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NOMENCLATURE

D defined in Eq. [3.6].

FF defined in Eq. [3.7]
.

FN defined in Eq. [ 3. 8 ',

g gravitational acceleration in j-direction

G defined in Eq. [3.10]

G d fin d in Eq. [3.9]
2

GH defined in Eq. [4.4]

bl defined in Eq. [4.8]
:

Gil defined in Eq. [4.21]

K interfacial drag coefficient

P pressure

* P' pressure correction

S S S resistance force of liquid per unit volume, ,

- in x, y and z directions, respectively

"8*, S*EY, S resistance force of gas per unit volumeS
*8* in x, y and z directions, respectively

I' mass generation rate per unit volume

defined in Appendix 2X g, Ygg, Zgg

Xg, Y ,Z defined in Appendix 2g

X g, Y g, Z g defined in Appendix 2

X ,Y ,Z defined in Appendix 2
gn gn gn

u, v, w velocity components in x, y and z directions respectively

6t time step

6x, 6y, 6z control volume dimensions

p viscosity

.

p density

T viscous stress
,

0,o void fractions for gas and liquid phasesg

v
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i'
|- 8 defined in Eq. [3.2]
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*

y,y,y , . surface permeability in x, y, and z-directions

;- y, volume porosity

; y defined in Eq.-[4.9]
. z

<
l

subscript

g gas

i liquid,

!

J, m mixture
!

i superscript

t rebalance
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ABSTRACT

The present report describes the Analytic Rebalance
Technique for the solution of two-phase fluid flow

problems. The procedure is based on direct solution

of only a section of the flow field at a time along

with rebalancing of the remaining flow field. The

derivation of the equations and the step by step

solution procedure are presented for develcping a
computer program for analyzing two-phase flows.
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1. INTRODUCTION
: -

Although two-phase flow conditions are encountered in many' engineering
situations and the analysis of hypothetical' loss of coolant or transient.

overpower accident situations in' nuclear reactors are of significant interest,

there does not exist a single numerical procedure which is stable, efficient

and can analyze three-dimensional transient two-phase flow conditions satis-
factorily. Most of the solution procedures are either unstable or have a

,

very low rate of convergence. In the present report we are presenting a

solution procedure, named " Analytic Rebalance Technique (ART), which we4

believe has a potential to be efficient and stable.

In ART,we are using the quasi-continuum two-fluid model to describe the
two-phase flow conservation equations with both phases having different densities,
velocities and temperatures. The method is an extension of the Separation of
Matrix Technique (SMT) used in HEV2D [1,2] . The SMT requires a large computer
storage, and is therefore restricted to problems with a small number of

.

computational cells. In addition, the formulations in HEV2D [1] were based

on the assumption that liquid phase is incompressible. In ART,we solve only
s

*

a section of the flow field at a thae and use the rebalancing technique for

the remaining of the flow field. Consequently, ART can handle three-dimensional

large flow field problems. In solving a section of the flow field we still

follow the SMT; therefore, we retain the computational speed feature of the

SMT.

ART is a coupling of whole pressure field iteration with regional solution

procedure. The finite difference Poisson type equation for pressure has been
derived by combining the momentum equations and mixture continuity equation

as in ICE [3]. In the present formulations, the assumption of liquid being-
incompressible has been removed. In addition,the formulations are carried

out in such a way that we preserve the advantages "of both iteration and
1

direct solution procedures; namely, low computer storage and high accuracy.
The boundary conditions and whole field resistances are taken into account
during every rebalance calculation. Hence,.the computed pressure field from

- each rebalance calculation is expected to t ' closer to physical reality and
.

.

.t us help achieve quicker convergence. In addition, ART is arranged to takeh

the full advantage of the Separation of Matrix Technique [1,2] and therefore,
,

significant savings in computation time are expected.

-. - - . . .-
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.

.

