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ABSTRACT

An inventory of currently available experimental critical flow data
has been performed. The results of the inventory are displayed in a table
which 1ists key parameters that characterize each experimental program.
The distribution of the data base with regard to geometric parametecrs is
presented for three cla'ses of a test section. Recommendations for future
testing are made in ligit of deficiencies that have been identified.
Additional recommendat.ons to enhance the utility of the current data base
and the results of fucure experimental programs are made. A bibliography

of references documenting experimental critical flow studies is also
included,
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SUMMARY

The phenomenon whereby the flowrate of a two-phase fluid has an upper
bound for a given set of stagnation conditions has been studied extensively
during the past forty years. It was recently decided by the Committee on
the Safety of Nuclear Installations (CSNI) of the Organization for Economic
Cooperation and Development (OECD) that the state-of-the-art of modeling
this phenomenon known as critical or choked flow will be determined and
documented. The task includes an inventory of the experimental critical
flow data base. The results of such an inventory are reported herein.

Computerized literature searches were performed on the catalogs of
seven technical information services. The resulting bibliography was
screened and documents reporting experimental critical flow studies were
obtained and reviewed. The data base was documented by producing a large
table containing information describing each experimental study. The
principal dimensions of three classes of test sections; pipes, nozzles, and
orifices have been assembled in graphical form to aid in analyzing the
distribution of the geometries that have been studied.

The data base inventory showed that significant amounts of
experimental data are availabie for pipes, nozzles, and orifices and that
the range of principal dimensions of the test sections in these three
categories ic considerable. Deficiencies appear to exist in the areas of
critical flow data for nozzles and orifices larger than 30 mm, for standard
plumbing components (only two references on this subject were found), and
for slits which are representative of cracks in pipe walls and in weldments
(one reference on this subject was found). In addition to identifying
possible deficiencies in the data base, recommendations are made to
increase the utility of the data that is presently available and that which
will be produced in the future. These recommendations deal with planning
future studies to ensure that they wesh with the data presently available,
complete documentation of the stagnation state of the flow, and the
inclusion of tabulated data and complete measurement uncertainty
information in the reporting document.



The report is concluded with a bibliography of references which appear
from their abstracts to contain experimental critical flow data. This
bibliography is included since the inventory of the experimental data base
presented herein is not considered to be complete because of time
constraints in performing the inventory, the unavailability of some

references, and the inability of the author to review documents not written
in or translated to English.
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INTRODUCT ION

The phenomenon of critical or choked flow occurs in a wide range of
technologies. Because of its importance, a large number of experimental
studies of the phenomenon have been conducted during the last 40 years.

The importance of the phenomenon in predicting the results of a nuclear
reactor loss-of-coolant accident was primarily responsible for accelerating
the rate at which experimental studies were conducted beginning in the
1960s. The results of the experimental studies have been used to develop
numerous analytical models of the phenomenon. It is clear to those
accustomed to utilizing the existing analytical critical flow models that
the probiem of predicting the critical flow rate and the thermodynamic
state of the choke point is not a closed case for many flow situations of
interest., This problem is a result of the large variety of flow geometries
of interest and the wide range of fluid conditions over which the
phenomenon must be predictea.

In the interest of avoiding duplication of effort, maximizing the
utility of past research, and providing direction for future research, it
is beneficial to periodically document the level of understanding and the
art of predicting a particular physical phenomenon. At its November 1978
meeting the Committee on the Safety of Nuclear Installations (CSNI) of the
Organization for Economic Cooperation and Development adopted a proposal by
the United States that the Committee should undertake the preparation of
state-of -the-art reports (SOAR) on selected topics of interest. At the
November 1979 meeting the Committee adopted a list of topics submitted by
committee members. It was further decided that two SOARs would be prepared
in time for the November 1980 meeting. One of those reports would document
the state-of-the-art of critical flow modeling. An outline for the
critical flow SOAR was assembled by a group of technical experts in
January 1980. It was determined that the document would contain
inventories of the critical flow experimental data base and the available
analytical models as well as assessments of how well the models predict the
critical flow phenomenon,



An inventory of the critical flow experimental data base was performed
as the United States Nuclear Regulatory Commission's contribution to the
production of the critical flow SOAR. The results of the inventory are
documented herein., The principal parameters describing each experimental
study that has contributed to the data base are presented in the next
section. A discussion of ranges of parameters for which data i, c.ailable
is presented in the third section. The fourth section of the report
contains conclusions regarding the availability of experimental critical
flow data and recommendations for future experimental work. The report is
concluded with a bibliography of references desc-ibing experimental
critical flow studies.



