c} \cdot \mathrm{c}$

New pages and changes in the revised pages are identified by marginal lines.

Using a local quality limit of 22 percent at the point of minimum DNBR as a basis for curve 3 of Figurc 2.1-3 is a conservative criterion even chough the quaiity at the exit is higher than the quality at the point of minimum DNBR.

The DNBF as calculated by the BAW-2 cortelation continually increases from point of minimun Div3R, so that the exit DNBR is always higher and is a function of the pressure.

The maximum themal power for three pump operation is 85.6 percent due to 3 power level trip produced by the flux-flow ratio (74,7 percent flow $\times 1.060$ 79.1 percent power) plus the maximum calibration and instrumentation error. The maximum themal power for other reactor coolant pump conditions is produced in a similar manner.

For each curve of Figure 2.1-3, a pressure-temperature point above and to the left of the curve would result in a DNBR greater than 1.3 or a local quality at the point of minimum DNBR less than 22 percent for that particular reactor coolant pump situation. Curves $1 \& 2$ of Figure 2.1-3 are the most restrictive because any pressure/temperature point above and to the left of this curve will be above and to the left of the other curve.

REFERENCES

(1) Correlation of Critical Heat Flux in a Bundle Cooled by Pressurized Water, BAW-10000A, May, 1976.
(2) FSAR, Section $3,2,3,1.1 .6$

> The power level trip se: point produced by the power-to-flow ratio provides both high powcr level and low flow protection in the event the reactor poner level increases or the reactor coolant flow rate decreases. The power level trip set point produced by the power to flow ratic provides overpower DNis protection for all modes of pump operation. For every flow rate there is a maximum permissible power leve., and for every power level there is a minimum permissible low flow rate. Typical power level and low flow rate comoinations for the pump situations of Table $2.3-1$ are as follows: 1. Trip would occur. when four reactor coolant pimps are operating if power is 106.0 percent and reactor flow rate is 100 percent or flow rate is 94.3 percent and power level is 100 percent. 2. Trip would occur when three reactor coolant pumps are operating if power is 79.1 percent and reactor flow rate is 74.7 percent or flow rate is 70.7 percent and power level is 75 percent. Trip would occur when one reactor coolant pump is operating in 3. each loop (total of two pumps operating) if the power is 52.3 percent and reactor flow ratc is 49.2 perwant or flow rate is 46.2 percent and the powcr level is 49.0 nercent.

The flux/flow ratios account for the maximun calibration and instramentation errors and the maximum variation from the average value of the RC flow signal in such a manner that the reactor protective system receives a conservative indication of the RC flom.

[^0]
B. Pump inonitors

In conjunction with the power imbalance/flow trip, the pump moniitors prevent the minimum core DNBR from decreasing below 1.3 by tripping the reactor due to the loss of reactor coolant pump(s). The pump monitors also restrict the power level for the number of pumps

C. RCS Pressure

During a startup accident from low power or a slow rod withdrawal from high power, the system high pressure trip set point is reached before the nuclear overpower trip set point. The trip setting limit

RRKANSAS PONER ANO LIGHT COMPANY-UNIT I PROTECTIVE SYSTEM MAXI MUN ALLOMABLE SETPOINTS

3.1.7 Moderator Temperature Cozificient of Reactivity

Specification

3.2.7.1 The moderator temperature coefficient (MTC) shall be non-positive whenever thermal power is $\geq 95 \%$ of rated thermal power and shall be less positive than $0.5 \overline{\times} 10^{-4} \Delta \mathrm{k} / \mathrm{k} /{ }^{\circ} \mathrm{F}$ whenever thermal power is <958 of rated themal power and the reactor is not shutdown.
3.1.7.2 The MC shall be determined to be within its limits by confimatory measurements prior to initial operation above $5 \frac{3}{}$ of rated thermal power after each fuel loading. MIC measured values shall be extrapolated and/or compensated to permit direct camparison with the limits in 3.1.7.1 above.

