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ABSTRACT

UDEC (Universal Ristinct Element Code) is a two-dimensional dis-
tinct element program written for the static and dynamic analysis
of the mechanical, thermal and hydrologic behavior of jointed
rock masses. This program has been applied to a wide variety of
problems in civil construction, mining, nuclear waste disposal,
and geologic modeling, This document presents the theoretical
basis for the mathematical models, the details of solution proce-
dures, user’s manual and presentation of verification and example
problems. A description of the program support and documentation
methodology which is employed is also given, This document is
given in three volumes: Volume 1 - Description of Mathematical
Models and Numerical Methods, Volume 2 — User’s Manual, and
Volume 3 ~ Verification and Example Problems. These three vol-
umes are intended to satisfy the requirements and guidelines set
forth in Final Technical Position and Documentation of Computer
Codes For High-level Waste Management (NUREG-0856).
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3.1 INTRODUCTION

This document is the third in a series of three volumes which
provide documentation on the UDEC code, Version ICGl.5 as pres-
cribed in NUREG-8056, Final Technical Position on Documentation
of Computer Codes For High-level Waste Management. Volume 3 pro-
vides deccumentation on the assessment and support of the UDEC
code for mechanical, thermal and fluid flow analyses of geotech-
nical materials. Section 3.2 of this volume prcsents verifica-
tion preblems in which UDEC is compared to analytical solutions
for problems in mechanical, thermal and fluid flow analysis.
These problems are given to provide assurance of the correct
operation of the various component parts of the UDEC program,
Section 3.3 presents an example thermomechanical problem analyzed
with UDEC. This problem is necessarily more complex than those
presented in Section 3.2, and therefore has no analytical sclu-
tion, The problem chosen exercises features commonly used in
geomechanical analyses involving docazinq heat sources. Finally,
the procedures used by Itasca Consult ng Group in development and
testing of the UDEC code are presented in Section 3.4,
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3.2 UDEC VERIFICATION PROBLEMS

The obiective of this section, and code verification in general,
{s to demonstrate, to a suitable level of tolerance, correspon-
dence between the code’s solution to a particular problem and an
independent solution to the same problem, In most cases, the in=-
dependent solution against which UDEC results are compared is an
analytic (i.e., closed-form) solution. The problems presented
here supplement the verification problems included in the UDEC
User’'s Manual, which is Volume 2 of thie document.

It is impractical to preseit verification problems for all of
UDEC‘s capabilities. However, all classes c¢f problems important
to repository design are presented here, including mechanical,
thermal, thermo-mechanical, and fluid flow. Table 3.1-1 presents
the complete set of UDEC verification problems and points out the
location of problems presented in Volume 2, UDEC User'’s Manual.

Each problem consists of a description of the physical problem,
the numerical idealization, and the results. For several prob-
lems, results are presented to show the infiuence of different
choices involving discretization, solution technique, conditions
during solution, etc., to assist the user in making similar
choices for other problems., For all problems, a representative
UDEC input data file is included. In some cases, a FORTRAN
sgurcc code used to compute analytical solutions is also in-
¢cluded.

All problems were executed using UDEC Version ICG1.5, operating
on either a DSI-780 coprocessor board (manufactured by Definicon
Systems, Inc.) or a 80386-based microcomputer. This version com=
plied for operation on an 80386-based microcomputer running
DOS3.x uses SVS FORTRAN 386, the PHARLAP linker, and ICG X-AM DOS
extender. The screen graphics support for this version is hand~
led through a FORTRAN-linkable .iibrary (SCITECH plotting pack-
age). The version for the DSI-780 coprocessor is complied using
SVS FORTRAN V2.6, The screen graphics support is handled through
a FORTRAN-linkable library (SCI-GRAF modules, which are sold by
Definicon Systems Inc.)
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Table 3.1-1
UDEC VERIFICATION PRORLEMS

Mechanical Problems — Quasi-Static
Cyclic Loading of a Specimen with a Slipping Crack
S8liding Block Between Two Slightly Skewed Rigid Walls
Thick-Walled Cylinder Sub4a2ct to Internal Pressure

Elasto-Plastic Response of an Unlined Circular Tunnel in a
Biaxial Stress Field

Circular Tunnel Problems Involving Use of Boundary Elements

Part A — Tunnel in an Elastic Medium with a Biaxial
. Stress Field

Part B — Tunnel in an Elastic-Plastic Medium with a
Hydro Static Stress Field

Part C — Lined Tunnel in an Elastic Medium with a
L Biaxial Stress Field

Elastic Behavior of Jointed Medium (see UDEC User’s Manual,
Pp. B-1 to B-10)

Crack Shear by Reduced Friction (see UDEC User’s Manual,
pPp. C=1 to C=6)

Rough Footing on Cohesive Material (see UNEC User’s Manual,
PP. D-1 to D=5)

Mechanical Problems -— Dynamic
Line Source in an Infinite Elastic Medium with a Discontinuity

Slip Induced by Harmonic Shear Wave (see UDEC User’s Manual,
PP. A-1 to A-9)



Table 3.,1-1
(continued)

Thermal Problems

Steady-State Temperature Distribution Along a Tapered Fin
(see UDEC User’s Manual, pp. 7-37 to 7-39)

One-Dimensional Steady-State Heat Conduction and Convection
Throqu a Composite Wall (see UDEC User’'s Manual, pp. 7-40
to 7-42)

Thermal Response of a Heat-Generating Slab (see UDEC User'’s
Manual, pp. 7-43 tec 7-45)

Transient Temperature Distribution in an Qrthotropic Bar
(see UDEC User’s Manual, pp. 7-51 to 7-53)
Thermo-Mechanical Problems
Thermo-Elastic Response of a Hollow Thick Wall Cylinder
cnfinite Slab with Applied Heat Flux (see UDEC User’'s
Manual, pp. 7-46 to 7-50)
¥luid Flow Problems

Steady-State Fluid Flow with Free Surface (see UDEC User’s
Manual, pp. F~1 to F-7)
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3.2.1 Mechanical Problems -— Quasi-Static

The following quasi-static mechanical problems are presented in
this section or can be found as noted:

Cyclic Loading of a Specimen with a Slipping Crack
Sliding Block Between Two Slightly Skewed Rigid Walls
Thick-Walled Cylinder Subject to Internal Pressure

Elasto-Plastic Response of an Unlined Circular Tunnel
in a Biaxial Stress Field

Circular Tunnel Problems Invelving Use of Boundary Ele-
ments

Part A — Tunnel in an Elastic Medium with a
Biaxial Stress Field

Part B — Tunnel in an Elastic-Plastic Medium
with a Hydro Static Stress Field

Part ¢ -~ Lined Tunnel in an Elastic Medium
with a Biaxial Stress Field

Elastic Behavior of Jointed Medium (see UDEC User's
Manual, pp. B-1 to B-10)

Crack Shear by Reduced Friction (see UDEC User's
Manual, pp. C-1 to C-6)

Rough Footing on Cchesive Material (see UDEC User’s
Manual, pp. D=1 to D=5)
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3.2.1.1 Cyclic Loadiny of a Specimen with a Slipping Crack

Broblem Statement

This problem concerns an elastic block with an inclined internal
closed crack (Fig. 3.2.1.1-1) subject to a cycle of uniaxial
loading.

A constant axial displacement u, is applied to one end of the
block, and the other end is fixed. The resulting load causes
inelastic slip on the crack. At some point, tiie sense of dis~-
placement on the end of the block is reversed until the original
position is re-established. Olsson (1982) showed that the
stress-displacement relation for the loaded specimen is composed
of three distinct components (Fig. 3.2.1.1-2):

(1) a loading segment (OA) which involves elastic de-
formation and slip along the crack;

(2) an initial unloading segment (AB), where the crack
does not slip; and

(3) a final unloading segment (BO), again with elastic
deformation and slip.

Ua

|

crack

mn

Fig. 3.2.1.1-1 Specimen with Embedded Crack
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A
loading
Axial Initial unloading
Stress
final unioceding
0 Axial Displacement

Fig. 3.2.1.1-2 Stress-Displacement Relation for Elastic Specimen
with Embedded Crack Subjected to Uniaxial Load
Cycle [after Olsson, 1982)

QObjective

The objective of this problem is to test joint constitutive rela-

tions in UDEC. Other code functions tested by this problem in-
clude:

(a) the ability of the code to model solid elastic be-
havior;

(b) the ability of the code to model quasi-static be-
havior using adaptive damping; ard

(¢c) the ability of the code to use displacement bound-
ary conditions.
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Bhysical Problem

A single inclined crack is located in an elastic medium.
chanical properties of the medium are listed below:

elastic modulus (E')
Poisson’s ratio (v')
height (H)
width (W)

The properties of the crack are as

joint normal stiffness (Kp)
joint shear stiffness (Kg)
joint friction angle (¢)
joint inclination (@)

slipping portion of crack (1)

88.9 MPa

0.26

2 m

lm

follows:
220 GPa/m
220 GPa/m
16°
45°
0.54 m

The me-
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Senceptual Model

Several investigators have proposed simple conceptual models of a
single, closed crack to explain phenomena associated with the de-
formational response of jointed rock [e.g., Walsh (1965) and
Jaeger and Cook (1376)). One such model is a single crack embed-
d:d in an elastic solid subjected to a cycle of uniaxial compres-
sion.,

Brady et al. (1985) present relations for the three slcpes in
Fig. 3.2.1.1-2 in terms of the elastic stiffness of the solid,
the elastic and frictional properties of the crack, and the ori-
c?tatgog of tgo crack. The conceptual model is illustrated in
rq. . 01.1- .

Fig. 3.2.1.1-3 Conceptual Model of Elastic Specimen Containing
Embedded Crack
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In the conceptual model, k is the equivalent axial elastic stiff-
ness of the specimen, including the through-going discontinuity.
The equivalent elastic stiffness is given by

g cos? a i sin?a
'  Ra b Ke L

(3.2:.1.1=1)

t . R

where L = W/cosa.

It should be noted that the term (H/WE') in Eq. (1) represents
the uniaxial elastic stiffness of the solid in the conceptuval
model for plane stress conditions. The analysis in UDEC is based
on plane strain conditions. However, the formal equivalence be-
tween the plane stress and plane strain conditions is represented
by the relations between Young’s modulus and Poisson’s ratio, for
plane strain and plane stress:

1+ 2v' g’

(3.201.1-2)
(1 +vH2

(3020101-3)
1 +vV

where E and v are the Young’s modulus and the Poisson’s ratio for
plane strain, and

E’ and Vv’ are the equivalent plane stress parameters.
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The stiffnesses for the three slopes are given, therefore, as

Assumptions

The material
homogeneous,
the specimen
(i.e., plane
crack can be

k
vlope OA = (3.2.1.1-4)

L k sina sin(a-¢)
Kg (L - 1) cos¢

slope AB = k (3.2.2.1=5)

k
‘1°p. Bo = ‘30202-1-6)

! k sina sin(a+¢)
Kg (L - 1) cos¢

in which the crack is embedded is linearly elastic,
and isotropic. The numerical analysis assumes that
is rustrained perpendicular to the plane of analysis
strain conditions). It is further assumed that the
represented by a single through-going discontinuity

with only the central section of the discontinuity allowed to
slip. The ends of the discontinuity are prevented from slipping
by setting the frictional resistance to a high value over these

regions.

Computer Model

In the UDEC analysis, the elastic blocks are discretized into
constant strain finite difference triangles as shown in Fig,

302.1.1—40

The following alternatives for the joint constitutive relation
have been studied:

Case A — standard linear deformation, Coulomb

friction medel

Case B — continuously-~yielding model
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3.2.1.1-4

Fig.
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In all problems, the elastic, non-slipping sections of the crack
were modeled using the standard Coulomb model (JCONS=2), with the
friction parameter set high enough to prevent any slip. In all
problems, the center section of the crack was assigned parameters
which would permit slip to occur. The specific UDEC parameters
used for each joint relation are as presented in Table 3.2.,1.1-1,

Table 3.2.1.1-1
JOINT PARAMETERS

Coulomb Friction Continuously-!ioldind
(JCONS=2) (JCONS=3)
|
JKN = 220 GPa/m JKN = 220 GPa/m
JKS = 220 GPa/m JKS = 220 GPa/m
JFRIC = 0,287 JFRIC = 0.287
JEN = 0
JES = 0

JIF = 0,279 rad
JR = 1,0e~10 p
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The Coulomb model is a linear elastic-perfectly plastic constitu~
tive relation and corresponds with the concepts used in develop-
ing the expressions for three stiffnesses [(Egs. (4-6)) in the

conceptual model. The other joint constitutive relation is none.. .

linear and, thereforc, does not comply with the concepts used to
develop the conceptual model. The parameters selected for the
continuocusly~ yielding model were found by fitting this model to
the results for a Coulomb joint in direct shear under constant
normal stress. For the continuously-yielding model, the normal
stress-normal displacement relation used in this study is linear,
with K, = 220 GPa/m, but the shear behavior is non-linear. The
shear stress-shear displacement response for the continuous-
yielding model, based on the parameters defined in Table 3.2.1.1-1
approximates the Coulomb slip, as shown in Fig. 3.2.1.1-5,

UVDEC (Version 1.8)
.
one )

VIR 1

oyole 100 4

CO0E 08 i B 287808
L 1
0

4

2

o4

Fig. 3.2.1.1-5 Joint Shear Stress (Pa) versus Shear Displacement
(m) for Constant Normal Stress Direct Shear Test
Using the Continuously-Yielding Model (normal
stress = 10 MPa)
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Results

The results for each of the joint constitutive models is compared
with the conceptual model in rable 3.2.1.1-2, Global stiffnesses
vere calculated directly from UDEC results using average vertical
stresses and maximum vertical displacements (found using PRINT
MAX) for each load step. The table shows good agreement for both
models. Grapnical results for the complete load cycle for the
Coulomdb model are shown in Fig. 3.2.1.1-6.

TABLE 3.2.1.1-2
COMPARISON OF UDEC RESULTS USING VARIOUS JOINT MODELS WITH

CONCEPTUAL MODEL SOLUTION FOR CYCLIC LOADING OF
A SPECIMEN WITH A SLIPPING CRACK

Conceptual Continuously~
Node ) Coulomd Model Yielding Model

Loading stiftness Stiffness Brror Stiffness Brros
Segment (Gra/m) (GPra/m) ) (Gra/m) )
Loed (OA) 3.0 36.04 0.82 3.1 0.68
Unload (AB) 30.09 n.n -0.0% .M 0.

Unload (0) 34,82 e 1. 300 0.9¢
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UDEC ek =

Fig. 3.2.1.1-6 Axial Stress versus Axial Displacement for the
Problem Involving Load Cycling for a Specimen
with Slipping Crack Modeled with the Coulomb
Friction Law

Riscussion

There is no analytical solution to the problem of an elastic body
with an internal inclined slipping crack, because stress condi-
tions at each end of the crack are very complex. Nevertheless,
the simple conceptual model described here captures the essential
features of the problem (i.e., three distinctly different global
stiffnesses) observed in cyclic loading. The UDEC results agree
well with the conceptual model. However, the results agree less
closely as the length of the slipping crack increases with re-
spect to the width of the specimen. This observation is expected
because the corceptual model assumes uniform distribution of
normal stress on the crack and elastic extensions, and stress
concentrations (particularly joint normal stress) become more
significant as the length of the slipping crack increases.

Parameters fcr the continuously-yielding model were not cptimized
to give the "best" rasults. It is conceivable that other para-
meters could give even closer agreement with the conceptual
model .
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lnput Data Files
Coulomb Model

set log on

* yverification test a

* load cycling a specimen with a slipping crack

* friction angle = 16 degrees

"

* crack extension - no slip

grogogag-l d=2850 k=48.25e9 ¢g=35.277e9 jkn=220e9 jks=220e9
f= .

* crack properties, Coloumb friction model

prop mat=2 d=2850 k=48.25e9 g=35.277e9 jkn=220e9 jks=220e9
§f=0,287

round 0.001

*

bleck 0,0 0,2 1,2 1,0

split 0 51 1.8

gen 0 1 0 2 auto 0.2

ch jmat=1 jcon=2

change 0.3 0.7 0.74 1,28 jmat=2

damp auto

hist n=15 ydis 0.5 2.0 syy 0.5 2.0 syy 0.2 2.0 syy 0.8 2.0 type 1
*

* fix the botiom ' »undary

*

bound -0.1,1.1 =0.1 .1 yvel=0
*

* y-disp. increment (load step 1)
*

*bound ~0.1 1.1 1.9 2.1 yvel=-0,1221
bound -0.1 1.1 1.9 2.1 yvel=-0,061
cyc 200

*

*

bound -0.1 1.1 1.9 2.1 yvel=-0.0
cyc 100

pr max
*

*
* y disp. increment (load step 2)
»

*pound -0.1 1.1 1.9 2.1 yvel=-0,1221
bound ~0.1 1.1 1.9 2.1 yvel=-0.061
cye 200

*
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Coulomb Model (continued)

bound ~0.1 1.1 1.8 2.1 yvel==-0,0
cye 100

pPr max

]

* y disp. increment (load step 3)
L]

*bound -0.1 1,1 1.9 2.1 yvel=-0,1221
bOund -001 1.1 1.9 201 YV.I"0.0GI
cye 200

»

bound ~0.1 1.1 1.9 2.1 yvel=-0.0
cyc 100

pr max

*

* y disp. increment (load step 4)
»

*bOUhd -Ool 101 1.9 211 YVOl"Oolzzl
bOund '0-1 S 1.9 201 YV.I--Ooosl
cye 200

L]

bound -0.1 1.1 1.9 2.1 yvel==0,0
cyc 100

pr max

*

* y disp. decrement (unload step 1)
»

*bound ~0.1 1.1 1.9 2.1 yvel=0.0611
bound -0.1 1.1 1.9 2.1 yvel=(0,0305
cyc 200

7

bound -0.1 1.1 1,9 2.1 yvel=-0,0
cyc 100

pr max

*

* y disp. decrement (unload step 2)
*

.bound -001 101 1.9 2-1 YV.l.OOOGII
bound -0.1 1.1 1.9 2.1 yvel=0,0305
cyc 200

*

bound -0.1 1.1 1.9 2.1 yvel=-0,0
cye 100

pr max

*
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Coulomb Model (continued)
: y disp. decrement (unload step 3)

*bound -0.1 1.1 1.9 2.1 yvel=0,0611
bound ~0.1 1.1 1.9 2.1 yvel=0.0305
cyc 200

"

bound ~0.1 1.1 1.9 2.1 yvel=~0.0
cye 100

pr max

®

* y disp. decrement (unload step 4)
*®

*bound ~0.1 1.1 1.9 2.1 yvel=0,0611
bound ~-0.1 1.1 1.9 2.1 yvel=0,0311
cye 200

*

bound -001 101 109 201 yv.l"o-o
cye 100

pr max

*

* y disp. decrement (unload step 5)
"

