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ABSTRACT

As modeling efforts expand to a broader spectrum of areas the amount of
computer time required to exercise the corresponding computer codes has
become quite costly (several hours for a single run is not uncommon). This
costly process can be directly tied to the complexity of the modeling and
to the large . =ber of input variables (often numbering in the hundreds).
Further, the complexity of the modeling (usually involving systems of dif-
ferential equations) makes the relationships among the input variables not
mathematically tractabie., In this setring it :s desired to perform sen~
sitivity studies of the input-output relationships. Hence, a judicious
selection procedure for the choice of values of input variables is
required. Latin hypercube sampling has been shown to work well on this
type of problem.

However, a variety of situations require that decisions and judgments
be made in the face of uncertainty. The source of this uncertainty may be
lack of knowledge about probability distributions associated with input
variables, or about different hypothesized future conditions, or may be
present as a result of different strategies associated with a decision
making process. In this paper a generalization of Latin hypercube sampling
is ziven that allows these areas to be investigated without making addi-
tional computer runs. In particular it is shown how weights associated
with Latin hypercube input vectors may be changed to reflect different pro-
bability distribution assumptions on key input variables and yet provide an
unbiased estimate of the cumulative distribution function of the output
variable. This allows for different distribution assumptions on input

variables to be studied without additional computer runs and without

vii
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fitting a response surface. In additica these same weights can be used in
a modified nonparametric Friedman test to compare treatments. Sample size
requirements needed to apply the results of the work are also considered.

The procedures presented in this paper are illustrated using a model asso-

ciated with the risk assessment of geologic disposal of radioactive waste.



EXECUTIVE SUMMARY

The nation's energy problems have created a need for modeling various

physical phenomena. For example, one type of model seeks to simulate the
complicated workings of a nuclear reactor in order to determine the
operating conditions that optimize the efficiency of the reactor within
acceptable safety standards. Another type of model attempts to recreate
the phyiical environment in the vicinity of a proposed burial site for
nuclear waste in order to mimic the behavior of potentially harmful nucli-
des as they migrate through geologic formations and change chemical form

over a long period of time. A third type of model incorporates many

economic, social, political, and geographical characteristics of our
society in order to examine possible relationships among those variables,
in an attempt to measure the environmental impact of various alternative
sources of energy.

Computer codes that implement the mathematical models for these and
other phenomena are in everyday usage by both government and private
industry. These codes have several characteristics in common. They repre-
sent serious attempts to include all variables that may be important to the
process being modeled and therefore each code usually has many input
variables, often numbering in the hundreds. The distribution function of
these variables is frequently not well known. In addition, the rela-
tionships among the variables are usually complex, modeled only by systems
of differential equations which are not mathematically tractable. The com~
bination of many variables and the complex relationships among the
variables results in a computer code that often requires several hours of

computer time tc make a simulation run for a single input vector. Because



of the expense and time involved on the computer, only a limited number of
simulation runs is feasible. On the basis of these few runs, numbering
sometimes between 50 and 100, a complete analysis of the model is desired.
The analysis usually includes, but is not limited to, (1) the estimation of
the means, variances, and distribution functions of several output
variables, (2) an analysis of the model's sensitivity to the various input
variables, and (3) the effect that uncertainty regarding the distribution
functions of the input variables has upon inferences pertaining to the out-
put variables.

Extraction of the amount of information indicated in the previous
paragraph requires the development of new statistical techniques. Latin
hypercube sampling, as introduced by McKay, Conover and Beckman (1979),
appears to provide a satisfactory method for selecting input variables so
that good estimators of the means, variances, and distribution functions of
the output variables may be obtained, providing the answer to part (1) of
the desired analysis. The model's sensitivity to the various input
variables is then handled by partial rank correlation coefficients as
described by McKay, Conover and Whiteman (1976). This procedure satisfies
part (2) of the desired analysis. In order to handle part (3) of the
desired analysis we have extended the development of Latin hypercube
sampling in this paper. The generalization of Latin hypercube sampling is
presented in Section 2, 1Its application to the problem at hand enables the
distribution functions of the input variables to be changed from those
assumed originally, and, without making any computer runs other than the
ones used in the earlier analysis, enables estimates of the means,
variances, and distribution functions of the output variables to be made.

The details of this procedure are given in Section 3.



