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ABSTRACT

As modeling efforts expand to a broader spectrum of areas the amount of

computer time required to exercise the corresponding computer codes has
o become quite costly (several hours for a single run is not uncommon). This

costly process can be directly tied to the compicxity of the modeling and
,

to the large i.mber of input variables (often numbering in the hundreds).

Further, the complexity of the modeling (usually involving systems of dif-

ferential equations) makes the relationships among the input variables not

mathematically tractable. In this setting it is desired to perform sen-

sitivity studies of the input-output relationships. Hence, a judicious

selection procedure for the choice of values of input variables is

required. Latin hypercube sampling has been shown to work well on this

type of problem.

However, a variety of situations require that decisions and judgments

be made in the face of uncertainty. The source of this uncertainty may be

lack of knowledge about probability distributions associated with input

variables, or about dif ferent hypothesized future conditions, or may be

present as a result of different strategies associated with a decision

making process. In this paper a generalization of Latin hypercube sampling

is given that allows these areas to be investigated without making addi-

tional computer runs. In particular it is shown how weights associated

with Latin hypercube input vectors may be changed to reflect different pro-

bability distribution assumptions on key input variables and yet provide an

unbiased estimate of the cumulative distribution function of the output-

variable. This allows for dif ferent distribution assumptions on input

.

variables to be studied without additional computer runs and without

vii
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fitting a response surface. In additica these same weights can be used in
i

a modified nonparametric Friedman test to compare treatments. Sample size

i requirements needed to apply the results of the work are also considered.

'The procedures presented in this paper are illustrated using a model asso-
'

|
clated with the risk assessment of geologic disposal of radioactive waste.
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EXECUTIVE SUMMARY

The nation's energy problems have created a need for modeling various

physical phenomena. For example, one type of model seeks to simulate the
.

complicated workings of a nuclear reactor in order to determine the

operating conditions that optimize the ef ficiency of the reactor within-

acceptable safety standards. Another type of model attempts to recreate

the physical environment in the vicinity of a proposed burial site for

nuclear waste in order to mimic the behavior of potentially harmful nucli-

des as they migrate through geologic formations and change chemical form

over a long period of time. A third type of model incorporates many

economic, social, political, and geographical characteristics of our

society in order to examine possible relationships among those variables,

in an attempt to measure the environmental impact of various alternative

sources of energy.

Computer codes that implement the mathematical models for these and

other phenomena are in everyday usage by both government and private

industry. These codes have several characteristics in common. They repre-

sent serious attempts to include all variables that may be important to the

process being modeled and therefore each code usually has many input

variables, often numbering in the hundreds. The distribution function of

these variables is frequently not well known. In addition, the rela-

tionships among the variables are usually complex, modeled only by systems

of dif ferential equations which are not mathematically tractable. The com-
~ bination of many variables and the complex relationships among the

variables results in a computer code that of ten requires several hours of
,

computer time tc make a simulation run for a single input vector. Because

iX
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of the expense and time involved on the computer, only a limited number of

simulation runs is feasible. On the basis of these few runs , numbering

sometimes between 50 and 100, a complete analysis of the model is desired.

The analysis usually includes, but is not limited to, (1) the estimation of
.

the means, variances, and distribution functions of several output

variables, (2) an analysis of the model's sensitivity to the various input -

variables, and (3) the effect that uncertainty regarding the distribution

functions of the input variables has upon inferences pertaining to the out-

put variables.

Extraction of the amount of information indicated in the previous

paragraph requires the development of new statistical techniques. Latin

hypercube sampling, as introduced by McKay, Conover and Beckman (1979),

appears to provide a satisfactory method for selecting input variables so

that good estimators of the means, variances, and distribution functions of

the output variables may be obtained, providing the answer to part (1) of

the desired analysis. The model's sensitivity to the various input

variables is then handled by partial rank correlation coefficients as

described by McKay, Conover and Whiteman (1976). This procedure satisfies

part (2) of the desired analysis. In order to handle part (3) of the

desired analysis we have extended the development of Latin hypercube

sampling in this paper. The generalization of Latin hypercube sampling is

presented in Section 2. Its application to the problem at hand enables the

distribution functions of the input variables to be changed from those

assumed originally, and, without making any computer runs other than the

ones used in the earlier analysis, enables estimates of the means,
-

variances, and distribution functions of the output variables to be made.
e

The details of this procedure are given in Section 3.

X
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Starting with Section 4 this paper is concerned with an example,

showing how the methods of Sections 2 and 3 are used in a model which

depicts the movement of nuclides through geologic media in the vicinity of

an underground depository for nuclear waste. Section 4 illustrates the
.

straightforward application of the procedures outlined in these sections.

Comparisons are also made among other sampling procedures such as repli--

!

cated Latin hypercube sampling and random sampling.

Not all models allow for the straight forward application of this or any

other method. One desirable property of this procedure is that it is

flexible enough to adapt to unusual situations that may develop. For*

example, in the model we use in Section 4, the movement of nuclides is

influenced by conditions that exist in the v.einity of the burial site.

However, these conditions may change unexpectedly at some time in the long

range future. Since it is not possible to know precisely what these con-

ditions would become, the best we can do is hypothesize what conditions

could reasonably exist- (call these conditions " scenarios"), model these

scenarios and run the code for these scenarios. The purpose of these
*

calculations would be to order the scenarios with respect to their output

random variable. Since the number of scenarios could easily reach several

hundred,'an efficient technique is required for the ordering. In Section

.

5, we show how the results of Sections 2 and 3 can be used with changing

assumptions of distributions on the input variables to obtain the desired

ordering.

This work is part of a project to develop a methodology for the exami-
~

nation of the long-term public risk from radioactive waste repositories in
i

deep geologic formations. This project is being conducted at Sandia
,

|

Laboratories with funding provided by the Nuclear Regulatory Commission

:

Xi
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'(NRC) and assists the NRC repository licetising program. It is anticipated

.that the methodology developed in this project will be used by the NRC

staff in the evaluation of proposed radioactive waste repositories.

.
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1. INTRODUCTION

Evaluation of a waste repository site to verify or deny compliance with

regulatory standards will amost certainly involve estimates of the long
.

term risk assoc' ated with the waste disposal activity. Thus risk analysis

may play an important role in the decision to license waste repositories.,

Because of the long times which must be considered in waste disposal risk

analysis, it is necessary to make extensive use of mathematical models in

such an analysis. Some of the physical processes which will be repre-

sented by mathematical models include; (1) thermal and mechanical effects

induced by interac' ions between the radioactive waste and the host rock,

(2) ef fects of disruptive features on the groundwater flow system, (3)

radionuclide migration in groundwater and (4) radionuclide movement through

the surface environment and human uptake. The risk results obtained from

the use of such models are subject to considerable uncertainties. These

uncertainties arise from two principal sources; (1) uncertainty in the-values

which serve as input to the models and (2) uncertainty in conditions which

may exist in the vicinity of the repository in the long term future. For

risk results to be useful in the repository licensing nrocess, these uncer-

tainties must be taken into account.

This report presents statistical techniques to account for uncertain-

ties in three important areas of analysis of waste repository sites. These
1

are; (1) sensitivity analysis of computer models, (2) scenario screening,
|

(3) estimation of risk with uncertainties. Definitions of standard sta-

tistical terminology, with which some readers may be unfamiliar, may be-

found in Conover (1980).
.

1
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1.1 Sensitivity Analysis of Computer Models

The primary purpose of sensitivity analysis is to determine those

model input variables whose uncertainties must be accounted for in risk

analysis. Sensitivity analysis can also play an important role in
.

directing research toward those site and radioactive waste properties which
.

.

contribute most to risk uncertainties. .

Computer models used in the analysis of radioactive waste disposal<

sites are often large and complex. Because these codes represent serious

attempts to include all variables that may be important to the process -

; being modeled, each code usually has many input variables, often numbering

| in the hundreds. The distribution function of these variables is fre-

! quently not well known. The combination of many variables and the complex
i

relationships among the variables results in a computer code that may

require several hours of computer time to make a simulation run for a

single input vector. Because of the expense and time involved on the
,

computer, only a limited number of simulation runs is feasible. On the
4

basis of these few runs, numbering sometimes between 50 and 100, a complete

anal'ysis of the model is desired. The analysis usually includes, but is;

'
not limited to, (1) the estimation of the means, variances, and distribu-

i tion functions of several output variables, (2) an analysis of the model's

sensitivity to the various inp t variables, and (3) the effect that uncer-*

| tainty regarding the distribution functions of the input variables has upon

output variable distributions.-

I

! Extraction. of the, amount of information indicated in the previous '

paragraph requires the development of new statistical techniques. Latin -

hypercube sampling,_as introduced by McKay, Conover and Beckman (1979),
.

appears to provide a satisfactory method for selecting input variables so
1

2
.
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that good estimators of the means, variances, and distribution functions of

the output variables may be obtained, providing the answer to part (1) of

the desired analysis. The model's sensitivity to the input variables is

then handled by partial rank correlation coefficients as described by

~

McKay, Conover and Whiteman (1976). This procedure satisfies part (2) of

the desired analysis. In order to handle part (3) of the desired analysis
.

we have extended the development of Latin hypercube sampling in this paper.

The generalization of Latin hypercube sampling is presented in Section 2.

Its application to the problem at hand enables the distribution functions

of the input variables to be changed from those asumed originally, and,

without making any computer runs other than the ones used in the earlier

analysis, enables estimates of the means, variances, and distribution func-

tions of the output variables to be made. The details of this procedure

are given in Section 3.

Starting with Section 4 this paper is concerned with an example,

showing how the methods of Sections 2 and 3 are used in a model which

depicts the movement of nuclides through geologic waste. Section 4

illustrates the straightforward application of the procedures outlined in

these sections.

1.2 Scenario Screening

The risk from radioactive waste disposal is inf1 senced by conditions

which exist in the vicinity of a waste repository. However, these con-

ditions may change at some time in the long range fu tu re. As it is not

possible to know precisely what these conditions would become, the be s t we
.

can do is to hypothesize what conditions could reasonably exist (call these

conditions " scenarios"), model these scenarios and run the code for these.

3



scenarios. As the number of scenarios could easily reach several hundred,

an efficient technique is needed for orderirig and grouping scenarios in

terms of their output variable (some anpropciate measure of consequence) so

that a smaller number of important scenarios can be examined more
.

extensively. In Section 5 we show how the results of Sections 2 and 3 can

be used to obtain the desired ordering.
,

1.3 Estimation of Risk with Uncertainties

Even though sensitivity analysis may have significantly reduced the ori-

ginal number of input variables, risk analysis will still require sampling

from appropriate ranges for a large number of model input variables.

Furthermore, despite one's best attempts at scenario screening, several

tens of scenarios may have to be included in risk analysis. Thus efficient

statistical techniques are required to estimate risk with uncertainties.

The methods of this paper may be used in estimating risk with

uncertainties, in an efficient manner. There is very little direct

iiscussion of risk assessment in this paper; the emphasis is on sta-

tistical methods which are useful in the ultimate goal which is risk

assessment. However, Figure 5.5 presents estimated risk assessment curves

in an example which uses most of tie methods presented in this paper.

This work is part of a project to develop a methodology for the exami-

naticn of the long-term public risk from radioactive waste repositories in

deep g?ologic formations. This project is being conducted at Sandia

Laboratories with funding provided by the Nuc1 car Regulatory Commission

(NRC) and assists the NRC repository liceru ing program. It is anticipated
.

'

that the methodology developed in this project will be used by the NRC

staff in the evaluation of proposed radioactive waste repositories. .

4
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2. A GENERALIZATION OF LATIN HYPERCUBE SAMPLING

The material contained in this section and the next section draws ,

heavily upon results which appeared in Conover (1975) and McKay, conover

and Beckman'(1979). In most cases these results represent a generalization*

of the previous results, so that they may apply more easily to the problem

! of. sensitivity analysis.

2.1 The Rationale

The selection of particular values for the input variables to run in a

I computer code should be done in such a way as to support the original

) objectives of the computer code as much as possible. The code is designed

to simulate the true physical situation, in order to estimate certain real

quantities that cannot be measured directly. A good method of selection of

values of input variables should make possible;

) (a) probability related statements, such as those regarding the mean, .

variance, or cumulative distribution function of the output

variable,

.(b) estimates that are close to the values of the quantities being -

i estimated,

(c) an assessment of the relative importance of each input variable,

(d) some means for measuring the sensitivity of the code output with

res'pect to distribution a sumptions on the input variables.
i

Requirement (a) above is met only if all physically reasonable values |

'

of the input (and hence output) variable have some chance, however remote,

j- -of occurring. If some region of possible values of input variables is

excluded from being selected (as would be true for deterministic selection

-5

,.
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techniques), then the ability to make probability statements concerning the

output may be severely limited.

Requirement (b) states that estimators should be close to the real

values of the quantities being estimated. The " closeness" of an estimator *

is usually measured in terms of its "mean square error." When the estima-
.

tor is unbiased, the mean square error equals the variance of the

estimator. The variance of an estimator is closely related to the method

of selecting input variables and the particular code being examined. For

codes in which the output variable is a monotonic function of one input

variable, stratified sampling of the input variable usually results in a

substantial decrease in the variance of estimators of interest over that

obtained from random sampling. This is because stratified sampling forces

the entire range of the input variable ta be represented in the set of

input variables. The sampling procedure resembles a numerical integration

procedure in which the range of the integration variable is divided into

tiny pieces (the strata). The value of the integral is the expected value

of the estimator, the item of interest.

The same advantages obtained by stratified sampling of one input

variable may be obtained when the model has more than one input variable.

When there are several input variables, usually some variables are more

influential than others on the output variable. If one input variable

dominates, then that variable should be sampled according to a stratified

sampling scheme, and the method of choosing values for the other input

variables ia of little importance. However, it is usually not possible, a
.

priori, to determine the most important input variables. Furthermore, the

outpet variable may be a function of time (t), and one input variable may "

dominate the output for certain values of t, while another input variable

6
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may dominate the output for other values of t. Therefore, it makes sense

.

to use stratified sampling. for each of the input variables. Then it

doesn# t matter _which variable or variables are most important; they are all

sampled in such a way as to reduce the variance of the estimator if they.

are important.

Every stratum on one variable must have some possibility of appearing

in the code coupled with each stratum on each other variable, or else cer-

tain regions of input variables are excluded by design from the code, and'

probability statements concerning the output may be severely limited.

Therefore, a random combination of the different strata of the input '

1

variables is - required. . If there are only two input variables this method
4

| of sampling is known in sample surveys as a " Latin square." Because we are

using more than two input variables, we call this sampling procedure " Latin

I hypercube sampling." A more precise description appears in the next

subsection.
,

Requirement (c) states that a good sampling scheme should permit an

assessment of the relative importarce of each input variable. In the case,

of linear models, the relative importance of each input variable is usually
'

measured using the partial correlation coefficient. In the codes we are

discussing, the relationship is usually not linear, but it is reasonable to

assume that the input output relationship is monotonic in most cases. That

-is, if all other variables are held constant, the output is usually an

increasing (or decreasing) function of each input variable. The output may

be an' increasing . function of some input variables and a decreasing function
.

of others. In'such cases, a measure of the monotonicity of the input-

output relationship is more meaningful than a measure of its linearity...

Rank correlation ~ coefficients * provide a hecl means.for measuring

7
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monotonicity. As a result, the partial correlation coefficient computed on

the ranks of the input and output variables, called the partial rank corre-

lation coefficient, may be used as a measure of the relative importance of

each input variable.
,

Requirement (d), which states that a good method of selecting values of

input variables should provide some means for measuring the sensitivity of *

the code to distribution assumptions made on the input variables, is met

very nicely by Latin hypercube sampling. Changes in the assumptions

regarding the distribution of the input variables may be assessed without

running additional points through the code. The method for doing this is

discussed in Section 3.

2.2 A Description of the Latin Hypercube Sampling Procedure

We will represent the vector of input variables as

X = (X ,...,X ) (2.1)7 g

and let

Y = h(X) (2.2)

represent the output variable, where h(X) is a deterministic, but unknown
,

function of the input variables. The sample (Xn }, n = 1, ...,N of input

variables is selected in the following manner.

'

The range of each of the K components Xk of X 's partitioned into N

intervals {Ik , n } , k = 1, . . . ,K ; n = 1, . . . , N . The probability pk.n of each

interval is defined as

.

P ,n " (k ' k,n . (2.3)k
.

8



is dependent on X , X ,... ,X -1 then the intervals Ik.n and the pro-If Xk 1 2 k

babilities pk,n for Xk are functions of the intervals ano probabilities for

X ,..., X -1 Such a dependency does not af fect the results which follow,1 k

so we proceed in our discussion as if the input variables were independent.
.

The set of all Cartesian products of the form

* SIn 2ng 2 K"K n (2.4)

Eis a partition of the sample space S of X into N cells of respective pro-

bability sizes

P *P *

1n 2n ****P =P (2.5)Kn n1 2 K .

where

n = (n , n ' * * * '"K) (2.6)y 2

identifies the " location" of each cell.

A Latin hypercube sample of size N is obtained by first selecting N

cells and then obtaining one observation from each ecil in a manner

described as follows. The N cells are identified by tke coordinates

n1 = (n11, n12, . . . , nig)

n2 = (n21, n22,..., n2K) (2.7)

... ...

,"N " (UN1, nN2,..., nNK)

* with the condition that the N subscripts (n1k' "2k...., -) represent a

permutation of the integers (1.2, . . . ,N) , for each value of k from 1 to K.
.

In this way, we are assured that the entire range (i.e. , each interval

9
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Ikon) of each input random variable is sampled. Furthermore, we randomize

so that' every combination of cells, eligible under the above restriction,

is equally likely to be obtained. This is accomplished by requiring that

each of the K permutations be random (equally likely) permutations, and
.

that tney be mutually independent permutations. Once the selection cf N

cells is made, a random selection procedure is used to obtain an obser- .

vation within each of the N cells, and these constitute the N inputs

Xg,...,XN to the code. The " random observation" is one realization of the

conditional random variable X, given X is in the selected cell.
- .