. The temperatures, densities, and void fractions can be computed expli-

citly or semi-implicitly by using phase. continuity and energy equation and, ,
,

'

the equation state. Since the solution procedure for the pressure is the-

major topic of this report, methods to calculate those field variables
'

other than pressure and velocities will be presented separately.

'!
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*
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*

2. COVERNING EQUATIONS: QUASI-CONTINUUM [4.5.6]

2.1 Continuity Equations
,

Liquid

yLL)+ (y 0 p w) = y r (2.1)Y (0 p ) + (y 0 p uh (Y 0pv zgg y gy gg xgg

Gas

0pv + (y 0 p w) = y rY (0 p ) + (y 0 P u) + (Yygg) zgg yg (2.2)y gg xgg

Combined Continuity Equation

(Y p ,u) + (y p TE"Y + * *

v t x ym zm
j

+Op'' where p,= O pgg gg

2.2 Momentum Equations
.

Liquid (x-direct

3 3~ 2 3 3
y p (p 0 u )g (y p e u ) + (Y p O u v ) + g (y p e u w )Y gg ggg ggg gggg

Mu -u ) + S,g=-Y O +y Opgggx+y 1

g y g gv

x xx g) + (y T O)+ (y T O) (2.4)(Y T 0+ g g

Gas (x-direction)

1 (p 8 u )+ 1 (Y p 0 u )+ By (y p 6 u v ) + Dz (y p 6 u w )y
v at ggg 3x xggg ygggg zgggg

=-y O= +y Oou +y K(u - up + S,gg y g g gx y g

(y Ty xy g) + (y 'xz gy g) + 0+. (Y T 0 *

z
*

.

Momentum equations for y and z-directions are similar to equations
2.4 and 2.5.

|
'

.__
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3. DERIVATION OF POISSON TYPE DIFFERENCE EQUATION .

To simplify our illustration of ART, the mesh spacing 6x, 6y, and 62 in
x, y and z direction, respectively, are assumed to be uniform, however, this -

assumption can be readily removed. Furthermore, the indices may be simpli-

fled as:

(Variable) = (Variable)1,j ,k
and

(Variable) = (Variable) gj

The staggered mesh system is shown in Fig. 1. The pressure,

densities, enthalples and void fractions are defined at the center of the
control volume at (1,j,k) and velocities are defined at the surfaces of the
control volume such as (i+1/2 j,k), (1,j+1/2, k) . . . etc . With this convention,
we now write the finite difference equation of liquid momentum, Eq. (2.4) in

.

x-direction,

- (T(T0pu V L t"t iAl/2PVggt 1/2
*

at

l(Xgg)i+1/2 + (X ta i+1/2 + Y=

y +1/2i

(0 p)" - (O p)"+,1 (3.1)
g g y

where (Xgg) contains momentum flux ' term, (XRn) contains the remaining .erms
(body force, viscous force, momentum source due to mass transfer, interfacial
coupling) of momentum equation. (Xgg) Ml/2 is evaluated explicitly dt ring the
pressure iteration in a given time step. On the other hand, (X '8 "

in

updated in each iteration (see Appendix 2). In order to express pressure

related to surface permeability instead of volume porosity, we define
Yx (3.2)B =-

x Y.

Equation (3.1) can be rewritten as: -

Y 0 p u )n+1x g g L i+1/2 " (Y 0 p u )nx g g g i+1/2 + 6tS (Xgg).i+1/2
- -

_x .

En . i+1/2 * (Y )i+1/20
.x x

. .

(0 p)n+1 - (0 p)n+1 (3,3)
At
g g i L i+1

.
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.