Starting with Section 4 this paper is concerned with an example,
showing how the methods of Sections 2 and 3 are used in a model which
depicts the movement of nuclides through geologic media in the vicinity of
an underground depository for nuclear waste. Section 4 illustrates the
straight forward application of the procedures outlined in these sections.
Comparisons are also made among other sampling procedures such as repli-
cated Latin hypercube sampling and random sampling.

Not all models allow for the straightforward application of this or any
other method. One desirable property of this procedure is that it is
flexible enough to adapt to unusual situations that may develop. For
example, in the model we use in Section 4, the movement of nuclides is
influenced by conditions that exist in the v.cinity of the burial site.
However, these conditions may change unexpectedly at some time in the long
range future. Since it is not possible to know precisely what these con-
ditions would become, the best we can do is hypothesize what conditions
could reasonably exist {call these conditions "scenarios"), model these
scenarios and run the code for these scenarios. ‘The purpose of these
calculations would be to order the scenarios with respect to their output
random variable. Since the number of scenarios could easily reach several
hundred, an efficient technique is required for the ordering. In Section
5, we show how the results of Sections 2 and 3 can be used with changing
assumptions of distributions on the input variables to obtain the desired
ordering.

This work is part of a project to deve.op a methodology for the exami-
nation of the long-term public risk from radioactive waste repositories in
deep geologic formations. This project is being conducted at Sandia

Laboratories with funding provided by the Nuclear Regulatory Commission

xi



(NRC) and assists the NRC repository liceusing program. It is anticipated
that the methodology developed in this project will be used by the NRC

staff in the evaluation of proposed radioactive waste repositories.
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1. INTRODUCTION

Evaluation of a waste repository site to verify or deny compliance with
regulatory standards will amost certainly involve estimates of the long
term risk assoc ited with the waste disposal activity. Thus risk analysis
may play an important role in the decision to license waste repositories.
Because of the long times which must be considered in waste disposal risk
analysis, it is necessary to make extensive use of mathematical models in
such an analysis. Some of the physical processes which will be repre-
sented by mathematical models include; (1) thermal and mechanical effects
induced by intera. “ions between the radioactive waste and the host rock,
(2) effects of disruptive features on the groundwater flow system, (3)
radionuclide migration in groundwater and (4) radionuclide movement through
the surface environment and human uptake. The risk results obtained from
the use of such models are subject to considerable uncertainties. These
uncertainties arise from two principal sources; (1) uncertainty in the values
which serve a* input to the models and (2) uncertainty in conditions which
may exist in the vicinity of the repository in the long term future. For
risk results to be useful in the repository licensing nrocess, these uncer-
tainties must be taken into account.

This report presents statistical techniques to account for uncertain-
ties in three important areas of analysis of waste repository sites. These
are; (1) sensitivity analysis of computer models, (2) scenario screening,
(3) estimation of risk with uncertainties. Definitions of standard sta-
tistical terminology, with which some readers may be unfamiliar, may be

found in Conover (1980).



l.1 Sensitivity Analysis of Computer Models

The primary purpose of sensitivity analysis is to determine those
model input variables whose uncertainties must be accounted for in risk
analysis. Sensitivity analysis can also play an important role in
directing research toward those site and radioactive waste properties which
contribute most to risk uncertainties.

Computer models used in the analysis of radioactive waste disposal
sites are often large and complex. Because these codes represent serious
attempts to include all variables that may be important to the process
being modeled, each code usually has many input variables, often numbering
in the hundreds. The distribution function of these variables is fre-
quently not well known. The combination of many variables and the complex
relationships among the variables resulte in a computer code that may
require several hours of computer time to make a simulation run for a
single input vector. Because of the expense and time involved on the
computer, only a limited number of simulation runs is feasible. On the
basis of these few runs, numbering sometimes between 50 and 100, a complete
analysis of the model is desired. The analysis usually iucludes, but is
not limited to, (1) the estimation of the means, variances, and distribu-
tion functions of several output variables, (2) an analysis of the model's
sensitivity to the various inp'* variables, and (3) the effect that uncer-
tainty regarding the distribution functions of the input variables has upon
output variable distributions.