DATA BASE INVENTORY

The experimental critical flow data base was inventoried by reviewing
as many references documenting experimental critical flow studies as
possible. Documents were selected by reviewing the results of computerized
literature searches of the catalogs of the following information services
for the indicated years:

Nuclear Safety Information Service - 1967-1980

DOE Energy Data Base - 1974-1980

Nuclear Science Abstracts - 1967-1976

Government Reports Anouncements (National Technical Information
Service) - 1964-1980

Engineering Index - 1970-1979

Science Abstracts - 1969-1979

The critical flow data pase is summarized in Table 1 which lists
parameters that characterize each experimental program. The table does not
present a complete inventory of the experimental data base, but does
contain many of the experimental data sources that have been referenced in
the literature during the past 20 years. The table entries are divided
into four greups: pipes, nozzles, orifices, and other geometries. The
entries within each group are listed in chronological order from the most
recent to the earliest . The author's name appearing on the reference
documenting the experiment study has been used to identify each study with
an accompanying reference notation referring to an entry in the reference
section of the report. Exceptions to this convention have been made in the
cases of data generated during the extensive test programs of the Marviken
CFT Project and the Semiscale Project. Data from these programs are
referred to by the project name. The document publicatiun date is given
generally by month and year. This date does not necessarily correspond
closely to when the testing was conducted. The general type of test
section or flow geometry in which choking occurred is listed followed by
the size or range of sizes of the minimum test section cross section.



TABLE 1. CRITICAL FLOW EXPERIMENTAL DATA BASE

PRESSURE
SIZE LEVEL
SOURCE DATE TYPE (mem) FLUID REGIME (bars) COMMENTS
P 1 P £ S

Boivin! 12-79 pipe {rec) 12-50 Ha0 Sub po = 20-101 L/D = 38 - 537; test section iengths not
clearly reported

Marviken CFT Project? 1978-79 pipe (rec) 200-509 H20 sub § sat (2¢) Po = 40-50 LiD = 0.3 - 3.7

Jeandey and Pinet? 6-78 pipe (sec?) 14 Ho0/Np simulated 2¢ op = 2-6 L/D = 169; stagnation congitions not
reported; pressure n upstream portion of
the pipe (pp; reported

Ardon and Ackermand 6-78 pipe (sec) 26 H20 sub pp = 1.4 LID = 39; stagnation cor@itions not
reported; static pressure In ypstream
portion of the pipe (pp) reportec

Reocreux? 8-77 pipe (sec) 20 Hp0 sat (2¢) pe = 1.5-2.0 L/D = 124; stagnation conditions not
reported; static pressure at the eait of
the constant section{pe) reported

Semiscale Projectd 6-77 pipe (cec) 18 H0 sub & sat (2e) po = 3-103 L/D = 4; system biowoown experiment

Khlestkin, Kanish - 3-77 pipe (sec) a H20 sub § sat Po = 6-228 L/D = 0.5-6.0; flow rates are v

chev, and Keller nond imensional form

Prisco, Henry, 3-77 pipe (sec) 20 Freon-11 sub & sat (2¢) 0~ = 67-115 kPa L/D = 2.8 - 100.0

Nutcherson,

and Linenand

Morrison" 10-76 pipe (rec) 28 Ha0 sub & sat (2¢) vo = 56-87 1D = 4.8

Note: cec = conical entrance contour sat = saturated liquid state

rec = radiused entrance contour sat (2¢) = saturated two-phase state
seC = sharp entrance contour sub = subcooled state
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TABLE 1 Continued
SI1ZE
SOURCE DATE TYPE (mn ) FLUID REGIME
Seynnaeze. Giat, ana 8-76 pipe (sec § i2.5, 20 W0 sub
Frittel cec)
Hutchersonll 11-75 pipe (cec) 108 H20 sat (2¢)
Sozzi & Sutherlandl? 7-7% pipe (sec &4 13 Ho0 sub & sat (24)
rec)
Priscold 2-75 pipe (sec) 8 CCisF sub?
Howardld 1-75 pipe (sec &  2-6 Freon-11  sub
rec)
Edwards & Jonesl® 1974 pipe (sec) 32 Hp0 sat{2¢)
Mai'tsev, Kniestkin, 6-72 pipe (sec) 35 35 Hz0 sat
and Kellerlb
Klingebiel & Moultonl? 3-71 pipe {cec) 13 H20 sat (2¢)
henryl8 9-70 pipe (rec) 8 Ha0 sub
Allemann et al.ly 6-70 pipe (sec) 21-173 Ho0 sub & sat (2¢)

