NEDC-23713
Class I
February 1978

GENERAL ELECTRIC
COMPANY PROPRIETARY

MARK I CONTAINMENT PROGRAM
SCALING ANALYSIS FOR MODELING INITIAL AIR CLEARING
CAUSED BY REACTOR SAFETY/RELIEF VALVE DISCHARGE
TASK NUMBER 6.2.1

R. W. Schrum

Vd

' /
/:/ oqg 10
Peviewed by: J'Q'%‘% Approved: (g\ .
T — —
Moody, Sr. ineer

F. J. E. Kiss, Manager
Containment Methods Containment Technology




w2

DISCLAIMER OF RESPONSIBILITY

This document was prepared by or for the General Electric Company. Neither the
General Electnic Company nor any of the contributors to this document:

A

Makes any warranty or representation. express or implied, with respect to the
accuracy. completeness. or usefulness of the information contained in this docu-
ment. or that the use of any information disclosed in this document may not
infringe privately ownea rights. or

Assumes any responsibiiity for iabiiity or damage of any kind which may resuit
from the use of any ‘ormation disclosed in this document



NEDC-23713

TABLE OF CONTENTS

ABSTRACT

INTRODUCTION
1.1 General
1.2 Objectives

MODELING
2.1 General

2.2 Methodology

APPLICATION TO THE MARK I S/RV SYSTEM
3.1 Pool Motion - Water Clearing

3.2 Pool Motion - Air Clearing

3.3 Boundary Conditions

3.4 Suppression Pool Air Space

3.5 Bubble Formation

3.6 Quencher Model

3.7 Pipe Flow

SUMMARY OF MODELING RESULTS

TEST APPLICATION DISCUSSION

CONCLUSIONS

REFERENCES

APPENDICES

REFERENCE VALUES FOR PIPE FLOW

PROPERTIES OF SCALING OPERATOR

NOMENCLATURE

iii/iv

14
22
32
34
39
50
52

67

71

79

83

c-1



NEDC-23713

LIST OF ILLUSTRATIONS

Figure Title
1-1 Safety/Relief Valve Torus Arrangement
1-2 Flow Mitigating Addition to Ramshead Device - Monticello
Plant
3-1 Typical T-Quencher Detail
3=2 Water Clearing Model
3=3 U to V Mass Coiservation
3=-4 Water Velocities in X and Z Directions
3=5 Hole Exposure Down Quencher Arm
3-6 Initial Bubble Expansion
3=7 Bubble Formation From A Typical Quencher Hole
3-8 One-Dimensional Momentum Model
3-9 Orifice Pressure Loss
5-1 Quencher Arm Hole Pattern Detail
6-1 Proposed Model Scaling
A-1 S/RV Line Model
LIST OF TABLES
Table Title
4=1 Scaling Results for S/RV System
5-1 Darcy Friction Factor for A, = ipp =1,
En = 0.000005
5-2 Comparison of Scaling

v/vi

15
15
17
5
25
39
46
51
77
80
A-2

Page
69

71
75



I NEDC-23713
:

! ABSTRACT

A generalised method of aimilitude ie introduced and gpplied to

r develop acaling relationshipe for a General Electric Mark I
suppregsion pool, A scale model ie proposed to model suppression
_ pooi wall loads due to air flow through a T-quencher discharge

| device. The scaling relationships developed provide the means
for relating scale model parametere (i.e., preesure, velocity,)
to full scale.
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1. INTRODUCTION

1.1 GENERAL

During normal (and sometimes abnormal) operation of a nuclear reactor, high
pressure steam must be eliminated from the main steam lines. This steam is
bled off through the Safety/Relief Valve (S/RV) system to be condensed in the
reactor suppression pool. The typical S/RV system consists of quick opening
valves at the main steam lines, each of which is followed by a length of
large diameter piping and a discharge device. The discharge device is
located at the bottom of a toroidally shaped containment (the "torus'") that
is partially filled with water, The torus encircles the base of the reactor

pressure vessel {(Figure 1-1).

When the S/RV is activated, first the water is discharged in the piping, then
the air followed by the steam., The torus wall loads caused by water and steam
expulsion are small compared with those caused by the air discharge. To
reduce torus wall loads, it is suggested that quencher discharge devices be
installed to replace the existing ramshead discharge devices (Figure 1-2).

To test these devices, a small scale model and test facility will be built.

1.2 OBJECTIVES

This report defines the scaling par meters to be used for modeling initial

air clearing caused by reactor safety/relief valve discharge.

The report is divided into seven sections and contains three appendices.
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2. MODELING

2.1 GENERAL

»
Scale modeling is a powerful tocl for solving technical problems when the
governing equations are not readily solved and when physical behevior can be
readily observed in another scale. Application of scaling procedures to
unsteady fluid mechanics has not been extensive, however.

extensive, however.

The design of a scale model requires that all governing phenomena be trans-
formed in a way that the relative influences are preserved in another scale.
When the governing equations cannot be written, the Buckingham Pi theorem may
provide model laws. The su:cess of the use of this theorem depends largely

on the user's intuition. Use of this theorem does not guarantee that all
governing effects will be included or that negligible effects will be
excluded. When governinz forces in a problem are identified, the method of
similitude provides certain model laws in terms of force ratios for a geo-
metrically similar system, but it often fails to provide other necessary model
constraints. A generalization of the method of similitude (Kline, 1965)
provides all the required model laws for a complete formulation of the govern-
ing equations and boundary conditions, and establishes a starting point for

scaling procedures in unsteady fluid mechanics.

2.2 METHODOLOGY

A complete formulation, which includes the 2overning equations and boundary
equations, is nondimensionalized so that all dependent variables

and their derivatives become of the order of 1.0 in magnitude, designated by
0(1). Dimensionless similarity parameters appear as coefficients in the
formulation; a comparison of their relative numerical size determines which
are sufficiently small to be neglected. In a properly scaled model, the
remaining parameters must be numerically equal to full scale values. Finally,
model test results are employed with the nondimensional variables to relate

behavior in another scale.

wn
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Mass, momentum, and energy conservation principles are usually formulated

in terms of macroscopic-dependent properties, such as pressure, density,

and velocity. Other equilibrium state properties are uniquely determined
from appropriate state equations, whether algebraic, tabular, or graphical. If
properties are designated by +K, K equals 1,2, initial properties oK1 are
disturbed by prescribed activity at the system boundaries. Examples of boun-
dary disturbances are val. ‘ration, position motion, submerged gas dis-
charge in liquid, local heating, or local pressure variation on a liquid sur-
face. Generally, the disturbance itself provides reference value $KK of

one or more properties associated with the problem. Using a superscript "a”
Lo denote nondimensional quantities, dependent variables occurring in

derivatives are written in the form

KR Ki

O R e " . ™ (1)

(¢

which includes both the initial and references values, and is 0 (equation 1).
Time and space variables are independent with arbitrary zeroes, and therefore

are nondimensionalized as

g (s}

© & /i x® B x/x3v° % y/Y ;o2 : z/2 (2)

t
References time T and displacements X, Y, 2 in equation (2) are specified to
be consistent with the phenomena to be modeled such that the change in |
and x°, v°, 2z© are 0 (equation 1); e.g., 0 to 1, or 3 to 4. It follows that
the nondimensional derivatives such as 3¢K0/3t9,34K0/5x%  and 32,K0/5502 are
are 0 (equation 1) and their respective coefficients (sKR - ¢Ki)/r,

(4KR - 3Ky /x. and (KR - sK1y/x2 later become factors with other constants in
the problem to provide similarity parameters. Scme system parameters have
direction-dependent variables which appear in the derivatives. FPressure
changes, for example, may depend on direction as a result of gravitational

forces: thus, a nondimensicnal pressure can be defined for each direction
pOX  pOY  pOZ,
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The form selected for nondimensional derivative variables in equation (1)
automatically provides initial values that are zero when 4K is uniform
throughout the region of interest. If ¢K is not initially uniform in the

region, its initial distribution must be considered in the model laws.

Unsteady flow systems frequently encountered in practice involve three-to-one-
dimensional flows and time-dependent nodal flows with negligible space-
dependence. The simplification from three-to-one dimensional governing
equations is acceptable when changes are predominantly in one direction. Nodal
equations are acceptable when parameter; such as temperature and pressure are
equal ti.. ghout the system. Generally speaking, more system detail is

achieved by using greater dimensions.

Certain parameters are "control" parameters; for example, lengths, areas,
1ni:ialOCemperatutes, and initial pressures are controllable. Other parameters
are "consequences'" of the control parameters; for example, behavior of mass
flow rate, internal energy, and velocities depend on what control parametars

are chosen.

Once a scale model is specified, the governing equations should be reexamined
using the small scale reference values to be certain no new parameters have been

introduced.
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3. APPLICATION TO THE MARK I S/RV SYSTEM

The quencher device to be modeled is depicted in Figure 3-1. Using the
Monticello plant as a reference, there are eight symmetrically spaced quenchers
in the torus; only one need be modeled. When the S/RV valve upens, a complex

series of coupled events occur in the pipe and in the pool. These events are
listed below.

Pipe Events
A. A shock wave travels down the pipe impacting the water lez surface.

B. Initial air compresses while the initial water slﬁg concurrently

accelerates down the pipe and exits into the pool.

G The air slug exits the pipe in a distributed fashion through the

quencher holes.
D. Steam fills the pipe and consenses on the colder walls. The steam
charging the S/RV line may condense somewhat or become somewhat

superheated depencing on the valve discharge rate, pipe size, and

air properties.

Pool Events
A. Water accelerates into the pool following shock wave impact.
B. Air enters the pool following the water.
C. Pool water level rises, compressing the torus top air.

The transient extends until steam enters the pool.