Extraction of the amount of information indicated in the previous
paragraph requires the development of new statistical techniques. Latin
hypercube sampling, as introduced by McKay, Conover and Beckman (1979),

appears to provide a satisfactory method for selecting input variables so



that good estimators of the means, variances, and distribution functions of
the output variables may be obtained, providing the answer to part (1) of
the desired analysis. The model's sensitivity to the input variables is
then handled by partial rank correlation coefficients as described by
McKay, Conover and Whiteman (1976). This procedure satisfies part (2) of
the desired analysis. In order to handle part (3) of the desired analysis
we have extended the development of Latin hypercube sampling in this paper.
The generalization of Latin hypercube sampling is presented in Section 2.
Its application to the problem at hand enables the distribution functions
of the input variables to be changed from those asumed originally, and,
without making any computer runs other than the ones used in the earlier
analysis, enables estimates of the means, variances, and distribution func-
tions of the outpu* variables to be made. The details of this procedure
are given in Section 3.

Starting with Section 4 this paper is concerned with an example,
showing how the methods of Sections 2 and 3 are used in a model which
depicts the movement of nuclides through geologic waste. Section 4
illustrates the straightforward application of the procedures outlined in

these sections.

1.2 Scenario Screening

The risk from radioactive waste disposal is influenced by conditions
which exist in the vicinity of a waste repository. However, these con-
ditions may change at some time in the long range future. As it is not
possible to know precisely what these conditions would become, the best we
can do is to hypothesize what conditions could reasonably exist (call these

conditions "scenarios"), model these scenarios and run the code for these



scenarios. As the numier of scenarios could easily reach several hundred,
an efficient technique is needed for ordering and grouping scenarios in
terms of their output variable (some arpropriate measure of consequence) so
that a smaller number of important scenarios can be examined more
extensively. In Section 5 we show how the results of Sections 2 and 3 can

be used to obtain the desired ordering.

1.3 Estimation of Risk with Uncertainties

Even though sensitivity analysis may have significaatly reduced the ori-
ginal number of input variables, risk analysis will still require sawpling
from appropriate ranges for a large number of model input variables.
Furthermore, despite one's best attempts at scenario screening, several
tens of scenarios may have to be included in risk analysis. Thus efficient
statistical techniques are required to estimate risk with uncertainties.,
The methods of this paper may be used in estimating risk with
uncertainties, in an efficient manner. There is very little direct
1iscussion of risk assessment in this paper; the emphasis is on sta-
tistical methods which are useful in the ultimate goal which is risk
assessment. ilowever, Figure 5. presents estimated risk assessment curves
in an example which uses most of tte methods presented in this paper.

This work is part of a project -o develop « methodology for the exami-
naticn of the long-term public risk from radioactive waste repositories in
deep grologic formations. This project is being conducted it Sandia
Laboratories with funding provided by the Nuclear Regulatory Coumission
(NRC) and assists the NRC repository liceu. ing program. It is anticipated
that the methodology developed in this project will be used by the NRC

staff in the evaluation of proposed radioactive waste repositories.



2, A GENERALIZATION OF LATIN HYPERCUBE SAMPLING

The material contained in this section and the next secticn draws
heavily upon results which appeared in Conover (1975) and McKay, Conover
and Beckman (1979). In most cases these results represent a generalization
of the previous resuits, so that they may apply more easily to the problem

of sensitivity analysis.

2.1 The Rationale

The selection of particular values for the input variables to run in a
computer code should be done in such a way as to support the original
objectives of the computer code as much as possible. The code is designed
to simulate the true physical situation, in order to estimate certain real
quantities that cannot be measured directly. A good method of selection of

values of input variables should make possible;

(a) probability related statements, such as those regarding the mean,
variance, or cumulative distribution function of the output
variable,

(b) estimates that are close to the values of the quantities being
estimated,

(c) an assessment of the relative importance of each input variable,

(d) some means for measuring the sensitivity of the code output with

respect to distribution a.sumptions on the input variables.

Requirement (a) above is met only if all physically reasonable values
of the input (and hence output) variable have some chance, however remote,
of occurring. If some region of possible values of input variables is

excluded from being selected (as would be true for deterministic selection



techniques), then the ability to make probability statements concerning the
output may be severely limited.

Requirement (b) states that estimators should be close to the real
values of the quantities being estimated. The "closeness" of an estimator
is usually measured in terms of its "mean square error." When the estima-
tor is unbiased, the mean square error equals the variance of the
estimator. The variance of an estimator is closely related to the method
of selecting input variables and the particular code being examined. For
codes in which the output variable is a monotonic function of one input
variable, stratified sampling of the input variable usually results in a
substantial decrease in the variance of estimators of interest over that
obtained from random sampling. This is because stratified sampling forces
the entire range of the input variable t, be represented in the set of
input variables. The sampling procedure resembles a numerical integration
procedure in which the range of the integration variable is divided into
tiny pieces (the strata). The valu: of the integral is the expected value
of the estimator, the item of interest.