Note: cec = conical entrance contour
rec = radiused entrance contour
sec = sharp entrance contour

sat = saturated liguru state
sat (24) = saturated two-phase state
sub = subcooled state

PRESSURE
LEVEL
bars

Pe = 1.4-6.7

Py = 1-18

po a 30-’1

po = 67-115 Pa

Po = 52-165 kPa

Po = 2-54
Po = 20-220

Pe = -5

Pe = 10-40

Po = 42-165

COMMENTS

LD = 17.7 - 124.5; stagnation conditions
not reported; static pressure at the exit
of the corstant area section (pe) reportec
L/D = 3; system blowdown exper iment

L/D = 0.4-140

Lid = 2.8-12.8
L/ID = 25-300 v

L/D = 28; system blowdown experiment

LiD = 0.5-9.0

L/D = 44; stagnation conditions not
regorted; static pressure at exit of
constant area section (pe) reported

L/D = 115, stagnation conditions not
completely reported; static pressure at
exit of constant area section (pg)
reported

LID = 0.5-4.3; system Diowdown experiment



T e T

soukce oATE
Henry20 3-68
Kellyél 1-68
Uchiga & Nariaile 8-66
Fauskel3 1965
Zatoudex4d 1-64
Zaloudex2® 5-63
Fauske § Minl6 1-63
‘Fauske?’ 10-62

Friedrich & Vetterl8 1-62

Friedrichld 10-60

TYPE

pipe

pipe

pipe
pipe
pipe

pipe
rec)

pipe
pipe

pipe
rec)
pipe
rec)

Note: cec = conical entrance contour
rec = radiused entrance contour

sec = sharp entrance contour

(rQ\.;

(sec?)

(sec)
(sec)
(cec)

(sec &

(sec?)

(sec)

(sec &

(sec g

sat = saturated liquid state

SIZE
imm)

3, 8

2-3

i3
6-16

3-12

TABLE 1 Continued

FLUID REGIME

H20 sub

Hy0 sub § sat (2¢)
H0 sub & sat

Ha0 sat

H0 sat (2¢)

Hz0 sub

Freon-11 sat

Ha0 sat (2¢)

H20 sub & sat (2¢)
Ha0 sub & sat (2¢)

sat (2¢) = saturated two-phase state
sub = subcgeled state

PRESSURE
LEVEL
‘bars}

Pe = 2-10

Pe = 1-0

Po = 0.2-0.8

Pg = 7-124

Po = 28-124

Po = 8-25

Pg = 103 kPa
pe = 3-25

Po = 6-30

Po = 2-6l

BT TR~ - T — e ———

COMMENTS

L/D = 115, 274; stagnation conditions not
fully reportea; static pressure at exit of
constant area section (pe) reported

L/D = 90; stagnation conditions not
specifieq; static pressure at exit of
constant areas sectios (pe) reported

L/ID = 25-625

Lid = 0-40

L/0 = 20

LID = 1-b

L/D = 2-55

L/D = 228-880; stagnation conditions not
reported; static pressure at exit of
constant area section ((pg) reportes

LiD = 0.2-15

LD = 0.2-c.C
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SOURCE

Isbin, Moy, and
Da Cruz

Moy3l

Pasquadl
Burne1133

Danfortndd

Martinec35
limmer et 21.36
Semiscale Froject3’

Karasev, Vazinger,
and lnugaleev':g§

Semiscale Projecti9

Note: cec = conical entrance contour
rec = radiused entrance contour
SeC = sharp entrance contour

DATE
9-87

6-77

6-77

TYPE

pipe (cec)

pipe (cec)

pipe (sec &
pipe (sec &
rec)

pipe (rec)