Typical plant paramersrs will be used to establish the necessary reference

values. The primary concern in modeling the discharge device is to model
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torus wall loads (or pressures).

Conse: uently, other system parameters may

be adjusted to give the correct pool pressure responses.

The pool water is generally modeled as a three-dimensional, constant density,

incompressible fluid.

dinates are:

Mass
7eVe=0
DV s 2~
et VP = F ¥+ vV
DDt P F uV'v
Energy
De 2
o Dt KV'T + ¢
where
D 43 3 3
——— YR oee— e —.+ —am——
De ot Y TVy Y
F e 1+6%5+ €620
VEui+vi+wk
e 3 3 .
&= = p=—
' X A ay J iz -
e ol 2
o2 & — + *15 + 32

3x 3y

2
Y ETOR T -3-‘4
% 2y 12

ba ) @) @ e

The governing differential equations in cartesian coor-

(3)
(4)
(5)

(Material derivative®

(Body ‘orce vector)

(Velocity vector)

(Gradient)

(Laplacian) (6)

2 2
3V W 1 /3w 3u
3z T :y) - 2 (SX i 32)

(Dissipation function)
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Introducing the nondimensional parameters:

where

O

<

vV - v
Av

W - W
Aw

P=-P
AP

e - e
Ae

>

<ra

NN

|y

R TR

(7)
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Inserting equation (7) into equations (3), (4), and (5) results in a normalized

form of the governing equations:

Mass
Luy o .é_V.) ° W) ° .
(X) Yx +(Y Vy +(2) Yz “ (8)
Momentum
du} o ] Av)y o Aw! %
O(_r_u 1+(—r_)vtj+(r)"ck
~
o Lol (A ) 0 5 + (&%) 4° ; &1)0‘
+ (v Au + u) L( X‘)ux 1 % ( X) v j+ ( x) ¥x k]
o i ( Au o o Av \ O A o -
: 2y 2
+ (viv+v) (Y)uy1+(Y)vyj+ Y)wykJ
L (9)

el () s __A;)w ENCR B —ﬁ;)-,é ; -ﬂ%)w + (22
\x XX y vy 72 zz < Xx v vy 2°
] Aw \ o Aw\ o Aw) .0 1:

+ u R o 5 * ;E;) W k
| \x*/ ® ¢/ ¥ 2"y

13
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Energy:

e o 0 i Ae 0 o i (Ae 0 0 i (ge) o
5 (=— - - + + v+ e
o ( : et + (u Au + u’) (X ex (v Av v ) v ey (w Aw w ) 2 8

2%xa i AT\ .0 AL\ .0 LT\ -0 (10)
A N T (XZ Txx - (32> Tyy v (22)'rzz

3.1 POOL MOTION — WATER CLEARING

The first item of interest is pool motion during water clearing from the dis-

charge device. To estimate water clearing velocitv and time, a simple geometry

is devised and first principles used (Figure 3-2). From Newton's law and
assuming constant acceleration:

F = ma or (PSH - Pp) = gla (11)

x = 172 s’ (12)

Solving for clearing time T (i.e., when x = L):

1/2

2
= (3 ZL-uP . (13)
- SH P

If the water were accelerated out the end of the pipe, then the final velocity
U would be:

1/2

2P, - P)
U= gt (—§—‘!——P_.) ¥ (IA)
wC (v
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Figure 3-2. Water Clearing Model

The velocity out the pipe end U is of no interest but rather the velocity out
the quencher holes. If the end of the pipe shown in Figure 3-2 is capped, then
the water is forced out the mitigator holes (Figure 3-3). The approximate

exiting velocity is determined from mass conservation:

1/2
v uPIPE _ (2(Psu : PP)) SpreE
AoLES ‘ AyoLES
Apipe

g
C)OOKOOOOOO
t Ny

Figure --3. U to V Mass Conservation

(15)
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Inserting typical values then:

1b
) ® 62.4 [—-‘;-‘ - Water density
2
L =10 [f] - Water leg length
(16)
PSH - PP = 340 - 15 = 324 [psia] =~ Driving pressure difference,
see Appendix A for shock
pressure. Pool pressure is
slightly above 1 atm
2
APIPE = AHOLES' 100 [in."] - Pipe and hole areas
Then from (13) and (15):
Twe = 0.09 [sec]
V=220 [£f/s]
The clearing velocities in the x and z directions are estimated from geometry.
The value UMAX is found according to the maximum drill angle of the quencher
holes. In the z direction, NMAX is due to the increase in pool volume from
pipe water expulsion (Figure 3-4):
\ = =
\HAX v = 220(f/s) ;
u =V sin o = 110[£f/s] (18)

MAX

Vol
e APWTHC

16
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Umax

Y

w
K'Z MAX

Apw
Figure 3-4. Water Velocities in X and Z Directions

where

¢ = 30° Drill angle

T = 0.09 [sec] Water clearing time

(19)

"
pr = 308([f"] Pool water 7.ea

Vol = 7[f3,

Half the in.tial water volume
of the quencher

Initially, the pool will have zero velocity and, in 2 = 0,09 seconds, will

vax® "max’ 3% Wyax

Since there are no temperature differences in the pool, application of tle

have reached U in the x, v, and z directions, respectively.

energy ecuation is unnecessary during water clearing.
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Reference values for water clearing are:

X =6 [f) - Quencher submergence
Y = 10 [f] - Quencher-to-wall length
Z2 =7 [f] - Quencher arm length
T = 0.09 [sec] - Water clearing time
i i i
u =y =w =0 - Water is initially at rest
uR = 110 [f/s] - Maximum velocity in-x direction
vR = 220 [f/s] - Maximum velocity in y direction
(20)
wR = 0.25 [f/s] - Maximum velocity in y direction
AP = pgX = 2.6 [psia] - Static head
p = 62.4 [lbm/f3] - Water density
u = 2.).0-5 [1bf = s/f2] - Water viscosity at 70°F, 1 atm.
£ = -pg = =62.4 [1bf/f3] - Gravitational body force
£ = 2 =0
Inserting the reference values into the mass and momen®um equations (8) and
(9), the eliminating terms two orders of magnitude less than the greatest
give the following differential equations and similitude parameters:
Mass
0 0
(P1P3)ux + Ve 0 (21)

18
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Momen tum

o o 2 00 | I
(F2P3)ut i+ (PZ)vt i+ (PIPJ) U i+ (P1P3)u v, i |
(22)
+ (P3)v°u; i+ vov: j =0
where
P1 = (Y/X)
R
P, = (Y/avr) = (Y/v'1) (23)

-~

P3 = (Au/Av) -(uR/vR)

Thus, for modeling pool motion during water clearing, pressure variations,
viscous forces, and all "z" direction, similitude parameters are negligible.
The three dimensionless parameters of equation (23) must be numerically
equal in full and model scales; that is, the same equations govern cthe
responses in both systems. Two contrcllable scaling parameters are defined,
one for submergence and one for fluid demsity (in case the model has a

fluid other than water):

X

\ g_m (24)
S
e

y 8.8 (25)
v UF

It follows immediately from P] that:*

X #VY # lx (28)

*See the properties of the scaling operator presented in Appendix B.

19
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Examining 92 and from equation (26) then:

Y # it # . ' (27

Since vR = VMAX (equation 15) and t is given in equation (13),

Equation (27) can be written as:

R APIPE

vt =L $ ) (28)
OLES

X

Parameter P3 indicates that velocities scale the same. From P3 and

equation (15) then:

1/2

Py = P
LI ( s _ l) Ap1rE 29
AwoLes

Five nondimensional parameters resulted in the governing equations (21)
and (22), namelv, to. xO. yo. u°, and vo. Nondimensional parameters must be
equal in both model and full scales to compare one scale with the other,

thus:
o Q
(t )m = (t )F or (t/r)m = (t/r)F-

Rearranging gives an expression in t which is known from equations (13) and
(28):

(30)

nln
m 13
L]
q!—!
m |3
-
| g
A
-
w
=
o
'
o
-
f, T
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Proceeding similarly for x° and yo results in:

£

X # X 4 Ax

(31)

y*Ys$ ,xx
Likewise, velocities scale like . ation (29) since initial velocities are
zero:

1/2
P _~-P
vEvisusut s (————s“ P) “prpE (32)
P AyoLEs

One other parameter is determined from P3 and equation (18):

Py = oB/v® e gina # 2 (33)
Thus, the angle a must be preserved between model and full scales.
Summarizing, for modeling water flow into the pool, lengths scale
as:

x, v, X, ¥, L . “pree £ (34)

AdoLes
Velocities scale according to the driving pressure difference and pool
density:
1/2
P. =P
arv.aR ok "( SH : p) : AprpE o
AHOLES
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Time scales like Y/VR:

1/2

(o}

t,r # (p - P ) AHOLES | (36)
SH ™ P Aprpg X

and mitigator hole angles scale one to one:

x # 1.0 (37)

Later, after examining pool motion during air clearing, it will be found that:

T 0.5
X

and
PSH = PP = \Qkx

Consequently from (36); AHOLES # APIPE and from (35); u # 1 and
from (34); L ¥ Xx s

3.2 POOL MOTION - AIR CLEARING

Once the water has cleared the quencher, compressed air begins to enter the
pool. The expelled bubbles coalesce into larger bubbles as they begin to

rise to the surface. In considering air clearing down one arm of the quencher
(Figure 3-5), half the air in the S/RV pipe will flow through each arm and
exit at a roughly choked flow through the mitigator holes. Air clearing time

T Can then be estimated using:

™ Tac
iy f e (38)
o

22
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ult)
Xt

Po I

O 00000000

Figure 3-5. Hole Exposure Down Quencher Arm

where:

Ma = mass of air in pipe

P..A(t) T+ Choked flow out
m = SH____ \/> 7:{ - uncovered holes (39)
a f 2 )
vRT
SH ‘ch(-(+1
£ Air flow area assuming
A(t) = fﬂ%&£§ ¥(t) = \HgLES Ut - constant water velocity
and uniform hole
distribution

Inserting equation (39) into equation (38) and integrating gives an

expression for air clearing time ¥ n

M L 4/RT
T a SH (40)
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Using the typical values:

xbf—f'!
R = 53.3 -————-——j - Gas constant for air
b =0
m R
Y= 1.4 - Ratio of specific heats for air (41)
L=2¢6[f) = Quencher arm length of holes
Poy = 340 [psia] - Driving air pressure
Pi
i
Ma --—ET VPIPE = 3.3 [1bnm] - Mags of air in pipe, Pa = 14.7 [psia],
RT
. i
Ta = 595(°R] , VPIPE I8 A=
(100) (0.499) = 49.9 [£°]
(41)
(y=1) /v
i [ Psu
Teg = T | = = 1460[°R] = Driving air temperature
SH a Pi
a
2
AYoLES =100 [in.") -~ Quencher arm hole area
U= 220 [£/s] - Equation (14)
then from (49):
T.e * 0.01 [sec] (42)

Note that x = Ufac = 2,5 [£]; thus, only about half the quencher arm is passing
air by the time air clearing is over.