Similarly, finite difference momentum equations for gas phase and for other
directions (y and z) are derived and presented in Appendix 3. *

Difference equation of combined continuity equation can be written as:

(p )"+1 - (p )" . .

x g g g) 1/2Yy at xggg /2 - (Y(Y 0 o u ) 0pu"

. .

y g g g)j /2 ~ (Y P#+ (Y 0pv yggg +1/2;

z g g"g}n+1 '1
~

! + Ti (Y 0 P "g)n+1 - (Y P
k+1/2.zgg k-1/2

}
-

x g g g)n+1 ~l

' x L t"t}M1 - (Y+ Tx (Y 0puP
1+1/2..

i-1/2 .

~

l
'

0 p v )n+1+ Ty (Y 0 p v )n+1 (Y-

, y ggg -1/2 y g g g M/2, -

+ (Yz L t"t)k 1/2 (Yz 1 1"E 1/2,PP ~ *

_

Noting that both n+1-step densities and voiding f raction are to be estimated
fr m Eq. (3.3)by n-step known qsantities, we may substitute (Y 6 p u ) /2ggg

and similar expressions for (- O p v )n+1 (Y 6 p w )n+1
ggg /2, g g g M1/2'

1
1/2,and(y0pw(1/2 (see Appendix 3) intoP (Y P*(Yx g g"g /2' yggg zggg

the combined continuity Eq. (3.4), and we get

n+1 n
Y (p , - p ,)y

y g g g}j+1/2x g g"g) +1/2 ,(Y 0 Py g g g)j-1/2 - (Y(Y 0 Px g g g} -1/2 - (Y 0P0P
,3

6x 6y .

S(XEf) i+1/2( z g g g)k-1/2 ~ (Y ez g g g)k+1/2 2, O( gf) 1-1/20P -

, 6t
6z 6x *

0(Y - B(Ygf). j+1/2 0( gf) k-1/2 .0( gf}_ k+1/2
~

gf j-1/2,

~6y 6z
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.

0(Yan) j+1/2
, g _

gn)_ i+1/2-
_

an) j-1/2|O(T0(A ~~

2 gn 1-1/2
6x 6y.

.x t L"L} +1/2ITx 1 1"L) -1/2 ~ (T0(Zgn) k+1/2OIZgn) k-1/2 #~

, , '+6t
6z 6x

"

n
0 o v )ng g g j+1/2(Y 0pw)n ~ (T(Y 0 p v )]n - (Y z 1 1"1 k+1/20g g g g k-1/2y ggg -1/2 y,

6y 6z
,

0I O(Ytf) j-1/2 _0( if} j+1/2
, .0( if) 1-1/2 _ tf} i+1/22<

, _0( if) k-1/2 ~ ( if) k+1/2 2, B(X ,) 1-1/2 - 8(Xin) i+1/2g
,

6z 6x

O(Tin) j-1/2 ~ 0(Y 8(Zin) k-1/2 0( in} k+1/2
~

tn j+1/2_, ,

6y 6z
,

. <

~

(T )1-1/2 n+1 + (Y )i+1/2 P ++1(Y}i,1/2+(T)i+1/2fn+1'2, 1 n
+ 6t x 1-1 x i 1- x x2

6x ,

P +1'P +1n+1 + (T )j+1/2
1 nn

j-1 y py (Y ) -1/2 + (Y )pl/2(Y )j-1/2+ -

6,2 , .

yy
.

~

P +11

(Y )k-1/2 P ++1 + (Y )kt1/2
n n+

z k1 g k+12
6z ,

(*(Y )k-1/2 + (Yz k+1/2
-

z .

To simplify the expression of Eq. (3.5), we define:

*EEE ~ EEE
D = 6t
i,j,k 6x

* ''
n n n n

z g g"g)k-1/2 ~ (Yz R g g)k+1/2(T 0E g}]-1/2 - (Yy 2 g g)j+1/2 ,(Y 0#0 P
'

yg
6y 6z .

yggg)j+1/2_x g g L) +1/2 + (Tx g g L) -1/2 - (Y y g g g) -1/2 - (Y(Y 0pv0pv0pu0pu
+6t.

(Y,0 p w )k+1/2z L t"F) k- 1/ 2Y P ggg. (3.6)

-
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!