The same advantages obtained by stratified sampling of one input
variable may be obtained when the model has more than one input variable.
When there are several input variables, usually some variables are more
influential than others on the output variable. If one input variable
dominates, then that variable should be sampled according to a stratified
sampling scheme, and the method of choosing values for the other input
variables is o/ little importance. However, it is usually not possible, a

priori, to determine the most important input variables. Furthermore, the

outprt variable may be a function of time (t), and one input variable may

dominate the output for certain values of t, while another input variable




may dominate the output for other values of t. Therefore, it makes sense
to use stratified sampling for each of the input variables. Then it
doesn t matter which variable or variables are most important; they are all
sampled in such a way as to reduce the variance of the estimator if they
are important.

Every stratum on one variable must have some possibility of appearing
in the code coupled with each stratum on each other variable, or else cer-
tain regions of input variables are excluded by design from the code, and
probability statements concerning the output may be severely limited.
Therefore, a random combination of the different strata of the input
variables is required. If there are only two input variables this method
of sampling is known in sample surveys as a "Latin square." Because we are
using more than two input variables, we call this sampling procedure "Latin
hypercube sampling." A more precise description appears in the next
subsection,

Requirement (c) states that a good sampling scheme should permit an
assessment of the relative importarce of each input variable., In the case
of linear models, the relative importance of each input variable is usually
measured using the partial correlation coefficient. In the codes we are
discussing, the relationship is usually not linear, but it is reasonable to
assume that the input-output ralationship is monotonic in most cases. That
is, if all other variables are held constant, the output is usually an
increasing (or decreasing) function of each input variable. The output may
be an increasing function of some input variables and a decreasing function
of others. In such cases, a measure of the monotonicity of the input-
output relationship is more meaningful than a measure of its linearity.

Rank correlation coefficients provide a £°~. means for measuring



monotonicity. As a result, the partial correlation coefficient computed on
the ranks of the input and output variables, called the partial rank corre-
lation coefficient, may be used as a measure of the relative importance of

each input variable.

Requirement (d), which states that a good method of selecting values of
input variables should provide some means for measuring the sensitivity of
the code to distribution assumptions made on the input variables, is met
very nicely by Latin hypercube sampling. Changes in the assumptions
regarding the distribution of the input variables may be assessed without
running additional points through the code. The method for doing this is

discussed in Section 3.

2,2 A Description of the Latin Hypercube Sampling Procedure

We will represent the vector of input variables as

¥ = (xl....,xK) (2.1)
and let
Y = h(X) (2.2)
represent the output variable, where h(}) is a deterministic, but unknown
function of the input variables. The sample {}n}, n=1, ...,N of input
variables is selected in the following manner.
The range of each of the K components X, of ¥ 's.partitioned into N
intervals {Ik,n}- k=1,ie0,K; n=1,..,,N. The probability Pk,n of each

interval is defined as

Phn ” P(xk 5 Ik’n)- (2.3)



If X is dependent on X}, X3,...,Xg~] then the intervals I , and the pro-
babilities py , for X, are functions of the intervals ana probabilities for
X},000, Xg-1+ Such a dependency does not affect the results which follow,
so we proceed in our discussion as if the input variables were independent.

The set of all Cartesian products of the form

1 x X Bssv® & = §

2n Kn

1 2 X 2 s

is a partition of the sample space § of X into NK cells of respective pro-

bability sizes

n, " Pap teeePp, =P (2.5)

where
n = (nl,nz,...,nK) (2.6)
identifies the "location" of each cell.
A Latin hypercube sample of size N is obtained by first selecting N
cells and then obtaining one observation from each ~c11 in a manner

des. ribed as follows. The N cells are identified by t*e coordinates

pl - (nll, nxz.'oo, nlx)
n2 = (n21, m22,..., ny) (2.7)

oy = (ngp, nyz,eee, nyg)

with the condition that the N subscripts (nj., nyp,.. , ) represent a
permutation of the integers (1,2,...,N), for each value of k from 1 to K.