24
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Pool velocities are influenced by bubble oscillations, which can be estimated

from the Ravleigh bubble equation:

R (43)

]

The maximum R occurs when R = 0:
; 1/2
2% - PP)) (44)

‘.’w\x'(} o

The bubble pressure can be estimated assuming that the exiting air expands

as a sphere (Figure 3-6):

i
- (45)
Ro= =222 .55 [5/s)

Inserting equation (45) into equation (44) with PP = 15 [psia] gives:

J 2
= = = 46
Py = Pp +3 oR 76 [psial (46)

The exiting bubble will be higher in temperature due to compression. Assuming

adiabatic compression:

P (y=1) /v

e = 951 [°R] (47)

4

® -

i
a

Figure 3-6. Initial Bubble Expansion
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Physically, the pocl will have initial velocities equal to the final water

clearing velocities. As the bubbles enter, the velocity components increase

due to bubble motion. Pool pressures vary from a high pressure at the bub-

ble interface to roughly hydrostatic pressures at the pool boundaries. A

temperature difference now exists between the compressed air bubble and the pool

surface, so application of the energy equation is necessary during air clearing.

Reference values for pool motion during air clearing are:

X = 6[f]
Y = 10 [f])

Z =19 [f)
t = 0.01 [sec]

u = 110 [f/s)
v = 220 [£/s)
w = 0 [£f/s]

Au = Ay = Aw = HMAX = 55 [£/s]
P" = P, = 16.7 [psia]
AP = pgX + PB = 80 [psia]

o = 62.4 llbmff3]

u = 2,107 [lbf “ s/fz]

-

£ = wog = =62.4 [lbf/£3J

7 «f° =« 0

T =T, = 520 [°R]

P

Quencher submergence

Quencher-to-wall length

Pool segment length
Air clearing time

Final water clearing velocity
x direction

Final water clearing velocity,
y direction

Final water clearing velocity,
z direction

Bubble velocity (48)
Pool surface pressure
Static head plus bubble pressure

Water density

Water viscosity at 70°, 1 atm

Gravitational body force

Pool temperature
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3 - = »
aT TB TP 431 [°R]

e = CT_ = 520 [B/1b |
v m

P
re = C AT = 431 [(B/1b_|]
v m

K = 1,107 [——:5;131

5 i A - i‘i)z
70 (2“(x ) —

CLEARING CLEARING
1b,
= 0(0.087)|———
f - s
5 1b ]
R, (AR £
P 0(20( x) ) 0(0.005)['?_.—;-11

Temperature difference for heat
Conduction

Initial pool-specific internal energy
Maximum change in internal energy

Conduction coefficient for water

Initial energy dissipation

Inserting reference values equation (48) into equations (8), (9), and (10),

and neglecting terms two orders of magnitude less than the greatest gives:

Mass
0 0 0
(P1P3)ux + vy + (P6P7)"z 0

Momentum

o . 0 . o, 2\ o o ;
(P2P3)ut i+ (Pz)xt i+ (P2P4)vt k + [(PIPB) u 4+ (P1P3P5)1 ux %

k J

+ [(P3P3P7)] wou:

.
o } o
+| (B POu" + (PIE [ v) 5+

- r
i+ L(P4P7)

(49)

function is found from the final é:::)
water clearing velocities
Energy dissipation for bubble
expansion
d
(] [ iy
(P1P3P6) u + (PlPéPS)] v, k

(50)

- r(P W+ PP Wi 4|0+ @)l ve 4P v® + (PP O K
| (3 %6’ | Yy 6 | Yy 3 Tl

T 00 2 oo
J v, j+ (P4P7) ww, k

o 0 ; o
+ (PlPs) Px i+ (PB)py i+ (P7P8)Pz k=20

27
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Energy

-
(8]

" o o]
o o 9 1 : 0
(P2)¢t + _(PIPJ)u + (PXPS)] ex + Lv + (Pﬁ)J Cy

(51)

r 100 .
- (P6P7)J w ez 0

-

where the resulting similarity parameters are:

P, = Y/X

P, = Aw/Av
(52)

P, = ui/Av

P = vi/‘v

From the momentum equation gravitational and viscous forces are found to be
unimportant relative to other terms. The mass equation shows that model-

ing the "z" direction is important for bubble motion. The energy equation

shows that temperature differences and viscous heating may be neglected.
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Again, to insure that the model and full scale systems are governed by the

same equations, each similitude parameter must scale as 1.0. From Pl and P7.

all reference lengths must scale the same, that is:
X$YSsZF# lx (53)
Examining Pb' the initial velocity vi must scale like Av:
i - i
v $ Av $ RMAX -V (54)

Using the comparative property and equation (44) for R allows equation (54)

to be written:

: Py - Pp 1/2
Av 4 Ru\x ¥ 2 (55)

At this point let us examine Pe:

Ps = AP/asz

Parameter PB is the "pressure coefficient"” and is the ratio of pressure to

inertia forces. Another parameter of physical significant is the toude number:

. sz & INERTIA FORCE

r gX  GRAVITATIONAL FORCE

F

The Froude number need not be scaled sirce it was found that gravitational
forces are negligible compared with pressure forces. One characteristic of
pressure coefficient scaling is that pool pressire differences and velocities
are related; both are uncontrollable under normal conditions. For example, p°

must scale as 1.0 betveen model and full scales

P - P1 $ AP # OAVZ (Pressure coefficient scaling) (56)

"

*Sometimes written &P/%OVZ.
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2
1f, on the other hand, Froude scaling were important, velocity 4v  1is
related to X, which is a controllable parameter and (56) could be

written:
P - P F 0P FogKE A (57)

where gravity is the same in model and full scales. Because Froude s:aling
results in contrcllabjlity, it will be incorporated in the scaling. Imposing
Froude scaling reduces the flexibility of the scale model since it defines how
the pressure difference (AP) scales, but it does not violaie scaling laws and

eliminates the problem of measuring AP in the model and full scales.

From equations (55) and (57) and the reference values for Pi and AP:

P-P $P_ +ogX# osz $ ) (58)
» B P x

From the comparative property it follows that:

Ps # A A (59)

.

and also from equations (58), (59), and (55):

P.~-P
W (60)

o X

.’ L ™
(wh)? 6 av’ 4 R §

Applying the comparative property to equations (58) and (59):
P, # ) ) (61)
Since P x P+ pgks

P $)3 (62)
» o x
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Parameters P P“. P., and P, indicate that all reference velocities scale

3* 3 6

like 4v or:

v1 ¥ ui $ Au % Av § pw $ xg's (63)

Parameter P2 scales reference time 7 :

t # Y/iv # xg's (64)

Looking at the nondimensional parameters to. xo, yo, and zo shows that

since each scales as 1.0:

ehrEa (63)

xfvEzEXFY LN (66)

Similarly for uo, vo, and wo. from equation (62) and the comparative

property:
ugveEws Xg's (67)
Applyving equations (57) and (61) to p’ gives:*
P ¥ lpxx (68)
Summarizing for pool motion during air clearing, lengths scale the same:

Xo Vo 2, X, ¥, 2 # A (69)

®

Note: Without Froude scaling, P would scale like P - P_ = P + pgX; conse-
quently, the bubble pressurc Pg would have to be measured iR both model and
full scale to get a reference pressure difference.
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Froude velocity scaling,
u.v.w.ui,vi.R s kg's (70)

Pressure coefficient scaling of pressures,

Py Py Puu Py = A X (71)

Time scales as Y/Aav,

tF1# Ag.s (72)
3.3 BOUNDARY CONDITIONS
There are two boundary conditions for pool motion: a nonflow condition
at the torus wall and a flow condition at the pool surface. A fixed bounding
surface can be described by the functionai equation:

F(XI'XZ"‘]) =0 (73)

The nonflow restriction permits no fluid velocity component normal to

surface F so:
i -2 .0 on F (74)
where 7F/|VF| is the unit vector normal to the surface. Unit ncrmal vectors

are the sawe in any scale; therefore, equation (73) can be written in non-

dimensional form as:

; St |
iy . - i1\ ! .
|‘u° A"-') +(E-) i+ v !i).l 3" l:;o (A—w +(w_)l k '———-VOFO =0
L ) T\ W v/ ] av) \av J °F°

on F (75)
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All coefficients of equation (73) appeare’ ¥ -e governing differential

equations, so no new similarity paramete~s . : introduced.