In practice, a Latin hypercube sample may be obtained as follows. The

range of each input variable is divided into N intervals, and one obser-

vation on the input variable is made in each interval using random sampling

within each interval. Thus, there are N observations (by scratified

sampling) on each of the K input variables. One of the observations on

Xi is randomly selected (each observation is equally likely to be

| selected), matched with a randomly selected observation on X , and so on2
!

through Xg. These collectively constitute X . One of the remaining obser-I

vations on Xg is then matched at random with one of the remaining obser-

vations on X , and so on, to get X . A similar procedure is followed for| 2 2
i ~

,3 s'''',X , which exhausts all of the observations and results in a LatinX N

hypercube sample.
I
i

2.3 A General Estimator and its Mean

Estimators for quantities such as the mean, other moments, and the

distribution function for the output variables may be treated in a unified
,

These estimators are special cases of a general estimator Tmanner.

defined in this section. First T is shown to be an unbiased estimator. *

I
,

| 10 -
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'j

'

Then the estimators of interest are shown to be special cases of.T. After'

reading Theorem 1, the reader who is interested only in the application of

the method may proceed directly to Section 3.

.
Theorem 1. Let g(Y) be a function of the output variable Y, and consider

$, the statistic

!

N
T= [N ~ g(Y ) (2.8)p

j. i=1 .i

1

i = h(X ), and pn is the probability associated with thewhere, as usual, Y
i

-13
-

cell from which Xi was obtained, as indicated by Equation (2.5). Then T is

i an unbiased estimator of the mean of g(Y). That is
!
i

i

E(T) = E[g(Y)}. (2.9)
i

i
i

Proof. Denote the density function of X by f(x), Note that X doesn' t need4

i
to be continuous, but for convenience of notation we will assume X is con-

,

j- tinuous and has a density. Then the density of the conditional random
i

variable X, given X is in cell n, is2

~ ~ ~,

a

-1 (x) if x c Sf (x) = p f in. n n 1. -
~ ~ ~

= 0 otherwise (2.10)

Since the probability of selecting X from cell n is (1/N)K, and is the same
j ~ ~

'

for all ec11s, we have.-

' E(p g(Y )) = [ E(p g(Y ) | n is cell q)P(n is cell q).
g f,1 all cells q .i

11
i
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'

(* )
. -[ { ~[ P g(h(x))(f(x)/p )dx}(1/N)"

9 9all cells q' cell q - '

where pq' represents Pn given that the coordinates ni represent a par-
.

. .i - -
.

|, ticular cell, indexed as ''q". ' Continuation gives-

,

L g(Y )) = [ (1/N) . [E(p"i I
all cells q cell q.g(h(x))f(x)dx

= (1/N) [ g(h(x))f(x)dx
.

I

g . . .

I

i " (1/N) E[g(Y)]. (2.12)
'

,

I Therefore, we have

;

t

i
'

N

; E(T) = [N E(p g(Y )}
! i=1 1
;

|

I
' N '

=[N ~ (1/N) E[g(Y)] = E[g(Y)]. (2.13)
i=1

i

I
!

!

I ~' Th'eorem 'l ' states that. T is an unbiased estimator for E[g(Y)]. If

i

|
|

g(Y) = Y,. (2.14);

! .

T is an unbiased estimator:for the mean E(Y). . Ifl'

.

!

i12[ ' '

|

|

<
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.

g(Y) = Yr
'

(2.15)

then T. is an unbiased estimator for the r ih moment of'Y. If

,

g(Y) = 1 if Y j[ c
~

= 0 if Y > c, (2.16)
,

,

then T is an unbiased estimator for the distribution function P(Y j( c) =

C(c) of Y at the value e, because of

E(g(Y)} = 1 * P(Y<c) + 0 P(Y>c) = P(Y3,c). (2.17)
.

As a result of Equation (2.17), an unbiased estimate of the entire cumula-

tive distribution fun ~ction of Y is given by the weighted empirical distri-

bution function
J

N
S(y) = [N ~ u(y-Y ), - = < y < =, (2.18)p g

i=1 .i

;

where the unitary function is

u(t) = 1 if t > 0

'
= 0 if t < 0. (2.19)

|

In other. words, proceeding from lef t to right, at each observed value*-

~ increase the' function'S(y) by an amount N -1p"where pn is the proba-K"

Yi
+

.
.

i -i

.

bility contained in cell number ni from which Xi is obtained. Note that
.

- -p

13 |
8

, I

|
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this function a; ways starts at zero (y + -.) but may. be greater than or

less than 1.0 as y gets large (y+- =).

Another unbiased estimate of G(y) may be obtained by using the reverse

approach. That is, consider the fact that
-

- -

"

G(y) = 1 - P(Y)y) (2.20) .

and let

K-1S*(y) = [N pn [1 - u(y-Y )], - = < y < =, (2.21)g
- i=1 .i

.

be the estimator. Then

E(S*(y)) - P(Y > y) = 1 - G(y) (2.22)

(the development parallels the previous one) and

E(1 - S*(y)) = G(y) (2.23)

which shows that 1 - S*(y) is an unbiased estimator for G(y), but one which

equals 1 for large y(y + =), and may be less than zero for small y(y + -=).

Both of the above estimators for G(y) behave unlike G(y), which is
'

bounded between 0 and 1 inclusive. The only time S(y) or S*(y) is bounded .

between 0. and 1 is when the sum of the cell probabilities is bounded above
,

by (1/N)K-1, such as when all cell probabilities are all equal; i.e.,

114
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P = (1/N) for all nn g.
i.

For this reason, the user may prefer to use a standardized form of S(y)
.

such as

e

S**(y) - S(y)/S(") (2. 2 4)

which is monotonically increasing from 0 to 1, but in general, may not be

unbiased for G(y).

2.4 The Variance of the Estimator

The variance of T does not seem to have a simple form, so we will look

at the variance of T in several dif ferent ways. Each different form for

expressing the variance of T is useful in its own way, because each form

provides a different view of the advantages and disadvantages of Latin

hypercube sampling. Recall that for unbiased estimators, such as T, the

variance of T is also the mean square error of T, which should be small if
-

possible. In Latin hypercube sampling application: the variance of T is

usually smaller than the variance of estimators arising from other sampling

schemes, but this result may be closely related to the monotonicity pro-

perty of the code, as we shall see later.

The notation becomes cumbersome when looking at the variance, so let us

fix some notation as a start. Let Sin *S2n ****s SNn represent the cells
1 2 N

which}},[2***=[Naresampled,respectively,andletfrom.

U " (8 ,S '**'' SNn ) (2.25)1 2
02 N

,

|
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represent the ordered N-tuple of these disjoint cells.

How many such ordered N-tuples are there? This number M is obtained

easily by counting the number of ways Sin may be obtained, multiplying
1

this by the number of ways in which S2n ay be obtained once S1n has been
2 y

,

'

selected, etc. Since cell Sin represents the selection of one interval .

; -1
Ikn for each of the K' random variables, and in each case there are N inter-

vals to' choose from, there are NK ways of selecting Sin . Next, S2n is
~1 ~2

formed by selecting one of the remaining N-1 intervals for each of the K

f random variables, so S2n may be selected (N-1)K ways once Sin has been
| -2 -1

selected. Continuation of this line of reasoning leads to
|

|

M = N (N-1) (N-2) ...(2) (1) = (N!) (2.26)

!

| as the number of ordered N-tuples U. We will index U, and the

corresponding cells, with superscripts:

= (S(i) S(i), 2n * * * * ' S (1)
1

U , = ...., . (2.27)Nn
1 .2 .N

Each of these N-tuples is equally likely,

P(U=U') = 1/M. (2.28)

|
,

Using the well known relationship
|

.

Var (X) = E[ Var (X|Y)] + Var -[E(X| Y)] (2.29)
.

I

16
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we have

-Var (T) = E[ Var (T|U)] + Var [E(T|U)]. (2.30)

' . Now, from (2.28) we have

M
*

E[ Var (T|U)]= [ Var (T|U )P(U=U )
i=1

M

f[1 Var (T|U). (2.31)
=

i=

The conditional random variables XI given Sin ,X2 SiV8" S2n , etc., are
-

~1 2
-

independent, because the cells are fixed (given), and the only variation is

within each cell. Therefore

N

Var (T|U ) = Var [ [N p"j g(h(X ))|X c S'
d"j ]'l 'lj=1

Var [N
p"j g(h(X)))|X'3

=

3 "j ] .
cS (2.32)

j=1 '

The terms in this _ last - summation represent the within cell variance of a

function of Xj. Substitution of Equation (2.32) into (2.31) results in
2

summing the within cell variance of a function of X over all cells in the

sample space, where (by the symmetry of the situation) each cell is

involved 'in the same number of terms. There are N terms in (2.32),

(NI)K terms in (2.31), and only NK different cells, so each cell is, ,

included (N!)KjyK-1 times. If we eliminate the duplication of cells

* ~
Equation-(2.31)' reduces to

17
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E[ Var (T|U)]

[- Var [N pg(h(X))|Xccellq]'=
_y 9all cells q N

I K-1 2[ N p Var [g(h(X))|Xccell-q) (2.33). q
*.

all' cells|

refers to the probability of X being in cell q. Thiswhere, as-before, pq ,

completes the development of the first term on the right hand side of

(2.30), so the variance of T may be written as

!

[ l P Var (g(h(X))|Xccellq)+ Var (E(T|U)).
- Var (T) =

9; all cells q

(2.34)

|

j' 2.5 .An Illustrative Example

!

As an example to illustrate how Equation (2.34) may be used let g(Y) =

Y, so T is an estin.ator of the mean of Y. Suppose the true model is

|
.

K
Y = h(X) = [a (2.35)

- k=1

K
where {a } , are some constants, and where X , ... ,Xk are independent ran-1

dom variables, each uniformly distributed on the unit interval (0,1).
j

I k
| ..._o, suppose the intervals I .n are of equal width so Ik.n " ( k-1k N'N

|

and

1

~p =() for each cell q. (2.36)q

|
.

' The next : factor in Equation (2.34) needing evaluation is

18-
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Var [g(h(X))|X c cell q) which equals

K K
2Var [ [ a X |X c cell q) = Var [4|Xk'IM] (2.37)akk

*

because when the cell is fixed, the individual components of X are indepen- ,

dent of one another. Since the conditional random variable [Xk|Xk c,

i Ik,n] is u'niform over an interval of length 1/N, it has variance-

(12N )-1 and Equation (2.37) becomes2
1

i

i

K .

Var [g(h(X))|Xccellq)= I "k (2.38) !2' ~

12N i=1

which is the same for each cell.

Finally, E(T| U) is a constant as the following development reveals

E(T|U)= E( N () ( eg)|U)
i=1 k=1

K N

[a E( g|U). (2.39)
=

, kk=1 i=1

The last summation above includes the sum of the means of each partitioned

piece of X , so it doesn' t matter in which order the sum is taken. Thatk _

. is, the sum is independent of U, the- particular cells involved. This

implies Equation (2.39) is constant over U, and hence the variance of E(T |
'

4

U) is zero. '

In retrospect, for any additive model

.

K

Y = h(X) = [ f (X ) (2.40)k k-
k=1-

,

,

19
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with equi probable cells, and with g(Y) = Y we have

N K

E(T|U) = E( [ N ~ () [ f(.g)|U)
i=1 i=1

K N -

=f[1i=1[ E(f (.g )|U) (2.41)
k=

.

which is constant over U, since the same values of E(f (Xki)) are beingk

added for each choice of U; the different values of U merely change the

order of addition, so

Var [E(T | U)] = 0 (2.42)

holds for all additive models with equi probable cells.

Substitution of Equations (2.42), (2.38) and (2.36) into (2.34) fur-

nishes

K
Var (T) = [ N ~ (-)2K

1

all cells 9 12N k=1

K
1 [ ,2 (2.43)-

3
12N k=1

as the variance of the estimator of the mean, for the model (2.35) with the

stipulated conditions. Note that this ic a factor of N-2 smaller than the

variance of the sample mean using simple random sampling, a substantial

improvement. Also, note that if all ak > 0, the largest possible value of

T under Latin hypercube sampling is -

N K K

"k( } ~ 2N k
T a (2.44)~

.
max

j=1 k=1 k=1

20
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.

and the smallest possible value- is

K K g
-Tmin = [- [ak( )" E *k, (2.45)

1; 2Nj=1. k=1 k=1.,

- Therefore, the absolute inequality
..

'Tmin < T < T ,x. (2.46)

leads-to the other abaolute inequalities

N-1 N+1a a2N k 2N k (2.47)
k=1 k=1

K
< a '

[k=1N 1 k N-1

.

'

and finally the 100 percent confidence interval for the mean of Y
.

T < E(Y) < TN+1 N-1 (2.49)

because the mean of Y is easily seen from Equation (2.35) to equal (1/2)

-[ ak. Note that these results are independent of the constants {a }

' involved as long as they are nonnegative. Also note that these results
.

pertain only to the model. and assumptions stated in Equation (2.35) and in

that vicinity.

As another way of'looking at the additive model, consider

k-1'* '
T= [N p g(h(X )) (2.50)~1i=1 .1

..
-

21
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where

K

g(h(X )) = [ f (X y (2.51)
k=1

.

for arbitraty functions f . Then ifk ,

P = (1/N) (2.52)

-we have

F ~1'
K K N-

T= [N [fk(ki}" k(bi). (2.53)
i=1 k=1 k=1 i=1

Again the function f (X ) is evaluated once in each interval Ikn of Xk andk k

summed, 'so. the ' order in which the random variables are evaluated is

irrelevant. That 'is, T is -independent of the particular cells selected in

the Latin hypercube sample. -Thus

K N

Var (T) = [ [ Var [f (4 )]
-N k=1 i=1

K
=j [ average "within interval" variance of fk (X)

over all NK intervals] (2.54)

when the random variables X ,y..,Xk are independent. Equation (2.43) .

1

occurs as-|a special case. of (2.54), for f (X) = ak .X~

k
.

The above results may be summarized as follows.

22
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A

Result 1. As a general result of Latin hypercube sampling when T is given

by

T= - N ~ g(h(X )) (2.55)p
~1i=1 .i,

.

we have

Var (T) = [ N ~ Var [g(h(X)| X c cell q)p
9all cells q-

+ Var [E(T|U)] (2.56)

,

where U represents an ordered random selection of N cells having no cell

coordinates in common.

f

- Result 2. Further, if all cells are equi probable

P = (1/N) , (2.57)q

if_g(h(X )) is an additive modeli

,

K

Yt = g(h(X )) = [ f (Xki) (2.58)t
k=1

for ' arbitrary functions f (X), and if.X ,... ,Xg are mutually independent,k 1

then..

K N

f~k=1i=1-[ [ Var [f (X )] (2.59)Var (T) =1

kN,

l

!

!
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t

!

! where Xki is the conditional random variable Xk E ven Xk is in intervali

|
' Iki , i = 1, . . . ,N.

.

.

Result 3'. Further,-if

f (X) = a X (2.60)k k

| and the Xi have a standard uniform distribution, then-
|

!

! K

Var (T) =
3 "k (2.61)

,

12N k=1
!
|

I

( and if all ak > 0

N N
N + 1. T < E[g(h(X))] < N - 1 (2.62)

L

|
t

with probability 1.

Next we will prove the following.

|
|

Result 4. As a general result' of Latin hypercube sampling, when T is given
|

by Equation (2.55),

.

I
~

1[ p [~ [g(h(x))] f(x)dx - [E{g(h(X)))] +Var (T) = N
9all cells q cell q

~ ~ ~~

.
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+ (N - 1)K-1
-

[ 8(h(x))f(x)dx / g(h(x))f(x)dx
N

(q,r) cR cell q cell r
~ ' ' ' '

(2.63)

where p represents the probability size of cell q, and where R representsq

the restricted space of pairs of cells (q,r) which have no cell coordinates

in common (i.e. , all pairs of cells that could occur in the same Latin
,

hypercube sample).-
!

As a special case of Result 4 we have the following result of McKay,

Conover, and Beckman (1979).

i
4

Result 5. If all cells are equi probable, (2.63) reduces to
!

Var (T) = f Var -[g(h(X))] +
1

(E M)(U '"}
N +l(N - 1)K-1(q,r)K q r

cR
(2.64)

where

i

N [ (h(x))f(x)dx (2.65)p =

' 9 cell q
' ' '

|

and

%

p=fg(h(x))f(x)dx=E(f(h(X))} (2.66)
-g - - -

represent the conditional cell means and the overall mean, respectively.

To derive Result 4 we use a fresh start,
;

N
*

' V(T) = Var ( [N ~ g(h(X ))}p
i=1 -i

'

*
-

g(h( ))) +-Var [N p=

i=1 i

|
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N N

.[ [Cov[[~l+ g(h(X )),N g(h(X ))]
i=1--j=1 p"i p"j~f 'd

1/j

~1
= N Var [N p g(h(Xy)] -

.

+ N(N-1)Cov[N p g(h(X )),N p g(h(X ))] (2.67)'1 ~21 2

because of the symmetry of the problem (i.e., the distribution of XI is the

same as X2 when the cells are as yet unspecified, and their joint distribu-

tion is the same as any other joint distribution).

First ' consider the term

i

Var [N ~ g(h(X ))] = E[N - g (h(X ))]p
_1 p

n y1 1

K-1 g(h({)))]2- [E(N p (2.68).

| ~1
|

From (2.12) we already have
!

[E(N - g(h(X )))] = N~ [E(g(h(X)))]2 (2.69)p
1 .

|-
!