Bases

A non-positive moderator coefficeint at power levels above 95% of rated power is specified such that the maximum clad temperatures will not exceed the Final Acceptance Criteria based on LOCA analyses. Below 95\% of rated power the Final Acceptance Criteria will not be exceeded with a positive moderator temperature coefficient of $+0.5 \times 10^{-4} \Delta \mathrm{k} / \mathrm{k} /{ }^{\circ} \mathrm{F}$ corrected to 95% of rated power. All other accident analyses as reported in the FSAR have been performed for a range of moderator temperature coefficients including $+0.5 \times 10^{-4} \Delta \mathrm{k} / \mathrm{k} /{ }^{\circ} \mathrm{F}$.

Amendment To. 21, : :
6. If a control rod in the regulating or axial power shaping groups is declared inoperable per Specification 4.7.1.2. uperation ahove 60 percent of the thenmal power allowable for the reactor cuolant pump eninbination may continue provided the rads in the group are positioned such that the rod that was daclared inoperable is contained within allowable group average position limits of Specification 4.7.1.2 and the withdrawal limits of Specification 3.5.2.5.3.
3.5.2.3 The worth of single inserted control rods during criticality are iimited by the restrictions of Specification 3.1.3.5 and the Control Rod Position Limits defined in Specification 3.5.2.5.

3.5.2.4 Quadrant tilt:

1. Except for physics tests. if quadrant tilt exceeds 4.92% power shall be reduced immediately to below the power level cutoff isce figures 3.5.2-1A and 3.5.2-18). Mureover, the power level cut of f value shall be reduced 2% for each latilt in excess of 4.92% tilt. For less than 4 pump operation, thermal power shall be reduced 2% of the thermal power allowable for the reactor conlant pump combination for each 1% tilt in excess of 4.92%.
2. Within a period of 4 hours, the quadrant power tilt shall he reduced to less than 4.928 except for physics tests, or the following adjustments in setpoints and limits shall be made:
a. The protection system indaimun allowahle setpoints (Figure $2.3-2$) shall be reduced 2% in power foreach 1% tilt
b. The control rod group and APSR withdrawal limits shal: be reduced 2% in power for each 1% tilt in excess of 4.92%.
c. The operational imbalance limits shall be reduced 2% in power for each 1% tilt in excess of 4.92%.
3. If quadrant tilt is in excess of 25%, except for physics tests or diagnostic testing, the reactor will be placed in the hot shut down condition. Diagnostic testing during power operation with a quadrant power tilt is permitted provided the therinal power allowable for the reactor coolant pump combination is restricted as stated in 3.5.2.4.1 above.
4. Quadrant tilt shall be monitored on a minimum frequency of once every two hours during power operation above 15% of rated power.

3.5.2.5 Control rod positions:

1. Technical Specification 3.1.3.5 (safety rod withdrawal) does not prohibit the exercising of individual safety rods is required by Table 4.1-2 or apply to inoperable safety rod limits in Technical Specification 3.5.2.2.
2. Operating rod group overlap shall be 258 ± 5 between two sequential groups, except for physics tests.
3. Except for physics tests or exercising control rods, a) the control rod withdrawal limits are specified on Figures 3.5.2-1A, 3.5.2-1B and 3.5.2-1C for four pump operation and on Figures $3.5 .2-2 \mathrm{~A}, 3.5 .2-2 \mathrm{~B}$ and $3.5 .2-2 \mathrm{C}$ for three or two pump operation and b) the axial power shaping control rod withdrawal limits are specified on Figures $3.5 .2-4 \mathrm{~A}, 3.5 .2-4 \mathrm{~B}$ and $3.5 .2-4 \mathrm{C}$. If any of these control rod position limits are exceeded, corrective measures shall be taken immediately to achieve an acceptable control rod position. Acceptable control rod positions shall be attained within four hours.
4. Except for physics tests, power shall not be increased above the power level cutoff (see figures $3.5 .2 \ldots 1$) unless the xenon reactivity is within 10 percent of equilibrium value for operation at rated power and asymptotically approaching stability.
3.5.2.6 Reactor Power Imbalance shall be monitored on a frequency not to exceed two hours during power operation above 40 percent rated power. Except for physics tests, imbalance shall be maintained within the envelopes defined by Figures 3.5.2-3A, 3.5.2-3B and 3.5.2-3C. If the imbalance is not within the envelopes defined by Figures $3.5 .2-3 A, 3.5 .2-3 B$ and $3.5 .2-3 C$ corrective measures shall be taken to achieve an acceptable imbalance. If an acceptable imbalance is not achieved within four hours, reactor power shall be reduced until imbalance limits are met.