The boundary between two moving fluids™ .ch as the pool surface) or
a fluid and a nonrigid, flexible, or moving solid can be classified as a
moving nonflow boundary. Such a boundarv cza be described by the

functional equation:
G(xl,xz,x3,t) = 0

The normal and tangential velocity components at a point on the bounding

surface G are given by:

Vo= ¥ i on G
n | 7G|

|

on G

Eﬂ<t
=

VC'V'[I% X

<31
QD
| ——

The functional equation must also satisfy the condition that:

DG

—_ = ()

Dt

To nondimensionalize Vn and Vt coefficients are introduced that function

as direction cosines Vn «7 8 3 Vt =V g. Nondimensionalizing equa-
tions (77), (78), and (79) then:

’ [ r i’ { 1“ l 0,0
= (AE- °+(%—)£+Iv°+1-j+?(é—)w°+-¥—k i, TR
4 A ’ Av j Av v, i ;7060.

Il L L J

#Surface tension has been ignored.
33
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(-}g) W +(-‘-’%)-’ k (81)

(82)
-r[%%)w°+(¥;ﬂ (%)G: = 0

All paraneters were previously derived from the governing equattons
except % and 7 . Since these act as direction cosines, modeling and

. means angles between model and full scales must be preserved in the pool.

3.4 SUPPRESSION POOL AIR SPACE

As water and air enter the pool, the top air space becomes compressed.
The reference time was determined for air and water clearing; 0.09

+ 0.01 = 0,1 sec. Comparing the reference time with the time for an acoustic
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-~

wave to travei through the top air space, using a length of 15 feet and
an acoustic speed of 1200 fps, only 0.0125 s»c would be required for
disturbances to pass through the air space; thus, the top air can be

t-eated as a node.

The governing equations for nodal systems exclude momentum but require a

state equation:

Mass

Iy ‘;’our : %% | A%
Energy

¥ g{ * Qop = gy * @) - @R *g'% - 1o
State °

P¥ = MRT (85)

More complex equations of state might be used, but air behaves similarly to

an ideal gas.
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Introducing the nondimensional parameters:

8 = (@ - @Y)/ba

M = (M- M)/at

'
©
(%
~
~
=
e

r? = (P

Vi = (V- V7)/av

(86)

E = (E Ei)/as

1° « (T - T)/AT

q = (q qi)/Aq

)
.
- 3
o
~
o
L]

) . 1 <
[mho - (nho) ]/A(mho)
t = t/t

The resulting normalized equations are:

Mass

0, %

Am o
(m Am + m )OUT = (-—

M (87)

. S |
(m Am + m ) - ¢

IN

Energx

0, i (gg) 0 o, i o i
(PAP + P) - vt + (q 4q + q )OUT (q Aq + q )IN

-

|

+ [(:ho)%(&ho) + (.‘mo)‘ - | (@b )°a(mn ) + (imo)‘} (88)
ouT L IN

+.(£EE)EP = 0
t t
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State

P + P (vV0av + vh) = (M%2M

Reference values for top air are:
lbf-f
R'53.3~1-S:;:r§ -

t = 0.1 [sec] -

y = 1.4 o

Pi

A 14.7 [psia] -
3
V' = 11700 [£7) -

i P1¥1 = 79584 [B] -
Y- 1

i 1

M - E_iT = 860 [1lbm] -
RT

T = 540 [°R] -

Wf ooyl = 11650 [£°] .

= ¥oree

iY
PR = P1 (%) = 14.8 [psia] -

oy

e e\ -1

T .1 (TT; = 541 [°R] ¥
B
R

gR - B 79783 (8] -

y - 1
v WAy :
Mry = Moyr = Ay = ABp = O l

. i . i . g ® o
(mh )y = (@b ) oyp= Mmb ) = SC@b ) e =0 l

37

+ ) R(T%r + T (89)

Gas constant - air

Air + water clearing time

Ratio of specific heats
Initial air pressure
Initial air volume

Ideal gas energy

Ideal gas mass (90)

Initial air temperature

Air volume reduces with S/RV
actuation

Adiabatic compression of ideal
gas

Adjabatic compression of ideal
2as

Ideal 8as energy

- No mass flow into tep air
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i i
= A = - ) duction except out
Qn * Your * 49y 0 No heat condu P

- (90
3q . = HAAT = 6.3 fEJ - Where H = 10[ ™ ]Natural i
ouT LS hr f F Jconvection

2
A= 2203 [£f"] Surface area
of top air

AT = 541 - 540 = 1[°F]

Inserting equation (90) into equations (87), (88), and (89) results in the
following, after eliminating terms two orders of magnitude smaller than

the greatest:

Mass

(No contribution)

Energy
0 o
(P )V, +E =0 (91)
State
(P13) = 1.0 (92)
To scale the top air, qu and P13 must be scaled as 1.0:
¥ Y
_ Pl | ¢! +\ st
i © gt b Ll -7 gl | s B (93)
/ PIPE PIPE PIPE
i1
P=¥ A
Py = i1 * 1.0 (94)
M RT
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Thus, the v in the model must be the same as for full scale, and the top
air initial volume must scale as pipe volume. The bubble formation analysis
will show that to give a large enough bubble, pipe volume scales geometrically

3
{ A
, L . % : 1)

i ; G .
¥ f Yot & (33
Since top air ¥° and E® must be the same in both scales, it fellows as a

consequence of geometric volume scaling and P_ = AWR‘ for pool motion that:

i 3
CEWEF O P (96)

i i - &
A S A A
E£AE$E #P VPIFE $ X - (97)

3.5 BUBBLE FORMATION

L

Consider a typical quencher hole (Figure 3-7). The effects of adjacent bubbles
and pressure superpositions are neglected, and the bubble is assumed to act as
a node. A nodal analysis implies the momentum equation may be neglected.

The momentum equation can be examined for a simple geometry to show that no

similarity parameters are neglected.

Figure 3-7. Bubble Formation From a Typical Quencher Hole
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The mass, energy, and state equations are nondimensionalized as they are for

top air. Reference values for bubble formation are:

lbf-f
R = 53,1 TS;:'ﬁ - Air gas constant
y = 1.4 - Ratio of specific heats
r = 0.01 [sec] - Air clearing time
Pt = PSH = 340 [psia]) - Upstream stagnation pressure
(y=1)/y
i 1 [ Psu
T =T, . =T [—— = 1460 [°R] - Upstream stagnation temperature
SH a Pi
a
P
. | SHAH i
A= ®r v = 0.117 [1bm/s] - Initial mass flow,rate
SH (Ay = 0.0008454[£°]) (98)
ho = RTg, v/ (y=1) = 350.1 [B/1bm] - Ideal stagnation enthalpy

.
(mho);N = moh =4l [B/s] Initial enthalpy flux

i i i »1 s i ; 3 i
M7= VT B iy = (@R opr * 9y * Your " ©
R
P = PB = 76 [psia] - Bubble pressure
p (y=1) /v
R i B °
T =T =T |— = 951 [°R] - Bubble temperature
| B a Pi
a
\
\
| -1
& _Psiy | o
T o)
= 0.5765 [1bm/s] - Choked flow
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w - aR.r = 0.005765 [1bm] - Reference mass
» R P
(nho)l“ = Gy - h; = 201.8 [B/S] - Reference enthalpy flux
R_.R
UR - :T = 0.0267 [f3] - Reference volume
P
R
EN = fnf T = 0.9 (8] - Ideal energy
R (98
dour * hA(TB - Tp) = 5.16 [B/S] - Reference heat loss where Cont)
H=10 e Forced convection
hr £°°F heat transfer
coefficient
2/3
R
3 ¥
A= 4"(; = ) Surface area of
sphere
TB - TP = 95] - 520 = 431 °F
Temperature
R difference
. o R R
Mour = @0 o = 9y = 0
Inserting equation (98) into equations (87), (88), and (89) results in the
following, after eliminating terms two orders of magnitude less than the
greatest:
:\!ass
.o O
(P“)mIN + 1= (PIS)Mt (99)
Energy
r(P 2% + (P ) | V0 - (B, ) @h)° - (B o) + EC = O (100)
| P16 3 LE AP 1 * B



State

Again, to insure

and full scales,

NEDC-237.3

s 2D o o 0,.0 0
(P:O)P ¥y o+ (PZI)\ (Pzz)ﬁ T + M

each parameter "P" must scale as 1.0:

6R
. ) Amlx IN ‘i
14 R
N "y
M 8 . 4.
P1s . 1.0
BN
P
YT\ _ “sH
P16 F (y 1) (1 -E;—)
P - ?19_\: - ( - l) Pﬂ
17 AE Y 3
B
. 1 (y=1)/v
T (mh )\t .\ "su
18 X3 <R Py
N
i " (y=1)/y
o o) (P ), (s
19 AE oK L
IN J
(y=1)/y
> APAW (1 d Ps ) P )
20 et Py / \Pgy
3 (y=1)/y
P P AW (Psa)(st)
T Py §§§
o (y=1) /v
Y (__s_.) o
22 Ti PSH

that the same differential equation governs both model

(101)

(102)
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Examining P°2 first shows:

(v=1)/v

Py
5 $ 1.0 (103)
SH

From (103) and :21:

Psu
PB ¢ 1.0 (104)

To satisfy both equations (103) and (104), the exponent * - 1/2

must scale as 1.0, or:

m " F (105)

Parameter Pl& indicates that the reference to initial mass flow rate ratio

must scale as 1.0, from equation (98):

.R !'_ '
o L D /8 ¥ ( 2 ) e S (106)
6:N ot \/ c y+1

but from equation (105) y # 1 and equation (106) is satisfied if:

£ 1.0 (107)