*bound ~-0.1 1.1 1.9 2.1 yvel=0.0611
bound -0.1 1.1 1.9 2.1 yvel=0,0305
cyc 200

w

bOund -0-1 101 109 201 YVQl"O.o
cyec 100

pr max

*

* y disp. decrement (unload step 6)
*

*bound ~0.1 1.1 1.9 2.1 yvel=0.0611
bound -0.1 1.1 1.9 2.1 yvel=0,0305
cyec 200

*

bound ~0.1 1.1 1.9 2.1 yvel=-0.,0
cye 100

pr max

*®

save prob6lx.sav
ret
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Continuovsly-Yielding Model

set log on

* verification test a

* load cycling a specimen with a slipping crack

* friction angle = 16 degrees

*

* crack extension - no slip

prop mat=1 cd=2850 k=48.25e9 g=35.277e9 jkn=220e9 jks=220e9
jf=100.0

* crack properties, continuously yielding joint model

grog ?ag-Z d=2850 k=48.25e9 ¢g=35.277e9 jkn=220e9 jks=220e?
f=0,28

prop m 2 jen 0 jes 0 jif 0.279 3ir le-10

*

round 0.001
L ]

block 0,0 0,2 1,2 1,0

spiit 0 .51 1.3

gen 0 1 0 2 auto 0.2

ch jmat=1 jcon=2

change 0.3 0.7 0.74 1.28 jmat=2 jcons=3
*

damp auto
hist n=15 ydis 0.5 2.0 syy 0.5 2.0 syy 0.2 2.0 syy 0.8 2.0 type 1
L

* fix the bottom boundary
o

bound -0.1,1.1 -0.1 .1 yvel=(

*

* y-disp. increment (load step 1)
*

*bound -0.1 1.1 1.9 2.1 yvel=-~0,1221
bound ~-0.1 1.1 1.9 2.1 yvel=-~0.061
cyec 200

L

*

bound ~0.1 1.1 1.9 2.1 yvel=-0.0
cyc 100

pr max

»

*
* y disp. increment (load step 2)
»
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Continuously-Yieiding Model (continued)

*bound ~-0.1 1.1 1.9 2.1 yvel=-0,1221
bound -0.1 1.1 1.9 2.1 yvel=-0,061
cyc 200

*

bound ~0.1 1.1 1.9 2.1 yvel=~0.0
cyc 100

pr max

L

* y disp. increment (load step 3)
*

*bound -0.1 1.1 1.9 2.1 yvel=-0,1221
bound -0.1 1.1 1.9 2.1 yvel=-0,061
cyc 200

*

bound -0.1 1.1 1.9 2.1 yvel=-0.,0
cyc 100

pr max

*

* y disp. increment (load step 4)
*

*bound ~0.1 1.1 1.9 2.1 yvel=-0,1221
bound ~0.1 1.1 1.9 2.1 yvel=-0,061
cye 200

*

bound -0.1 1.1 1.9 2.1 yvel==-0.0
cye 100

pr max

*

* y disp. decrement (unload step 1)
*

*bound -0.1 1.1 1.9 2.1 yvel=0.0611
bound -0.1 1.1 1.9 2.1 yvel=0,0305
cyc 200

*

bound =0.1 1.1 1.9 2.1 yvel=-0.0
cyc 100

pr max

*

* vy disp. decrement (unload step 2)
*

*pound -0.1 1.1 1.9 2.1 yvel=0,0611
bound -0.1 1.1 1.9 2.1 yvel=0N,0305 .
cyec 200

*
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Continuously-Yielding Model (continued)

bound -091 101 1.9 201 W‘l-'o.o
cye 100

Pr max

*

* y disp. decrement (unload step 3)
"

*bound ~0.1 1.1 1.9 2.1 yvel=0.,0611
bound 0.1 1.1 1.9 2.1 yvel=0.0305
cye 200

*

bound ~-0.1 1.1 1.9 2.1 yvel=-0.,0
cyc 100

pr max

*

* y disp. decrement (unload step 4)
*

*bound -0.1 1.1 1.9 2.1 yvel=0,0611
bound -0.1 1.1 1.9 2.1 yvel=0.0311
cyec 200

w

bound -0.1 1.1 1.9 2.1 yvel=-0,0
cyc 100

pPr max

*

* y disp. decrement (unload step 5)
»

*bound -0.1 1.1 1.5 2.1 yvel=0.0611
bound ~-0.1 1.1 1.9 2.1 yvel=0.0305
cyc 200

*

bound -0.1 1.1 1.9 2.1 yvel=~0.0
cyc 100

pr max

»

* y disp. decrement (unload step 6)
*

*bound ~-0.1 1.1 1.9 2.1 yvel=0,0611
bound ~0.1 1.1 1.9 2.1 yvel=0,0305
cyec 200

*

bound -0.1 1.1 1.9 2.1 yvel=-0.0
cye 100

pr max

"

save prob62x.sav
ret



30201.2-1

3.2.1.2 sliding Block Between Two Siightly Skewed Rigid Walls

Broblem Statement

This problem is derived from a similar problem in Wart et al.
(1984) and concerns an elastic block between two near parallel
walls (Fig. 3.2.1.2-1). A pressure is applied to one edge of the
block, such that the ~lock moves, the initial gap is closed and
the normal stress on the contact faces between the block and the
walls increases., The increased normal stress causes an increase
in the shear resistance through friction on the surface and the
block stops. The problem involves computation of the block dis-
placement parallel to the direction of applied pressure.

B B ; — y=(b/2)=mx

el ! '

Py, (R ¢ :

o i y==(b/2)+mx
Ly 8|

Fig. 3.2.1.2-1 Sliding Block Hetween Two Slightly Skewed Rigid
walls
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Skjective

The objective of this problem is to demonstrate:

(a) correct joint constitutive relation implementa-
tion;

(b) computation of correct stresses and displacements
for a problem involving nonlinear geometry and
constitutive relations; and

(¢) ability of the code to handle relatively large
displacements.

Bhysical Problem

{ngn;_ﬁggg;;;;;;;gnl = The problem is solved for the following
nput values:

Geomatry (see Fig. 3.2.1.2-1)

block height
block length
skew slope

initial cap for
both surfaces

Material Propertiec

modulus of elascticity
of the block

b=1,0m

¢ = 1.0m

m= 1.0 x 10-2
8o = 1.0 x 10°5m

E = 20,000 MPa

Poisson’s ratio of V= (0,25
the block
friction angle of ¢ = 30°

the sliding surfaces

joint normal stiffness

JKN = 80,000 MPa

Loads

pressure P=20.5 1.0, and 2.0 MPa



302.1-2-3

Assumptions

The assumptions related to the analytical solution of this prob-
lem include:

(1) the block has a lineayr stress-strain relation;
(2) the skew augle is small and therefore all of the
resistance to sliding is by friction and the pres-

sure on the block is uniform over the top and bot~-
tom surfaces; and

(3) the walls are incompressible relative to the block.

Analytical Solution

The analytical solution is based on simple geometrical and
stress-strain relations. As the block slides due to imposed
pressure, P, the gap will close and the normal stress across the
joint will increase due to increased confinement given by the
skewed walls, Tre sliding distance can be divided into two parts
as follows:

a = ay + ag (3.2.1.2-1)

where a = distance of sliding to reach equilibrium,

a§ = distance of sliding until the initial gap is closed,
and

ag = distance of sliding as the normal stress increases.

The distance of sliding before gap closure is:

- — 3.2.1.2-2
g — ( )

where 8§, = the initial gap at both the top and bottom of the
block, and

m = slope of the skewed walls (see Fig. 3.2.1.2-1).
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The block will stop sliding when the frictional resistance equals
the applied loaa. The shear stress due to friction is given by

ltg| = -po = o tane (3.2.1.2-3)

where t¢ = shear stress due to friction,
0 = normal stress across the joint,
K = coefficient of friction of the joint, and
¢ = friction angle of the joint.
Using the stress-strain and the geometric relations between the

sliding distance and strain, the normal stresses across each
joint is given by:

4]
" (3.2.1.2-4)

where b = block height, and

E' = equivalent elasticity of the block joint system

The equivalent elasticity of the block joint system is given by

1
E*

1 2
B = ¢ — 3.2.1.2-5
E JKN ¢ b ( )
where E = modulus of elasticity for the block, and

JKN = joint normal stiffness.
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The friction forces on each sliding surface can then be found by
substituting Eq. (4) into Eq. (3). Summing the forces in the x-
directiosn and rearranging terms gives

Pp
ag * (3.2.1.2-6)
4cmE* tan ¢

where ¢ = length of each sliding surface.

The above solution is for plane stress conditions. The solutiog
for plane strain conditions can be found by substituting E/ (1-v¢)
for E in Eq. (5).

Somputer Model

Because of the symmetry about the y=0 line, only the upper half
of the problem is studied. The elastic block is discretized into
constant strain finite difference triangles (Fig. 3.2.1.2-2).

The problem is run using maximum zone edge length of 0.2, 0.1 and
0.05 meters. Symmetry conditions are specified by assigning a
zero vertical velocity to the lower horizontal boundary. The in-
itial gap is obtained by assigning an appropriate vertical velo-
city to the upper rigid block and allowing it to move upward the
specified distance. Once the upper block reaches the correct
position it is immobilized.
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UDEC (Version 1.8)
m,m'
@< 13088 «00

AIN0EO! ey« 12188400

-~.~ NI TN \J w_ TN

etk e XD DDA DD DD X
NPT TN TS T TN TN T T U L T L T A R R LTS TS TS AT
DD DD DD DD DD D

M ) DX DD DD DD DD D

DXDXDXDCOCDCDCDCD DD DD X

DXDCDX DD DD DD DX

DXDXDCDX DX XD DD DD DD D

DCDCDCDCDCDCDC DD DD DD

DX
TN TN

w, N/ NN TN
XXX DX DX I D DX DD DD

Fig. 3.2.1.2-2 Pogition of Upper Rigid Block and Discretization
of Elastic Block into Constant Strain Finite
Difference Triangles
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Results

The results for various zone size assumptions are shown in
Table 3.2.1.2-1.

T‘bl. 302‘1.2-1

COMPARISON OF UDEC RESULTS USING VARIOUS ZONE SIZES
WITH ANALYTICAL SOLUTION FOR SLIDING BLOCK BETWEEN
TWO SLIGHTLY SKEWED RIGID BLOCKS
(Results shown are total sliding distance, m.)

Pressure Analytic Zone* UDEC
—MPa) = Seclution = Size = = Results

0.5 0.0256 0.085 0.0262

0.125 0.0272

0.25 0.0295%

1.0 0.0412 0.055 0.0423

0.125 0.0432

N.205 0.0505

2.0 0.0724 0.055 0.0748

0.125 0.0758

0.25 0.0866

*actual maximum zone edge length

Error

B

. e+

-
- - -
AW O I NWwWWw

(]
ObhWw MNLaEaN LN
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Riscussion

The results shown in Table 3.2.1.2-1 indicate that the result is
somewhat dependent on the discretization of the elastic block.
This dependence results from the non-uniform vertical stress which
is present in the elastic block at equilibrium, The analytic
solution assumes that the pressure on the block is uniform over
the top and bottom surfaces as given by Eq. (4). For P = 0.5 Mpa,
Eq. (4) indicates that the normal stress on the top and bottom
surface would be about 0.8 MPa. Figure 3.2.1.2-3 shows the egui-
librium distribution of normal stress on the top surface of the
block, and indicates that the distribution of normal stress on
Joint is not uniform,

The analytic solution does not include discussion of the Jeint
shear stiffness parameter. The joint shear stiffness, JKS, is re-
lated to the Yoint shear stress, 0, by the amount of shear dis-
placement when the surfaces are in contact, i.e.

t = JKS ag (3.2.1.2-7)

subject to the limitations of Eq. (3). 1In this problem, the an-
alytic solution is therefore valid for joint shear stiffness
greater than the minimum values necessary to achicve equilibrium
shear stress within the calculated sliding distance. This value
-8 obtained by dividing the limiting shear stress, O, at a spe-
cified pressure, P, by the amount of sliding distance as the
rormal stress increases, ag. For P = 1 MPa, t = 0,5 MPa and

ag = 0.0312 my JKS must therefore be 16 MPa/m or greater.

Reference

Wart, R, J., E. L. Skiba and R. H. Curtis. l;ngnm;gh_2;§§%3m1
for Repository Design Models. NUREG/CR-3636, February 4.



’.3.3.3"

iy

A 8 8 4 2 & 2 0 00

(a)

&=,

e |

A 4 2 4 2 & 2 4 e

(b)

“w
?%a:
= o

A 8 4 4 8 8 2 4 2™

(e)
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$liding Elastic Block for Three Different Zone
Discretizations



Rata Input File

* Sliding block between two slightly skewed rigid walls

* Load P11 MPa
* Joint stiffonesses :jkn=jkse=Bell

round 0.001

* set
block
er 0
er 1
del 1

8°070 .6 123 76"

5 1.3 ,4987
01,58
1.5 0 .5

’020103-10

i

* sliding block is fully ceformable:

gen 0

* his
hist
hist
hist
hist
hist
hist
hist

* mat

prop mat=1 de=2000 ge=8e9 k=1,333e10 jkn=8el0 jks=8el0 jfric=,577

+5 0 1 quad .05

tories:
neye 100
«nbal
xdis .5 0
ndis 3684
sdis 384
sstr 384
xhist

erial properties

* initialization by loading slightly,

bO 0 103 -,01 01 YV.l'o

rset
ey 1
rset

top‘
rset
ey 1

damp

* fix
rset
fix 0

* set

-1 86 17
0 86 17

n the gap between the black and the wall:

2.6813246 86 10

auto

the wall:
0 86 10

1.1 0.5 .¢

linear loadin

bO -01 02 % § 05 lh st lin st -1.6 0 0

cy 10

cy 27
save
quit

00

000
sbliyll.sav

and unloading:
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5.2.1.3 Zhick-wWalled Cvlinder Subdect to lnternal Pressure

Broblem Statement

This problem is adapted from Wart et al, (1984) and concerns
plane strain elastic-plastic analysis of a thick-waliled cylinder
subjected to an internal pressure (Fig. 3.2.1.3=1).

Fig. 3.2.1.3~1 Elastic-Plastic Analysis of a Thick-Walled
Cylinder

Qbiective

The objective of this problem is to test the solution process for
elastic-plastic material properties against an analytic solution.
This problem has finite boundaries and thus, the accuracy of the
analysis should depend only on the fineness of the user defined

mesh. Specific aspects of the code tested by this problem in-
clude:

(1) application of pressure boundary conditions; and

(2) computation of plastic stresses and deformations.
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Problem Specifications
The followiny problem specifications apply (see Fig. 3.2.1.3-1):

Physical Dimensions

inside radius inm

outside radius 6m
Elastic Constants

modulus of elasticity 50 GPa

Poisson’s ratio 0.20
Mohr-Coulomb Yield Criteria

cohesion 170 MPa

friction 0°
Internal Pressure 100, 115, 130 MPa

Assumptions

Assumptions which are implicit in the analytic solution include:
(1) the material is homogeneous and isotropic;
(2) plane strain conditions;
(3) strains are small; and
(4) the Mohr-Coulomb Yield Criterion applies.

Analvtical Solution

The analytical solution for part (a) of this problem is given by
Ford and Alexander (1977)., Prior to initial yield, the stresses
and displacements are:

3
= P [(b/r) 1) (3.2.1.3-1)
(b/a)2 - 1
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LRl ¢ 1)
(b/a)? = 1

(3.20103.2)

P (1 +vV 2

u- (1 = 29) r ¢ =~
E [(b/a)? = 1) r

where r = radial coordinate,
Oy, 09 = stresses,
u = radial displacement,
P = internal pressure,
a,b = inside and outside radii, respectively, -
Vv = Poisson’s ratio, and
E = modulus of elasticity.
Yielding is based on the Mohr-Coulomb failure criterion which
states that the yield occvis at a constant maximum shear stress,

kp. The internal pressure at initial yield, Py, by the Mohr-
Coulomb criterion is:

Py = ky (1 = (a/b)2) (3.2.1.3-4)

After initial yielding, a plastic zone will be created which will
interface with an outer elastic zone at radius, c¢. The stresses
in the elastic and plastic zones are:
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Plastic 2Zone Elastic Zone
r<e r>e
Y [ c? ] c? [ b ]
03'237 1nt 2 1 hz °t. bz rz
(3.2.1,3-5)
Bl c? e? [ p?
1 [ e [102) w8,
meawmrmEr ) o vl o [ e
(3.201-3-6)

Within the elastic zone, the displacements are given by:

kp (1 + v) ¢? , b2
u - [ (1= 20) r+ — ] (3.2.1.3-7)
E b? r

The value of ¢ is determined from the boundary condition that
Or = P at r = a, which leads to:

p 2
——inded [ 1 - o ] (3.2.1.3-8)
2kp a 2 b2

A copy of the FORTRAN source code used to compute the analytic
solution for this problem is provided in Appendix 3-2.1.3-A.
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Somputer Model

The computer model consists of one-quarter of the cylinder, with
symmetry conditions imposed on the horizontal and vertical sur-
faces., Because UDEC requires at least two blocks to be modeled,
the quarter-cylinder was divided along the line @ = 45° by a
"glued" discontinuity. The two blocks were discretized into
zones with maximum edges lengths of 0.3, 0.5, or '‘m. Figure
3.2.1.3-2 shows the resulting discretization for maximum edge
length of 0.3 m.

Fig. 3.2.1.3-2 Discretization of Thick-Walled Cylinder into
Constant Strain Finite Difference Triangles
(maximum zone edge length = 0.3 m)
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Besuits

For each internal pressure, and each of the three discretiza-
tions, the UDEC results are compareu to the analytic resu'ts in

terms of plastic radius, ¢, tangential stresses at both the inner

and outer wall, and outer wall displacements, as shown in Table

’o:olo"lo
Table 3.2.1.3-1
COMPARISON OF UDEC AND ANALYTIC RESULTS FOR
THICK-WALLED CYLINDER PROBLEMS
ANALYTIC SOLUTION UDEC RESULTS

tgno

¢ - v size* ¢ Ofre u

DR SR - BV A (Mba)  (mm)

dnternal Pressure = 100MPa

4.12 240 160 18 0.3 4.23 235 185 20
0.5 4.16 250 160 19
1.0 4.10 260 160 19

internal Pressure = 115MPa

4.52 224 193 22 0.3 4.65 225 190 23
0.5 4.66 230 195 23
1.0 4.49 230 185 22

internal Pressure = 130MPa

$.11 247 210 28 0.3 5.18 240 210 29
0.5 5.19 250 210 29
1.0 £,33 235 210 29

*input maximum zone edge length
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The plastic radius, ¢, shown in Table 3.2.1.3~]1 was calculated
for EC results as follows:

Ng = number of elastic zones
Np = number of plastic zones
Ny = number of total zones

Ne _ Plastic Area _ o Dholh... RSSEE (2 - 42)
N¢ Total Area Ny x (b2 - 42)

Ng = Neg o2 - 16

Ny 20

Ne = N 1/2
c = [ 20 -E————:-v 16 ]
Nt

The values of tangential stress for UDEC were obtained from con=

tour plote of maximum principal stresses., Outer wall displace-

::ntc :oro determined from displacement plots or displacement
stories,

Riscussion

The results shown in Table 3.2.1.3-1 indicate reascnable agree-
ment between the analytic solution and UDEC results for maximum
zone edge lengths of 0.3 to 1.0 meters. All results shown in
Table 3.2.1,.3-1 were obtained using joint normal stiffness equal
to the joint shear stiffness equal to 500GPa/m.