- [0 CXaf)i+1/2OCXgf) 1-1/22.
(FF)i,j,k = 6t 6x

, .

gffk-1/2
.

g t). k+1/20(Z0(Z0(Ygf)Aj+1/2( af} 1-1/2
--

+
6y 6z

*
.. . . . . .

2, .@ tf).1-1/ 2 - if). i+1/2 S(Y ). .0( if-). j+1/2gg ; i-1/2
-

. .

+ 6t +.
6x 6y

'
0(Z 30(

if k-1/2 t6 M1/2 (3.7)-

.

+
1 6z

.. . , .

t '
' ' . ( gn. i+1/2

~

(FN)i,j k " 6x

,$3(Zgn)[k-1/2
- [8(*gn) k+1/2L (Z i+1/2S8 Cyan) 3-1/2

- -

an, 6y 6z

tn),J j-1/2 - 0( in} j+1/2
. . .

,. .

S(Y
2, ,3(*tn}.1-1/2

-

0 f*tn). i+1/2
*

..
. . ..+ 6t 6y6x -

. . .

.8CZ 8CZ
, .

tn), k-1/2 tn .k+1/2 (3,3).

(*}(C )i,j,k" Y (P , - P,)i, j , k
f 2 y

I

and

( . 0)( 1)i,j,k= (D)g,),p + (FF) ,j,k.

.

.

k
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.

.

Ilence, we can rewrite equation (3.5) as

1 + (Y + (Y )j-1/2 + (Y )j+1/26t (Y )i-1/2 x i+1/2 2 y y2 x ,

6x
!

+ (Y + (Y )k+1/2 P2 _ z k-1/2 g

.

+ +
(y )i .1/2 P"1-1 + (y )i+1/2 P"i+1=Gy+G2 + (FN) + 6t'

2 x x6x . ,

+1 (y )j-1/2 p"+1 + h )j+1/2 p"+1
1i

.

2 y j-1 y j+Sy , ,

.

(Y )k 1/2 + (Y )k+1/2 (3. W
{

2 z 1 k z k
_

The above equation is the general form of Poisson type difference equation.

,

|

,

!
1

.

! .

I. l

.

i

- - - --- ..-v - -. - _ n -.- - _ ~-
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4. ANALYTIC REBALANCE TECHNIQUE

4.1 Poisson Type Equation for Pressure Correction
,

Now we can proceed to iterate equation (3.9) from n-step towards
n+1 step. We define t correction step of pressure as:

'pt , p -1 pt (4.1)

'

Where t = 1, 2, 3..... + n+1 and P is the pressure correction. Obviously,

for t = 0, we can write

P =0 , p . (4.2)
n

Substituting equation (4.1) into equation (3.11), a Poisson type equation of
pressure correction can be obtained as: -

6' (Y )i-1/2 + (Y }i+1/2 2
_
(Y )j-1/2 + (Y )j+1/2+

2 x x *y y_

)Y)k-1/2 + (Y )k+s1/2 P'
+

2 z 3

1

r

(T )i-1/2 P' g,y + (y )i+ 1/2 P'i,y"" (GH) + 6t 2 x x
_6x -

(Y )j-1/2 j-1 ++
(Y }k-1/2y y j+1/2 j+1

+
2Y2 _ z k-1_

*

+ (Y }k+1/2 k+1
P *

z

.

9

.

4

-

i
-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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.

where

'

(cu)t = c + c + (FN):
2

2 1

-(Y )i-1/2 + (T }i+1/2- 6y
+ ~1 -(Y )j-1/2 + (T )j+1/2

-

+ 6t -2 -

<

g x 2 y y
6x -

_ z)k- 1/2 + (Y ) k+ 1/ 2(Y+
2 z

. .

(l }j '1/2 P$2 1
(Y )i-1/2 1-1 + (Y )f.1/2

+- 6t y j13 x - i+ 2.