In the same fashion that Equation (2.12) was derived, we -obtain

E[N - g(h(Xy)]'= [ E[N - p g (h(X ))|X is in cell q).p
1j -1 all cells q

,

P(X{isincellq)
! 2 2

[.- N p 7 g (h(x))(f(x)/p )dx - (1/N)
~

=- *

9 9~ ll cells q cell qa ~ ~

l'

!
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[- .

.N p -[ g (h(x))f(x)dx. (2.70)=

9 '' '

all cells q- cell q

., ..

Substitution of Equations' (2.70) and (2.69) into (2.68) gives

.

K- 2
N Var [N - g(h(x ))] = N .[ _ [ g (h(x))f(x)d(x).p

~ ' ~

l 'all cells q cell q~

1

[E(g(h(3)) }] . (2.71)j -N

|

Now consider the term
i

K-1 K-1
Cov[N p g(h(Xp),N p g(h(Xp)]

~1 .2

=N - E[p g(h(Xp)p g(h(X ))] - N' E[g(h(X))) (2.72)
2

i

with the aid of Equation (2.12) again. The first part of (2.72) becomes
,

I
| E[p g(h(X )) p g(h(X )))y 2

[ [ E[p g(h(X ))p g(h(X )) | X and X f# *
9 ~2 2

"#"=.
~ ~ ~

'all ~ all
cells q cells r cells q and r respectively]-

P(X and.X are from cells q.and r respectively)
7 2

[. [- [ P g(h(3))(f(g)/p dg. [ p g(h(x )*"
q 2

2 "" 9 *11 #
(q r) R.

<

~ (* )- (f(x )/P )dx N (N-1)2 r 2
*

.

_
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.where R represents the space of all pairs of cells having no cell coor-

dinates in conoon.- Substitution of (2.73) into -(2.72), and then (2.72)' and

(2'.71) into (2.67) gives Result 4.
.

To obtain Result 5, use the notation of Equations (2.65) and (2.66) to
.

rewrite (2.63) as

.

~l [g(h(x))]2 (x)dx - p2. Var (T) = N .[ p f f
9all cells q cell q ' - -

(2.74)

+ (N-1)K-1 1)2K [ [pu*N
rN (q,r)cR

The identity

[ p =Np (2.75)9all cells q

is' used to obtain

[ [ (p 9)("r P) " 1 ECUU
(q,r)cR (q ,r) R ' 9 # 9 V u#U+p )-Uq

-[ [pu - 2p(N-1) ["

qr p + N (N-1) p
(q,r)cR all cells q 9

[- [ p p# - N (N-1) p (2.76)=

9. q,r)cR(

which is used in (2.74) to obtain

[g(h(x))]2 (x)dx - N~Var (T) = N ~ [ p f- f p
9all' cells q cell q ' '- '

..

K_1(N-1)g_1(q[,r)cR
[ (U -u)(p 4) (2. 7 7)

+
q r-N

.

Equation (2.77) is an alternative form for the variance of T, as valid as

28'
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Equation (2.63) in Retult 4, end m y be preferable to une in soma

situations. All one needs to do is substitute p = N-K into (2.77) toq

obtain Result 5, in agreement with a similar result presented in McKay,

Conover, and Beckman (1979). If one thinks of sampling a pair (q,r) of

cells at random from R, the covariance of the cell means thus obtained is'

ICov[p p ]= [ [ (p p)(p -p) (2.78).

N (N-1) (q,r)cR

which resembles a major term in Equations (2.77) and (2.64). Thus, it is

obvious that the variance of T will be less than the variance obtained

through random sampling if and only if the covariance of two cell means,

randomly selected from R, is negative, under the condition that the cells

have the same probability size N-K. .. A suf ficient condition for the nega-

tive covariance in (2.78) is if g(h(X)) is a monotonic function of each of

the input variables X , . . . ,Xg , which is proved in McKay, Conover, and1

Beckman (1979).

2.6 The Sample Variance

We have already introduced an unbiased estimator of the population mean

Eh(X) in the form

T= [-1 g(h(X )) = 5 (2.79)p ~fi=1 i

which we will call the sample mean. The sample variance

N

[ [~1 (h(X ) - i) (2.80)
*

S = p
'

i=1 _t

.
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2ccy ba used to cetim:te the population variance Var (h(X)). However, S is

not in the form of a T estimator as introduced earlier, so special con-

sideration of S2 is required.

The bias of S2 depends on the population distribution and the par-

ticular cells obtainable under Latin hypercube sampling. That is, .

N

E(S ) = E[ [ [~1p (h (X ) - 2Eh(X ) + i )]
~

i=1 .i
~ ~

N N
= E[ [ [~1 h (X )] - 2E[ [ N - h(X )]p p~1 1i=1 .i i=1 .i

N
+E[5 [ ['p ].

i=1 ~i
(2.81)

From the unbiased property of T statistics the first expectation is

N

E[ [N - h (X )] = E[h (X)] = Var [h(X)] + p (2.82)
p

~fi=1 .i

The second expectation becomes

-2E(E ] = -2 Var (Y) - 2p (2.83)

becauseE(5)=E(Y)=p. Thus (2.81) becomes

E(S ) = Var [h(X)] - 2 Var (Y) + E[E N - ]p (2.84)p
'' .i=1 .i.

'

The latter. terms in (2.84) represent the bias of S2 as an estimator of Var

~
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|[h(X)], tha popuistion varitnce. Note that if all cells hzve equal. size.

=pn.=1(1/N)K, Equation.(2.84)' reduces to

2E(S ) = Var [h(X)] . Var [Y] (2.85)

,.

in the 'same form as occurs when random sampling is used. Of course in ran-
,

dom sampling Var (E) = Var (Y)/N, while here Var (f) may be larger or smaller -

than Var. (Y)/N. depending on the .' type of function h(X) involved, as was

discussed to some extent in the previous subsection. One purpose of using

Latin hypercube sampling is to reduce the variance of estimators such as 'f.

If'this goal is achieved, the bias of S2 will be very small. As an

illustration, for the linear model' with independent, standard uniform input

. random variables, described in Result 3 of the previous subsection, we

obtain.

K K
E(S ) = [a -

1

3 "kk=1 12N k=1

K
= (1 - ) Var [ a X (2.86)k ki

N k=1

which has negligible bias for moderate sized N..

- 3 .- CHANGING THE DISTRIBUTION FUNCTION OF THE INPUT VARIABLES

.

One of the features of the Latin hypercube sampling procedure is that
' it allows' one to measure the sensitivity -of the code to some of the assump-

,
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tiens of tha modal b; hind tha coda. In particular, af ter a set of- runs is

completed under certain distribution assumptions on the input variables the

assumed distribution functions may be altered, and an estimate of the

corresponding change in the distribution of the output variable may be made

without making additional runs on the code.- This latter feature is impor- *

tant when the code is no longer available or when it is very costly and
.

time consuming to operate. If the distribution function of the output

variable is altered significantly by adjustments in the input

distributions, the output may be considered to be sensitive to assumptions
-

regarding the input distributions. The same sort of sensitivity analysis

may be performed on the mean of the output, the moments of the output, or,.

any other quantities that can be estimated by statistics such as the ones
'

introduced in Section 2.

3.1 The New Estimator

In Latin hypercube sampling the range of each input variable is divided

into N intervals Ik n, and the Cartesian product of these intervals results
,

in NE cells of size

P ({cS). (3.1)=

n n
~ ,

If the density of X is f(x), the conditional density of X, given X is in
_ _

cell S is !n,

|
~

-1 I

f (x) = p f(x) if x c S in- n n. .
~ ~ ~

. .

= 0 otherwise (3.2)

.
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se ststed earlier in Equation (2.10). A random selection of N cells is

obtained and X is sampled randomly, according to the distribution (3.2),

within each of N cells. An unbiased estimate of some function g(h(X) of

the output h(X) is given by the T estimator, which was given earlier in

Equation (2.8) and is repeated he're for the convenience of t! e reader,*
,

N*.

g_1
T= [N p g(h(X )). (3.3)i=1 ,1 ~

,

:

i

Now let us assume that the true distribution of X is not f(x), but some'

'

other distribution, say q(x). Then the cells described above don't have

probability pn, but rather some other value, say qn, given by

9 = P(X c S |q(x)). (3,4);

n
~ ~

The new estimator of g(h(X)), given by

N
K-1Q= [N g(h( }) (3.5)q"ii=1

differs from T only in the factor g instead of pn. If X had been sampled
~

from each cell as if it had the density g(x)/q , instead of the densityp

f(x)/pn which was actually used, then Q would be an unbiased estimator of

g(h(X)). This is because the situation would be exactly the same as

described in the previous section, except for a change in notation.
1

However, the sampling within each cell was done as if the density were |,

f(x)/pn instead of 9(x)/q , so the statistic Q is not necessarily ann
*

unbiased estimator of g(h(X)). The bias under usual circumstances may be

1

l
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' assumed to beismall, howevdr, for -the following reason.- Each cell is

'likely to be only a small part of the sample space, since - there are

NK cells in th'e sample space. That is, if the cells were originally chosen-

to be of ' comparable dimensions with probabilities within an order of magni-
"

:tude of 'each' other, and 'if the new probabilities qn are reasonably close to

each other, then' each cel1 ~ represents a small portic, of the seple space, ,

in size and in probability contient. Furthermore, if the densities f(x) and

q(x) 'are reasonably smooth over the sample space, there will be very little

change in f(x) or q(x) within. any one cell. That is, the maximum value of
_

. f(x) within any particular cell will be approximately the same as the mini-

mum value of f(x) within that same cell, and the same can be said about

q(x). So for all practical purposes, the' sampling within each cell may be

conducted as if- the distribution across that cell were uniform, with little

effect on the sampling results. The assumption of q(x) rather than f(x)
~ ~

does not affect the sampling within cells very much if q(x) and f(x) have

approximately.- the same range space S and are fairly smooth functions.

Thus, the bias in Q as an estimator of g(h(X)) should be small.

The estimator Q is treated in the same manner as T was treated in the

previous section.- That is if g(Y) = Y as in Equation (2.14), then Q is an

in Equation (2.15), Q isestimator of the new mean of Y. .If g(Y) = Yr as

an estimator of the rth moment of Y. Finally, an estimator of the new

distribution ' function of the ' output random variable Y is given by S'(y),

analogous to the estimator S(y) of' Equation (2.18)

!
N ig_y .

S'(y) = [N q u(y - Y ), - = < y < = (3.6) ,
.

i=1 .i

|

.
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where u(t) is the unitary function defined by Equation (2.19). These esti-

mators are essentially unbiased, depending on how well the density

f(x)/pr approximates the density q(x)/qr as discussed above.

To see what is happening mathematically, consider, as we did in Section
*

2, Equation (2.11),

E(g g(Y )) = all[cellsrg E(q g(Y )| n is cell r)*.

g g~i ~1

P(n is cell r)1

! q g(h(x))(f(x)/p )dx(1/N)=

all cells r cell r ~ r~

because the sampling within each cell was performed under the earlier

assumption that f(x) was the density. If we assume the approximation
~

f(x)/p a q(x)/q (3.8)
~ r r

holds for each cell, then Equation (3.7) becomes

E(q g(Y )) a [ N~ [ q g(h(x))(q(x)/q )dxg
~1 all cells r cell r

~ ~ ~

[ N- [ g(h(x))q(x)dx
a

all cells r cell r
~ ' ~

-K.

=N fg(h(x))q(x)dx
g - ~~

E N'E[g(h(X))|q(x)]. (3.9), - ~

Therefore Q is an approximately unbiased estimator,_

.
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c.

..

N
K-1

E(Q) & [N E(q g(h(X )))
~f

i=l' .i

N
-

!. [h - N b[g(h(X))|q(x)]
i=1-

; E[g(h(X))|q(x)] (3.10)
*

under the assumption (3.8).
,

The conclusion we can ~ draw from the above is that the same points

. g(h(X )) through g(h(X )), obtained from running the code under the assumed1 3

distribu_ tion f(x), may be used in Q and they will dif fer little from what

one would have obtained if q(x) had been assumed rather than f(x). The

estimator Q will not necessarily be the same as the estimator T, because
.

now they are estimating different quantities. The estimator Q may be used

to estimate the mean, other moments, and even the entire distribution func-'

:

tion of h(X),'under the assumption that X has the density q(x). These

quantities being estimated may be much different than the corresponding

quantities estimated using T, and under the assumption that f(x) is the

density. The variance of Q may be obtained just as before (e.g., Equations

(2.56) and (2.63)) with p and f(x) replaced by q and q(x).

3.2 The Linear Model as an Example

To illustrate the procedure involved when the assumption regarding the

distribution of the input variables are changed, consider again the linear

model given in Equation (2.60). The assumptions there are
K

h(X) = [a (' k=1
.

I = (" ) for all k (3.11),

.
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f(x) = 1 if x is in the [0,1] hypercube

= 0 elsewhere (3.12).

..

As a consequence of these assumptions, the~ cells are of equal size,

geometrically speaking and in terms of their probabilities p = (1/N)K. A

Latin hypercube sample is generated by obtaining N cells and sampling once

within each cell. ' A uniform distribution is used for sampling within each

cell, and the output observations h(X ),...,h(X ) are obtained.1 n

Now instead of using the assumption that each component is indepen-

dently uniformly distributed on (0,1), we wish to investigate the model

under the assumption that each component has the triangular density

q(x) = 2x, O < x < 1

= 0 elsewhere. (3.13)

There is a substantial difference between the uniform density f(x) = 1,

O < x < 1, and the triangular density. If we use Q to estimate the mean

E(h(X)), how much bias is involved?

The true mean of h(X) is.

~~

K K

E[h(X)|q(x)]=E[ -[ ak bl' " "k E[()' ~
. . - k=1 k=1
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1

K
2

"3 b "k (3.14)
k=1-

.

because the mean of a~ random variable with density q(x) is 2/3. Of course,

in most1 cases the model is far - too complex to ever know the true mean. We ,

are using this simple model as a test case to see what the bias of Q might

be.

To see the bias of Q consider

E(Q) = E[ N ~ q a X ]
i=1 .i k=1

N Kg,1[N [ a E[q X ]=

i=1 k=1 -i

K
=N [a E[q" X ] (3.15)

k=1 1

.

- whsre this 'last step is possible because the unconditional distribution of

each_gn-Xki is the same, i = 1, . . . , N, due to the symmetry of the
-1

situation. To' find E[qn Xkl] consider
~1

E[q X ]= [ N- E[qXyX is cell r]. (3.16)
1 all cells r-

Because Xkl being in cell r is dependent only on Xkl being in the interval -

Ik,j that contributed one dimension to the forming of cell r, and is inde-
.

pendent of the other dimensions of cell r, and because qr is not random

38! l
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wh;n coll:r~is specified, the latter expected value in Equation'(3.16) may

be' written as

K
E[q y| ( is in cell r] = H q E(Xy (3.17)

-i=1 i

.

where
.

q =$ c( ,f)|q(x))= (3.18)13 1 2
N

'Also note that

,f),f(x))= 3E(Xg|{y c(
2N (3.19)

which is the conditional mean of Xki, given the interval within which

Xkl was randomly obtained in the original sampling plan with its uniform

distribution. Putting Equations (3.17), (3.18) and (3.19) into (3.16)

gives -

- -

-KE[q XQ ' = -[ N H q E( 3')n1 d-all cells r i=1 i.

N' N. N 2j -1 K 2j -1I I I "g y i_
-

n...

2N 2j" 3 "I 3 =1 i=1 Nl 2 R

- 3' 3- N 2j -1
= N'K [ ( 2N }(

1 1 2

2 ) J =1
( )2.j =1 N Ny 2

N 2j -1, g
--[ ( ). (3.20)2
j =1 Ng

.
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Because of-the identities-~

,

[ -(21-1)= 1 (3.21)|
2

. i=1' ' 'N

.

-and

N
y .(21-1) 21-1 ) , 2_ _ (3.22)

1 *

2N 2 3i=1 3 6N

-(3.20) becomes

E[q X l=N~ (f 6N2)
( }

.M-
.1

and Equation (3.15) becomes

K-
E(Q) = - 1) [ a. (3.24)2 k

p. 6N k=1

1

The comparison of E(y) given above with the true mean of h(X) given by

Equation (3.14) shows that !for moderate N, the bias of Q is negligible.

The ' ins'ignificant bias of Q as an estimator does not tell the whole

story.. Perhaps more important _ is the variance of Q. Empirical evidence

indicates- that when the cells have almost equal probability the variances

of Q and T tend to be smaller than .when the probabilities vary considerablyi -

.

_.

'

'from one-cell to another.. This has not been verified analytically, but it
.

[ .is easy,to imagine what happens when all of the probability is contained in

a " few of the ' cells. Een those cells are chosen for the sample, the esti- *

mates are large because of large weights conveyed by'the q's. Wen those
.

cells -are- not Lin the sample the weights. are close to zero because the q's |

|

,

"

$.

L
_
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are close to zero, and Q will also be close to zero. We are reminded of

the admonition given to Hiawatha by his fellow tribesmen in the poem
.

Hiawatha Designs an Experiment by Maurice G. Kendall. Although Hiawatha's

lack of bias in shooting his arrows at a target may be nice to brag about,
,

"What resulted in the long run;
,

Either he must hit the target
'Much more often than at present
or himself would have to pay for
all the arrows that he wasted."

_

Even though Q may be almost unbiased, and the original observations h(X )i

were obtained on cells that were thought to have about the same probability

size, Q may be of little value as an estimator if the new assumed probabi-

lity sizes of the cells are extremely unbalanced, because of the large

variance of Q. This is not to detract in any way from Latin hypercube

sampling, for other sampling methods may be no better. A comparison of

Latin hypercube sampling with random sampling and with a sequential proce-

dure in Section 4.6 shows that although the variance of the estimator can-

not'be estimated with Latin hypercube sampling, this procedure still offers

the best estimators in the situations examined.