Reference
Ford, Hugh, and J. M. 2Alexander. ee*lnﬂtﬂ_ulshlnlﬂl_ﬂl_ﬂlill‘
dals. New York: Halsted Press, 1 ]

Wart, R, J., E. L. Skiba and R. H. Curtis. g;ngnml;3_2;9%%1m1
for Repository Design Models. NUREG/CR-3636. February 1984.
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Rata Input File

* Thick-walled cylinder subjected to internal pressure

he
Thick-walled cylinder. P=130 MPa. jkn=jks=4. 5ell

rounds=, 01

bl 00066 6
arc 0 0 4 0 90
arc 0 0 6 0 90
del 0 303

cer 0055

del 4.5 6 4.5 6

prop m=l de=2000 k=2,78el10 ¢g=2.,08el0 jkn=4.5ell jks=4, Sell
prop m=1 coh=170e6é frice=0 ten=le20
prop m=1 jcoh=170eé jfrice=0 jten=le20

6 0
0
10

gen edge 1
¢h cons«3

damp auto

hi neye 100
hi unbal

hi ydis 0 4
hi ydis 0 6

bo 0 4.2 0 4.2 st -130e6 0 ~130e6
bO 309 7 -01 01 yv.l 0
bo =-.1 .1 3.9 7 xvel 0

cy 1500
save tcsave,035

quit
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»”hdil 3.2.1.3=A

Analytical solution for Thick-Walled Cylinder

dimension ¢(200),d4(200)
real kt,nu
character ch

open (unitel]l, file='tcres’)

set parameters

a=4,

b=6,

kt=170.e6

nus=,2

e=50000.e6

write (*,10)

format (' internal pressure (MPa, compression>() ? ')
read (*,*) p

pep*10,.**¢

write (11,11)
format ('Analytical solution for Thick-Walled Cylinder’,//)

compute plastic zone radius

dd=99989.

do 100 4i=1,200

c(i)=4.+(b-a)/200,.*(i-1)
d(i)=p/2./kt-alog(c(i)/a)=.5*(1.~c(4)**2/b**2)
if (abs(d(i)).lt.dd) then

dd=abs (d (1))

ce=c (i)

endif

continue

write (*,110) cc

write (11,105) p

write (11,110) cec

format ('internal pressure:’,fl14.1,’ Pa’)
format (' plastic zone radius:’,f10.7)

compute stresses in plastic zone, for inner wall (r=a)
sigr=2.*kt* (~alog(cc/a)=.5*(1~-cc**2/b**2))

sigt=2.*kt* (-alog(cc/a)+.5% (1+cc**2/b**2))

write (*,120) sigr,sigt

write (11,120) sigr,sigt
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¢ c:npugo stresses and displacement for outer wall (r=b)
sigr=0,
Sigte2, *ktece**2/b**2
uskt* (1+nu) *cc**2/e/b**2* ((1.=2.%*nu) *beb)
write (*,130) nixr.li
write (11,130) sigr,sigt
write (*,140;, v
write (11,140) v

120 format (' stresses for inner walli: sigre',f14.1,’
‘sigte’, f14,1)

130 format (' stresses for outer wall: sigr=’,6f£14.1,'
ssigte=’, £14.1)

140 format (' outer wall displacement: u=',f£6.3,/)

write (*,150)

150 format ('’ another load (y/n) ?')
read (*,160) ch

160 format (al)
if (ch.eq.’'y’.or.ch.eq.’Y’) goto §

close (11)

stop
end

1y
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1

bl

Broblem Statement

Crushing failure .s identified as an important mechanism by which
unlined vunnels may fail. Crushing is treated as a static
phenomencn and involves massive failure around the excavation due
to large-scale plastic flow. The purpose of this verification
example is to demonstrate the ability of UDEC to model large-
scale plastic flow. The verification was accomplished by compar~-
ing UDEC results to those from a closed-form solution which in-
cludes plastic flow behavior.

The problem invelves a circular tunnel subjected to a non-
hydrostatic static load. The medium surrounding the tunnel is
treated as an elasto-plastic material with failure defined by a
Mohr-Coulomb yield function., The dilatancy of the material at
failure is defined by the plasticity flow rule, which is charac~-
terized by the dilatancy angle. Both fully-dilatant and non-
dilatant material behaviors are verified.

gbiective

The objective of this problem is to test the elasto-plastic
material model used to describe the non-linear deformational be-
havior of fully-deformable blocks in UDEC. This test specifical-
ly addresses the ability of the code to simulate plastic flow ac-
curately.

Bhysical Problem

A tunnel is excavated in a rock mass which is iscotropic and
elasto-plastic. The following parameters and values are used to
describe the elastic and plastic behavior:

Young'’s modulus (E) 1.7%106 psi (11.72 GPa)
Poisson’s ratio (v) 0.25

cohesion (C) 1443 psi (9.9 MPa)
angle ¢f internal 30°

friction (¢)
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The strength parameters, C and ¢, correspond to an unconfined
compressive atrongth. q, of 5000 pei (34.5 MPa). The tests are
performed to verify the representation of dilatancg in UDEC. 1In
the first test, no dilatancy is permitted (i.e., the dilatancy
angle is set equal to zero). 1In the second test, fully-dilatant
behavior is allowed, with

Ve=e = 30°
where Yy is the dilation angle.

A two inch (51mm) diameter circular tunnel is used for this test,.
A non-hydrostatic loacing path is applied as an external load
starting with no initial stress. The major principal stress, 0y,
applied in the vertical direction, and the minor principal
stress, o!. applied in the horizontal direction, are both in-
creased simultaneously to peak values of 013 = 12500 psi (86 MPa)
and 03 = 7500 psi (52 MPa). The loading is in steps keeping the
ratio of 0;/03 constant at 2. The load steps, (expressed in
nermalized form) shown in Table 1 were used. Tunnel closures
(expressed as a percentage of the tunnel radius, a) are monitored
at the springline and the crown.

Table 3.2.1.4~1

LOADING STEPS USED IN ANALYSIS OF CIRCULAR TUNNEL
IN A NON-HYDROSTATIC STRESS FIELD

Step 0y + 03 o, - 03
q S
1.0 0.25
1 1.8 0.37%
2 2.0 0.5
3 2.5 0.625
H 3.0 0.75
5 3.8 0.87%
6 4.0 1.0
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Analytical Sclution

Two conventional closed-form techniques used for preliminary
analyses of circular tunnels subjected to far-field mechanical
loading are the solutions presented by Newmark et al. (1970) and
Hendron and Aiyer (1971). These solutions idealize the problem
as a stetic, two-dimensional analysis of a circular tunnel in a
hydrostatic stress field, The surrounding medium is treated as
an elasto-plastic material with failure defined by a Mohr-Coulomb
yield function. The dilatancy of the material at failure is
defined by the plasticity flow rule, which is characterized by
the dilatnncg angle. The Newmark solution assumes a fully non-
associated flow rule (i.e., no dilatanci occurs at failure). The
Hendron and Ailyer solution assumes a fully associated flow rule
(i.e., the dilatancy angle equals the friction angle).

Detournay (1983) provided an extension to the solution for non-
hydrostatic loading by the development of a semi-analytical tech-
nigque. This apprsoach applies for arbitrary dilatancy of the
material and, therefore, makes the solutions of Newmark and
Hendron and Aiyer special cases of the Detournay solution, For
this reason, the Detournay solution was selected as a more
rigorous verification terc of UDEC. '

It is important to ncte that all three solutions are based on in-
finitesimal (small) strain theory, which assumes that the initial
geometry of a deforming body is not appreciably altered during
the deformation process. The consequence of this assumption is
discussed later.

Detournay developed a set of design charts which consist of con-
tours of springline and crown displacement. Figure 3.2.1.4-1
presents two charts, one for dilation angle egqual t. 30°, and one
for dilation angle equal to rero. The normalized displacements
for any particular free field stresses can be read from the
charts by interpolating between the plotted contours. Actual
radial displacements (Uy) can be calculated from the normalized
displacements (U",) from :

where G is the elastic shear modulus of the material.
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Fig. 3.2.1.4-1 Normalized Radial Displacements (U,*) of the
Springline (fclid) and Crown (Dashed) «esults of
Closed Form Solution [after St. John et al.,
1964)
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Alternatively, the percentage closure (uy) can be expressed:

. %9

Ue* (W
2 PO { )

Ur

These displacements apply for the case of a tunnel excavation in
& rock mass previously stressed to the far-field stress state.
The charts therefore calculate displacements due to the initial
state of stress. The displacements induced by additional ex-
ternal loading differ from those calculated by the charts by an
amount equal to the elastic displacements that would occur in the
:baonco of the tunnel. The corrections for added external load-
ng are:

at the crown:

0 + 03 0 -~ 03
A v,"* 1=2v ——  S—
( rle ™= ( ) 29 2q
at the springline:

0 + 03 0 = 03
Ue* 1=2v SN ©  G—————
(A r g = | ) 2q 2q

The percentage closure for added external loading is then

50q
Up = -

(Ug* + A UY)

The calculated closures for the physical problem described above
are summarized in Table 3.2.1.4-2,

These results demonstrate the significant influence of dilatancy
on the deformation of the tunnel at the springline. For these
problem conditions, the closure at the springline is nearly three
times greater for the dilatant material versus non-dilatant
material, while the closure at the crown is virtually not af-
fected.
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CALCULATED CLOSURE FRCM NETOURNAY SOLUTION
Seringline Srown

¥ ~9 0 + O
- : - : Ur. A Ut. ut. Ur' A U‘t u,t
9 -
=0 0.37% 1.8 0.5% 0.19 0.27 1,28 0.56 0.67
0.50 2.0 0.9 0.25 0.42 1.7% 0.7 0.92
0.625 2.5 1.8 0.31 0.66 2.4 0.94¢ 1.23
0.7% 3.0 2.25 0.38 V.97 3.185 1.12 1.87
0.875 3.9 3.1 0.44 1.30 3.8 1.31 1.68
1.0 4.0 4.0 0.5 1,65 4.7 1.9 2.28
w=30° 0.37% 1.9 0.95 0.19 0.42 1.25 0.56 0,66
0.50 2.0 2.0 0.25 0.83 1.78 0.7% 0.92
0.625 2.5 3.7% 0.31 1,49 2.35 0.94 1.21
0.7% 3.0 6.0 0.38 2.35 3.05 1.4¢ 1,83
0.87% J3.9 9.0 0.44 .47 3.8 1,31 1.88
1.0 4.0 12.8 0.50 4,89 4.75 1.5 2.30
Assumptions

The material deformation model used in UDEC is based upon finite
strain theory. Comparisons between small and large strain cal-
culations made by others (e.g., Carter et al., 1977) demonstrate
that at a given strain level, compressive stresses will be higher
for a large strain calculation than for a small strain calcula~-
tion. This difference is attributed to the change in stress rate
vector as well as the change in strain rate vector, which is ac~
counted for in the large strain formulation and leads to in-
creased stress concentra*tion with increased deformation. The
small strain formulation used in the closed-form solutions thus
will give a more conservative (higher) calculation for tunnel
closure than that calculated with the large strain formulation.

The large closure produced for the given problem conditions, par-
ticularly at the associated flow state, poses a rigorous test for
the failure model used in UDEC. Problems which involve large
strain and collapse require a numerical scheme which allows lo-
cally incompressible plastic flow.
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Constant-strain triaugular elements such as tnose used in UDEC
tend to inhibit incompressible plastic flow and may produce an
excessively stiff and incorrect calculation for plastic flow,
Nagtegaal et al. (1974) discuss procedures to improve the repre-
sentation of plastic flow for triangular elements. One technique
is the mixed-discretization procedure (Marti and Cundall, 1982),
which reduces the constraints on plastic flow by using different
numerical discretization for the isotropic and deviatoric parts
of the strain tensor. This scheme works well for uniform grids
composed of equal pairs of triangular elements.

Mixed-discretization is not used in UDEC because the creation of
srbitrarily-shaped blocks makes the discretization of uniform
grids of paired tiiangular elements difficult. An alternative
agp:oach used in UDEC for this test problem is to first divide
the model such that a grid of diagonally-opposed triangles can be
generated immediately adjacent Lo the excavation. Nagtegaal et
al, (1974) showed that meshes composed of diagonally-opposed tri-
angles also will produce a good representation for plastic flow.

Somputer Model

The UDEC model used for the given test problem is illustrated in
Fig. 3.2.1,4~2. The model is one quadrant of the tunnel and sur-
rounding rock. The bottom and left boundaries shown in the fig-
ure are lines of symmetry. The model is divided into a series of
concentric "rings" with increasing spacing between "ring" cuts.
In this way, the block zoning can be increased away from the
hole. In the first few "rings" adjacent to the hole, it is pos-
sible to create a mesh of diagonally-opposed triangular zones.
The zoning is shown in Fig. 3.2.1.4-3,

The tunnel closure results are very sensitive to the location of
the model boundaries. Goodman (1980, p. 236) notes that plastic
behavior of the region in the vicinity of a tunnel has the effect
of extending the influence of the tunnel a considerable distance
into the surrounding rock. For elasto-plastic behavior, a dis-
tance 10 tunnel radii from the tunnel is required to bring the
stress perturbation to within 10% of the initial stress state.
For this problem the model outer boundaries are located 20 radii
from the tunnel,

The model ccnsists of 11 ring blocks divided into 2600 zones.

The joints between the blocks are "glued" by setting the cohesion
and tensile strangth of the contacts to values much higher than
the applied loads. The normal and shear stiffnesses of the
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joints are set equal to 100,000 GPa/m (286,000 xsi/in), which
produces an equivalent elastic modulus for the model within 1.5%

of the given Young's modulus.

The model loading is in accordance with the load steps cdefined in
Table 3.2.1.4~1 and closures are calculated at th® crown and

springline of the tunnel.

) A

Fig. 3.2.1.4~2 Plot of "Glued" Joints in UDEC Model Used to
Improve 2Zonal Discretization in Model
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Besuits

The comparison of the UDEC results, for non-dilatant and fully~
dilatant material behavior, to the Detournay scolution is given in
Table 3.2.1.4-3 and graphically in Fig. 3.2.1.4-4,

Table 302010"3

COMPARISON OF UDEC RESULTS TO DETOURNAY SOLUTION

Srown Closure Springline Closure
analytic UDEC error analytic UDEC error
solution (%) % L] solution (%) % 4
‘L‘l‘iﬁ 0.620 00‘20 o 00207 0020‘ -1o‘
Elasto-plastic (y = 0°)
Step 1 0.67 0.655 -2.2 0.27 0.256 -5.2
2 0.92 0.927 +0. 0.42 0.435 3.6
3 1.23 1.224 -0.5 0.66 0.677 2.6
4 1.57 1,538 -2.0 0.97 0.942 -2.9
5 1.88 1.871 -0.9 1.30 1,268 -2.5
6 2.28 2.221 -2.6 1,65 1,629 -1.3
Elasto-plastic (y = 30°)
Step 1 0.66 0.654 -0.9 0.42 0.394 -6.2
2 0.92 0.922 0.2 0.83 0.831 0.1
3 1'21 10209 -001 1.‘9 10397 -602
4 1.53 1.523 -0.5 2.35 2.187 -6.9
5 10.‘ 1-‘59 -101 3.‘7 30178 '8.‘
S 2.30 2.232 -3.0 4.89 4.378 -10.5
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Riscussion

In general, the agreement is reasonable; the average error can be
attributed to the differences between the small and large strain
formulation. The identical problem was also solved with the con~
tinuum finite difference code FLAC (Itasca, 1988), which can per-
form calculations in either small strain or large stain mode.

The FLAC grid is shown in Fig. 3.2.1.4-5., The results for the
two modes are compared to the Detournay solution in Fig. 3.2.1.4-
6. The agreement between the solution and the results given by
FLAC for the small strain mode is quite close, as shown by the
figure. The closure results from FLAC for the large strain mode
are consistently lower than those for the small strain solution,
as much as 108 lower for the springline closure at the peak load.
The results agree with those from the UDEC solution,

The plasticity model appears to perform correctly in UDEC. A
fine mesh and model boundaries at least 10 tunnel radii from the
tunnel are required, though, to produce accurate displacement
calculations for plasticity analysis with the code.
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set log on
&

verification test

circular tunnel in a non-hydrostatic stress field
Mohr~Coulomb material
associated flow:

friction angle = 30 degrees , dilation angle = 30 degrees

]

round = 0,002
block 0 0 0555 50
L

tunnel
tunnel
tunnel
tunnel
tunnel
tunnel
tunnel
tunnel
tunnel
tunnel
tunnel
]

delete
]

o OCCOO0OOODOODDOOO

o

HODOOOOO0OO0OO

gen
gen
gen
gen
gen
gen
gen
gen

edge
edge
edge
edge
edge
edge
edge
edge
gen edge
gen ‘ edge
gen edge
®

o & =

P OOOODOODODOOOO
BENHUNOOCOOOO0OO
HREOLABWNNN -
. e s O JIJDbYWJ o LOO0OO0OOCODOO0OO0OO0O
sbonnCOO0OOCDOOCO
- - » - - - -

=0

COO0OO0COO0OO0COO0OO0O0O
o & w. W W e e

save epd30b.sav
w

* define material properties

prop mat=1 den=1850 k=7.814e9 g=4,6%e9

prop mat=1 coh=9,95e20 fri=.5774 dil=0.5774

* glue joints

prop mat=1l jkn=leld jks=leld jcoh=le20 jten=1e20
*

damp auto 0.5 0.99 1.02




mescale on
insitu stress -1 0 -1

hist ncyec 50 ty 1 xdis (0.254,0) ydis (0,0.254) damp unbal
L]

* initial load - elastic
bOUhd -0011501 ‘09'5n1
b°und ‘09'501 -001'501
bound ~.01,.01 ~0.1,5.1
bound ~«0.1,5,1 =9.01,0,01
E

set dscan 10000
®

cycle 6000

»

save epd3le.sav

30201."17

stress (0,0,~32.32e6)
stress (=19.3%e6,0,0)
xvel 0.0
yvel 0.0

prop mat=1 coh=9,95e20 fri=,5774 dil=0.5774
-

reset damp
©

* allow plastic yuilure
change cons 3

prop mat i coh 9,95e6

»

cycle 6000

*

save epdilp.sav
*

reset damp

*

* step 1

bound -0.1,5.1 4 1
bound 4.9,5.1 =0.
bound ~-.01,.01 ~0.