Neszle
Nozzle
Nozzle

Nozzle

Nozzle

TABLE 1 Continued

PRESSURE
SIZE LEVEL
{mm) FLUID REGIME (bars)
10-26 H0 sat Pe = 27-296 kPa
o A20 sat (2¢) pe = 27-296 kPa
-3 Freon-i: sub & sat 6-9
5-38 HzU sat po = 1-12
3 RaU sub Po = 3-7
N i L E S
3 Freon-11 Sub Pg = 16-22
25 420 Sub Pp = 1-10
17 K20 sub & sat . Po = 3-100
4,1 H20 sat pg = 20-~100
25 ¥20 sut & sat (2¢) Po = 3-90

sat = saturated liguid state
sat (2¢) = saturated two-phase state

sub = subcooled state

COMMENTS

L/D = 23-64 assuming L = 6.0 mm (2 ft.)
stagnation conditions not reported; static
pressure at exit of constant area sectign
(Pg! reported

L/D = 35-96; stagnation conditions "ot
regorted; static pressure at eaxit o
constant area sect on 1pg) reportec

LD = 4-24

L/D = O-b56

System blowdown exper iment

System b lowdown exper iment



SOURCE
Semiscale Projectd0
Morrisond

Shrock, Starkmann,
and Brown?

Semiscals Projectd?
Simoneau43
Semiscale Projectdd

nenaricks, Simoneau,
and Barrowsdd

S0z21 & Suther)anal?
Dryndrozhik46
Adacni & Yamamotod7

Hendricks, giuoneau,
ana Fnlerst

Deich et al.49
Vogrin50
NeusenS!

Note:

DATE

1-77
10-76
8-76

7-76
12-75
11-7%
9-75

7-75
2-75
12-74
8-72

4-69
7-63
1-62

TYPE

Nozzle
Nozzle

Nozzie

Nozzle
Nozzle
Nozzle

Nozzle

Nozzle
Nozzle
Nozzle

Nozzle

Nozzle
Nozzle

Nozzle

cec = conical entrance contour

rec = radiused entrance contour
sec = sharp entrance contour

TABLE 1 Continued

SIZE

13-76
6,11
10

32.5
5
6,11

sat = saturated liquid siate

FLUID REGIME

H20 sub & sat (2¢)

H20 sud & sat (2¢)

#0 sudb & sat {29)

H20 sub & sat (2¢)

Nz sud

H20 sub & sat (2¢)

N2 sub & super-
critical

H20 sub & sat (2¢}

H20 sat (24)

Hz0 sat (2¢)

N2 Sub & super-
critical

M0 sat (2)

Atr/Ho0 simulated 2¢

HZ0 sat (2¢)

sat (2¢) = saturated ' -7-phase state
sub = subcooled state

PRESSURE
LEVEL
(bars)
po = 17-124
Po = 56-07
po = 8-91
po = 3-110
po = 5-60
Jo = 6-103
po = 9-102
po = 30-71
Po = -5
po = 18-30
po = 12~102
pg = 1
Po = 1-7
po = 8-03

COMMENTS

System blowdown experiment

System blowdown exper iment

System blowdown exper iment




TABLE 1 Continued

PRESSURE
SIZE LEVEL

SOURCE DATE TYPE () FLUID REGIME (bars)

R i F i C £ 3
Covelli%e 1976 orifice 22.5, 30 salt water sat (2¢) 2-4
Cdwards 8 JoneslS 1574 orifice 22.% Ha0 sat (2¢) Po = 2-54
Uchida & Nariaiel 8-66 orifice 4 420 sub & sat pp = 0.2-0.8
T3 loucek2® 5-63 orifice 13 424 sub po = 8
Eriedrich & vetterl8 1-62 orifice 4 Ha0 sub & sat (28) pg = 6-30
Friedrichs® 10-60 orifice 1.5-4 Hz0 sub & sat {26)  pg = 2-6l
Vonroebd 1-57 orifice 5-16 H20 sat po = 2-11
Pasquall 5-52 orifice 1-3 Freon-12 sub § sat Py 65-9
Benjamin & Mil erdd 7-41 orifice §-27 K0 sat Po = 1-21

0 T H E R
Martinec3d 12-79 globe valve, 3 Freon-11  sud Po = 6-22

relief valve 4

Zaloucek55 3-85 tee, elbow 16 Hz0 sat (24) Pe = 1-6
Ncte: . = conical entrance contour sat = saturated ligquid state