4. AN APPLICATION

In this section an application is presented which demonstrates the

methods described in Sections 2 and 3. For this demonstration we consider

the' potential escape of radionuclides from a depository for radioactive
,

waste and their migration from the subsurface to the surface environment.

The dependent variables -of interest are the total discharges and peak.
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discharges to the surface environment of several radionuclides.

' Radionuclide migration calculations are performed at Sandia Laboratories

with the Sandia Waste Isolation Flow and Transport (SWIFT) computer program

. ( Dillon, Lantz, and Pahwa,1978) . In its present form SWIFI requires con-
.

siderable computer time 1to simulate radionuclide migration in large systems

over long. periods of time. This extensive computer time limits the. total .

number of runs that can be made to study the environmental impact of

radioactive waste disposal in geologic media. Because of the need to

obtain a maximum of information (see Section 2.1) from a few simulated

observations, the methods of Sections 2 and 3 are appropriate.

For the demonstration of these methods it is necessary to have a

' computer' program which requires little computer time to run, so that the

estimates of the mean, variance, and distribution function (see Sections 2

and 3) may be compared with the actual quantities being estimated. That

is, the estimates are obtained from a limited number (200 in this case) of

runs,- while the ' quantities being estimated are obtained from a large number

of additional -runs. For this purpose the Network Flow and Radionuclide

Transport (NWFT) model was developed at Sandia (Campbell et. al, 1980).

This model and the grotedwater flow system it is used to simulate are

discussed below.

4.1 The Groundwater Flow System and NWFT Model !

The reference radioactive waste repository site and its associated

groundwater-flow system are described by Campbell et. al. (1978). The !

reference site is entirely hypothetical yet its setting and geologic pro- *

perties are analogous to several regions in the continental-United States. |

The site =is located in a symmetrical upland valley which is drained by a

~42
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majer rivar. Tha gulegy of the cram nrar. tha site is shown in cross-

:section in Figure 4.1. The valley is underlain by bedrock which is assumed

to be impermeable. Furthermore, barring any disruptive events, the shale

and salt layers llayers 4 and 5 in Figure 4.1) have extremely low

permeability. Thus in the undisturbed system, groundwater flow is largely*

confined to the middle and lower sandstone aquifers and is shown schemati-
.

cally in Figure 4.2.

The network flow representation used in NWFT is shown in Figure 4.3.

The flow segments, or legs, connecting the waste depository to the middle

and lower sandstone aquifers are used to represent various potential

disruptive events which could allow radioactive waste to escape the

depository. The boundary conditions used at the middle and lowu sandstone

aquifer inlets and at the discharge point are taken from a two-dimensional

simulation of the reference site flow system. For this example, NWFT was

used to simulate a U-tube which forms a hydraulic connection between the

depository and the overlying (middle sandstone) aquifer. The U-tube is

assumed to result from degradation of materials used to seal a borehole and

an access shaf t to the depository (Figure 4.4). The variables used in this

example' are as - follows:

Xi = porosity of the overlying aquifer

X2 = hydraulic conductivity of the overlying aquifer (f t./ day)

X3 = dispersivity (ft)
3X4 = distribution coefficient of the isotope under consideration (cm /8m)

X5 = leach time.(years),

X6." Porosity of the shaft / borehole sealing material

.X7.= hydraulic conductivity of the shaft / borehole sealing material (ft/ day)*
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.The: input variables are treated as random variables. The reasons for .

- this are:

[ (1) -For some input ' variables | the value of the variable is constant,

-but! unknown, for a given depository. The variable is treated as a

.

random variable with a given distribution function to reflect
.

knowledge concerning possible values for the variable. This
,

|
application is concordant with the concept of subjective

~

,

probability.-

I -(2) For some input variables 'there will be actual unit to unit

variation'within a given depository. Frequently this variation

'will be due to location differences within a depository. This

type of variation is analogous to sampling variation in the usual
~

J

statistical context.

(3) . For 'some input variables a small number 'of measurements wil' be.

- available. However, they-are subject to measurement errors. The.

distribution function will be developed to reflect uncertainty
;

) associated with measurement error.
,

|. Frequently the distribution function selected for a given input
i

f variable will be developed ;to accommodate some combination of (1), (2), and
i

j (3) above. The purpose of the present analysis is to evaluate the uncer-

tainties in model output (in this case radioactive discharge to the

environment) which results from the. uncertain'ty in model input variables ,

. and to' determine .which- input variables contribute most to output

uncertainties.
1'

As stated earlier, the waste disposal site which is used in the present .

study to demonstrate sensitivity and risk analysis techniques is entirely
.

i' .

-hypothetical and, therefore,' measurements of input | values to the ground-

.

-
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water transport model do not exist. Discussions were held with earth

scientists to determine variable ranges and distributions which might be

appropriate for sedimentary basins such as the reference site evaluated

here. Results of these discussions are shown in the table below. The
*

ranges chosen are global in nature and, therefore, are somewhat broader

than one might reasonably expect for a particular site. The exception is,

variable X , the range of which was truncated for reasons given below.4

Variable RanLe _ Probability Distribution

Xi (.05, .30) Normal.p =.175,o =.04

2 (1, 50) Lognormal,p =1.956,o =.633X

X3 (45, 500) Uniform

X4 (10-I, 10 ) Loguniform2

3 7
X5 (10 , 10 ) Loguniform

X6 (.005, .2) Lognormal,p =-3.454,o =.597

X7 (.01, 50) Lognormal, p = .347, a=1.378

The normal probability distributions were truncated at the indicated range

values, which were arbitrarily selected to be the .001 and .999 quantiles.

Lognormal distributions were obtained from appropriately truncated normal

distributions with the indicated parameters. A loguniform random variable

over the range (a,b) means a random variable whose logarithm (base 10) is

uniformly distributed over the range (logio a, logio b)..

.
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4.2- Obtcining th2 Latin liypercube Sarple

The range of each of the above input variables was divided into 200

intervals of equal probability .005, and one value from each interval was

sampled at random. The 200 values thus obtained for XI were paired in a

random inanner (equally likely combinations) with the 200 values of X +2
.

These 200 pairs were combined in a random manner with the 200 values of

X3 to form 200 triplets, and so on, untii. tw, hundred 7-tuples were formed. ,

This is the Latin hypercube sample, which was used as inputs into the

model.:

t

The computer program's output variable Y for this example is the total

6discharge of an isotope in the 10 years following burial of the radioac-

tive waste. Actually the output of this isotope, for the ranges of the

X 's supplied by the geologists, included a high percentage of total
i

discharge values equal to zero. Since these values are of little interest

for illustrating the methods of Sections 2 and 3, we narrowed the range of

5from the interval (10-2,10 ) supplied by the geolo-the input variable X4
2gists to the interval (10-1,10 ) indicated above. The effect of this

restriction on the range of X4 is the desired result that nearly all of the

observed output variable values are nonzero. The 200 observations on the

output Y are summarized in Figure 4.5, which presents the empirical distri-
i

| bution function S(y) of Y,
f

200
S(y) = "(Y-Y ) (4.1)200 i

i=1
l

!

obtained from Equation (2.18) with p = (1/N)K = (1/200)7 Note that S(v)

provides an estimate of the distribution function G(y) of Y. An unbiased +

estimate of the mean of Y is given by
.
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FIGURE 4.5. ESTIMATES OF THE OUTPUT DISTRIBUTION FUNCTION G (y)
BASED ON -LATIN IIYPERCUBE SAMPLES OF SIZE N = 200
AND N = 1000.
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1

200
- 1 = .567 (4.2)Y = 200 ii=1

which is obtained from Equation (2.8) by letting g(y) = Y. Also appearing .

in Figure 4.5 is an estimate of G(y) obtained by running the model on a
.

Latin h,percube sample with N=1000. This latter estimate results in a

reasonably smooth curve and is useful for comparing the variability asso-

ciated with a sample of size 200. The estimate of the mean of Y with

N=1000 is .580.

4.3 Identification of Influential Input Variables

One of the primary objectives of this data analysis is to assess the

relative importacce of each input variable. Since plots of the output of

this model showed it to be a monotonic nonlinear function of the input

variables, we used the techniques of stepwise regression on ranks as

described in Iman and Conover (1979) to identify the important variables.

- The variables used in the stepwise regression were functions of X1 through

X. The important variables turned out to be functions of X4 and X -
7 5

Therefore, X4 and X5 were selected for closer examination.

In the next section we consider the influence on the output distribu-

tion function estimate of different distributional assumptions for K4 and

X. In rder to aid the reader in pairing individual observations with the
5

new weights given in the next section we provide in Table 4.1 a complete

listing of the Latin hypercube sample for both X4 and X5 as well as the
.

rank af the specific observation and the interval from which the obser-
-vation. was selected.
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TABLE 4.1
,

Actual Latin flypercube Sample Used With X and X
4 5

Obs. Rank Rank
No. of X Interval Used X of X Interval Used .X

4 4 5 S

* 1 15 .162, .168 .168 93 69183, 72443 69643
'

2 .145. 14.454, 14.962 14.558 151 999999, 1047128 1012668
3 131 8.913,' 9.226 9.207 194 7244359, 7585775 7586225
4 176 -42.170, 43.652 42.511 61 15848, 16595 16018..

5' .149 16.596, 17.179 16.723 198 3709635, 9120108 8990016

4 6 116 5.309, 5.495 5.421 92 66069, 69183 67523
7 58 .716, .741 .729 103 109647, 114815 112830'

8- 48 .507, .525 .512 37 5248, 5495 5385
9 3 .107, .111 .108 179 3630780, 3801893 3671610

10 82 1.641, 1.698 1.691 152 1047128, 1096478 1087302

11 68 1.012, 1.047 l'.023.171 2511886, 2630267 2563516
12 .187 61.660, 63.826 62.138 45 7585, 7943 7874

| 13 191 70.795, 73.282 71.784 51' 10000, 10471 10166
14 169 31.989, 33.113 32.807 111 158489, 165958 165566,

'
15 154 19.724, 20.417 19.872 190 6025595, 6309573 6229810

,

16 188 63.826, 66.069 65.314 159 1445439, 1513561 1472539
17. 122 6.531, 6.761 6.552 -75 30199, 31622 31539
18 26 .237, .245 .239 126 316227, 331131 326906
19 184 .55.590, 57.544 57.314 156 1258925, 1318256 1292434
20 94- 2.483, 2.570 2.498 155 1202264, 1258925 1212429

21 23 .214, .221 .220 62 16595, 17378 16781
j 22' 129 8.318, 8.610 8.432 154 1148153, 1202264 1200522'

23 200 .96.605, 100.000 99.031 172 2630267, 2754228 2713817 :
'

24 .104 . 3.508, 3.631 3.527 110 151356, 158489 152345
25 198 90.157, 93.325 92.876. 31 3981, 4168 4149

^

~26 861 1.884,- '1.950 1.918 91 63095, 66069 64574
27 75 1.288, 1.334 1.314'162 1659586, 1737800 1689294
28 143 13.490, 13.964 13.857 144 724435, 758577 726070
29 29 .263,- .272 .267 56 12589, 13182 12791
30 97 2.754, 2.851 2.831 10 1513, 1584 1555

31 43 .427, .442 .430 '951 75857, 79432 78591 L

32 1 .100,- .104. .101 128 346736, 363078 353477
33_ 103 3.388, 3.508 3.503 23 2754, . 2884 2782
.34 140' 12.162, 12.589 12.437 196 7943282, 8317637 8301523
35 156 21.135, 21.878:21.551 36 5011, 5248 5024

.,,

; 36- 119 5.888, 6.095 5.915 11 '1584, 1659 1588 ;

..
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TABLE 4.1 (Continued)
Obs. Rank Rank
N. fX Interval Used X fX #"'"#"'I **

4 4 5 5

37 54 .624, .646 .641 96 79432, 83176 81915 ,

38 9 .132, .136 .135 160 1513561, 1584893 1527180
39 158 22.646, 23.442 22.733 7 1318, 1380 1351
40 85 1.820, 1.884 1.839 83 43651, 45708 44338

,

41 18 .180 .185 .185 87 52480, 54954 54556
42 141 12.589, 13.032 12.965 113 173780, 181970 180196
43 11 .141, .146 .145 46 7943, 8317 7983
44 197 87.096, 90.157 87.977 184 4570881, 4786300 4581385
45 73 1.202, 1.245 1.222 38 5495, 5754 5572

46 21 .200, .207 .204 197 8317637, 8709635 8655068
47 193 75.858, 78.524 76.472 3 1096, 1148 1103
48 117 5.495, 5.689 5.582 163 1737800, 1819700 1756449
49 88 2.018, 2.089 2.075 125 301995, 316227 311869
50 61 .794, .822 .806 63 17378, 18197 17901

51 70 1.084, 1.122 1.099 4 1148, 1202 1163
52 173 38.019, 39.355 38.255 78 34673, 36307 35991
53 96 2.661, 2.754 2.676 191 6309573, 6606934 6529586
54 170 34.277, 35.481 35.286 130 380189, 398107 383281
55 64 .881, .912 .886 153 1096478, 1148153 1113823

56 67 .977, 1.012 .983 137 524807, 549540 544436
57 155 20.417, 21.135 20.485 124 288403, 301995 297175
58 14 .157, .162 .160 98 87096, 91201 91005
59 4 .111, .115 .112 42 6606, 6918 6793
60 33 .302, .313 .308 167 2089296, 2187761 2129153

61 105 3.631, 3.758 3.695 13 1737, 1819 1777
.119, .123 .123 85 47863, 50118 4896362 6 -

63 162 26.002, 26.915 26.061 44 7244, 7585 7297
64 12 .146, .151 .147 107 131825, 138038 136571
65 81 1.585, 1.641 1.638 180 3801893, 3981071 3955717

66 115 5.129, 5.309 5.277 100 95499, 99999 95521
67 159 23.442, 24.266 23.898 19 2290, 2398 2369
68 125 7.244, 7.499 7.462 33 4365, 4570 4476
69 109 4.169, 4.315 4.206 117 208939, 218776 216454
70 147 15.488, 16.032 15.898 22 2630, 2754 2637

71 41 .398, .412 .408 68 21877, 22908 22581
*

72 174 39.355, 40.738 40.087 131 398107, 416869 410922
73 127 7.762, 8.035 7.931 84 45708, 47863 46124
74 17 .174, .180 .175 88 54954, 57543 57470
75 110 4.315, 4.467 4.375 135 478630, 501187 486553 -

9h
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TABLE 4.1 (Continued)
Obs Rank Rank
No. of X Interval Used X of X Interv 1 Used X

4 4 5 5

* 76 144 13.964, 14.454 14.289 58 13803, 14454 13844
77 163 26.915, 27.861 27.089 148 870963, 912010 896289
78 160 24.266, 25.119 24.964 185 4786300, 5011872 4886404
79 39 .372, .385 .382 69 22908, 23988 23288*

80 36 .335, .347 .340 116 199526, 208929 201086

81 167 30.903, 31.989 31.511 195 7585775, 7943282 7623814
82 127 7.499, 7.762 7.685 81 39810, 41686 41666
83 199 93.325, 96.605 94.371 143 691830, 724435 714270
84 171 35.481, 36.728 35.615 66 19942, 20892 20478
85 31 .282, .292 .288 25 3019, 3162 3137

86 34 .313, .324 .319 29 3630, 3801 3638
87 83 1.698, 1.758 1.758 67 20892, 21877 21067
88 91 2.239, 2.317 2.286 132 416869, 436515 426240
89 148 16.032, 16.596 16.432 32 4168, 4365 4345
90 152 18.408, 19.055 19.044 70 23988, 25118 24415

91 76 1.334, 1.380 1.359 177 3311311, 3467368 3435478
92 90 2.163, 2.239 2.182 24 2884, 3019 2984
93 136 10.593,. 10.965 10.841 150 954992, 999999 998005
94 60 .767, .794 .781 82 41686, 43651 42087
95 146 14.962, 15.488 15.167 182 4168693, 4365158 4342459

96 165 28.840, 29.854 29.225 76 31622, 33113 32961
97 99 2.951, 3.055 2.953 65 19054, 19952 19933
98 142 13.032, 13.490 13.215 199 9120108, 9549925 9243614
99 24 .221, .229 .222 71 25118, 26302 26183

100 69 1.047, 1.084 1.084 53 10964, 11481 11378

101 50 .543, .562 .562 149 912010, 954992 939797
102 169 33.113, 34.277 33.356 26 3162, 3311 3255
103 55 .646, _.668 .659 157 1318256, 1380384 ;326384

104 123 6.761, 6.998 6.894 6 1258, 1318 1267
105 130 8.610, 8.913 8.754 41 6309, 6606 6549

106 153 19.055, 19.724 19.375 79 36307, 38018 36811
107 30 .272, .282 .279 188 5495408, 5754399 5567481
108 22 .207, .214 .212 54 11481, 12022 11560
109 132 9.226, 9.550 9.351 183 4365158, 4570881 4430361
110 51 .562, .582 .563 146 794328, 831763 808509

.
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TABLE 4.1 (Continued)

Obs. Rank Rank
No. of X Interval Used X of X n rv sed X

4 4 5 5

111 183 53.703, 55.590 54.730 161 1584893, 1659586 1646253 .