bound -0.1,5.1 -0
*®

cycle 6000

»

9,5.
¢ 9.1
1501
1,0

1
1
01,0.01

save epci30p2.sav
E}

reset damp

*

* gtep 2

bound -0.1,5.1 4
bound 4.9,5.1 -0,
bound -.01,.01 =0.
bound -0.1,5.1 =0,
*

cycle 6000

stress (0,0,-10.77e6)
ptress (-6.47¢6,0,0)
xvel 0.0
yvel 0.0

stress (0101'10.77‘6)
stress (~6.47e6,0,0)
xvel 0.0
yvel 0.0



"
save epd30p2.sav
®

f.l.t daanp

* step 3

bound -92.1,5.1 4 1
bO“ﬂd ‘09 5 1 -00
bbund --011 001 -00

Eound “0.1,5.1 =0
cycle 6000
*

09'50
i,5.1
1,5.1
01,0.01
save epd30p2.sav

*

stl‘t damp

* step 4

bound ~0.1,5.1 .
bound 4.9,5.1 -0.1
bound - 01,.01 -0.1
bound -0.1,5.1 -0.0
*

cycle 6000

*

save epd30p2.sav
*

1

4.9,5.
5.1
0 5.1
1,0.01

reset damp

*

* gtep 5

bound ~0.1,5.1 4.8
bound 4.9,5.1 -0.1,!
bound = 01,.01 -0.1,
bound -o 1,5.1 -0.01
oyclo 6000

*

save epd30p2.sav

*

return

{“————'w——-————_F_—~———_——ﬁ_—_———_;T;i:t::::————___———w—

stress (0,0,-10.77e6)
stress (~6.47e6,0,0)
xvel 0.0
yvel 0.0

stress (0,0,-10.77e6)
stress (-6.47e6,0,0)
xvel 0.0
yvel 0.0

stress (0,0,-10.77e6)
stresc (~6.47¢6,0,0)
xvel 0.0
yvel 0.(C
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set log on
*

verification test

circular tunnel in a non-hydrostatic stress field
Mohr~Coulomb material

non-associated flow:

fr.ction angle = 30 degrees , dilation angle = 0 degrees

= % % % % %

»

round = 0.002
biock 0 0 0 5565 50
"

tunnel 0 0 3.32 8

tunnel 0 0 1.9 8

tunnel 0 0 1.1 16

tunne! O 0 0.65 32

tunnel 0 0 0.5 128

tunnel 0 0 0.435 64

tunnel 0 0 0.385 64

tunnel 0 0 0.345 64

tunnel 0 0 0.309 64

tunnel 0 0 0.280 64

tunnel 0 0 0.254 64

"

delete 0 0.15 0 0.15

*

gen 0 0,175 0 0.175 edge 0.014
gen 0 0.19 0 0.19 edge 0.016
gen 0 0.21 0 0.21 edge 0.019
gen 0 0.24 0 0.24 edge 0.023
gen 0 0.27 0 0.27 edge 0.026
gen 0 0.31 0 0.31 edge 0.040
gen 0 0.40 O 0.40 edge 0.09

gen 0.5 0.6 0.5 0.6 edge 0.12

gen 0.6 1.1 0.6 1.1 euge 0.21

gen 1.4 1.7 1.4 1.7 edge 0.36

gen edge 0.63

*

save epd(Ob.sav
»*

* define material properties

prop mat=1 den=1850 k=7.814e9 g=4.69%e9

prop mat=1 coh=9,95e20 fri=,5774 dil=0.0

* glue joints

prop mat=l jkn=lel4 jks=leld jcoh=lez0 jten=le20
"

damp auto 0.5 0.99 1.02
mscale on



insitu stress -1 0 -1
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hist ncyc 50 ty 1 xdis (0.254,0) ydis (0,0.254) damp unbal
*

* initial load - elastic
bound ~0.1,5.1 4.9,5.1
bound ‘n,'Sol -001’5.1
bound -|°1' 001 -0011501
bound -001'501 '000110001
*

set dscan 10000

*

cycle 6000

L

save epdle.sav

]

reset damp

*

* allow plastic failure
change cons 3

prop mat 1 coh 9,95e6

L

cycle 6000

*

save epdOp.sav
»*

reset damp

L]

* step 1

bound '0.1,5.1 ‘09'501
bound ‘09'501 '0.1,5.1
bound -001‘ 001 -001,5-1
bound -0'1'501 '000150-01
*®

cycle 6000

*

save epd(p2.sav
*

reset damp

*

* step 2

bound ~0.1,5.1 4.9,5.1

bound 4.9,5.1 ‘001'501

bound ~.01,.01 -0.1,5.1
01,0.01

bovnd ~-0,1,5.1 -0,
"

cycle 6000

*

save epdOp2.sav

stress (0,0,~32.32e6)
stress (~19.39%e6,0,0)
xvel 0.0
yvel 0.0

stress (0,0,-192.77e6)
stress (~6.47e6,0,0)
xvel 0.0

yvel 0.0

stress (0,0,-10.77%e%)
stress (~6.47e6,0,0)
xvel 0.0

yvel 0.0



*
reset damp
*

* gtep 3
bound ~0.
bound 4. 9
bound ~.01,.
bound -0.1,5

cyclc 6000
*®

-‘Q

save epdOp2.sav
*

reset damp

"

* step 4

bOund -0 1'5.1 9
bound 4.9,5.1 °0.1,
bound "001' -01 "0.1'
bound -0.1,5.1 -0.01

cyclo 6000
*

¢ 5.1
8.1
5.1
,0.01
save epdOp2.sav

.

reset damp

*

* step 5

bound -0.1,5.1 4.9,5.1
bound 4.9,5.1 -0.1,5.1
bound -.C1,.01 -0.1,5.1
bound -0.1,5.1 -0.01,0.01
*

cycle 6000

L

save epd(p2.sav

*

return

3.2.1.4-21

stress (0,0,-10.77e6)
stress (~6.47e¢6,0,0)
xvel 0.0
yvel 0.0

stress (0,0,-10.77e6)
stress (~6.47e6,0,0)
xvel 0.0
yvel 0.0

stress (0,0,-10.77e6)
stress (-6.47e6,0,0)
xvel 0.0
yvel 0.0



3.20105-1

3.2.1.5 Circular Tunnel Problems Involving Use of Boundary
Elements

Erxcblem Statement

This problem concerns stress analysis of a long circular opening
in an infinite medium under various boundary conditions and ma-
terial properties (see Fig. 3.2.1.5-1). Three variations to this
problem will be considered:

(1) Part A: tunnel in an elastic medium with a biaxial
stress field;

(2) Part B: tunnel in an elastic-plastic medium with a
hydrostatic stress field; and

(3) Part C: lined tunnel in an elastic medium with a
biaxial stress field.

o) Liootie Medhem !
4 o

" = -

(B) Craathe -Prantic Modham ‘

e

-

-

-

) Clestn Modham with Liner ‘
2
F3

~ {OOmmn.

Fig. 3.2.1.5-1 Three variations to the Circular Tunnel Problem
[(after Wart et al., 1984]
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Upon excavation of a tunnel, the in-situ stresses within the rock
or scil mass are redistributed from a uniform orthogonal stress
field to a more complex stress distribution. Stress concentra-
tions around a tunnel cause elastic deformations at the periphery
and, if the yield strength of the material is exceeded, result in
plastic deformations and redistribution of stresses due to yield-
ing of the material. 1In the case of plastic yielding, a yield
zone will develop around the tunnel beyond which the stresses
will be elastic. These processes are modeled by parts A and B of
this problem,

Part C of this problem involves the interaction of a structural
tunnel lining and an elastic media. Although the actual design
of a tunnel lining is more complex, this problem checks the basic
interaction between the two types of material for non-axisym-
metric loadings.

Qbjective

This problem has the advantage of being similar to repository
problems as well as having a closed-form analytical solutien.
Several aspects of the computer model will be tested by this

problem:

(1) the ability of the ccde to simulate an infinite me-
dium by boundary elements;

(2) the determination of displacements and stresses in
& non~symmetric problem in two dimensions;

(3) the computation of plastic stresses and deforma-
tions; and

(4) the interaction between structural lining and rock
or soil mass.

Ehysical Problem

The tunnel is excavated in a rock mass which is isotropic and
elastic (Parts A and C) or elasto-plastic (Part B).

The following parameters and values are used to describe the
problem,
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Geometry
excavated tunnel radius (m) a=>5

Material Properties

modulus of elacticity (GPa) E =6

Poisson’s ratio ve=20,2

cohesion (MPa) k = 10

friction ¢ = 20°

density (kg/m3) p = 3000
In-8itu Stresses

Barts A and C

horizontal stress (MPa) Sx = 30

vertical stress (MPa) Sy = 15

Bart B

Horizontal Stress (MPa) Sx = 15

vertical stress (MPa) Sy = 15
Tunnel Lining Properties (Part C)

thickness (m) t = 0.5

modulus of elasticity (GPa) E = 20

Poisson’s ratio ve=20,20

density (kg/m3) p = 3000

Note that the density is not required by the analytical solution,
but some value must be provided in UDEC. The solution is inde-
pendent of the choice of density.
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Analytical Solutions

zt;;_g - The analytical solution to Part A is the well-known
Kirsch solution as reported by Goodmar (1980).

Elfi_l = The analytical solution to Part B is derived from
Salencon (1969).

Rart C - The analytical solution to Part C is given by Einstein
and Schwartz (1979).

A FORTRAN computer code was written to calculate the analytic so~
lution for each of the three cases. The computer code and re-
sults are listed in Appendix 3.2.1.5-A.

Assumptaons

Assumptions which are implicit in the theoretical solutions in=-
clude the following:

(1) plane strain conditions apply, with one of the
principal stresses aligned with the tunnel axis;
and

(2) the material is homogeneous, isotropic and weight~
less.

The following assumptions apply to individual parts of the prob-
lem.

Part A — The medium is linear-elastic.

Eart B — The medium behaves as an elastic-perfectly plastic
solid obeying a Mohr~Coulomb yield criterion.
Out-of-plane stresses do not affect plastic
yielding.

Part C — The liner and medium are both linear-elastic

materials.

The lining is installed coincidentally with tunnel
excavation,

The lining is bonded to the surrounding material
80 no slip or separation of material occurs.
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Computer Model

For each part, two different discretizations were used as shown
in Figs. 3.2.1.5-2 and -3. 1In both geometries the inner and out-
er radii were 5.0 m and 30.0 m, respectively. Also, boundary
elements were coupled to gridpoints in the outer boundary in both
cases. "Glued" joints were used to provide the needed discreti-

zation in each case.

In ?art C of the problem, interaction
the surrounding material is modelled.
was divided into 24 linear segments.

of perfect bonding between the lining
high interface stiffness and strength

of a structural lining with
For this part, the lining
To satisfy the conditions
and surrounding material,
parameters were specified.

w5
R K DR
] T ol
N DK R

VA v NV v~

(TSI %

»

\X7 \ SR R

I IR\
&K

VAW - v /
A$mk4‘\"-r‘s ‘;“"AVA‘A 4""‘7‘

A rA'e
w,

VI AUIT D e A D VNV,
NN t""" A e e VAAVA
1 -,
4

W INTHN
rores PSS In Ke! biocks "\ Avb‘ ‘:;3)4&\, .:0‘\‘
[PPPTTT.

0 1€

82/ \ SR \
DR
v ,'l’ 'y - :\‘;‘""“.":}‘
RS ARRSH DI
VAAVATA 024 O SN '2\"55‘1"
L 3 '45 Snv»am‘;:gg
X7 N\ AV, A

]
ASNPINTS

LAY, 2INDI\ |

el 'Z‘D.‘PAVAEZ‘”&

N,

A
N

\

Fig. 3.2.1.5-2 Coarse Zoning Used in Circular Tunnel Problems
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Fig. 3.2.1.5-3 Finer Zoning Used in Circular Tunnel Problems
Results

-~ The results for Part A are compared graphically with
the analytic solution in Figs. 3.2.1.5-4 through -~ 8. All re-
sults shown are for a line inclined 30° counterclockwise from the
x-axis (i.e., 30° from the major principal stress direction). 1In
nearly all cases, the finer zoning resulted in improved corre-
spondence with the analytical solution,
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Cirouler tunnel
Part A

+ Zoning M
+ Finer zoning

Fig. 3.2.1.5-4 Comparison ot UDEC Results of Shear Stress versus
Radial Distance Along a Line © = 30° with
Analytical Solution for the Case of a Tunnel in
an Elastic Medium with a Biaxial Stress Field

Circuler tunnel
Pat A

-

+ Zoning M
+ Finer zoning

1 .

i

: o " " = x
Radius (1)

Fig. 3.2.1.5~%5 Comparison of UDEC Results of Ta..;:ntial Stress
versus Radial Distance Along a Line © = 30° with
Analytical Solution for the Case of a Tunnel in
an Elastic Medium with a Biaxizl Stress Field



Fig. 3.2.1.5-6

Fig. 3.2.1.5-7
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Circuler Tunned
Part A

+ Zoning #1
* Finer zoning

Comparison of UDEC Results of Radial Stress
versus Radial Distance Along a Line 6 = 30° with
Analytical Solution for the Case of a Tunnel in
an Elastic Medium with a Biaxial Stress Field

Circuler Tunnel
Part A

+ Zoning #1
+ Finer zoning

Radius (m)

Comparison of UDEC Results of Radial Displacement
versus Radial Distance Along a Line 6 = 30° with
Analytical Solution for the Case of a Tunnel in
an Elastic Medium with a Biaxjal Stress Field
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Circular Tunnel
PartA

« Zoning #1
* Finer zoning

1 ) " = w *
Radius (m)

Fig. 3.2.1.5-8 Comparison of UDEC Results of Tangential
Displacement versus Radial Distance Along a Line
® = 30° with Analytical Solution for the Case of
a Tunnel in an Elastic Medium with a Biaxial
Stress Field

— The results of Part B are compared graphically with the
analytic solution in Figs. 3.2.1.5~9 and -i0. The calculated ra-
dius to the elastic-plastic interface based on the analytic so-
lution is 5.28 m, For UNEC the corresponding radius was deter-
mined by calculating the ratio of plastic zones to elastic zones
in the central area where the zone size was constant., This pro-
cedure is explained in more detail in the thick-walled cylinder
problem. The radius to the elastic-plastic interface was found
to be 6.0 m for the coarse zoning and 5.33 m for the fine zoning,
or errors of 8% and 3%, recpectively.
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Circular Tunnel
Part B

e

144

14 ——.—————T
-
+ Zoning #1
* Finer zoning
< Plastic radius

) " ) Y =
Radius (m)

Fig. 3.2.1.5-9

Comparison of UDEC Results for Radial Stress
versus Radial Distance with Analytic Solution
for the Case of a Tunnel in an Elastic-Plastic
Medium with a Hydrostatic Stress Field

Fig. 3.2.1.5-10

Circular tunnel
PartB

f
. - -

WY P + Zoning #1

* Finer zoning

! < Plastic radius
.'L.‘.éoi‘.“".‘.

Radius (m)

Comparison cof UDEC Results for Tangential Stress
versus Radial Distance with Analytic Solution
for the Case of Tunnel in an Elasvtic-Plastic
Medium with a Hydrostatic Stress i"ield
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Efxi_g -- The UDEC results for Part C are presented in terms of
ning thrust, moment, and radial displacement in Figs., 3.2.1.5-
11 through ~13. Results shown are for the first quadrant. Re-
sults for the other quadrants are similar. The structural lining
logic in UDEC assumes plane stress conditions. 1In order to simu-
late plain strain conditions, modified values for E must be used
in the UDEC input for tunnel lining properties. Results of these
corrections are shown in the figures.

'y

:

+ Zoning #1
for pl. strain

© Finer zoning
for pl. strain

T % 3 % @

Fig. 3.2.1.5-11 Comparison of UDEC Results for Lining Thrust
with Analytical Solution for the Case of a Lined

Tunnel in an Elastic Medium with a Biaxial
Stress Field
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b

o Finer zoning
correction

0 0 0 b L L J 2]

- &« o
Angle (degree)

Fig., 3.2.1.5-12 Comparison of UDEC Results for Lining Moment
with Analytical. Solution for the Case of a Lined

Tunnel in an Elastic Medium with a Biaxial
Stress Field

Circular Tunnel
Part C

e

T i
)} W ®» ®» & ®® W "N Kk W
Angle (degree)

Fig. 3.2.1.5-13 Comparison of UDEC Results for Lining Radial
Displacement with Analytical Solution for the

Case of a Lined Tunnal in an Elastic Medium with
a Biaxial Stress Field
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Rata Input Files: UDEC Input Files
*Circular Tunnel (Part A and Part C)

head
CIRCULAR TUNNEL, ELAST., MEDIUM, BIAX. STR. FIELD.
round 0.05

*set geometry, w.thout excavation.
block circular 0 0 30 24

crack =30 0 30 0

crack 0 =30 0 30

tunnel 0 0 5 24

tunnel 0 0 10 24

tunnel 0 0 17.5 24

*create zoning (3 different sizes)
gen 15 25 15 25 edge 6

gen 7.5 10 7.5 10 edge 4
gen 3 6 3 6 edge 3

gen =30 ~15 =30 -15 edge 6
gen -10 =7.,5 ~10 -7 edge 4
gen -6 -3 -6 -3 edge 3

gen =30 -15 15 30 edge 6
gen ~10 -7.5 7.5 10 edge 4
gen -6 -3 3 6 edge 3

gen 15 25 =25 ~15 edge 6
gen 7.5 10 =10 ~7.5 edge 4
gen 3 6 -6 -3 edge 3

save ctgeo.001

damp auto

*set stresses (oriented at 30 degrees)
bound stress -26.25 7.495 ~18.75
insitu stress -26.25 7.495 -18.75

*material properties
prop m=1 d=,003 k=3,33e3 g=2.5e3 jkn=6e5 jks=6e5
prop m=1 jfric=10.0 jcoh=10e7 jtens=10e7?

*histories (displacements and stresses) at radii=5, 10,20,
hist n=20 xdis 5 0 xdies 10 0 xdis 20 0
hist n=20 ydis 5 0 ydis 10 0 ydis 20 0
hist n=20 sxx 5 0 sxx 10 0 sxx 20 0
hist n=20 syy 5 0 syy 10 0 syy 20 0
hist n=20 sxy 5 0 sxy 10 0 sxy 20 0

mscale on
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*cycle until equilibrium
cy 400
save ctsave.eq

*excavate
del ~3.5 3.5 -3.5 3.5

*set boundary elements
be gen ~30 30 =30 30
be mat=1

be fix 0 0 0 0

be stiff

*cycle until new equilibrium
cyc 600
save ctsave.all

*Part C:restart from first equilibrium (before excavation)
rest ctsave.eq

he

CIRCULAR TUNNEL WITH SUPPORT, ELAST. MEDIUM, BIAX. STR.
FIELD.kn=ks=le4

*excavate
d.l -305 3.5 -305 305

*set support and its properties

stru 00 7.5 6 24 2 .5

prop m=2 dens=,003 k=1,1led4 g=8.33e3 kn=led ks=led
prop m=2 cfric=10 ccoh=10e7 ctens=10e?