¢« 7 = radiused entrance contour

= sharp entrance contour

sat (2¢) = saturated two-phase state
sud = subcooled state

COMMENTS

System blowdown experiment

Stagnat ion conaitions not reported; static
pressure near exit constant area section
{pg) reporteo



T
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SOURCE
Fauske & Minlb

Falettid36

Moyl

) e: cec = conical entrance contour
radiused entrance contour

rec

DATE

1-63

12-59

1-55

TYPE

aperture
(9 shapes)

annulus (cec)

annulus

sec = sharp entrance contour sub

TABLE 1 Continued

SIZE

{mwn } FLUID

d = 2-7 Freon-11
equivalent

d = 5-9 H20
equivalent

¢ = 6-25 Hp0
equivalent

sat = saturated liquid state
sat (2#) = saturated two-phase state

sudcooled state

REGIME

sat

sat (2e)

sat (2¢)

PRESSURE
LEVEL

gbarS}
Pg = 103 kPa

Pe = 2-7

pe = 27-296 kPa

COMMENTS

Equivalent L/D = 3-107; Stagnation
conditions not completely repcrted, static
pressure at exit of constant area section
(pe) reported

Equivalent L/D = 35-96; stagnation
conditions not reported; static pressure at
exit of area section (pg) reported

.



Sizes are given to the nearest half millimeter. The fluid that was used to
perform the tests is indicated in the table. While the majority of the
experiments were conducted using water as the test fluid, Freon, nitrogen,
and gas-water mixtures were also used. The thermodynamic regime(s) in
which the flow stagnation conditions resided is listed in the table as
“sub", "sat" or "sat(2¢)". These abbreviations denote subcooled
conditions, saturated liquid conditions, and saturated two-phase mixture
conditions respectively. In order to convey “where the data is"
thermodynamically, a range of pressures at which data was recorded is
included as a table parameter. It was intended that this parameter would
refer to stagnation pressure; however, some of the references did not
report stagnation pressures. In these references, the pressure measurement
nearest the end of the constant area section was considered of prime
importance. Therefore, the range of this pressure has been substituted for
these references. A commment section follows the parametric data. These
comments provide supplementary information required to adequately describe
the experiment or the availability of information.

Several naming conventions have been used in Table 1 to refer to test
sections. All test sections containing a constant area section have been
designated as "pipes" regardless of size unless the constant area section
was both preceeded and followed by a varying area section. The type of
entrance contour is indicated for each test section that has been
designated as a pipe. A 90-degree entrance to the constant area section is
indicated by "SEC" denoting sharp entrance contour, a rounded entrance is
indicated by "REC" denoting radiused entrance contour, and a conical
entrance is indicated by "CEC" denoting conical entrance contour. The exit
contour following the constant area duct has not been indicated. Most of
the pipes had 90-deqgree exits. However, some had conical exit contours
(e.q., Henryla’zo, Priscol3, Reocreux®). The term “"nozzle" has been
used to denote flow geometries having a varying area section preceding and
foliowing the min‘mum area section. The entranr: or diffuser sections may
have been conical or of varying radius. The no..ie throat may have been a
single cross section or a short constant area section. The term "orifice"
has been used to denote flow geometries having a 90-degree entrance and a
constant area section having an L/D of 0.1 or less.

1




DISCUSSION

The experimental critical flow data inventory presented in Table 1 has
several noteworthy aspects. It is clear that the majority of the
experimental critical flow data has been obtained using constant area ducts
(References 1 through 34). A significant number of critical flow
experiments have been conducted using converging-diverging nozzles
(References 9, 12, 35 through 51). Data for critical flow occurring in
orifices are also available (References 15, 22, 25, 28, 29, 52 through 54),
but are quite limited compared to those available for the other two classes
of geometry. Only one reference documenting a study of critical flow in
tees and elbows (Reference 56) and one study of critical flow in valves
(Reference 35) was found. Data on critical flow through geometries
resembling a split or crack in a pipe wall or a weldment also seem to be
very limited., Only one reference for this type of geometry was found
(Reference 26). It is also noteworthy that little of the pipe and nozzle
data were obtazined using flow geometries that can be considered ideal from
the standpoint of an av dance of flow separation at the entry to the
constant area section or throat.