The initial velocity was determined from pool motion for air clearing to

scale as Ag's. To satisfy equation (107) and thereby scale Pl&:

"su £ Ao (108)
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All remaining parameters are scaled by equations (104), (105), and
(106),

Azain, each nondimensionable variable must scale as 1.0. Conside. non-

dimensional velume ¥ . ¥1¥R $ 1.0

P | ol
o sty / , \ -1 T, (109)
Mow V8 (v + 1) g, A Vigy

As a consequence of geometric pool scaling, the bubble volume

must scale geometrically; that is % = X:. Remembering time t scales as

‘«2'5 and from equation (108) “SH £ \x. then solving equation (109) for Aﬂ:
R
Ay $ 22 (110)
T JRT *
SH
From P

P - PSH . PB - PSH (111)
From equation (104) and pool motion for air clearing, !‘B ¥ PSH ¥ xp )‘x'
then applyving the comparative property to (111):

P s l’B # PSH $ \;Ax (112)
Examining ﬁ?N:

iy~ 'i‘;u fﬁ*!;,, B '%;N e

<R ', 1 i - 3.
A
But from P“ and equation (98) mr ¥ mms‘ PSH‘\HV /RTSHI okx ’

1A
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Again the comparative property applies to equation (113) giving:

#i ) (114)

M’ and £° follow directly from equation (98):

P T
M# MR # SHA“ £ 13 (115)
5H s
R
Po ¥
T Lok I T (116)
y= 1 p X
. i .
Finally, from P18 and P19’ (nho)IN will scale like A(mho)IN and from
equation (98):
. . 1 . R ,E, PR Psu”*ﬂvi"
s s
(mho)m $ (mho)m ¥ (mha)m e P e | A
P_A vy [RT..
sutu'yMTsy L, 3.5
£ e ¥ Aohe (117)

Summarizing for bubble formation, pressures scale like bubble pressure
for pool motion:

L PSH : PB B xaxx (118)
volume scales geometrically so that pool motion is modeled:

v o] (119)
to model bubble pressue due to compression:

vy £#1.0 (120)
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to model mass flow into the bubble:

Rigy # 1x (121)

As a result of equations (118) through (121), hole size, bubble mass,

energy, and enthalpy flux model as:
Ayt
X

M, MR $ A 13
o X

E. R 4 \_x: (122)

>3

I

. TR
My » Bpy 0 By # A0

. s. <R . i : 2 3.9
(mho)IN' (th)IN ' (mho)IN ’ onx

Since the exiting air reaches sonic velocity, air momentum may be important.
To examine this, consider the simplified one-dimensional model pictured in

Figure 3-8. Writing the integral form of the momentum equation:

- d vl - K - -
ZFgc T o4& 4y 4+ ) e (V* qA) Vv (123)
c.3

Figure 3-8. One-Dimensional Momentum Model




... applying equation (123) to the simple model shown in Figure 3-8:
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-

d | . . 2. .2
(Py = PpIAgB. * 3¢ L‘a“ By * og% (L = x)Au] ot ag ot iy

or

(PB - Pp)gC = 0 XX + aP(L -x) R

Nondimensionalizing using (assume constant 0y and PP):

Inserting equation (125) into equaction (124) gives the following:

where:

Lo ]
t =t/

ve?

May'ty & Wyge = [(st

AP 8
e
L$% Sl vj
P(L/t)
( { \
o & PB g PP gc
24 2
GP(L/.)

(926)] x°x° 4+ (1 - xo)xo

tt

Pressure coefficient

Pressure coefficient

Air momentum term

Air momentum term

47
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(125)

(126)
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Reference values are:

-
"

g™ Pgy * 340 [psia]

Ty = Tgy = 1460 [°R]
c; - P;/RT; - 0.629 (1tm/f]
P: = 76 [psia]
R .
Ty 951 [°R]
R _ R R _ .3
og = Pg/RTy = 0.216 [1bm'f"]
62. T
op * .4 [1bm/£7)
?P = 15 [psia]
(vt = 220 [£/s]
L/t '<

c -,lygcarz = 1512 [f/s]

N

Initial bubble pressure

Initial bubble temperature

Ideal density

Bubble reference pressure

Bubble reference temperature

Ideal density

Pool density

Pool pressure

Initial velocity

Sonic velocity

(128)

Depending on what reference velocity is used, the momentum of air (terms st

and 926) may or may not be important when compared with pressure,
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P23 = -0,638 (Initial Flow) -0.014 (Sonic flow)
924 = (),789 (Initial Flow) 0.016 (Sonic flow)

(129)
P25 = -0.009

Momentum Terms
0.014

d
L]

llomentum terms are small inicially. During the first part of bubble forma-
tion, momentum is unimportant, but as the bubble grows and velocityvy becomes
sonic, air momentum becomes important. Nonetheless, using the already deter-

mined scale parameters confirms that momentum is scaled:

APBSC ; Xx
Pyy , #5%=1.0
oo (L/T)" o X
P
i
(Ps s Pp)gc A A
P = # = 1.0
&4 OP(L/r)2 Xo\x

(130)

dp P A_A
..—B. (B ——S-H—-) 'l = P = 1.0
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3.6 QUENCHER MODEL

At this point the quencher hole size and diameter have been scaled. It is
important to see how the quencher arm length and hole spacing should scale so
that the air bubble enters the pool in a geometrically scaled fashion. Con-

sider Figure 3-5, which shows the water exiting the quencher as (equation 13):

1/2

2(P.. - P )) ( Ap )

SH - 'p IPE

V= (_...... . (131)
P RHOLES

Mass conservation in the pipe gives the centerline velocity:

alt) -(A—“-‘MQ) (1 - Ale) ) “ v (132)

ApreE AloLES

but for full scale the air flow area A(t) and length of quencher exposed to

air flow x(c) is:

x(t)
Alt) = Agorps * =T (133)
and integrating (132):
t
x(t) = f u(t) dt (134)
o

Combining equations (131) through (134) gives the following relation for x(t):

¢ 1/2
x(t) o f (2 - "f_”)(f (P, - PP)) dt (135)

Q
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Pressure and time scaling have already been determined (namely

- kWS
PSH # PP . AL € P ). To model pool motion x(t) must scale

v

geometrically. The only solution to equation (134) is:

L#) (136)
X

which is consistent w.th gecxretric pool scaling.

Pressure los=es across an orifice, such as a quencher hole, are obtained

from Figure 3-9:

K- .2
PSH - PP - -2? pV (]37)

For water flow:

v i 108
X

P XL (138)
»

P# A
oox

thus, from equation (137) it follows that K # 1.0.

Figure 3-9. Orifice Pressure Loss
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For air flow:

V= /Rl = AO 3
X

P
it At

P# i
0 X

Thus, from equation (137) it again follows that K # 1.0.

Since K is a function of orifice inside edge sharpness, it is important to

keep the same sharpness between model and full scales so that KMODEL - KFULL'

7

3. PIPE FLOW

To give the correct drivi g pressure at the quencher, the acoustic phenomena
(shock waves) and the compressible flow of air and steam through the S/RV

line must be modeled. The pipe is assumed to be of constant area and the

flow to be one-dimensional.

3.7.1 Moving Normal Shock

Whenever a moving normal shock occurs in a fluid, a moving boundary condition
is introduced. Properties can be related across this moving boundary condi-

tion. Letting subscripts y and x refer to the shocked and undisturbed regions
respectively, then mass, momentum and energy conservation equations for a

moving normal shock are written as:

Hass
ox(S - Vx) B oy(S - Vy)
Momenggf
0. (8 -V)ap(s-v)2ap -p
x X y y ¥
i

i - 1., . z
:>x~y(hx hy) + 2(Py Px)(oy - Lx) = 0

where S is the shock speed.
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Nondimensionalizing equations (140), (141), and (142) using:

po . D—-Di
Ao
vo V - Ji
aAv
. i
p° o P =P (143)
AP
ho - h - l'l1
Ah
s° « g/st
gives:
Mass
o o R.0 i il G0 0.,0 i o o .
Ao‘(o - P )(SS -V)-A.’(o V =p 'V )‘+o L\.V{V —V]-O (144)
X ¥ X X - i y X
Homentum
T :
(ovo + 01) [sRs0 - aw® - viJ . (o° Ao+ci) [sRs° - Vv - vi]
X X b y
B (P° - p° )ap (145)
y : -
Energy

0 i o i 0 0 1 0 _ o0Y.¢ _ o)-
(uy‘“ + o) (ogm0 + 0 )[ (ny hy).’.\h:l + gapao (P - 22 )(e] - 07 )= 0

(146)
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Initial valu.s are those before the shock (that is the x side), and reference
values are those just behind the shock (the y side). Typical vaiues for

shock motion are:

P1 = P: = 14,7 [psia] - Initial air pressure
Ti = T: = 595 [°R] - Initial air temperature
i i 3 3

o = P /RT = (,0667 llbm/f ] - Initial air density

v o - Initial air velocity

hi - 7—%—T-RT1 = 143 [B/lbm] - Ideal enthalpy

PR = 98.37 [psia] - Shocked air pressure (Appendix A)
R(Y-l)/Y S (147)

TR = T; (ET) = 993 [°R] - Shocked air temperature
Pa (adabiatic)

p = PR’RTR = 0.2404 [lbm/f3]

Shocked air density

‘J 'vgcRTi (PR/Pi . 1)

VR = V1 + 172 " Shocked air velocity - Ideal

[ 1 gas Rankine - Hugoniot relation-

yCy = D {y + 1 PR ship, equals steam velocity Vs
2 Wy -1/ .1 =%
e e
= 1860 [f/s]