3.5.2.7 The control rod drive patch panels shall be locked at all times with limited access to be authorized by the superintendent.

Bases

The power-imbalance envelopes defined in Figures 3.5.2-3A, 3.5.2-3B and 3.5.2-3C are based on 1) LOCA analyses which have defined the maximum linear heat rate (See Fig. 3.5.2-4) such that the maximum clad temperature will not exceed the final Acceptance Criteria and 2) the Protective System Maximum Allowable Setpoints (Figure 2.3-2). Corrective measures will be taken immediately should the indicated quadrant tilt, rod position, or imbalance be outside their specified boundary. Operation in a situation that would cause the final acceptance criteria to be approached should a LOCA occur is highly improbable because all of the power distribution parameters (quadrant tilt, rod position, and imbalance) must be at their limits while simultaneously all other engineering and uncertainty factors are also at their limits.* Conservatism is introduced by application of:
a. Nuclear uncertainty factors
b. Thermal calibration
c. Fuel densification effects
d. Hot rod manufacturing tolerance factors
e. Fuel rod bowing

The 25 ± 5 percent overlap between successive control rod groups is allowed since the worth of a rod is lower at the upper and lower part of the stroke. Control rods are arranged in groups or banks defined as follows:

[^1]

figure 3 5 2-18
crate 3

Amendment No. Z1. 31

Amendment No. 21, 34

ROD POSITION LIMIIS FOR 2 E 3 PUMP OPERAIION from 0 T0 100 ± 10 EfPO armansas crcif 3
figure 3 : 2.2A

$$
\begin{aligned}
& \begin{array}{l}
\text { figure } 3
\end{array} \\
& \text { figure } 35.2 \text {.28 }
\end{aligned}
$$

operation poner Imbalance envelopg
FOR OPERATION FROM O TO 100 ± 10 EFPD ARKANSAS CYCLE 3

Figure 3.5.2-3A

operational power Imbalance envelope
FOR OPERATION FROM 100 ± 10 TO 250 ± 10 EFPO arkansas cycle 3

Figure 3.5.2-38

operational poner IMbalance envelope FOR OPERATION AFTER 250 ± 10 EFPD ARKANSAS, CYCLE 3

Figure 3.5.2-3C

APSR POSITION LIMITS FOR OPERATION FROM
0 TO 100 ± 10 EFPO ANO, CYCLE 3
Figure 3.5.2.4A

> APSR POSITION LIMITS FOR OPERATION
> FROM 100 ± 10 TO 250 ± 10 EFPO ANO, CYCLE 3
> FIgUTE $3.5 .2-48$

> APSR POSITION LIMITS FOR OPERATION
> AFTER 250 ± 10 EFPD - ANO, CYCLE 3
> FIguTE 3.5 .2 .4 C

[^0]: Ho penalty in reactor coclant flow through the core was taken for an open core vent valve because of the cora vent valve surve:llance program during each refueling outabe. For safety analysis caiculations the maximum calibration and instrumentation errors for the power level were used.

 The power-imbalance boundaries are established in order to prevent reactor thermal limits from being exceeded. These thermal limits are either power perking $\mathrm{kW} / \mathrm{ft}$ limits or DNBR limits. The feactor power imhalance (power in top half of core minus power in the bot tom half of core) tuces the power level trip produced by the power-to-flow ratio so that the boundaries of Figure $2.3-2$ are produced. The power-to-flow ratio reduces the power level trip associated reactor power-to-reactor power imbalance boundaries by 1.060 percent for a 1 percent flow reduction.

[^1]: *Actual operating limits depend on whether or not incore or excore detectors are used and their respective instrument and calibration errors. The method used to define the operating limits is defined in plant operating procedures.