In this way, we are assured that the entire range (i.-., each interval



lk-n) of each input random variable is sampled. Fur*hermore, we randomize
so that every combination of cells, eligible under the above restriction,
is equally likely to be obtained. This is accomplished by requiring that
each of the K permutations be random (equally likely) permutations, and
that they be mutually independent permutations. Once the selection ¢f N
cells is made, a random selection procedure is used to obtain an obser-
vation within each of the N cells, and these constitute the N inputs
X],+++,Xy to the code. The "random observation" is one realization of the

conditional random variable X, given X is in the selected cell.

-~ o

In practice, a Latin hypercube sample may be obtained as follows. The
range of each input variable is divided into N intervals, and one obser-
vation on the input variable is made in each interval using random sampling
within each interval. Thus, there are N observations (by scratified
sampling) on each of the K input variables. One of the observations on
X, is randomly selected (each observation is equally likely to be
selected), matched with a randomly selected observation on X3, and so on
throagh Xg. These collectively constitute ¥1. One of the remaining obser-
vations on X; is then matched at random with one of the remaining obser-
vations on Xy, and so on, to get X;. A similar procedure is followed for
}3,...,§N, which exhausts all of the observations and results in a Latin

hypercube sample.

2.3 A General Estimator and its Mean

Estimators for quantities such as the mean, other moments, and the
distribution function for the output variables may be treated in a unified
manner. These estimators are special cases of a general estimator T

defined in this section. First T is shown to be an unbiased estimator.



Then the estimators of interest are shown to be special cases of T. After
reading Theorem 1, the reader who is interested only in the application of

the method may proceed directly to Section 3.

Theorem 1. Let g(Y) be a function of the output variable Y, and consider

the statistic

® -1
i=1 g |

where, as usual, Y; = h(X;), and p, is the probability associated with the
e o |
cell from which X; was obtained, as indicated by Equation (2.5). Then T is

an unbiased estimator of the mean of g(Y). That is
E(T) = Elg(Y)]. (2.9)

Proof. Denote the density function of X by f(x). Note that X doesn't need

to be continuous, but for convenience of notation we will assume X is con-
tinuous and has a density. Then the density of the conditional random

variable X, given X is in cell n, is

» -~

-1
fn(f) - pn f(f) it o Sn

-~ - -

= 0 otherwise (2.10)

Since the probability of selecting X from cell n is (1/N)X, and is the same

for all cells, we have

E(p_ g(Y,)) = ) E(p, 8(Y,) | n, is cell q)P(n, is cell q)
8 1 allcellsq M 1L =

11



= Lo ] ek Cenyaamt

all cells q cell q 4

where Pq Tepresents py given that the coordinates n; represent a par-
4 -

ticular cell, indexed as "q". Continuation gives

E(p, #(Y,)) = I am® |

% ! all cells q cell q g(h(f))f(f)df

= /M [ gh))f(x)dx
§ YMmRyOnn

11)

= a/m* Bgm]. (2.12)

Therefore, we have

. K-1
E(T) = ] N Efp_ g(Y)]
i=1 g

N

=7 Nx'l(llu)xslg(v)] = E[g(Y)]. (2.13)

i=1

Theorem 1 states that T is an unbiased estimator for E[g(Y)]. If

g(Y) = Y, (2.14)

T is an unbiased estimator for the mean E(Y). If




g(y) = YT (2.15)
then T is &n unbiased estimator for the r th moment of Y. If

glY) =1 ifY< ¢

=0ifY>e, (2.16)

then T is an unbiased estimator for the distribution function P(Y < ¢) =

G(c) of Y at the value ¢, because of

E{g(Y)} = 1 « P(¥<c) + 0 » P(Y>c) = P(Y<c). (2.17)

As a result of Equation (2.17), an unbiased estimate of the entire cumula-
tive distribution function of Y is given by the weighted empirical distri-

bution function

T 1
S(y) = J N p u(y-Y,), ~ = <y <=, (2.18)
n i
i=1 - |
where the unitary function is
u(t) =1if t > 0

=0 1if ¢t < 0. (2.19)

In other words, proceeding from left to right, at each observed value

Y; increase the function S(y) by an amount Nx‘lpnwhere Pn is the proba-
~{ ~
bility contained in cell number n; from which X; is obtained. Note that