*set boundary elements
be gen ~30 30 -30 30
be mat=1

be fix 0 0 0 0

be stiff

*¢cycle until new equilibrium
cyc 1100
save ctsave.c0l

quit
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*Circular tunnel. (Part B and Part D)

head
CIRCULAR TUNNEL, ELAST-PLAST. MEDIUM, HYDROST. STR. FIELD.
round 0.05

*set geometry (before excavation)
block circular 0 0 30 24

crack =30 0 30 0

crack 0 =30 0 30

tunnel 0 0 5 24

tunnel 0 0 10 24

tunnel 0 0 17.5 24

*create zoning (3 different sizes)
gen 15 25 15 25 edge €
gen 7.5 10 7.5 10 edge 4
gen 3 6 3 6 edge 3

gen =30 -15 =30 -15 edge
gen ~10 -7.5 =10 -7 edge
gen -6 ~3 -6 -3 edge 3
gen =30 -15 15 30 edge 6
gen =10 -7.5 7.5 10 edge 4
gen -6 -3 3 6 edge 3

gen 15 25 -25 ~15 edge 6
gen 7.5 10 ~10 -7.5 edge 4
gen 3 6 -6 -3 edge 3

& o

damp auto

*give state of stresses (hyarostat.)
bound stress -15 0 ~-15
insitu stress -15 0 =-15

*set material properties
prop m=1 d=,003 k=3,33e3 y=2.5e3 jkn=6e5 jks=6eb
prop m=1 jfric=.364 jcoh=7 jtens=10e?

*histories (displacements and stresses) at radii=5,10,20,
hist n=20 xdis 5 0 xdis 10 0 xdis 20
hist n=20 ydis 5 0 ydis 10 0 ydis 20
hist n=20 sxx 5 0 sxx 10 0 sxx 20
hist n=20 syy 5 0 syy 10 0 syy 20
hist n=20 sxy 5 0 sxy 10 0 sxy 20

COO0OOoOO

mscale on
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*cycle until equilibrium
cy 400
save ctsave.egb

*excavate
del -3.5 3.5 ~-3.5 3.5

*gset boundary elements
be gen =30 30 -30 30
be mat=l

be fix 0 0 0 0

be stiff

*cycle until new equilibrium
cyc 600
save ctsave.b0l

*Part D:i:restart from first equilibrium (before excavation)
rest ctsave.eqgd

he
CIRC.TUNNEL WITH SUPPORT, ELAST.FLAST. MEDIUM, HYDROST. STR,
FIELD.kn=ks=1e4,

*excavate
del -3.5 3.5 -3.5 3.5

*get support and its properties

stru 00 7.5 6 24 2 .5

prop m=2 dens=,003 k=1,l1le4 g=8.33e3 kn=led ks=led
prop m=2 cfric=10 ccoh=10e7 ctens=10e7

*get boundairy elements
be gen -30 30 -30 30
be mat=1

be fix 0 0 0 0

be stiff

*cycle until new equilibrium
cye 1100
save ctsave.d0l

quit
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Appendix 3.2.1.5-A

Computer Progrem and Results for Analytic Solutions
for Circular Tunnel Problems

¢ analytical solution for circular tunnel
real nu,k,kp,nul k0,il,me,m

pi=4.*atan(1.)
e=6000.e6
nu=.20
k=10.e6
=2,k
ction=20,
phi;fricﬁon/ 180.*pi

a=5,
theta=30.

open (unit=11,file='ctres’)
rewind (11)

S
i (11,5) ee,nu

5 format (" Rock Young”s modulus:’ f8.1,, Poison”s ratio’,f3.1)
write (11,6) gg,ﬁicﬁon

6 format ( UCS: 8.1/, Friction:’,f4.1,)

¢ parta
¢ Kirsh's solution (Goodman)

write (11,10)
10 format (’ ~seesese-PART @ weeeeees-')))

8x=-30.e6
sy=-15.e6
tet=theta*pi/180.
8l=g8x+8y
82=8X-8y

r=5.
write (11,48) theta

48 format (' theta='f4.1))
write (11,49)
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49 format('r sigrr sigtt sigrt u v/
do 100 i=1,26
ar=a**2/r**2
sigrr=1.e-6*.6%81%(1.-ar)+82%(1.4+3.%ar**2-4.*ar)*cos(2.*tet))
sigtt=1.0-6%.6%(81*(1.+ar)-82%(1.+3.%ar**2)*cos(2.*tet))
sigrt=-1.e-6%.6%82%(1.-3.%ar**2+2.%ar)*sin(2.*tet)
g=e/2./(1.+nu)

u=sl/4./g*a**2/r+82/4./g%*a**2/r*(4.%*(1.-nu)-a**2/r**2)*cos(2.*tet)
va-82/4./g%a**2/r*(2.%(1.-2.*nu)+a**2/r**2)*sin(2.*tet)

m'it‘ (11.50) r, i ’ om' t’vu'v
60 format (f4.1,3f1 .1,%2.4)

if (r.eq.5..0or.r.eq.10..0r.r.eq.20.) write (11,62)
62 format(’

r=r+l,
100 continue
¢ partb-
¢ Salencon’s solution

write (11,110)
110 format (/,’ -ssess==-PART beeeerieees’)

=15.e6
gxu.uin(pmwu..dn(pm»
a2 (kP41 (o (kp-L)(@/kp-1)**(1 k1)

write (11,111) r0

111 format ( plastic zone radius: ,f12.6,)
write (11,112)

112 format(r sigrr sigtt ')
do 200 i=1,26

if (r.gt.r0) goto 150
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R rras en-q/(kp-104(q/kp-1)H(r/a)**(lp-1.)
. . p-1.))%r/a .
-i{tot;%bw‘(-vmp1.)+kp"(q/(kp-1.))‘(r/a)‘22kp1.))
g0

150 srem 1/0kp+1.)%(2.%p-0)
.gm.m-al'&( : .igi;?*'?ro/r)"m
sigtt=1.e-6*(p+(p-sigre)*(r0/r)**2)

160 write (11,170) r,sigrr,sigtt
170 format (f4.1,2f10.

if (r.eq.5..or.r.eq.10..0r.r.eq.20.) write (11,172)
172 format(' ")

rar+l,
200 continue
¢ parte
¢ Einstein and Schwartz solution

write (11,210)
210 format (/,"sse=seree- PART Ceveeeocevancans )|
write (11,211)
211 format (' theta thrust moment shear diepl.’))

r=5.

t=.5
el=20000.e6
nul..20
k0=2.
il=t**3/12.
theta=0,

c=e*r*(1.-nul**2)/(1.-nu**2)/elt
f=e*r**3*(1.-nul**2)/elil/(1.-nu**2)

a0=c*f(1.-nu)/(c+f+c*M™(1.-nu))
bet=((6.+f)*c*(1.-nu)+2.*Mnu)/(3.*f+3.*c+2.*c*(1.-nu))
b2=c*(1.-nu)/(2.*(c*(1.-nu)+4.*nu-6.*bet-3.*bet*c*(1.-nu)))
a2=bet*b2

do 300 i=1,19

tet=theta/180.*pi
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t-ay‘r‘ 5%((1.+k0)*(1,-a0)+(1.-k0)*(1.+2.%*a2)*cos(Z.* tet))
=8y*r**2/4.*(1.-k0)*(1.- 2.%22+2.*b2)*cos(2.*tet)
p=-gy*r*.5%1.-k0)*(1.-2.%22+2.*b2)*sin(2. *tet)
uuy‘r'(l.mu)/o‘.b‘(( 1.+k0)*a0+(1.-k0)*(4.*(1.-nu)*b2-2.*a2)*
* cos(2.*tet))

t=t*1l.e-6
mnm®*1.e-6
s=6"1.0-6

write (11,250) theta,t,m,s,u
260 format (f5.1,310.4,£10.6)

if (theta.eq.0. ort.houoqso

* or.theta.eq.60..0r.theta.eq.90.) write (11,255)
266 format(’ "

theta=theta+5.
300 continue
¢ partd
¢ no soiution
close(11)

8to
en
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3.3.1."1

3.2.1.6 Elastic Behavior of Jointed Mediun

This problem is given in Volume 2 of this document, UDEC User’s
Manual, pp. B-1 through B-10.
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3.2.1.7 GCrack Shesg by Reduced Friction

This problem is given in volume 2 of this document, UDEC User’'s
mﬂ“‘ ' ”0 C'l t‘l&'&fh C"‘.
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3.2.1.8 Rough Footing on Cohesive Material

This problem is given in Volume 2 of this document, UDEC User’s
Manual, pp. D=1 through D-5.
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3.2.2 Mechanical Problems -~ Dynamic

The following dynamic mechanical probiems are presented in
this secticn or can be found as noted.

Line Source in an Infinite Elastic Medium with a Dis~
continuity

Slip Induced b{ Harmonic Shear Wave (see UDEC User's
Manual, pp. A-1 to A-9)
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3.2.2.1 WMMM

Bxeblem Statement

This problem concerns the d{namic behavior of a single dis-
continuity under explosive loading. The problem shown in Fig.
3,2.2.1-1 consists of a planar crack of infinite lateral extent
in an elastic medium and a dynamic load at some distance, h, from
the discontinuity. This problem was modeled using UDEC to
determine the dynamic response of the discontinuity. The closed-
form solution to this problem was cderived by Day (1985) as a spe-~
cial symmetric condition for the general problem of slip of an
interface due to a dynamic point source (Salvado and Minster
(1980), The results from numerical and analytical solutions are
compared and discussed.

Crack

L ‘4{////// PITT T 0000 20 L L L Lk ddddddeddddodobbdinkok, ™= X

Fig. 3.2.2.1-1 Problem Geometry for an Explosive Source Near a
Slip-Prone Discontinuity
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Qkiective

The objective of this problem is to test the following functions
of UDEC:

(a) the ability %o model dynamic performance of a
Jointed rock mass;

(b) the ability to simulate a high frequency dynamic
wave emanating from a buried explosion; and

(¢) the ability to simulate non-reflecting boundary
conditions.

Closed-Form Solution

The closed-form solution for crack slip as a function of time was
derived by Day (1985) and is given by

Su(x,t) =

2 mg P2 P n -1/2"
2 Re [ - ] e+ & ) t=1/2 Hr)
np ol R(p) o

(3.2.2.1-1)
where r = (x2 + h?)1/2, distance from the point source to the
point on the crack where the slip is monitored,
H(t) = step function,
teoet =(r/d)
Mg = source strength,
@ = velocity of nressure wave,
P = velocity of shear wave,
p = density,
Mg = (@2 - p2)1/2, Re ng 2 0,
ng v (P72 - p2)1/2, Re np 2 0,
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A r 2r V2 172
pe-=| (T +=x+4d (T +—) 1 h
rz a a

The slip response of the discontinuity for any source history
S8(t) can be obtained by convolution of Equation (3.2.2.1-1) and
the source function S(t). Figure 3.2.2.,1-2 shows the dimension-
less analytical results of slip history at a point P for a smooth
step function

S(t) = [ 0.5 (1 - cos(nrt/0.6)) t < 0.6 (3.2.2.1-2)
1.0 t 2 0.6
and for the following values of the variables:

h=x

v o= o
oy
X X3
ey
([ 2
(223
Dimensioniess _ . |
* ‘.
(Y3
(8113
01y
0o

sy Sy P pew wiee  DEOT GMNE NG Ra W
Dimensioniess Time

Fig. 3.2.,2.1-2 Dimensionless analytical results of slip history
at point P (grom Day, 1985) (d.mensionless
slip = (4hpPé/my)8u, dimensionless time = tf/h)
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Numerical Model

1. Medel Set-up

Fig. 3.2.2,1-3 shows the problem geometry modeled by UDEC. The
source is located at the origin of the co-ordinate axes and the
discontinuity is located at y = ~h, The y-axis is a line of sym-
metry and non-reflecting boundaries were used on the other three
sides of the model. The dynamic input was applied at the semi~
circular boundary of radius 0.05h. The slip movement is
monitored at point P on the discontinuity,

The continuous medium was modeled with elastic, fully deformable
blncks, as shown in Fig. 3.2.2.1-4, and each block was further
discretized into triangular finite-difference zones. All the
joints except for the discontinuity are "glued" with high normal
and shear stiffness and cohesion so as to model a continuous
elastic medium. The discontinuity was asesigned zero shear
strength, a high normal stiffness, and high tensile strength in
order to meet the assumptions implied in the analytical solution.

A

k g

K

TS "
ER £

1" Gy O

— o~

Fig. 3.2.2.1-3 Problem Geometry and Boundary Conditions for
Numerical Model
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%

)

Fig. 3.2.2.1-4 UDEC Model Showing Semi~Circular Source and
"Glued" Joints Used to Provide Appropriate
Zoned Discretization

2. Rroperties of Joints and Continuous Medium
A) Material Properties

Ivpical Units

Geometric Scale: h =10 (m)
Block Properties:

Mass density (p) -1 (kg/m3)

Shear modulus (G) = 100 (Pa)

Bulk modulus (K) = 166,67 (Pa)

pP-wave velocity (a) = 17,32 (m/sec)

S-wave velocity (B) = 10.00 (m/sec)
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B) Joint Properties:

The following joint constiutive relations are used:
(1) Mohr Coulomb model; and
(1) continuously-yielding model.

The specific UDEC parameters used for each joint relation are as
follows:

Iypical Units
(1) Mohr Coulomb Model (Jcons=2)
JKN = 10,000 (Pa/m)
JKS = 0,1 (Pa/m)

JFRIC = 0
(14) Continucusly Yielding Model (Jcons=3)

JKN = 10,000 (Pa/m)
JKS = 0.1 (Pa/m)
JFRIC = 0.00001
JEN = 0
JES = 0
JIF = 1,0e~10 rad
JR = 1,0e~4 m

3. Pynamic Loading

Two kinds of dynamic input load were applied at the source:

(1) pressure input and (2) velocity input. To avoid problems
with the singularity at the source, both the inputs were applied
over a surface distant 0.05h from the nominal point source.

(a) Pressure Input

The radial pressure applied on the semi-circular boundary was
calculated from the static solution in an infinite medium,
due to Love (1946). The radial stress at a distance r from a
compressive line source is given by
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1 2G 1
o m 3.2.2.1-3
e Tts 3™ ‘ ’
296
x.——-
where e , and

Vv = Poisson's ratio

For the properties used in this problem the stress component
:!: at distance r = 0.05h (h=10m) is 0.4244 Pa. The time
st

ory of the applied pressure is given by Eq. (3.2.2.1-2)
and is shown in Fig. 3.2.2.1-5,

'elocity Input

Radial velocities corresponding to the dynamic solution for a
line source in an infinite medium were enforced at the semi-

circular boungary. The velocities were calculated in the
following manner.

The solution for the displacement due to a center of dilation
in an infinite medium, due to Achenbach (1973), is described
by the expression

k' 1 9 [ 1 g(t - r/Cp)]
1 e—— -
QSCPZ 331 r
(3.2.2.1+4)
where rl = x2 + y2 4+ 2,
Cp = P-wave velocity, and

f(t) = source time history.
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Integretion of Eq, (3.2.2.1-4) along the z-axis leads to the
solution for a line source of compression (Lemos, 1987) when
f£(r) is taken as a step function,

t <0 (3.2.2.1~5)
t20

f(t) = 0,
1,

The two-dimensional scolution for radial displacement becomes

2 cu2 -1/2
ks e & TR WAL

Zucp re v2
(3.2.2.1-8)
where r? = x2 + y2,
The corresponding velocity is
1 1 202 -3/2
& . E;E; ;5 :; -1 s £ > r/Cp
(3.2:.2.1-7)

The actual input velocity recoxrd at r = 0.05h as shown in
Fig. 3.2.2.,1-6 was obtained by convoluting Eqs. (3.2.2.1-7)
and (3.2.2.1-2).
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Fig. 3.2.2.1-5 T7Tnput Radial Pressure Time History Prescribed
at r = 0.08h
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Dimensioniess Tine

Fig. 3.2.2.1-6 1Input Radial Velocity Time History Prescribed
at r = 0,05h [dimensionless velocity =
(h2pB/my) v, dimensionless time = tf/h)
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Besults

The results of the analysis are considered in terms of four
eriteria: (a) dynamic input, (b) mesh size, (¢) joint model, and
\d) boundary conditions.

(a)

(b)

Dynamic Input

The dimensiconless slip at point P vs dimensionless time for
the Coulomb joint model is shown in Fig. 3.2.2.1-7, This
compares the results from UDEC for velocity input and pres-
sure input with the annlytical solution, The velocity input
gives a better match with the analytical solution than the
pressure input. The error at the peak slip for velocity in-
put is 5.21% and that of pressure input is 9.81%., This sug-
gests chat the velocity boundary provides an accurate repre-
sentation of the d¥ncm1c stress at r=0,05h compared to the
pressure input, he reason for this is that in the pres-
sure input, the source function is simply scaled by static
stress magnitude and neglects the inertial effects of
dynamic stress at the input boundary.

Mesh Size

The results shown in Fig. 3.2.2.1-7 were obtained with a
mesh of maxinum zone length of 0,065h, The slip response on
the discontinuity involves higher frequency components be-
cause of zero friction along the discontinuity and this re-
quires finer mesh for accurate representation., It has been
shown by lLemos (1987) that if the maximum zone length is
0.033h then the UDEC solution due to velocity input is
within 1% of the analytical solution and the pressure input
is within 2.5%, These results suggest a requirement of 35
zones within the distance of the dominant wavelength of the
input wave in order to provide good accuracy.
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Joint Model

Figure 3.2.2.1-7 shows the results of joint slip based on
the Coulomb 2cxnt model. The Coulomd joint model is a
linear elastic, perfectly-plastic constitutive relation.
Figure 3.2.2.1-8 shows the results with the continuous.iy
yielding zoint model which represents a non-linear joint
constitutive relation. For the joint parameters chosen for
the cantinuouolx-ytolding model, the slip response is vir-
tually identical to the Coulomd model for both pressure and
velocity input.

It must be noted here that computations were performed suc~
cessfully for the Coulomb joint model and the continucusly-

ielding joint model on a 80286-based personal computer with

81-780 co-processor board. On an 80386-based personal com-
puter the gtoqram did not run successfully for the
continuously~yielding joint model because of an error in the
ATANZ function in the compiler (SVS FORTRAN 386). This
problem can be rectifled at some time in the future.