The length and diameter of pipe geometries for which references of
experimental studies were found are presented in Figure la. Only
dimensions of geometries that were tested using water as a test medium are
presented. Differences in entrance contour are denoted in Figure la by
clear symbol to denote data for 90-degree entrances, by using a solid
symbol to denote data for rounded entrances, and by using a partially solid
symbol to denote data for conical entrances. Figure la shows that critical
flow data are available for pipes having diameters ranging from 1.5 to
500 mm, and lengths ranging from 0.6 to 2800 mm. It is clear “~om
Figure la that a great deal of data are available for test sections having
diameters less than or equal to 13 mm. On the other hand, the data from
the Marviken CFT Project are the only data that were found for test
sections having diameters greater than or equal te 200 mm. In addition,
only four experiments were found that werc conducted with test sections
having diameters between 30 and 200 mm,

12
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Several studies have been conducted using test sections having the same
diameter, but differing in length over a wide range (References 12, 22, and
23). Data are also available for cases in which the test section length
was held constant and the diameter was varied (References 19, 27, and 30),
although the range of diameter variation was generally more limited than
the variation in length at constant diameter in the aforementioned studies.

In order to illustrate the availability of critical flow data in pipes
of constant length-to-diameter ratio (L/D), lines of constant L/D have been
added to data presented in Figure la to produce Figure lb. This figure
shows that data are available for L/Ds raging from less than 1.0 to over
500. Figure 1b shows that data produced using test sections covering a
wide range of size are available at the same L/D for L/Ds less than four.
However, comparing experimental results at the same L/D would be hampered
by differences in entrance contour. Some of the data were obtained using
90-degree entrance contours while other data were obtained using rounded or
conical entrarce contours. Another factor which would complicate the

comparison of data at the same L/D is that the data are seldom available at
the same stagnation conditio, s.

The throat sizes of converging diverging nozzles for which
experimental critical flow data were found are presented in Figure 2.
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Figure 2. Converging - diverging nozzle throat diameters.
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The throat sizes vary from 4 to 75 mm. The data in Figure 2 show that
there is little redundancy in size. It is noteworthy that the nozzles vary
in entrance contour (conical versus radiused) and in the extent of the
minimum area section (a single axial location versus short constant area
section),

The sizes of orifices for which experimental critical flow data was
found are presented in Figure 3.
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Figure 3. Orifice diameters.

The range of sizes (4 to 30 mm) was quite limited compared to the other two
classes of geometries., The orifice size range is reduced to 4 to 22.5 mm
if Covelli's data (Reference 52), which were obtained using salt water as
the test medium, are not considered. Figure 3 shows that there are only
three orifice sizes that have been used in more than one experimental study.




CONCLUSIONS AND RECOMMENDATIONS

The general conclusions that can be drawn from a review of the
critical flow data inventory that has been made are presented in this
section. Recommendations for remedying deficiencies in the data base and

for improving the design and reporting of future experimental programs are
given,

Conclusions
A large amount of expertmendal eritical flow data ie available.

Fifty-six documents were found that described experimental critical
flow studies and contained experimental data. The studies
investigated critical flow in constant area ducts,

converging-diverging nozzles, orifices, pipe tees and elbows, valves,
and slits.

"ne majority of the data was obtained using conetant area ducts.

More than half of the references found documented critical flow
studies conducted with constant area ducts. The test sections covered
large ranges of diameter (1.5 to 500 mm) and length (0.6 to 2800 mm).

Stgnificant amounts of eritical flow data are available converging-
diverging noszles and orifices over a limited range of siaes.

Nineteen references were found documenting critical flow studies using
converging-diverging nozzles and nine references were found
documenting critical flow studies using orifices. The nozzle throat
and orifice diameters ranged from 4 to 75 mm and 4 to 30 mm
respectively,
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Little data are available for eritieal [Tow occwrring in standard
piping componente and for geometries resembling piping failures other than
a guillotine break.

Two references were found in which critical flow was studied in
standar¢ plumbing components. These studies utilized small scale
elbows, tees, and valves. Only one reference was found in which

critical flow was studied in slits simulating a localized pipe failure
and again the apparatus used was small scale.

Little data are avatlable for tdealized flow geometries that are
designed to avoid entrance separation.

Most of the constant area ducts had 90-degree, conical, or small
radiused entrances (i.e., approximately equal to half the test section
diameter). Most of the nozzles had conical entrances of large
half-angle and many had an abrupt change in slope at the entrance of
the minimum area section and large half-angle diffusers. Very few

test sections had gradual approaches to the minimum area section with
a continuous change in slope.