112 101 3.162, 3.273 3.247 123 275422, 288403 281998
113 45 .457, .473 .471 181 3981071, 4168693 4081659
114 7 .123, .127 .127 112 165958, 173780 173381 ,

115 195 81.283, 84.140 83.000 9 1445, 1513 1513

116 49 .525, .543 .538 120 239883, 251188 240827
117 190 68.391, 70.795 68.741 129 363078, 380189 372611
118 63 .851, .881 .879 47 8317, 8709 8638
119 98 2.851, 2.941 2.932 17 2089, 2187 2141
120 128 8.035, 8.318 8.175 192 6606934, 6918309 6714065

121 196 84.140, 87.096 85.434 2 1047, 1096 1056
122 172 36.728, 38.019 36.843 106 125892, 131825 129323
123 47 .490, .507 .499 169 2290847, 2398832 2357018
124 4o .478, .490 .476 173 2754228, 2884031 2850385
125 100 3.055, 3.162 3.148 114 181970, 190546 182978

126 28 .254, .263 .253 136 501187, 524807 512205
127 25 .229, .237 .236 86 50118, 52480 50160
128 74 1.245, 1.288 1.281 189 5754399, 6025595 5910095
129 164 27.861, 28.840 28.059 104 120226, 125892 125447
130 5 .115, .119 .115 186 5011872, 5248074 5069598

131 27 .245, .254 .250 77 33113, 34673 33778
132 8 .127, .132 .132 141 630957, 660693 638510
133 185 57.544, 59.566 57.815 174 2884031, 3019951 2947853
134 92 2.317, 2.399 2.376 139 575439, 692559 595725
135 38 .359, .372 .362 50 9549, 9999 9565

136 19 .186, .193 .190 175 3019951, 3162277 3038191
137 192 73.282, 75.858 74.116 119 229086, 239883 232779
138 108 4.027, 4.169 4.112 97 83176, 87096 84980
139 139 11.749, 12.162 11.843 72 26302, 27542 26317
140 166 29.854, 30.903 30.602 73 27542, 28840 28422

141 95 2.570, 2.661 2.645 99 91201, 95499 94989
142 124 6.998, 7.244 7.095 1 999, 1047 1005

143 177 43.652, 45.186 45.030 101 100000, 104712 104513
144 16 .168, .174 .173 121 251188, 263026 253175
145 71 1.122, 1.161 1.122 43 6918, 7244 7188

.
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-TABLE 4.1-(Continued)
Obs Rank .

Rank*

No. of X - Interval Used X fX Interval Used X
4 4 5 5

f46 80 1.531, 1.585 1.584 ~ 30 3801, 3981 3909
147 161 25.119, 26.002 25.345 170 2398832, 2511886 2510679
148 78 1.429, 1.479 1.469'104 114815, 120226 118327*

149 53 .603, .624 .609 168 2187761, 2290867 2237451
150 72 1.161, _1.202 1.173 20 -2398, 2411 2403

-

151 150 17.179, 17.783 17.460 127 331131, 346736 342584
152 35 .324, .335 .326 8 1380, 1445 1422
153 66 .944, .977 .975 5 1202, 1258 1238

-154 106 3.758,- 3.890 3.778 80 38018, 39810 39350
155- 179 46.774, 48.417 47.114 74 28840, 30199 29243

156 13 .141, .157 .153 21 2411, 2630 2513
157 102 3.273, 3.388 3.275 35 4786, 5011 5002
158 114 4.955, 5.129 5.000 193 6918309, 7244359 7206330
159 87 1.950, 2.018 1.984 118 218776, 229085 223413
160 10 .136, .141 .137 69 14454, 15135 15063

~161 57 .692, .716 .696 12 1659, 1737 1704
-162 151 17.783, 18.408 18.391 200- 9549925, 9999999 9872012,

163 77 1.380, 1.429 1.386 142 660693,. 691830 689137
i 164 79 1.479, 1.531 1.527 16- 1995, 2089 2033-

| 165 134 9.886, 10.233 9.923' 48 8709, 9120 8890

3 166 37 .347, .359 .358 176 3162277, 3311311 3222083
167 178 45.186, 46.774 45.455 64 18197, 19054 18542
168 56 .668, .692 .684 49 9120, 9549 9514
169 42

.

412,- .427 .425 166 1995262, 2089296 2042173
170 182 51.880, 53.703'52.864 138 549540, 575439 553825

171 44- .442, .457 .442 165 1905460, 1995262 1911211
172 84 1.758, 1.820 1.759 60 15135, 15848 15390
173 121_ 6.310, 6.531 6.418 27 3311, 3467 3410

-174 118 5.689, 5.888 5.775 57 13182, 13803 13347
175 107 3.890,' 4.027 3.976 133 436515, 457088 449309

176 180 48.417, 50.119 49.775 164 1819700, 1905460 1878104
177- 113 4.786, 4.955 4.919 102 104712, 109647 106948
178 62 .822, .851 .828 134 457088, 478630 461400''

- 179 133 9.550, 9.886 9.678 158 1380284, 1445439 1385105
180- 2 .104, .107 .105 89 57543, 60255 59322

.
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TABLE 4. l' (Continued) .
Obs. . ' Rank Rank

I Interval Used X fX Interval Used X*
4 4 5 5

'181 65'- .912, .944 .922 14 1819, 1905 1847
182 40 .385, .398 .393 145 758577,- 794328 764214 .

183 89. ~2.089, 2.163 2.127 40 6025, 6309 6257
184 186 59.566, 61.660 60.109 115 190546, 199526 195136
185- 135 10.233, 10.593 10.391 34 4570, 4786' 4755 ,

186f 111 4.467,_ 4.624 4.562 90 60255, 63095 61100
187. 120 .6,095, 6.310 6.153 140 602559, 630957 611131

-188 175 140.738, 42.170 41.962 108 138038,- 144543 138559
'189 20 .193,. .200 .19) 122 263026,. 275422 270133
190 32 .292, .302 .296 747 831763, 870963 853889

191 189 66.069, 68.391 66.259 187 5248074, 5495408 5308941
192 32 .582, .603 . 591 18 2187, 2290 2189
193 112 4.624, 4.786 4'.641 15' 1905, 1995 1911
194 59 .741, .767' .749 109 144543, 151356 148721
195 137 10.965, 11.350 11.194 52 10471, 10964 10802

196 157 21.878, 22.646 22.046 94 72443, 75857 74513
197 .93 2.399, 2.483 .2.476 39 5754, 6025 6007
193 181 50.119, 51.880 51.444 35 12022, 12589 1225C
199 194 78.524, 81.283 78.915 28 3467, 3630 3583
200 138 11.350, 11.749.11.438 178 3467368, 3630780 3601253

.
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4.4 Determination of the Sensitivity of the Output to Distributional

Assumptions on Influential Input Variables
.

I

Because of th"e influence on Y of X4 and X5 the assumptions regarding

the probability; distributions of X4 and X5 become of rarticular interest.
.

That is, how sensitive is the probability distribution of Y to the par-
,

ticular distributional. assumptions made on X4 and X ? In particular, if5,

1

the distributions of X4 and X5 were actually lognormal instead of

loguniform, with the range space remaining the same, how much woulo the

! ' distribution'of Y be affected? Changing the entire form of the parent

i distribution would probably be considered as quite extreme. It seems more

.

likely that the parameters of the distribution rather than the form of the
i

distribution would be subject to question. The methods of Section 3

enable us. to investigate these areas (within reason) without making new
i

computer runs under the changed input distribution (s).
~

4

1

j. We now consider three cases for purposes of illustration; (1) the

distribution of X4 is assumed to be lognormal while X5 remains loguniform,i

(2) the distribution of X5 is assumed to be lognormal while K4 remains

loguniform, and.(3) the distributions of both X4 and X5 are assumed to be

lognormal. Each of' the 200 input vectors used in this study carries an'

'

7initial weight of (1/200)7 200 -1 = .005 since the original Latin hyper-

I cube sample was based on equal weights. The weights associated with these
.

input vectors will r.c longer necessarily be .005 as the intervals in Table

'4.I 'will be associatod .with new probabilities according to the lognormalf

.

. distribution. These new weights are given in -Table 4.2 for each of the

above 3 cases. Examination of Table 4.2 shows these new weights (or step*

-heights for the new estimate of the output c.d.f.) to range from .000109 to
.- ,

'

.012350 for both ' cases (1)' and (2), and from .000004 to .030042 for case

.
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TABLE 4.2 [
New Weights Assigned to Input Vectors

For the~3~ Cases Under Consideration

.

Obs. Obs.
No. Case 1 Case 2 Case 3 No. Case 1 Case 2 Case 3

1 .000377 .012024 .000906 36" .010490 .000270 .000566
,

2 .004799 .003656 .003509 .37 .004400 .012233 .010765
3' -.007923 .000190 .000301. 38 .000227 .002279 .000103
4 .000813 .005865 .000953 39 .002548 .000190 .000097
5 .004018 .000132 .000106 40 .011013 .010672 .023506

6 .011013 .011933 .026284 41 .000479 .011322 .001086
7 .005215 .012315 .012844 42 .005645 .011464 .012943
8 .003314 .001802 .001194 43 .000270 .002992 .000161
9 .000132 .000652 .000017 44 .000145 .000443 .000013
10 .010490 .003482 .007,J6. 45 .008609 .001914 .003295

, 11 .007460 .001152 .001718 46 .000605 .000145 .000018
' 12 .000347 .002839 .000197 47 .000208 .000132 .000005
; .13 .000248 .003835 .000190 48 .010846 .001914 .004151
| 14 .001403 .011718 .003289. 49' .011464 .009274 .021264

15 .003150 .000270 .000170 50 .005865 .006312 .007404

| 16. 000319 .002411 .000154 51 .007923 .000145 .000230
| 17 .009906 .009056 .017940 52 .001005 .00'700 .001949

18 .000873 .009056 .001581 53 .012233 .000248 .000606
19 .000443 .002839 .000251 54 .001231 .008153 .002008
20 .012105 ~002992 .007243 55 .006539 .003314 .004334.

21 .000702 .006087 .000855 56 .007229 .006539 .0094541

i 22 .008382~.003150 .005281 57 .002992 .009489 .005678
23 .000109 .001076 .000024 58 .000347 .012315 .000855
24 .012280 .01183: .029055 59 .000145 .002411 .000070
23 .000132 .001231 .000033 60 .001403 .001496 .000420

,

| 26 .011172 .011831 .026435 61 .012233 .000319 .000782
L 27 .009056 .002030 .003677 62 .000174 .011013 .000383

- 28 .005215 .005005 .005220 63 .002030 .002691 .001093
| 29 .001076 004799L.001033 64 .000294 .012105 .000711
| -30 .012280 .000248 000608 65_ .010301 .000605 .001245

;- - 31' .002548'.012174 .006205 66 .011172 .012350 .027595

| L32 .000109 .008609 .000188 67 .002411 .000518 .000250
33 .012315 ~.000702 .001730 68. .009274 .001403 .002603

: '34- .005865 .000159 ~.000186 69 .001933 .010846 .025885 *

~35- .002839 .001695'.000962 70 .004400 .000652 .000574

.

~
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TABLE 4.2 (Continued)
Obs. Obs.
No.. Case 1 Case'2 Case 3 No. Case 1 Case 2 Case 3
71 .002279 .007460 .003400 TOT .003314 .00V9E .006363
72 .000937 .007923 .001485 107 .001152 .000319 .000074
73 .008833 .010846 .019162 108 .000652 .004400 .000574.-

74 .000443 .011464 .001015 109 .007691 .000479 .000737
75 .011831 .006998 .016558 110 .003835 .004597 .003526

76 .005005 .005215 .005220 111 .000479 .002152 .000206
77 .001914 .004207 .001610 112 .012350 .009700 .023959+

78 .002279~.000409 .000186 113 .002839 .000560 .000318
79 .002030 .007691 .003123 114 .000190 .011596 .000441
80 .001695 .011013 .003734 115 .000174 .000227 .000008

81 .001496 .000174 .000052 116 .003482 .010301 .007174
82 .009056 .010301 .018657 117 .000270 .008382 .000452 !

83 .000120 .005215 .000125 118 .006312 .003150 .003977
84 .001152 .006998 .001612 119 .012315 .000443 .001091
85 .001231 .000813 .000200 120 .008609 .000227 .000391

,

86 .001496 .001076 .000322 121 .000159 .000120 .000004
87 .010672 .007229 .015428 122 .001076 .012174 .002620
88 .011831 .007691 .018199 123 .003150 .001315 .000828
89 .004207 .001315 .001106 124 .002992 .001005 .000601
90 .003482 .007923 .005518 125 .012350 .011322 .027966

91 .009274 .000756 .001402 126 .001005 .006768 .001360
92 .011718 .000756 .001771 127 .000813 .011172 .001816
93 .006760 .003835 .005191- 128 .008833 .000294 .000519
94 .005645 .010490 .011843 129 .001802 .012233 .004409
95 .004597 .000518 .000477 130 .000159 .000377 .000012

'96 001695 .009274 .003144 131 .000937 .009489 .001778.

97 .012338 .006768 .016701. 132 .000208 .005645 .000235
98 .005428 .000120 .000131 133 .000409 .000937 .000077
99 .000756 .008153 .001232 134 .011933 .006087 .014528

100 .007691 .004207 .006471 135 .001914 .003656 .001399

10 1 .003656 .004018 .002938 136 .000518 .000873 .000091'
102 .001315 .000873 .000230 137 .000227 .010490 .000476
10 3 .004597 .002691 .002474 138 .012024 .012280 .029531

'104 .009700 .000174 .000337 '139 .006087 .008382 .010204
'105. .008153 .002279 .003716 140 .001593 .008609 .002743

I
'

..

|

|
'

.

|
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TABLE 4'.'2 (Continued)
' Obs. Obs.
No. Case 1 Case 2 Case 3 LNo. Case 1 . Case 2 Case 3
141- .012174 .012338 .030042 176 .000605. 001802 .000218
142 :.0094a0 .000109 .000208 177 .011464 .012338 .028289
143- .000'.; .012350 .001847 178 .006087 .007229 .008801

'

. 144 ~.000409 .010106 .000813 179 .007460 .002548 .003802
,

145 .008153_.002548 .004155 180 .000120 .011596 .000279

146 .010106 .001152 .002328 181 .006768 .000347 .000470 *

147 .002152 .001231 .000530 182 .002152 .004799 .002066
148 .009700 .012280 .023822 183 .011596 .002152 .004991
149 .004207 .001403 .001181 184 .000377 .011172 .000842

- 150 .008382 .000560 .000939 185 .006998 .001496 .002094

' 151 .003835 .008833 .006775 186 .011718 .011718 .027454
152 .001593 .000208 .000066 187 .010301 .005865 .012083

. 153 .006998 .000159 .000222 188 .000873 .012024 .002100
: 154 .012174 .010106 .024608 189 .000560 .009906 .001110

155' .000652 .008833 .001152 190 .001315 .004400 .001157

156 .000319 .000605 .000039 191 .000294 .000347 .000020
157 .012338 .001593 .003932 192 .004018 .000479 .000385

' 158 011322 .010672 .024166 194 .005428 .011933 .012955
159 .011322 .010672 .024166 194 .005428 .011933 .012955
160 .000248 .005428 .000269 195 .006539 .004018 .005255

161 .005005 .000294 .000294 196 .002691 .012105 .006515
162 .003656 '000109 .000080 197 .012024 .002030 .004883.

163 .009489 .005428 .010302 198 .000560 .004597 .000515
164 .009906 .000409 .000810 199 .000190 .001005 .000038
165 .007229 .003314 .004791 200 .006312 .000702 .000887

166 .001802 .000313 .000293 1.000000 1.000000 .986947
167 .000702 .006539 .000918
168 .004799 .003482 .003343
169 .002411 .001593 .000768-

. 170 .000518 .006312 .000654

171 .002691 .001695 .000912
172 .010846 .005645 .012246
173' .010106 .000937 .001894-

-174.- .010672 .005005 .010683
175 .012105'.007460 .018061

- ,

6

.
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.(3). This indicates . that the proposed changes in distributional assump-

tions have not dramatically changed the probabilities associated with the

intervals in Table 4.1, for if they had we might observe a large number of

near zero weights which are dominated by a few large values.
.

For ease of comparison the results contained in Table 4.2 are presented

in graphical form in Figures 4.6 through 4.8. The weights in the column
,

labeled Case 1 in Table 4.2 are used in the estimator S'(y) defined by

Equation (3.6). The graph of S'(y) appears in Figure 4s6, along with S(y)

which appeared earlier in Figure 4.5. Recall that S(y) estimates the

distribution function of the output under base case conditions, while S'(y)

estimates the distribution function of the output af ter changing the

assumed distribution on X4, but without making any additional runs on the

computer. In Figure 4.5 it is seen that the estimate S(y) agrees well with

the "true" distribution functinn. Now the question naturally arises, "How

well does S'(y) estimate the new distribution function of the output?"

Because we are using the simplified version of the transport model, the

question is relatively easy to answer. The procedure outlined in Section

4.2 was repeated to obtain 1000 points, with the new distributional assump-

tion on X . These 1000 points were run on the simplified model, and theA

empirical aistribution function thus obtained was used as the "true"

distribution function for purposes of evaluating S'(y). The resulting

curve appears in Figure 4.6 with S(y) and S'(y). The estimate S'(y)

appears to be a reasonable estimate of the true distribution function, but

it is not possible to tell from this one example whether the size of the

differences between S(y) and the "true" c.d.f. is what one might expect due*

to sampling fluctation. For this reason two other cases are examined in
.

this subsection, and the effect of using different sample sizes is examined
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FIGURE 4.6. ESTIMATES.OF THE OUTPUT DISTRIBUTION FUNCTION G(y) FOR THE BASE
CASE (N = 200) AND CORRESPONDING CASE 1 EST1 MATE. ALSO INCLUDED
FOR COMPARISON IS THE CASE 1 "TRUE" CURVE BASED ON N = 1000.
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FIGURE 4.7. ESTIMATES OF TIIE OUTPUT DISTRIBUTION FUNCTION G(y) FOR THE BASE
CASE (N = 200) AND CORRESPONDING CASE 2 ESTIMATE. ALSO INCLUDED
FOR COMPARISON IS Tile CASE 2 "TRUE" CURVE-BASED ON N = 1000.
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FIGURE 4.8. ESTIMATES OF THE OUTPUT DISTRIBUTION FUNCTION G(y) FOR THE BASE
CASE (N = 200) AND CORRESPONDING CASE 3 ESTIMATE. ALSO INCLUDED
FOR COMPARISON IS THE CASE 3 "TRUE" CURVE BASED ON N = 1000.
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.in the next subsection. .