2 6y ,

i 6x .

'
.

j 2 (Y ) k-1/2 1 + (Y ) k+ 1/ 2 1,| - + (Y ) j+1/2 P+ + *

g gy
_

-

4.2 Some Definitions

Few terms are defined for the purpose of simplicity (see Fig. 2).

(1) Offense Zone: Detailed cell pressure is to be computed in this zone. In

this zone, we solve a Poisson type equation.

(ii) Defense Zone: In this zone, averaged plane pressure increments are to be
calculated. Two-phase cells are assumed to be in Numerical Quasi-Incompressible

State (NQIS).
(iii) Floating Plane Pressure (FPP): In Defense Zone, the known plane pressure

profiles from previous rebalance calculations are used. As tha averaged plane
'

increments are formulated as unknown, the plane pressure profiles are floating

in Defense Zone.

We can therefore define

ri,3,k, ei l.k, + ( - oo-

,

for all cells in plane k . Here it represents the t rebalance, and k is a
9 g

plane in the Defense Zone. P is averaged k-plane pressure correction.
.

,

.

9

, , -
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b .

DEFENSE ZONE

y

OFFENSE ZONE

16

k
di,

,

; i
,

DEFENSE ZONE

,

i t

..

< .

.

Fig. 2. ART Mesh System .
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(iv) Numerical Quasi-Incompressible State (NQIS): Two-phase densities are-

maintained from previous rebalance calculation whenever these cells are in

Defense Zone. Their values are computed and updated only when Offense Zone.

moves to cover these cells. Hence, NQIS does not interfere with the real

compressible characteristic of two-phase flow. It is a pure numerical

- arrangement in solution process. Its role in ART will be discussed further

in the convergence section.

(v) Rebalance: During each rebalance, a reduced system of Poisson type
equation is formed and solved.

(vi) Iteration: One iteration is considered complete when rebalance calcu-
lation sweeps the entire field.

(vii) We define

1,j,k i,j , k + P' ,j ,k (4.6)P P=
i

.

for all cells in the Offense Zone. During t-rebalance, all pressures in the

Of fense Zone are considered to be unknown.,

4.3. Plane Integration in Defense Zone

To simplify our illustration of ART, we are considering the case

of (Y )i,k-1/2 " (Y )i, k+ 1/2 in the remaining part of this report. The
3 3

1/2 ~ (T )W/2 will oe presented ingeneral case without assuming (y )
z

a separate report.

Considering equation (4.3), it can be integrated with respect to

i and j to obtain an expression;
2

2 ij z k - 1/2, + (Y )k+1/2 fc " i j H)T 3

(
+ (Y )k +1/2 *fc+1.T )k-1/ 2 k-1+

21j zz
6z -

.

To simplify equation (4.7) further, we introduce the notations

{ (4.8)
^

.

(CH) = i,j (GH)1,j ,k

.
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.

and .

I ' (Y } i,j ,k + 1/2 (4.9)( z k +1/2
" ,

i,j z
i

Finally, we can examine equation (4.7) in the following cases (Fig. 2).
.

; (i) For each k plane in Defense Zone, but not adjacent to Offense
Zone (k<k -2 or k>k +2), equation (4.7) can be staplified as:

g g

6t -' -'' * *^
6t

-P2y --2 =(CH[+y --2 (Pk-1 + P ,y). (4.10)
g

6z 6z

.

| (ii) For the case k = k +2, we have
!

6t ' 6t - )[^^

= (CH)k + ~6z~2 id (Y )id,k -1/2
P2Y ~~2 P

z ,z
6z

,

+ h I1 P (4.11) .