Bt - y I i RTY = 238 lBllbql - Ideal enthalpy

1/2
R i 2 R By
s™ o V* & - (y + P + (v - 1)P - Ideal gas shock speed - Rankine-

207 | Hugoniot relationship

2751 [f/s]

ur
‘\
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Inserting values and eliminating terms two orders of magnitude less than the

greatest gives:

_Mass
o 0 fe) 0,,0 0,0 o 0

(o2 - 2) [P 9] - o 5252 - 020] 0 [12- ] -0 e

Momentum
2 12
0 0 o 0 o _ y°

(“x(P27) - l) [S (st) - Vx] -»(py(P27) + 1)[5 (st) VyJ (149)
Energy

- 1 0 o o f 0 l l l
. P - o] Q o]
( v ( / ,,7))(0 _(P47) 1)(h - h ) + (P 0) I P‘ - D 0- -0 (0] (] 50)

where each parameter must scale as one:

(y=1)/v
g
Ap PSH - a Pa
" Yoo e o 5 =3
Pg = S/0V = SV, (151)
b AP ””su-a_1 &
29 1.2 a 2
s Py Ve - a
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" P :
P}O - :P " SH I a _ 1 (\ - 1) 1 (151
20 "4h p J (y=1) /y=1 Cont)
a P
SH - a
| 4
a

From 927 the reference pressure and the initial air pressure must scale the

same (remembering vy # 1):

i
Py - o * Pa (152)

Parameters P28 and ¥yq are automatically satisfied since from equation (147):

R 9 J . -
S FVe _ . ¥ RT (153)

3.7.2 Air Flow

The conservation equations for compressible one-dimensional flow in a

straight rigid passage where wall shear is expressed by £ o * are

4 2

given by:
Mass

30 30 _u

et $13%
Momentum

o8 4 20} (38 £ ol Y (155)

TEME Ix X DH 2
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Energy

Je je au e < £ 8 37T
O e p— = - N — comm—
“(3: x 3x)+ o " "oty TR (156)

0 u-u
=
Au

0o _e-e
e SN YD (157)

aFib re 'Q'i

t = t/t

Inserting equation (157) into equations (154), (155), and (156) gives the

normalized conservation equations:

Mass

Ao o o i, (dp) © o, . .1 (au) o _
(22) o0 + @osu +uh) ()2 + %0 + oM (&) 2 = 0 (158)
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(s =) [() g e eat ()]

AP f o i\2 X
+(—L_)P +(~Ao+c)(20)(u.ﬁu+u) = f

Energy
1 r A -]
0 L%— e+(uAu+ui)(—£e-) +(P&P+P)(
'llo rte Il’i L "'i
= a + -
(q q 9 g -@ 84 +aqa  gyr

* 6% + a2y (-—L ) (" du + ui)3 +(—L‘2‘I‘) Tix

Reference values for air flow are:

‘.
"

0.1 [sec]

g
"

100 [f]

~
]

0.0337 [‘ﬁ-tfg:'f ]

£/D

W 0.03 [1/f]

o
"

14.7 [psia]

1 . 595 [°R]

20y L

Air plus water clearing times

Pipe length

Air conduction coefficient at
1000 °R.

Friction factor

Initial air pressure

- Initial temperature
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0 o= Pille = 0.0667 [lbm/f3] Ideal air density

e = RTil(Y - 1) = 101.9 [B/lbm] Ideal air energy

P - PSH = 340 [psia] - Shock pressure (Appendix A)
p 7’1)/7
R i SH
il 1 (._T_ = 1460 [°R] - Adiabatic compression
B
of o pR/RTR = 0.629 [me/f3} - ldeal Air demsity
1
e = RT®/(y - 1) = 250 (B/1b_] - Ideal air enersy (161 Cont)
ut = 1860 [£/s] - Shocked air velocity
see equation (146)
1b
X R 5 m
f" = «p g = <27.9 - - Gravicational body force
f -s"
R
rig - (T T TPIPE) i oact® - 1h
Yoy ° v = ) -~ Heat transfer to pipe wall
" PIPE i
¢ - H =10 [B/hre°F|
. 12,0 | =2 5
s - f DH = 9,564 [in.]
L ] Tty LR
4 . i i R .o

9 % Y%uvur T Yy

Inserting reference values and eliminating terms two orders of magnitude less

than the greatest gives:

Mass

o 0 0 0 o _
(P31P32)et + (931)0 be * [(P31)o + 1] u 0 (162)
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Mor entum

9
o o l’ o o0 + (P
[(P31P32)c + (P32)} u, + ~(P31)° + IJ uu X 33

]
i
-

) p°
X

(163)

o 02
) =
+ [(P31P35)o + (P35,J u 0

Energy

o (o) (] -l o 0
[‘931P32936)“ 3 (932P36)] v S [(P31P36)° T R

r (] o
i AR (By,) | uy
(164)

o 03
= [(P31P35)c + (P35)] u

where six similarity parameters result that must scale as '.0:

(v=1) /v

P w e 5 il (165)
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f
35 ‘DH Cont)
i
(RTSH - RTa)
i el o

36 2
i 1)(uR)2

Heat conduction and gravitational forces are negligible in air flow modeling.
To scale P31 (remembering Y #1.0), it follows from shock scaling and bubble
formation that:
i
-
PSH # Pa £ P

SH - a o \olx (166)

Parameter P,, indicates how to "tune" the pipe length to make
time T scale consistently as lg's , from equations (161) and (166), and

remembering RT # kx:

L #tul a0 ,fari ‘) (167)
X a 3

The pipe length scales geometrically.

Parameters P33, 934 and P36 are satisfied by previously decermined scaling
,

relationships. Parameter P3S is the friction scaling parameter. Remember-
ing that volume scales geometrically, the cross sectional area is adjusted
according to: V=1 + A ¥ A: it follows that A # li since L # \‘

in equation (167) and from P35:
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D
H
f ¢ L

£1.0 (168)

Thus, the same friction factor is to be used in both scales.

3.7.3 Steam Flow

The mass, momentum, and energy equations for homogeneous steam-liquid flow
are the same as given for air flow, which are equations (158), (i59), and
(160). Care must be taken in choosing reference values, however, since

changes in phase can occur.

Reference values for steam flow are:

f/DH = 0,03 [1/f] -~ Pipe friction factor
K= 0.02 [B/hr-f=-"F] -~ Steam conductivity at 100°F
L= 100 [f] - P‘pe length
T = 0.1 [sec] - Water plus air cleaning time
Pl « 14.7 [psia] - Initial pressure in pipe (169)
T1 = 595 [°R] - Initial temperature in pipe

oi - Pi/RTi = 0.0667 [lbm/f3]

Iritial densitv in pipe

et = RT /(y=1) = 101.9 [8/1b_] - Initial energy in pipe

PR = Ps = 88.37 ([psia) - Steam pressure (Appendix A)
TR = Ts = 779 [°R] - Steam saturation temperature

at P = 88,37 psia

Homogeneous steam densitv x = 0,93155

o® = 0.2184 llbm/f3]
(Appendix A)
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u = 1860 [£f/s] = Steam velocity (Appendix A)
o = 713.7 [B/lbpl = Steam energy at x = 0,93155,
P = 88.37 psia
i lbm
£ = -0'g = =72.45 57"17 - Gravitational body force
-8
) R
v BYh T =T )
QOUTR - PIPE". 256.5 2 3| Heat loss to pipe (169
DH s - f Cont)
H = 1000 -——-5-—1 oy
. tion
he f2 °FJ condensa
= [
TPIPF 595 [°R]
= 1; -
Oy 9.564 [in.]
i "'i "!i- "’R-O

U T8y "%t T Yy

Inserting equation (169) into equations (158), (159), and (160), then

eliminating terms two orders of magnitude less than the greatest give:

Mass
o oo .0 o _
(P37P38)pt + (P37)u oy - [(P37)3 - 1] u, 0 (170)
Homentum

-~

| o 71 o 0 ) o
b(P37P38)° - (P38)J ug - [(P37)p - 1] utu - (P39)Px
(171)
»
o I 02 _
+ [(P37P61)p + (P“)J u 0
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Energy

‘Q -l o .0 o 0
[(937P38962)“ L " [‘P37paz'° i (Paz)] ey
172)

) o L o 7T o3
. [(939)9 - (PAO)] u_* (B Mg * [(P37P41)o + (B, |u

where the resulting similarity parameters for steam flow are:

R
i e F
P37 holp” = ';T- ¥

P.. = L/8ut = L/u®t

(173)

43 eiAu3 aibn(uk)3

Gravitational forces are negligible, but heat loss is important for steam
flow modeling. Parameters P38 and Pa1 are identical to P32 and P35 for air

flow and have been scaled. Similarly, parameters 937. P39, PQO’ and sz
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depend upon the steam properties in the pipe. Since steam does not
behave as an ideal gas, these parameters must be checked by tabular or
graphical techniques. Parameters P39 and P 40 define how steam pressure
and,consequentlx air density scale (remember P £P £ X A 3

SH - a £ X
(u ) # RT £ ) )

v
1 I A ;
pa B P8 # Y (u )‘ AOAX

thus
:i $ )
a 0
and from P37:
ai Fp ¥
a s o
from PQZ:

e

e ~e ¥ RT ¥ )
a s %

From P&B and the scale factors already determined:

'R Q.5
*
qOUT i onx

Relating equation (178) to temperature difference from equation (169):

1.5
BT, = Tprpg) # 3.0

where T’ is the saturated steam temperature in the pipe. Parameter 943

(174)

(175)

(176)

(177)

(178)

(179)

defines tuie necessary heat loss relation, that is, it defines what the pipe

wall temperature should be given the heat transfer coefficient H.
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4, SUMMARY OF MODELING RESULTS

S/RV system analysis shows that two scaling pacameters determine every aspect

of the scale model -~ namely, quencher submergence and pool density:

QUENCHER SUBMERGENCE - MODEL SCALE

ne>

‘e QUENCHER SUBMERGENCE < FULL SCALE
.4 POOL FLUID DENSITY - MODEL SCALE (180)
A POOL FLUID DENSITY - FULL SCALE

POOL MODEL: The suppression pool models geometrically; that is, all lengths
scalc as Ay and all angles are preserved. Froude* scaling of velocities
(V # ig‘s) and nressure coefficient scaling result in absolute pool pressures

scaling os A )\, and a time scale scaling of *x.