[ ¥ 33
0.64
06t »
034 T — P
Dimencionless + Pressure
Slip Input
% | + Analytical
Set
014
(2 Jt + + + + -
ard
' : ’ 5 . (]
Dimensionless Time

Fiy, 3.2.2.1-7 Comparison of Dimensionless Slip at Point
P With Coulogb Joint Model [dimensionless
léip = (4hpPé/my)8u, dimensionless time =
tp/h)
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Fig. 3.2.2.1-8 Comparison of Dimensionless Slip for Coulombd

(d)

and Continuocusly Yielding Jgint Models
(dimensionless slip = (4hpP</my)du,
dimensionless time = tf/h)

Boundary Conditions

As seen in Fig, 3.2.2.1-3, non-reflecting boundaries are
used along the top, bottom and right boundaries and line of
symmetry boundary condition are used on the left boundary.
The viscous boundaries, designed to absorb normally incident
P- and S-waves, cannot be fully effective in this dynamic
slip problem because the discontinuity crosses the boundary.
Viscous boundaries, however, are preferable to roller
boundaries. Lemos (1987) studied the effects of boundary
reflection on slip response by varying the model size and
obtained improved performance with a model size of 4hxéh.

As shown in Fig. 3.2.2.1-3, this problem geometry has been
employed in this analysis.
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donput Datas File

RARRRR RN AR R R AR AR AR R R T AR R AR R R AR AR R R P R R AR R AR AR R AR R R AR R R R R AR R

Verification problem for dynamic analysis using UDEC1.5

Joint model: Coulomb
Dynamic Input: Pressure

RV AR RAR AR AR AR R R R AR R AR R R R R AR AR AR AR R R R AR R R R R AR AR AR R R R R A AR R R A

IN.1{AL PROBLEM GEOMETRY
create block geometry

ound 0,002

l10,-20 0,~.5 0,1913,-0,4619 0.3536,-0,3536 0.4619,-0.1913
0.5,0 0.4169,0.1913 0,.3536,0,.3536 0.1913,0.4619 0,0.5
0,20 40,20 40,-20

L

crack =5,-10 45,-10

crack -5,10 45,10

crack 20,-21 20,21

crack ~-1,-6 6,1

CIICR '1;6 6"1

»

jdel

crack 5.01,0 21,0
jdel

*

* create finite difference zones
kS

gen 0,40 -20,20 auto 0.6%5
*

DM =% % 2 % % %» % % % % % %

5
&

lavo verf3ibl.sav

L L L T

* set material and joint properties

*

prop mat=]l d=1,0 k=166.67 g=100.0 &
Jkn=10000.0 Jks=0.1 &
tens=].0e6 jtens=1,0eb

prop mat=2 3kn=10000.0 iks=10000.0 &
jtens=1.0e6 coh=1,0eé jcoh=1,0eé
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change =1,41 -10.1,-9.9 ang =1 1 jmat=l jcons=2
change ~=1,41 -21,-10.1 Jmate2 jcons=2

change ~-1,41 -9.9,21 Imat=2 jecons=2

*

* get boundary material property
bound mate=]l
*

* get viscous boundary conditions along three sides

.

bound ~1,41 -20.1,-19.9 xvisc yvisc

bound ~1,41 19.9,20.1 xvisc,yvisc

bound 39,41 -21,21 xvisc,yvisc

.bouﬂa '0.1,0.6 '0.5,0.6 stress '153"1

* get stress boundary conditions along the semi-circular notch
bO\l&\ﬂ -0011036 .0160006 stress -00‘2“100'00‘2“

* get symmetry boundary conditions along the remaining side
bound ~-0.1,0.1 ~21,21 xvel=0

»

* get time function of the applied stress
bound hist sine 30 0.6
»

bound hist=func

L ]

insitu stress ~1.0e~9%,0,-1.0e~9
L ]

* gset his "ries

* contact aadress at coordinate 10,-10 is 1445

*

hist n=10 yvel (J,.6) xvel (.6,0) yvel (.§,0) yvel (0,-.6)
h%;:sxgol (1.0,0,) yvel (1.0,0) xvel (10.,0) yvel (10.,0) xvel
(39. )

hist §vol (39.5,0) syvy (.6,0) sxx (.6,0) syy (39.5,0) sxx (39.5,0)
hist add=1445,15

*

cyc 4000
save ver3lst.sv?2

ret
.
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input Data Flle

KARRRRY AR R AR A AR AR AR AR R AR R A AR R R R R R AR R R A R AR AR AR R R R AR R R R R AR AR R R

Verification problem for dynamic analysis using UDEC! .S

Joint model: Coulomb
Dynamic Input: Velocity

RRARRR R AR AR AR AR AR A AR AR AR R R R AR AR AR R R RA R AR AR R R R R R AR R R R R R R R R R nR

INITIAL PROBLEM GEOMETRY

¥ % % % % 5 % % 5 » =

create block geometry

"

round 0.002

bl 0,-20 0,-.5 0.1913,~-0.4619 0.3536,~0.3536 0.4619,-0.1913 &
005'0 00‘1690001913 0035360003536 001913000‘619 00005 ‘
0,20 40,20 40,-20

"

crack -5,-10 45,-10
crack ~%,10 45,10
crack 20,+~21 20,21
crack ~-1,-6 6,1
crack ~1,6 6,~-1

"

jdel

crack 5.01,0 21,0
jdel

-

gen 0,40 -20,20 auto 0.65
*

save verf3lbl.sav

* set material and joint properties

*

prop mat=1 de=1,0 k=166.67 ¢g=100.0 &
Jkn=10000.0 jks=0.1 &
tens=1,0e6 jYtens=1,0eb

prop mat=2 jkn=10000.0 3ks=10000.0 &
jtens=1.0e6é coh=1,0e6 jcoh=1,0eb

®

change -1,41 -10.1,-9.9 ang -1 1 jmat=1 jcons=2

change -1,41 -21,~10.1 Jmat=2  jcons=2

change ~1,41 -9.,9,21 jmat=2  jcons=2

*
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* gset boundary material property

bound mate=]

bound =1,41 ~20.1,-19.9 xvisc yvisc
bouna =1,41 19,9,20.1 xvisc,yvisc
bound 39,41 -21,21 xvisc,yvisc
bound -0.1,0.1 ~21,21 xvel=0

L

* get velocity boundary conditions along the semi-circular boundary

bo =-.05,.05 «,.55,~.45 xvel=0 yvel=-1.0

bo .17,.21 ~.48,~.45 xvel=0,383 yveln-0,824
bo .33,.37 =.37,-.33 xvel=0,707 yvel=-0.707
bo .43,.47 -.21,-.17 xvel=0,924 yvel=-0,383
"

bo .48,.52 =0.05,0.0%5 xvel=1.0 yvel=0.0
]

bo .41, .45 .17,.21 xvel=,924 yvels=, 383
bo .33,.37 .33,.37 xvel=,707 yvel=,707
bo .17,.21 .43,.47 xvel=0,383 yvel=0,924
bo =0.05,0,05 .45, .55 xvel=0 yvels=l

"

»
"
-

read time variation of velocity input from an external data file
cilvdx.out is output from program cilvpr.for

bound hread=1 cilvdx.out
*

bound hists=l
»

insitu stress -1.0e-9,0,~1.0e-9
b

* get histories

* contact address at coordinate 10,~10 is 1445
"

hist n=10 yvel (0,.5) xvel (.5,0) xvel (.35,0) yvel (.35,.39)
hist xvel (.19,-.46) yvel (.19,-.46)

hist add=1445,15

*®

cyc 4000
save ver3lvl.sv2
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LA R R R R R R R L R i 3 T T TITT ™

Verification problem for dynamic analysis using UDEC1.S

Joint model: Continuously-Yielding
Dynamic Input: Pressure

AER R R R AR E R R AR R AR R R R R R R R R R R R AR R R AR R AR R AR AR R R R AR RRRAR AR R AR R A RN

INITIAL PROBLEM GEOMETRY

% % % %5 % 5 % % % =

Create block geometry

"

round 0,002

bl 0,-20 0,-.5 0,1913,-0.4619 0,3536,-0,3536 0.4619,~0.1913 &
0.5;0 00‘169l001913 0-353600-3536 001913000‘619 0'005 ‘
0, 20 ‘0: 20 ‘01'20

*

crack =5,-10 45,-10
crack -5,10 45,10
crack 20,-21 20,21
crack =-1,-6 6,1
crack -1,6 6,~1

.

jdel

crack 5.01,0 21,0
jdel

*®

9.0 0"0 -20'20 auto 0065
*
save verf3lbl,sav

* set material and joint properties

prop mat=1 d=1,0 k=166.67 g=100.9 &

Jkn=10000.0 jks=0.1 9Jfric 0.00001 &

tens=1.0e6 jtens=1,0e6 jen=0 jes=0 jif=le-10 jr=1,0e-4
prop mat=2 jkn=10000.0 3ks=10000.0 &

jtens=1,0e6 coh=1,0e6 jcoh=1,0eé
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t

change -1,41 ~10.1,-9.9 ang -1 1 jmat=1 jcons=3
change =i,41 -21,-10.1 Jmat=2 jeons=2

change ~-1,41 -9.9,21 Imat=2 jcons=2

*

* get boundary material property
Eonnd mate= |

* get viscous boundary conditions along three sides
-

bound -1,41 -20,1,-19.9 xvisc yvisc

bound ~-1,41 19.9,20.1 xvisc,yvisc

bound 39,41 -21,21 xvisc,yvisc

»

* set stress boundary conditions along the semi-circular notch
bound ~0.1,0.6 «0.6,0.6 stress -0.4244,0,~0,4244

* set symmetry boundary conditions along the remaining side
bomd ‘0.11001 -21'21 xv.l'o

"

* get time function of the applied stress
bound hist sine 30 0.6
"

bound hist=func

]

insitu stress -1.0e-9,0,~1.0e-9
>

* set histories

* contact address at coordinate 10,-10 is 1445

»

hist n=10 yvel (0,.6) xvel (.6,0) yvel (.6,0) yvel (0,-.6)
h%;tsxgol (1.0,0.,) yvel (1.0,0) xvel (10.,0) yvel (10.,0) xvel
(39. )

hist }vol (39.5,0) syy (.6,0) sxx (.6,0) syy (39.5,0) sxx (39.5,0)
hist add=1445,15

]

cyc 4000
save verdlst.sv2
ret



3.2.2.1-20

input Data File

LA R R R il s I T I I ™™

Verification problem for dynamic analysis using UDEC1.S

Joint model: Continuously~-Yielding
Dynamic Input: Velocity

RAR AR AR R AR AR R R AR R AR R R R R AR R R R AR R R AR R R R R A AR AR AR AR R AR R AR R AR AR R R

INITIAL PROBLEM GEOMETRY

% % S % % % % s

create block geometry

B

round 0.002

bl 0,-20 0,-.5 0.1913,~0.4619 0.3536,~0.3536 0.4619,-0.1913 &
0.5,0 0.4169,0.1913 0.3536,0.3536 0.1913,0.4619 0,0.5 6
0020 ‘0020 ‘00-20 ¢

*

crack =5,-10 45,~10
Crlck '5'10 ‘5'10
crack 20,-21 20,21
crack ~-1,~6 6,1
cr.Ck '116 6('1

v

jdel

crack 5.01,0 21,0
jdel

*®

gen 0,40 -20,20 auto 0.65

»

save verf3lbl.sav
*

B o o o - -

set material and joint properties

= % % =

prop mat=1 de=1.0 k=166.67 ¢g=100.0 ¢

Jkn=10000.0 3Jks=0.1 Jfric 0.00001 &

tens=1,0e6 jtens=1,0e6 jen=0 jes=0 jif=le-10 jr=1,0e-4
prop mat=2 3jkn=10000.0 3ks=10000.0 &

jtens=1,0e6 coh=1,0e6 jcoh=1,0eéb
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change -1,41 ~10.1,~5.9 ang ~1 1 jmat=l jcons=3
change ~-1,41 =21,-10.1 Jmate2 jcong=2
gbanqo -1,41 =9.9,21 imat=2 jcong=2

* get boundary material property

bound matel

* get viscous boundary conditions along three boundaries

bound ~1,41 ~20.1,-19.9 xvisc yvisc

bound ~1,41 19,9,20.,1 xvisc, yvisc

bound 39,41 -21,21 xvisc, yvisc

* get symmetry boundary conditions along the remaining boundary
bound ~0.1,0.1 =21,21 xvel=0

*

* gset velocity boundary conditions along the semi-circular boundary
bo ~.05,.05 «.55,~.45 xvel=) yvel=-1,0

bo .17,.21 =,48,~-.4% xvel=0,383 yvelw=~(,924

bO 033'0’7 -037'-033 8V.l'°.707 YV‘l-'°-’°7

bo .43,.47 =~.21,~,17 xvel=0,924 yvel=-0,383

.

bo .48,.52 -0.05,0.05 xvel=l.0 yvel=0.0
.

bo .41,.45 .17,.21 xvel=,924 yvels=, 383
bo .33,.37 .33,.37 xvel=,707 yvel=,707
bo .17,.21 .43,.47 xvel=(,383 yvel=0,6924
bo =0.05,0.05 .45,.55 xvel=0 yvel=l

*

* read time variation of velocity input from an external Jata file
* cilvdx.out is output from program cilvpr.for
*
*

bound hread=1 cilvdx.out
.

bound hist=l

»

frac 0.05 .5
insitu stress ~-1.0e~-9,0,~1.0e-9
L ]

* gset histories

* contact address at coordinate 10,-10 is 1445

-

hist n=10 yvel (0,.5) xvel (.5,0) xvel (.35,0) yvel (.35,.35)
hist xvel (.19,-.46) yvel (.19,-.46)

hist add=1445,15

.

cyc 4000
save verdlvl.sv2
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APPENDIX 3.2.2.1-A

COMPUTER PROGRAM

Code Name : CILVPR.FOR

Dynamic verification problem LA A AL LR L L

This program evaluates the radial velocity input profile at

r=0.08h

S R R R i s I I I ™m™mM™ ™™

c

ct

common a(5000,5), ta(5000)
real v(5000),£fp(5000),vh(5000)
character*80 title

cl=17,32
per=1,2
tt=1.4
x=, 5
nt=1000
nx=0

write (*,*) (’'ecl per tt X nt
write (*,*) cl,per,tt,x,nt
read(*,100) char

format (al)

if (x.le.0.0) go to 200
nx=nx+l

pi=4.0*atan(1.0)
w=2, 0*pi/per
dt=tt/nt
ca=-1,0/(2.0*pi*cl)
cb=ca/ (x*x)
cc=cb*dt

dO 20 i"lpnt

t=(i~1) *dt

if (t.1t.0.5*per) then
fp(i)=0,5*w*sin (w*t)

g
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CXXXX fp(i)=0,.5*wrw*cos (w*t)

nfp=i
18
fp(i)=0.0
wudit
20 continue

t0=x/cl
J0=t0/dt
J0=40+1

do 30 j=1,nt

i£(3.1t.30) then
vh(3)=0.90

else
t=t0+0.5*dt+ (3-30) *dt
cf=t*cl/x
cf2=cfrct
cs=sqrt (c£2-1.0)

¢ velocity
cg=(cf2~1.0)**1.5

vh(j)=cc/cg
¢ displacement
CXXXX cg=cs/t
CXXXX vh(j)=cc/cg
endif
30 continue
¢
v(l)=0.0
do 6v i=2,nt
c te=(i-1) *dt
v(i)=0.0

Jl=min (nfp,i-1)
ceee if (31.1t.30) goto S0
do 40 94=1,31
c vii)=v(i)+fp(J) *vh(i~J+1)
v(i)=v(i)+£fp(3J) *vh(i~-])
40 corntinue
60 continue
vmax=0,0
do 80 i=1,nt
ta(i)=(i-1)*dt
a(i,nx)=v(i)
vi=abs (v(i))
vmax=amaxl (vmax,vi)
80 continue

90 format (' x= ',£6.3,' nt=',i5,5x%,’

max= ’',el2.4)



C

c
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if (x.1¢.0.0) then

open (3,file='cilvdx.out’)

write (3,%) title

write (3,101) nt,dt

write (3,102) (ta(3) a(j,nx), J=1,nt)

close (3)

endif
101 format (2x,15,2x,£10.4)
102 format (2(2x%,e10.4))

stop
end
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APPENDIX 3.2.2.1-B

SQMPUTER PROGRAM
Code Name : LSJEM.FOR

CRERRRAR R Rk NN qu.mic verification ptobl‘m AR R R R R R Rk Rk
-

c* This program evaluates the dynamic response of the slip of
c* a single discontinuity of infinite extent caused by an

c* explosive loading. Analytical solution of a line source in
c* an elastic medium with a discontinuity is given by

ct S.M, Day ( see equation (4) and (6) in S~CUBED memorenda

- from S.M.Day to R. Hart, May 1, 1983).

ctilitititiﬁtittﬁti'iﬁtitt.i'ttlii*ﬁttii*.ﬁttt*tti*tiil***tti*ti

dimension duf (2000),£41(2000)
common /gplot/ nt,tt (2000),du(2000)
complex cp,cetap,cetas,cr

open(2,file='liie.0ut’)
¢ input data nt=1000, dt=0,005, x=1 h=1 gamma=0 per=0.6 rho=1.0

999 write (*,888)
888 format (’ nt dt x h gamma per rho’,/)

read(*,*) nt

if(nt.eq.0) goto 1000

read(*,*) dt,x,h,gamma,per,rho

pi=3,14159

vp=sqrt (3.)

vs=1,

xmin=0

ymin=0

r=gqrt (x*x+h*h)

do 1 i-l,nt

t=float (i) *dt

tt (i)=t

taus=t-r/vp

if (tau.gt.0.) then

t2r2=sqrt (t**2=(r/vp) **2)
cp=cmplx (L*x/r**2,t2r2*h/r**2)
cetap=csqrt (1./vp**2=-cp**2)
cetas=csqrt (1./ve**2-cp**2)
orm (1.=2.%VS*R2hCp**2) ** 244 *ygrrf{*cetaprcetasrcpr*2
Cr«cr+2.*vs*cetas*gamma
dut=2,*vs**2/ (pi*rho*vp**2)
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dut=dut*real (cp*cetap*cetas/cr)/t2r2
du (i) =dut

else
du(i)=0,
end if
1 continue
nf=int (per/dt+0.0001)
if(nf.gt.1000) goto 1200
do 2 j=1,nf
ph=float (j) *dt /per
if(ph.1lt.1.) then
£fi) (J)=ein(pi*ph)
else
£1i1(9)=0,
end if
2 continue
sum=0,
do § j=1,nf
S sumssum+£il (3j)
do 4 i.lpnt
duf (i)=0
n=min(nf, i)
do 3 Jy=1,n
3 duf(i)=duf(i)+du(i=j+1)*£il ()
4 duf(i)=duf(i)/sum
dmx=0,
write(2,400)
400 format (/,' time norm. slip’,/)

do 6 i=1,nt
if (mod(i,10) .eq.0) then
time=float (i) *dt
ftduf=4, *duf (i)
write(2,500) time, ftduf

500 format (1p,el2.4,5x,1p,el12.4)
endif
if (duf (i) .gt.dmx) then
dmx=duf (i)
tmx=float (i) *dt
endif

6 continue

ftdmx=4 . *dmx
print *,’max value of du = ’/, ftdmx
print *,’time at max du = ’,tmx
go to 999
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c
1200 write(*,888)
898 format(’ nf exceeds fil dimension’)
1000 st:p
en
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3.2.2.2 glip Induced by Harmonic Shear Wave

This problem is given in Volume 2 of this document, UDEC Use:'s
Manual, pp. A~1 to A-9.
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3.2.3 Thermal Problems
The following thermal problems can be found as noted.