2
6z

'

and

(iii) For the case k = k -2, the expression vill be
g

)[ (Y )i,j ,k ,j,k+1 ( * }
6t ' 6t ' 6t

^ * *
,

2y ~2 k , H)k + Y ~2 k-1 + 6z2 1,j
# =

z z g
6z 6z

i

We now have a total of (K ,-3) + 3n linear equations with (K,, -3) + 3a
unknowns in this reduced system. All equations related to Defense Zones can
be integrated again with respect to z. This will be illustrated in the

following section.

-
,

F

*
i

3

- |

.
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4.4 Example of z-direction Integration in Upper Defense Zone*

Let k +1 be the upper plane in Offense Zone,.and k +7 be the upper
9 g

* boundary as shown in Fig. (3). The equations corresponding to the upper
Defense Zone can be written as:

= (GH)k +6 + ( z) 6z
2(y } *

2 +5z 2 +6
6z o o o

2(h) I +6 + +4) (* }
k +5 " ( )k +5 + ( z) 6z

P
g

6z o o o o

2(y ) A
g 2 k +4 " ( )k +4 + ( z) Sz2( +5 + +3)P *

6z o o o o

2(h)
+3 " ( ")k +3 + ( z) 6z +4 + +3)

*

z 2
6z o o o o

,

6t '^ ' ^ ^

2(y ) ~6t
z 2 k +2 )k +2 (T ~2 k +3P ~

z, 6z o o 6z o
;

2ij ( z 1,j ,(k +2) - 1/2 ,j,(k +1)
+ *

'
6z o o

Substituting equation (4.12) into (4.13), we can obtain
-

2_,
' '

'

g 2 k +5 2(G)k +5 + ( )k +6 +2(y ) 6t
^ ^ ^

3(y ) 6t
^

# (4.17)P =
z 2 k +4

6z o o o . 6z o
,

Then, substituting equation (4.17) into (4.14), a similar equation can be
derived as:

.

3(GH) 4 + 2(GH)k +5 + ( }k +6
+ 3(y ) 3,2 _,2_, -

. . .
- .

4(y)6t
^ .

( .18)P =
z 2 k +32 y

6z o o o o . 6z o

.

i

1.

-- 1



_ - . .

- 16 -

,

.

i
.

4

BOUNDARY K+7o
K +6o
Ko+ 5
Ko+4
K +3o
K +2o
Ko+1
Ko

|
~

.

.

I

l

l

!

1

Fig. 3. Integration Scheme for Upper Defense Zone

.

9

i

1
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Then, we substitute equation (4.18) into (4.15), to obtain:.

'
" ^ ^ ^ ^ ~

5(y ) 6t
*

4(GH)k +3 + 3(GH) y + 2 (GH) k +5 + ( "} k +6
*

P =
g 2 y

o o o - o6z o
,

,

(*+3(h) P
g 2 k +3

Sz o

Finally, we substitute equation (4.19) into (4.16).The equation for k,+2 can

be written as:

.

^ ^ ~

' ~ ^ ^
* ' ^

5(GH) +2 + 4(GH)k +3 + (6 )k +4 + 2(GH)k +5 + ( }k +66(y ) 6t P =

2 k +2
6z o .

o o o o o ,

2 bmax 'maxb . ,

(T2 z 1,j (k '+2)-1/2 i,j,k,+1 (4.20)
6 9-

We define
,

^
. . . . .

(GH) = 5(GH) +2 + 4(GH)k +3 + 3(GH)k +4 + 2 (GH)k +5 + C )k +6
( . 1)

+2
o o o o o o

Then, equation (4.20) can be simplified as:
,

2 2 (3 max)
(Y )(k +2)-1/2

, max }.

{/{
*

((Y )
)k +2 + 6z

j. ,j,k +1~ gg 2 k +2 2 o 9
6z o o \ 1 j

The term, (GH) in equation (4. 22) includes upper boundary condition
2

and the closely approximated resistance in upper, Defense Zone. Upper

boundary has been taken ,into account first in (GH)k +6 Then, step by step,
_

' 9
it is integrated into (GH)

2*

Similarly, the lower Defense Zone can be integrated as outlined above.
.