A similar analysis of the effect of changing X 's distribution function5

is summarized in Figure 4.7. In that figure appear the same function S(y)
.

as 'before, the estimate S'(y) of the new distribution function using the
~

, . weights listed under Case 2 in Table 4.2, and a graph of the "true" distri-

bution function.obtained by running an additional 1000 points through the'

,

simplified model, using Latin hypercube Sampling. There is less dif ference

between S'(y) and the distribution function here than appeared in Figure3

4.6. In fact the agreement appears to be pretty good.

'For .the third and final comparison both the X4 and X5 input distribu-

tions were changed. The original estimator S(y) from Figure 4.5 appears

again' in Figure 4.8 as a point of reference. The new estimator in this

case was.actually

' (Y) = S'(Y}
S"(y) = S ' (=) (4.3).986947

to obtain an estimator that increased from 0 to 1, as suggested in Section

2. The new estimator S"(y) is seen in Figure 4.8 to agree well with the

"true" distribution function, obtained using an additional Latin hypercubei '

sample in the~ simplified model.
.

4.5 The Effect of Sample Size on Estimated c.d.f.'s
,

The results of the previous section were all based on a Latin hypercube

sample with.N =.200. Given that the predictions turned out to be in rease-

nably good agreement with actual results sue might be led to wonder what
.

results smaller sample sizes would produce. In this subsection we investi-'

gate- the effect of sample size for- the simplified transport model. We
.

would lika to emphasize that the results of this subsection apply to the

.
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simplified transport model and these results may not apply directly to just

- any model since sample size requirements are' a- function of the model

complexity and number of variables used. However it would be reasonable to

expect improvement with increased-sample sizes.
.

In this subsection we consider sample sizes 50 and 100. Figures 4.9

and '4.'10 contain estimates 'of the base c.d.f. for Latin hypercube sample ,

sizes 50 and 100 respectively. These two figures can be compared with

Figure 4.5 where N = 200. - The estimates seem to improve between N = 50

and 100.

.The results reported in the previous subsection (Figure 4.6) for Case

1, N = 200, may be compared directly with the results depicted in Figure

4.11, N = 50, and _ Figure 4.12, N = 100. The. actual relationship between

the "tru'e" base case c.d.f. and "true" case 1 c.d.f. is more easily discer-

'

nible with N = 100 and 200 than with N = 50. In like manner, Figure 4.7 of

the previous subsection may be compared directly with Figure 4.13, N = 50,

and Figure 4.14, N = 100, to see the ef fect of various sample sizes in Case

2. Once again there is a slight but definite improvement in the quality of

the estimators se the sample ~ size - increases.

In Figure 4.8 for Case 3 of the previous subsection, where there is a

more -dramatic change in the c.d.f.'s, the estimates based on N = 200 are

much closer to the "true" c.d.f. for Case 3 than are the corresponding

estimates for N = 50 (Figure 4.15) and N = 100 -(Figure 4.16). Note that

here as in the previous subsection the estimator

S'(y)S"(y) = (4.4) +
3.(,)

- .

I

:
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FIGURE 4.9. - ESTIMATES OF THE OUTPUT DISTRIBUTION FUNCTION G(y) BASED ON
LATIN HYPERCUBE SAMPLES OF SIZE N = 50 AND N = 1000.
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FIGURE 4.10. ESTIMATES OF THE OUTPUT DISTRIBUTION FUNCTION G(y) BASED ON
- LATIN HYPERCUBE SAMPLES OF SIZE N = 100 AND N = 1000.
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FIGURE 4.11. ESTIMATES OF Tile OUTPUT DISTRIBUTION FUNCTION G(y) FOR Tile
BASE CASE (N = 50) AND CORRESPONDING CASE 1 CSTIMATE. ALSO
INCLUDED FOR COMPARISON IS Ti1E CASE 1 "TRUE" CURVE BASED ON
N= 1000.

1.0 ---"

_

pl
: ~ I.:|9. 8 - |

5 .| t'

"b S(y) 7..f
'

_J. -- '

r

k (Base case, ..! -----8-
,..

* * 50) -I8 8.6 - -

~ .>, . .

M -

.- - -m
m

'

_| S (y)[
[ f~ k(Case 1estimatedfrombasecase,N=$0)'

9. 4 - :'
O . . .! -Ig

*

J \:S

f 4 Case 1 "true" c.d.f. (N = 1000), ,

d |
e.2- |

"

:

n

0.0 , , .i. . ., . .i , . ...

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

TOTAL TISCHABF.E OVCR 10 ' YEARS

-4
H

- _ _ _ _ - - _ _



.

4
10

FIGURE 4.12. ESTIMATES OF THE OUTPUT DISTRIBUTION FUNCTION G(y) FOR THE BASE
CASE (N = 100) AND CORRESPONDING CASE 1 ESTIMATE. ALSO INCLUDED
FOR COMPARISON IS THE CASE 1 "TRUE" CURVE BASED ON N = 1000.
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FIGURE 4.13. ESTIMATES OF THE OUTPUT DISTRIBUTION FUNCTION G(y) FOR THE BASE
CASE (N = 50) AND CORRESPONDING CASE 2 ESTIMATE. ALSO INCLUDED
FOR COMPARISON IS THE CASE 2 "TRUE" CURVE BASED ON N = 1000.
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FIGURE 4.14. ESTIMATES OF THE OUTPUT DISTRIBUTION FUNCTION G(y) FOR THE BASE
CASE (N = 100) AND CORRESPONDING CASE 2 ESTIMATE. ALSO INCLUDED
FOR COMPAR2 SON IS THE CASE 2 "TRUE" CURVE BASED ON N = 1000.
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FIGURE 4.15. ESTIMATES OF THE OUTPUT DISTRIBUTION FUNCTION G(y) FOR THE. BASE
CASE (N = 50) AND CORRESPONDING CASE 3 ESTIMATE. ALSO INCLUDED
.FOR COMPARISON IS THE CASE 3 "TRUE" CURVE BASED ON N = 1000.
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FIGURE 4.16. ESTIMATES OF THE OUTPUT DISTRIBUTION FUNCTION G(y) FOR THE BASE
CASE (N = 100) AND CORRESPONDING CASE 3 ESTIMATE. ALSO INCLUDED
FOR COMPARISON IS THE CASE 3 "TRUE" CURVE BASED ON N = 1000.
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is used _ in Figures 4.15 and 4.16. - The sum of the cell probabilities,

S'(=), equals .0.9914 for N = 50 and 1.1221 for N = 100. Division by S'(=)

has negligible effect for N = 50, as it did for N = 200 where S'(=) was

.9869.- There is no reason to make a similar adjustment in Cases 1 or 2*

because S'(=) always equals I when only one input distribution function is
,

altered.

An interesting question may be discussed at this time. Suppose someone

is interested in estimating the output distribution function under four
,

dif ferent sets of assumptions on the input distributions, and can run only
,

'

200 points. Would it be mere informative to run 200 points under one set

of ccnditions and estimate the other distribution functions using the

i
methods of Section 3, or run 50 points under each of the four sets of

conditions? In this example it appears that the former procedure results

in better estimates, as seen by comparing Figures 4.6, 4.7, and 4.8 with

Figure 4.9. These results depend heavily upon the fact that the weights

were not substantially different in the four cases examined. More substan-
-

tial changes in the weights would probably favor the second procedure.

However, if more than 4 cases were to be considered the former procedure

may be preferred because of its greater flexibility.

.

d

4.6 A . Comparison of Latin Hypercube Sampling with Random Sampling and

Replicated Latin Hypercube Sampling

In .the previous subsection the sample sizes were varied to see what

' kind of- results may be obtained with smaller sample sizes. In each case a ;;,,

sample size was' fixed,_without any prior informstion, and a single sample,

* ,of that size was-obtained. This approach may be unsatisfactory for some4

i
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applications. The user may prefer to use a much smaller sample size, and

repeat the procedure several times as a replicated Latin hypercube sampling

(RLHS) procedure. For example, rather than obtaining a single LHS with 100

runs, the user may wish to proceed in a sequential manner, with samples of
.

size 10, stopping when satisfactory results are obtained or when funds ara

exhausted. Results of a comparison of the two procedures are given in this
,

subsection. Both LHS and RLHS are compared with simple random sampling, to

provide a point of reference more familiar to the reader. The bases of

comparison include point estimates of the mean, variance, and standard

error of the estimator of the mean, in addition to comparisons of the

resulting estimates of the entire output distribution function. A dif-

ferent isotope is used in this section so the c.d.f. of the output random

variable will not necessarily resemble the c.d.f.'s of Section 4.1.

Comparisons are first made under the base-case input distribution assump-

tions of Section 4.1, and then under the changed distribution assumption-

considered in Section 4.4 for case 3.

Estimatorshand 2o for the mean and variance of Y have already been

introduced for Latin hypercube sampling in Equations (2.79) and (2.80)

respectively. The estimator of the c.d.f. is given in Equation (2.24).

These estimators are easily adjusted for changed input distributions by

replacing the former cell probabilities with new cell probabilities, ao

explained in Section 3. To obtain estimates of the standard errors of

these three estimators, the ~mpling procedure is repeated 50 times. The

means and standard deviations of the 50 values of h,o2 and S(y) are given

in Table 4.3 and Figures 4.17through 4.20s Note that N = 100. *

The replicated Latin hypercube procedure involved 10 subsamples of size

10 each. A subsample of size 10 is a Latin hypercube sample, for which b ,
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2a

cnd S(y) cra c=put::d. The procedure is repetted 10 times and the arith-a

metic averages of the various estimates are used as estimators. This pro-

cedure has one distinct advantage over a single Latin hypercube sample of

size 100; the standard error of each estimator may be estimated by com-

putingstandarddeviationofthe10observationsonh,o and S(y)2*

respectively, and dividing by M . The sample means of the 50 estimated
.

squared standard errors of b are also reported in Table 4.3.

Estimates of the mean, variance and distribution function for random

samples of size 100 follow the classical lines. In addition, the standard

error of p is estimated in the classical manner, by (o /100)1 The actual

observed means and standard errors of these estimators, over 50

repetitions, are presented in Table 4.3. When the joint input density

function is changed from f(x) to q(x), each observed output Y = h(X) is
_

associated with a weight Wi = q(X)/f(X). Then the new estimators are

^
1

(4.5)40"N ii

^2 1 2
0"n-1 (i - 0 1 (4.6)

and 2 1
S "(7 - 1) 1 (4.7)~

O n

In this way estimates of the mean, variance, and distribution function can

be obtained from the original random samples without rerunning the code.

The means and standard errors of these estimators are reported in Table 4.3.

and Figures 4.17 through 4.20. )
*

An examination of Table 4.3 reveals many interesting comparisons of the
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three sampling procedures. Latin hypercube sampling provides, as expected,

the best estimates of the mean and variance.of the output Y. The standard

error of M increases about 64% for replicated LHS, while random sampling

has about five times the standard error of LHS, in the original distribu-

~

tions case. For changed input distributions the increases in standard

error are not as pronounced, but still present.
,

TABLE 4.3

Means 'and Standard Errors of 50 Observations on Estimators of
E(Y), Var (Y), and Var (p), using Latin Hypercube Sampling,
Replicated Latin Hfpercube Sampling, and Random Sampling.

RLHS (N=10) Random
LHS (N=100) 10 replications Sample (N=100)

A

v
mean 0.6999 0.6972 0.7003

s tandard error 0.00748 0.01225 0.03556

^2

.imean 0.1090 0.1107 0.1103

standard error 0.00588 0.00800 0.01369
A A

Var (u)
mean unobservable .00011 .00103

(adjusted for changed input distributions)
A

p
mean 0.8735 0.8746 0.8886

standard error 0.06554 0.09000 0.14165

^2.
o

mean 0.0274 0.0712 0.0435

standard error- 0.00427 0.02765 0.02646
A A

Var (p)

. 0.00561 0.00435
-

mean unobservable
.

.

Table 4.3 also-shows entt the standard error for estimates of the

~ .80 L
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v:ricnca cra sma11 cat with Latin hyparcubs sgnpling cnd largest with random

sampling under the original input distributions. When the input distribu-

tions are changed, the variance estimates become unstable, exhibited by the

apparent bias and very large variability of the estimator, for all but the

* LHS.

The estimate of tha standard error' of' h , which is useful for forming
.

confidence intervals, is obtained for each of the 50 repetitions of RLUS

and random sampling. These estimates appear to be unbiased, as sinown by

the mean of Var (h), which is approximately equal to the square of the

sctual. observed standard error of the 50 values of h.

Replicated Latin hypercube sampling appears to be a viable alternative

to Latin hypercube sampling when some estimate of the standard error of

the estimator is desired. RLHS appears to provide smaller standard errors

than random sampling in most cases, but not as small as LHS. Some increase

l' in standard error, over LHS, accompanies the privilege of obtaining an

estimate of that standard error. RLHS is a more general sampling plan than
r

the other two procedures examined. That is, when RLHS has only one repli-

cation it reduces to LHS. When RLHS consists of N replicated samples of

| size one each, 'it is random sampling.
|

The estimates of the output distribution function follow the same pat-'

tern as the point estimates just discussed. The average of the 50 empiri-

cal c.d.f.'s is shown in Figure 4.17 for all three sampling schemes.

Obviously they are all unbaised and estimate the same function. The stan-

| . dard errors of those estimators are graphed in Figure 4.18. The c.d.f.

estimate furnished by LHS is the best, as measured by its standard error.,

l'
| The RLHS procedure shows a slight increase in standard error, while random
i

*

sampling produces 2 or 3 times .the standard error of the LHS procedure.
I

<

I -
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' P

b LThe variance of the empirical'c.'d.f. is estimated using S(y)(1-S(y))/100
!,
t. .

.

The sample variance of the ten estimators obtained
.

. using random ' sampling.''

|
in RLHS, divided by 10, provides an estimate of the variance of the S(y)

L
~ obtained from RLHS. . Both of these quantities were obtained for each of the

, -

;
*

; .-

; L50' replications.- Their mean values agreed with the actual observed stan-
r

dard errors,:and so are not reported here. The ' conclusions are the stan- ,

dard error of the ' estimate S(y) can be estimated using RLHS and random

sampling; the standard error is about. twice as large in this example using

random samoling; but' the smallest standard error belongs to LHS, although
~

(
' no estimate 'of that standard error is obtainable from a single sample.

The estimates of - the c.d.f., when the ' input distributions are changed,|.

were. obtained for each of- the three sampling procedures, for the 50 runs.

. The averages . for the three procedures are_ in remarkable agreement (Figure

4.19). ~The differences in their' standard errors, evident in Figure 4.18
!
! for .the original distribution functions, have narrowed considerably in this
r

case. It is not clear which procedure has the smallest variance, although

LHS seems to be consistently better than random sampling. The net effect-

of having unequal cell probabilities 'seems. to be one of narrowing the dif- '

ferences between Latin hypercube sampling and ' random sampling. '

t

5. A COMPARISON OF SCENARIOS ,

. ,

!
The methods.of sections 2 and 3 can be applied to a variety of

' ' situations where decisions must be. made in the face of uncertainty. That
~

,

- is,.several diffarent strategies may'be compared simultaneously using these * '

.

methods, or several. models with substantial differences among them may be -|.
.

,

~

l
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compartd. In thic caction va denonstrate these methods with an application

-involving a single ' basic model which has a multitude of substantial

variations called scenarios.

The physical quantities involved in the ~ assessment of any particular

site which is selected as a candidate for geologic disposal of radioactive.

waste will have uncertainties associated with them. The last section
.

discussed how these uncertainties arise from lack of knowledge about proba-

bility distributions associated with input variables. Another important

source of uncertainty is introduced by an inability to predi c.t exactly what

conditions will exist at the site in the long range future. For example,

if future generations lose administrative control over the site then

exploratory drilling for minerals and water could take place. A drill hole

through or near the depository could establish hydraulic communication bet-

ween the depository and either the underlying or overlying aquifer.

The above example is by no means the only way by which a release of

radionuclides from the depository could take place. However, rather than

discussing future conditions we will introduce first the concept of a

scenario. A scenario is a set of conditions which could exist at or near

the depository. The conditions may or may not eventually lead to a

discharge of radionuclides into the environment (biosphere). For a risk

assessment of a particular site to be credible a large number of scenarios

needs to be examined-(perhaps hundreds). Computer time considerations will

'not allow for an extensive investigation of every possible scenario. Yet,

the scenarios need to be evaluated and compared on the basis of their out-
,

put random variables. In this section we explain hew one might accomplish
.

such a comparison with a limited number of computer runs. We also show how

the methods of the previous sections can be used to assess the effects ofa

87
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.dif ferent input . distribution ass'umptions on . scenario : comparisons.
:

5.1 Scenarios and Latin Hypercube Sampling
E

'We assume that in the analysis of an actual site -the set of scenarios
.

'has .been carefully defined through the efforts of experts in various fields

such as. geology' hydrology, _ physics, and engineering. Our immediate con-,
,

cern;is to obtain enough information on'each scenario to enable the "high

consequence" scenarios to be identified, equivalent scenarios to be com-

bined 'into ' groups, and " low consequence" scenarios to be eliminated from
i

further study. In this way the number of scenarios can be reduced to a
!

manageable number which may be studied more extensively.

Initially a decision must be made on how many computer runs are needed

! on each ' scenario, taking into consideration such items as reasonable com-

-puter time and the power associated with a test for differences in the sce-

nario output random variable. The number of runs (i.e. , the sample size)

should be large enough to provide good separation (or grouping) of

scenarios, and yet should be within the inherent time and cost constraints.