Steady~State Temperature Distribution Along a Tapered
Fin (see UDEC User’s Manual, pp. 7-37 to 7=-39)

One-Dimensional Steady-State Heat Conduction and Con-
vection Through a Composite Wall (see UDEC User'’s
Manual, pp. 7-40 to 7-42)

Thermal Response of a Heat-Generating Slab (see UDEC
User’s Manual, pp. 7-43 to 7-45)

Transient Temperature Distribution in an Orthotropic
Bar (see DEC User’'s Manual, pp. 7-51 to 7-53)
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3,2.3.1-1
Ein

This problem is given in Volume of this document, UDEC User’'s
Manual, pp. 7-37 through 7-39.
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This problem is given in Volume 2 of this document, UDEC User’s
Manual, pp. 7-40 through 7-42.




302.3.3-1

3.,2.3.3 Thermal Regponse of a Hest-Generating Siab

This problem is given in Volume 2 of this document, UDEC User’s
Manual, pp. 7-43 through 7-45.
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3.2.3.4 Iransient Temperature Distribution in an Ozthotropic Bar

This problem is given in Volume 2 of this document, UDEC User’s
Manual, pp. 7-51 through 7-53,.




3.2.4 Thermo-Mechanical Problems

The following thermal problems are presented in this section or
can be found as noted.

Thermo-Elastic Response of a Hollow Thick Wall Cylinder

Infinite Slab with Applied Heat Flnx (see UDEC User’'s
Manual, pp. 7-46 to 7-50)
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3.2.4.1 Thermo-Elastic Response of a Hollow Tiick Wall Cylinder

Broblem Statement

This problem concerns determination of thermal stresses in a long
cylinder subjected to ste~dy-state heat flow from tle interior to
the exterior. The problem definition requires only an internal

temperature, evternal temperature, and elastic constants for the
analytical calculation of both the temperature and stress distri-

bution.

Qbiective

The objective of this problem is to test the coupled thermo-
mechanical capability of UDEC. The problem checks the following
specific aspects of the code:

(1) heat conduction algorithms for both implicit and
explicit calculations; and

(2) determination of induced stresses from (emperature

changes through the coefficient of linear thermal
expansion.

Physical Problem

The following values and parameters are used to describe the
problem.

Gacoetry
- inside raaius (m)

~ outside radius (m)
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Material Properties
- modulus of elasticity (GPa) E=6
- Poisson’s ratio ve=20,25
~ coefficient c¢f linear thermal Q=35
expansicn (1/°C)
- conductivity (W/m °C) K=35
- specific heat (J/kg °C) C = 900
- density (kg/m3) p = 2000
Constant Temperatures
- internzl surface (°C) Ty = 200
- external surface (°C) Te = 50

Note that the input parameters for conductivity, specific heat,
and density are not required by the arnalytical solution, but are
required by most c~des, including UDEC, for thermal analysis.

Apalvtical Solution

The analytical solution to this problem is given by Timoshenko
and Gcodier (1970). From the heat flow equation, the temperature
distribution for the geumetry and boundary conditions of this
problem can be definec as:

Wt Ty b
'r P R T — ln - Te (3‘2.4.1-1)
ln(b/a) r
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where r radial coordinate,
3 temperature at radius r,
Ty, Te internal, external temperatures,
b external radius, and

a internal radius.

The stress equilibrium equation in polar coordinates

(3.2.4.1-2)

where ¢, Og = radial, tangential stresses.

Using this equation, the elastic stress-strain relat.on and the
definition of strain in terms of displacements, appropriate in-
tegrations can be carried out to give stress in terms of the
temperature distribution. These ar«¢ given by:

1 e - al b
_— [ Tr dr ]
rl pe - a2 Ja

(3.2.4.1=3)

r2 + a2 |[b r -
Tr dr + Tr dr - Tr? |
bz-az

v+ a a "

(3.2.4.1-4)
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By substituting Eq. (3.2.4.1-1) in the above, the stresses can be
found from the interior and exterior surface temperatures as fol-

lows:
QE(T§ - Te) b a¢ bl b ]
Op = - I = = =e—— | ] = = [ln =
* " 20 - V) in (b/e) r 2 - o) ] J
(3.2.4.1-5)
QE(T§ - Te) b e b2 b
o * 1-1n - = 1+ = [1n =
2(1 = Vv) 1In(b/a) r (b2 - a?) ré a
(3.2.4.1-6)

The analytical solution expressed above "as been written as a
Fortran program to permit comparison with the numerical solution.
The program and results are appended.

Assumptions

The following assumptions are implicit in the analytical solu-
tion:

(1) the medium is linear elastic, homogeneous and
igotropic;

(2) elastic properties and conductivities are not
temperature dspendent;

(3) heat flux is constant and steady-state conditions
have been achieved; and

(4) plane strain conditions apply.
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Computer Model

The UDEC model used for the given test problem consists of the
first quadrant of the cylinder. The bottom (x-axis) and left (y-
axis) boundaries are lines of symmetry. The model is divided
into a series of concertric arcs with increasing spacing between
the arc cuts. 1In this way, the block zoning can be increased
away from the hole. The ring cuts or joints are "glued" by set-
ting the strength and stiffness pavameters high. Models were run
with 7, 13 and 17 arcs. The zoning for the 7 arc model and the
1Z arc model are shown in Figs. 3.2.4.1-1 and 3.2.4.1-2, respec-
tively.

[ I8 TITLE : Thermosiastc Jnepsebe 0. Exphct sch. 7 arcs
UDEC (Version 1.5)

7041988 12:10

nycle 1000
+1.009€ +00 <x< 2.103E+01
+1.002€+00 <y< 2.103E+01

z0nes plotied in ie! blocks f

i 1 A I I |

0 SE O

Fig. 3.2.4.1-1 Problem Discietization for Seven Arc Mode 1
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(%00 TM.E : Tharmesiasse 11, Il e 17 oven rom 001

TRANESS 1211

oycie 20000

A 0N E0D ane 2102801
1801800 ayc 2.102E <01

sones pioked In (ol Blocks

| — T I L R

Fig. 3.2.4.1-2 Problem Discretization for 17 Arc Model

In UDEC, the rounding length specified for a problem determines
the distance from the corner of a block to the point where forces
and displacements with adjacent blocks are actually calculated.
In genevral, smaller rounding lengths lead to more accurate
results. 1In this problem, various combinations of joint normal
stiffness, rounding length, thermal solution method (i.e., im-
plicit or explicit), and number of arcs were used as shown in
Table 3.2.4.1-1. 1In all runs, the joint shear stiffness was set
equal to the joint normal stiffness.
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Table 3.2.4.1-1

SOLUTION PARAMETERS USED IN THERMO-ELASTIC
ANALYSIS OF A HOLLOW THICK WALL CYLINDER

Therral Joint

Solution Rounding Stiffness

Run Arcs ~Scheme ~ _Length (mm) ~{GPa/m)
1 7 Expl. 10 60
2 7 Impl. 10 60
3 13 Expl. 10 60
4 13 Impl, 10 60
5 13 Impl. 10 600
6 13 Impl. 10 6000
7 17 Impl. 1 600

Results

The results for radial and tangential stress versus radial dis-
tance are shown in Figs. 3.2.4.1-3 and 3.2.4.1-4, respectively.
I general, the UDEC results agree fairly well with the analyti~-
cal solution. Theoretically, there should be no difference be-
tween the results obtained using the implicit o1 explicit thermal
solution schemes. However, differences can recult if either
scheme is not run to the same "equilibrium".

Reference

Timoshenko, S. P. and J. N. Goodier. Theory of Elasticity, 3rd
Ed., New York: McGraw-Hill, 1970.
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Run #1
Run #2
© Run#3
x Run#4
Run #5
* Run #6
Run #7

>

-

" " " L] xn

. 10
Radius (m)

Fig. 3.2.4.1-3 Comparison of UDEC Results of Radial Stress With
Analytical Solution for the Case of a Hollow
Thick-Walled Cylinder Subjected to Thermal
Loading

L

Run #1
Run #2
© Run #3

T ntial
ﬁﬂ'
(MPa)

Run #5
« Run #6
Run #7

.
*

. * 4
L L ‘4 L) L} 10 " " " 1" o

Radius (m)

Fig. 3.2.4.1-4 Comparison of UDEC Pesults of Tangential Stress
with Analytical Solution for the Case of a Hollow
Thick-Walled Cylinder Subjected to Thermal
Loading



Rata lnput File

iﬁiﬁﬁk:*itiiiﬁﬁ'it.ﬁﬁttﬁﬂ*ﬁtiﬁﬁﬁiﬁtt*t*ﬁttiiﬁtlttﬁiﬁtti*iut*

* Verification tes: - Thermuelastir Response of a Hollow,
* Thick Wall Cylinder. 1..'s data e is for implicit

* Thermal solution with fine disc:r . ition.
ﬁttﬁii*iﬂ*ttﬁnt*ittitlitﬁtlﬂttﬁ*tt' ¢ WA R R AR A AR R R R

¢ configure thermal protlem
the

head
Thermoelastic jkn=jks=6e11. Implicit sch. 17 arcs. ro=.001

round=.001

metry.Many blocks to get better zoni
020 20 20 20y0 " e

oo
mament

b =3 ONCO DD e 0t

oo mO o
©

arc
arc
arc
arc
arc
arc
arc
arc
arc
erc
arc
arc
arc
arc

COOCOCOODOO00O
Pt et i
Cp®o

®o
S

828238
o

*get joint at 45 degr.
er 002020

*delete outside
del 10 20 10 20




*set material
prop m=1 de-

prop m-l jooh-lezo jfri

prop m=1 thexp=40e-6 cond=5 spec=900
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c-8-2 4e9 ﬁm-ﬁoll jks=6el1
jtan-l.

rature=323 K
initem 323 0 20 0 20

perature=323.00 fixed at radius= 20.000000

E?E‘E?ééééé??é??é?%ég

323.000000
$283.000000
323.000000
323.000000
323.000000
323.000000
323.000000
323.000000
323.000000
323.000000
323.000000
323.000000
323.000000
323.000000
323.000000
323.000000
323.000000
323.000000
323 000000
8283.000000

19.932182
19.736310
19.416763
18.978502
18.423237
17.764385
16.976070
16.093094
15.110896
14.035636
12.873642
11.632378
10.319396
8.942790
7.611060
6.035001
4517768
2.974661
1.413224
-0.166926

20.00616F
19.9566804
19.784405
19.490026
19.075483
18.543337
17.896864
17.140049
16.277661
15.314716
14.257452
13.112286
11.886276

-0.156918
1.413231
2.774668
4.617765
6.033008
7.6110656
8.942794
10.319398
11.632380
12.873645
14.035538
15.110898
16.093006

1.726100
3.284640
4.822929
6.331483
7.801002
9.222425
10.586987
11.886278
13.112288
14.2574564
15.314719
16.277563
17.140051

10.586985 16.976072 17.896866

9.222421
7.800997
6.331478
4.822923
3.284633
1.726093

17.754387
18.423239
18.978604
19.416761
19.785310
19.932182

*temperature=473.00 fixed at radius= 0.500000

473.000000 0.426314 0.506699 -0.025000
473.000000 0.231699 0.451314 0.231699
tfix 473.000000 -0.025000 0.275000 0.426314

‘t.bermal histories
thist temp .5 0

thist temp 150
thist temp 19 0

RE

18.543339
19.075486
19.490026
19.784406
19.966804
20.006165

0.2756000
0.451314
0.606699
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*mechanical history
h ncye=500
h nstr 927

*boundary conditions
b0 .420.1-1.1yvel0
bo-1.1.420.1xvel0

pun thermal problem (implicit). Tolerance: /2*minimum zone size
run temp=500 delt=5000 age=5e8 step=2000000 implicit tol=.026

*then run mechanical problem
cy 20000
save thme9.sav

quit
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ﬁitttﬁt'ﬁ!tﬁﬁtitﬁitﬁtittﬁ**hi*ttﬁtﬁitttti.t-itﬁﬁ!ﬁlililltﬁiﬁ

* Verification test - Thermoelastic Response of a Hollow,
* Thick Wall Cylinder. This data file is for explicit

* Thermal solution with coarse discretization.
ittﬁﬁﬁt‘iltt't'tittttittt'ﬁtﬁtltttt XA R A RARR R R R ARk SRR R RN

* configure thermal problem
therm

head
Thermoelastic jkn=jks=6e10. Explicit sch. 7 arcs.

round=.01

*set geometry (one quarter of cylinder).Many blocks to get good zoni
bl C g%o 20 20 20 20% e

arc00 .

del0.32.3

"set joint at 45 degr. for tangential stress recording
er00 2020

*delete outside of cylinder
del 10 20 1C 20

*sot material groperties

prop m=1 de=2000 k=4e9 .8-2.4499 jkn=6e10 jks=6e10
prop m=1 jeoh=1e20 jfric=0 jten=1e20
prop m=1 thexp=40e-6 cond={ spec=9800

®create zoning
gen edge 20

damp auto

*initial teraperature : 323 K (everywhere)
initem 323 0 20 0 20




*temperature=323.00 fixed at radius= 20.000000

thix 823 000000 19.932182 20.0061€6 -0.156918 1.726100
tfx 3823.000000 19.736310 19.956804 1.413231 3.284640
tix 823.000000 19.416763 19.784405 2.974668 4.822029
tix 323.000000 18.978502 19.490026 4.5177656 6.331483
thix 823.000000 18.423237 19.075483 6.033008 7.801002
thx 323.000000 17.764386 18.543337 7.511066 9.222425
tfix 323.000000 16.976070 17.896864 8.942794 10.586987
tix 328.000000 16.093094 17.140049 10.319398 11.886278
thix 323.000000 15.110896 16.2775661 11.632380 13.112288
thx 823.000000 14.0355636 15.314716 12.873645 14.267464
tfix 823.000000 12.873642 14.257452 14.036638 16.314719
tix 322.000000 11.632378 13.112285 15.110898 16.277563
thx 323.000000 10.319395 11.886276 16.093096 17.140051
thix 3823.000000 8.942790 10.586085 16.976072 17.896866
thx 823.000000 7.511060 9.222421 17.764387 18.543339
tx 823.000000 6.033001 7.800997 18.423239 19.075486
tix 323.000000 4.517758 6.331478 18.978504 19.490026
thx 823.000000 2.974661 4.822923 19.416761 19.784405
thix 823.000000 1.4i3224 3.284633 19.735310 19.9566804
thx 323.000000 -0.156926 1.726093 19.932182 20.0061656
*temverature=473.00 fixed at radius= 0.600000

thx 473.000000 0.426314 0.506699 -0.025000 0.275000

thix 473.000000 0.231699 0.451314 0.231699 0.451314

thx 473.000000 -0.025000 0.276000 0.426314 0.506699

*thermal histories (to check thermal equilibrium)

thist nteycl=500

thist temp .5 0

thist temp 156 0

thist temp 190

*mechanical histories at different joints (to check equil.)

h ncye=500

h nstr 89078

h nstr 2240

h nstr 4664

h nstr 4370

h nstr 7088

h nstr 8264

h nstr 6794

h sstr 7078

h sstr 2240

h sstr 4664

h sstr 4370

h sstr 7088

h sstr 8264

h sstr 6794
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*run thermal problem until equilibrium ( cit procedure)
ran umpssoop:&p-zoooooo" —
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W

analytical solution for thermoelastic response of cylinder

dimension ¢(200),d(200)
real nu

open (unit=11,file=‘thres’)

set parameters
a=.,5

b=20

nu=,25
e=6000.¢6
alf=40.e-6

thermal loading
ti=200.
te=50.

write (11,100)

write (11,105) e,nu

write (11,110) alf

write (11,115) ti,te

write (11,120)

format (’THERMOELASTIC PROBLEM',/)

format (’Young’’s modulus:’,f14.1,/,'Poisson’’'s ratio:’,£5.3)
format (’'Coefficient of thermal expansion ', £14.6)

format (’'Thermal loading:’,/,’ ti:17,85.1,/,' te:’,£5.1,//)
format ('’ radius sigr (MPa) siqt(MPa)',/)

compute stresses

al=alfre* (ti~te)/(2.%(1.-nu)*alog(b/a))

r=.5

do 200 i=1,40

ligr-al*(-alog(b/r)-a'*Z/(b**2-a**2)*(1 ~p*%2/r**2)*alog(b/a))
sigt=al* (1.-alog(b/r)=a**2/ (b**2-a**2) * (1,+4b**2/r**2) *alog(b/a))
sigr=gigr*l.e~-§

sigt=gigt*l.e-6

write (11,130) r,sigr,sigt

format (£5.2,2f14.3)

format

if (r.eq..5.0r.r.eq.l..or.r.eg.3.,) write (11,135)

if (r.eq.5..0r.r.eq.10..0r.r.eq.15..0r.r.eq.20.) write (11,13%)
re=r+.5
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THERMOELASTIC PROBLEM

Young’s modulus: 6000000000.0
Foisson's ratio:0.259
Coefficient of thermal expansion: 0.000040
Thermal loading:
t1:200.0
te: 50.0

radius sigr (MPa) sigt (MPa)

0.50 0.000 -41,524
1.00 -13.502 °1’.003
1.50 -14.199 '13 030
2.00 ~13.495 -9.99
2.50 -12.583 -7.998
3.00 -11.691 -6.519
3.50 -10.865 «5,339
4.00 «1%.111 -4.355
4.50 -9.423 -3.510
5.00 'C 794 -2 7“
5.50 -.021‘ -20107
6.00 -7.681 ~1,509
6.50 -7.185 -0.963
7000 -‘0723 -00“2
7.50 -6.290 0.003
8.00 -£.883 0.436
8.50 ~5.499 0.841
9.00 -5.136 1.222
9.50 -4.732 1.581
10.900 ~4.465 1.921
10.50 -4.153 2.244
11.00 -30'55 20552
11.50 -3.570 2.845
12.00 -3.297 3,126
12.50 -3.034 3,395
13.90 -2.782 3,653
13050 -2053’ 30901
14,00 -2.308 4.140
14.50 -2.079 4.370



’.3.‘.1'8.

T -

l&-’ﬂ ~1.648 .. 808
16.00 ~1.443 5.016
16.50 -1.245 5.217
17o00 .100'2 $.413
17.50 -0.864 5.603
18.00 -0.662 5.7%%
18.50 -0.508% 5.966
19 00 -0.332 6.141
19 .30 ~0.164 6.311

20.00 0.000 6.476
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3.2.4.2 Infinite Slab with Applied Heat Flux

;‘h:a problem can be found in the UDEC User’s Manual, pp. 7-46 to
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3.2.5 Fluid Flow Problems
The following fluid flow problem can be found as noted.