TOP AIR: As a result of geometric pool modeling‘and Froude-pressure coeffi-
cient scaling in the pool, the top air volume must also scale -geometrically

(Vv # \i) and compressibility must be preserved (y # 1.0).

BUBBLE FORMATION: As a result of geometric pool modeling and Froude-pressure
coefficient scaling in the pool, the bubble volume must scale geometrically
(V # \i) and the bubble pressure must scale as A ). To accomplish this,

the mitigator hole area must be scaled according to the initial air tempera-

ture in the pipe:

(181)

*Froude scaling is not necessary, but is imposed to improve the controllability
ol the scale model.
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The driving pressure in the pipe scales as A 2,. To scale initial air mass
flow rate and later sonic flow rates and momentum effects XRT = A: is
necessary; consequently, hole area must scale geometrically (AH # k%) from

equation (181).

QUENCHER MODEL: The quencher cross-sectional area and mitigator hole area
must scale the same in order to scale clearing time correctly,* and hole area
is defined from bubble formation to scale geometrically (Ap £ AH # li).

To have the correct hole uncovering sequence and pool velocity directions, the
quencher arm length and hole spacing must scale geometrically, and the drill
angles of the holes must be preserved between model and full scales. To

model pressure drop across the mitigator holes, the loss coefficients between

model and full scales must be preserved (K # 1.0).

PIPE FLOW: Flow in the S/RV piping is characterized by shock waves and sonic
velocities that scale like ngs. To match time scales between pipe and pool,
pipe length must scale like L # ¢t + V # Ag-sngs but from bubble considerations
‘gT = Mg and L B kx (geometric). Pipe volume must scale geometrically to give
geometric bubble volume; consequently, pipe area scales as A # V/L # Xz. To
get the correct pressure drop down the pipe, friction factor scales as

£ # V/A/L # 1.0. Steam density in the pipe must scale like air demsity to

model mass and momentum conservation og # o: = ADXX/XRT = \o'

Scaiing parameters found are summarized in Table 4-1.

*Sometimes known as "segment scaling".
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Table 4-1
SCALING RESULTS FOR S/RV SYSTEM

Pool Model Quencher Model (Cont)
Parameter Scaling Parameter Scaling
X* (Submergence) ex o (Density) A
X e
Z* (Pool Length) Ax K (Orifice Loss) 1.0
2
R* (Pool Radius) Ax | & (Area) Ax
|
a* (A1l Angles) 1.0 Top Air Model
v (Volume) Xi
p* (Pool Density) ﬁkp
vk (Povl Velocitdes) \2'5 i P (Pressure) onx
|
i 4
p* (Pool Pressures) \oxx ! & (Enargy) Xoxx
i
' 0.5 ! Y {Sp. Heat Ratio) 1.0
t* (All Time) Ax' ;
| u (Mass) A \3
| nx
u,v,w (Velocities) XO.S |
A X : Bubble Model
|
i (Volume) Ai
X,v,z (Distances) Ay |
! P (Pressure) onx
Quencher Model i
4
L (Arm Length) Ay E (Energy) xoxx
in 3
P (Fesamts) \ A Y (Sp. Heat Ratin~) 1.0
p X
e
0.5 M (Mass) Aolx
v (Velocities) \x' |
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Bubble !Model (Cont)

Parameters

m (Mass Flow)

u'aho (Enthalpy Flux)
v (Velocity)
Pipe Model
P (Pressure)
o (Density)

Scaling

A

!

NEDC-23713

Table 4~1 (Cont)
SCALING RESULTS FOR S/RV SYSTEM

A2.5
p X

A3.S

K

A

0.5
X

Pipe Model (Cont)

Parameters Scaling
v (Velocity) x:'s

L (Length) Ax

e (Energy) kx

h (Enthalpy) \x

q''' (Heat Loss) xpxg's

f (Friction Factor) 1.0

*Note: These parameters are "control parameters'; all other parameter scalings
are consequences of these scalings.
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5. TEST APPLICATION DISCUSSION

As is often the case in a complex system, physical limitations dictate to
what degree the scale can be altered. In the S/RV application; bubble
modeling is RT & xx and vy $# 1. To meet this criterion, another

gas with the same y but smaller R might be found, for instance Ry = 1/2 Rp
(chlorine, for example, has R = 1/2 Ry4,), and use Tm = Tg. Thus, a half
scale model is possible. Temperature might be reduced as T, = 1/2 Ty and the
same gas kept in both scales, but this would mean an air temperature of

1/2 + 595 > 298°R or -162°F. Clearly reducing air temperature is not an

effective way to reduce scale.

Bec:use of steam's condensation properties, pocl densities are limited to

‘, £ 1.0. For example, if a gas is chosen such that lgy = 1/2 = 14 and a
pool density AD = 2, then the model pressures scale as P # onx = 1.0. Stest
in the modeled pipe must be at the same pressure as full scale but twice tb¢

density, which implies a steam-vapor mixture.

Another physical limitation is the friction factor f. Assuming Ap - XRT =1
and a very smooth pipe in the model (for example, drawn tubiag), then the

smallest the scale can reduce is kx = 1/3, as shown in TaFie 5-1.

Table 5-1

DARCY FRICTION FACTOR FOR ‘C = AR* =1, e 0.000005

e

I

-
i

-5 Fiteal ‘
MoillSealni o w5400 !—13’3| , =200 |32®| . £a0.024, De=0.797[£],
LE-5] S J
A= 0,499 [£f]
Relative 7
Ax Actual f Desired f Difference
1/4 0.0115 0.0085 35% Too Much Friction
1/3 0.0105 0.0105 r4
1/2 0.0095 0.0143 33% Too Little Friction
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Although the friction {actor is important for steady state flow, during the
initial pipe charging until subsequent discharge, the velocities in the pipe are

low and friction is not an important concern.

The smallest scale model that still meets all constiaints is half scale. Using
a different gas (chlorine, for example) and the same density fluid in both, then
L, # 1.0, Ay # dgp £ 1/2. Steam charging rate fg is modeled by scaling enthalpy
flux ﬁshoa = kx' . Bubble motion is directly dependent on the downstream pres-
sure (PSH)' which is determined from steam pressure in the pipe. Neglecting
heat loss q''' results in a higher bubble pressure and consequently higher torus

wall loads in the model, so to ignore heat loss is conservative.

Reducing the scale beyond the scaling constraints will introduce model distor-
tions.* In this instance we define \o' Xx and ART' The quencher system must be

distorted to give as nearly correct results as possible.

The correct pool motion during air clearing is maintained as long as bubble

volume and pressure are scaled correctly; i.e., ¥  # \g and Pp # xpxx. Time

B
must scale correctly as well, t # \2'5' From the ideal gas law:
PB¥B = MBRTB = kox(xé) (182)

Thus, if the model bubble temperature TB is too high, reducing the bubble mass
Mg maintains the corre . pressure and volume scaling. From bubble formation
equation :110), the quencher hole area is modified to give the correct bubble

reference volume:

2.5,.0.5
'\i / \x /\R‘l‘ (183)

*Meaningful results will still {ollow if model adjustments are made to scaie
the predominant pheunomena.
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To scale water clearing time and water velocities, the quencher cross-sectional

area must scale as the hole area:

: .2.5,.0.5
Aorpe ¥ & F M g (184)

Equation (167) is used to time the pipe length acoustically to model sonic

velocities.
L $# 3" A (185)
To geometrically scale air volume, the cross-sectional pipe area is:

s 2ri US
xx /ART (186)

A= L F
Since quencher area and pipe area scale the same, there is no area discontinu-
ity in the scaled model. In choosing this model, initial bubble pressure and
volume will be distorted as will momentum effects. To illustrate this, con-
sider pressure, volume, and momentum. Water clearing veiocities will scale as
before, V # 12‘5. Initial air clearing velocities act like water velocity
vi ¢ A&'S. but quickly reach sonic speed where VR £ Agis, then:

Volume:
.3
¥ £ Ayt = o Ideal
i . . f'
vi £ Av T ¥ i: :/Agrs - Initial volume distortion error 13— - 1
* R:IV
VR f Ava £ xi - 0.K.

(187)
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Pressure Difterence:

2 P 2
- ‘——- Al =%
(PSH P“) & pav f a7V * e Ideal
: AZ
3 B
(p - p )i é 2 vi‘ $ £ X _ Initial pressure distortion
SH B RT AgT error
(188)
A
= -1
RT
R P R2
(Peg ~Pp) #gp v #2A ~-0. K
Air Momentum:
4 . S
F_# DaV\! RT ¥v # AN Ideal
‘1.5
- W 3.3 3:0, 1.5% Distortion i -
—_— B ) 3 - -
Fa ¢ RT LE lo\x / RT error )1.5 1 (189)
RT
\0.5
R P R R L b il X
Fa # RT Yv #$ Ao‘x/‘RT - Distortion error 0.5 1
RT
Water Momentum:
F. % p¥v $ ) «3'5 (Ideal)
W - R
k (190)
30.3
i 4.0, 0.5 X '
‘ .,‘\ ’:Q = -
Fw £ pALv A A ey Distortion error ‘0.5 1
RT
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To illustrate the distortions, assume igp = 1 and 3y < 1. The modified model
will then have bubble distortions of equation (a) - too small an initial

volume, and equation (b) - too great an initial pressure. These distortions

are eliminated as soon as exiting air velocity approaches sonic. Water momentum
is too low, which translates into less measured water impact pressure and less
"churning" of water far from the quencher. Air momentum is greatly distorted
initially, but this is not a concern since initial air momentum is small com-
pared with pressure effects.* Air momentum is too low even at sonic

velocities, which translates into a more rounded bubble shape in the model.