The mechanics of obtaining output observations for a particular scenario

l' require the selection of a set of input vectors. We feel that Latin hyper-

' cube sampling provides a viable method of selecting these input vectors
i

such that the desired .information can be efficiently obtained. Further-

more,' the same set of input vectors is used in each scenario to enable a

. direct' comparison among scenarios. This approach assures that each sce-,

L'

| nario will' beitun under exactly the same input conditions, and that any
|

|

!. dif ferences observed'will be due to scenario dif ferences and not sampling ' -

!

variation.j- .

| '
<

!

!
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5.2 The Scenarios Used

For purposes of illustration, we again use the analytical transport,.

model which was introduced in Section 4. Whereas the model was used in

Section 4 under fixed conditions '(i.e. , one scenario), consideration is now
.

given to 9 scenarios. The selection of the 9 scenarios is based more on

computational simplicity than any attempt to represent all possible modes.

by which radionuclides could potentially escape a waste depository.

Furthermore, even though no attempt is made here to assign probabilities to

these scenarios, we believe that the probabilities would be quite low. The

9 scenarios are described briefly below.

Scenario 1. This scenario represents a U-tube which forms a hydraulic

connection between the depository and the overlying aquifer (Figure 5.1).

These connecting legs are assumed to have relatively low transmissivity.

Such a scenario could result from degradation of materials used to seal
'

access and ventilation shaf ts to the depository or from exploratory drill

holes which penetrate to the depository.

A complete listing of variables with ranges and distributions assumed

for-this analysis is given~in Tables 5.1 and 5.2. Those variables used to

calculate radionuclide discharge in the individual scenarios are also iden-

tified in Table 5.2.

Scenario 2. This scenario is identical to scenario 1 except that a

small portion (1%) of the flow in the overlying aquifer is allowed to

discharge at a point A, located 10,000 feet downstream from the repository

(Figure.5.1). Such discharge could result from water wells placed into the

overlying aquifer (e.g., for irrigation or a municipal water supply).*

Scenario 3. Scenario 3 is identical to Scenario 1 except that the con-
.

e
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TABLE 5.1.
.

'InputLVariables Used in the Scenarios

X1 = hydraulic conductivity of the overlying sandstone aquifer (ft/ day)'

X2 = hydraulic conductivity of the underlying sandstone aquifer (f t/ day)
,

X3 ' = hydraulic conductivity of the low transmissivity connection (ft/ day)

X4 =; hydraulic conductivity of the high transmissivity connection

' ( f t/ day) -

2X5 = area of the low transmissivity connection (ft )

X6 ' =f area of the high transmissivity connection (f t2)
*

X : = ' porosity of the overlying sandstone aquifer7

X " Porosity of the underlying sandstone aquifer8

X9 = porosity.of the low transmissivity connection

X o.=. porosity of the high transmissivity connectioni,

X11 = dispersivity (f t)
3X12 = distribution coefficient of the sandstone (cm /gm)

+

3X13 = distribution coefficient of the connection (cm /gm)

:X14 = radionuclide solubility limit (gm/gm)-

,

I necting legs are. assumed to have high.transmissivity. These high

- transmissivity ' connections could represent f'ractures created by mechanical

- or thermal- stresses induced by the. presence of the depository and the
.

i

' radioactive' waste.

... Scenario 4. Scenario 4 'is identical to scenario 3 except that 1% of

' the flow in. .the overlying aquifer is allowed to discharge at a point A,
le;

._

.
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TABLE 5.2.

-_ Properties of the Input' Variables Used is the Scenarios

.

Probability Scenarios Using

' Variables : ~ Range Distribution This Variable .

Xi (1,50) Loguniform 1-4, 6-9

X2 (1,50) Loguniform 5-

X-3 (1,50) Loguniform 1, 2, 8, 9

:X4 (1,1000) Loguniform 3-7

X5 (1,1000) Loguniform 1, 2, 8, 9

4 7(10 ,10 ) Loguniform 3-7X6

X7; _(.05,.30) Normal, 1-4, 6-9

=.175,o =.04

X8 (.05,.30) Normal, 5-9

p=.175,o =.04

X9 (.005,.20) Loguniform 1, 2, 8, 9

X10' (.0001,.01)' Loguniform 3-7

X11 (20,500) = Uniform 1-9

4
X12 (10,10 ) Loguniform. 1-9

2
LX13 (10-2,10 ) Loguniform 1-9

.X14 - (10-9,10'-6 ) Loguniform 1-9

._ located 10,000 feet downstream from the depository.
*

. Scenario-5. This ' scenario represents the formation of a U-tube to the

- underlying ~ aquifer '(Figure 5.2). The legs of' the U-tube are assumed to
,
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have high transmissivity. 'As in scenario 3, these high trenteisoivity con-

nections could result from fracture formation.

, Scenario 6. This scenario -represents a hydraulic connection through

the depository from the underlying to the overlying aquifer (Figure 5.3).
*

The connecting-legs are assumed to nave high transmissivity. Such a sce-

nario could result from faulting or fractures through the depository.
.

Scenario 7. This scenario is identical to scenario 6 except that 1% of

the flow in the overlying aquifer is allowed to discharge at a point A,

located 10,000 feet downstream from the depository (Figure 5.3).

Scenario 8. This scenario is identical to Scenario 6 except that the

connecting legs are assumed to have low transmissivity. Such a scenario

could result from exploratory drill holes which penetrate through the depo-

sitory to the underlying aquifer.

Scenario 9. Scenario 9 is identical to scenario 8 except that 1% of

the flow in the overlying aquifer is allowed to discharge at a point A,

.ocated 10,000 feet downstream from the depository.

5.3 Ordering of Scenarios by Use of the Friedman Test

Since the discharge rates associated with each of the above scenarios

are calculated by using identical input vectors in the computer model as

explained in subsection 5.1, a blocking effect is created across scenarios.
' Therefore, the discharge rates of the scenarios are set up according to a

randomized complete block design. The non-normality of the output random

variable suggests the -use of the nonparametric Friedman test to test

whether the scenarios have identical consequences. This test requires that
.

the discharge rates be ranked from 1 to 9 within each block (assigning

average ranks in the case of ties). The ranks assigned to each scenario,
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are summed over all blocks as part of the computation for the desired test

statistic. This te'st is sensitive to differences in relative orderings

-within blocks.

The. Friedman ' test provides a convenient method of distinguishing bet-
.

ween scenarios 'on the basis of their location parameters (i.e., means or

medians) on the basis of.only a few observations. 0ther procedures may be
,

mo're appropriate if other quantities are of interest, such as the 95th
1

percentile or-only. observations'above some critical value. However

inferences regarding these other quantities are likely to require much
I

large sample sizes.
1

Time and cost constraints inherent in large models like SWIFT ordi-

narily ' limit . the analysis to a small number of blocks. In order to esti-
.

mate the number of blocks required for a reliable ordering of scenarios, a

larger number.of blocks can be run on a simplified replacement model such
'

as NWFT.. This provides a " proper" ordering of scenarios against which the

results from a smaller number of runs may be compared.

To illustrate this point we chose to start with 100 blocks using the
i

NWFT model. Latin hypercube sampling based on equal probability intervals

of 1/100 is used for each of the 14 variables listed in subsection 5.2.

The corresponding output' random variables for each of these 100 input vec-
~

|
tors are assigned ranks as explained above with the results shown in Table

5.3.

The results show Laat within block number 1, scenario number 5 had the
f

largest (rank 9) discharge rate while scenario number 1 had the smallest
<

'(rank 1). In blockJnumber 2 scenarios 1, 5, and 8 all tied for the -

smallest discharge, hence they. all; receive the average rank of (1+2+3)/3 =
.

~2: . Likewise, in block 3 scenarios 1, 3, 6, and 8 all receive rank4

.
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. TABLE 5.3.

Ranks Assigned Within Blocks

'Run (Block) Number

e

Scenario No. 1 2 3 100 Sum...

.

I 1 2 2.5 1 193.5...

2 2 6 6 2 462.0...

3 5 5 2.5 6 461.0...

4 6 9 8 7 824.0...

_

5 9 2 5 5 425.0...

6 7 4 2.5 8 446.0...

7 8 8 9 9 814.0...

8 3 2 2.5 3 284.5...

9 4 7 7 4 590.0...

(1+2+3+4)/4 = 2.5. The test statistic is then based on the sum of the

ranks across' the row for each scenario.
.

These rank totals indicate that scenarios 4 and 7 tend to give the

highest discharges and scenarios 1 and 8 the smallest. The F statistic

computed on the_ ranks, as recommended by Iman and Davenport.(1980) as an
.

alternative form for the Friedman test, is found to be F = 179.8. When

this value is' compared with tables of the F distribution for 9-1=8 and

(9-1)(100-1) = 792 degrees of freedom the significance level associated,

with . this outcome is .<<.00001. . This means-that significant differences do

*
exist among the~ discharge rates for the 9 scenarios. Fisher's least signi-

95P
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ficant difference procedure computed on the ranks, as outlined in Conover

(1980), is used to make multiple comparisons. This procedure gives the

least significant difference at. the 10% level for separation of these rank

sums as 37.0. Any group of rank sums must differ by at least 37.0 to be
,

declared significantly different.. To demonstrate, the scenarios are

' ordered according to their rank sums and equivalent groupings are noted.
,

Scenario Rank Sum

1 193.5

8 284.5

5 425.0

6 446.0

3 461.0

2 462.0

9 590.0

7 814.0

4 824.0

Since the rank sums of scenarios 1 and 8 differ by 91 (which is more

than 37.0) these scenarios are declared to have significantly different

discharge rates. However,' scenarios 5, 6, 3, 2 are spanned by the

measuring stick of 37.00, and hence considered to be in the same group.

Likewise, scenarios 7 and 4 can be grouped together.

Since Latin hypercube sampling was used to ebtain the input vectors, -

the empirical. distribution function of the output random variable provides
.

an unbiased estimate of the cumulative distribution function for each

: 96
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i , iscenario.- ~ Craphs' of ;these . empirical distribution ' functions < are given in
.

- ;
,

_ ..
' Figure 5.4.~ . These ' graphsiprovide additional information pertinent to the

p interpretation . of the . above analysis. For example, the output of scenario
,

'
,,

! 1.- has' been declared significantly lower than .the output of scenario 8.
.

._From a statistical: standpoint this is true as can be seen from Figure 5.4

L which shows that th'e c.d.f. : for L acenario 1 is always to the lef t of the~

.

- c.d.f. for_ scenario 8._ However, from a practical point of view one would
.

l.
,

!

E : be hard press'ed to' claim that there is any real difference between the -out-

put of scenarios 1 and 8. Therefore, one should realize that these proce-
i

dures have a lot of' statistical power to detect scenario differences, but

| one always has to be aware of the practical interpretation of the results. j
~

!
'

We feel that the -sample size of 100 is large enough to obtain a

. reliable ordering of the scenarios. Use of this large sample size was made

possible by use of the simplified analytic transport model (NWFT). In the ;

next 'sub-section the results of ordering the scenarios based on smaller.

sample . sizes are given and compared with the results of this sub-section. '

I
,

5.4 Scenario ordering with Smaller Sample Sizes ;
.t

The results of' the ordering of scenarios given in the above sub-section j

'

involve large enough sample sizes to give- reliable groupings. It would be

,

. desirable -to reproduce those results using smaller sample sizes 'and hence
+ ,

work within the realm of available (and feasible) computer time. In order

:tofdetermine' h'ow small' a sample might be used, samples of size 2, 3, 4, 5,
,

and 10 were studied. For each sample size the value' of the Friedman F sta-

: tistic' and associated significance -level is examined to determine if dif- "

,

ferences exist. , 'If significant differences exist (at the 10% level or
.

1ess). the scenarios are ordered according to their rank sums and similar~

|

|- +

L
,

f
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,
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: groupings are noted with' horizontal: lines.

; Sample size = 2 F = 2.67, Sign. level a.10
Scenario: 1 8 2- 5 6' 3 9 7 4= =

Rank' Sum: 4 6 8 8 9 10 11 17 17
'''

Least significantidifference at the 10% level is 7.2

. Sample size = 3 F = 2.14, Sign. level 4.10*

Scenario: 8 6 1 9 7 43 5 2= =

Rank Sum: 6.5 11.5 12.5 12.5 13 16 16 22 25
Least significant difference at the :10% level is 9.4.

.

. Sample size = 4
.

F = 6.43, Sign. level ' .0001
Scenario: 1 8 5 3 6 2 9 4 7= =

Rank Sum: 9 11 16 17 17 19 25- 33 33
Least significant difference at the 10 % level is 8.2.

| Sample size = 5 F = 10.9, Sign. level <<.0001
'

' Scenario: 1 8 5 3 6 2 9 7 4=

| .

t
'

Rank Sum: 10 12 19 21 21 27 32 41 42
[ Least significant difference at the 10% level is 8.4.
|
,

Sample size = 10 F = 12.88, Sign'. level <<.0001
Scenario: l' 8 5 6 2 3 9 7 4

__

| Rank :;um: 24 - . 30. 41 42 47 50 55 79 82

| Least significant difference at the 10% level is l',.l..
!

Examination of these results shows that these smaller sample sizes do
|

: not always -give as clear and sharp. grouping of the scenarios as is

experienced with the larger sample. size of the previous subsection. For
.

example with 2 blocks the significance level is large, and although sce- I

narios 7 ~and 4 'show a ' tendency to produce output values larger than those.,

r

1

)
.-_
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f rom the other scenarios , there is still overlap with scenarios 3 and 9.

For 5 blocks the significance level is small and scenarios 7 and 4 have

separated from the remaining scenarios. Also 1 and 8 (as well as 9) show a

tendency to separate from 5, 3, 6, and 2. These results are in excellent
.

agreement with those for 100 blocks. The results for 10 blocks do not show

any apparent improvement over 5 blocks. Based upon these results we felt ,

somewhat satisfied using 5 blocks and decided to investigate this sample

size further to see what sampling variation might be expected.

Ten additional samples using 5 blocks each produced the following

results. The summary below gives only the value of the F statistic, asse-

ciated significance level and scenario grouping.

Run No. I F = 8.93 S.L.<<.0001
6 9 4 7Scenario: 1 8 5 2 3 =

Run No. 2 F = 8.73 S.L.<<.0001
5 2 9 7 4Scenario: l_ 8 6 3= =

Run No. 3 F = 16.77 S.L.<<.0001
Scenario: 1 8 5 6 3 2 9 7 4

Run No. 4 F = 8.75 S.L.<<.0001
Scenario: 1 8 3 5 6 2 9 7 4= =

Run No. 5 F = 8.09 S.L.<<.0001
Scenario: 1 8 3 6 5 2 9 4 7=

Run No. 6 F = 5.68 S .L. = .0005
9 7 4Scenario: 1 8 5 2 6 3 =

Run No. 7 F = 13.22 S.L.<<.0001
Scenario: 1 8 6 3 2 5 9 7 4 -

Run No. 8 F = 5.48 S.L. a .0005 -

3 9 7 4Scenario: 1 8 5 6 2 =

100



.

Run No. 9 F = 5.30 .S.L.a .0005
Scenario: 1 8 5 6 2 3 9 7 4 -

Run No. 10 F = 8.78 S.L.<<.0001
-Scenario: 1 8 5 6 3 2 9 4 7

.

.The absolute ordering of these scenarios is very consistent with 1 and

*. 8 low and 4.and 7 on the high end just above 9. The other four seemed to

be mixed somewhat as we might expect since the results of the sample of

size 100 indicated no significant difference among these scenarios. These

results reinforce our conclusion that a sample of size 5 is adequate to

. provide' an ordering of the scenarios in this application.

5.5 Ef fect of Input Distribution Assumptions on Scenario Ordering

The Friedman test of subsection 5.3 can be modified by assigning

weights to each of the blocks. In this sub-section we use the methods of

sections 2 and 3 to generate these weights. In particular these weights

reflect the different probability assumptions on key input variables and

allow us to estimate a new ordering of scenarios without rerunning the com-

puter model.

The sensitivity of the computer model's output to the distribution

assumptions on key input variables may be assessed by obtaining a new set

of input vectors, drawn from the new probability distributions, and running

them through the various scenarios in a repeat performance of the original

study. When the code is time consuming and expensive to run, this approach

is sometimes not feasible. If _ the new input distribution functions do not
.

differ radically from the previous assumptions, the approach outlined in

;- - Section 3 may be used to estimate the output distributions and the-
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.
.

, . (pos'sibly)-new ordering of the scenarios. Tha -w probability weights

associated with the input vectors - are used. in a modified form'of the

Friedman: test-(as appears-in Quade (1979) and Conover (1980))'to order the,

scenarios.-
.

. An outline of the procedure will now be given for the convenience of-
~

the reader.- (Let X j represent- the . discharge rate for the ig run in sce-i ,

nario - j where i.= ' 1, . . . , b and j = 1, . . . , k. Hence, the experiment

'again consists of b blocks and k treatments. As before, the. X j arei

assigned- ranks R(X j) from 1 to k within each block. The modification ofi .

the Friedmar.. test starts by assigning ranks to each block based on the

; sample range which ~is obtained from the original data.

Range in block i = maximum (X j) minimum (X j).i i

J J

* 9b represent the ranks (weights) assigned to each blockLet Q1,' Q2 e * **

replace each R(X j) with the product1, 2, . . . , b respectively. Next, i.

'S j, where'i

S =Q (R(X ) k + 1). (5.1)2

- This ' amounts 'to _ weighting each ranked observation by the relative size of

the .. sample range of .the block containing the observation.