L

thie function a.ways starts at zeruv (y +» -«) but may be greater than or
less than 1.0 as y gets large (y+~-=),
Another unbiased estimate of G(y) may be obtained by using the reverse

approach. That is, consider the fact that
G(y) = 1 - P(Y>y) (2.20)

and let

N
) = L W, [ w0l - <y <o, (2.21)
- ;. |

be the estimator. Then

E(S*(y); = P(Y > y) = 1 - G(v) (2.22)

(the development parallels the previous one) and

E(1 - S*(y)) = G(y) (2.23)

which shows that 1 - S*(y) is an unbiased estimator for G(y), but one which
equals 1 for large y(y * ®), and may be less than zero for small y(y + -«),
Both of the above estimators for G(y) behave unlike G(y), which is
bounded between 0 and 1 inclusive. The only time S(y) or S*(y) is bounded .
between 0 and 1 is when the sum of the cell probabilities is bounded above

by (1/M)X=1  guch as when all cell probabilities are all equal; i.e.,



. (I/N)K for all n

- i’

For this reason, the user may prefer to use a standardized form of s(y)

such as

S**(y) = S(y)/S(=) (2.24)

which is monotonically increasing from 0 to 1, but in general, may not be

unbiased for G(y).

2.4 The Variance of the Estimator

The variance of T does not seem to have a simple form, so we will look
at the variance of T in several different ways. Each different form for
expressing the variance of T is useful in its own way, because each form
provides a different view of the advantages and disadvantages of Latin
hypercube sampling. Recall that for unbiased estimators, such as T, the
variance of T is also the mean square error of T, which should be small if
possible. In Latin hypercube sampling applicatiou- the variance of T is
usually smaller than the variance of estimators arising from other sampling
schemes, but this result may be closely related to the monotonicity pro-
perty of the code, as we shall see later.

The notation becomes cumbersome when looking at the variance, so let us
fix some notation as a start. Let Slnl,sznz,..., SNnNrepresent the cells

from which X;,X7,...,Xy are sampled, respectively, and let

U-(S ’s ,uu-,s 225
1?1 21:12 N?N) ( )
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represent the ordered N-tuple of these disjoint cells.

How many such ordered N-tuples are there? This number M is obtained
easily by counting the number of ways 8191 may be obtained, multiplying
this by the number of ways in which 3292“7 be obtained once 81?1 has been
selected, etc. Since cell S|, represents the selection of one interval
Iyn for each of the K random variables, and in each case there are N inter-
vals to choose from, there are NK ways of selecting Sin + Next, Sy, is
formed by selecting one of the remaining N-1 intervals for each of tﬁe K
random variables, so 8292 may be selected (N-1)X ways once S1n has been

~1
selected. Continuation of this line of reasoning leads to

M= B e-DEa-2F L @XF = ank (2.26)

as the number of ordered N-tuples U, We will index U, and the

corresponding cells, with superscripts:

1 _ (1) () (1) A
U (Slfl’szﬂz'.."sufu)‘ i=1,...,M. (2.27)

Each of these N-tuples is equally likely,

pu=uty = 1/m. (2.28)

Using the well known relationship

Var(X) = E(Var(X|Y)] + Var [E(X|?)] (2.29)



we have

Var(T) = E[{Var(T|U)] + Var(E(T|U)]. (2.30)

Now, from (2.28) we have

. 1 1
E[Var(T|U)] = [ var(T|UM)P(U=U")
i=1

1 M {
o 12 Var(T|U"). (2.31)
=1

The conditional random variables X, given 8), , X7 given 825 » etc., are
il | i ~2
independent, because the cells are fixed (given), and the only variation is

within each cell. Therefore

N
Var(T|u!) = var| J N1y g(h(§j))|§ e st

j=1 % i%
N . i
= 1 varl¥ 7 p  gx ) |x, ¢ Sip. ) (2.32)
i=1 | - B -]

The terms in this last summation represent the within cell variance of a
function of Xj+ Substitution of Equation (2.32) into (2.31) results in
summing the within cell variance of a function of § over all cells in the
sample space, where (by the symmetry of the situation) each cell is
involved in the same number of terms. There are N terms in (2.32),

(N)K terms in (2.31), and only N different cells, so each cell is
included (N!')X/NK=1 times, If we eliminate the duplication of cells

Equation (2.31) reduces to
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E[Var(T|U))

- % N % N:_l Var[NK-lpqg(h(X))|X e cell q]
a cells q y N
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