Even though some initial distortions occur, good measurements are expected to

result since the predominant phenomena have been preserved.

One important question is how much is gained by using another gas. It can be
qualitatively answered by examining the amount of bubble pressure distortion
(equation 188) for various values of Ay and Apr. Consider the following table

for two different geometric sizes and two different gases:

Table 5-2
COMPARISON OF SCALING

P - y = /
‘RT 1 ‘RT 1/2
= 1/10 AP = -90% AP = -80%Z - Improve 10%
X err err
= 1/4 AP = -75% AP = -50% =+ Improve 25%
X err err
’ .
Improve 15% Improve 30%

*Refer to momentum effects portion of subsection 3.5.
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Table 5-2 indicates the following: (a) given a very small scale test run with
‘y = 1/10, expending effort, expense, use of a different gas, gains very little,
(b) given a relatively large scale test to be run (i, = 1/4), significant
improvements can be made by using a different gas, and (c) given the same gas
used in both full and small scales, igr = 1, little improvement is achieved

by going to the greatly increased scale, that is, from ’, = 1/10 to I 1/4.

The extra cost is probably unwarranted.

A simple quencher model with a uniform hole distribution was used to determine
scaling laws. The same scaling laws apply to modeling the quencher actually
installed (Figure 5-1); that is, arm lengths and hole distribution down the
arm scale geometrically, drill angles are preserved, hole and cross-sectional

areas scale as \i's Rgfs.

Friction effects tend to be important at very small scales, especially with
the longer, narrower S/RV line in the model. The friction parameter fL/D
ideally scales as 1.0, but with L # vijpr and D # 11:25/20:25, 1¢ follows
that

Moderately reduced scales do not appreciably affect friction scaling, which is
not an extremely important parameter, but at greatly reduced scale (1/12 scale,
for example), the pipe friction tends to weaken shock impact pressure and

alter downstream pressurization.

Another concern is choosing steam charging rate into the pipe. Two types of
scaling exist depending on the elapsed time.

Initially, the steam charging rate behaves as a node, that is, the steam
occupies a small section of the S/RV line and is uniform in pressure and tem-

perature. Modeling nodal charging rate is achieved by scaling enthalpy flux
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(!;lho # Aahg's) similar to bubble charging. As the steam proceed: down the
S/RV line, it tends to behave more one-dimensionally, and steam charging is

chosen to model pipe pressure and velocity as described in Appendix A.
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6. CONCLUSIONS

Not ull parameters can be modeled. Some phenomena of minor importance will be
distorted to model predominant phenomena. The important nondimensional

groupings to be maintained between model and prototype are:

POOL
Pressure Coefficient AP . pressure forces
Dvl inertial forces
2
Froude Number i o inertia forces
‘ gX gravitational forces
PIPE

Pipe Acoustics cT _ acoustic length
L pipe length
Flow Path Losses K = (orifice loss)
Gas Compressibility Y = Ratio of Specific Heats

The recommended system scaling is sketched in Figure 6-1 and is based on the
assumption that: (a) water is used in both systems, (b) air is used in both
systems, and (c) the initial air ~ amperature in the S/RV line is different
between model and full scale (define Ay = Tpode1/Tgyl1). Let the scale factor

be iy (e.g., for a half scal~> model i, = 1/2).

Following the figure is a summary of the scaling factors for the various

parameters.
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ANGLES PRESERVED
IN SUBMERGED
PORTION

AIR VOLUME
vea?d ;

/

o

WATER

Figure 6-1. Proposed Model Scaling
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SCALING FACTORS

TOTAL SYSTEM:

- Time scales as xg's

(things happen faster)

. Pressure scales as )x

(reduced pressure)
TORUS AREA:

. All lengths scale as Ax

And all angles are preserved

(geometric scaling)

B Air space volume scales as A:

(geometric scaling)

QUENCHER:
. Quencher hole area scales as Ai'slkg‘s

(to maintain bubble pressure

and volume scalings)

. Quencher cross-sectional area scales as Ai'sllg's

(to maintain scaled water clearing time)

. Quencher arm length scales as Ax

(to maintain geometric pool modeling)

. Quencher submergence scales as Ax

(to maintain geometric pool modeling)
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SCALING FACTORS (cont)

QUENCHER: (cont)

. Quencher angles are preserved in submerged portion

(to maintain water length leg scaling lx)

S/RV PIPING:

. S/RV line air length scales as Ag'sxg's

(to maintain acoustic scaling)

- S/RV line water lag length scales as A

(to maintain scaled water clearing time)

0.5

. S/RV line crosssectionali area scales as Ai'S/AT

(to maintain scaled bubble volume)
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APPENDIX A
REFERENCE VALUES FOR PIPE FLOW

Consider the S/RV pipe shown in Figure A-l. Assuming h,g and ﬁ, are kncwn,
all pipe preoperties can be determined based on steam properties for steam and

Rankine-Hugoniot ideal gas relationships for air. Assuming a steady steam

flow:
v
hog = hs + 28 (A-1)
L~
A AV
L (A=2)
s
where:
h =h(P,v) 3 v =v (P , h) = Saturated or superheated
] s 8 - s s s
region
(A-3)
h8 = hs(Ps.xs) AR PR vs(Ps ; xs) - Steam-vapor mixture
region
P \
S 1
Ca( Pa - .L)
v = _ Rankine-Hugoniot (A=4)
s v velocity
y(x = 1) /1+1)__s+1
2 \y = 1 Pa
Ca = ngR‘ra - Sonic wpeed in air
A-1
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—= 5
E:?jﬁ:::;m' TT:T % :r?::tz::: { ungftffﬁ:un ;ggggﬁiigzé
% 77797777044

Figure A-1. S/RV Line Model

Since only one value of Ps will satisfy (A-1l) through (A-4), one must
iterate to find a solution. Onceo Ps is found, the impact shock~to-water

pressure may be calculated from the Rankine-Hugoniot relationship:

F é g 2 2
y v
Pl WR I*Y('”l[/c $ )"'c 3 1+%(”1) ( s (A-5)
! . . \Csh - a SH - a b\ 2 Csq -
where:
1/2
s y % 1 + Ps\
Cott - 2 * %5 P (A=6) .
( =



Iterating as described with reference values:

Then:

200 [1bm/S)
1192.8 [B/1bm]

0.499 [£2)
1.4

53.5 [1bf-f/1bm="R]

595 [°R]
14.7 [psia)

88.37 [psia])

0.93155

1860 [£/S]

340 [psia]
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Steam mass flow rate

Steam stagnation enthalpy

Pipe area

Ratio of specific heats
Air gas constant

Air initial temperature
Air initial pressure

Steam pressure in pipe

saturated
steam at
P, = 1000 psia

(A=7)

A small amount of quality results in

pipe

Steam and shocked air velocity

Shock impact pressure

A-3/A-4
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APPENDIX B
PROPERTIES OF THE SCALING OPERATOR

For ease in manipulating scaling operations the "scale operator" is introduced
and designated by #. The operator relates scaling to parameters; if some

system parameter, for example, length L, scales as A, then:

et (B-1)

o ls”

using the # operator (B-1) is written

L &2 (B=2)

Some useful properties of the scaling operator are:

(1) Comparative property: If A # ) and A+ B # 3 then B # i. Or
conversely if A $ A and B # A , then A £ B # ).

Multiplication property: If two properties scale the same, A # B
for example, then introducing a different property "C," one can say
that A * C # B + C or conversely A/C # B/C.

(1) Elimination of cunstants property: Constant multipliers may be

dropped with the scaling operator, for example, if 2 + A # A then
AS$ X,

B~1/8-2



Symbol

(e) E

|

£*, &, £°
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APPENDIX C
NOMENCLATURE

Description
Quencher hole drill angle

ratio of specific heats

indicates change in

scale factor geometric, pool density, air temperature

Viscosity

Volume (specific)

Density

Time

Energy dissipation function
Some general parameter

Area

Acceleration

Air clearing

Sonic speed

Diameter

Hydraulic diameter

Internal energy (specific)
Force

Body force vector

Friction factor

Body force components in the x, y, 2z directions
Acceleration of gravity

Gravitational constant
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Description

Heat convection coefficient
enthalpy

Vector components in the x, y, z directions

Conductivity coefficient or orifice loss coefficient

Length
Mass
Mass flow

Mass and water slug

Pressure
Heat flow per unit volume

teat flow rate

R Gas constant or bubble radius

8 Shock speed

T Temperature

t Time

u, v, w Velocities

u, v, w Velocity components in the X, ¥, Zz directions
we Water clearing

X, Y, 2 Reference lengths in the x, y, z directions
x5 ¥V, 2 Position coordinates
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Subscript Description
a Alr

ac Air clearing

B Bubble

H Single .ule

HOLES Total holes

o ¢ Into system

M, F Model and full

0 Stagnation

"out" Out of syst. 1

P Pipe or pool

PW Pool water

- Steam

SH Shock or impact

t Derivative with respect to t©

we Water clearing

L e Derivative with respect to x°, y©, 20
Superscript Description
i Initial conditions

K Indicates some general parameter
o Nondimensional parameter

R Reference condition

C-3/C=4