9
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!

4.5 Coupling with Separation of Matrix Technique (SMT) ,

As shown in preceding examples, a reduced Poisson type system can
,

'

be reduced again to(3n + 2)=[3' (I ). (J ) + 2] equation with(3n + 2) unknowns. .
i

Hence, a system with (3n + 2) equations can be arranged as: ,

.

I

Ax = B (4.23)

As in HEV2D [2], A varies only in diagonal for rebalance formulation.
Therefore, the inverse of A can be computed first and used in every rebalance

!

to reduce the(3n + 2) system to 2.i

4

) For the case when .the Offense Zone is touching the boundary, a system with

f (3n + 1) equations will be formed, and A~ (3n+1) is needed. Without increasing
computer storage, a simple method to find A-1(3n + 1) from A-o (3n + 2) has been

4 o
developed and presented in Appendix 1.

.

|
:

.

n

,

,

i

.

1

O

O

I
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; . 4

5. CONVERGDICE' *

(a) Offense Zone: Convergence is achieved since conservation of mass
.

is observed by using SMT.

(b) Defense Zone: By.the assumption of FPP, the sum of the mass resi-,

due of every plane goes to zero. Furth..tnore, within every plane
'

: in the Defense Zone, the mass residue profile does not change and

cannot translate from one plane to another. However, when the
Offense Zone sweeps through, the mass residue of every cell
vanishes; thus speeding up the convergence rate. (see Fig. 4).

i

t

t

4

e

J
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1

i
,

F

9

9

.
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JPPF = JOINT PLANE PRESSURE FLOATING

I D Z = INTEGRATION OF DEFENSE ZONE
SMT = SEPERATION OF MATRIX TECHNIQUE
T P = TWO-PHASE
O Z = OFFENSE ZONE

__

S P = SINGLE-PH ASE

SP n52

n 5 2 : DENSITY UPDAT E D
- IN ENERGYTP

.-

n52+m: D EN S IT Y
UPD ATED IN M ASS-

JPPF MOM WITH m TP ,

CELLS m
o
|

IDZ

4000 UNKNOWN S

/ \

SMT nxn

K 327 UNKNOWNS
h \ /

n UNKNOWNS

I

302 UNKNOW NS

Fig. 4. REDUCTION PROCEDURE IN ART
( X,Y,Z) =(IO ,10,40)

. . . . . .
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'
6. CONCLUSION

The unique feature of the ART over other solution techniques for thei
,

Navier-Stokes equations is that the effect of entire boundary conditions of
a physical system under consideration is accounted for during every sweep of
an iteration. Furthermore, it retains advantages of low storage of iterative

solution procedures and high accuracy of direct inversion solution methods.,

Finally, the ART solution procedure can readily alleviate the assumption of a
I constant correction of pressure drop across a plane during an iteration in

the Defense Zone. This can be accomplished by subdividing the plane into
,

i more than one region (i.e., contraction or converging and expansion or diverg-

ing flow region).
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APPENDIX 1.

.
~ ~

Derivation of A (3n+1) from A, (3n+2)

Let us examine the case when the Offense Zone is touching the lower
,

is obviously, A,(3n+1) is the major position of A,(3n+2) .boundary. It

Partition A,(3n+2) as:

A A
ll i yy

13_Ml Qn111 i_ 13n+1,1)- [A.1.1]A (3n+2) =
A A

21 : 22
(1,3n+1) i (1,1)

.
-

where A =A,(3n+1). Letyy

| 1211

~l(3M2) = (3n+1,3n+11'i_ f3n+1,1)- [A.1.2]A

2221 i
(1,3n+1) i (1.1)

.
-

-1(3n+2) is known, Byy, Bg, Bg, B22 are also known.Since A

Let c = B then we have,

g g yy) [A.l.3]~

B =A + (A~ A 2)G (A A

[A.1.4]B = -(A A 2)cg

and

B = -c (A A~l) [A.1.5] |
21 21 yy

|

Then A.1.3 can be simplified as:

[A.1.6]
12 )c (-c B3)B =A + (-B c3 _

s

[A.1.7]~

-B B cor A = A, (3n+1) = B3 12 21
e

.
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APPENDIX 2
.