Uttlization of some of the data ie hampered by dissimilaritics in test
section geometry and flutd conditions and by a lack of ecssential information,

Differences in test section entrance contour, nozzle throat geometry,
and diffuser angle would contribute additional uncertainties if the
data were used to assess the effect of geometric variables. Such
assessments would also be complicated by a lack of data at common
stagnation conditions. Several references did not contain sufficient
data to completely specifiy the stagnation state of flow passing

through the nozzle which greatly limits their usefulness for critical
flow model assessment and development,
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Recommendations

— c————

Future experimental eritical flow studiee should be designed to ensure

. optimal use of and integration with the present data base.

A large amount of experimental critical flow data is available. This
data base should be carefully reviewed as part of planning for future
critical flow research to ensure that testing is directed towards
expansion of the distribution of geometries for which data is

available instead of unnecessary duplication of effort., Test section
geometries and stagnation fluid conditions should also be selected to
ensure that straightforward comparisons can be made with existing data.

Tabulated experimental data ineluding a complete epectification of the
stagnation condition of the flow at the entrance to the test section should
be included in the document reporting a eritical flow study or a reference
to the source from which such data can be obtained should be ineluded,

The enclosure of tabulated data in the document reporting an
experimental critical flow study greatly increases the usefulness of
the information. This practice eliminates the need for taking data
from report figures. Extracting data from report figures produces
data of questionable quality due to possible distortions of the data
in producing the plot or in report reproduction, a lack of resolution
when using small report figures, and possible errors in reading the
data from the plot. Reporting of sufficient data to completely define
the stagnation thermodynamic state of the choked flow is important
because the flow rate and critical thermodyanamic state are primarily
a function of the stagnation state. Furthermore, most critical flow
models require the stagnation state as input to compute the critical
flow rate and critical state. Experimental data which does not
include a complete definition of the stagnation state thus cannot be
used for model assessment.




Addititonal data on eritical flow in plumbing components and in pipe
failure geometriee other than the guillotine break appear to be needed.

The current interest in small break loss of coolant accidents would
seen to increase the need for critical flow data in plumbing
components and pipe failures. Modeling of critical flow througn
safety and relief valves has already been identified as an area of
study by the USNRC and other agencies. With the consideration of
small breaks, the path to where the flow is being exhausted to the
containment may be long and contain numerous plumbing components which
are prospective choking locations. The interest in breaks having
higher probabilities of occurrence than the guillotine break should
increase the interest in critical flow in pipe failure geometries such
as pipe splits and weldment cracks.

The range of eizes of converging-diverging nozales and orifices for

which eritical flow data ie available 18 rather limited and may need to be

expanded.

Most of the data for converging-diverging nozzles and orifices have
been obtained with test sections having minimum area sections ranging
in size from 4 to 20 or 30 mm. Additional data may be required if
larger scale applications for hardware from these two classes are
identified. The most likely requirement would come from 2 need to
meter flow since these two geometries are typically used in metering
devices.

More complete information on the uncertainties of all measurements

made in a erittcal flow study are needed with particular emphasis on the
uncertainty of the measured flow rate.

Less than half of the references found included measurement
uncertainty information. The information that was reported included
fluid property measurement uncertainties but generally did not include




the uncertainty of the flow rate measurement. In most cases the
uncertainty information was not explained so it could be properly
interrupted. Inclusion of measurement uncertainty is essential to
determine if significant differences in the data exist that might
indicate parametric influences, Measurement uncertainties are also
essential in performing analytical model or system code assessment
since a clear picture of the uncertainty of the model or code requires
knowledge of the uncertainty associated with the data being used to
assess the model or code.

The experumental critiecal [low data identifted in this study should be

asgsembled in a topical data bank to be ineluded in the USNRC Data Bank.

The utility of the existing experimental data would be greatly
increased if it were available in a uniformly formatted form with
supporting software for rapid retrieval and data display and
manipulation. The USNRC Data Bank currently provides software which
allows rapid retrieval and data display and manipulation. Adding of
the existing data to the data bank would be a time consuming but not
insurmountable task. The benefits of increased understanding of the
phenomenon and of improving the state of the art of critical flow
prediction justify the effort,
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