Let- us - comment briefly 'on the rationale behind this weighting. Under

= the . null. hypothesis of no treatment differences, each assignment of ranks

-within a block is equally-likely. However, if differences do. exist among *

I treatmenIs,they are =more ea'sily.. identified in those blocks with the largest
.

range.(corresponding to'the largest separation of treatments). This proce-
.

,

L1021 '
,
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J

1

' dura makss'us2 of this ~information -by tssigning large- weighto (i.e.. .the.
_ .

largest Qi's) to these blocks.- For those readers familiar with the non-'

,

parametric Wilcoxon _ signed rank ~ test for _ paired data- (blocks of size 2),,

-this modification 'of the Friedman test - represents a generalization of the
~

-Wilcoxon signed ranks test 'to k treatments.:*

Analogous . tla the rank - sum used ~ in the computation of the Friedman F
..

statistic,:a weighted; sum is now found for each treatment as

b

[L S for j = 1, ...,.k. (5.2)S

f = i=1 g3
.

The modified Friedman F statistic is computed as

F = (b - 1)B -

A-B (5.3)
4

.

where

B=f
2
S and A = S (5.4).

j=1 i=1 j =1

The.F statistic is approximately F-distributed, so it is compared with a

tabled F-distribution having k - 1 and (b - 1) (k - 1) degrees of freedom

to find the corresponding significance level. For purposes of multiple

' comparisons, two treatments i-and j are declared to be significantly dif-
L

ferent Lif the F statistic is first found to be significant at a preselected

significance leve1 and
~

.-

* .. .

|S -- S|>t'1-a/2' ( (b - 1)(k - 1))1/2
2b(A - B);

i- j (5.5)

..

6

103
1

.

M, y.

~ , (| -

.

_



n
-

> e:

:..

where the t statistic has (b - 1) (k - 1) degrees of freedom. The right-
~

hand side of the above inequality is called the least significant dif-
,

ference (LSD).

We have indicated that the block weights, Qi, are obtained by assigning
.

ranks 1 to b to the block ranges. Actually, the procedure is more general

than this and the values Qi may be almost any weight that the user desires. .

-In particular the weights associated with the Latin hypercube input vectors'

may be used. For the initial set of input vectors these weights are all

the same (since the Latin hypercube sample was based on equal probability)

and the test reduces to the unweighted Friedman test of Section 5.3.

However, if one wishes to investigate the effect of different probability

distribution assumptions on the input vectors these weights will be changed

to reflect the new probability distribution assumptions on the same range, ,

.

space and intervals as determined by the orginal Latin hypercube sample.

For pu illustration, the sample of size 10 from the previous

subsection is used. As in Section 4, stepwise regression on ranks as given

in Iman and Conover (1979) was used to determine the important variables

associated with each of the 9 scenarios. This analysis showed variable

Xt .to be relatively important in all scenarios except number 5. The origi-

nal distribution assumed on XI given in subsection 5.2 was loguniform on,

#

(1, 50).- We decided to investigate the ef fect (if any) on the scenario

ordering of changing this assumption to a uniform distribution on the same

range space for X . The new weights, Qi, based on this assumption, areI

given. in Table 5.4 ' for the original Latin hypercube intervals.
*The same data used in the . example given in the previous subsection for

a sample size of _10 are now reanalyzed using the modified Friedman test
..

'lo6L'

;r .
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TABLE 5.4.

Weights'Obtained From Changing the Distribution Assumption on X .I

Original Interval New Weight, Qi,*

Assuming XI as Assuming XI as
.

Loguniform Original Weight Uniform

:

1 to 1.479 .1 .010

1.479 to 2.187 .1 .014

2.187 to 3.234 .1 .021

3.234 to 4.782 .1 .0324

4.782 to 7.071 .1 .047

7.071 to 10.456 .1 .069

| 10.456 to 15.462 .1 .102

15.462 to 22.865 .1 .151

22.865 to 33.812 .1 .223

33.S12 to 50 .1 .330

1.0 1.000

j

with weights Qi instead of the equal probability weights inherent in ther
,

unmodified Friedman test. Table 5.5 presents the values of S j for sce-i

nario 1 only, and the resulting value of S .
_

t

Similar calculations yield the other Sj's from whicN the following com-

utations are made. B= (45.471) = 4.547.

A = 12.012

9|4;5;7 5.482. Sign. Levela .0001
-

F= .547
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i

| TABLE 5.5.
.

,

'

|

i

| Calculation of St Reflecting the Change in Distribution *

i

Assumption on X1
|

| Qi

R(Xil) (Arranged by the Rank
i

Ranks of Latin Hypercube

! Blo'ck Assigned Interval Assigned to Sit =
|

No. (i) to X;1__ Block i) Q;(R(X i) - 5)
i

:
i

|

1 3 .021 - .042

2 2 .102 - .306
i

3~ 1 .069 .276-

4 5 .010 .000

5 2.5 .032 - .080

6 2.5 .047 .118-

T- 3 .151 .302-

8 2 .330 - .990

| 9 1 .014 .056-

10 2 .223 .669-

Si = -2.839

The least 'significant difference for multiple comparisons is .

!

.
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LSD ,0 = 1.665 (2 10(12.012 - 4.547) )1/2 = 2.398 (5.7).A (10 - 1)(9 - 1)

.

which leads to the following grouping of scenarios:
.

Scenario No.:

5 1 8 2 6 9 3 7 4
S: -3.5009 -2.839 -1.439 .933 .214 .546 .992 3.046 3.849

This represents our estimate of the correct order of the scenarios when XI

has a uniform distribution, obtained without rerunning any input vectors

throughout the model. When this ordering is compared with the original

ordering for the sample of size 10 in the previous subsection, we note the

largest change has been in scenario 5, which has shifted down to be about

tied with scenariu 1. Other minor changes include scenarios 3 and 9

interchanging positions but still in equivalent groups as is true also for

scenarios 6 and 2.

To see how valid the results might be we reran the Latin hypercube

sample of size 100 with the distribution of XI changed to unif'orm. Our

results are as follows:

Scenario No.:

1 5 8 2 6 3 9 7 4

Rank Sum:

194 290 296 456 482.5 512.5 586 825 858

.

A comparison of these results with the previous ordering of scenarios with
i

loguniform, shows that the most dramatic change has been in scenario 5 |*

XI
!
1

107



which has a decrease in its rank sum from 425 to 290. Also, with the loss

of scenario 5 from the formerly observed equivalent grouping of scenarios

5, 6, 3, and 2, the ordering of 6, 3, and 2 has chenged to 2, 6, and 3. In

addition, scenarios 3 and 9 have moved closer together with 3 showing an
,

increase in rank sum from 461 to 512.5, while 9 shows a slight decrease

from 590 to 586. The results are in good agreement with the predictions .

made above from a sample of size 10.

The value of the F statistic associated with this modification of the

Friedman test is 5.482 while the results on the original sample showed F =

12.88. This leads to the question, "Is there a loss of power associated

with this weighted procedure in this application?" The answer is probably

"yes," as we found that the original sample of size 5 was unable to provide

us with a different ordering and also showed a marked decrease in the size

of the F statistic. (This analysis is not shown in this paper.) The

reason for this apparent loss of power likely stems from the fact tha t

small samples may provide too large of a gradation on the range space of

the input variables with respect to the number of Latin hypercube intervals

to allow for much flexibility in changing distribution assumptions. For

example, if a normal distribution is assumed for X I in the above example

with 10 runs, the corresponding 4 largest Qi s are .483, .267, .147, and'

.074, which total .971. This means that any decision about scenario dif-

ferences would be based essentially on the 4 input vectors providing these

weights. With a sample of size 5 the problem is further compounded.

5.6 Effect of Input Distribution Assumptions on Risk Assessment *

Thus far we have indicated how a scenario ordering might be
.

secomplished and have mentioned that the benefit of such an ordering is that
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the scenarios have effectively been screened by the grouping of scenarios

that produce similar consequences. This reduced set of scenarios can now

be investigated more extensively. That is, we would want to make a larger

number of computer runs on each of the scenarios resulting from the screen-

*

ing process and then use the weights (probabilities) associated with each

scenario to form a risk assessment curve which is based on the combined
.

outputs of the scenarios. In turn this curve can be used to compare against

quar. tiles (standards) which represent " acceptable" levels of risk as

defined by various governing agencies. The method of obtaining such a

curve is explained in this subsection. Once again the methods of the

previous sections are used to determine the effect of different input dis-

tribution assumptions with respect to risk assessment.

thConsider Y as the output of the i run of scenario j. Let p

represent an expert judgment of the probability associated with the

thoccurance of scenario j. Compute the mean output for the i as

k

[ p)Y i=1, ..., b. (5.8)=
,

f j=1

The Y can be plotted in the form of an empirical distribution function

to provide an estimated risk assessment curve.

Ihe 9 scenarios defined in subsection 5.3 are used for purposes of

illustration. For simplicity assume that only 9 scenarios exist (i.e.,
9
E p = 1), that all scenarios are of interest, and furthermore that

3j=1

these 9 scenarios all occur with equal probability (i.e., p =p *** ~
1 2

1/9). In reality there may or may not be exactly 9 scenarios contained.

in the subset of interest, and they almost certainly would not occur with

.
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.

equal probability. In fact, a scenario which has no discharge (one which

we haven't considered in this paper) would most likely have a much large-

probability associated with it than all other scenarios combined. However,

these simplifying assumptions will not affect the general application of
.

the procedure.

i

The first risk assessment' curve is given in Figure 5.5 and is labeled as ,

i. X N
1 Loguniform, n = 100. This curve reflects the pooling together of

; . the output. results used to generate the estimated distribution functions in

Figure 5.4. A second riak assersment curve given in Figure 5.5 uses the
,

- results o'f. subsection 5.5 for n =-100 and X Uniform. A comparison of
_ 1

these two solid curves show them to differ by about a half of an order of

j magnitude at the medians, but by well over 3 orders of magnitude at the .20

I quantiles. The remaining two curves in Figure 5.5 appear as dashed lines

and are associated with the sample of size 10 for which weights were given,

in Table 5.4. That is to'say, the curve labeled X % Loguniform, n = 10
1

is the estimated risk curve obtained by pooling together the scenario

results' in the manner described 'above for the runs that were initially
,

:

; given in subsection 5.4 for ordering scenarios with a sample of size 10.

The agreement with the curve based on a sample of size 100 is goo.d (within

sempling variation). The second curve in Figure 5.5 with dashed lines ur 3
,

!

from Table 5.4 for X -~U iform to provide an estimated.the. weights
y n

risk curve (from the~ sample of size 10) for the case where X1. %

Uniform. Although' we have demonstrated this technique on the " subset" of

scenarios for n = 10,- in practice one would probably follow the above
J

. recommendation and use a larger sample size if feasible. -

In closing ~ this section we would like to- emphasize that the deter-
,

.

.
mination of the'quantiles of'a risk assessment curve can be greatly

|
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influenced by distribution assumptions on key input variables as well as

probability assumptions associated with scenarios. It is reasonable to

expect that in an assessment of a real site disagreement will exist about

distribution assumptions (or parameter values associated with particular

distributions) and about the assignment of scenario probabilities. We feel

that the techniques presented in this paper provide for a great deal of
,

flexibility in handling these questions and do so in an efficient and

accurate manner, thus lending credibility to the risk assessment.

6. SUMMARY AND CONCLUSIONS

State of the art modeling efforts have created several difficult and

interesting problem areas for individuals concerned with sensitivity stu-

dies of the input-output relationships for computer codes which implement

these models. Two of these areas which are of particular interest are the

following:

(1) The level of complexity of the modeling frequently is based on a

series of differential equations which cause the corresponding

computer codes to be quite time consuming, perhaps taking several

hours for a single run. Hence, a judicious selection procedure

for the choice of the values of the input variables is mandated.

(2) A variety of situations require that decisions and judgments be

made in the face of uncertainty. The source of this uncertainty

may be lack of knowledge about probability distributions asso-

ciated with input variables or perhaps lack of knowledge about
.

future conditions. At the aame time the constraints indicated in

(1) make a large number of computer runs under various conditions .
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prohibitive.

In particular a good selection of values of input variables should make

possible the following:

* (a) probability related statements, such as those regarding the mean,

variance, or cumulative distribution function of the output
.

variable,

(b) estimates that are close to the real values of the quantities

being estimated,

(c) an assessment of the relative inaportance of each input variable,

(d) some means for measuring the sensitivity of the code ec',)ut with

respect to distribution assumptions on the input variable.

If the input output relationship is monotonic then the genera :stion

of Latin hypercube sampling provided in this paper provides an inexpensive

and reliable way of answering (a) through (d). Latin hypercube sampling

has this increased flexibility over other sampling schemes since each input

value can be associated with a particular interval defined on the range

space of the corresponding input variable. Initially the weights asso-

ciated with these intervals are all equal as Latin hypercube sampling is

usually based on equal probability intervals. However, the weights asso-

ciated with these intervals can be changed to study the effect of different

distributional assumptions on key input variables. Further, these weight

changes allow accurate estimates of the output cumulative distribution

function to be obtained without making additional (costly) computer runs.,

In addition these same weights can be used in a modified nonparametric
e

Friedman test in order to examine the effect of different input distribu-
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tional assumptions on treatment orderings where the treatments may be dif-

ferent hypothesized future conditions, or for that-matter different

strategies that could be used in a decision making process.

Recommendations concerning sample size requirements are specific to the
*

problem being investigated. For the particular application investigated in

this paper we found that a sample size of between 100 and 200 is sufficient
,

to provide good estimates of the empirical distribution functions, under

the original assumed input distributions as well as under changed distribu-

tion assumptions, provided the changes are not extreme. A much smaller

semple size, about 4 or 5, appears' to be suf ficient to provide a comparison

of scenarios. Potential users _ of Latin hypercube sampling may want to use
1

these sample sizes as guides to their experimental designs, or they may

wish -to follow our example and use a simplified version of the computer

code for a thorough analysis of the sample sizes required for a meaningful
'

analysis.
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LIST OF SYMBOIS

Page Symbol Meaning

18 (a,b) the interval from a to b

18 g arbitrary nonnegative constants

103 A or B a sum of squares used in the weighted,

Friedman test
102 b the number of blocks in the weighted

Friedman test

97 c.d.f. cumulative distribution function

26 Cov(X,Y) the covariance of X and Y; i.e.,

E(XY) -E(X)E(Y)
11 E(-) the expected value (mean) of the quantity

within the parenthesis

11 E(-| C) the conditional mean of the quantity in
parenthesisbeforethe\,givenC

11 f(x) the multivariate density function of K

11 f(x) the conditional density function of f,
given X is in S

95 F the statistic used in analysis of variance

11 g(Y) an arbitrary function of Y, used in defin-
ing a class of estimators

50 G(y) the distribution function of Y; i.e.
P(Y y)

8 h(1) the deterministic function defined within
the computer code

8 kn interval from which the nth observation on
8 variable X is sampledk

102 k the number of scenarios, when used in the
weighted Friedman test

8 K the number of input variables (components
ofX)

78 LHS Latin hypercube sampling

10!4 LSD least significant differencee

107 LSD the LSD comparison nade at a level ofq
significance = a

,
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'g Symbcl- Meaning

- 16 ~ M the total number of ordered N-tuples U

9' g a vector of indices, locates the cell S
E

8 N the number of observations .

42 NWFT Network Flow and Radionuclide Transport

model
*

109 p the probability associated _with scenario
d j, when used in the weighted Friedman

test

9. P pr bability associated with the cell S
n
~

8 p pr bability associated with interval I
k,n kg

11 P(-) the probability of the event stated
within the parentheses

18 q an index to denote a particular cell Sq

g the probability associated with S when33 Eq(x) is the density of X

33 q(4) a density function of 1, different than
i f(x)
|

| 33 Q a function of Y, used as a general
' estimator when q(E) is the density of X

102 Q the rank of the range of block 1, when

| used in the weighted Friedman test
t

-25; r an index to denote a particular cell S
r

| 25 R the restricted space of all pairs of cells

which have no cell coordinates in' common

102 R(X) the rank of the random variable X

i 78 RLHS replicated Latin bypercube sampling
2

29 S the weighted sample variance of Y

9 S a hypercube in the sample space of X
E

102 S a score, or quantity, assigned to a
random variable, when used in the weighted
Friedman test '

103~ $ the sum of scores in scenario j, when
3 used in the weighted Friedman test

,

13- ~S(y) an empirical distribution function
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M Symbol Meaning

34 S'(y) an empirical distribution function, when
q(4) is.the density of X

67- S''(y) the standardized form of S'(y)
' 14 S*(y) an empirical exceedance probability.

function

15 S**(y) a standardized empirical distribution
*' function

100 S.L. significance level

42. SWIFT Sandia Waste Isolation Flow and Transport
computer program

t a/2 theuppera/2criticalvalueofstudent's103 l
t distribution

10 T a function of Y, used as a general
estimator

13 u(t) an indicator function, = 1 when t20,
= 0 when t< 0

15 U an ordered N-tuple of cells S
4,

i16 U values of U with an index i

16 Var (-) the variance of the quantity within the
parentheses; i.e., Var (X)=E(X-E(X))2

17 Var (.|C) the conditional variance of the quantity
within the parentheses, given the condi-
tion C

80 Var (-) an estimate of the variance of the
quantity in parentheses

8 X individual input variable, k=1, . . . ,Kk

8 I vector of input variables

8 {4} sample of input vectors, n=1,...,N

8 Y the output random variable, equals h(4)

29 Y the weighted sample mean of Y ,...,Y1 N-

11 C "is an element of", in set notation
25 4 themeanofg(Y)..

25 p the. conditional mean of Y=h(1), givenq
f is in Sq
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g Symbol Meaning

A
^

78 p an estimator of p

78 g2 an estimator of the variance of Y
11-- E the summation symbol

'12 [ the integral symbol
*

~110~ "is distributed as", distribution
notation i

'

95 << "much less than"

35 h "approximately equal to"

!
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