Steady~State Fluid Flow with Free Surface (see UDEC
User’'s Manual, pp. F-1 to F-7)




3.2.5.1 Steady-State Fluid Flow with Free Surface

This problem is given in Volume 2 of this document, UDEC User's
Manual, pp. F-1 through F-7.




3.3~1

3.3 I:?g?bl THERMOMECHANICAL ANALYSES OF A WASTE EMPLACEMENT
DRIFT

This problem consists of transient thermal mechanical simulation
of the behavior of a drift in which heat producing waste is
placed vertically beneath the floor. The specific problem pre-
sented .ere is adapted from Christianson (198%5).

Assunptions and ldealizations

The emplacement drift being modeled is in the center of an em-
placement panel. This assumption allows symmetry to be imposed
reducing the computation time. The emplacement of waste in the
panel is assumed to be instantaneous.

The analyses ignore any effects of the joint on the thermal con=
ductivity of the vock ma+s. Based on the results of field tests
involving thermal conductivity of rock masses, this assumption
appears reasonable, The analyses also ignore the effects of
fluid (i.e., air and water) convection in the rock mass and em=~
placement room. The analyses ignore effects of boiling of pore
water which could affact heat transfer rates. The thermal pro-
perties used assume fully saturated conditions.

A linear stiffness Mohr-Coulomb joint model is used in this anal~
ysis. Whlle more complex models exist, such as the continuously
yielding model (Cundall, 1988) and the Barton-Bandis model
(Barton, 1982), thesc models v.ti in detail of the behavior, but
the fundamantal effects are similar.

In UDEC, each joint is explicitly modeled with variable spacing
and persistence. The matrix in UDEC is 2ssumed to behave elasti-
cally. Thic means that inelastic behavior is allowed to occur
only in the joints. Figure 3.3-1 illustrates the pattern of
joints used in the UDEC modeling.

Conceptual Considerations

Vertical emplacement of waste is being considered in this analy-
sis. It is assumed that the generzl conc’ 'sions will also apply
to the horizontal emplacement alternative, Figure 3.3-2 illus~
trates the vertical emplacement concept. In this example, the
spent fuel (SF) and defense high-level waste (DHLW) are assumed
to each nave a 7.5 ft. pitch.
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Fig. 3.3-1 UDEC Geometry Used for Example Thermomechanical
Analysis of a Waste Emplacement Drift (with blowup
of drift area)
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Fig. 3.3-2 Vertical Emplacenent Concept



Using two-dimensional models requires that the discrete location
of the waste containers be distributed uniformly along the ais-
posal room. In the case of vertical emplacement, this means the
location of a vertical heat-generating trench at the center of
the floor along the axis of the room, Because of the transient
nature of the problem as well as the geometric layout of the

waste, the "trench" concept is expectsd to be an adequate
{jdealization of the emplacement.

Figure 3.3-3 illustrates the conceptual model of the vertical and
waste emplacement. Because of 3ymmetry, only one half of the
disposal room and pillar nerds to be included. The thermal
boundary conditions are adiapatic. The two horizontal boundaries
have been renoved sufficiently far from the heat generating waste

to remain at the initial temperature of 26 °C for the time period
simulated,

g; Verticol Pracoure = =7 MPa

T

Adiahatic Poundery

Inilsl Conditions: T, = 8&°C
- o ® ~0.8 Mie

«7 MP
Disposal On e e

tdd m

. Hool Generuling
S” and DHLY

e

Fig. 3.3-3 Conceptual Model of Vertical Emplacement Concept
(compressive stresses assumed negative)




The kinematic boundary conditions are also shown in Fig., 3,.3-3,
and are such that the two vertical boundaries are restricted from
moving in the horizontal direction, while free to move in the
vertical direction., The lower horizontal boundary is restricted
from moving in the vertical direction, while free to move in the
horizontal direction. The upper Lorizontal boundary is a free-
to-move pressure boundary., The ini-ial vertical and horizontal
Stresses applied to the models are -7 MPa and ~3.5 MPa. \Note,
that compressive stresses are ne~stive.

Haste Form Characteristics

The initial power of a §F container at the time of emplacement .s
Set conservatively to 3.2 XW. The initial power of the DHLW con-
tainer is chosen as (.42 kW. Also in this example, the power

outgut of the two waste types is combined and treated as spent
fuel.

The thermal decay characteristics of SF given by Peters (1983)
for ten-year old waste:

Spent Fuel P(t) = 0.54 exp(~1n(0.5)t/89.3) +
0.44 exp(~1ln(0.5)t/12.8)

where P(t) = jormalized power, and

t = time in years.

The normalized power as a function of time, as described from the
above equations as well as that given by Mansure (1985) for SF

are shown in Fig. 3.3«4., As seen, the two approximations for SF
are very similar,




~ Mansure
(1965)

* Fotery
(1983)

- Peteny
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Fig., 3.3-4 Normalized Power as Function of Time

Material Properties

The base thermal and mechanical properties useu are shown in
Table 3.3-1.
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Table 3.3-1

THERMAL AND MECHANICAL PROPERTIES USED IN EXAMPLE
THERMOMECHANICAL ANALYSIS OF A WASTE EMPLACEMENT DRIFT

Property Units
Bock ilags Property
Bulk Density 2.34 g/ec
E 15.. GPa
Poisson’s ratio 0.20
k (sat) 2,07 W/m K
Cp (sat) 2,25 j/em3 K
Therm Exp. 10.7E~06 1/K
YyRant _property
Kn 1E+0S MPa/m
Ks 1E+05 MPa/m
Cohesion 1.0 MPa
Friction 0.8 Coef

Dilation 0.0 Degrees
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Medeling Seguence

The input instructions used to generate the UDEC results are ap-
pended. The modelling sequence used was:

¢ EXCAVATION OF THE DRIFT AT TIME = 0

(Deformations -and stresses are determined throughout the
rock.)

e INITIAL WASTE FMPLACEMENT AT TIME = 0

(Heat transfer calculations start. The drift is not ven-
tilated during this period. Adiabatic boundaries are as-
sumed for the emplacement drift., )

¢ THERMOMECHANICAL RESPONSE AT 50 YEARS

(The thermal/mechanical response of the rock is predicted
at 50 years,

Resuits

The results of the analyses are shown in Figs, 3.3-5 to 3,3-9,
Figures 3.3-5 and 3,3-6 show the stress and displacement distri-
putions which result from drift excavation. The temperature dis~
tribution at 50 years is shown in Fij. 3.3-7. Figure 3,3-8 shows
the stress distribution at 50 years. The extent of joinu shear
displacement is shown in Fig. 3.3-9. In UDEC, shear displacement
magnitudes are expressed by plotting multiple paraslel joints
along a joint. The thicker lines have experienced more shear
displacement than thinner lines.
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Fig. 2.3-8 Principal Stress Distribution in the Rock at
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Fig. 3.3-9 Shear Displacement Along the Joincs at
Time = 50 X wars
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Rata Joeut File

tit.t.i!tﬁﬁ.t\-tt.!t.!lttittt‘tt.tt!iittttttt.ttitlit!ttﬁi..ﬁttltt.tintt
"
THFRMAL/MECHANICAL ANALYSIS *
»

Input file to UDEC 1.5 for determining emplacement room behavior.
Vertical emplacement scheme ... .
>
thltttttli.lttitttt.ltttlt.tttitttttittt.tilttttitt-tttittntttﬁtnn*itt

% . % R %=

EEE

TUFF 8 degree dip - 140m model
round=.006 P’
block 0,-40 0,100 19.2,100 19.2,-40

.........l....'...“..

block cracks
“.0 t‘.‘..‘.t.‘.t..‘.
split 0,43 112,43
npllt 0,16 19.2,16

.......0‘.0...“..00‘0.‘.

rla cement room cracks
C... ....“..‘0..'..“.0

crack 0.0,36.5 1.0,36.5
ck

5 2.0,36.0
crack 2.0,36.0 2.5 36.0
crack 2.5,27.0 2.5,40.0
t.zuck 0.0,30.0 6.0,30.0

SEERRRRAN AN RN RN ERR SRS

mﬂﬂﬁxg'ﬂﬁgﬁfe"qrfl...
0 160437. 7,16

blo 2,01,
set 00 01,0200,
get 90,0 30,0 0,0 1,0
|plit i 167,43
0.0.0.‘!0.‘...0.#...‘0“‘.
* make split for heaters
T rrr e L L L L L
split 0,28 1,28
split 0,26 1, 126

|pht 0,241 24



...’00.0‘0000...00.0000..0
* adaiti
Ll T Y LI I

=t W

»

awPui.uo
s_:,-iu
8-‘3"88

358
3

!’gg:?
oo
ve 12

TREREEEEESES
&

, 2.5,36.9 2.5,40

AL LR LI TA T T Ty TS

on
LA L L LI LT LT T T T I L

t 04 195, 3.4

t 10.5,10 10.5,16
ﬂz 14,4 14,16

CRERERNERERE PSRBT RN RS

on
SEEERRNREINNNNERRBREON NG

tO.“ 10.2,46
ol 9249

_ sogo

LA L L LI I LI T T T YTy

* right side

3.3'12
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eplit 10.6,16 10.5,43
eplit 14,16 14,43
0518

9

8

9.
9.
0.

el

generate zones
20
7

7 16,43 auto 1.4
gen 7,20 16,43 auto« .
en 0,20 4,16 auto ¢.2
gen 0,20 -40,4 auto 14
gen 0,20 43,5 auto 4.2
gen 0

4
,20 55,100 auto 14
: define material properties and initial conditions

.. ASSIGN MATERIAL PROPERTIES (REF: SCP-CDR CHAP. 2, SEC. 2.3.1)
¢... UGING THE JOINT PROPERTIES AND "ROCK MASS" PROPERTIES.
*... USLIIG THE DESIGH' VALUES FROM

- TABLES 2-4, 2-6, AND 2-7.

— THE ROCK 18 CHARACTERIZED AS AN ELASTIC/PLASTIC ATERIAL

- WITH VERTICAL AND HORIZONTAL. A MOHR-COULOMB FAILURE
CRITERIO

N
:-- I8 USED FOR THE JOINTS ...
®
¢... Rock Mase:
prop matelk =8.3%e0 g = 6.2vel dens = 2340

S Rk e 1.0011 jks = 1.0011 jooh = 1.006 &

prop ma Jin = 1l.Ve = 100 = 1,
&1 000 jfric= 0.800 jtens= 0 &

e = 1.0e3 ks = 1.Ced

¢... THERMAL PROPERTIES OF THE ROCK ...
¢ (Ref: SCP-CDR Chap. 2, Sez. 2.3.1.8, Table 2-8)
prop mat=1con = 2.07 thexp= 1075 spec = 981
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INITIAL STRESS FIELD (MPa)...
*.. REFERENCE: SCP-CDR CHAP, 2, SEC. 2.3.1.9
* (The iritial vertical stress is about -7 MPa at

* the disp.sal room horizon. The horizontal stress
: is determined a8 0.5 x SYY.)

tndtu +119.2 -49.1 100.1 stress -3.5€6 0 -7.0e6 ygrad 11700 0 23400

*~ SET THE INITIAL TEMPERATURE TO 26 DEG. CELSIUS ...
gdm “ '1.1'-8 "1.101

grav 0,9.8

*... SET KINEMATIC BOUNDARY CONDITIONS ...

* (The two vertical es are s try planes, thus,
* they are restricted from moving in the horizontal (x

* direction. The bottem horizontal bo 13 restricied

*  from moving in the vertical (y) direction. top

*  horizontal bo isa ‘~~move pressure boundary.
*  The pressure is & downward, and is equal w the

: initial vertica! ~tress

bound -.1 1.3 99.9 100.1 str -3.526 0 -7e6 ygrad 11700 0 28400
pound -.1 .1 -40.1 100.1 xvel 0

bound 17.9 19.3 -40.1 100.1 xvel 0

Eound -.119.8 -40.1 -39.9 yvel 0

* run time parameters

damp auw

znucalo on

* cycle to brium

cy 1000 P

reset disp

reset jdisp

:-- EXCAVATE THE DISPOSAL ROOM ..,
delete v,2.5 30,35

delete 2,2.3 35,35.5
e‘loto 0,1.56 35,36.2

: set history points
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:-- DEFINE POINTS FOR WHICH TEMP, HISTORIES ARE RECORDED ...

reset hist

this nte=500 ta'po 1

this tem 0.0 30 * ‘loor center

this tem 0.0 36.7 * crown center

this tera 2.5 30 * floor rid intersection

* histories along a line out from heater center

ghit tem 1 25 tem 2,26 tem 3,26 tem 5,26 tem 9,25 tem 18,26

:-- DEFINE POINTS FOR WHICK MECH HISTORIES ARE RECORDED ...
hist nc=100

=4

®

Ead
OO pa

5
0
0
2
5
0
0

bintr)gol
* perform mechanical calculations for t=) years
gy&lo 3000

d
0 Years, JKN=1lell, Cohesion = 1MPa, Friction = 38.7, Dilation = 0
:avo mo0.sav

*... ASSIGN THE NDECAYING HEAT SOURCE WHICH SIMULATES THE
*... COMMINGLED SF AND DHLW ...

* (The thermal decuy characteristics are from Peters, 1983,

* SAND-2497. The initial heat generating power per meter

+  of room length is 713.56 W. Because oha‘n»ry only Lalf

¢ of thimmr is applied. Note that the y coefficients

*  have dimension 1/sec and not 1/year, which is commonly

*  used in the literature ...

: decay constants for SF are also used for the DHLW.

thapp -.1,.1 23,27 flux 48,17 -2.46079¢-10
Ehapp «.1,.1 28,27 flux 41.03 -1.716788e-9

*... START THE HEAT TRANSFER SOLUTION USING THE EXPLICIT
?CHEME

;un élelt 8e4 t=200 s=100000 age=1.58¢9 impl
ea

50 Years thermal results only

:av t50.sav



® perform mechanical calculations for t=50 years
cycle 3000
50 Yeaus, JKN=1e11, Cohesion = 13Pa, Friction = 38.7, Dilation = 0

save m80.sav
ret
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3.4 CODE MAINTENANCE AND SUPPORT

Itasca Corsulting Group maintains a formal system for performing
maintenance and updating of the UDEC code, as well as procedural

control,

program
(1)
(2)
(3)

(4)
(5)

for ensuring Quality Assurance. The Quality Assurance
provides a formalized system for:

testing of the code against relevant analytic solu-
tions or test problems;

reporting and documentation of errors i. code
logic, and fixing of these errors;

Maintaining a system of unique identifiers for the
code to identify all changes;

Documentation ¢f all code modification; and

Peer code reviews,

Figure 3.4-1 gives an organization chart showing the management
of the UDEC code with the Itasca Consulting Group.

CODE CUSTODIAN

L Long
R Hant P.A. Cundall M. Chistianson M. Mack Jose Lemos
Engneer Engineer Engineer Engineer Engineer

Fig. 3.4-1 Organization Chart Illustrating Management of UDEC

Code Maintenance and Support

* Quality Assurance ,.lan has not been submitted for formal NRC
approval.



The code custodian is Dr. Loren Lorig who maintains code documen-
tation, defines the required work effort, and arranges internal

and peer review as necessary. Since the UDEC code is marketed to
the general engineering coumunity, modifications and additions

are made on a continuing baeis. Depending upon the modificaticn,
individuals with varyinc expertise may be required for the devel-
ognontl It is the reponsibility of the code custodian to assign
the work effort to developmunt engineers listed under Fig. 3.4-1,

Sode Modifications

Code modifications may result from two sources: (1) errors dis-
covered in the code logic; or (2) planned acdditions to the code
logic. A development plan for code updates is defined by Itasca,
with updates issued on a roughly yearly basis. These updates may
include items such as the addition of heat transfer logic, fluid
flow, etc., and thus may be considered major additions, Code
modifications resulting from errors or minor code changes or ad-
ditions are handled by the code custodian on an as-needed basis,
or any Itasca engineer at his discretion.

Two r1ecords are kept of code modifications: (1) paper hard copy:
and (2) a disk "mod" file. The code custodian (with or without
consultation with other staft) defines the necessary scope of
work to be performed and completes a code modification form (rig.
3.4-2). This form is kept in the permanent UDEC files. An addi-
tional form, called the UDEC.MOD file is kept on floppy disk in
the disk arciives at Itasca. As the code developer performs mod-
ification to the code, he updates this file with a complete des~
cription of the changes made. The UDEC.MOD file therefore pro-
vides a history of code modifications. A hard copy is kept in
the permanent UDEC files.



CODE MODIFICATION
P bt

PROPOSED MODFICATION

PURPOSE

NEW COMMAND /XEYWORD

MODE KATION FLAY SR U ¢ REVRED W) 68 Ca=tTD, 500 th CAIYD)

PERSON RESPONSIBLE
EST. TIME REQUIRED
REVIEWED BY

L GRS -

iy p—
COMPLETION DATE
SOMMENTS

REVIEWER DATE
ATTACH LISTING OF 10DFED CODL

Fig. 3.4-2 Code Modification Form
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A simple numbering system is followed for setting a unigque code
identification number. Any code modification which does not
result in a need to change the save files created by the code is
considered a n;ggf_fggLfZgiﬁggu. This is because major modifica-
tions require additional offsets to be added to the linked listed
arrays in the program., Therefore, previous versions of the code
will not be compatible with the new array structu.e, and it is

imposaible to restart the old save files. The basic version num-
bering scheme is .

Version ICGA.XY

where A is an integer starting with 1, X is an integer which is
incremented whenever a majer modification is made, and Y is a one
or two-digit number which is incremented whenever minor modifica-
tions are made. The Y value is reset to zero each time a major
modification is made; the previous minor modifications are con-
sidered to be part of the ensuing major modification., The exam-
ple below illustrates a series ¢f minor and major modifications.

Version I1C31.400
1.410

- 6 minor modifications

1.50 Save file change constituting a major
modification, version 1.50 includes all
previous modifications.

The history of each minor and major modification can be traced
via the UDEC.MOD file.

Code Verification

Code verification involves performing a set series of problems
with analytical solutions which exercize all critical functions
of the code operation. The problem set used for verification is

given in chapters 7 and 8 of Vol. II, User’s Manual. New code
logic may require additional problems to be added to this set.
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Iechnical Review

Technical peer review of the UDEC code is conducted at the cCis-
cretion of the code custodian. Dr. Peter Cundall, author of the
original UDEC code is used in this capac1t¥. It is noted that
I'DEC is actively used for research and design by approximately 50
organizations worldwide. Approximately 30 of theee have access
to the UDEC source tode. In effect, this group constitutes a
peer review in that they are submitting the code to a wide vari-
ety of problems on a continuous basis. The comments and error
reports of this users group form a portion of the basis for code
modifications and additions,

Restrictions

Itasca will distribute the UDEC source code to researchers, al-
though generally, only an executable version of the code is dis-
tributed. Official copies of the source code are kept in Itasra
offices and may e obtained through special arrangement with the
UDEC Code Custodian,
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