;

j' Liquid
.

-[ (p 3 u ) + (p 8 u v ) + (p 6 u w )] [A.2.1]X =

gg gg g g

|

j X {0 p gg g x + K (u -u ) + Sgx}=
g

+ ( [t 0l+ (rxy g) + (1x,0 )} [A.2.2]0
xx t g

Y [ (p euv)+ (p e v ) + (p e v w )] [A.2.3].=-gg gg gg ggg g
.

Y (0 o gt g y + K (v -v ) + Sg)
"

tn y

+([(txyg)+[(tyy g) + f (ty,e )) [A.2.4]e e
g

1

'
e

[[ (p e w u ) + (p e v w ) + f(p e w )) [A.2.5]2z --
gf gggg gggg ggg

| z, - (o p g, + K(w -w ) + s }g g

:

+(d(tx,e ) + f cr ,e ) + f (t,,o )) [A.2.6]t y g g

,

!
!

:

:

t.

1

4

i .

t,

: r
i

2

1 r-+-we - raw- ^3e e w -tm e v- *r - gw
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.

* APPENDIX 2 (continued)

[1(p 0 u ) + By (0 p u v ) + 3z (0 t u w )]S- 0-* X = -

gf 3x ggg gggg gggg

X 0pg + K(u -u ) + S=
g

+ (c O)+ (c 0)+ (c 0)g

S- 0-
gf - [3x (0 p u v ) + By (0 p u ) + BZS- (0 p v w ))Y a

8g88 g8g ggg8

0pg + K(u -v ) + S1 =

gn ggy A g mgy

E- (c
3

xy 8) + By (cyy g) + BZ- (c+ yz g)0 - 0 03x,

= - [1 (8 p w u ) + By (6 p v w ) + az- (0 p w )0- SZ
gf 3x gggg gggg ggg-

0pg + K(w -w ) + SZ =
g g

E- (c S- E-
xz g) + By (cyz g) + 3z (czz g)+ 0 e 03x

s

|

|
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_ APPENDIX 3 s

i

!
j Liquid

,

'

~ (T 0 o u (+1/2| . (Y,0 p uggt 1/2 vggt

| 6t

1.

^( if } i+ 1/2 U '

L L
"

tn i+ 1/2 x
i 1/2 -

i

(Y e p v )n+1 ~ IYv t t t)nM 1/20PVv g g g M 1/2
1 6e

i

(L} ( L }j - ^" ( if)j+ 1/2 (Y +
in j+1/2 y+ 2

1

(Y 0 p w )n+1 - (Y 0 p w )n
v g g g k+1/2 y g g g k+1/2

'

6t ,

j " ( Ef }k+1/2 + IZin k+1/2 (O P)"k t'
.

,
^+ ~ * *

g

j Cas

|

(Yepu} ~ (Yv g"g"g} +1/2vggg 1/2
6e

,

1/2 -(8 (8( gf 1+1/2 + I gn i+1/2 ^+"
1

l n+1
~ Y

n

] (Y 0 #g g j+1/2 v g g g 341/20Vy g
.6t

.'{
(Y )j+1/2 - n+1- n+1~v+ I [ A.3.M" ( gf}j+1/2 + ( gn)j+1/2 6ypl/2 - g j g j+1;

v g g"g}(Y 0 # ~ (Y Ev g 2 g k+1/2.

| 6t

" ( g f k+ 1/2 + ( gn} k+1/2 ^ '+ ~

1
* * '

y 17 , g k g

i
'

.

;

L

4

..n, - w t >e m w 4 4 - r -
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